VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 92424

Last change on this file since 92424 was 92424, checked in by vboxsync, 3 years ago

VMM/PGM: Adjusted the ram range sizes again so they better align with 2MiB large pages. bugref:10122

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 223.5 KB
Line 
1/* $Id: PGMPhys.cpp 92424 2021-11-15 13:09:17Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/iom.h>
27#include <VBox/vmm/mm.h>
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/stam.h>
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vmcc.h>
33
34#include "PGMInline.h"
35
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#ifdef VBOX_STRICT
44# include <iprt/crc.h>
45#endif
46#include <iprt/thread.h>
47#include <iprt/string.h>
48#include <iprt/system.h>
49
50
51/*********************************************************************************************************************************
52* Defined Constants And Macros *
53*********************************************************************************************************************************/
54/** The number of pages to free in one batch. */
55#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
56
57
58
59/*********************************************************************************************************************************
60* Reading and Writing Guest Pysical Memory *
61*********************************************************************************************************************************/
62
63/*
64 * PGMR3PhysReadU8-64
65 * PGMR3PhysWriteU8-64
66 */
67#define PGMPHYSFN_READNAME PGMR3PhysReadU8
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
69#define PGMPHYS_DATASIZE 1
70#define PGMPHYS_DATATYPE uint8_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU16
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
75#define PGMPHYS_DATASIZE 2
76#define PGMPHYS_DATATYPE uint16_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU32
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
81#define PGMPHYS_DATASIZE 4
82#define PGMPHYS_DATATYPE uint32_t
83#include "PGMPhysRWTmpl.h"
84
85#define PGMPHYSFN_READNAME PGMR3PhysReadU64
86#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
87#define PGMPHYS_DATASIZE 8
88#define PGMPHYS_DATATYPE uint64_t
89#include "PGMPhysRWTmpl.h"
90
91
92/**
93 * EMT worker for PGMR3PhysReadExternal.
94 */
95static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
96 PGMACCESSORIGIN enmOrigin)
97{
98 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
99 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
100 return VINF_SUCCESS;
101}
102
103
104/**
105 * Read from physical memory, external users.
106 *
107 * @returns VBox status code.
108 * @retval VINF_SUCCESS.
109 *
110 * @param pVM The cross context VM structure.
111 * @param GCPhys Physical address to read from.
112 * @param pvBuf Where to read into.
113 * @param cbRead How many bytes to read.
114 * @param enmOrigin Who is calling.
115 *
116 * @thread Any but EMTs.
117 */
118VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
119{
120 VM_ASSERT_OTHER_THREAD(pVM);
121
122 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
123 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
124
125 PGM_LOCK_VOID(pVM);
126
127 /*
128 * Copy loop on ram ranges.
129 */
130 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
131 for (;;)
132 {
133 /* Inside range or not? */
134 if (pRam && GCPhys >= pRam->GCPhys)
135 {
136 /*
137 * Must work our way thru this page by page.
138 */
139 RTGCPHYS off = GCPhys - pRam->GCPhys;
140 while (off < pRam->cb)
141 {
142 unsigned iPage = off >> PAGE_SHIFT;
143 PPGMPAGE pPage = &pRam->aPages[iPage];
144
145 /*
146 * If the page has an ALL access handler, we'll have to
147 * delegate the job to EMT.
148 */
149 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
150 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
151 {
152 PGM_UNLOCK(pVM);
153
154 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
155 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
156 }
157 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
158
159 /*
160 * Simple stuff, go ahead.
161 */
162 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
163 if (cb > cbRead)
164 cb = cbRead;
165 PGMPAGEMAPLOCK PgMpLck;
166 const void *pvSrc;
167 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
168 if (RT_SUCCESS(rc))
169 {
170 memcpy(pvBuf, pvSrc, cb);
171 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
172 }
173 else
174 {
175 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
176 pRam->GCPhys + off, pPage, rc));
177 memset(pvBuf, 0xff, cb);
178 }
179
180 /* next page */
181 if (cb >= cbRead)
182 {
183 PGM_UNLOCK(pVM);
184 return VINF_SUCCESS;
185 }
186 cbRead -= cb;
187 off += cb;
188 GCPhys += cb;
189 pvBuf = (char *)pvBuf + cb;
190 } /* walk pages in ram range. */
191 }
192 else
193 {
194 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
195
196 /*
197 * Unassigned address space.
198 */
199 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
200 if (cb >= cbRead)
201 {
202 memset(pvBuf, 0xff, cbRead);
203 break;
204 }
205 memset(pvBuf, 0xff, cb);
206
207 cbRead -= cb;
208 pvBuf = (char *)pvBuf + cb;
209 GCPhys += cb;
210 }
211
212 /* Advance range if necessary. */
213 while (pRam && GCPhys > pRam->GCPhysLast)
214 pRam = pRam->CTX_SUFF(pNext);
215 } /* Ram range walk */
216
217 PGM_UNLOCK(pVM);
218
219 return VINF_SUCCESS;
220}
221
222
223/**
224 * EMT worker for PGMR3PhysWriteExternal.
225 */
226static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
227 PGMACCESSORIGIN enmOrigin)
228{
229 /** @todo VERR_EM_NO_MEMORY */
230 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
231 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
232 return VINF_SUCCESS;
233}
234
235
236/**
237 * Write to physical memory, external users.
238 *
239 * @returns VBox status code.
240 * @retval VINF_SUCCESS.
241 * @retval VERR_EM_NO_MEMORY.
242 *
243 * @param pVM The cross context VM structure.
244 * @param GCPhys Physical address to write to.
245 * @param pvBuf What to write.
246 * @param cbWrite How many bytes to write.
247 * @param enmOrigin Who is calling.
248 *
249 * @thread Any but EMTs.
250 */
251VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
252{
253 VM_ASSERT_OTHER_THREAD(pVM);
254
255 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
256 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
257 GCPhys, cbWrite, enmOrigin));
258 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
259 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
260
261 PGM_LOCK_VOID(pVM);
262
263 /*
264 * Copy loop on ram ranges, stop when we hit something difficult.
265 */
266 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
267 for (;;)
268 {
269 /* Inside range or not? */
270 if (pRam && GCPhys >= pRam->GCPhys)
271 {
272 /*
273 * Must work our way thru this page by page.
274 */
275 RTGCPTR off = GCPhys - pRam->GCPhys;
276 while (off < pRam->cb)
277 {
278 RTGCPTR iPage = off >> PAGE_SHIFT;
279 PPGMPAGE pPage = &pRam->aPages[iPage];
280
281 /*
282 * Is the page problematic, we have to do the work on the EMT.
283 *
284 * Allocating writable pages and access handlers are
285 * problematic, write monitored pages are simple and can be
286 * dealt with here.
287 */
288 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
289 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
290 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
291 {
292 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
293 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
294 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
295 else
296 {
297 PGM_UNLOCK(pVM);
298
299 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
300 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
301 }
302 }
303 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
304
305 /*
306 * Simple stuff, go ahead.
307 */
308 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
309 if (cb > cbWrite)
310 cb = cbWrite;
311 PGMPAGEMAPLOCK PgMpLck;
312 void *pvDst;
313 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
314 if (RT_SUCCESS(rc))
315 {
316 memcpy(pvDst, pvBuf, cb);
317 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
318 }
319 else
320 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
321 pRam->GCPhys + off, pPage, rc));
322
323 /* next page */
324 if (cb >= cbWrite)
325 {
326 PGM_UNLOCK(pVM);
327 return VINF_SUCCESS;
328 }
329
330 cbWrite -= cb;
331 off += cb;
332 GCPhys += cb;
333 pvBuf = (const char *)pvBuf + cb;
334 } /* walk pages in ram range */
335 }
336 else
337 {
338 /*
339 * Unassigned address space, skip it.
340 */
341 if (!pRam)
342 break;
343 size_t cb = pRam->GCPhys - GCPhys;
344 if (cb >= cbWrite)
345 break;
346 cbWrite -= cb;
347 pvBuf = (const char *)pvBuf + cb;
348 GCPhys += cb;
349 }
350
351 /* Advance range if necessary. */
352 while (pRam && GCPhys > pRam->GCPhysLast)
353 pRam = pRam->CTX_SUFF(pNext);
354 } /* Ram range walk */
355
356 PGM_UNLOCK(pVM);
357 return VINF_SUCCESS;
358}
359
360
361/*********************************************************************************************************************************
362* Mapping Guest Physical Memory *
363*********************************************************************************************************************************/
364
365/**
366 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
367 *
368 * @returns see PGMR3PhysGCPhys2CCPtrExternal
369 * @param pVM The cross context VM structure.
370 * @param pGCPhys Pointer to the guest physical address.
371 * @param ppv Where to store the mapping address.
372 * @param pLock Where to store the lock.
373 */
374static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
375{
376 /*
377 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
378 * an access handler after it succeeds.
379 */
380 int rc = PGM_LOCK(pVM);
381 AssertRCReturn(rc, rc);
382
383 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
384 if (RT_SUCCESS(rc))
385 {
386 PPGMPAGEMAPTLBE pTlbe;
387 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
388 AssertFatalRC(rc2);
389 PPGMPAGE pPage = pTlbe->pPage;
390 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
391 {
392 PGMPhysReleasePageMappingLock(pVM, pLock);
393 rc = VERR_PGM_PHYS_PAGE_RESERVED;
394 }
395 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
396#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
397 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
398#endif
399 )
400 {
401 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
402 * not be informed about writes and keep bogus gst->shw mappings around.
403 */
404 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
405 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
406 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
407 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
408 }
409 }
410
411 PGM_UNLOCK(pVM);
412 return rc;
413}
414
415
416/**
417 * Requests the mapping of a guest page into ring-3, external threads.
418 *
419 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
420 * release it.
421 *
422 * This API will assume your intention is to write to the page, and will
423 * therefore replace shared and zero pages. If you do not intend to modify the
424 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
425 *
426 * @returns VBox status code.
427 * @retval VINF_SUCCESS on success.
428 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
429 * backing or if the page has any active access handlers. The caller
430 * must fall back on using PGMR3PhysWriteExternal.
431 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
432 *
433 * @param pVM The cross context VM structure.
434 * @param GCPhys The guest physical address of the page that should be mapped.
435 * @param ppv Where to store the address corresponding to GCPhys.
436 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
437 *
438 * @remark Avoid calling this API from within critical sections (other than the
439 * PGM one) because of the deadlock risk when we have to delegating the
440 * task to an EMT.
441 * @thread Any.
442 */
443VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
444{
445 AssertPtr(ppv);
446 AssertPtr(pLock);
447
448 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
449
450 int rc = PGM_LOCK(pVM);
451 AssertRCReturn(rc, rc);
452
453 /*
454 * Query the Physical TLB entry for the page (may fail).
455 */
456 PPGMPAGEMAPTLBE pTlbe;
457 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
458 if (RT_SUCCESS(rc))
459 {
460 PPGMPAGE pPage = pTlbe->pPage;
461 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
462 rc = VERR_PGM_PHYS_PAGE_RESERVED;
463 else
464 {
465 /*
466 * If the page is shared, the zero page, or being write monitored
467 * it must be converted to an page that's writable if possible.
468 * We can only deal with write monitored pages here, the rest have
469 * to be on an EMT.
470 */
471 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
472 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
473#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
474 || pgmPoolIsDirtyPage(pVM, GCPhys)
475#endif
476 )
477 {
478 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
479 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
480#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
481 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
482#endif
483 )
484 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
485 else
486 {
487 PGM_UNLOCK(pVM);
488
489 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
490 pVM, &GCPhys, ppv, pLock);
491 }
492 }
493
494 /*
495 * Now, just perform the locking and calculate the return address.
496 */
497 PPGMPAGEMAP pMap = pTlbe->pMap;
498 if (pMap)
499 pMap->cRefs++;
500
501 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
502 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
503 {
504 if (cLocks == 0)
505 pVM->pgm.s.cWriteLockedPages++;
506 PGM_PAGE_INC_WRITE_LOCKS(pPage);
507 }
508 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
509 {
510 PGM_PAGE_INC_WRITE_LOCKS(pPage);
511 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
512 if (pMap)
513 pMap->cRefs++; /* Extra ref to prevent it from going away. */
514 }
515
516 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
517 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
518 pLock->pvMap = pMap;
519 }
520 }
521
522 PGM_UNLOCK(pVM);
523 return rc;
524}
525
526
527/**
528 * Requests the mapping of a guest page into ring-3, external threads.
529 *
530 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
531 * release it.
532 *
533 * @returns VBox status code.
534 * @retval VINF_SUCCESS on success.
535 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
536 * backing or if the page as an active ALL access handler. The caller
537 * must fall back on using PGMPhysRead.
538 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
539 *
540 * @param pVM The cross context VM structure.
541 * @param GCPhys The guest physical address of the page that should be mapped.
542 * @param ppv Where to store the address corresponding to GCPhys.
543 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
544 *
545 * @remark Avoid calling this API from within critical sections (other than
546 * the PGM one) because of the deadlock risk.
547 * @thread Any.
548 */
549VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
550{
551 int rc = PGM_LOCK(pVM);
552 AssertRCReturn(rc, rc);
553
554 /*
555 * Query the Physical TLB entry for the page (may fail).
556 */
557 PPGMPAGEMAPTLBE pTlbe;
558 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
559 if (RT_SUCCESS(rc))
560 {
561 PPGMPAGE pPage = pTlbe->pPage;
562#if 1
563 /* MMIO pages doesn't have any readable backing. */
564 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
565 rc = VERR_PGM_PHYS_PAGE_RESERVED;
566#else
567 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
568 rc = VERR_PGM_PHYS_PAGE_RESERVED;
569#endif
570 else
571 {
572 /*
573 * Now, just perform the locking and calculate the return address.
574 */
575 PPGMPAGEMAP pMap = pTlbe->pMap;
576 if (pMap)
577 pMap->cRefs++;
578
579 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
580 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
581 {
582 if (cLocks == 0)
583 pVM->pgm.s.cReadLockedPages++;
584 PGM_PAGE_INC_READ_LOCKS(pPage);
585 }
586 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
587 {
588 PGM_PAGE_INC_READ_LOCKS(pPage);
589 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
590 if (pMap)
591 pMap->cRefs++; /* Extra ref to prevent it from going away. */
592 }
593
594 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
595 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
596 pLock->pvMap = pMap;
597 }
598 }
599
600 PGM_UNLOCK(pVM);
601 return rc;
602}
603
604
605/**
606 * Requests the mapping of multiple guest page into ring-3, external threads.
607 *
608 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
609 * ASAP to release them.
610 *
611 * This API will assume your intention is to write to the pages, and will
612 * therefore replace shared and zero pages. If you do not intend to modify the
613 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
614 *
615 * @returns VBox status code.
616 * @retval VINF_SUCCESS on success.
617 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
618 * backing or if any of the pages the page has any active access
619 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
620 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
621 * an invalid physical address.
622 *
623 * @param pVM The cross context VM structure.
624 * @param cPages Number of pages to lock.
625 * @param paGCPhysPages The guest physical address of the pages that
626 * should be mapped (@a cPages entries).
627 * @param papvPages Where to store the ring-3 mapping addresses
628 * corresponding to @a paGCPhysPages.
629 * @param paLocks Where to store the locking information that
630 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
631 * in length).
632 *
633 * @remark Avoid calling this API from within critical sections (other than the
634 * PGM one) because of the deadlock risk when we have to delegating the
635 * task to an EMT.
636 * @thread Any.
637 */
638VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
639 void **papvPages, PPGMPAGEMAPLOCK paLocks)
640{
641 Assert(cPages > 0);
642 AssertPtr(papvPages);
643 AssertPtr(paLocks);
644
645 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
646
647 int rc = PGM_LOCK(pVM);
648 AssertRCReturn(rc, rc);
649
650 /*
651 * Lock the pages one by one.
652 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
653 */
654 int32_t cNextYield = 128;
655 uint32_t iPage;
656 for (iPage = 0; iPage < cPages; iPage++)
657 {
658 if (--cNextYield > 0)
659 { /* likely */ }
660 else
661 {
662 PGM_UNLOCK(pVM);
663 ASMNopPause();
664 PGM_LOCK_VOID(pVM);
665 cNextYield = 128;
666 }
667
668 /*
669 * Query the Physical TLB entry for the page (may fail).
670 */
671 PPGMPAGEMAPTLBE pTlbe;
672 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
673 if (RT_SUCCESS(rc))
674 { }
675 else
676 break;
677 PPGMPAGE pPage = pTlbe->pPage;
678
679 /*
680 * No MMIO or active access handlers.
681 */
682 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
683 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
684 { }
685 else
686 {
687 rc = VERR_PGM_PHYS_PAGE_RESERVED;
688 break;
689 }
690
691 /*
692 * The page must be in the allocated state and not be a dirty pool page.
693 * We can handle converting a write monitored page to an allocated one, but
694 * anything more complicated must be delegated to an EMT.
695 */
696 bool fDelegateToEmt = false;
697 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
699 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
700#else
701 fDelegateToEmt = false;
702#endif
703 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
704 {
705#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
706 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
707 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
708 else
709 fDelegateToEmt = true;
710#endif
711 }
712 else
713 fDelegateToEmt = true;
714 if (!fDelegateToEmt)
715 { }
716 else
717 {
718 /* We could do this delegation in bulk, but considered too much work vs gain. */
719 PGM_UNLOCK(pVM);
720 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
721 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
722 PGM_LOCK_VOID(pVM);
723 if (RT_FAILURE(rc))
724 break;
725 cNextYield = 128;
726 }
727
728 /*
729 * Now, just perform the locking and address calculation.
730 */
731 PPGMPAGEMAP pMap = pTlbe->pMap;
732 if (pMap)
733 pMap->cRefs++;
734
735 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
736 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
737 {
738 if (cLocks == 0)
739 pVM->pgm.s.cWriteLockedPages++;
740 PGM_PAGE_INC_WRITE_LOCKS(pPage);
741 }
742 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
743 {
744 PGM_PAGE_INC_WRITE_LOCKS(pPage);
745 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
746 if (pMap)
747 pMap->cRefs++; /* Extra ref to prevent it from going away. */
748 }
749
750 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
751 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
752 paLocks[iPage].pvMap = pMap;
753 }
754
755 PGM_UNLOCK(pVM);
756
757 /*
758 * On failure we must unlock any pages we managed to get already.
759 */
760 if (RT_FAILURE(rc) && iPage > 0)
761 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
762
763 return rc;
764}
765
766
767/**
768 * Requests the mapping of multiple guest page into ring-3, for reading only,
769 * external threads.
770 *
771 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
772 * to release them.
773 *
774 * @returns VBox status code.
775 * @retval VINF_SUCCESS on success.
776 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
777 * backing or if any of the pages the page has an active ALL access
778 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
779 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
780 * an invalid physical address.
781 *
782 * @param pVM The cross context VM structure.
783 * @param cPages Number of pages to lock.
784 * @param paGCPhysPages The guest physical address of the pages that
785 * should be mapped (@a cPages entries).
786 * @param papvPages Where to store the ring-3 mapping addresses
787 * corresponding to @a paGCPhysPages.
788 * @param paLocks Where to store the lock information that
789 * pfnPhysReleasePageMappingLock needs (@a cPages
790 * in length).
791 *
792 * @remark Avoid calling this API from within critical sections (other than
793 * the PGM one) because of the deadlock risk.
794 * @thread Any.
795 */
796VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
797 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
798{
799 Assert(cPages > 0);
800 AssertPtr(papvPages);
801 AssertPtr(paLocks);
802
803 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
804
805 int rc = PGM_LOCK(pVM);
806 AssertRCReturn(rc, rc);
807
808 /*
809 * Lock the pages one by one.
810 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
811 */
812 int32_t cNextYield = 256;
813 uint32_t iPage;
814 for (iPage = 0; iPage < cPages; iPage++)
815 {
816 if (--cNextYield > 0)
817 { /* likely */ }
818 else
819 {
820 PGM_UNLOCK(pVM);
821 ASMNopPause();
822 PGM_LOCK_VOID(pVM);
823 cNextYield = 256;
824 }
825
826 /*
827 * Query the Physical TLB entry for the page (may fail).
828 */
829 PPGMPAGEMAPTLBE pTlbe;
830 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
831 if (RT_SUCCESS(rc))
832 { }
833 else
834 break;
835 PPGMPAGE pPage = pTlbe->pPage;
836
837 /*
838 * No MMIO or active all access handlers, everything else can be accessed.
839 */
840 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
841 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
842 { }
843 else
844 {
845 rc = VERR_PGM_PHYS_PAGE_RESERVED;
846 break;
847 }
848
849 /*
850 * Now, just perform the locking and address calculation.
851 */
852 PPGMPAGEMAP pMap = pTlbe->pMap;
853 if (pMap)
854 pMap->cRefs++;
855
856 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
857 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
858 {
859 if (cLocks == 0)
860 pVM->pgm.s.cReadLockedPages++;
861 PGM_PAGE_INC_READ_LOCKS(pPage);
862 }
863 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
864 {
865 PGM_PAGE_INC_READ_LOCKS(pPage);
866 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
867 if (pMap)
868 pMap->cRefs++; /* Extra ref to prevent it from going away. */
869 }
870
871 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
872 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
873 paLocks[iPage].pvMap = pMap;
874 }
875
876 PGM_UNLOCK(pVM);
877
878 /*
879 * On failure we must unlock any pages we managed to get already.
880 */
881 if (RT_FAILURE(rc) && iPage > 0)
882 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
883
884 return rc;
885}
886
887
888/**
889 * Converts a GC physical address to a HC ring-3 pointer, with some
890 * additional checks.
891 *
892 * @returns VBox status code.
893 * @retval VINF_SUCCESS on success.
894 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
895 * access handler of some kind.
896 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
897 * accesses or is odd in any way.
898 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
899 *
900 * @param pVM The cross context VM structure.
901 * @param GCPhys The GC physical address to convert. Since this is only
902 * used for filling the REM TLB, the A20 mask must be
903 * applied before calling this API.
904 * @param fWritable Whether write access is required.
905 * @param ppv Where to store the pointer corresponding to GCPhys on
906 * success.
907 */
908VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
909{
910 PGM_LOCK_VOID(pVM);
911 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
912
913 PPGMRAMRANGE pRam;
914 PPGMPAGE pPage;
915 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
916 if (RT_SUCCESS(rc))
917 {
918 if (PGM_PAGE_IS_BALLOONED(pPage))
919 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
920 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
921 rc = VINF_SUCCESS;
922 else
923 {
924 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
925 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
926 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
927 {
928 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
929 * in -norawr0 mode. */
930 if (fWritable)
931 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
932 }
933 else
934 {
935 /* Temporarily disabled physical handler(s), since the recompiler
936 doesn't get notified when it's reset we'll have to pretend it's
937 operating normally. */
938 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
939 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
940 else
941 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
942 }
943 }
944 if (RT_SUCCESS(rc))
945 {
946 int rc2;
947
948 /* Make sure what we return is writable. */
949 if (fWritable)
950 switch (PGM_PAGE_GET_STATE(pPage))
951 {
952 case PGM_PAGE_STATE_ALLOCATED:
953 break;
954 case PGM_PAGE_STATE_BALLOONED:
955 AssertFailed();
956 break;
957 case PGM_PAGE_STATE_ZERO:
958 case PGM_PAGE_STATE_SHARED:
959 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
960 break;
961 RT_FALL_THRU();
962 case PGM_PAGE_STATE_WRITE_MONITORED:
963 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
964 AssertLogRelRCReturn(rc2, rc2);
965 break;
966 }
967
968 /* Get a ring-3 mapping of the address. */
969 PPGMPAGER3MAPTLBE pTlbe;
970 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
971 AssertLogRelRCReturn(rc2, rc2);
972 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
973 /** @todo mapping/locking hell; this isn't horribly efficient since
974 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
975
976 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
977 }
978 else
979 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
980
981 /* else: handler catching all access, no pointer returned. */
982 }
983 else
984 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
985
986 PGM_UNLOCK(pVM);
987 return rc;
988}
989
990
991
992/*********************************************************************************************************************************
993* RAM Range Management *
994*********************************************************************************************************************************/
995
996#define MAKE_LEAF(a_pNode) \
997 do { \
998 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
999 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
1000 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
1001 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
1002 } while (0)
1003
1004#define INSERT_LEFT(a_pParent, a_pNode) \
1005 do { \
1006 (a_pParent)->pLeftR3 = (a_pNode); \
1007 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
1008 } while (0)
1009#define INSERT_RIGHT(a_pParent, a_pNode) \
1010 do { \
1011 (a_pParent)->pRightR3 = (a_pNode); \
1012 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
1013 } while (0)
1014
1015
1016/**
1017 * Recursive tree builder.
1018 *
1019 * @param ppRam Pointer to the iterator variable.
1020 * @param iDepth The current depth. Inserts a leaf node if 0.
1021 */
1022static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
1023{
1024 PPGMRAMRANGE pRam;
1025 if (iDepth <= 0)
1026 {
1027 /*
1028 * Leaf node.
1029 */
1030 pRam = *ppRam;
1031 if (pRam)
1032 {
1033 *ppRam = pRam->pNextR3;
1034 MAKE_LEAF(pRam);
1035 }
1036 }
1037 else
1038 {
1039
1040 /*
1041 * Intermediate node.
1042 */
1043 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1044
1045 pRam = *ppRam;
1046 if (!pRam)
1047 return pLeft;
1048 *ppRam = pRam->pNextR3;
1049 MAKE_LEAF(pRam);
1050 INSERT_LEFT(pRam, pLeft);
1051
1052 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1053 if (pRight)
1054 INSERT_RIGHT(pRam, pRight);
1055 }
1056 return pRam;
1057}
1058
1059
1060/**
1061 * Rebuilds the RAM range search trees.
1062 *
1063 * @param pVM The cross context VM structure.
1064 */
1065static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
1066{
1067
1068 /*
1069 * Create the reasonably balanced tree in a sequential fashion.
1070 * For simplicity (laziness) we use standard recursion here.
1071 */
1072 int iDepth = 0;
1073 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1074 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
1075 while (pRam)
1076 {
1077 PPGMRAMRANGE pLeft = pRoot;
1078
1079 pRoot = pRam;
1080 pRam = pRam->pNextR3;
1081 MAKE_LEAF(pRoot);
1082 INSERT_LEFT(pRoot, pLeft);
1083
1084 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
1085 if (pRight)
1086 INSERT_RIGHT(pRoot, pRight);
1087 /** @todo else: rotate the tree. */
1088
1089 iDepth++;
1090 }
1091
1092 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
1093 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
1094
1095#ifdef VBOX_STRICT
1096 /*
1097 * Verify that the above code works.
1098 */
1099 unsigned cRanges = 0;
1100 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1101 cRanges++;
1102 Assert(cRanges > 0);
1103
1104 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
1105 if ((1U << cMaxDepth) < cRanges)
1106 cMaxDepth++;
1107
1108 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1109 {
1110 unsigned cDepth = 0;
1111 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
1112 for (;;)
1113 {
1114 if (pRam == pRam2)
1115 break;
1116 Assert(pRam2);
1117 if (pRam->GCPhys < pRam2->GCPhys)
1118 pRam2 = pRam2->pLeftR3;
1119 else
1120 pRam2 = pRam2->pRightR3;
1121 }
1122 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1123 }
1124#endif /* VBOX_STRICT */
1125}
1126
1127#undef MAKE_LEAF
1128#undef INSERT_LEFT
1129#undef INSERT_RIGHT
1130
1131/**
1132 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1133 *
1134 * Called when anything was relocated.
1135 *
1136 * @param pVM The cross context VM structure.
1137 */
1138void pgmR3PhysRelinkRamRanges(PVM pVM)
1139{
1140 PPGMRAMRANGE pCur;
1141
1142#ifdef VBOX_STRICT
1143 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1144 {
1145 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1146 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1147 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1148 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1149 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1150 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1151 Assert( pCur2 == pCur
1152 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1153 }
1154#endif
1155
1156 pCur = pVM->pgm.s.pRamRangesXR3;
1157 if (pCur)
1158 {
1159 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1160
1161 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1162 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1163
1164 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1165 }
1166 else
1167 {
1168 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1169 }
1170 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1171
1172 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1173}
1174
1175
1176/**
1177 * Links a new RAM range into the list.
1178 *
1179 * @param pVM The cross context VM structure.
1180 * @param pNew Pointer to the new list entry.
1181 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1182 */
1183static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1184{
1185 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1186 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1187
1188 PGM_LOCK_VOID(pVM);
1189
1190 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1191 pNew->pNextR3 = pRam;
1192 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1193
1194 if (pPrev)
1195 {
1196 pPrev->pNextR3 = pNew;
1197 pPrev->pNextR0 = pNew->pSelfR0;
1198 }
1199 else
1200 {
1201 pVM->pgm.s.pRamRangesXR3 = pNew;
1202 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1203 }
1204 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1205
1206 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1207 PGM_UNLOCK(pVM);
1208}
1209
1210
1211/**
1212 * Unlink an existing RAM range from the list.
1213 *
1214 * @param pVM The cross context VM structure.
1215 * @param pRam Pointer to the new list entry.
1216 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1217 */
1218static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1219{
1220 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1221 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1222
1223 PGM_LOCK_VOID(pVM);
1224
1225 PPGMRAMRANGE pNext = pRam->pNextR3;
1226 if (pPrev)
1227 {
1228 pPrev->pNextR3 = pNext;
1229 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1230 }
1231 else
1232 {
1233 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1234 pVM->pgm.s.pRamRangesXR3 = pNext;
1235 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1236 }
1237 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1238
1239 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1240 PGM_UNLOCK(pVM);
1241}
1242
1243
1244/**
1245 * Unlink an existing RAM range from the list.
1246 *
1247 * @param pVM The cross context VM structure.
1248 * @param pRam Pointer to the new list entry.
1249 */
1250static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1251{
1252 PGM_LOCK_VOID(pVM);
1253
1254 /* find prev. */
1255 PPGMRAMRANGE pPrev = NULL;
1256 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1257 while (pCur != pRam)
1258 {
1259 pPrev = pCur;
1260 pCur = pCur->pNextR3;
1261 }
1262 AssertFatal(pCur);
1263
1264 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1265 PGM_UNLOCK(pVM);
1266}
1267
1268
1269/**
1270 * Gets the number of ram ranges.
1271 *
1272 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1273 * @param pVM The cross context VM structure.
1274 */
1275VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1276{
1277 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1278
1279 PGM_LOCK_VOID(pVM);
1280 uint32_t cRamRanges = 0;
1281 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1282 cRamRanges++;
1283 PGM_UNLOCK(pVM);
1284 return cRamRanges;
1285}
1286
1287
1288/**
1289 * Get information about a range.
1290 *
1291 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1292 * @param pVM The cross context VM structure.
1293 * @param iRange The ordinal of the range.
1294 * @param pGCPhysStart Where to return the start of the range. Optional.
1295 * @param pGCPhysLast Where to return the address of the last byte in the
1296 * range. Optional.
1297 * @param ppszDesc Where to return the range description. Optional.
1298 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1299 * Optional.
1300 */
1301VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1302 const char **ppszDesc, bool *pfIsMmio)
1303{
1304 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1305
1306 PGM_LOCK_VOID(pVM);
1307 uint32_t iCurRange = 0;
1308 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1309 if (iCurRange == iRange)
1310 {
1311 if (pGCPhysStart)
1312 *pGCPhysStart = pCur->GCPhys;
1313 if (pGCPhysLast)
1314 *pGCPhysLast = pCur->GCPhysLast;
1315 if (ppszDesc)
1316 *ppszDesc = pCur->pszDesc;
1317 if (pfIsMmio)
1318 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1319
1320 PGM_UNLOCK(pVM);
1321 return VINF_SUCCESS;
1322 }
1323 PGM_UNLOCK(pVM);
1324 return VERR_OUT_OF_RANGE;
1325}
1326
1327
1328/*********************************************************************************************************************************
1329* RAM *
1330*********************************************************************************************************************************/
1331
1332/**
1333 * Frees the specified RAM page and replaces it with the ZERO page.
1334 *
1335 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
1336 *
1337 * @param pVM The cross context VM structure.
1338 * @param pReq Pointer to the request. This is NULL when doing a
1339 * bulk free in NEM memory mode.
1340 * @param pcPendingPages Where the number of pages waiting to be freed are
1341 * kept. This will normally be incremented. This is
1342 * NULL when doing a bulk free in NEM memory mode.
1343 * @param pPage Pointer to the page structure.
1344 * @param GCPhys The guest physical address of the page, if applicable.
1345 * @param enmNewType New page type for NEM notification, since several
1346 * callers will change the type upon successful return.
1347 *
1348 * @remarks The caller must own the PGM lock.
1349 */
1350int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
1351 PGMPAGETYPE enmNewType)
1352{
1353 /*
1354 * Assert sanity.
1355 */
1356 PGM_LOCK_ASSERT_OWNER(pVM);
1357 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1358 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
1359 {
1360 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1361 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
1362 }
1363
1364 /** @todo What about ballooning of large pages??! */
1365 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1366 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
1367
1368 if ( PGM_PAGE_IS_ZERO(pPage)
1369 || PGM_PAGE_IS_BALLOONED(pPage))
1370 return VINF_SUCCESS;
1371
1372 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
1373 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
1374 if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM)
1375 ? idPage == NIL_GMM_PAGEID
1376 || idPage > GMM_PAGEID_LAST
1377 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID
1378 : idPage != NIL_GMM_PAGEID))
1379 {
1380 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1381 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
1382 }
1383#ifdef VBOX_WITH_NATIVE_NEM
1384 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
1385#endif
1386
1387 /* update page count stats. */
1388 if (PGM_PAGE_IS_SHARED(pPage))
1389 pVM->pgm.s.cSharedPages--;
1390 else
1391 pVM->pgm.s.cPrivatePages--;
1392 pVM->pgm.s.cZeroPages++;
1393
1394 /* Deal with write monitored pages. */
1395 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1396 {
1397 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1398 pVM->pgm.s.cWrittenToPages++;
1399 }
1400
1401 /*
1402 * pPage = ZERO page.
1403 */
1404 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
1405 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1406 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
1407 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
1408 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
1409 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
1410
1411 /* Flush physical page map TLB entry. */
1412 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
1413
1414#ifdef VBOX_WITH_PGM_NEM_MODE
1415 /*
1416 * Skip the rest if we're doing a bulk free in NEM memory mode.
1417 */
1418 if (!pReq)
1419 return VINF_SUCCESS;
1420 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1421#endif
1422
1423#ifdef VBOX_WITH_NATIVE_NEM
1424 /* Notify NEM. */
1425 /** @todo Remove this one? */
1426 if (VM_IS_NEM_ENABLED(pVM))
1427 {
1428 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
1429 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.pvZeroPgR3,
1430 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
1431 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
1432 }
1433#else
1434 RT_NOREF(enmNewType);
1435#endif
1436
1437 /*
1438 * Make sure it's not in the handy page array.
1439 */
1440 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1441 {
1442 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
1443 {
1444 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1445 break;
1446 }
1447 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
1448 {
1449 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1450 break;
1451 }
1452 }
1453
1454 /*
1455 * Push it onto the page array.
1456 */
1457 uint32_t iPage = *pcPendingPages;
1458 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
1459 *pcPendingPages += 1;
1460
1461 pReq->aPages[iPage].idPage = idPage;
1462
1463 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
1464 return VINF_SUCCESS;
1465
1466 /*
1467 * Flush the pages.
1468 */
1469 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
1470 if (RT_SUCCESS(rc))
1471 {
1472 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1473 *pcPendingPages = 0;
1474 }
1475 return rc;
1476}
1477
1478
1479/**
1480 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1481 *
1482 * @returns VBox status code.
1483 * @param pVM The cross context VM structure.
1484 * @param pRam The RAM range in which the pages resides.
1485 * @param GCPhys The address of the first page.
1486 * @param GCPhysLast The address of the last page.
1487 * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that
1488 * will replace the pages we're freeing up.
1489 */
1490static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2)
1491{
1492 PGM_LOCK_ASSERT_OWNER(pVM);
1493
1494#ifdef VBOX_WITH_PGM_NEM_MODE
1495 /*
1496 * In simplified memory mode we don't actually free the memory,
1497 * we just unmap it and let NEM do any unlocking of it.
1498 */
1499 if (pVM->pgm.s.fNemMode)
1500 {
1501 Assert(VM_IS_NEM_ENABLED(pVM));
1502 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1503 uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */
1504 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
1505 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
1506 pvMmio2, &u2State, NULL /*puNemRange*/);
1507 AssertLogRelRCReturn(rc, rc);
1508
1509 /* Iterate the pages. */
1510 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1511 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1512 while (cPagesLeft-- > 0)
1513 {
1514 rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1515 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1516
1517 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1518 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1519
1520 GCPhys += PAGE_SIZE;
1521 pPageDst++;
1522 }
1523 return rc;
1524 }
1525#else /* !VBOX_WITH_PGM_NEM_MODE */
1526 RT_NOREF(pvMmio2);
1527#endif /* !VBOX_WITH_PGM_NEM_MODE */
1528
1529 /*
1530 * Regular mode.
1531 */
1532 /* Prepare. */
1533 uint32_t cPendingPages = 0;
1534 PGMMFREEPAGESREQ pReq;
1535 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1536 AssertLogRelRCReturn(rc, rc);
1537
1538#ifdef VBOX_WITH_NATIVE_NEM
1539 /* Tell NEM up-front. */
1540 uint8_t u2State = UINT8_MAX;
1541 if (VM_IS_NEM_ENABLED(pVM))
1542 {
1543 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1544 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2,
1545 &u2State, NULL /*puNemRange*/);
1546 AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc);
1547 }
1548#endif
1549
1550 /* Iterate the pages. */
1551 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1552 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1553 while (cPagesLeft-- > 0)
1554 {
1555 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1556 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1557
1558 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1559#ifdef VBOX_WITH_NATIVE_NEM
1560 if (u2State != UINT8_MAX)
1561 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1562#endif
1563
1564 GCPhys += PAGE_SIZE;
1565 pPageDst++;
1566 }
1567
1568 /* Finish pending and cleanup. */
1569 if (cPendingPages)
1570 {
1571 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1572 AssertLogRelRCReturn(rc, rc);
1573 }
1574 GMMR3FreePagesCleanup(pReq);
1575
1576 return rc;
1577}
1578
1579
1580/**
1581 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1582 *
1583 * In NEM mode, this will allocate the pages backing the RAM range and this may
1584 * fail. NEM registration may also fail. (In regular HM mode it won't fail.)
1585 *
1586 * @returns VBox status code.
1587 * @param pVM The cross context VM structure.
1588 * @param pNew The new RAM range.
1589 * @param GCPhys The address of the RAM range.
1590 * @param GCPhysLast The last address of the RAM range.
1591 * @param R0PtrNew Ditto for R0.
1592 * @param fFlags PGM_RAM_RANGE_FLAGS_FLOATING or zero.
1593 * @param pszDesc The description.
1594 * @param pPrev The previous RAM range (for linking).
1595 */
1596static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1597 RTR0PTR R0PtrNew, uint32_t fFlags, const char *pszDesc, PPGMRAMRANGE pPrev)
1598{
1599 /*
1600 * Initialize the range.
1601 */
1602 pNew->pSelfR0 = R0PtrNew;
1603 pNew->GCPhys = GCPhys;
1604 pNew->GCPhysLast = GCPhysLast;
1605 pNew->cb = GCPhysLast - GCPhys + 1;
1606 pNew->pszDesc = pszDesc;
1607 pNew->fFlags = fFlags;
1608 pNew->uNemRange = UINT32_MAX;
1609 pNew->pvR3 = NULL;
1610 pNew->paLSPages = NULL;
1611
1612 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1613#ifdef VBOX_WITH_PGM_NEM_MODE
1614 if (!pVM->pgm.s.fNemMode)
1615#endif
1616 {
1617 RTGCPHYS iPage = cPages;
1618 while (iPage-- > 0)
1619 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1620
1621 /* Update the page count stats. */
1622 pVM->pgm.s.cZeroPages += cPages;
1623 pVM->pgm.s.cAllPages += cPages;
1624 }
1625#ifdef VBOX_WITH_PGM_NEM_MODE
1626 else
1627 {
1628 int rc = SUPR3PageAlloc(cPages, &pNew->pvR3);
1629 if (RT_FAILURE(rc))
1630 return rc;
1631
1632 RTGCPHYS iPage = cPages;
1633 while (iPage-- > 0)
1634 PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
1635 PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED);
1636
1637 /* Update the page count stats. */
1638 pVM->pgm.s.cPrivatePages += cPages;
1639 pVM->pgm.s.cAllPages += cPages;
1640 }
1641#endif
1642
1643 /*
1644 * Link it.
1645 */
1646 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1647
1648#ifdef VBOX_WITH_NATIVE_NEM
1649 /*
1650 * Notify NEM now that it has been linked.
1651 */
1652 if (VM_IS_NEM_ENABLED(pVM))
1653 {
1654 uint8_t u2State = UINT8_MAX;
1655 int rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pvR3, &u2State, &pNew->uNemRange);
1656 if (RT_SUCCESS(rc))
1657 {
1658 if (u2State != UINT8_MAX)
1659 pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State);
1660 }
1661 else
1662 pgmR3PhysUnlinkRamRange2(pVM, pNew, pPrev);
1663 return rc;
1664 }
1665#endif
1666 return VINF_SUCCESS;
1667}
1668
1669
1670/**
1671 * PGMR3PhysRegisterRam worker that registers a high chunk.
1672 *
1673 * @returns VBox status code.
1674 * @param pVM The cross context VM structure.
1675 * @param GCPhys The address of the RAM.
1676 * @param cRamPages The number of RAM pages to register.
1677 * @param iChunk The chunk number.
1678 * @param pszDesc The RAM range description.
1679 * @param ppPrev Previous RAM range pointer. In/Out.
1680 */
1681static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, uint32_t iChunk,
1682 const char *pszDesc, PPGMRAMRANGE *ppPrev)
1683{
1684 const char *pszDescChunk = iChunk == 0
1685 ? pszDesc
1686 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1687 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1688
1689 /*
1690 * Allocate memory for the new chunk.
1691 */
1692 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1693 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1694 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1695 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1696 void *pvChunk = NULL;
1697 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
1698 if (RT_SUCCESS(rc))
1699 {
1700 Assert(R0PtrChunk != NIL_RTR0PTR);
1701 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1702
1703 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1704
1705 /*
1706 * Ok, init and link the range.
1707 */
1708 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1709 R0PtrChunk, PGM_RAM_RANGE_FLAGS_FLOATING, pszDescChunk, *ppPrev);
1710 if (RT_SUCCESS(rc))
1711 *ppPrev = pNew;
1712
1713 if (RT_FAILURE(rc))
1714 SUPR3PageFreeEx(pvChunk, cChunkPages);
1715 }
1716
1717 RTMemTmpFree(paChunkPages);
1718 return rc;
1719}
1720
1721
1722/**
1723 * Sets up a range RAM.
1724 *
1725 * This will check for conflicting registrations, make a resource
1726 * reservation for the memory (with GMM), and setup the per-page
1727 * tracking structures (PGMPAGE).
1728 *
1729 * @returns VBox status code.
1730 * @param pVM The cross context VM structure.
1731 * @param GCPhys The physical address of the RAM.
1732 * @param cb The size of the RAM.
1733 * @param pszDesc The description - not copied, so, don't free or change it.
1734 */
1735VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1736{
1737 /*
1738 * Validate input.
1739 */
1740 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1741 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1742 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1743 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1744 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1745 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1746 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1747 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1748
1749 PGM_LOCK_VOID(pVM);
1750
1751 /*
1752 * Find range location and check for conflicts.
1753 */
1754 PPGMRAMRANGE pPrev = NULL;
1755 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1756 while (pRam && GCPhysLast >= pRam->GCPhys)
1757 {
1758 AssertLogRelMsgReturnStmt( GCPhysLast < pRam->GCPhys
1759 || GCPhys > pRam->GCPhysLast,
1760 ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1761 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1762 PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT);
1763
1764 /* next */
1765 pPrev = pRam;
1766 pRam = pRam->pNextR3;
1767 }
1768
1769 /*
1770 * Register it with GMM (the API bitches).
1771 */
1772 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1773 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1774 if (RT_FAILURE(rc))
1775 {
1776 PGM_UNLOCK(pVM);
1777 return rc;
1778 }
1779
1780 if ( GCPhys >= _4G
1781 && cPages > 256)
1782 {
1783 /*
1784 * The PGMRAMRANGE structures for the high memory can get very big.
1785 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1786 * allocation size limit there and also to avoid being unable to find
1787 * guest mapping space for them, we split this memory up into 4MB in
1788 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1789 * mode.
1790 *
1791 * The first and last page of each mapping are guard pages and marked
1792 * not-present. So, we've got 4186112 and 16769024 bytes available for
1793 * the PGMRAMRANGE structure.
1794 *
1795 * See also pgmR3PhysMmio2CalcChunkCount.
1796 *
1797 * Note! The sizes used here will influence the saved state.
1798 */
1799 uint32_t cbChunk = 16U*_1M;
1800 uint32_t cPagesPerChunk = 1047552; /* max ~1048059 */
1801 Assert(cPagesPerChunk / 512 * 512 == cPagesPerChunk); /* NEM large page requirement */
1802 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1047552 < 16U*_1M - PAGE_SIZE * 2);
1803 AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1804
1805 RTGCPHYS cPagesLeft = cPages;
1806 RTGCPHYS GCPhysChunk = GCPhys;
1807 uint32_t iChunk = 0;
1808 while (cPagesLeft > 0)
1809 {
1810 uint32_t cPagesInChunk = cPagesLeft;
1811 if (cPagesInChunk > cPagesPerChunk)
1812 cPagesInChunk = cPagesPerChunk;
1813
1814 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, iChunk, pszDesc, &pPrev);
1815 AssertRCReturn(rc, rc);
1816
1817 /* advance */
1818 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1819 cPagesLeft -= cPagesInChunk;
1820 iChunk++;
1821 }
1822 }
1823 else
1824 {
1825 /*
1826 * Allocate, initialize and link the new RAM range.
1827 */
1828 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1829 PPGMRAMRANGE pNew;
1830 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1831 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1832
1833 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, MMHyperCCToR0(pVM, pNew), 0 /*fFlags*/, pszDesc, pPrev);
1834 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1835 }
1836 pgmPhysInvalidatePageMapTLB(pVM);
1837
1838 PGM_UNLOCK(pVM);
1839 return rc;
1840}
1841
1842
1843/**
1844 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1845 *
1846 * We do this late in the init process so that all the ROM and MMIO ranges have
1847 * been registered already and we don't go wasting memory on them.
1848 *
1849 * @returns VBox status code.
1850 *
1851 * @param pVM The cross context VM structure.
1852 */
1853int pgmR3PhysRamPreAllocate(PVM pVM)
1854{
1855 Assert(pVM->pgm.s.fRamPreAlloc);
1856 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1857#ifdef VBOX_WITH_PGM_NEM_MODE
1858 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1859#endif
1860
1861 /*
1862 * Walk the RAM ranges and allocate all RAM pages, halt at
1863 * the first allocation error.
1864 */
1865 uint64_t cPages = 0;
1866 uint64_t NanoTS = RTTimeNanoTS();
1867 PGM_LOCK_VOID(pVM);
1868 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1869 {
1870 PPGMPAGE pPage = &pRam->aPages[0];
1871 RTGCPHYS GCPhys = pRam->GCPhys;
1872 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1873 while (cLeft-- > 0)
1874 {
1875 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1876 {
1877 switch (PGM_PAGE_GET_STATE(pPage))
1878 {
1879 case PGM_PAGE_STATE_ZERO:
1880 {
1881 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1882 if (RT_FAILURE(rc))
1883 {
1884 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1885 PGM_UNLOCK(pVM);
1886 return rc;
1887 }
1888 cPages++;
1889 break;
1890 }
1891
1892 case PGM_PAGE_STATE_BALLOONED:
1893 case PGM_PAGE_STATE_ALLOCATED:
1894 case PGM_PAGE_STATE_WRITE_MONITORED:
1895 case PGM_PAGE_STATE_SHARED:
1896 /* nothing to do here. */
1897 break;
1898 }
1899 }
1900
1901 /* next */
1902 pPage++;
1903 GCPhys += PAGE_SIZE;
1904 }
1905 }
1906 PGM_UNLOCK(pVM);
1907 NanoTS = RTTimeNanoTS() - NanoTS;
1908
1909 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1910 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1911 return VINF_SUCCESS;
1912}
1913
1914
1915/**
1916 * Checks shared page checksums.
1917 *
1918 * @param pVM The cross context VM structure.
1919 */
1920void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1921{
1922#ifdef VBOX_STRICT
1923 PGM_LOCK_VOID(pVM);
1924
1925 if (pVM->pgm.s.cSharedPages > 0)
1926 {
1927 /*
1928 * Walk the ram ranges.
1929 */
1930 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1931 {
1932 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1933 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1934
1935 while (iPage-- > 0)
1936 {
1937 PPGMPAGE pPage = &pRam->aPages[iPage];
1938 if (PGM_PAGE_IS_SHARED(pPage))
1939 {
1940 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
1941 if (!u32Checksum)
1942 {
1943 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1944 void const *pvPage;
1945 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1946 if (RT_SUCCESS(rc))
1947 {
1948 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1949# if 0
1950 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1951# else
1952 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
1953 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1954 else
1955 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1956# endif
1957 }
1958 else
1959 AssertRC(rc);
1960 }
1961 }
1962
1963 } /* for each page */
1964
1965 } /* for each ram range */
1966 }
1967
1968 PGM_UNLOCK(pVM);
1969#endif /* VBOX_STRICT */
1970 NOREF(pVM);
1971}
1972
1973
1974/**
1975 * Resets the physical memory state.
1976 *
1977 * ASSUMES that the caller owns the PGM lock.
1978 *
1979 * @returns VBox status code.
1980 * @param pVM The cross context VM structure.
1981 */
1982int pgmR3PhysRamReset(PVM pVM)
1983{
1984 PGM_LOCK_ASSERT_OWNER(pVM);
1985
1986 /* Reset the memory balloon. */
1987 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1988 AssertRC(rc);
1989
1990#ifdef VBOX_WITH_PAGE_SHARING
1991 /* Clear all registered shared modules. */
1992 pgmR3PhysAssertSharedPageChecksums(pVM);
1993 rc = GMMR3ResetSharedModules(pVM);
1994 AssertRC(rc);
1995#endif
1996 /* Reset counters. */
1997 pVM->pgm.s.cReusedSharedPages = 0;
1998 pVM->pgm.s.cBalloonedPages = 0;
1999
2000 return VINF_SUCCESS;
2001}
2002
2003
2004/**
2005 * Resets (zeros) the RAM after all devices and components have been reset.
2006 *
2007 * ASSUMES that the caller owns the PGM lock.
2008 *
2009 * @returns VBox status code.
2010 * @param pVM The cross context VM structure.
2011 */
2012int pgmR3PhysRamZeroAll(PVM pVM)
2013{
2014 PGM_LOCK_ASSERT_OWNER(pVM);
2015
2016 /*
2017 * We batch up pages that should be freed instead of calling GMM for
2018 * each and every one of them.
2019 */
2020 uint32_t cPendingPages = 0;
2021 PGMMFREEPAGESREQ pReq;
2022 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2023 AssertLogRelRCReturn(rc, rc);
2024
2025 /*
2026 * Walk the ram ranges.
2027 */
2028 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2029 {
2030 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2031 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2032
2033 if ( !pVM->pgm.s.fRamPreAlloc
2034#ifdef VBOX_WITH_PGM_NEM_MODE
2035 && !pVM->pgm.s.fNemMode
2036#endif
2037 && pVM->pgm.s.fZeroRamPagesOnReset)
2038 {
2039 /* Replace all RAM pages by ZERO pages. */
2040 while (iPage-- > 0)
2041 {
2042 PPGMPAGE pPage = &pRam->aPages[iPage];
2043 switch (PGM_PAGE_GET_TYPE(pPage))
2044 {
2045 case PGMPAGETYPE_RAM:
2046 /* Do not replace pages part of a 2 MB continuous range
2047 with zero pages, but zero them instead. */
2048 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2049 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2050 {
2051 void *pvPage;
2052 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2053 AssertLogRelRCReturn(rc, rc);
2054 ASMMemZeroPage(pvPage);
2055 }
2056 else if (PGM_PAGE_IS_BALLOONED(pPage))
2057 {
2058 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2059 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2060 }
2061 else if (!PGM_PAGE_IS_ZERO(pPage))
2062 {
2063 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2064 PGMPAGETYPE_RAM);
2065 AssertLogRelRCReturn(rc, rc);
2066 }
2067 break;
2068
2069 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2070 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2071 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2072 pRam, true /*fDoAccounting*/);
2073 break;
2074
2075 case PGMPAGETYPE_MMIO2:
2076 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2077 case PGMPAGETYPE_ROM:
2078 case PGMPAGETYPE_MMIO:
2079 break;
2080 default:
2081 AssertFailed();
2082 }
2083 } /* for each page */
2084 }
2085 else
2086 {
2087 /* Zero the memory. */
2088 while (iPage-- > 0)
2089 {
2090 PPGMPAGE pPage = &pRam->aPages[iPage];
2091 switch (PGM_PAGE_GET_TYPE(pPage))
2092 {
2093 case PGMPAGETYPE_RAM:
2094 switch (PGM_PAGE_GET_STATE(pPage))
2095 {
2096 case PGM_PAGE_STATE_ZERO:
2097 break;
2098
2099 case PGM_PAGE_STATE_BALLOONED:
2100 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2101 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2102 break;
2103
2104 case PGM_PAGE_STATE_SHARED:
2105 case PGM_PAGE_STATE_WRITE_MONITORED:
2106 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2107 AssertLogRelRCReturn(rc, rc);
2108 RT_FALL_THRU();
2109
2110 case PGM_PAGE_STATE_ALLOCATED:
2111 if (pVM->pgm.s.fZeroRamPagesOnReset)
2112 {
2113 void *pvPage;
2114 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2115 AssertLogRelRCReturn(rc, rc);
2116 ASMMemZeroPage(pvPage);
2117 }
2118 break;
2119 }
2120 break;
2121
2122 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2123 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2124 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2125 pRam, true /*fDoAccounting*/);
2126 break;
2127
2128 case PGMPAGETYPE_MMIO2:
2129 case PGMPAGETYPE_ROM_SHADOW:
2130 case PGMPAGETYPE_ROM:
2131 case PGMPAGETYPE_MMIO:
2132 break;
2133 default:
2134 AssertFailed();
2135
2136 }
2137 } /* for each page */
2138 }
2139
2140 }
2141
2142 /*
2143 * Finish off any pages pending freeing.
2144 */
2145 if (cPendingPages)
2146 {
2147 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2148 AssertLogRelRCReturn(rc, rc);
2149 }
2150 GMMR3FreePagesCleanup(pReq);
2151 return VINF_SUCCESS;
2152}
2153
2154
2155/**
2156 * Frees all RAM during VM termination
2157 *
2158 * ASSUMES that the caller owns the PGM lock.
2159 *
2160 * @returns VBox status code.
2161 * @param pVM The cross context VM structure.
2162 */
2163int pgmR3PhysRamTerm(PVM pVM)
2164{
2165 PGM_LOCK_ASSERT_OWNER(pVM);
2166
2167 /* Reset the memory balloon. */
2168 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2169 AssertRC(rc);
2170
2171#ifdef VBOX_WITH_PAGE_SHARING
2172 /*
2173 * Clear all registered shared modules.
2174 */
2175 pgmR3PhysAssertSharedPageChecksums(pVM);
2176 rc = GMMR3ResetSharedModules(pVM);
2177 AssertRC(rc);
2178
2179 /*
2180 * Flush the handy pages updates to make sure no shared pages are hiding
2181 * in there. (Not unlikely if the VM shuts down, apparently.)
2182 */
2183 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2184#endif
2185
2186 /*
2187 * We batch up pages that should be freed instead of calling GMM for
2188 * each and every one of them.
2189 */
2190 uint32_t cPendingPages = 0;
2191 PGMMFREEPAGESREQ pReq;
2192 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2193 AssertLogRelRCReturn(rc, rc);
2194
2195 /*
2196 * Walk the ram ranges.
2197 */
2198 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2199 {
2200 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2201 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2202
2203 while (iPage-- > 0)
2204 {
2205 PPGMPAGE pPage = &pRam->aPages[iPage];
2206 switch (PGM_PAGE_GET_TYPE(pPage))
2207 {
2208 case PGMPAGETYPE_RAM:
2209 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2210 /** @todo change this to explicitly free private pages here. */
2211 if (PGM_PAGE_IS_SHARED(pPage))
2212 {
2213 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2214 PGMPAGETYPE_RAM);
2215 AssertLogRelRCReturn(rc, rc);
2216 }
2217 break;
2218
2219 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2220 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2221 case PGMPAGETYPE_MMIO2:
2222 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2223 case PGMPAGETYPE_ROM:
2224 case PGMPAGETYPE_MMIO:
2225 break;
2226 default:
2227 AssertFailed();
2228 }
2229 } /* for each page */
2230 }
2231
2232 /*
2233 * Finish off any pages pending freeing.
2234 */
2235 if (cPendingPages)
2236 {
2237 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2238 AssertLogRelRCReturn(rc, rc);
2239 }
2240 GMMR3FreePagesCleanup(pReq);
2241 return VINF_SUCCESS;
2242}
2243
2244
2245
2246/*********************************************************************************************************************************
2247* MMIO *
2248*********************************************************************************************************************************/
2249
2250/**
2251 * This is the interface IOM is using to register an MMIO region.
2252 *
2253 * It will check for conflicts and ensure that a RAM range structure
2254 * is present before calling the PGMR3HandlerPhysicalRegister API to
2255 * register the callbacks.
2256 *
2257 * @returns VBox status code.
2258 *
2259 * @param pVM The cross context VM structure.
2260 * @param GCPhys The start of the MMIO region.
2261 * @param cb The size of the MMIO region.
2262 * @param hType The physical access handler type registration.
2263 * @param pvUserR3 The user argument for R3.
2264 * @param pvUserR0 The user argument for R0.
2265 * @param pvUserRC The user argument for RC.
2266 * @param pszDesc The description of the MMIO region.
2267 */
2268VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2269 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2270{
2271 /*
2272 * Assert on some assumption.
2273 */
2274 VM_ASSERT_EMT(pVM);
2275 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2276 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2277 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2278 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2279 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2280
2281 int rc = PGM_LOCK(pVM);
2282 AssertRCReturn(rc, rc);
2283
2284 /*
2285 * Make sure there's a RAM range structure for the region.
2286 */
2287 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2288 bool fRamExists = false;
2289 PPGMRAMRANGE pRamPrev = NULL;
2290 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2291 while (pRam && GCPhysLast >= pRam->GCPhys)
2292 {
2293 if ( GCPhysLast >= pRam->GCPhys
2294 && GCPhys <= pRam->GCPhysLast)
2295 {
2296 /* Simplification: all within the same range. */
2297 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2298 && GCPhysLast <= pRam->GCPhysLast,
2299 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2300 GCPhys, GCPhysLast, pszDesc,
2301 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2302 PGM_UNLOCK(pVM),
2303 VERR_PGM_RAM_CONFLICT);
2304
2305 /* Check that it's all RAM or MMIO pages. */
2306 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2307 uint32_t cLeft = cb >> PAGE_SHIFT;
2308 while (cLeft-- > 0)
2309 {
2310 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2311 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2312 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2313 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2314 PGM_UNLOCK(pVM),
2315 VERR_PGM_RAM_CONFLICT);
2316 pPage++;
2317 }
2318
2319 /* Looks good. */
2320 fRamExists = true;
2321 break;
2322 }
2323
2324 /* next */
2325 pRamPrev = pRam;
2326 pRam = pRam->pNextR3;
2327 }
2328 PPGMRAMRANGE pNew;
2329 if (fRamExists)
2330 {
2331 pNew = NULL;
2332
2333 /*
2334 * Make all the pages in the range MMIO/ZERO pages, freeing any
2335 * RAM pages currently mapped here. This might not be 100% correct
2336 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2337 */
2338 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, NULL);
2339 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
2340
2341 /* Force a PGM pool flush as guest ram references have been changed. */
2342 /** @todo not entirely SMP safe; assuming for now the guest takes
2343 * care of this internally (not touch mapped mmio while changing the
2344 * mapping). */
2345 PVMCPU pVCpu = VMMGetCpu(pVM);
2346 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2347 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2348 }
2349 else
2350 {
2351 /*
2352 * No RAM range, insert an ad hoc one.
2353 *
2354 * Note that we don't have to tell REM about this range because
2355 * PGMHandlerPhysicalRegisterEx will do that for us.
2356 */
2357 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2358
2359 /* Alloc. */
2360 const uint32_t cPages = cb >> PAGE_SHIFT;
2361 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2362 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2363 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), PGM_UNLOCK(pVM), rc);
2364
2365#ifdef VBOX_WITH_NATIVE_NEM
2366 /* Notify NEM. */
2367 uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */
2368 if (VM_IS_NEM_ENABLED(pVM))
2369 {
2370 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cPages << PAGE_SHIFT, 0 /*fFlags*/, NULL, NULL,
2371 &u2State, &pNew->uNemRange);
2372 AssertLogRelRCReturnStmt(rc, MMHyperFree(pVM, pNew), rc);
2373 }
2374#endif
2375
2376 /* Initialize the range. */
2377 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2378 pNew->GCPhys = GCPhys;
2379 pNew->GCPhysLast = GCPhysLast;
2380 pNew->cb = cb;
2381 pNew->pszDesc = pszDesc;
2382 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2383 pNew->pvR3 = NULL;
2384 pNew->paLSPages = NULL;
2385
2386 uint32_t iPage = cPages;
2387 while (iPage-- > 0)
2388 {
2389 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2390#ifdef VBOX_WITH_NATIVE_NEM
2391 PGM_PAGE_SET_NEM_STATE(&pNew->aPages[iPage], u2State);
2392#endif
2393 }
2394 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2395
2396 /* update the page count stats. */
2397 pVM->pgm.s.cPureMmioPages += cPages;
2398 pVM->pgm.s.cAllPages += cPages;
2399
2400 /* link it */
2401 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2402 }
2403
2404 /*
2405 * Register the access handler.
2406 */
2407 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2408 if (RT_SUCCESS(rc))
2409 {
2410#ifdef VBOX_WITH_NATIVE_NEM
2411 /* Late NEM notification. */
2412 if (VM_IS_NEM_ENABLED(pVM))
2413 {
2414 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
2415 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
2416 fRamExists ? (uint8_t *)pRam->pvR3 + (uintptr_t)(GCPhys - pRam->GCPhys) : NULL,
2417 NULL, !fRamExists ? &pRam->uNemRange : NULL);
2418 AssertLogRelRCReturn(rc, rc);
2419 }
2420#endif
2421 }
2422 /** @todo the phys handler failure handling isn't complete, esp. wrt NEM. */
2423 else if (!fRamExists)
2424 {
2425 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2426 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2427
2428 /* remove the ad hoc range. */
2429 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2430 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2431 MMHyperFree(pVM, pRam);
2432 }
2433 pgmPhysInvalidatePageMapTLB(pVM);
2434
2435 PGM_UNLOCK(pVM);
2436 return rc;
2437}
2438
2439
2440/**
2441 * This is the interface IOM is using to register an MMIO region.
2442 *
2443 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2444 * any ad hoc PGMRAMRANGE left behind.
2445 *
2446 * @returns VBox status code.
2447 * @param pVM The cross context VM structure.
2448 * @param GCPhys The start of the MMIO region.
2449 * @param cb The size of the MMIO region.
2450 */
2451VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2452{
2453 VM_ASSERT_EMT(pVM);
2454
2455 int rc = PGM_LOCK(pVM);
2456 AssertRCReturn(rc, rc);
2457
2458 /*
2459 * First deregister the handler, then check if we should remove the ram range.
2460 */
2461 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2462 if (RT_SUCCESS(rc))
2463 {
2464 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2465 PPGMRAMRANGE pRamPrev = NULL;
2466 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2467 while (pRam && GCPhysLast >= pRam->GCPhys)
2468 {
2469 /** @todo We're being a bit too careful here. rewrite. */
2470 if ( GCPhysLast == pRam->GCPhysLast
2471 && GCPhys == pRam->GCPhys)
2472 {
2473 Assert(pRam->cb == cb);
2474
2475 /*
2476 * See if all the pages are dead MMIO pages.
2477 */
2478 uint32_t const cPages = cb >> PAGE_SHIFT;
2479 bool fAllMMIO = true;
2480 uint32_t iPage = 0;
2481 uint32_t cLeft = cPages;
2482 while (cLeft-- > 0)
2483 {
2484 PPGMPAGE pPage = &pRam->aPages[iPage];
2485 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2486 /*|| not-out-of-action later */)
2487 {
2488 fAllMMIO = false;
2489 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2490 break;
2491 }
2492 Assert( PGM_PAGE_IS_ZERO(pPage)
2493 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2494 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2495 pPage++;
2496 }
2497 if (fAllMMIO)
2498 {
2499 /*
2500 * Ad-hoc range, unlink and free it.
2501 */
2502 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2503 GCPhys, GCPhysLast, pRam->pszDesc));
2504 /** @todo check the ad-hoc flags? */
2505
2506#ifdef VBOX_WITH_NATIVE_NEM
2507 if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */
2508 {
2509 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/, NULL, NULL, NULL);
2510 AssertLogRelRCReturn(rc, rc);
2511 }
2512#endif
2513
2514 pVM->pgm.s.cAllPages -= cPages;
2515 pVM->pgm.s.cPureMmioPages -= cPages;
2516
2517 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2518 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2519 MMHyperFree(pVM, pRam);
2520 break;
2521 }
2522 }
2523
2524 /*
2525 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2526 */
2527 if ( GCPhysLast >= pRam->GCPhys
2528 && GCPhys <= pRam->GCPhysLast)
2529 {
2530 Assert(GCPhys >= pRam->GCPhys);
2531 Assert(GCPhysLast <= pRam->GCPhysLast);
2532
2533 /*
2534 * Turn the pages back into RAM pages.
2535 */
2536 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2537 uint32_t cLeft = cb >> PAGE_SHIFT;
2538 while (cLeft--)
2539 {
2540 PPGMPAGE pPage = &pRam->aPages[iPage];
2541 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2542 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2543 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2544 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2545 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2546 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2547 iPage++;
2548 }
2549
2550#ifdef VBOX_WITH_NATIVE_NEM
2551 /* Notify REM (failure will probably leave things in a non-working state). */
2552 if (VM_IS_NEM_ENABLED(pVM))
2553 {
2554 uint8_t u2State = UINT8_MAX;
2555 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
2556 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
2557 NULL, &u2State);
2558 AssertLogRelRCReturn(rc, rc);
2559 if (u2State != UINT8_MAX)
2560 pgmPhysSetNemStateForPages(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT],
2561 cb >> PAGE_SHIFT, u2State);
2562 }
2563#endif
2564 break;
2565 }
2566
2567 /* next */
2568 pRamPrev = pRam;
2569 pRam = pRam->pNextR3;
2570 }
2571 }
2572
2573 /* Force a PGM pool flush as guest ram references have been changed. */
2574 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2575 * this internally (not touch mapped mmio while changing the mapping). */
2576 PVMCPU pVCpu = VMMGetCpu(pVM);
2577 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2578 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2579
2580 pgmPhysInvalidatePageMapTLB(pVM);
2581 pgmPhysInvalidRamRangeTlbs(pVM);
2582 PGM_UNLOCK(pVM);
2583 return rc;
2584}
2585
2586
2587
2588/*********************************************************************************************************************************
2589* MMIO2 *
2590*********************************************************************************************************************************/
2591
2592/**
2593 * Locate a MMIO2 range.
2594 *
2595 * @returns Pointer to the MMIO2 range.
2596 * @param pVM The cross context VM structure.
2597 * @param pDevIns The device instance owning the region.
2598 * @param iSubDev The sub-device number.
2599 * @param iRegion The region.
2600 * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
2601 * @a iRegion.
2602 */
2603DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
2604 uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
2605{
2606 if (hMmio2 != NIL_PGMMMIO2HANDLE)
2607 {
2608 if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
2609 {
2610 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
2611 if (pCur && pCur->pDevInsR3 == pDevIns)
2612 {
2613 Assert(pCur->idMmio2 == hMmio2);
2614 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2615 return pCur;
2616 }
2617 Assert(!pCur);
2618 }
2619 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2620 if (pCur->idMmio2 == hMmio2)
2621 {
2622 AssertBreak(pCur->pDevInsR3 == pDevIns);
2623 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2624 return pCur;
2625 }
2626 }
2627 else
2628 {
2629 /*
2630 * Search the list. There shouldn't be many entries.
2631 */
2632 /** @todo Optimize this lookup! There may now be many entries and it'll
2633 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2634 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2635 if ( pCur->pDevInsR3 == pDevIns
2636 && pCur->iRegion == iRegion
2637 && pCur->iSubDev == iSubDev)
2638 return pCur;
2639 }
2640 return NULL;
2641}
2642
2643
2644/**
2645 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map.
2646 */
2647static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2648{
2649 int rc = VINF_SUCCESS;
2650 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2651 {
2652 Assert(!(pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING));
2653 int rc2 = pgmHandlerPhysicalExRegister(pVM, pCurMmio2->pPhysHandlerR3, pCurMmio2->RamRange.GCPhys,
2654 pCurMmio2->RamRange.GCPhysLast);
2655 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2656 pCurMmio2->RamRange.pszDesc, rc2));
2657 if (RT_SUCCESS(rc2))
2658 pCurMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING;
2659 else if (RT_SUCCESS(rc))
2660 rc = rc2;
2661 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2662 return rc;
2663 }
2664 AssertFailed();
2665 return rc;
2666}
2667
2668
2669/**
2670 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap.
2671 */
2672static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2673{
2674 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2675 {
2676 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)
2677 {
2678 int rc2 = pgmHandlerPhysicalExDeregister(pVM, pCurMmio2->pPhysHandlerR3);
2679 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2680 pCurMmio2->RamRange.pszDesc, rc2));
2681 pCurMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING;
2682 }
2683 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2684 return VINF_SUCCESS;
2685 }
2686 AssertFailed();
2687 return VINF_SUCCESS;
2688
2689}
2690
2691
2692/**
2693 * Calculates the number of chunks
2694 *
2695 * @returns Number of registration chunk needed.
2696 * @param pVM The cross context VM structure.
2697 * @param cb The size of the MMIO/MMIO2 range.
2698 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2699 * chunk. Optional.
2700 * @param pcbChunk Where to return the guest mapping size for a chunk.
2701 */
2702static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2703{
2704 RT_NOREF_PV(pVM); /* without raw mode */
2705
2706 /*
2707 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2708 * needing a few bytes extra the PGMREGMMIO2RANGE structure.
2709 *
2710 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2711 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2712 *
2713 * P.S. If we want to include a dirty bitmap, we'd have to drop down to 1040384 pages.
2714 */
2715 uint32_t cbChunk = _16M;
2716 uint32_t cPagesPerChunk = 1047552; /* max ~1048059 */
2717 Assert(cPagesPerChunk / 64 * 64 == cPagesPerChunk); /* (NEM requirement) */
2718 Assert(cPagesPerChunk / 512 * 512 == cPagesPerChunk); /* (NEM large page requirement) */
2719 AssertCompile(sizeof(PGMREGMMIO2RANGE) + sizeof(PGMPAGE) * 1047552 < _16M - PAGE_SIZE * 2);
2720 AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
2721 AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2722 if (pcbChunk)
2723 *pcbChunk = cbChunk;
2724 if (pcPagesPerChunk)
2725 *pcPagesPerChunk = cPagesPerChunk;
2726
2727 /* Calc the number of chunks we need. */
2728 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2729 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2730 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2731 return cChunks;
2732}
2733
2734
2735/**
2736 * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
2737 * structures and does basic initialization.
2738 *
2739 * Caller must set type specfic members and initialize the PGMPAGE structures.
2740 *
2741 * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
2742 * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
2743 * interface. The reference to caller and type above is purely historical.
2744 *
2745 * @returns VBox status code.
2746 * @param pVM The cross context VM structure.
2747 * @param pDevIns The device instance owning the region.
2748 * @param iSubDev The sub-device number (internal PCI config number).
2749 * @param iRegion The region number. If the MMIO2 memory is a PCI
2750 * I/O region this number has to be the number of that
2751 * region. Otherwise it can be any number safe
2752 * UINT8_MAX.
2753 * @param cb The size of the region. Must be page aligned.
2754 * @param fFlags PGMPHYS_MMIO2_FLAGS_XXX.
2755 * @param idMmio2 The MMIO2 ID for the first chunk.
2756 * @param pszDesc The description.
2757 * @param ppHeadRet Where to return the pointer to the first
2758 * registration chunk.
2759 *
2760 * @thread EMT
2761 */
2762static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2763 uint8_t idMmio2, const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
2764{
2765 /*
2766 * Figure out how many chunks we need and of which size.
2767 */
2768 uint32_t cPagesPerChunk;
2769 uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2770 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2771
2772 /*
2773 * Allocate the chunks.
2774 */
2775 PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
2776 *ppNext = NULL;
2777
2778 int rc = VINF_SUCCESS;
2779 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2780 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++, idMmio2++)
2781 {
2782 /*
2783 * We currently do a single RAM range for the whole thing. This will
2784 * probably have to change once someone needs really large MMIO regions,
2785 * as we will be running into SUPR3PageAllocEx limitations and such.
2786 */
2787 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2788 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
2789 PPGMREGMMIO2RANGE pNew = NULL;
2790 if ( iChunk + 1 < cChunks
2791 || cbRange >= _1M)
2792 {
2793 /*
2794 * Allocate memory for the registration structure.
2795 */
2796 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2797 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2798 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2799 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2800 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2801 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2802 void *pvChunk = NULL;
2803 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
2804 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2805
2806 Assert(R0PtrChunk != NIL_RTR0PTR);
2807 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2808
2809 pNew = (PPGMREGMMIO2RANGE)pvChunk;
2810 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2811 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2812
2813 RTMemTmpFree(paChunkPages);
2814 }
2815 /*
2816 * Not so big, do a one time hyper allocation.
2817 */
2818 else
2819 {
2820 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2821 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2822
2823 /*
2824 * Initialize allocation specific items.
2825 */
2826 //pNew->RamRange.fFlags = 0;
2827 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2828 }
2829
2830 /*
2831 * Initialize the registration structure (caller does specific bits).
2832 */
2833 pNew->pDevInsR3 = pDevIns;
2834 //pNew->pvR3 = NULL;
2835 //pNew->pNext = NULL;
2836 if (iChunk == 0)
2837 pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
2838 if (iChunk + 1 == cChunks)
2839 pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
2840 if (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2841 pNew->fFlags |= PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES;
2842 pNew->iSubDev = iSubDev;
2843 pNew->iRegion = iRegion;
2844 pNew->idSavedState = UINT8_MAX;
2845 pNew->idMmio2 = idMmio2;
2846 //pNew->pPhysHandlerR3 = NULL;
2847 //pNew->paLSPages = NULL;
2848 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2849 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2850 pNew->RamRange.pszDesc = pszDesc;
2851 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2852 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2853 pNew->RamRange.uNemRange = UINT32_MAX;
2854 //pNew->RamRange.pvR3 = NULL;
2855 //pNew->RamRange.paLSPages = NULL;
2856
2857 *ppNext = pNew;
2858 ASMCompilerBarrier();
2859 cPagesLeft -= cPagesTrackedByChunk;
2860 ppNext = &pNew->pNextR3;
2861
2862 /*
2863 * Pre-allocate a handler if we're tracking dirty pages, unless NEM takes care of this.
2864 */
2865 if ( (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2866#ifdef VBOX_WITH_PGM_NEM_MODE
2867 && !NEMR3IsMmio2DirtyPageTrackingSupported(pVM)
2868#endif
2869 )
2870
2871 {
2872 rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType,
2873 (RTR3PTR)(uintptr_t)idMmio2, idMmio2, idMmio2, pszDesc, &pNew->pPhysHandlerR3);
2874 AssertLogRelMsgRCBreak(rc, ("idMmio2=%zu\n", idMmio2));
2875 }
2876 }
2877 Assert(cPagesLeft == 0);
2878
2879 if (RT_SUCCESS(rc))
2880 {
2881 Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
2882 return VINF_SUCCESS;
2883 }
2884
2885 /*
2886 * Free floating ranges.
2887 */
2888 while (*ppHeadRet)
2889 {
2890 PPGMREGMMIO2RANGE pFree = *ppHeadRet;
2891 *ppHeadRet = pFree->pNextR3;
2892
2893 if (pFree->pPhysHandlerR3)
2894 {
2895 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
2896 pFree->pPhysHandlerR3 = NULL;
2897 }
2898
2899 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2900 {
2901 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2902 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2903 SUPR3PageFreeEx(pFree, cChunkPages);
2904 }
2905 }
2906
2907 return rc;
2908}
2909
2910
2911/**
2912 * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
2913 * complete registration entry into the lists and lookup tables.
2914 *
2915 * @param pVM The cross context VM structure.
2916 * @param pNew The new MMIO / MMIO2 registration to link.
2917 */
2918static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
2919{
2920 Assert(pNew->idMmio2 != UINT8_MAX);
2921
2922 /*
2923 * Link it into the list (order doesn't matter, so insert it at the head).
2924 *
2925 * Note! The range we're linking may consist of multiple chunks, so we
2926 * have to find the last one.
2927 */
2928 PPGMREGMMIO2RANGE pLast = pNew;
2929 for (pLast = pNew; ; pLast = pLast->pNextR3)
2930 {
2931 if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2932 break;
2933 Assert(pLast->pNextR3);
2934 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2935 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2936 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2937 Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1);
2938 }
2939
2940 PGM_LOCK_VOID(pVM);
2941
2942 /* Link in the chain of ranges at the head of the list. */
2943 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2944 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2945
2946 /* Insert the MMIO2 range/page IDs. */
2947 uint8_t idMmio2 = pNew->idMmio2;
2948 for (;;)
2949 {
2950 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2951 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2952 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2953 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2954 if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2955 break;
2956 pNew = pNew->pNextR3;
2957 idMmio2++;
2958 }
2959
2960 pgmPhysInvalidatePageMapTLB(pVM);
2961 PGM_UNLOCK(pVM);
2962}
2963
2964
2965/**
2966 * Allocate and register an MMIO2 region.
2967 *
2968 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2969 * associated with a device. It is also non-shared memory with a permanent
2970 * ring-3 mapping and page backing (presently).
2971 *
2972 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2973 * the VM, in which case we'll drop the base memory pages. Presently we will
2974 * make no attempt to preserve anything that happens to be present in the base
2975 * memory that is replaced, this is of course incorrect but it's too much
2976 * effort.
2977 *
2978 * @returns VBox status code.
2979 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2980 * memory.
2981 * @retval VERR_ALREADY_EXISTS if the region already exists.
2982 *
2983 * @param pVM The cross context VM structure.
2984 * @param pDevIns The device instance owning the region.
2985 * @param iSubDev The sub-device number.
2986 * @param iRegion The region number. If the MMIO2 memory is a PCI
2987 * I/O region this number has to be the number of that
2988 * region. Otherwise it can be any number save
2989 * UINT8_MAX.
2990 * @param cb The size of the region. Must be page aligned.
2991 * @param fFlags Reserved for future use, must be zero.
2992 * @param pszDesc The description.
2993 * @param ppv Where to store the pointer to the ring-3 mapping of
2994 * the memory.
2995 * @param phRegion Where to return the MMIO2 region handle. Optional.
2996 * @thread EMT
2997 */
2998VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2999 uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
3000{
3001 /*
3002 * Validate input.
3003 */
3004 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
3005 *ppv = NULL;
3006 if (phRegion)
3007 {
3008 AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
3009 *phRegion = NIL_PGMMMIO2HANDLE;
3010 }
3011 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3012 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3013 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3014 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3015 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3016 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3017 AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
3018 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3019 AssertReturn(cb, VERR_INVALID_PARAMETER);
3020 AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS);
3021
3022 const uint32_t cPages = cb >> PAGE_SHIFT;
3023 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3024 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3025 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
3026
3027 /*
3028 * For the 2nd+ instance, mangle the description string so it's unique.
3029 */
3030 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3031 {
3032 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3033 if (!pszDesc)
3034 return VERR_NO_MEMORY;
3035 }
3036
3037 /*
3038 * Allocate an MMIO2 range ID (not freed on failure).
3039 *
3040 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3041 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3042 */
3043 unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
3044
3045 PGM_LOCK_VOID(pVM);
3046 AssertCompile(PGM_MMIO2_MAX_RANGES < 255);
3047 uint8_t const idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3048 unsigned const cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3049 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3050 {
3051 PGM_UNLOCK(pVM);
3052 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3053 }
3054 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3055 PGM_UNLOCK(pVM);
3056
3057 /*
3058 * Try reserve and allocate the backing memory first as this is what is
3059 * most likely to fail.
3060 */
3061 int rc = VINF_SUCCESS;
3062#ifdef VBOX_WITH_PGM_NEM_MODE
3063 if (!pVM->pgm.s.fNemMode)
3064#endif
3065 rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3066 if (RT_SUCCESS(rc))
3067 {
3068 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3069 if (RT_SUCCESS(rc))
3070 {
3071 void *pvPages;
3072#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3073 RTR0PTR pvPagesR0 = NIL_RTR0PTR;
3074#endif
3075
3076#ifdef VBOX_WITH_PGM_NEM_MODE
3077 if (!pVM->pgm.s.fNemMode)
3078#endif
3079 {
3080#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3081 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
3082#else
3083 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3084#endif
3085 }
3086#ifdef VBOX_WITH_PGM_NEM_MODE
3087 else
3088 {
3089 rc = SUPR3PageAlloc(cPages, &pvPages);
3090 if (RT_SUCCESS(rc))
3091 for (uint32_t i = 0; i < cPages; i++)
3092 paPages[i].Phys = UINT64_C(0x0000fffffffff000);
3093 }
3094#endif
3095 if (RT_SUCCESS(rc))
3096 {
3097 memset(pvPages, 0, cPages * PAGE_SIZE);
3098
3099 /*
3100 * Create the registered MMIO range record for it.
3101 */
3102 PPGMREGMMIO2RANGE pNew;
3103 rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, fFlags, idMmio2, pszDesc, &pNew);
3104 if (RT_SUCCESS(rc))
3105 {
3106 if (phRegion)
3107 *phRegion = idMmio2; /* The ID of the first chunk. */
3108
3109 uint32_t iSrcPage = 0;
3110 uint8_t *pbCurPages = (uint8_t *)pvPages;
3111 for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3112 {
3113 pCur->pvR3 = pbCurPages;
3114#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3115 pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
3116#endif
3117 pCur->RamRange.pvR3 = pbCurPages;
3118
3119 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3120 while (iDstPage-- > 0)
3121 {
3122 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3123 paPages[iDstPage + iSrcPage].Phys,
3124 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3125 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3126 }
3127
3128 /* advance. */
3129 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3130 pbCurPages += pCur->RamRange.cb;
3131 }
3132
3133 RTMemTmpFree(paPages);
3134
3135 /*
3136 * Update the page count stats, link the registration and we're done.
3137 */
3138 pVM->pgm.s.cAllPages += cPages;
3139 pVM->pgm.s.cPrivatePages += cPages;
3140
3141 pgmR3PhysMmio2Link(pVM, pNew);
3142
3143 *ppv = pvPages;
3144 return VINF_SUCCESS;
3145 }
3146
3147 SUPR3PageFreeEx(pvPages, cPages);
3148 }
3149 }
3150 RTMemTmpFree(paPages);
3151 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3152 }
3153 if (pDevIns->iInstance > 0)
3154 MMR3HeapFree((void *)pszDesc);
3155 return rc;
3156}
3157
3158
3159/**
3160 * Deregisters and frees an MMIO2 region.
3161 *
3162 * Any physical access handlers registered for the region must be deregistered
3163 * before calling this function.
3164 *
3165 * @returns VBox status code.
3166 * @param pVM The cross context VM structure.
3167 * @param pDevIns The device instance owning the region.
3168 * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
3169 * regions for the given device is to be deregistered.
3170 */
3171VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3172{
3173 /*
3174 * Validate input.
3175 */
3176 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3177 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3178
3179 /*
3180 * The loop here scanning all registrations will make sure that multi-chunk ranges
3181 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3182 */
3183 PGM_LOCK_VOID(pVM);
3184 int rc = VINF_SUCCESS;
3185 unsigned cFound = 0;
3186 PPGMREGMMIO2RANGE pPrev = NULL;
3187 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3188 while (pCur)
3189 {
3190 uint32_t const fFlags = pCur->fFlags;
3191 if ( pCur->pDevInsR3 == pDevIns
3192 && ( hMmio2 == NIL_PGMMMIO2HANDLE
3193 || pCur->idMmio2 == hMmio2))
3194 {
3195 cFound++;
3196
3197 /*
3198 * Unmap it if it's mapped.
3199 */
3200 if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3201 {
3202 int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
3203 AssertRC(rc2);
3204 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3205 rc = rc2;
3206 }
3207
3208 /*
3209 * Unlink it
3210 */
3211 PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
3212 if (pPrev)
3213 pPrev->pNextR3 = pNext;
3214 else
3215 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3216 pCur->pNextR3 = NULL;
3217
3218 uint8_t idMmio2 = pCur->idMmio2;
3219 Assert(idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3));
3220 if (idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3))
3221 {
3222 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3223 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3224 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3225 }
3226
3227 /*
3228 * Free the memory.
3229 */
3230 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3231#ifdef VBOX_WITH_PGM_NEM_MODE
3232 if (!pVM->pgm.s.fNemMode)
3233#endif
3234 {
3235 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3236 AssertRC(rc2);
3237 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3238 rc = rc2;
3239
3240 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3241 AssertRC(rc2);
3242 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3243 rc = rc2;
3244 }
3245#ifdef VBOX_WITH_PGM_NEM_MODE
3246 else
3247 {
3248 int rc2 = SUPR3PageFree(pCur->pvR3, cPages);
3249 AssertRC(rc2);
3250 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3251 rc = rc2;
3252 }
3253#endif
3254
3255 if (pCur->pPhysHandlerR3)
3256 {
3257 pgmHandlerPhysicalExDestroy(pVM, pCur->pPhysHandlerR3);
3258 pCur->pPhysHandlerR3 = NULL;
3259 }
3260
3261 /* we're leaking hyper memory here if done at runtime. */
3262#ifdef VBOX_STRICT
3263 VMSTATE const enmState = VMR3GetState(pVM);
3264 AssertMsg( enmState == VMSTATE_POWERING_OFF
3265 || enmState == VMSTATE_POWERING_OFF_LS
3266 || enmState == VMSTATE_OFF
3267 || enmState == VMSTATE_OFF_LS
3268 || enmState == VMSTATE_DESTROYING
3269 || enmState == VMSTATE_TERMINATED
3270 || enmState == VMSTATE_CREATING
3271 , ("%s\n", VMR3GetStateName(enmState)));
3272#endif
3273
3274 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3275 {
3276 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
3277 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3278 SUPR3PageFreeEx(pCur, cChunkPages);
3279 }
3280 /*else
3281 {
3282 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3283 AssertRCReturn(rc, rc);
3284 } */
3285
3286
3287 /* update page count stats */
3288 pVM->pgm.s.cAllPages -= cPages;
3289 pVM->pgm.s.cPrivatePages -= cPages;
3290
3291 /* next */
3292 pCur = pNext;
3293 if (hMmio2 != NIL_PGMMMIO2HANDLE)
3294 {
3295 if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3296 break;
3297 hMmio2++;
3298 Assert(pCur->idMmio2 == hMmio2);
3299 Assert(pCur->pDevInsR3 == pDevIns);
3300 Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
3301 }
3302 }
3303 else
3304 {
3305 pPrev = pCur;
3306 pCur = pCur->pNextR3;
3307 }
3308 }
3309 pgmPhysInvalidatePageMapTLB(pVM);
3310 PGM_UNLOCK(pVM);
3311 return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
3312}
3313
3314
3315/**
3316 * Maps a MMIO2 region.
3317 *
3318 * This is typically done when a guest / the bios / state loading changes the
3319 * PCI config. The replacing of base memory has the same restrictions as during
3320 * registration, of course.
3321 *
3322 * @returns VBox status code.
3323 *
3324 * @param pVM The cross context VM structure.
3325 * @param pDevIns The device instance owning the region.
3326 * @param hMmio2 The handle of the region to map.
3327 * @param GCPhys The guest-physical address to be remapped.
3328 */
3329VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3330{
3331 /*
3332 * Validate input.
3333 *
3334 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3335 * happens during VM construction.
3336 */
3337 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3338 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3339 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3340 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3341 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3342 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3343
3344 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3345 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3346 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3347
3348 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3349 RTGCPHYS cbRange = 0;
3350 for (;;)
3351 {
3352 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
3353 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3354 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3355 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3356 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3357 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3358 cbRange += pLastMmio->RamRange.cb;
3359 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3360 break;
3361 pLastMmio = pLastMmio->pNextR3;
3362 }
3363
3364 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3365 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3366
3367 /*
3368 * Find our location in the ram range list, checking for restriction
3369 * we don't bother implementing yet (partially overlapping, multiple
3370 * ram ranges).
3371 */
3372 PGM_LOCK_VOID(pVM);
3373
3374 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3375
3376 bool fRamExists = false;
3377 PPGMRAMRANGE pRamPrev = NULL;
3378 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3379 while (pRam && GCPhysLast >= pRam->GCPhys)
3380 {
3381 if ( GCPhys <= pRam->GCPhysLast
3382 && GCPhysLast >= pRam->GCPhys)
3383 {
3384 /* Completely within? */
3385 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3386 && GCPhysLast <= pRam->GCPhysLast,
3387 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3388 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3389 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3390 PGM_UNLOCK(pVM),
3391 VERR_PGM_RAM_CONFLICT);
3392
3393 /* Check that all the pages are RAM pages. */
3394 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3395 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3396 while (cPagesLeft-- > 0)
3397 {
3398 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3399 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3400 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3401 PGM_UNLOCK(pVM),
3402 VERR_PGM_RAM_CONFLICT);
3403 pPage++;
3404 }
3405
3406 /* There can only be one MMIO/MMIO2 chunk matching here! */
3407 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3408 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3409 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3410 PGM_UNLOCK(pVM),
3411 VERR_PGM_PHYS_MMIO_EX_IPE);
3412
3413 fRamExists = true;
3414 break;
3415 }
3416
3417 /* next */
3418 pRamPrev = pRam;
3419 pRam = pRam->pNextR3;
3420 }
3421 Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3422
3423
3424 /*
3425 * Make the changes.
3426 */
3427 RTGCPHYS GCPhysCur = GCPhys;
3428 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3429 {
3430 pCurMmio->RamRange.GCPhys = GCPhysCur;
3431 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3432 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3433 {
3434 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3435 break;
3436 }
3437 GCPhysCur += pCurMmio->RamRange.cb;
3438 }
3439
3440 if (fRamExists)
3441 {
3442 /*
3443 * Make all the pages in the range MMIO/ZERO pages, freeing any
3444 * RAM pages currently mapped here. This might not be 100% correct
3445 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3446 *
3447 * We replace these MMIO/ZERO pages with real pages in the MMIO2 case.
3448 */
3449 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
3450 Assert(pFirstMmio->pvR3 == pFirstMmio->RamRange.pvR3);
3451 Assert(pFirstMmio->RamRange.pvR3 != NULL);
3452
3453#ifdef VBOX_WITH_PGM_NEM_MODE
3454 /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pRam->pvR3 can't point
3455 both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */
3456 AssertLogRelMsgReturn(!pVM->pgm.s.fNemMode, ("%s at %RGp-%RGp\n", pFirstMmio->RamRange.pszDesc, GCPhys, GCPhysLast),
3457 VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
3458#endif
3459
3460 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, pFirstMmio->RamRange.pvR3);
3461 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3462
3463 /* Replace the pages, freeing all present RAM pages. */
3464 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3465 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3466 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3467 while (cPagesLeft-- > 0)
3468 {
3469 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3470
3471 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3472 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3473 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3474 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3475 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3476 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3477 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3478 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3479 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3480 /* NEM state is set by pgmR3PhysFreePageRange. */
3481
3482 pVM->pgm.s.cZeroPages--;
3483 GCPhys += PAGE_SIZE;
3484 pPageSrc++;
3485 pPageDst++;
3486 }
3487
3488 /* Flush physical page map TLB. */
3489 pgmPhysInvalidatePageMapTLB(pVM);
3490
3491 /* Force a PGM pool flush as guest ram references have been changed. */
3492 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3493 * this internally (not touch mapped mmio while changing the mapping). */
3494 PVMCPU pVCpu = VMMGetCpu(pVM);
3495 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3496 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3497 }
3498 else
3499 {
3500 /*
3501 * No RAM range, insert the ones prepared during registration.
3502 */
3503 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3504 {
3505#ifdef VBOX_WITH_NATIVE_NEM
3506 /* Tell NEM and get the new NEM state for the pages. */
3507 uint8_t u2NemState = 0;
3508 if (VM_IS_NEM_ENABLED(pVM))
3509 {
3510 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, pCurMmio->RamRange.GCPhys,
3511 pCurMmio->RamRange.GCPhysLast - pCurMmio->RamRange.GCPhys + 1,
3512 NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3513 | (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3514 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0),
3515 NULL /*pvRam*/, pCurMmio->RamRange.pvR3,
3516 &u2NemState, &pCurMmio->RamRange.uNemRange);
3517 AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3518 }
3519#endif
3520
3521 /* Clear the tracking data of pages we're going to reactivate. */
3522 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3523 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3524 while (cPagesLeft-- > 0)
3525 {
3526 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3527 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3528#ifdef VBOX_WITH_NATIVE_NEM
3529 PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState);
3530#endif
3531 pPageSrc++;
3532 }
3533
3534 /* link in the ram range */
3535 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3536
3537 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3538 {
3539 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3540 break;
3541 }
3542 pRamPrev = &pCurMmio->RamRange;
3543 }
3544 }
3545
3546 /*
3547 * If the range have dirty page monitoring enabled, enable that.
3548 *
3549 * We ignore failures here for now because if we fail, the whole mapping
3550 * will have to be reversed and we'll end up with nothing at all on the
3551 * screen and a grumpy guest, whereas if we just go on, we'll only have
3552 * visual distortions to gripe about. There will be something in the
3553 * release log.
3554 */
3555 if ( pFirstMmio->pPhysHandlerR3
3556 && (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3557 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstMmio);
3558
3559 /*
3560 * We're good, set the flags and invalid the mapping TLB.
3561 */
3562 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3563 {
3564 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
3565 if (fRamExists)
3566 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
3567 else
3568 pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
3569 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3570 break;
3571 }
3572 pgmPhysInvalidatePageMapTLB(pVM);
3573
3574#ifdef VBOX_WITH_NATIVE_NEM
3575 /*
3576 * Late NEM notification.
3577 */
3578 if (VM_IS_NEM_ENABLED(pVM))
3579 {
3580 int rc;
3581 uint32_t fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2;
3582 if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES)
3583 fNemFlags |= NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES;
3584 if (fRamExists)
3585 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3586 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, pFirstMmio->pvR3,
3587 NULL /*puNemRange*/);
3588 else
3589 {
3590 rc = VINF_SUCCESS;
3591 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3592 {
3593 rc = NEMR3NotifyPhysMmioExMapLate(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3594 NULL, pCurMmio->RamRange.pvR3, &pCurMmio->RamRange.uNemRange);
3595 if ((pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) || RT_FAILURE(rc))
3596 break;
3597 }
3598 }
3599 AssertLogRelRCReturnStmt(rc, PGMR3PhysMmio2Unmap(pVM, pDevIns, hMmio2, GCPhys); PGM_UNLOCK(pVM), rc);
3600 }
3601#endif
3602
3603 PGM_UNLOCK(pVM);
3604
3605 return VINF_SUCCESS;
3606}
3607
3608
3609/**
3610 * Unmaps an MMIO2 region.
3611 *
3612 * This is typically done when a guest / the bios / state loading changes the
3613 * PCI config. The replacing of base memory has the same restrictions as during
3614 * registration, of course.
3615 */
3616VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3617{
3618 /*
3619 * Validate input
3620 */
3621 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3622 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3623 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3624 if (GCPhys != NIL_RTGCPHYS)
3625 {
3626 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3627 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3628 }
3629
3630 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3631 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3632 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3633
3634 int rc = PGM_LOCK(pVM);
3635 AssertRCReturn(rc, rc);
3636
3637 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3638 RTGCPHYS cbRange = 0;
3639 for (;;)
3640 {
3641 AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3642 AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, PGM_UNLOCK(pVM), VERR_INVALID_PARAMETER);
3643 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3644 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3645 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3646 cbRange += pLastMmio->RamRange.cb;
3647 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3648 break;
3649 pLastMmio = pLastMmio->pNextR3;
3650 }
3651
3652 Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
3653 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3654
3655 uint16_t const fOldFlags = pFirstMmio->fFlags;
3656 AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3657
3658 /*
3659 * If monitoring dirty pages, we must deregister the handlers first.
3660 */
3661 if ( pFirstMmio->pPhysHandlerR3
3662 && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3663 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstMmio);
3664
3665 /*
3666 * Unmap it.
3667 */
3668 int rcRet = VINF_SUCCESS;
3669#ifdef VBOX_WITH_NATIVE_NEM
3670 uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3671 | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3672 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
3673#endif
3674 if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
3675 {
3676 /*
3677 * We've replaced RAM, replace with zero pages.
3678 *
3679 * Note! This is where we might differ a little from a real system, because
3680 * it's likely to just show the RAM pages as they were before the
3681 * MMIO/MMIO2 region was mapped here.
3682 */
3683 /* Only one chunk allowed when overlapping! */
3684 Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
3685
3686 /* Restore the RAM pages we've replaced. */
3687 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3688 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3689 pRam = pRam->pNextR3;
3690
3691 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3692 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3693 pVM->pgm.s.cZeroPages += cPagesLeft; /** @todo not correct for NEM mode */
3694
3695#ifdef VBOX_WITH_NATIVE_NEM
3696 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. Note! we cannot be here in simple memory mode, see mapping function. */
3697 {
3698 uint8_t u2State = UINT8_MAX;
3699 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pFirstMmio->RamRange.GCPhys, pFirstMmio->RamRange.cb,
3700 fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3701 pRam->pvR3
3702 ? (uint8_t *)pRam->pvR3 + pFirstMmio->RamRange.GCPhys - pRam->GCPhys : NULL,
3703 pFirstMmio->pvR3, &u2State);
3704 AssertRCStmt(rc, rcRet = rc);
3705 if (u2State != UINT8_MAX)
3706 pgmPhysSetNemStateForPages(pPageDst, cPagesLeft, u2State);
3707 }
3708#endif
3709
3710 while (cPagesLeft-- > 0)
3711 {
3712 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3713 pPageDst++;
3714 }
3715
3716 /* Flush physical page map TLB. */
3717 pgmPhysInvalidatePageMapTLB(pVM);
3718
3719 /* Update range state. */
3720 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3721 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3722 pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3723 }
3724 else
3725 {
3726 /*
3727 * Unlink the chunks related to the MMIO/MMIO2 region.
3728 */
3729 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3730 {
3731#ifdef VBOX_WITH_NATIVE_NEM
3732 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */
3733 {
3734 uint8_t u2State = UINT8_MAX;
3735 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3736 NULL, pCurMmio->pvR3, &u2State);
3737 AssertRCStmt(rc, rcRet = rc);
3738 if (u2State != UINT8_MAX)
3739 pgmPhysSetNemStateForPages(pCurMmio->RamRange.aPages, pCurMmio->RamRange.cb >> PAGE_SHIFT, u2State);
3740 }
3741#endif
3742 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3743 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3744 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3745 pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3746 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3747 break;
3748 }
3749 }
3750
3751 /* Force a PGM pool flush as guest ram references have been changed. */
3752 /** @todo not entirely SMP safe; assuming for now the guest takes care
3753 * of this internally (not touch mapped mmio while changing the
3754 * mapping). */
3755 PVMCPU pVCpu = VMMGetCpu(pVM);
3756 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3757 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3758
3759 pgmPhysInvalidatePageMapTLB(pVM);
3760 pgmPhysInvalidRamRangeTlbs(pVM);
3761
3762 PGM_UNLOCK(pVM);
3763 return rcRet;
3764}
3765
3766
3767/**
3768 * Reduces the mapping size of a MMIO2 region.
3769 *
3770 * This is mainly for dealing with old saved states after changing the default
3771 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3772 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3773 *
3774 * The region must not currently be mapped when making this call. The VM state
3775 * must be state restore or VM construction.
3776 *
3777 * @returns VBox status code.
3778 * @param pVM The cross context VM structure.
3779 * @param pDevIns The device instance owning the region.
3780 * @param hMmio2 The handle of the region to reduce.
3781 * @param cbRegion The new mapping size.
3782 */
3783VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
3784{
3785 /*
3786 * Validate input
3787 */
3788 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3789 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3790 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3791 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3792 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3793 VMSTATE enmVmState = VMR3GetState(pVM);
3794 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3795 || enmVmState == VMSTATE_LOADING,
3796 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3797 VERR_VM_INVALID_VM_STATE);
3798
3799 int rc = PGM_LOCK(pVM);
3800 AssertRCReturn(rc, rc);
3801
3802 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3803 if (pFirstMmio)
3804 {
3805 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3806 if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
3807 {
3808 /*
3809 * NOTE! Current implementation does not support multiple ranges.
3810 * Implement when there is a real world need and thus a testcase.
3811 */
3812 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3813 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3814 rc = VERR_NOT_SUPPORTED);
3815 if (RT_SUCCESS(rc))
3816 {
3817 /*
3818 * Make the change.
3819 */
3820 Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3821 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3822
3823 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3824 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3825 rc = VERR_OUT_OF_RANGE);
3826 if (RT_SUCCESS(rc))
3827 {
3828 pFirstMmio->RamRange.cb = cbRegion;
3829 }
3830 }
3831 }
3832 else
3833 rc = VERR_WRONG_ORDER;
3834 }
3835 else
3836 rc = VERR_NOT_FOUND;
3837
3838 PGM_UNLOCK(pVM);
3839 return rc;
3840}
3841
3842
3843/**
3844 * Validates @a hMmio2, making sure it belongs to @a pDevIns.
3845 *
3846 * @returns VBox status code.
3847 * @param pVM The cross context VM structure.
3848 * @param pDevIns The device which allegedly owns @a hMmio2.
3849 * @param hMmio2 The handle to validate.
3850 */
3851VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3852{
3853 /*
3854 * Validate input
3855 */
3856 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3857 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
3858
3859 /*
3860 * Just do this the simple way. No need for locking as this is only taken at
3861 */
3862 PGM_LOCK_VOID(pVM);
3863 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3864 PGM_UNLOCK(pVM);
3865 AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
3866 AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
3867 return VINF_SUCCESS;
3868}
3869
3870
3871/**
3872 * Gets the mapping address of an MMIO2 region.
3873 *
3874 * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
3875 *
3876 * @param pVM The cross context VM structure.
3877 * @param pDevIns The device owning the MMIO2 handle.
3878 * @param hMmio2 The region handle.
3879 */
3880VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3881{
3882 AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
3883
3884 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3885 AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
3886
3887 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3888 return pFirstRegMmio->RamRange.GCPhys;
3889 return NIL_RTGCPHYS;
3890}
3891
3892
3893/**
3894 * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap.
3895 *
3896 * Called holding the PGM lock.
3897 */
3898static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
3899 void *pvBitmap, size_t cbBitmap)
3900{
3901 /*
3902 * Continue validation.
3903 */
3904 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3905 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
3906 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3907 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK),
3908 VERR_INVALID_FUNCTION);
3909 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
3910
3911 RTGCPHYS cbTotal = 0;
3912 uint16_t fTotalDirty = 0;
3913 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
3914 {
3915 cbTotal += pCur->RamRange.cb; /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */
3916 fTotalDirty |= pCur->fFlags;
3917 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3918 break;
3919 pCur = pCur->pNextR3;
3920 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
3921 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3922 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES,
3923 VERR_INTERNAL_ERROR_4);
3924 }
3925 size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, PAGE_SIZE * 64, RTGCPHYS) / PAGE_SIZE / 8;
3926
3927 if (cbBitmap)
3928 {
3929 AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER);
3930 AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER);
3931 AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER);
3932 }
3933
3934 /*
3935 * Do the work.
3936 */
3937 int rc = VINF_SUCCESS;
3938 if (pvBitmap)
3939 {
3940#ifdef VBOX_WITH_PGM_NEM_MODE
3941 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
3942 {
3943 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
3944 uint8_t *pbBitmap = (uint8_t *)pvBitmap;
3945 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3946 {
3947 size_t const cbBitmapChunk = pCur->RamRange.cb / PAGE_SIZE / 8;
3948 Assert((RTGCPHYS)cbBitmapChunk * PAGE_SIZE * 8 == pCur->RamRange.cb);
3949 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
3950 pCur->RamRange.uNemRange, pbBitmap, cbBitmapChunk);
3951 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3952 rc = rc2;
3953 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3954 break;
3955 pbBitmap += pCur->RamRange.cb / PAGE_SIZE / 8;
3956 }
3957 }
3958 else
3959#endif
3960 if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY)
3961 {
3962 if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3963 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3964 {
3965 /*
3966 * Reset each chunk, gathering dirty bits.
3967 */
3968 RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */
3969 uint32_t iPageNo = 0;
3970 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3971 {
3972 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3973 {
3974 int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pCur->RamRange.GCPhys, pvBitmap, iPageNo);
3975 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3976 rc = rc2;
3977 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3978 }
3979 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3980 break;
3981 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3982 }
3983 }
3984 else
3985 {
3986 /*
3987 * If not mapped or tracking is disabled, we return the
3988 * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot
3989 * get more accurate data than that after unmapping or disabling.
3990 */
3991 RT_BZERO(pvBitmap, cbBitmap);
3992 uint32_t iPageNo = 0;
3993 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3994 {
3995 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3996 {
3997 ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pCur->RamRange.cb >> PAGE_SHIFT));
3998 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3999 }
4000 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4001 break;
4002 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
4003 }
4004 }
4005 }
4006 /*
4007 * No dirty chunks.
4008 */
4009 else
4010 RT_BZERO(pvBitmap, cbBitmap);
4011 }
4012 /*
4013 * No bitmap. Reset the region if tracking is currently enabled.
4014 */
4015 else if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4016 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4017 {
4018#ifdef VBOX_WITH_PGM_NEM_MODE
4019 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4020 {
4021 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4022 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4023 {
4024 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
4025 pCur->RamRange.uNemRange, NULL, 0);
4026 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4027 rc = rc2;
4028 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4029 break;
4030 }
4031 }
4032 else
4033#endif
4034 {
4035 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4036 {
4037 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
4038 int rc2 = PGMHandlerPhysicalReset(pVM, pCur->RamRange.GCPhys);
4039 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4040 rc = rc2;
4041 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4042 break;
4043 }
4044 }
4045 }
4046
4047 return rc;
4048}
4049
4050
4051/**
4052 * Queries the dirty page bitmap and resets the monitoring.
4053 *
4054 * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when
4055 * creating the range for this to work.
4056 *
4057 * @returns VBox status code.
4058 * @retval VERR_INVALID_FUNCTION if not created using
4059 * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES.
4060 * @param pVM The cross context VM structure.
4061 * @param pDevIns The device owning the MMIO2 handle.
4062 * @param hMmio2 The region handle.
4063 * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored
4064 * when @a cbBitmap is zero.
4065 * @param cbBitmap The size of the bitmap. Must be the size of the whole
4066 * MMIO2 range, rounded up to the nearest 8 bytes.
4067 * When zero only a reset is done.
4068 */
4069VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
4070 void *pvBitmap, size_t cbBitmap)
4071{
4072 /*
4073 * Do some basic validation before grapping the PGM lock and continuing.
4074 */
4075 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4076 AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER);
4077 int rc = PGM_LOCK(pVM);
4078 if (RT_SUCCESS(rc))
4079 {
4080 STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4081 rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap);
4082 STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4083 PGM_UNLOCK(pVM);
4084 }
4085 return rc;
4086}
4087
4088/**
4089 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking
4090 *
4091 * Called owning the PGM lock.
4092 */
4093static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4094{
4095 /*
4096 * Continue validation.
4097 */
4098 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4099 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
4100 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4101 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)
4102 , VERR_INVALID_FUNCTION);
4103 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
4104
4105#ifdef VBOX_WITH_PGM_NEM_MODE
4106 /*
4107 * This is a nop if NEM is responsible for doing the tracking, we simply
4108 * leave the tracking on all the time there.
4109 */
4110 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4111 {
4112 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4113 return VINF_SUCCESS;
4114 }
4115#endif
4116
4117 /*
4118 * Anyting needing doing?
4119 */
4120 if (fEnabled != RT_BOOL(pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4121 {
4122 LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4123
4124 /*
4125 * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag.
4126 */
4127 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
4128 {
4129 if (fEnabled)
4130 pCur->fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4131 else
4132 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4133 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4134 break;
4135 pCur = pCur->pNextR3;
4136 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
4137 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4138 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
4139 , VERR_INTERNAL_ERROR_4);
4140 }
4141
4142 /*
4143 * Enable/disable handlers if currently mapped.
4144 *
4145 * We ignore status codes here as we've already changed the flags and
4146 * returning a failure status now would be confusing. Besides, the two
4147 * functions will continue past failures. As argued in the mapping code,
4148 * it's in the release log.
4149 */
4150 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
4151 {
4152 if (fEnabled)
4153 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstRegMmio);
4154 else
4155 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstRegMmio);
4156 }
4157 }
4158 else
4159 LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4160
4161 return VINF_SUCCESS;
4162}
4163
4164
4165/**
4166 * Controls the dirty page tracking for an MMIO2 range.
4167 *
4168 * @returns VBox status code.
4169 * @param pVM The cross context VM structure.
4170 * @param pDevIns The device owning the MMIO2 memory.
4171 * @param hMmio2 The handle of the region.
4172 * @param fEnabled The new tracking state.
4173 */
4174VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4175{
4176 /*
4177 * Do some basic validation before grapping the PGM lock and continuing.
4178 */
4179 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4180 int rc = PGM_LOCK(pVM);
4181 if (RT_SUCCESS(rc))
4182 {
4183 rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled);
4184 PGM_UNLOCK(pVM);
4185 }
4186 return rc;
4187}
4188
4189
4190/**
4191 * Changes the region number of an MMIO2 region.
4192 *
4193 * This is only for dealing with save state issues, nothing else.
4194 *
4195 * @return VBox status code.
4196 *
4197 * @param pVM The cross context VM structure.
4198 * @param pDevIns The device owning the MMIO2 memory.
4199 * @param hMmio2 The handle of the region.
4200 * @param iNewRegion The new region index.
4201 *
4202 * @thread EMT(0)
4203 * @sa @bugref{9359}
4204 */
4205VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
4206{
4207 /*
4208 * Validate input.
4209 */
4210 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4211 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
4212 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4213 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
4214 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4215
4216 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
4217
4218 int rc = PGM_LOCK(pVM);
4219 AssertRCReturn(rc, rc);
4220
4221 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4222 AssertReturnStmt(pFirstRegMmio, PGM_UNLOCK(pVM), VERR_NOT_FOUND);
4223 AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
4224 PGM_UNLOCK(pVM), VERR_RESOURCE_IN_USE);
4225
4226 /*
4227 * Make the change.
4228 */
4229 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
4230
4231 PGM_UNLOCK(pVM);
4232 return VINF_SUCCESS;
4233}
4234
4235
4236
4237/*********************************************************************************************************************************
4238* ROM *
4239*********************************************************************************************************************************/
4240
4241/**
4242 * Worker for PGMR3PhysRomRegister.
4243 *
4244 * This is here to simplify lock management, i.e. the caller does all the
4245 * locking and we can simply return without needing to remember to unlock
4246 * anything first.
4247 *
4248 * @returns VBox status code.
4249 * @param pVM The cross context VM structure.
4250 * @param pDevIns The device instance owning the ROM.
4251 * @param GCPhys First physical address in the range.
4252 * Must be page aligned!
4253 * @param cb The size of the range (in bytes).
4254 * Must be page aligned!
4255 * @param pvBinary Pointer to the binary data backing the ROM image.
4256 * @param cbBinary The size of the binary data pvBinary points to.
4257 * This must be less or equal to @a cb.
4258 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4259 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4260 * @param pszDesc Pointer to description string. This must not be freed.
4261 */
4262static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4263 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4264{
4265 /*
4266 * Validate input.
4267 */
4268 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4269 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4270 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4271 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4272 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4273 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4274 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4275 AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
4276 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4277
4278 const uint32_t cPages = cb >> PAGE_SHIFT;
4279
4280 /*
4281 * Find the ROM location in the ROM list first.
4282 */
4283 PPGMROMRANGE pRomPrev = NULL;
4284 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4285 while (pRom && GCPhysLast >= pRom->GCPhys)
4286 {
4287 if ( GCPhys <= pRom->GCPhysLast
4288 && GCPhysLast >= pRom->GCPhys)
4289 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4290 GCPhys, GCPhysLast, pszDesc,
4291 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4292 VERR_PGM_RAM_CONFLICT);
4293 /* next */
4294 pRomPrev = pRom;
4295 pRom = pRom->pNextR3;
4296 }
4297
4298 /*
4299 * Find the RAM location and check for conflicts.
4300 *
4301 * Conflict detection is a bit different than for RAM registration since a
4302 * ROM can be located within a RAM range. So, what we have to check for is
4303 * other memory types (other than RAM that is) and that we don't span more
4304 * than one RAM range (lazy).
4305 */
4306 bool fRamExists = false;
4307 PPGMRAMRANGE pRamPrev = NULL;
4308 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4309 while (pRam && GCPhysLast >= pRam->GCPhys)
4310 {
4311 if ( GCPhys <= pRam->GCPhysLast
4312 && GCPhysLast >= pRam->GCPhys)
4313 {
4314 /* completely within? */
4315 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4316 && GCPhysLast <= pRam->GCPhysLast,
4317 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4318 GCPhys, GCPhysLast, pszDesc,
4319 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4320 VERR_PGM_RAM_CONFLICT);
4321 fRamExists = true;
4322 break;
4323 }
4324
4325 /* next */
4326 pRamPrev = pRam;
4327 pRam = pRam->pNextR3;
4328 }
4329 if (fRamExists)
4330 {
4331 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4332 uint32_t cPagesLeft = cPages;
4333 while (cPagesLeft-- > 0)
4334 {
4335 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4336 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4337 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4338 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4339 Assert(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM));
4340 pPage++;
4341 }
4342 }
4343
4344 /*
4345 * Update the base memory reservation if necessary.
4346 */
4347 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4348 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4349 cExtraBaseCost += cPages;
4350 if (cExtraBaseCost)
4351 {
4352 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4353 if (RT_FAILURE(rc))
4354 return rc;
4355 }
4356
4357#ifdef VBOX_WITH_NATIVE_NEM
4358 /*
4359 * Early NEM notification before we've made any changes or anything.
4360 */
4361 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4362 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4363 uint8_t u2NemState = UINT8_MAX;
4364 if (VM_IS_NEM_ENABLED(pVM))
4365 {
4366 int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cPages << PAGE_SHIFT,
4367 fRamExists ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhys) : NULL,
4368 fNemNotify, &u2NemState);
4369 AssertLogRelRCReturn(rc, rc);
4370 }
4371#endif
4372
4373 /*
4374 * Allocate memory for the virgin copy of the RAM. In simplified memory mode,
4375 * we allocate memory for any ad-hoc RAM range and for shadow pages.
4376 */
4377 PGMMALLOCATEPAGESREQ pReq = NULL;
4378#ifdef VBOX_WITH_PGM_NEM_MODE
4379 void *pvRam = NULL;
4380 void *pvAlt = NULL;
4381 if (pVM->pgm.s.fNemMode)
4382 {
4383 if (!fRamExists)
4384 {
4385 int rc = SUPR3PageAlloc(cPages, &pvRam);
4386 if (RT_FAILURE(rc))
4387 return rc;
4388 }
4389 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4390 {
4391 int rc = SUPR3PageAlloc(cPages, &pvAlt);
4392 if (RT_FAILURE(rc))
4393 {
4394 if (pvRam)
4395 SUPR3PageFree(pvRam, cPages);
4396 return rc;
4397 }
4398 }
4399 }
4400 else
4401#endif
4402 {
4403 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4404 AssertRCReturn(rc, rc);
4405
4406 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4407 {
4408 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4409 pReq->aPages[iPage].fZeroed = false;
4410 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4411 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4412 }
4413
4414 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4415 if (RT_FAILURE(rc))
4416 {
4417 GMMR3AllocatePagesCleanup(pReq);
4418 return rc;
4419 }
4420 }
4421
4422 /*
4423 * Allocate the new ROM range and RAM range (if necessary).
4424 */
4425 PPGMROMRANGE pRomNew;
4426 int rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4427 if (RT_SUCCESS(rc))
4428 {
4429 PPGMRAMRANGE pRamNew = NULL;
4430 if (!fRamExists)
4431 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4432 if (RT_SUCCESS(rc))
4433 {
4434 /*
4435 * Initialize and insert the RAM range (if required).
4436 */
4437 uint32_t const idxFirstRamPage = fRamExists ? (GCPhys - pRam->GCPhys) >> PAGE_SHIFT : 0;
4438 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4439 if (!fRamExists)
4440 {
4441 /* New RAM range. */
4442 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4443 pRamNew->GCPhys = GCPhys;
4444 pRamNew->GCPhysLast = GCPhysLast;
4445 pRamNew->cb = cb;
4446 pRamNew->pszDesc = pszDesc;
4447 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4448 pRamNew->pvR3 = NULL;
4449 pRamNew->paLSPages = NULL;
4450
4451 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4452#ifdef VBOX_WITH_PGM_NEM_MODE
4453 if (pVM->pgm.s.fNemMode)
4454 {
4455 AssertPtr(pvRam); Assert(pReq == NULL);
4456 pRamNew->pvR3 = pvRam;
4457 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4458 {
4459 PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4460 PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED);
4461 pRomPage->Virgin = *pRamPage;
4462 }
4463 }
4464 else
4465#endif
4466 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4467 {
4468 PGM_PAGE_INIT(pRamPage,
4469 pReq->aPages[iPage].HCPhysGCPhys,
4470 pReq->aPages[iPage].idPage,
4471 PGMPAGETYPE_ROM,
4472 PGM_PAGE_STATE_ALLOCATED);
4473
4474 pRomPage->Virgin = *pRamPage;
4475 }
4476
4477 pVM->pgm.s.cAllPages += cPages;
4478 pVM->pgm.s.cPrivatePages += cPages;
4479 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4480 }
4481 else
4482 {
4483 /* Existing RAM range. */
4484 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4485#ifdef VBOX_WITH_PGM_NEM_MODE
4486 if (pVM->pgm.s.fNemMode)
4487 {
4488 Assert(pvRam == NULL); Assert(pReq == NULL);
4489 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4490 {
4491 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4492 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4493 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4494 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4495 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4496 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4497 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4498 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4499
4500 pRomPage->Virgin = *pRamPage;
4501 }
4502 }
4503 else
4504#endif
4505 {
4506 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4507 {
4508 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4509 PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys);
4510 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4511 PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage);
4512 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4513 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4514 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4515
4516 pRomPage->Virgin = *pRamPage;
4517 }
4518 pVM->pgm.s.cZeroPages -= cPages;
4519 pVM->pgm.s.cPrivatePages += cPages;
4520 }
4521 pRamNew = pRam;
4522 }
4523
4524#ifdef VBOX_WITH_NATIVE_NEM
4525 /* Set the NEM state of the pages if needed. */
4526 if (u2NemState != UINT8_MAX)
4527 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4528#endif
4529
4530 /* Flush physical page map TLB. */
4531 pgmPhysInvalidatePageMapTLB(pVM);
4532
4533 /*
4534 * Register the ROM access handler.
4535 */
4536 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4537 pRomNew, MMHyperCCToR0(pVM, pRomNew), NIL_RTRCPTR, pszDesc);
4538 if (RT_SUCCESS(rc))
4539 {
4540 /*
4541 * Copy the image over to the virgin pages.
4542 * This must be done after linking in the RAM range.
4543 */
4544 size_t cbBinaryLeft = cbBinary;
4545 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4546 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4547 {
4548 void *pvDstPage;
4549 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4550 if (RT_FAILURE(rc))
4551 {
4552 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4553 break;
4554 }
4555 if (cbBinaryLeft >= PAGE_SIZE)
4556 {
4557 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4558 cbBinaryLeft -= PAGE_SIZE;
4559 }
4560 else
4561 {
4562 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4563 if (cbBinaryLeft > 0)
4564 {
4565 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4566 cbBinaryLeft = 0;
4567 }
4568 }
4569 }
4570 if (RT_SUCCESS(rc))
4571 {
4572 /*
4573 * Initialize the ROM range.
4574 * Note that the Virgin member of the pages has already been initialized above.
4575 */
4576 pRomNew->GCPhys = GCPhys;
4577 pRomNew->GCPhysLast = GCPhysLast;
4578 pRomNew->cb = cb;
4579 pRomNew->fFlags = fFlags;
4580 pRomNew->idSavedState = UINT8_MAX;
4581 pRomNew->cbOriginal = cbBinary;
4582 pRomNew->pszDesc = pszDesc;
4583#ifdef VBOX_WITH_PGM_NEM_MODE
4584 pRomNew->pbR3Alternate = (uint8_t *)pvAlt;
4585#endif
4586 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4587 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4588 if (pRomNew->pvOriginal)
4589 {
4590 for (unsigned iPage = 0; iPage < cPages; iPage++)
4591 {
4592 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4593 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4594#ifdef VBOX_WITH_PGM_NEM_MODE
4595 if (pVM->pgm.s.fNemMode)
4596 PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4597 PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED);
4598 else
4599#endif
4600 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4601 }
4602
4603 /* update the page count stats for the shadow pages. */
4604 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4605 {
4606#ifdef VBOX_WITH_PGM_NEM_MODE
4607 if (pVM->pgm.s.fNemMode)
4608 pVM->pgm.s.cPrivatePages += cPages;
4609 else
4610#endif
4611 pVM->pgm.s.cZeroPages += cPages;
4612 pVM->pgm.s.cAllPages += cPages;
4613 }
4614
4615 /*
4616 * Insert the ROM range, tell REM and return successfully.
4617 */
4618 pRomNew->pNextR3 = pRom;
4619 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4620
4621 if (pRomPrev)
4622 {
4623 pRomPrev->pNextR3 = pRomNew;
4624 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4625 }
4626 else
4627 {
4628 pVM->pgm.s.pRomRangesR3 = pRomNew;
4629 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4630 }
4631
4632 pgmPhysInvalidatePageMapTLB(pVM);
4633#ifdef VBOX_WITH_PGM_NEM_MODE
4634 if (!pVM->pgm.s.fNemMode)
4635#endif
4636 GMMR3AllocatePagesCleanup(pReq);
4637
4638#ifdef VBOX_WITH_NATIVE_NEM
4639 /*
4640 * Notify NEM again.
4641 */
4642 if (VM_IS_NEM_ENABLED(pVM))
4643 {
4644 u2NemState = UINT8_MAX;
4645 rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamNew, GCPhys),
4646 fNemNotify, &u2NemState);
4647 if (u2NemState != UINT8_MAX)
4648 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4649 if (RT_SUCCESS(rc))
4650 return rc;
4651 }
4652 else
4653#endif
4654 return rc;
4655
4656 /*
4657 * bail out
4658 */
4659#ifdef VBOX_WITH_NATIVE_NEM
4660 /* unlink */
4661 if (pRomPrev)
4662 {
4663 pRomPrev->pNextR3 = pRom;
4664 pRomPrev->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4665 }
4666 else
4667 {
4668 pVM->pgm.s.pRomRangesR3 = pRom;
4669 pVM->pgm.s.pRomRangesR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4670 }
4671
4672 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4673 {
4674# ifdef VBOX_WITH_PGM_NEM_MODE
4675 if (pVM->pgm.s.fNemMode)
4676 pVM->pgm.s.cPrivatePages -= cPages;
4677 else
4678# endif
4679 pVM->pgm.s.cZeroPages -= cPages;
4680 pVM->pgm.s.cAllPages -= cPages;
4681 }
4682#endif
4683 }
4684 else
4685 rc = VERR_NO_MEMORY;
4686 }
4687
4688 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4689 AssertRC(rc2);
4690 }
4691
4692 if (!fRamExists)
4693 {
4694 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4695 MMHyperFree(pVM, pRamNew);
4696 }
4697 else
4698 {
4699 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4700#ifdef VBOX_WITH_PGM_NEM_MODE
4701 if (pVM->pgm.s.fNemMode)
4702 {
4703 Assert(pvRam == NULL); Assert(pReq == NULL);
4704 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4705 {
4706 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4707 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4708 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4709 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM);
4710 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4711 }
4712 }
4713 else
4714#endif
4715 {
4716 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4717 PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM);
4718 pVM->pgm.s.cZeroPages += cPages;
4719 pVM->pgm.s.cPrivatePages -= cPages;
4720 }
4721 }
4722 }
4723 MMHyperFree(pVM, pRomNew);
4724 }
4725
4726 /** @todo Purge the mapping cache or something... */
4727#ifdef VBOX_WITH_PGM_NEM_MODE
4728 if (pVM->pgm.s.fNemMode)
4729 {
4730 Assert(!pReq);
4731 if (pvRam)
4732 SUPR3PageFree(pvRam, cPages);
4733 if (pvAlt)
4734 SUPR3PageFree(pvAlt, cPages);
4735 }
4736 else
4737#endif
4738 {
4739 GMMR3FreeAllocatedPages(pVM, pReq);
4740 GMMR3AllocatePagesCleanup(pReq);
4741 }
4742 return rc;
4743}
4744
4745
4746/**
4747 * Registers a ROM image.
4748 *
4749 * Shadowed ROM images requires double the amount of backing memory, so,
4750 * don't use that unless you have to. Shadowing of ROM images is process
4751 * where we can select where the reads go and where the writes go. On real
4752 * hardware the chipset provides means to configure this. We provide
4753 * PGMR3PhysProtectROM() for this purpose.
4754 *
4755 * A read-only copy of the ROM image will always be kept around while we
4756 * will allocate RAM pages for the changes on demand (unless all memory
4757 * is configured to be preallocated).
4758 *
4759 * @returns VBox status code.
4760 * @param pVM The cross context VM structure.
4761 * @param pDevIns The device instance owning the ROM.
4762 * @param GCPhys First physical address in the range.
4763 * Must be page aligned!
4764 * @param cb The size of the range (in bytes).
4765 * Must be page aligned!
4766 * @param pvBinary Pointer to the binary data backing the ROM image.
4767 * @param cbBinary The size of the binary data pvBinary points to.
4768 * This must be less or equal to @a cb.
4769 * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
4770 * @param pszDesc Pointer to description string. This must not be freed.
4771 *
4772 * @remark There is no way to remove the rom, automatically on device cleanup or
4773 * manually from the device yet. This isn't difficult in any way, it's
4774 * just not something we expect to be necessary for a while.
4775 */
4776VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4777 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4778{
4779 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4780 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4781 PGM_LOCK_VOID(pVM);
4782 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4783 PGM_UNLOCK(pVM);
4784 return rc;
4785}
4786
4787
4788/**
4789 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4790 * that the virgin part is untouched.
4791 *
4792 * This is done after the normal memory has been cleared.
4793 *
4794 * ASSUMES that the caller owns the PGM lock.
4795 *
4796 * @param pVM The cross context VM structure.
4797 */
4798int pgmR3PhysRomReset(PVM pVM)
4799{
4800 PGM_LOCK_ASSERT_OWNER(pVM);
4801 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4802 {
4803 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4804
4805 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4806 {
4807 /*
4808 * Reset the physical handler.
4809 */
4810 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4811 AssertRCReturn(rc, rc);
4812
4813 /*
4814 * What we do with the shadow pages depends on the memory
4815 * preallocation option. If not enabled, we'll just throw
4816 * out all the dirty pages and replace them by the zero page.
4817 */
4818#ifdef VBOX_WITH_PGM_NEM_MODE
4819 if (pVM->pgm.s.fNemMode)
4820 {
4821 /* Clear all the shadow pages (currently using alternate backing). */
4822 RT_BZERO(pRom->pbR3Alternate, pRom->cb);
4823 }
4824 else
4825#endif
4826 if (!pVM->pgm.s.fRamPreAlloc)
4827 {
4828 /* Free the dirty pages. */
4829 uint32_t cPendingPages = 0;
4830 PGMMFREEPAGESREQ pReq;
4831 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4832 AssertRCReturn(rc, rc);
4833
4834 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4835 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4836 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4837 {
4838 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4839 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4840 pRom->GCPhys + (iPage << PAGE_SHIFT),
4841 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4842 AssertLogRelRCReturn(rc, rc);
4843 }
4844
4845 if (cPendingPages)
4846 {
4847 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4848 AssertLogRelRCReturn(rc, rc);
4849 }
4850 GMMR3FreePagesCleanup(pReq);
4851 }
4852 else
4853 {
4854 /* clear all the shadow pages. */
4855 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4856 {
4857 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4858 continue;
4859 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4860 void *pvDstPage;
4861 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4862 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4863 if (RT_FAILURE(rc))
4864 break;
4865 ASMMemZeroPage(pvDstPage);
4866 }
4867 AssertRCReturn(rc, rc);
4868 }
4869 }
4870
4871 /*
4872 * Restore the original ROM pages after a saved state load.
4873 * Also, in strict builds check that ROM pages remain unmodified.
4874 */
4875#ifndef VBOX_STRICT
4876 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4877#endif
4878 {
4879 size_t cbSrcLeft = pRom->cbOriginal;
4880 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4881 uint32_t cRestored = 0;
4882 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4883 {
4884 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4885 PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys);
4886 void const *pvDstPage = NULL;
4887 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage);
4888 if (RT_FAILURE(rc))
4889 break;
4890
4891 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4892 {
4893 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4894 {
4895 void *pvDstPageW = NULL;
4896 rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW);
4897 AssertLogRelRCReturn(rc, rc);
4898 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4899 cRestored++;
4900 }
4901 else
4902 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4903 }
4904 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4905 }
4906 if (cRestored > 0)
4907 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4908 }
4909 }
4910
4911 /* Clear the ROM restore flag now as we only need to do this once after
4912 loading saved state. */
4913 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4914
4915 return VINF_SUCCESS;
4916}
4917
4918
4919/**
4920 * Called by PGMR3Term to free resources.
4921 *
4922 * ASSUMES that the caller owns the PGM lock.
4923 *
4924 * @param pVM The cross context VM structure.
4925 */
4926void pgmR3PhysRomTerm(PVM pVM)
4927{
4928 /*
4929 * Free the heap copy of the original bits.
4930 */
4931 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4932 {
4933 if ( pRom->pvOriginal
4934 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4935 {
4936 RTMemFree((void *)pRom->pvOriginal);
4937 pRom->pvOriginal = NULL;
4938 }
4939 }
4940}
4941
4942
4943/**
4944 * Change the shadowing of a range of ROM pages.
4945 *
4946 * This is intended for implementing chipset specific memory registers
4947 * and will not be very strict about the input. It will silently ignore
4948 * any pages that are not the part of a shadowed ROM.
4949 *
4950 * @returns VBox status code.
4951 * @retval VINF_PGM_SYNC_CR3
4952 *
4953 * @param pVM The cross context VM structure.
4954 * @param GCPhys Where to start. Page aligned.
4955 * @param cb How much to change. Page aligned.
4956 * @param enmProt The new ROM protection.
4957 */
4958VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4959{
4960 /*
4961 * Check input
4962 */
4963 if (!cb)
4964 return VINF_SUCCESS;
4965 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4966 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4967 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4968 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4969 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4970
4971 /*
4972 * Process the request.
4973 */
4974 PGM_LOCK_VOID(pVM);
4975 int rc = VINF_SUCCESS;
4976 bool fFlushTLB = false;
4977 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4978 {
4979 if ( GCPhys <= pRom->GCPhysLast
4980 && GCPhysLast >= pRom->GCPhys
4981 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4982 {
4983 /*
4984 * Iterate the relevant pages and make necessary the changes.
4985 */
4986#ifdef VBOX_WITH_NATIVE_NEM
4987 PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys);
4988 AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3);
4989#endif
4990 bool fChanges = false;
4991 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4992 ? pRom->cb >> PAGE_SHIFT
4993 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4994 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4995 iPage < cPages;
4996 iPage++)
4997 {
4998 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4999 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
5000 {
5001 fChanges = true;
5002
5003 /* flush references to the page. */
5004 RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << PAGE_SHIFT);
5005 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage);
5006 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB);
5007 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
5008 rc = rc2;
5009#ifdef VBOX_WITH_NATIVE_NEM
5010 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
5011#endif
5012
5013 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
5014 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
5015
5016 *pOld = *pRamPage;
5017 *pRamPage = *pNew;
5018 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
5019
5020#ifdef VBOX_WITH_NATIVE_NEM
5021# ifdef VBOX_WITH_PGM_NEM_MODE
5022 /* In simplified mode we have to switch the page data around too. */
5023 if (pVM->pgm.s.fNemMode)
5024 {
5025 uint8_t abPage[PAGE_SIZE];
5026 uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage);
5027 memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], sizeof(abPage));
5028 memcpy(&pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], pbRamPage, sizeof(abPage));
5029 memcpy(pbRamPage, abPage, sizeof(abPage));
5030 }
5031# endif
5032 /* Tell NEM about the backing and protection change. */
5033 if (VM_IS_NEM_ENABLED(pVM))
5034 {
5035 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
5036 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
5037 PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage),
5038 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
5039 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
5040 }
5041#endif
5042 }
5043 pRomPage->enmProt = enmProt;
5044 }
5045
5046 /*
5047 * Reset the access handler if we made changes, no need
5048 * to optimize this.
5049 */
5050 if (fChanges)
5051 {
5052 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
5053 if (RT_FAILURE(rc2))
5054 {
5055 PGM_UNLOCK(pVM);
5056 AssertRC(rc);
5057 return rc2;
5058 }
5059 }
5060
5061 /* Advance - cb isn't updated. */
5062 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
5063 }
5064 }
5065 PGM_UNLOCK(pVM);
5066 if (fFlushTLB)
5067 PGM_INVL_ALL_VCPU_TLBS(pVM);
5068
5069 return rc;
5070}
5071
5072
5073
5074/*********************************************************************************************************************************
5075* Ballooning *
5076*********************************************************************************************************************************/
5077
5078#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5079
5080/**
5081 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
5082 *
5083 * This is only called on one of the EMTs while the other ones are waiting for
5084 * it to complete this function.
5085 *
5086 * @returns VINF_SUCCESS (VBox strict status code).
5087 * @param pVM The cross context VM structure.
5088 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5089 * @param pvUser User parameter
5090 */
5091static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5092{
5093 uintptr_t *paUser = (uintptr_t *)pvUser;
5094 bool fInflate = !!paUser[0];
5095 unsigned cPages = paUser[1];
5096 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
5097 uint32_t cPendingPages = 0;
5098 PGMMFREEPAGESREQ pReq;
5099 int rc;
5100
5101 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
5102 PGM_LOCK_VOID(pVM);
5103
5104 if (fInflate)
5105 {
5106 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
5107 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
5108
5109 /* Replace pages with ZERO pages. */
5110 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5111 if (RT_FAILURE(rc))
5112 {
5113 PGM_UNLOCK(pVM);
5114 AssertLogRelRC(rc);
5115 return rc;
5116 }
5117
5118 /* Iterate the pages. */
5119 for (unsigned i = 0; i < cPages; i++)
5120 {
5121 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5122 if ( pPage == NULL
5123 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
5124 {
5125 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
5126 break;
5127 }
5128
5129 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
5130
5131 /* Flush the shadow PT if this page was previously used as a guest page table. */
5132 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
5133
5134 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
5135 if (RT_FAILURE(rc))
5136 {
5137 PGM_UNLOCK(pVM);
5138 AssertLogRelRC(rc);
5139 return rc;
5140 }
5141 Assert(PGM_PAGE_IS_ZERO(pPage));
5142 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
5143 }
5144
5145 if (cPendingPages)
5146 {
5147 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
5148 if (RT_FAILURE(rc))
5149 {
5150 PGM_UNLOCK(pVM);
5151 AssertLogRelRC(rc);
5152 return rc;
5153 }
5154 }
5155 GMMR3FreePagesCleanup(pReq);
5156 }
5157 else
5158 {
5159 /* Iterate the pages. */
5160 for (unsigned i = 0; i < cPages; i++)
5161 {
5162 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5163 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
5164
5165 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
5166
5167 Assert(PGM_PAGE_IS_BALLOONED(pPage));
5168
5169 /* Change back to zero page. (NEM does not need to be informed.) */
5170 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5171 }
5172
5173 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
5174 }
5175
5176 /* Notify GMM about the balloon change. */
5177 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
5178 if (RT_SUCCESS(rc))
5179 {
5180 if (!fInflate)
5181 {
5182 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
5183 pVM->pgm.s.cBalloonedPages -= cPages;
5184 }
5185 else
5186 pVM->pgm.s.cBalloonedPages += cPages;
5187 }
5188
5189 PGM_UNLOCK(pVM);
5190
5191 /* Flush the recompiler's TLB as well. */
5192 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5193 CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5194
5195 AssertLogRelRC(rc);
5196 return rc;
5197}
5198
5199
5200/**
5201 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
5202 *
5203 * @returns VBox status code.
5204 * @param pVM The cross context VM structure.
5205 * @param fInflate Inflate or deflate memory balloon
5206 * @param cPages Number of pages to free
5207 * @param paPhysPage Array of guest physical addresses
5208 */
5209static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5210{
5211 uintptr_t paUser[3];
5212
5213 paUser[0] = fInflate;
5214 paUser[1] = cPages;
5215 paUser[2] = (uintptr_t)paPhysPage;
5216 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5217 AssertRC(rc);
5218
5219 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
5220 RTMemFree(paPhysPage);
5221}
5222
5223#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
5224
5225/**
5226 * Inflate or deflate a memory balloon
5227 *
5228 * @returns VBox status code.
5229 * @param pVM The cross context VM structure.
5230 * @param fInflate Inflate or deflate memory balloon
5231 * @param cPages Number of pages to free
5232 * @param paPhysPage Array of guest physical addresses
5233 */
5234VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5235{
5236 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
5237#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5238 int rc;
5239
5240 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
5241 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
5242
5243 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
5244 * In the SMP case we post a request packet to postpone the job.
5245 */
5246 if (pVM->cCpus > 1)
5247 {
5248 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
5249 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
5250 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
5251
5252 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
5253
5254 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
5255 AssertRC(rc);
5256 }
5257 else
5258 {
5259 uintptr_t paUser[3];
5260
5261 paUser[0] = fInflate;
5262 paUser[1] = cPages;
5263 paUser[2] = (uintptr_t)paPhysPage;
5264 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5265 AssertRC(rc);
5266 }
5267 return rc;
5268
5269#else
5270 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
5271 return VERR_NOT_IMPLEMENTED;
5272#endif
5273}
5274
5275
5276/*********************************************************************************************************************************
5277* Write Monitoring *
5278*********************************************************************************************************************************/
5279
5280/**
5281 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
5282 * physical RAM.
5283 *
5284 * This is only called on one of the EMTs while the other ones are waiting for
5285 * it to complete this function.
5286 *
5287 * @returns VINF_SUCCESS (VBox strict status code).
5288 * @param pVM The cross context VM structure.
5289 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5290 * @param pvUser User parameter, unused.
5291 */
5292static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5293{
5294 int rc = VINF_SUCCESS;
5295 NOREF(pvUser); NOREF(pVCpu);
5296
5297 PGM_LOCK_VOID(pVM);
5298#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5299 pgmPoolResetDirtyPages(pVM);
5300#endif
5301
5302 /** @todo pointless to write protect the physical page pointed to by RSP. */
5303
5304 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5305 pRam;
5306 pRam = pRam->CTX_SUFF(pNext))
5307 {
5308 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
5309 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5310 {
5311 PPGMPAGE pPage = &pRam->aPages[iPage];
5312 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
5313
5314 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
5315 || enmPageType == PGMPAGETYPE_MMIO2)
5316 {
5317 /*
5318 * A RAM page.
5319 */
5320 switch (PGM_PAGE_GET_STATE(pPage))
5321 {
5322 case PGM_PAGE_STATE_ALLOCATED:
5323 /** @todo Optimize this: Don't always re-enable write
5324 * monitoring if the page is known to be very busy. */
5325 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
5326 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
5327
5328 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
5329 break;
5330
5331 case PGM_PAGE_STATE_SHARED:
5332 AssertFailed();
5333 break;
5334
5335 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
5336 default:
5337 break;
5338 }
5339 }
5340 }
5341 }
5342 pgmR3PoolWriteProtectPages(pVM);
5343 PGM_INVL_ALL_VCPU_TLBS(pVM);
5344 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5345 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5346
5347 PGM_UNLOCK(pVM);
5348 return rc;
5349}
5350
5351/**
5352 * Protect all physical RAM to monitor writes
5353 *
5354 * @returns VBox status code.
5355 * @param pVM The cross context VM structure.
5356 */
5357VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
5358{
5359 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
5360
5361 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
5362 AssertRC(rc);
5363 return rc;
5364}
5365
5366
5367/*********************************************************************************************************************************
5368* Stats. *
5369*********************************************************************************************************************************/
5370
5371/**
5372 * Query the amount of free memory inside VMMR0
5373 *
5374 * @returns VBox status code.
5375 * @param pUVM The user mode VM handle.
5376 * @param pcbAllocMem Where to return the amount of memory allocated
5377 * by VMs.
5378 * @param pcbFreeMem Where to return the amount of memory that is
5379 * allocated from the host but not currently used
5380 * by any VMs.
5381 * @param pcbBallonedMem Where to return the sum of memory that is
5382 * currently ballooned by the VMs.
5383 * @param pcbSharedMem Where to return the amount of memory that is
5384 * currently shared.
5385 */
5386VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
5387 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
5388{
5389 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5390 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
5391
5392 uint64_t cAllocPages = 0;
5393 uint64_t cFreePages = 0;
5394 uint64_t cBalloonPages = 0;
5395 uint64_t cSharedPages = 0;
5396 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
5397 AssertRCReturn(rc, rc);
5398
5399 if (pcbAllocMem)
5400 *pcbAllocMem = cAllocPages * _4K;
5401
5402 if (pcbFreeMem)
5403 *pcbFreeMem = cFreePages * _4K;
5404
5405 if (pcbBallonedMem)
5406 *pcbBallonedMem = cBalloonPages * _4K;
5407
5408 if (pcbSharedMem)
5409 *pcbSharedMem = cSharedPages * _4K;
5410
5411 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
5412 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
5413 return VINF_SUCCESS;
5414}
5415
5416
5417/**
5418 * Query memory stats for the VM.
5419 *
5420 * @returns VBox status code.
5421 * @param pUVM The user mode VM handle.
5422 * @param pcbTotalMem Where to return total amount memory the VM may
5423 * possibly use.
5424 * @param pcbPrivateMem Where to return the amount of private memory
5425 * currently allocated.
5426 * @param pcbSharedMem Where to return the amount of actually shared
5427 * memory currently used by the VM.
5428 * @param pcbZeroMem Where to return the amount of memory backed by
5429 * zero pages.
5430 *
5431 * @remarks The total mem is normally larger than the sum of the three
5432 * components. There are two reasons for this, first the amount of
5433 * shared memory is what we're sure is shared instead of what could
5434 * possibly be shared with someone. Secondly, because the total may
5435 * include some pure MMIO pages that doesn't go into any of the three
5436 * sub-counts.
5437 *
5438 * @todo Why do we return reused shared pages instead of anything that could
5439 * potentially be shared? Doesn't this mean the first VM gets a much
5440 * lower number of shared pages?
5441 */
5442VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
5443 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
5444{
5445 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5446 PVM pVM = pUVM->pVM;
5447 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
5448
5449 if (pcbTotalMem)
5450 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
5451
5452 if (pcbPrivateMem)
5453 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
5454
5455 if (pcbSharedMem)
5456 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
5457
5458 if (pcbZeroMem)
5459 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
5460
5461 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
5462 return VINF_SUCCESS;
5463}
5464
5465
5466
5467/*********************************************************************************************************************************
5468* Chunk Mappings and Page Allocation *
5469*********************************************************************************************************************************/
5470
5471/**
5472 * Tree enumeration callback for dealing with age rollover.
5473 * It will perform a simple compression of the current age.
5474 */
5475static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
5476{
5477 /* Age compression - ASSUMES iNow == 4. */
5478 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5479 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
5480 pChunk->iLastUsed = 3;
5481 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
5482 pChunk->iLastUsed = 2;
5483 else if (pChunk->iLastUsed)
5484 pChunk->iLastUsed = 1;
5485 else /* iLastUsed = 0 */
5486 pChunk->iLastUsed = 4;
5487
5488 NOREF(pvUser);
5489 return 0;
5490}
5491
5492
5493/**
5494 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
5495 */
5496typedef struct PGMR3PHYSCHUNKUNMAPCB
5497{
5498 PVM pVM; /**< Pointer to the VM. */
5499 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
5500} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
5501
5502
5503/**
5504 * Callback used to find the mapping that's been unused for
5505 * the longest time.
5506 */
5507static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
5508{
5509 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5510 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
5511
5512 /*
5513 * Check for locks and compare when last used.
5514 */
5515 if (pChunk->cRefs)
5516 return 0;
5517 if (pChunk->cPermRefs)
5518 return 0;
5519 if ( pArg->pChunk
5520 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
5521 return 0;
5522
5523 /*
5524 * Check that it's not in any of the TLBs.
5525 */
5526 PVM pVM = pArg->pVM;
5527 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
5528 == pChunk->Core.Key)
5529 {
5530 pChunk = NULL;
5531 return 0;
5532 }
5533#ifdef VBOX_STRICT
5534 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5535 {
5536 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
5537 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
5538 }
5539#endif
5540
5541 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
5542 if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
5543 return 0;
5544
5545 pArg->pChunk = pChunk;
5546 return 0;
5547}
5548
5549
5550/**
5551 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
5552 *
5553 * The candidate will not be part of any TLBs, so no need to flush
5554 * anything afterwards.
5555 *
5556 * @returns Chunk id.
5557 * @param pVM The cross context VM structure.
5558 */
5559static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
5560{
5561 PGM_LOCK_ASSERT_OWNER(pVM);
5562
5563 /*
5564 * Enumerate the age tree starting with the left most node.
5565 */
5566 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5567 PGMR3PHYSCHUNKUNMAPCB Args;
5568 Args.pVM = pVM;
5569 Args.pChunk = NULL;
5570 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
5571 Assert(Args.pChunk);
5572 if (Args.pChunk)
5573 {
5574 Assert(Args.pChunk->cRefs == 0);
5575 Assert(Args.pChunk->cPermRefs == 0);
5576 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5577 return Args.pChunk->Core.Key;
5578 }
5579
5580 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5581 return INT32_MAX;
5582}
5583
5584
5585/**
5586 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
5587 *
5588 * This is only called on one of the EMTs while the other ones are waiting for
5589 * it to complete this function.
5590 *
5591 * @returns VINF_SUCCESS (VBox strict status code).
5592 * @param pVM The cross context VM structure.
5593 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5594 * @param pvUser User pointer. Unused
5595 *
5596 */
5597static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5598{
5599 int rc = VINF_SUCCESS;
5600 PGM_LOCK_VOID(pVM);
5601 NOREF(pVCpu); NOREF(pvUser);
5602
5603 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
5604 {
5605 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
5606 /** @todo also not really efficient to unmap a chunk that contains PD
5607 * or PT pages. */
5608 pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
5609
5610 /*
5611 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
5612 */
5613 GMMMAPUNMAPCHUNKREQ Req;
5614 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5615 Req.Hdr.cbReq = sizeof(Req);
5616 Req.pvR3 = NULL;
5617 Req.idChunkMap = NIL_GMM_CHUNKID;
5618 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
5619 if (Req.idChunkUnmap != INT32_MAX)
5620 {
5621 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5622 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5623 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5624 if (RT_SUCCESS(rc))
5625 {
5626 /*
5627 * Remove the unmapped one.
5628 */
5629 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
5630 AssertRelease(pUnmappedChunk);
5631 AssertRelease(!pUnmappedChunk->cRefs);
5632 AssertRelease(!pUnmappedChunk->cPermRefs);
5633 pUnmappedChunk->pv = NULL;
5634 pUnmappedChunk->Core.Key = UINT32_MAX;
5635 MMR3HeapFree(pUnmappedChunk);
5636 pVM->pgm.s.ChunkR3Map.c--;
5637 pVM->pgm.s.cUnmappedChunks++;
5638
5639 /*
5640 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
5641 */
5642 /** @todo We should not flush chunks which include cr3 mappings. */
5643 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5644 {
5645 PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
5646
5647 pPGM->pGst32BitPdR3 = NULL;
5648 pPGM->pGstPaePdptR3 = NULL;
5649 pPGM->pGstAmd64Pml4R3 = NULL;
5650 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
5651 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
5652 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
5653 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
5654 {
5655 pPGM->apGstPaePDsR3[i] = NULL;
5656 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
5657 }
5658
5659 /* Flush REM TLBs. */
5660 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5661 }
5662 }
5663 }
5664 }
5665 PGM_UNLOCK(pVM);
5666 return rc;
5667}
5668
5669/**
5670 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
5671 *
5672 * @returns VBox status code.
5673 * @param pVM The cross context VM structure.
5674 */
5675static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM)
5676{
5677 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
5678 AssertRC(rc);
5679}
5680
5681
5682/**
5683 * Maps the given chunk into the ring-3 mapping cache.
5684 *
5685 * This will call ring-0.
5686 *
5687 * @returns VBox status code.
5688 * @param pVM The cross context VM structure.
5689 * @param idChunk The chunk in question.
5690 * @param ppChunk Where to store the chunk tracking structure.
5691 *
5692 * @remarks Called from within the PGM critical section.
5693 * @remarks Can be called from any thread!
5694 */
5695int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
5696{
5697 int rc;
5698
5699 PGM_LOCK_ASSERT_OWNER(pVM);
5700
5701 /*
5702 * Move the chunk time forward.
5703 */
5704 pVM->pgm.s.ChunkR3Map.iNow++;
5705 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
5706 {
5707 pVM->pgm.s.ChunkR3Map.iNow = 4;
5708 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
5709 }
5710
5711 /*
5712 * Allocate a new tracking structure first.
5713 */
5714 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
5715 AssertReturn(pChunk, VERR_NO_MEMORY);
5716 pChunk->Core.Key = idChunk;
5717 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
5718
5719 /*
5720 * Request the ring-0 part to map the chunk in question.
5721 */
5722 GMMMAPUNMAPCHUNKREQ Req;
5723 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5724 Req.Hdr.cbReq = sizeof(Req);
5725 Req.pvR3 = NULL;
5726 Req.idChunkMap = idChunk;
5727 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5728
5729 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5730 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a);
5731 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5732 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a);
5733 if (RT_SUCCESS(rc))
5734 {
5735 pChunk->pv = Req.pvR3;
5736
5737 /*
5738 * If we're running out of virtual address space, then we should
5739 * unmap another chunk.
5740 *
5741 * Currently, an unmap operation requires that all other virtual CPUs
5742 * are idling and not by chance making use of the memory we're
5743 * unmapping. So, we create an async unmap operation here.
5744 *
5745 * Now, when creating or restoring a saved state this wont work very
5746 * well since we may want to restore all guest RAM + a little something.
5747 * So, we have to do the unmap synchronously. Fortunately for us
5748 * though, during these operations the other virtual CPUs are inactive
5749 * and it should be safe to do this.
5750 */
5751 /** @todo Eventually we should lock all memory when used and do
5752 * map+unmap as one kernel call without any rendezvous or
5753 * other precautions. */
5754 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5755 {
5756 switch (VMR3GetState(pVM))
5757 {
5758 case VMSTATE_LOADING:
5759 case VMSTATE_SAVING:
5760 {
5761 PVMCPU pVCpu = VMMGetCpu(pVM);
5762 if ( pVCpu
5763 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5764 {
5765 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5766 break;
5767 }
5768 }
5769 RT_FALL_THRU();
5770 default:
5771 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5772 AssertRC(rc);
5773 break;
5774 }
5775 }
5776
5777 /*
5778 * Update the tree. We must do this after any unmapping to make sure
5779 * the chunk we're going to return isn't unmapped by accident.
5780 */
5781 AssertPtr(Req.pvR3);
5782 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5783 AssertRelease(fRc);
5784 pVM->pgm.s.ChunkR3Map.c++;
5785 pVM->pgm.s.cMappedChunks++;
5786 }
5787 else
5788 {
5789 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5790 * should probably restrict ourselves on linux. */
5791 AssertRC(rc);
5792 MMR3HeapFree(pChunk);
5793 pChunk = NULL;
5794 }
5795
5796 *ppChunk = pChunk;
5797 return rc;
5798}
5799
5800
5801/**
5802 * Invalidates the TLB for the ring-3 mapping cache.
5803 *
5804 * @param pVM The cross context VM structure.
5805 */
5806VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5807{
5808 PGM_LOCK_VOID(pVM);
5809 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5810 {
5811 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5812 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5813 }
5814 /* The page map TLB references chunks, so invalidate that one too. */
5815 pgmPhysInvalidatePageMapTLB(pVM);
5816 PGM_UNLOCK(pVM);
5817}
5818
5819
5820/**
5821 * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage.
5822 *
5823 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5824 * signal and clear the out of memory condition. When called, this API is used
5825 * to try clear the condition when the user wants to resume.
5826 *
5827 * @returns The following VBox status codes.
5828 * @retval VINF_SUCCESS on success. FFs cleared.
5829 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5830 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5831 *
5832 * @param pVM The cross context VM structure.
5833 *
5834 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5835 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5836 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5837 * handler.
5838 */
5839VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5840{
5841 PGM_LOCK_VOID(pVM);
5842
5843 /*
5844 * Allocate more pages, noting down the index of the first new page.
5845 */
5846 uint32_t iClear = pVM->pgm.s.cHandyPages;
5847 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5848 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5849 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5850 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5851 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5852 && pVM->pgm.s.cHandyPages > 0)
5853 {
5854 /* Still handy pages left, so don't panic. */
5855 rc = VINF_SUCCESS;
5856 }
5857
5858 if (RT_SUCCESS(rc))
5859 {
5860 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5861 Assert(pVM->pgm.s.cHandyPages > 0);
5862#ifdef VBOX_STRICT
5863 uint32_t i;
5864 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5865 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5866 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5867 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5868 break;
5869 if (i != pVM->pgm.s.cHandyPages)
5870 {
5871 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5872 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5873 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5874 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j,
5875 pVM->pgm.s.aHandyPages[j].idPage,
5876 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5877 pVM->pgm.s.aHandyPages[j].idSharedPage,
5878 j == i ? " <---" : "");
5879 RTAssertPanic();
5880 }
5881#endif
5882 }
5883 else
5884 {
5885 /*
5886 * We should never get here unless there is a genuine shortage of
5887 * memory (or some internal error). Flag the error so the VM can be
5888 * suspended ASAP and the user informed. If we're totally out of
5889 * handy pages we will return failure.
5890 */
5891 /* Report the failure. */
5892 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
5893 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5894 rc, pVM->pgm.s.cHandyPages,
5895 pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages));
5896
5897 if ( rc != VERR_NO_MEMORY
5898 && rc != VERR_NO_PHYS_MEMORY
5899 && rc != VERR_LOCK_FAILED)
5900 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5901 {
5902 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5903 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5904 pVM->pgm.s.aHandyPages[i].idSharedPage));
5905 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5906 if (idPage != NIL_GMM_PAGEID)
5907 {
5908 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5909 pRam;
5910 pRam = pRam->pNextR3)
5911 {
5912 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5913 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5914 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5915 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5916 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5917 }
5918 }
5919 }
5920
5921 if (rc == VERR_NO_MEMORY)
5922 {
5923 uint64_t cbHostRamAvail = 0;
5924 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5925 if (RT_SUCCESS(rc2))
5926 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5927 else
5928 LogRel(("Cannot determine the amount of available host memory\n"));
5929 }
5930
5931 /* Set the FFs and adjust rc. */
5932 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5933 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5934 if ( rc == VERR_NO_MEMORY
5935 || rc == VERR_NO_PHYS_MEMORY
5936 || rc == VERR_LOCK_FAILED)
5937 rc = VINF_EM_NO_MEMORY;
5938 }
5939
5940 PGM_UNLOCK(pVM);
5941 return rc;
5942}
5943
5944
5945/*********************************************************************************************************************************
5946* Other Stuff *
5947*********************************************************************************************************************************/
5948
5949/**
5950 * Sets the Address Gate 20 state.
5951 *
5952 * @param pVCpu The cross context virtual CPU structure.
5953 * @param fEnable True if the gate should be enabled.
5954 * False if the gate should be disabled.
5955 */
5956VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
5957{
5958 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
5959 if (pVCpu->pgm.s.fA20Enabled != fEnable)
5960 {
5961#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5962 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
5963 if ( CPUMIsGuestInVmxRootMode(pCtx)
5964 && !fEnable)
5965 {
5966 Log(("Cannot enter A20M mode while in VMX root mode\n"));
5967 return;
5968 }
5969#endif
5970 pVCpu->pgm.s.fA20Enabled = fEnable;
5971 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
5972 if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)))
5973 NEMR3NotifySetA20(pVCpu, fEnable);
5974#ifdef PGM_WITH_A20
5975 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5976 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
5977 HMFlushTlb(pVCpu);
5978#endif
5979 IEMTlbInvalidateAllPhysical(pVCpu);
5980 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
5981 }
5982}
5983
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette