VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 92441

Last change on this file since 92441 was 92441, checked in by vboxsync, 3 years ago

VMM/PGM: Increased the size of ram ranges to cover 16 GiB each. bugref:10122

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 222.6 KB
Line 
1/* $Id: PGMPhys.cpp 92441 2021-11-15 20:50:49Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/iom.h>
27#include <VBox/vmm/mm.h>
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/stam.h>
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vmcc.h>
33
34#include "PGMInline.h"
35
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#ifdef VBOX_STRICT
44# include <iprt/crc.h>
45#endif
46#include <iprt/thread.h>
47#include <iprt/string.h>
48#include <iprt/system.h>
49
50
51/*********************************************************************************************************************************
52* Defined Constants And Macros *
53*********************************************************************************************************************************/
54/** The number of pages to free in one batch. */
55#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
56
57
58
59/*********************************************************************************************************************************
60* Reading and Writing Guest Pysical Memory *
61*********************************************************************************************************************************/
62
63/*
64 * PGMR3PhysReadU8-64
65 * PGMR3PhysWriteU8-64
66 */
67#define PGMPHYSFN_READNAME PGMR3PhysReadU8
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
69#define PGMPHYS_DATASIZE 1
70#define PGMPHYS_DATATYPE uint8_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU16
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
75#define PGMPHYS_DATASIZE 2
76#define PGMPHYS_DATATYPE uint16_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU32
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
81#define PGMPHYS_DATASIZE 4
82#define PGMPHYS_DATATYPE uint32_t
83#include "PGMPhysRWTmpl.h"
84
85#define PGMPHYSFN_READNAME PGMR3PhysReadU64
86#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
87#define PGMPHYS_DATASIZE 8
88#define PGMPHYS_DATATYPE uint64_t
89#include "PGMPhysRWTmpl.h"
90
91
92/**
93 * EMT worker for PGMR3PhysReadExternal.
94 */
95static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
96 PGMACCESSORIGIN enmOrigin)
97{
98 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
99 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
100 return VINF_SUCCESS;
101}
102
103
104/**
105 * Read from physical memory, external users.
106 *
107 * @returns VBox status code.
108 * @retval VINF_SUCCESS.
109 *
110 * @param pVM The cross context VM structure.
111 * @param GCPhys Physical address to read from.
112 * @param pvBuf Where to read into.
113 * @param cbRead How many bytes to read.
114 * @param enmOrigin Who is calling.
115 *
116 * @thread Any but EMTs.
117 */
118VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
119{
120 VM_ASSERT_OTHER_THREAD(pVM);
121
122 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
123 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
124
125 PGM_LOCK_VOID(pVM);
126
127 /*
128 * Copy loop on ram ranges.
129 */
130 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
131 for (;;)
132 {
133 /* Inside range or not? */
134 if (pRam && GCPhys >= pRam->GCPhys)
135 {
136 /*
137 * Must work our way thru this page by page.
138 */
139 RTGCPHYS off = GCPhys - pRam->GCPhys;
140 while (off < pRam->cb)
141 {
142 unsigned iPage = off >> PAGE_SHIFT;
143 PPGMPAGE pPage = &pRam->aPages[iPage];
144
145 /*
146 * If the page has an ALL access handler, we'll have to
147 * delegate the job to EMT.
148 */
149 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
150 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
151 {
152 PGM_UNLOCK(pVM);
153
154 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
155 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
156 }
157 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
158
159 /*
160 * Simple stuff, go ahead.
161 */
162 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
163 if (cb > cbRead)
164 cb = cbRead;
165 PGMPAGEMAPLOCK PgMpLck;
166 const void *pvSrc;
167 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
168 if (RT_SUCCESS(rc))
169 {
170 memcpy(pvBuf, pvSrc, cb);
171 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
172 }
173 else
174 {
175 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
176 pRam->GCPhys + off, pPage, rc));
177 memset(pvBuf, 0xff, cb);
178 }
179
180 /* next page */
181 if (cb >= cbRead)
182 {
183 PGM_UNLOCK(pVM);
184 return VINF_SUCCESS;
185 }
186 cbRead -= cb;
187 off += cb;
188 GCPhys += cb;
189 pvBuf = (char *)pvBuf + cb;
190 } /* walk pages in ram range. */
191 }
192 else
193 {
194 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
195
196 /*
197 * Unassigned address space.
198 */
199 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
200 if (cb >= cbRead)
201 {
202 memset(pvBuf, 0xff, cbRead);
203 break;
204 }
205 memset(pvBuf, 0xff, cb);
206
207 cbRead -= cb;
208 pvBuf = (char *)pvBuf + cb;
209 GCPhys += cb;
210 }
211
212 /* Advance range if necessary. */
213 while (pRam && GCPhys > pRam->GCPhysLast)
214 pRam = pRam->CTX_SUFF(pNext);
215 } /* Ram range walk */
216
217 PGM_UNLOCK(pVM);
218
219 return VINF_SUCCESS;
220}
221
222
223/**
224 * EMT worker for PGMR3PhysWriteExternal.
225 */
226static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
227 PGMACCESSORIGIN enmOrigin)
228{
229 /** @todo VERR_EM_NO_MEMORY */
230 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
231 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
232 return VINF_SUCCESS;
233}
234
235
236/**
237 * Write to physical memory, external users.
238 *
239 * @returns VBox status code.
240 * @retval VINF_SUCCESS.
241 * @retval VERR_EM_NO_MEMORY.
242 *
243 * @param pVM The cross context VM structure.
244 * @param GCPhys Physical address to write to.
245 * @param pvBuf What to write.
246 * @param cbWrite How many bytes to write.
247 * @param enmOrigin Who is calling.
248 *
249 * @thread Any but EMTs.
250 */
251VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
252{
253 VM_ASSERT_OTHER_THREAD(pVM);
254
255 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
256 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
257 GCPhys, cbWrite, enmOrigin));
258 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
259 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
260
261 PGM_LOCK_VOID(pVM);
262
263 /*
264 * Copy loop on ram ranges, stop when we hit something difficult.
265 */
266 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
267 for (;;)
268 {
269 /* Inside range or not? */
270 if (pRam && GCPhys >= pRam->GCPhys)
271 {
272 /*
273 * Must work our way thru this page by page.
274 */
275 RTGCPTR off = GCPhys - pRam->GCPhys;
276 while (off < pRam->cb)
277 {
278 RTGCPTR iPage = off >> PAGE_SHIFT;
279 PPGMPAGE pPage = &pRam->aPages[iPage];
280
281 /*
282 * Is the page problematic, we have to do the work on the EMT.
283 *
284 * Allocating writable pages and access handlers are
285 * problematic, write monitored pages are simple and can be
286 * dealt with here.
287 */
288 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
289 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
290 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
291 {
292 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
293 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
294 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
295 else
296 {
297 PGM_UNLOCK(pVM);
298
299 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
300 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
301 }
302 }
303 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
304
305 /*
306 * Simple stuff, go ahead.
307 */
308 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
309 if (cb > cbWrite)
310 cb = cbWrite;
311 PGMPAGEMAPLOCK PgMpLck;
312 void *pvDst;
313 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
314 if (RT_SUCCESS(rc))
315 {
316 memcpy(pvDst, pvBuf, cb);
317 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
318 }
319 else
320 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
321 pRam->GCPhys + off, pPage, rc));
322
323 /* next page */
324 if (cb >= cbWrite)
325 {
326 PGM_UNLOCK(pVM);
327 return VINF_SUCCESS;
328 }
329
330 cbWrite -= cb;
331 off += cb;
332 GCPhys += cb;
333 pvBuf = (const char *)pvBuf + cb;
334 } /* walk pages in ram range */
335 }
336 else
337 {
338 /*
339 * Unassigned address space, skip it.
340 */
341 if (!pRam)
342 break;
343 size_t cb = pRam->GCPhys - GCPhys;
344 if (cb >= cbWrite)
345 break;
346 cbWrite -= cb;
347 pvBuf = (const char *)pvBuf + cb;
348 GCPhys += cb;
349 }
350
351 /* Advance range if necessary. */
352 while (pRam && GCPhys > pRam->GCPhysLast)
353 pRam = pRam->CTX_SUFF(pNext);
354 } /* Ram range walk */
355
356 PGM_UNLOCK(pVM);
357 return VINF_SUCCESS;
358}
359
360
361/*********************************************************************************************************************************
362* Mapping Guest Physical Memory *
363*********************************************************************************************************************************/
364
365/**
366 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
367 *
368 * @returns see PGMR3PhysGCPhys2CCPtrExternal
369 * @param pVM The cross context VM structure.
370 * @param pGCPhys Pointer to the guest physical address.
371 * @param ppv Where to store the mapping address.
372 * @param pLock Where to store the lock.
373 */
374static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
375{
376 /*
377 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
378 * an access handler after it succeeds.
379 */
380 int rc = PGM_LOCK(pVM);
381 AssertRCReturn(rc, rc);
382
383 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
384 if (RT_SUCCESS(rc))
385 {
386 PPGMPAGEMAPTLBE pTlbe;
387 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
388 AssertFatalRC(rc2);
389 PPGMPAGE pPage = pTlbe->pPage;
390 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
391 {
392 PGMPhysReleasePageMappingLock(pVM, pLock);
393 rc = VERR_PGM_PHYS_PAGE_RESERVED;
394 }
395 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
396#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
397 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
398#endif
399 )
400 {
401 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
402 * not be informed about writes and keep bogus gst->shw mappings around.
403 */
404 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
405 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
406 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
407 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
408 }
409 }
410
411 PGM_UNLOCK(pVM);
412 return rc;
413}
414
415
416/**
417 * Requests the mapping of a guest page into ring-3, external threads.
418 *
419 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
420 * release it.
421 *
422 * This API will assume your intention is to write to the page, and will
423 * therefore replace shared and zero pages. If you do not intend to modify the
424 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
425 *
426 * @returns VBox status code.
427 * @retval VINF_SUCCESS on success.
428 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
429 * backing or if the page has any active access handlers. The caller
430 * must fall back on using PGMR3PhysWriteExternal.
431 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
432 *
433 * @param pVM The cross context VM structure.
434 * @param GCPhys The guest physical address of the page that should be mapped.
435 * @param ppv Where to store the address corresponding to GCPhys.
436 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
437 *
438 * @remark Avoid calling this API from within critical sections (other than the
439 * PGM one) because of the deadlock risk when we have to delegating the
440 * task to an EMT.
441 * @thread Any.
442 */
443VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
444{
445 AssertPtr(ppv);
446 AssertPtr(pLock);
447
448 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
449
450 int rc = PGM_LOCK(pVM);
451 AssertRCReturn(rc, rc);
452
453 /*
454 * Query the Physical TLB entry for the page (may fail).
455 */
456 PPGMPAGEMAPTLBE pTlbe;
457 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
458 if (RT_SUCCESS(rc))
459 {
460 PPGMPAGE pPage = pTlbe->pPage;
461 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
462 rc = VERR_PGM_PHYS_PAGE_RESERVED;
463 else
464 {
465 /*
466 * If the page is shared, the zero page, or being write monitored
467 * it must be converted to an page that's writable if possible.
468 * We can only deal with write monitored pages here, the rest have
469 * to be on an EMT.
470 */
471 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
472 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
473#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
474 || pgmPoolIsDirtyPage(pVM, GCPhys)
475#endif
476 )
477 {
478 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
479 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
480#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
481 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
482#endif
483 )
484 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
485 else
486 {
487 PGM_UNLOCK(pVM);
488
489 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
490 pVM, &GCPhys, ppv, pLock);
491 }
492 }
493
494 /*
495 * Now, just perform the locking and calculate the return address.
496 */
497 PPGMPAGEMAP pMap = pTlbe->pMap;
498 if (pMap)
499 pMap->cRefs++;
500
501 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
502 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
503 {
504 if (cLocks == 0)
505 pVM->pgm.s.cWriteLockedPages++;
506 PGM_PAGE_INC_WRITE_LOCKS(pPage);
507 }
508 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
509 {
510 PGM_PAGE_INC_WRITE_LOCKS(pPage);
511 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
512 if (pMap)
513 pMap->cRefs++; /* Extra ref to prevent it from going away. */
514 }
515
516 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
517 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
518 pLock->pvMap = pMap;
519 }
520 }
521
522 PGM_UNLOCK(pVM);
523 return rc;
524}
525
526
527/**
528 * Requests the mapping of a guest page into ring-3, external threads.
529 *
530 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
531 * release it.
532 *
533 * @returns VBox status code.
534 * @retval VINF_SUCCESS on success.
535 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
536 * backing or if the page as an active ALL access handler. The caller
537 * must fall back on using PGMPhysRead.
538 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
539 *
540 * @param pVM The cross context VM structure.
541 * @param GCPhys The guest physical address of the page that should be mapped.
542 * @param ppv Where to store the address corresponding to GCPhys.
543 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
544 *
545 * @remark Avoid calling this API from within critical sections (other than
546 * the PGM one) because of the deadlock risk.
547 * @thread Any.
548 */
549VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
550{
551 int rc = PGM_LOCK(pVM);
552 AssertRCReturn(rc, rc);
553
554 /*
555 * Query the Physical TLB entry for the page (may fail).
556 */
557 PPGMPAGEMAPTLBE pTlbe;
558 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
559 if (RT_SUCCESS(rc))
560 {
561 PPGMPAGE pPage = pTlbe->pPage;
562#if 1
563 /* MMIO pages doesn't have any readable backing. */
564 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
565 rc = VERR_PGM_PHYS_PAGE_RESERVED;
566#else
567 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
568 rc = VERR_PGM_PHYS_PAGE_RESERVED;
569#endif
570 else
571 {
572 /*
573 * Now, just perform the locking and calculate the return address.
574 */
575 PPGMPAGEMAP pMap = pTlbe->pMap;
576 if (pMap)
577 pMap->cRefs++;
578
579 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
580 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
581 {
582 if (cLocks == 0)
583 pVM->pgm.s.cReadLockedPages++;
584 PGM_PAGE_INC_READ_LOCKS(pPage);
585 }
586 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
587 {
588 PGM_PAGE_INC_READ_LOCKS(pPage);
589 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
590 if (pMap)
591 pMap->cRefs++; /* Extra ref to prevent it from going away. */
592 }
593
594 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
595 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
596 pLock->pvMap = pMap;
597 }
598 }
599
600 PGM_UNLOCK(pVM);
601 return rc;
602}
603
604
605/**
606 * Requests the mapping of multiple guest page into ring-3, external threads.
607 *
608 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
609 * ASAP to release them.
610 *
611 * This API will assume your intention is to write to the pages, and will
612 * therefore replace shared and zero pages. If you do not intend to modify the
613 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
614 *
615 * @returns VBox status code.
616 * @retval VINF_SUCCESS on success.
617 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
618 * backing or if any of the pages the page has any active access
619 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
620 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
621 * an invalid physical address.
622 *
623 * @param pVM The cross context VM structure.
624 * @param cPages Number of pages to lock.
625 * @param paGCPhysPages The guest physical address of the pages that
626 * should be mapped (@a cPages entries).
627 * @param papvPages Where to store the ring-3 mapping addresses
628 * corresponding to @a paGCPhysPages.
629 * @param paLocks Where to store the locking information that
630 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
631 * in length).
632 *
633 * @remark Avoid calling this API from within critical sections (other than the
634 * PGM one) because of the deadlock risk when we have to delegating the
635 * task to an EMT.
636 * @thread Any.
637 */
638VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
639 void **papvPages, PPGMPAGEMAPLOCK paLocks)
640{
641 Assert(cPages > 0);
642 AssertPtr(papvPages);
643 AssertPtr(paLocks);
644
645 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
646
647 int rc = PGM_LOCK(pVM);
648 AssertRCReturn(rc, rc);
649
650 /*
651 * Lock the pages one by one.
652 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
653 */
654 int32_t cNextYield = 128;
655 uint32_t iPage;
656 for (iPage = 0; iPage < cPages; iPage++)
657 {
658 if (--cNextYield > 0)
659 { /* likely */ }
660 else
661 {
662 PGM_UNLOCK(pVM);
663 ASMNopPause();
664 PGM_LOCK_VOID(pVM);
665 cNextYield = 128;
666 }
667
668 /*
669 * Query the Physical TLB entry for the page (may fail).
670 */
671 PPGMPAGEMAPTLBE pTlbe;
672 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
673 if (RT_SUCCESS(rc))
674 { }
675 else
676 break;
677 PPGMPAGE pPage = pTlbe->pPage;
678
679 /*
680 * No MMIO or active access handlers.
681 */
682 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
683 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
684 { }
685 else
686 {
687 rc = VERR_PGM_PHYS_PAGE_RESERVED;
688 break;
689 }
690
691 /*
692 * The page must be in the allocated state and not be a dirty pool page.
693 * We can handle converting a write monitored page to an allocated one, but
694 * anything more complicated must be delegated to an EMT.
695 */
696 bool fDelegateToEmt = false;
697 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
699 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
700#else
701 fDelegateToEmt = false;
702#endif
703 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
704 {
705#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
706 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
707 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
708 else
709 fDelegateToEmt = true;
710#endif
711 }
712 else
713 fDelegateToEmt = true;
714 if (!fDelegateToEmt)
715 { }
716 else
717 {
718 /* We could do this delegation in bulk, but considered too much work vs gain. */
719 PGM_UNLOCK(pVM);
720 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
721 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
722 PGM_LOCK_VOID(pVM);
723 if (RT_FAILURE(rc))
724 break;
725 cNextYield = 128;
726 }
727
728 /*
729 * Now, just perform the locking and address calculation.
730 */
731 PPGMPAGEMAP pMap = pTlbe->pMap;
732 if (pMap)
733 pMap->cRefs++;
734
735 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
736 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
737 {
738 if (cLocks == 0)
739 pVM->pgm.s.cWriteLockedPages++;
740 PGM_PAGE_INC_WRITE_LOCKS(pPage);
741 }
742 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
743 {
744 PGM_PAGE_INC_WRITE_LOCKS(pPage);
745 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
746 if (pMap)
747 pMap->cRefs++; /* Extra ref to prevent it from going away. */
748 }
749
750 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
751 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
752 paLocks[iPage].pvMap = pMap;
753 }
754
755 PGM_UNLOCK(pVM);
756
757 /*
758 * On failure we must unlock any pages we managed to get already.
759 */
760 if (RT_FAILURE(rc) && iPage > 0)
761 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
762
763 return rc;
764}
765
766
767/**
768 * Requests the mapping of multiple guest page into ring-3, for reading only,
769 * external threads.
770 *
771 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
772 * to release them.
773 *
774 * @returns VBox status code.
775 * @retval VINF_SUCCESS on success.
776 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
777 * backing or if any of the pages the page has an active ALL access
778 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
779 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
780 * an invalid physical address.
781 *
782 * @param pVM The cross context VM structure.
783 * @param cPages Number of pages to lock.
784 * @param paGCPhysPages The guest physical address of the pages that
785 * should be mapped (@a cPages entries).
786 * @param papvPages Where to store the ring-3 mapping addresses
787 * corresponding to @a paGCPhysPages.
788 * @param paLocks Where to store the lock information that
789 * pfnPhysReleasePageMappingLock needs (@a cPages
790 * in length).
791 *
792 * @remark Avoid calling this API from within critical sections (other than
793 * the PGM one) because of the deadlock risk.
794 * @thread Any.
795 */
796VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
797 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
798{
799 Assert(cPages > 0);
800 AssertPtr(papvPages);
801 AssertPtr(paLocks);
802
803 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
804
805 int rc = PGM_LOCK(pVM);
806 AssertRCReturn(rc, rc);
807
808 /*
809 * Lock the pages one by one.
810 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
811 */
812 int32_t cNextYield = 256;
813 uint32_t iPage;
814 for (iPage = 0; iPage < cPages; iPage++)
815 {
816 if (--cNextYield > 0)
817 { /* likely */ }
818 else
819 {
820 PGM_UNLOCK(pVM);
821 ASMNopPause();
822 PGM_LOCK_VOID(pVM);
823 cNextYield = 256;
824 }
825
826 /*
827 * Query the Physical TLB entry for the page (may fail).
828 */
829 PPGMPAGEMAPTLBE pTlbe;
830 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
831 if (RT_SUCCESS(rc))
832 { }
833 else
834 break;
835 PPGMPAGE pPage = pTlbe->pPage;
836
837 /*
838 * No MMIO or active all access handlers, everything else can be accessed.
839 */
840 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
841 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
842 { }
843 else
844 {
845 rc = VERR_PGM_PHYS_PAGE_RESERVED;
846 break;
847 }
848
849 /*
850 * Now, just perform the locking and address calculation.
851 */
852 PPGMPAGEMAP pMap = pTlbe->pMap;
853 if (pMap)
854 pMap->cRefs++;
855
856 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
857 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
858 {
859 if (cLocks == 0)
860 pVM->pgm.s.cReadLockedPages++;
861 PGM_PAGE_INC_READ_LOCKS(pPage);
862 }
863 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
864 {
865 PGM_PAGE_INC_READ_LOCKS(pPage);
866 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
867 if (pMap)
868 pMap->cRefs++; /* Extra ref to prevent it from going away. */
869 }
870
871 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
872 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
873 paLocks[iPage].pvMap = pMap;
874 }
875
876 PGM_UNLOCK(pVM);
877
878 /*
879 * On failure we must unlock any pages we managed to get already.
880 */
881 if (RT_FAILURE(rc) && iPage > 0)
882 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
883
884 return rc;
885}
886
887
888/**
889 * Converts a GC physical address to a HC ring-3 pointer, with some
890 * additional checks.
891 *
892 * @returns VBox status code.
893 * @retval VINF_SUCCESS on success.
894 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
895 * access handler of some kind.
896 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
897 * accesses or is odd in any way.
898 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
899 *
900 * @param pVM The cross context VM structure.
901 * @param GCPhys The GC physical address to convert. Since this is only
902 * used for filling the REM TLB, the A20 mask must be
903 * applied before calling this API.
904 * @param fWritable Whether write access is required.
905 * @param ppv Where to store the pointer corresponding to GCPhys on
906 * success.
907 */
908VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
909{
910 PGM_LOCK_VOID(pVM);
911 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
912
913 PPGMRAMRANGE pRam;
914 PPGMPAGE pPage;
915 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
916 if (RT_SUCCESS(rc))
917 {
918 if (PGM_PAGE_IS_BALLOONED(pPage))
919 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
920 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
921 rc = VINF_SUCCESS;
922 else
923 {
924 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
925 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
926 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
927 {
928 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
929 * in -norawr0 mode. */
930 if (fWritable)
931 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
932 }
933 else
934 {
935 /* Temporarily disabled physical handler(s), since the recompiler
936 doesn't get notified when it's reset we'll have to pretend it's
937 operating normally. */
938 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
939 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
940 else
941 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
942 }
943 }
944 if (RT_SUCCESS(rc))
945 {
946 int rc2;
947
948 /* Make sure what we return is writable. */
949 if (fWritable)
950 switch (PGM_PAGE_GET_STATE(pPage))
951 {
952 case PGM_PAGE_STATE_ALLOCATED:
953 break;
954 case PGM_PAGE_STATE_BALLOONED:
955 AssertFailed();
956 break;
957 case PGM_PAGE_STATE_ZERO:
958 case PGM_PAGE_STATE_SHARED:
959 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
960 break;
961 RT_FALL_THRU();
962 case PGM_PAGE_STATE_WRITE_MONITORED:
963 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
964 AssertLogRelRCReturn(rc2, rc2);
965 break;
966 }
967
968 /* Get a ring-3 mapping of the address. */
969 PPGMPAGER3MAPTLBE pTlbe;
970 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
971 AssertLogRelRCReturn(rc2, rc2);
972 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
973 /** @todo mapping/locking hell; this isn't horribly efficient since
974 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
975
976 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
977 }
978 else
979 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
980
981 /* else: handler catching all access, no pointer returned. */
982 }
983 else
984 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
985
986 PGM_UNLOCK(pVM);
987 return rc;
988}
989
990
991
992/*********************************************************************************************************************************
993* RAM Range Management *
994*********************************************************************************************************************************/
995
996#define MAKE_LEAF(a_pNode) \
997 do { \
998 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
999 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
1000 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
1001 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
1002 } while (0)
1003
1004#define INSERT_LEFT(a_pParent, a_pNode) \
1005 do { \
1006 (a_pParent)->pLeftR3 = (a_pNode); \
1007 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
1008 } while (0)
1009#define INSERT_RIGHT(a_pParent, a_pNode) \
1010 do { \
1011 (a_pParent)->pRightR3 = (a_pNode); \
1012 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
1013 } while (0)
1014
1015
1016/**
1017 * Recursive tree builder.
1018 *
1019 * @param ppRam Pointer to the iterator variable.
1020 * @param iDepth The current depth. Inserts a leaf node if 0.
1021 */
1022static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
1023{
1024 PPGMRAMRANGE pRam;
1025 if (iDepth <= 0)
1026 {
1027 /*
1028 * Leaf node.
1029 */
1030 pRam = *ppRam;
1031 if (pRam)
1032 {
1033 *ppRam = pRam->pNextR3;
1034 MAKE_LEAF(pRam);
1035 }
1036 }
1037 else
1038 {
1039
1040 /*
1041 * Intermediate node.
1042 */
1043 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1044
1045 pRam = *ppRam;
1046 if (!pRam)
1047 return pLeft;
1048 *ppRam = pRam->pNextR3;
1049 MAKE_LEAF(pRam);
1050 INSERT_LEFT(pRam, pLeft);
1051
1052 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1053 if (pRight)
1054 INSERT_RIGHT(pRam, pRight);
1055 }
1056 return pRam;
1057}
1058
1059
1060/**
1061 * Rebuilds the RAM range search trees.
1062 *
1063 * @param pVM The cross context VM structure.
1064 */
1065static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
1066{
1067
1068 /*
1069 * Create the reasonably balanced tree in a sequential fashion.
1070 * For simplicity (laziness) we use standard recursion here.
1071 */
1072 int iDepth = 0;
1073 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1074 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
1075 while (pRam)
1076 {
1077 PPGMRAMRANGE pLeft = pRoot;
1078
1079 pRoot = pRam;
1080 pRam = pRam->pNextR3;
1081 MAKE_LEAF(pRoot);
1082 INSERT_LEFT(pRoot, pLeft);
1083
1084 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
1085 if (pRight)
1086 INSERT_RIGHT(pRoot, pRight);
1087 /** @todo else: rotate the tree. */
1088
1089 iDepth++;
1090 }
1091
1092 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
1093 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
1094
1095#ifdef VBOX_STRICT
1096 /*
1097 * Verify that the above code works.
1098 */
1099 unsigned cRanges = 0;
1100 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1101 cRanges++;
1102 Assert(cRanges > 0);
1103
1104 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
1105 if ((1U << cMaxDepth) < cRanges)
1106 cMaxDepth++;
1107
1108 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1109 {
1110 unsigned cDepth = 0;
1111 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
1112 for (;;)
1113 {
1114 if (pRam == pRam2)
1115 break;
1116 Assert(pRam2);
1117 if (pRam->GCPhys < pRam2->GCPhys)
1118 pRam2 = pRam2->pLeftR3;
1119 else
1120 pRam2 = pRam2->pRightR3;
1121 }
1122 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1123 }
1124#endif /* VBOX_STRICT */
1125}
1126
1127#undef MAKE_LEAF
1128#undef INSERT_LEFT
1129#undef INSERT_RIGHT
1130
1131/**
1132 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1133 *
1134 * Called when anything was relocated.
1135 *
1136 * @param pVM The cross context VM structure.
1137 */
1138void pgmR3PhysRelinkRamRanges(PVM pVM)
1139{
1140 PPGMRAMRANGE pCur;
1141
1142#ifdef VBOX_STRICT
1143 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1144 {
1145 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1146 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1147 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1148 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1149 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1150 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1151 Assert( pCur2 == pCur
1152 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1153 }
1154#endif
1155
1156 pCur = pVM->pgm.s.pRamRangesXR3;
1157 if (pCur)
1158 {
1159 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1160
1161 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1162 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1163
1164 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1165 }
1166 else
1167 {
1168 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1169 }
1170 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1171
1172 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1173}
1174
1175
1176/**
1177 * Links a new RAM range into the list.
1178 *
1179 * @param pVM The cross context VM structure.
1180 * @param pNew Pointer to the new list entry.
1181 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1182 */
1183static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1184{
1185 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1186 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1187
1188 PGM_LOCK_VOID(pVM);
1189
1190 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1191 pNew->pNextR3 = pRam;
1192 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1193
1194 if (pPrev)
1195 {
1196 pPrev->pNextR3 = pNew;
1197 pPrev->pNextR0 = pNew->pSelfR0;
1198 }
1199 else
1200 {
1201 pVM->pgm.s.pRamRangesXR3 = pNew;
1202 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1203 }
1204 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1205
1206 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1207 PGM_UNLOCK(pVM);
1208}
1209
1210
1211/**
1212 * Unlink an existing RAM range from the list.
1213 *
1214 * @param pVM The cross context VM structure.
1215 * @param pRam Pointer to the new list entry.
1216 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1217 */
1218static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1219{
1220 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1221 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1222
1223 PGM_LOCK_VOID(pVM);
1224
1225 PPGMRAMRANGE pNext = pRam->pNextR3;
1226 if (pPrev)
1227 {
1228 pPrev->pNextR3 = pNext;
1229 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1230 }
1231 else
1232 {
1233 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1234 pVM->pgm.s.pRamRangesXR3 = pNext;
1235 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1236 }
1237 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1238
1239 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1240 PGM_UNLOCK(pVM);
1241}
1242
1243
1244/**
1245 * Unlink an existing RAM range from the list.
1246 *
1247 * @param pVM The cross context VM structure.
1248 * @param pRam Pointer to the new list entry.
1249 */
1250static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1251{
1252 PGM_LOCK_VOID(pVM);
1253
1254 /* find prev. */
1255 PPGMRAMRANGE pPrev = NULL;
1256 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1257 while (pCur != pRam)
1258 {
1259 pPrev = pCur;
1260 pCur = pCur->pNextR3;
1261 }
1262 AssertFatal(pCur);
1263
1264 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1265 PGM_UNLOCK(pVM);
1266}
1267
1268
1269/**
1270 * Gets the number of ram ranges.
1271 *
1272 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1273 * @param pVM The cross context VM structure.
1274 */
1275VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1276{
1277 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1278
1279 PGM_LOCK_VOID(pVM);
1280 uint32_t cRamRanges = 0;
1281 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1282 cRamRanges++;
1283 PGM_UNLOCK(pVM);
1284 return cRamRanges;
1285}
1286
1287
1288/**
1289 * Get information about a range.
1290 *
1291 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1292 * @param pVM The cross context VM structure.
1293 * @param iRange The ordinal of the range.
1294 * @param pGCPhysStart Where to return the start of the range. Optional.
1295 * @param pGCPhysLast Where to return the address of the last byte in the
1296 * range. Optional.
1297 * @param ppszDesc Where to return the range description. Optional.
1298 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1299 * Optional.
1300 */
1301VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1302 const char **ppszDesc, bool *pfIsMmio)
1303{
1304 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1305
1306 PGM_LOCK_VOID(pVM);
1307 uint32_t iCurRange = 0;
1308 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1309 if (iCurRange == iRange)
1310 {
1311 if (pGCPhysStart)
1312 *pGCPhysStart = pCur->GCPhys;
1313 if (pGCPhysLast)
1314 *pGCPhysLast = pCur->GCPhysLast;
1315 if (ppszDesc)
1316 *ppszDesc = pCur->pszDesc;
1317 if (pfIsMmio)
1318 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1319
1320 PGM_UNLOCK(pVM);
1321 return VINF_SUCCESS;
1322 }
1323 PGM_UNLOCK(pVM);
1324 return VERR_OUT_OF_RANGE;
1325}
1326
1327
1328/*********************************************************************************************************************************
1329* RAM *
1330*********************************************************************************************************************************/
1331
1332/**
1333 * Frees the specified RAM page and replaces it with the ZERO page.
1334 *
1335 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
1336 *
1337 * @param pVM The cross context VM structure.
1338 * @param pReq Pointer to the request. This is NULL when doing a
1339 * bulk free in NEM memory mode.
1340 * @param pcPendingPages Where the number of pages waiting to be freed are
1341 * kept. This will normally be incremented. This is
1342 * NULL when doing a bulk free in NEM memory mode.
1343 * @param pPage Pointer to the page structure.
1344 * @param GCPhys The guest physical address of the page, if applicable.
1345 * @param enmNewType New page type for NEM notification, since several
1346 * callers will change the type upon successful return.
1347 *
1348 * @remarks The caller must own the PGM lock.
1349 */
1350int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
1351 PGMPAGETYPE enmNewType)
1352{
1353 /*
1354 * Assert sanity.
1355 */
1356 PGM_LOCK_ASSERT_OWNER(pVM);
1357 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1358 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
1359 {
1360 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1361 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
1362 }
1363
1364 /** @todo What about ballooning of large pages??! */
1365 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1366 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
1367
1368 if ( PGM_PAGE_IS_ZERO(pPage)
1369 || PGM_PAGE_IS_BALLOONED(pPage))
1370 return VINF_SUCCESS;
1371
1372 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
1373 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
1374 if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM)
1375 ? idPage == NIL_GMM_PAGEID
1376 || idPage > GMM_PAGEID_LAST
1377 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID
1378 : idPage != NIL_GMM_PAGEID))
1379 {
1380 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1381 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
1382 }
1383#ifdef VBOX_WITH_NATIVE_NEM
1384 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
1385#endif
1386
1387 /* update page count stats. */
1388 if (PGM_PAGE_IS_SHARED(pPage))
1389 pVM->pgm.s.cSharedPages--;
1390 else
1391 pVM->pgm.s.cPrivatePages--;
1392 pVM->pgm.s.cZeroPages++;
1393
1394 /* Deal with write monitored pages. */
1395 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1396 {
1397 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1398 pVM->pgm.s.cWrittenToPages++;
1399 }
1400
1401 /*
1402 * pPage = ZERO page.
1403 */
1404 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
1405 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1406 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
1407 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
1408 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
1409 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
1410
1411 /* Flush physical page map TLB entry. */
1412 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
1413
1414#ifdef VBOX_WITH_PGM_NEM_MODE
1415 /*
1416 * Skip the rest if we're doing a bulk free in NEM memory mode.
1417 */
1418 if (!pReq)
1419 return VINF_SUCCESS;
1420 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1421#endif
1422
1423#ifdef VBOX_WITH_NATIVE_NEM
1424 /* Notify NEM. */
1425 /** @todo Remove this one? */
1426 if (VM_IS_NEM_ENABLED(pVM))
1427 {
1428 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
1429 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.pvZeroPgR3,
1430 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
1431 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
1432 }
1433#else
1434 RT_NOREF(enmNewType);
1435#endif
1436
1437 /*
1438 * Make sure it's not in the handy page array.
1439 */
1440 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1441 {
1442 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
1443 {
1444 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1445 break;
1446 }
1447 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
1448 {
1449 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1450 break;
1451 }
1452 }
1453
1454 /*
1455 * Push it onto the page array.
1456 */
1457 uint32_t iPage = *pcPendingPages;
1458 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
1459 *pcPendingPages += 1;
1460
1461 pReq->aPages[iPage].idPage = idPage;
1462
1463 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
1464 return VINF_SUCCESS;
1465
1466 /*
1467 * Flush the pages.
1468 */
1469 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
1470 if (RT_SUCCESS(rc))
1471 {
1472 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1473 *pcPendingPages = 0;
1474 }
1475 return rc;
1476}
1477
1478
1479/**
1480 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1481 *
1482 * @returns VBox status code.
1483 * @param pVM The cross context VM structure.
1484 * @param pRam The RAM range in which the pages resides.
1485 * @param GCPhys The address of the first page.
1486 * @param GCPhysLast The address of the last page.
1487 * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that
1488 * will replace the pages we're freeing up.
1489 */
1490static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2)
1491{
1492 PGM_LOCK_ASSERT_OWNER(pVM);
1493
1494#ifdef VBOX_WITH_PGM_NEM_MODE
1495 /*
1496 * In simplified memory mode we don't actually free the memory,
1497 * we just unmap it and let NEM do any unlocking of it.
1498 */
1499 if (pVM->pgm.s.fNemMode)
1500 {
1501 Assert(VM_IS_NEM_ENABLED(pVM));
1502 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1503 uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */
1504 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
1505 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
1506 pvMmio2, &u2State, NULL /*puNemRange*/);
1507 AssertLogRelRCReturn(rc, rc);
1508
1509 /* Iterate the pages. */
1510 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1511 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1512 while (cPagesLeft-- > 0)
1513 {
1514 rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1515 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1516
1517 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1518 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1519
1520 GCPhys += PAGE_SIZE;
1521 pPageDst++;
1522 }
1523 return rc;
1524 }
1525#else /* !VBOX_WITH_PGM_NEM_MODE */
1526 RT_NOREF(pvMmio2);
1527#endif /* !VBOX_WITH_PGM_NEM_MODE */
1528
1529 /*
1530 * Regular mode.
1531 */
1532 /* Prepare. */
1533 uint32_t cPendingPages = 0;
1534 PGMMFREEPAGESREQ pReq;
1535 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1536 AssertLogRelRCReturn(rc, rc);
1537
1538#ifdef VBOX_WITH_NATIVE_NEM
1539 /* Tell NEM up-front. */
1540 uint8_t u2State = UINT8_MAX;
1541 if (VM_IS_NEM_ENABLED(pVM))
1542 {
1543 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1544 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2,
1545 &u2State, NULL /*puNemRange*/);
1546 AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc);
1547 }
1548#endif
1549
1550 /* Iterate the pages. */
1551 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1552 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1553 while (cPagesLeft-- > 0)
1554 {
1555 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1556 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1557
1558 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1559#ifdef VBOX_WITH_NATIVE_NEM
1560 if (u2State != UINT8_MAX)
1561 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1562#endif
1563
1564 GCPhys += PAGE_SIZE;
1565 pPageDst++;
1566 }
1567
1568 /* Finish pending and cleanup. */
1569 if (cPendingPages)
1570 {
1571 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1572 AssertLogRelRCReturn(rc, rc);
1573 }
1574 GMMR3FreePagesCleanup(pReq);
1575
1576 return rc;
1577}
1578
1579
1580/**
1581 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1582 *
1583 * In NEM mode, this will allocate the pages backing the RAM range and this may
1584 * fail. NEM registration may also fail. (In regular HM mode it won't fail.)
1585 *
1586 * @returns VBox status code.
1587 * @param pVM The cross context VM structure.
1588 * @param pNew The new RAM range.
1589 * @param GCPhys The address of the RAM range.
1590 * @param GCPhysLast The last address of the RAM range.
1591 * @param R0PtrNew Ditto for R0.
1592 * @param fFlags PGM_RAM_RANGE_FLAGS_FLOATING or zero.
1593 * @param pszDesc The description.
1594 * @param pPrev The previous RAM range (for linking).
1595 */
1596static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1597 RTR0PTR R0PtrNew, uint32_t fFlags, const char *pszDesc, PPGMRAMRANGE pPrev)
1598{
1599 /*
1600 * Initialize the range.
1601 */
1602 pNew->pSelfR0 = R0PtrNew;
1603 pNew->GCPhys = GCPhys;
1604 pNew->GCPhysLast = GCPhysLast;
1605 pNew->cb = GCPhysLast - GCPhys + 1;
1606 pNew->pszDesc = pszDesc;
1607 pNew->fFlags = fFlags;
1608 pNew->uNemRange = UINT32_MAX;
1609 pNew->pvR3 = NULL;
1610 pNew->paLSPages = NULL;
1611
1612 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1613#ifdef VBOX_WITH_PGM_NEM_MODE
1614 if (!pVM->pgm.s.fNemMode)
1615#endif
1616 {
1617 RTGCPHYS iPage = cPages;
1618 while (iPage-- > 0)
1619 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1620
1621 /* Update the page count stats. */
1622 pVM->pgm.s.cZeroPages += cPages;
1623 pVM->pgm.s.cAllPages += cPages;
1624 }
1625#ifdef VBOX_WITH_PGM_NEM_MODE
1626 else
1627 {
1628 int rc = SUPR3PageAlloc(cPages, &pNew->pvR3);
1629 if (RT_FAILURE(rc))
1630 return rc;
1631
1632 RTGCPHYS iPage = cPages;
1633 while (iPage-- > 0)
1634 PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
1635 PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED);
1636
1637 /* Update the page count stats. */
1638 pVM->pgm.s.cPrivatePages += cPages;
1639 pVM->pgm.s.cAllPages += cPages;
1640 }
1641#endif
1642
1643 /*
1644 * Link it.
1645 */
1646 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1647
1648#ifdef VBOX_WITH_NATIVE_NEM
1649 /*
1650 * Notify NEM now that it has been linked.
1651 */
1652 if (VM_IS_NEM_ENABLED(pVM))
1653 {
1654 uint8_t u2State = UINT8_MAX;
1655 int rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pvR3, &u2State, &pNew->uNemRange);
1656 if (RT_SUCCESS(rc))
1657 {
1658 if (u2State != UINT8_MAX)
1659 pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State);
1660 }
1661 else
1662 pgmR3PhysUnlinkRamRange2(pVM, pNew, pPrev);
1663 return rc;
1664 }
1665#endif
1666 return VINF_SUCCESS;
1667}
1668
1669
1670/**
1671 * PGMR3PhysRegisterRam worker that registers a high chunk.
1672 *
1673 * @returns VBox status code.
1674 * @param pVM The cross context VM structure.
1675 * @param GCPhys The address of the RAM.
1676 * @param cRamPages The number of RAM pages to register.
1677 * @param iChunk The chunk number.
1678 * @param pszDesc The RAM range description.
1679 * @param ppPrev Previous RAM range pointer. In/Out.
1680 */
1681static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, uint32_t iChunk,
1682 const char *pszDesc, PPGMRAMRANGE *ppPrev)
1683{
1684 const char *pszDescChunk = iChunk == 0
1685 ? pszDesc
1686 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1687 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1688
1689 /*
1690 * Allocate memory for the new chunk.
1691 */
1692 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1693 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1694 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1695 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1696 void *pvChunk = NULL;
1697 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
1698 if (RT_SUCCESS(rc))
1699 {
1700 Assert(R0PtrChunk != NIL_RTR0PTR);
1701 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1702
1703 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1704
1705 /*
1706 * Ok, init and link the range.
1707 */
1708 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1709 R0PtrChunk, PGM_RAM_RANGE_FLAGS_FLOATING, pszDescChunk, *ppPrev);
1710 if (RT_SUCCESS(rc))
1711 *ppPrev = pNew;
1712
1713 if (RT_FAILURE(rc))
1714 SUPR3PageFreeEx(pvChunk, cChunkPages);
1715 }
1716
1717 RTMemTmpFree(paChunkPages);
1718 return rc;
1719}
1720
1721
1722/**
1723 * Sets up a range RAM.
1724 *
1725 * This will check for conflicting registrations, make a resource
1726 * reservation for the memory (with GMM), and setup the per-page
1727 * tracking structures (PGMPAGE).
1728 *
1729 * @returns VBox status code.
1730 * @param pVM The cross context VM structure.
1731 * @param GCPhys The physical address of the RAM.
1732 * @param cb The size of the RAM.
1733 * @param pszDesc The description - not copied, so, don't free or change it.
1734 */
1735VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1736{
1737 /*
1738 * Validate input.
1739 */
1740 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1741 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1742 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1743 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1744 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1745 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1746 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1747 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1748
1749 PGM_LOCK_VOID(pVM);
1750
1751 /*
1752 * Find range location and check for conflicts.
1753 */
1754 PPGMRAMRANGE pPrev = NULL;
1755 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1756 while (pRam && GCPhysLast >= pRam->GCPhys)
1757 {
1758 AssertLogRelMsgReturnStmt( GCPhysLast < pRam->GCPhys
1759 || GCPhys > pRam->GCPhysLast,
1760 ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1761 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1762 PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT);
1763
1764 /* next */
1765 pPrev = pRam;
1766 pRam = pRam->pNextR3;
1767 }
1768
1769 /*
1770 * Register it with GMM (the API bitches).
1771 */
1772 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1773 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1774 if (RT_FAILURE(rc))
1775 {
1776 PGM_UNLOCK(pVM);
1777 return rc;
1778 }
1779
1780 if ( GCPhys >= _4G
1781 && cPages > 256)
1782 {
1783 /*
1784 * The PGMRAMRANGE structures for the high memory can get very big.
1785 * There used to be some limitations on SUPR3PageAllocEx allocation
1786 * sizes, so traditionally we limited this to 16MB chunks. These days
1787 * we do ~64 MB chunks each covering 16GB of guest RAM, making sure
1788 * each range is a multiple of 1GB to enable eager hosts to use 1GB
1789 * pages in NEM mode.
1790 *
1791 * See also pgmR3PhysMmio2CalcChunkCount.
1792 */
1793 uint32_t const cPagesPerChunk = _4M;
1794 Assert(RT_ALIGN_32(cPagesPerChunk, X86_PD_PAE_SHIFT - X86_PAGE_SHIFT)); /* NEM large page requirement: 1GB pages. */
1795
1796 RTGCPHYS cPagesLeft = cPages;
1797 RTGCPHYS GCPhysChunk = GCPhys;
1798 uint32_t iChunk = 0;
1799 while (cPagesLeft > 0)
1800 {
1801 uint32_t cPagesInChunk = cPagesLeft;
1802 if (cPagesInChunk > cPagesPerChunk)
1803 cPagesInChunk = cPagesPerChunk;
1804
1805 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, iChunk, pszDesc, &pPrev);
1806 AssertRCReturn(rc, rc);
1807
1808 /* advance */
1809 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1810 cPagesLeft -= cPagesInChunk;
1811 iChunk++;
1812 }
1813 }
1814 else
1815 {
1816 /*
1817 * Allocate, initialize and link the new RAM range.
1818 */
1819 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1820 PPGMRAMRANGE pNew;
1821 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1822 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1823
1824 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, MMHyperCCToR0(pVM, pNew), 0 /*fFlags*/, pszDesc, pPrev);
1825 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1826 }
1827 pgmPhysInvalidatePageMapTLB(pVM);
1828
1829 PGM_UNLOCK(pVM);
1830 return rc;
1831}
1832
1833
1834/**
1835 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1836 *
1837 * We do this late in the init process so that all the ROM and MMIO ranges have
1838 * been registered already and we don't go wasting memory on them.
1839 *
1840 * @returns VBox status code.
1841 *
1842 * @param pVM The cross context VM structure.
1843 */
1844int pgmR3PhysRamPreAllocate(PVM pVM)
1845{
1846 Assert(pVM->pgm.s.fRamPreAlloc);
1847 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1848#ifdef VBOX_WITH_PGM_NEM_MODE
1849 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1850#endif
1851
1852 /*
1853 * Walk the RAM ranges and allocate all RAM pages, halt at
1854 * the first allocation error.
1855 */
1856 uint64_t cPages = 0;
1857 uint64_t NanoTS = RTTimeNanoTS();
1858 PGM_LOCK_VOID(pVM);
1859 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1860 {
1861 PPGMPAGE pPage = &pRam->aPages[0];
1862 RTGCPHYS GCPhys = pRam->GCPhys;
1863 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1864 while (cLeft-- > 0)
1865 {
1866 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1867 {
1868 switch (PGM_PAGE_GET_STATE(pPage))
1869 {
1870 case PGM_PAGE_STATE_ZERO:
1871 {
1872 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1873 if (RT_FAILURE(rc))
1874 {
1875 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1876 PGM_UNLOCK(pVM);
1877 return rc;
1878 }
1879 cPages++;
1880 break;
1881 }
1882
1883 case PGM_PAGE_STATE_BALLOONED:
1884 case PGM_PAGE_STATE_ALLOCATED:
1885 case PGM_PAGE_STATE_WRITE_MONITORED:
1886 case PGM_PAGE_STATE_SHARED:
1887 /* nothing to do here. */
1888 break;
1889 }
1890 }
1891
1892 /* next */
1893 pPage++;
1894 GCPhys += PAGE_SIZE;
1895 }
1896 }
1897 PGM_UNLOCK(pVM);
1898 NanoTS = RTTimeNanoTS() - NanoTS;
1899
1900 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1901 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1902 return VINF_SUCCESS;
1903}
1904
1905
1906/**
1907 * Checks shared page checksums.
1908 *
1909 * @param pVM The cross context VM structure.
1910 */
1911void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1912{
1913#ifdef VBOX_STRICT
1914 PGM_LOCK_VOID(pVM);
1915
1916 if (pVM->pgm.s.cSharedPages > 0)
1917 {
1918 /*
1919 * Walk the ram ranges.
1920 */
1921 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1922 {
1923 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1924 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1925
1926 while (iPage-- > 0)
1927 {
1928 PPGMPAGE pPage = &pRam->aPages[iPage];
1929 if (PGM_PAGE_IS_SHARED(pPage))
1930 {
1931 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
1932 if (!u32Checksum)
1933 {
1934 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1935 void const *pvPage;
1936 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1937 if (RT_SUCCESS(rc))
1938 {
1939 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1940# if 0
1941 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1942# else
1943 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
1944 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1945 else
1946 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1947# endif
1948 }
1949 else
1950 AssertRC(rc);
1951 }
1952 }
1953
1954 } /* for each page */
1955
1956 } /* for each ram range */
1957 }
1958
1959 PGM_UNLOCK(pVM);
1960#endif /* VBOX_STRICT */
1961 NOREF(pVM);
1962}
1963
1964
1965/**
1966 * Resets the physical memory state.
1967 *
1968 * ASSUMES that the caller owns the PGM lock.
1969 *
1970 * @returns VBox status code.
1971 * @param pVM The cross context VM structure.
1972 */
1973int pgmR3PhysRamReset(PVM pVM)
1974{
1975 PGM_LOCK_ASSERT_OWNER(pVM);
1976
1977 /* Reset the memory balloon. */
1978 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1979 AssertRC(rc);
1980
1981#ifdef VBOX_WITH_PAGE_SHARING
1982 /* Clear all registered shared modules. */
1983 pgmR3PhysAssertSharedPageChecksums(pVM);
1984 rc = GMMR3ResetSharedModules(pVM);
1985 AssertRC(rc);
1986#endif
1987 /* Reset counters. */
1988 pVM->pgm.s.cReusedSharedPages = 0;
1989 pVM->pgm.s.cBalloonedPages = 0;
1990
1991 return VINF_SUCCESS;
1992}
1993
1994
1995/**
1996 * Resets (zeros) the RAM after all devices and components have been reset.
1997 *
1998 * ASSUMES that the caller owns the PGM lock.
1999 *
2000 * @returns VBox status code.
2001 * @param pVM The cross context VM structure.
2002 */
2003int pgmR3PhysRamZeroAll(PVM pVM)
2004{
2005 PGM_LOCK_ASSERT_OWNER(pVM);
2006
2007 /*
2008 * We batch up pages that should be freed instead of calling GMM for
2009 * each and every one of them.
2010 */
2011 uint32_t cPendingPages = 0;
2012 PGMMFREEPAGESREQ pReq;
2013 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2014 AssertLogRelRCReturn(rc, rc);
2015
2016 /*
2017 * Walk the ram ranges.
2018 */
2019 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2020 {
2021 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2022 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2023
2024 if ( !pVM->pgm.s.fRamPreAlloc
2025#ifdef VBOX_WITH_PGM_NEM_MODE
2026 && !pVM->pgm.s.fNemMode
2027#endif
2028 && pVM->pgm.s.fZeroRamPagesOnReset)
2029 {
2030 /* Replace all RAM pages by ZERO pages. */
2031 while (iPage-- > 0)
2032 {
2033 PPGMPAGE pPage = &pRam->aPages[iPage];
2034 switch (PGM_PAGE_GET_TYPE(pPage))
2035 {
2036 case PGMPAGETYPE_RAM:
2037 /* Do not replace pages part of a 2 MB continuous range
2038 with zero pages, but zero them instead. */
2039 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2040 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2041 {
2042 void *pvPage;
2043 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2044 AssertLogRelRCReturn(rc, rc);
2045 ASMMemZeroPage(pvPage);
2046 }
2047 else if (PGM_PAGE_IS_BALLOONED(pPage))
2048 {
2049 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2050 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2051 }
2052 else if (!PGM_PAGE_IS_ZERO(pPage))
2053 {
2054 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2055 PGMPAGETYPE_RAM);
2056 AssertLogRelRCReturn(rc, rc);
2057 }
2058 break;
2059
2060 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2061 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2062 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2063 pRam, true /*fDoAccounting*/);
2064 break;
2065
2066 case PGMPAGETYPE_MMIO2:
2067 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2068 case PGMPAGETYPE_ROM:
2069 case PGMPAGETYPE_MMIO:
2070 break;
2071 default:
2072 AssertFailed();
2073 }
2074 } /* for each page */
2075 }
2076 else
2077 {
2078 /* Zero the memory. */
2079 while (iPage-- > 0)
2080 {
2081 PPGMPAGE pPage = &pRam->aPages[iPage];
2082 switch (PGM_PAGE_GET_TYPE(pPage))
2083 {
2084 case PGMPAGETYPE_RAM:
2085 switch (PGM_PAGE_GET_STATE(pPage))
2086 {
2087 case PGM_PAGE_STATE_ZERO:
2088 break;
2089
2090 case PGM_PAGE_STATE_BALLOONED:
2091 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2092 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2093 break;
2094
2095 case PGM_PAGE_STATE_SHARED:
2096 case PGM_PAGE_STATE_WRITE_MONITORED:
2097 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2098 AssertLogRelRCReturn(rc, rc);
2099 RT_FALL_THRU();
2100
2101 case PGM_PAGE_STATE_ALLOCATED:
2102 if (pVM->pgm.s.fZeroRamPagesOnReset)
2103 {
2104 void *pvPage;
2105 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2106 AssertLogRelRCReturn(rc, rc);
2107 ASMMemZeroPage(pvPage);
2108 }
2109 break;
2110 }
2111 break;
2112
2113 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2114 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2115 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2116 pRam, true /*fDoAccounting*/);
2117 break;
2118
2119 case PGMPAGETYPE_MMIO2:
2120 case PGMPAGETYPE_ROM_SHADOW:
2121 case PGMPAGETYPE_ROM:
2122 case PGMPAGETYPE_MMIO:
2123 break;
2124 default:
2125 AssertFailed();
2126
2127 }
2128 } /* for each page */
2129 }
2130
2131 }
2132
2133 /*
2134 * Finish off any pages pending freeing.
2135 */
2136 if (cPendingPages)
2137 {
2138 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2139 AssertLogRelRCReturn(rc, rc);
2140 }
2141 GMMR3FreePagesCleanup(pReq);
2142 return VINF_SUCCESS;
2143}
2144
2145
2146/**
2147 * Frees all RAM during VM termination
2148 *
2149 * ASSUMES that the caller owns the PGM lock.
2150 *
2151 * @returns VBox status code.
2152 * @param pVM The cross context VM structure.
2153 */
2154int pgmR3PhysRamTerm(PVM pVM)
2155{
2156 PGM_LOCK_ASSERT_OWNER(pVM);
2157
2158 /* Reset the memory balloon. */
2159 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2160 AssertRC(rc);
2161
2162#ifdef VBOX_WITH_PAGE_SHARING
2163 /*
2164 * Clear all registered shared modules.
2165 */
2166 pgmR3PhysAssertSharedPageChecksums(pVM);
2167 rc = GMMR3ResetSharedModules(pVM);
2168 AssertRC(rc);
2169
2170 /*
2171 * Flush the handy pages updates to make sure no shared pages are hiding
2172 * in there. (Not unlikely if the VM shuts down, apparently.)
2173 */
2174 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2175#endif
2176
2177 /*
2178 * We batch up pages that should be freed instead of calling GMM for
2179 * each and every one of them.
2180 */
2181 uint32_t cPendingPages = 0;
2182 PGMMFREEPAGESREQ pReq;
2183 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2184 AssertLogRelRCReturn(rc, rc);
2185
2186 /*
2187 * Walk the ram ranges.
2188 */
2189 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2190 {
2191 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2192 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2193
2194 while (iPage-- > 0)
2195 {
2196 PPGMPAGE pPage = &pRam->aPages[iPage];
2197 switch (PGM_PAGE_GET_TYPE(pPage))
2198 {
2199 case PGMPAGETYPE_RAM:
2200 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2201 /** @todo change this to explicitly free private pages here. */
2202 if (PGM_PAGE_IS_SHARED(pPage))
2203 {
2204 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2205 PGMPAGETYPE_RAM);
2206 AssertLogRelRCReturn(rc, rc);
2207 }
2208 break;
2209
2210 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2211 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2212 case PGMPAGETYPE_MMIO2:
2213 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2214 case PGMPAGETYPE_ROM:
2215 case PGMPAGETYPE_MMIO:
2216 break;
2217 default:
2218 AssertFailed();
2219 }
2220 } /* for each page */
2221 }
2222
2223 /*
2224 * Finish off any pages pending freeing.
2225 */
2226 if (cPendingPages)
2227 {
2228 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2229 AssertLogRelRCReturn(rc, rc);
2230 }
2231 GMMR3FreePagesCleanup(pReq);
2232 return VINF_SUCCESS;
2233}
2234
2235
2236
2237/*********************************************************************************************************************************
2238* MMIO *
2239*********************************************************************************************************************************/
2240
2241/**
2242 * This is the interface IOM is using to register an MMIO region.
2243 *
2244 * It will check for conflicts and ensure that a RAM range structure
2245 * is present before calling the PGMR3HandlerPhysicalRegister API to
2246 * register the callbacks.
2247 *
2248 * @returns VBox status code.
2249 *
2250 * @param pVM The cross context VM structure.
2251 * @param GCPhys The start of the MMIO region.
2252 * @param cb The size of the MMIO region.
2253 * @param hType The physical access handler type registration.
2254 * @param pvUserR3 The user argument for R3.
2255 * @param pvUserR0 The user argument for R0.
2256 * @param pvUserRC The user argument for RC.
2257 * @param pszDesc The description of the MMIO region.
2258 */
2259VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2260 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2261{
2262 /*
2263 * Assert on some assumption.
2264 */
2265 VM_ASSERT_EMT(pVM);
2266 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2267 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2268 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2269 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2270 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2271
2272 int rc = PGM_LOCK(pVM);
2273 AssertRCReturn(rc, rc);
2274
2275 /*
2276 * Make sure there's a RAM range structure for the region.
2277 */
2278 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2279 bool fRamExists = false;
2280 PPGMRAMRANGE pRamPrev = NULL;
2281 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2282 while (pRam && GCPhysLast >= pRam->GCPhys)
2283 {
2284 if ( GCPhysLast >= pRam->GCPhys
2285 && GCPhys <= pRam->GCPhysLast)
2286 {
2287 /* Simplification: all within the same range. */
2288 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2289 && GCPhysLast <= pRam->GCPhysLast,
2290 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2291 GCPhys, GCPhysLast, pszDesc,
2292 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2293 PGM_UNLOCK(pVM),
2294 VERR_PGM_RAM_CONFLICT);
2295
2296 /* Check that it's all RAM or MMIO pages. */
2297 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2298 uint32_t cLeft = cb >> PAGE_SHIFT;
2299 while (cLeft-- > 0)
2300 {
2301 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2302 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2303 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2304 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2305 PGM_UNLOCK(pVM),
2306 VERR_PGM_RAM_CONFLICT);
2307 pPage++;
2308 }
2309
2310 /* Looks good. */
2311 fRamExists = true;
2312 break;
2313 }
2314
2315 /* next */
2316 pRamPrev = pRam;
2317 pRam = pRam->pNextR3;
2318 }
2319 PPGMRAMRANGE pNew;
2320 if (fRamExists)
2321 {
2322 pNew = NULL;
2323
2324 /*
2325 * Make all the pages in the range MMIO/ZERO pages, freeing any
2326 * RAM pages currently mapped here. This might not be 100% correct
2327 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2328 */
2329 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, NULL);
2330 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
2331
2332 /* Force a PGM pool flush as guest ram references have been changed. */
2333 /** @todo not entirely SMP safe; assuming for now the guest takes
2334 * care of this internally (not touch mapped mmio while changing the
2335 * mapping). */
2336 PVMCPU pVCpu = VMMGetCpu(pVM);
2337 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2339 }
2340 else
2341 {
2342 /*
2343 * No RAM range, insert an ad hoc one.
2344 *
2345 * Note that we don't have to tell REM about this range because
2346 * PGMHandlerPhysicalRegisterEx will do that for us.
2347 */
2348 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2349
2350 /* Alloc. */
2351 const uint32_t cPages = cb >> PAGE_SHIFT;
2352 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2353 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2354 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), PGM_UNLOCK(pVM), rc);
2355
2356#ifdef VBOX_WITH_NATIVE_NEM
2357 /* Notify NEM. */
2358 uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */
2359 if (VM_IS_NEM_ENABLED(pVM))
2360 {
2361 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cPages << PAGE_SHIFT, 0 /*fFlags*/, NULL, NULL,
2362 &u2State, &pNew->uNemRange);
2363 AssertLogRelRCReturnStmt(rc, MMHyperFree(pVM, pNew), rc);
2364 }
2365#endif
2366
2367 /* Initialize the range. */
2368 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2369 pNew->GCPhys = GCPhys;
2370 pNew->GCPhysLast = GCPhysLast;
2371 pNew->cb = cb;
2372 pNew->pszDesc = pszDesc;
2373 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2374 pNew->pvR3 = NULL;
2375 pNew->paLSPages = NULL;
2376
2377 uint32_t iPage = cPages;
2378 while (iPage-- > 0)
2379 {
2380 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2381#ifdef VBOX_WITH_NATIVE_NEM
2382 PGM_PAGE_SET_NEM_STATE(&pNew->aPages[iPage], u2State);
2383#endif
2384 }
2385 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2386
2387 /* update the page count stats. */
2388 pVM->pgm.s.cPureMmioPages += cPages;
2389 pVM->pgm.s.cAllPages += cPages;
2390
2391 /* link it */
2392 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2393 }
2394
2395 /*
2396 * Register the access handler.
2397 */
2398 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2399 if (RT_SUCCESS(rc))
2400 {
2401#ifdef VBOX_WITH_NATIVE_NEM
2402 /* Late NEM notification. */
2403 if (VM_IS_NEM_ENABLED(pVM))
2404 {
2405 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
2406 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
2407 fRamExists ? (uint8_t *)pRam->pvR3 + (uintptr_t)(GCPhys - pRam->GCPhys) : NULL,
2408 NULL, !fRamExists ? &pRam->uNemRange : NULL);
2409 AssertLogRelRCReturn(rc, rc);
2410 }
2411#endif
2412 }
2413 /** @todo the phys handler failure handling isn't complete, esp. wrt NEM. */
2414 else if (!fRamExists)
2415 {
2416 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2417 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2418
2419 /* remove the ad hoc range. */
2420 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2421 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2422 MMHyperFree(pVM, pRam);
2423 }
2424 pgmPhysInvalidatePageMapTLB(pVM);
2425
2426 PGM_UNLOCK(pVM);
2427 return rc;
2428}
2429
2430
2431/**
2432 * This is the interface IOM is using to register an MMIO region.
2433 *
2434 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2435 * any ad hoc PGMRAMRANGE left behind.
2436 *
2437 * @returns VBox status code.
2438 * @param pVM The cross context VM structure.
2439 * @param GCPhys The start of the MMIO region.
2440 * @param cb The size of the MMIO region.
2441 */
2442VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2443{
2444 VM_ASSERT_EMT(pVM);
2445
2446 int rc = PGM_LOCK(pVM);
2447 AssertRCReturn(rc, rc);
2448
2449 /*
2450 * First deregister the handler, then check if we should remove the ram range.
2451 */
2452 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2453 if (RT_SUCCESS(rc))
2454 {
2455 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2456 PPGMRAMRANGE pRamPrev = NULL;
2457 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2458 while (pRam && GCPhysLast >= pRam->GCPhys)
2459 {
2460 /** @todo We're being a bit too careful here. rewrite. */
2461 if ( GCPhysLast == pRam->GCPhysLast
2462 && GCPhys == pRam->GCPhys)
2463 {
2464 Assert(pRam->cb == cb);
2465
2466 /*
2467 * See if all the pages are dead MMIO pages.
2468 */
2469 uint32_t const cPages = cb >> PAGE_SHIFT;
2470 bool fAllMMIO = true;
2471 uint32_t iPage = 0;
2472 uint32_t cLeft = cPages;
2473 while (cLeft-- > 0)
2474 {
2475 PPGMPAGE pPage = &pRam->aPages[iPage];
2476 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2477 /*|| not-out-of-action later */)
2478 {
2479 fAllMMIO = false;
2480 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2481 break;
2482 }
2483 Assert( PGM_PAGE_IS_ZERO(pPage)
2484 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2485 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2486 pPage++;
2487 }
2488 if (fAllMMIO)
2489 {
2490 /*
2491 * Ad-hoc range, unlink and free it.
2492 */
2493 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2494 GCPhys, GCPhysLast, pRam->pszDesc));
2495 /** @todo check the ad-hoc flags? */
2496
2497#ifdef VBOX_WITH_NATIVE_NEM
2498 if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */
2499 {
2500 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/, NULL, NULL, NULL);
2501 AssertLogRelRCReturn(rc, rc);
2502 }
2503#endif
2504
2505 pVM->pgm.s.cAllPages -= cPages;
2506 pVM->pgm.s.cPureMmioPages -= cPages;
2507
2508 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2509 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2510 MMHyperFree(pVM, pRam);
2511 break;
2512 }
2513 }
2514
2515 /*
2516 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2517 */
2518 if ( GCPhysLast >= pRam->GCPhys
2519 && GCPhys <= pRam->GCPhysLast)
2520 {
2521 Assert(GCPhys >= pRam->GCPhys);
2522 Assert(GCPhysLast <= pRam->GCPhysLast);
2523
2524 /*
2525 * Turn the pages back into RAM pages.
2526 */
2527 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2528 uint32_t cLeft = cb >> PAGE_SHIFT;
2529 while (cLeft--)
2530 {
2531 PPGMPAGE pPage = &pRam->aPages[iPage];
2532 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2533 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2534 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2535 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2536 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2537 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2538 iPage++;
2539 }
2540
2541#ifdef VBOX_WITH_NATIVE_NEM
2542 /* Notify REM (failure will probably leave things in a non-working state). */
2543 if (VM_IS_NEM_ENABLED(pVM))
2544 {
2545 uint8_t u2State = UINT8_MAX;
2546 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
2547 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
2548 NULL, &u2State);
2549 AssertLogRelRCReturn(rc, rc);
2550 if (u2State != UINT8_MAX)
2551 pgmPhysSetNemStateForPages(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT],
2552 cb >> PAGE_SHIFT, u2State);
2553 }
2554#endif
2555 break;
2556 }
2557
2558 /* next */
2559 pRamPrev = pRam;
2560 pRam = pRam->pNextR3;
2561 }
2562 }
2563
2564 /* Force a PGM pool flush as guest ram references have been changed. */
2565 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2566 * this internally (not touch mapped mmio while changing the mapping). */
2567 PVMCPU pVCpu = VMMGetCpu(pVM);
2568 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2569 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2570
2571 pgmPhysInvalidatePageMapTLB(pVM);
2572 pgmPhysInvalidRamRangeTlbs(pVM);
2573 PGM_UNLOCK(pVM);
2574 return rc;
2575}
2576
2577
2578
2579/*********************************************************************************************************************************
2580* MMIO2 *
2581*********************************************************************************************************************************/
2582
2583/**
2584 * Locate a MMIO2 range.
2585 *
2586 * @returns Pointer to the MMIO2 range.
2587 * @param pVM The cross context VM structure.
2588 * @param pDevIns The device instance owning the region.
2589 * @param iSubDev The sub-device number.
2590 * @param iRegion The region.
2591 * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
2592 * @a iRegion.
2593 */
2594DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
2595 uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
2596{
2597 if (hMmio2 != NIL_PGMMMIO2HANDLE)
2598 {
2599 if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
2600 {
2601 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
2602 if (pCur && pCur->pDevInsR3 == pDevIns)
2603 {
2604 Assert(pCur->idMmio2 == hMmio2);
2605 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2606 return pCur;
2607 }
2608 Assert(!pCur);
2609 }
2610 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2611 if (pCur->idMmio2 == hMmio2)
2612 {
2613 AssertBreak(pCur->pDevInsR3 == pDevIns);
2614 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2615 return pCur;
2616 }
2617 }
2618 else
2619 {
2620 /*
2621 * Search the list. There shouldn't be many entries.
2622 */
2623 /** @todo Optimize this lookup! There may now be many entries and it'll
2624 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2625 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2626 if ( pCur->pDevInsR3 == pDevIns
2627 && pCur->iRegion == iRegion
2628 && pCur->iSubDev == iSubDev)
2629 return pCur;
2630 }
2631 return NULL;
2632}
2633
2634
2635/**
2636 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map.
2637 */
2638static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2639{
2640 int rc = VINF_SUCCESS;
2641 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2642 {
2643 Assert(!(pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING));
2644 int rc2 = pgmHandlerPhysicalExRegister(pVM, pCurMmio2->pPhysHandlerR3, pCurMmio2->RamRange.GCPhys,
2645 pCurMmio2->RamRange.GCPhysLast);
2646 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2647 pCurMmio2->RamRange.pszDesc, rc2));
2648 if (RT_SUCCESS(rc2))
2649 pCurMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING;
2650 else if (RT_SUCCESS(rc))
2651 rc = rc2;
2652 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2653 return rc;
2654 }
2655 AssertFailed();
2656 return rc;
2657}
2658
2659
2660/**
2661 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap.
2662 */
2663static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2664{
2665 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2666 {
2667 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)
2668 {
2669 int rc2 = pgmHandlerPhysicalExDeregister(pVM, pCurMmio2->pPhysHandlerR3);
2670 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2671 pCurMmio2->RamRange.pszDesc, rc2));
2672 pCurMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING;
2673 }
2674 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2675 return VINF_SUCCESS;
2676 }
2677 AssertFailed();
2678 return VINF_SUCCESS;
2679
2680}
2681
2682
2683/**
2684 * Calculates the number of chunks
2685 *
2686 * @returns Number of registration chunk needed.
2687 * @param pVM The cross context VM structure.
2688 * @param cb The size of the MMIO/MMIO2 range.
2689 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2690 * chunk. Optional.
2691 * @param pcbChunk Where to return the guest mapping size for a chunk.
2692 */
2693static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2694{
2695 RT_NOREF_PV(pVM); /* without raw mode */
2696
2697 /*
2698 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2699 * needing a few bytes extra the PGMREGMMIO2RANGE structure.
2700 *
2701 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2702 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2703 */
2704 uint32_t const cPagesPerChunk = _4M;
2705 Assert(RT_ALIGN_32(cPagesPerChunk, X86_PD_PAE_SHIFT - X86_PAGE_SHIFT)); /* NEM large page requirement: 1GB pages. */
2706 uint32_t const cbChunk = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]);
2707 AssertRelease(cPagesPerChunk < _16M);
2708
2709 if (pcbChunk)
2710 *pcbChunk = cbChunk;
2711 if (pcPagesPerChunk)
2712 *pcPagesPerChunk = cPagesPerChunk;
2713
2714 /* Calc the number of chunks we need. */
2715 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2716 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2717 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2718 return cChunks;
2719}
2720
2721
2722/**
2723 * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
2724 * structures and does basic initialization.
2725 *
2726 * Caller must set type specfic members and initialize the PGMPAGE structures.
2727 *
2728 * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
2729 * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
2730 * interface. The reference to caller and type above is purely historical.
2731 *
2732 * @returns VBox status code.
2733 * @param pVM The cross context VM structure.
2734 * @param pDevIns The device instance owning the region.
2735 * @param iSubDev The sub-device number (internal PCI config number).
2736 * @param iRegion The region number. If the MMIO2 memory is a PCI
2737 * I/O region this number has to be the number of that
2738 * region. Otherwise it can be any number safe
2739 * UINT8_MAX.
2740 * @param cb The size of the region. Must be page aligned.
2741 * @param fFlags PGMPHYS_MMIO2_FLAGS_XXX.
2742 * @param idMmio2 The MMIO2 ID for the first chunk.
2743 * @param pszDesc The description.
2744 * @param ppHeadRet Where to return the pointer to the first
2745 * registration chunk.
2746 *
2747 * @thread EMT
2748 */
2749static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2750 uint8_t idMmio2, const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
2751{
2752 /*
2753 * Figure out how many chunks we need and of which size.
2754 */
2755 uint32_t cPagesPerChunk;
2756 uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2757 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2758
2759 /*
2760 * Allocate the chunks.
2761 */
2762 PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
2763 *ppNext = NULL;
2764
2765 int rc = VINF_SUCCESS;
2766 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2767 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++, idMmio2++)
2768 {
2769 /*
2770 * We currently do a single RAM range for the whole thing. This will
2771 * probably have to change once someone needs really large MMIO regions,
2772 * as we will be running into SUPR3PageAllocEx limitations and such.
2773 */
2774 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2775 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
2776 PPGMREGMMIO2RANGE pNew = NULL;
2777 if ( iChunk + 1 < cChunks
2778 || cbRange >= _1M)
2779 {
2780 /*
2781 * Allocate memory for the registration structure.
2782 */
2783 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2784 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2785 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2786 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2787 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2788 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2789 void *pvChunk = NULL;
2790 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
2791 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2792
2793 Assert(R0PtrChunk != NIL_RTR0PTR);
2794 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2795
2796 pNew = (PPGMREGMMIO2RANGE)pvChunk;
2797 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2798 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2799
2800 RTMemTmpFree(paChunkPages);
2801 }
2802 /*
2803 * Not so big, do a one time hyper allocation.
2804 */
2805 else
2806 {
2807 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2808 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2809
2810 /*
2811 * Initialize allocation specific items.
2812 */
2813 //pNew->RamRange.fFlags = 0;
2814 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2815 }
2816
2817 /*
2818 * Initialize the registration structure (caller does specific bits).
2819 */
2820 pNew->pDevInsR3 = pDevIns;
2821 //pNew->pvR3 = NULL;
2822 //pNew->pNext = NULL;
2823 if (iChunk == 0)
2824 pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
2825 if (iChunk + 1 == cChunks)
2826 pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
2827 if (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2828 pNew->fFlags |= PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES;
2829 pNew->iSubDev = iSubDev;
2830 pNew->iRegion = iRegion;
2831 pNew->idSavedState = UINT8_MAX;
2832 pNew->idMmio2 = idMmio2;
2833 //pNew->pPhysHandlerR3 = NULL;
2834 //pNew->paLSPages = NULL;
2835 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2836 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2837 pNew->RamRange.pszDesc = pszDesc;
2838 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2839 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2840 pNew->RamRange.uNemRange = UINT32_MAX;
2841 //pNew->RamRange.pvR3 = NULL;
2842 //pNew->RamRange.paLSPages = NULL;
2843
2844 *ppNext = pNew;
2845 ASMCompilerBarrier();
2846 cPagesLeft -= cPagesTrackedByChunk;
2847 ppNext = &pNew->pNextR3;
2848
2849 /*
2850 * Pre-allocate a handler if we're tracking dirty pages, unless NEM takes care of this.
2851 */
2852 if ( (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2853#ifdef VBOX_WITH_PGM_NEM_MODE
2854 && !NEMR3IsMmio2DirtyPageTrackingSupported(pVM)
2855#endif
2856 )
2857
2858 {
2859 rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType,
2860 (RTR3PTR)(uintptr_t)idMmio2, idMmio2, idMmio2, pszDesc, &pNew->pPhysHandlerR3);
2861 AssertLogRelMsgRCBreak(rc, ("idMmio2=%zu\n", idMmio2));
2862 }
2863 }
2864 Assert(cPagesLeft == 0);
2865
2866 if (RT_SUCCESS(rc))
2867 {
2868 Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
2869 return VINF_SUCCESS;
2870 }
2871
2872 /*
2873 * Free floating ranges.
2874 */
2875 while (*ppHeadRet)
2876 {
2877 PPGMREGMMIO2RANGE pFree = *ppHeadRet;
2878 *ppHeadRet = pFree->pNextR3;
2879
2880 if (pFree->pPhysHandlerR3)
2881 {
2882 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
2883 pFree->pPhysHandlerR3 = NULL;
2884 }
2885
2886 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2887 {
2888 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2889 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2890 SUPR3PageFreeEx(pFree, cChunkPages);
2891 }
2892 }
2893
2894 return rc;
2895}
2896
2897
2898/**
2899 * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
2900 * complete registration entry into the lists and lookup tables.
2901 *
2902 * @param pVM The cross context VM structure.
2903 * @param pNew The new MMIO / MMIO2 registration to link.
2904 */
2905static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
2906{
2907 Assert(pNew->idMmio2 != UINT8_MAX);
2908
2909 /*
2910 * Link it into the list (order doesn't matter, so insert it at the head).
2911 *
2912 * Note! The range we're linking may consist of multiple chunks, so we
2913 * have to find the last one.
2914 */
2915 PPGMREGMMIO2RANGE pLast = pNew;
2916 for (pLast = pNew; ; pLast = pLast->pNextR3)
2917 {
2918 if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2919 break;
2920 Assert(pLast->pNextR3);
2921 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2922 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2923 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2924 Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1);
2925 }
2926
2927 PGM_LOCK_VOID(pVM);
2928
2929 /* Link in the chain of ranges at the head of the list. */
2930 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2931 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2932
2933 /* Insert the MMIO2 range/page IDs. */
2934 uint8_t idMmio2 = pNew->idMmio2;
2935 for (;;)
2936 {
2937 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2938 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2939 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2940 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2941 if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2942 break;
2943 pNew = pNew->pNextR3;
2944 idMmio2++;
2945 }
2946
2947 pgmPhysInvalidatePageMapTLB(pVM);
2948 PGM_UNLOCK(pVM);
2949}
2950
2951
2952/**
2953 * Allocate and register an MMIO2 region.
2954 *
2955 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2956 * associated with a device. It is also non-shared memory with a permanent
2957 * ring-3 mapping and page backing (presently).
2958 *
2959 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2960 * the VM, in which case we'll drop the base memory pages. Presently we will
2961 * make no attempt to preserve anything that happens to be present in the base
2962 * memory that is replaced, this is of course incorrect but it's too much
2963 * effort.
2964 *
2965 * @returns VBox status code.
2966 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2967 * memory.
2968 * @retval VERR_ALREADY_EXISTS if the region already exists.
2969 *
2970 * @param pVM The cross context VM structure.
2971 * @param pDevIns The device instance owning the region.
2972 * @param iSubDev The sub-device number.
2973 * @param iRegion The region number. If the MMIO2 memory is a PCI
2974 * I/O region this number has to be the number of that
2975 * region. Otherwise it can be any number save
2976 * UINT8_MAX.
2977 * @param cb The size of the region. Must be page aligned.
2978 * @param fFlags Reserved for future use, must be zero.
2979 * @param pszDesc The description.
2980 * @param ppv Where to store the pointer to the ring-3 mapping of
2981 * the memory.
2982 * @param phRegion Where to return the MMIO2 region handle. Optional.
2983 * @thread EMT
2984 */
2985VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2986 uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
2987{
2988 /*
2989 * Validate input.
2990 */
2991 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2992 *ppv = NULL;
2993 if (phRegion)
2994 {
2995 AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
2996 *phRegion = NIL_PGMMMIO2HANDLE;
2997 }
2998 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2999 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3000 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3001 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3002 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3003 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3004 AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
3005 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3006 AssertReturn(cb, VERR_INVALID_PARAMETER);
3007 AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS);
3008
3009 const uint32_t cPages = cb >> PAGE_SHIFT;
3010 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3011 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3012 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
3013
3014 /*
3015 * For the 2nd+ instance, mangle the description string so it's unique.
3016 */
3017 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3018 {
3019 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3020 if (!pszDesc)
3021 return VERR_NO_MEMORY;
3022 }
3023
3024 /*
3025 * Allocate an MMIO2 range ID (not freed on failure).
3026 *
3027 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3028 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3029 */
3030 unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
3031
3032 PGM_LOCK_VOID(pVM);
3033 AssertCompile(PGM_MMIO2_MAX_RANGES < 255);
3034 uint8_t const idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3035 unsigned const cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3036 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3037 {
3038 PGM_UNLOCK(pVM);
3039 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3040 }
3041 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3042 PGM_UNLOCK(pVM);
3043
3044 /*
3045 * Try reserve and allocate the backing memory first as this is what is
3046 * most likely to fail.
3047 */
3048 int rc = VINF_SUCCESS;
3049#ifdef VBOX_WITH_PGM_NEM_MODE
3050 if (!pVM->pgm.s.fNemMode)
3051#endif
3052 rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3053 if (RT_SUCCESS(rc))
3054 {
3055 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3056 if (RT_SUCCESS(rc))
3057 {
3058 void *pvPages;
3059#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3060 RTR0PTR pvPagesR0 = NIL_RTR0PTR;
3061#endif
3062
3063#ifdef VBOX_WITH_PGM_NEM_MODE
3064 if (!pVM->pgm.s.fNemMode)
3065#endif
3066 {
3067#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3068 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
3069#else
3070 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3071#endif
3072 }
3073#ifdef VBOX_WITH_PGM_NEM_MODE
3074 else
3075 {
3076 rc = SUPR3PageAlloc(cPages, &pvPages);
3077 if (RT_SUCCESS(rc))
3078 for (uint32_t i = 0; i < cPages; i++)
3079 paPages[i].Phys = UINT64_C(0x0000fffffffff000);
3080 }
3081#endif
3082 if (RT_SUCCESS(rc))
3083 {
3084 memset(pvPages, 0, cPages * PAGE_SIZE);
3085
3086 /*
3087 * Create the registered MMIO range record for it.
3088 */
3089 PPGMREGMMIO2RANGE pNew;
3090 rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, fFlags, idMmio2, pszDesc, &pNew);
3091 if (RT_SUCCESS(rc))
3092 {
3093 if (phRegion)
3094 *phRegion = idMmio2; /* The ID of the first chunk. */
3095
3096 uint32_t iSrcPage = 0;
3097 uint8_t *pbCurPages = (uint8_t *)pvPages;
3098 for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3099 {
3100 pCur->pvR3 = pbCurPages;
3101#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3102 pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
3103#endif
3104 pCur->RamRange.pvR3 = pbCurPages;
3105
3106 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3107 while (iDstPage-- > 0)
3108 {
3109 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3110 paPages[iDstPage + iSrcPage].Phys,
3111 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3112 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3113 }
3114
3115 /* advance. */
3116 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3117 pbCurPages += pCur->RamRange.cb;
3118 }
3119
3120 RTMemTmpFree(paPages);
3121
3122 /*
3123 * Update the page count stats, link the registration and we're done.
3124 */
3125 pVM->pgm.s.cAllPages += cPages;
3126 pVM->pgm.s.cPrivatePages += cPages;
3127
3128 pgmR3PhysMmio2Link(pVM, pNew);
3129
3130 *ppv = pvPages;
3131 return VINF_SUCCESS;
3132 }
3133
3134 SUPR3PageFreeEx(pvPages, cPages);
3135 }
3136 }
3137 RTMemTmpFree(paPages);
3138 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3139 }
3140 if (pDevIns->iInstance > 0)
3141 MMR3HeapFree((void *)pszDesc);
3142 return rc;
3143}
3144
3145
3146/**
3147 * Deregisters and frees an MMIO2 region.
3148 *
3149 * Any physical access handlers registered for the region must be deregistered
3150 * before calling this function.
3151 *
3152 * @returns VBox status code.
3153 * @param pVM The cross context VM structure.
3154 * @param pDevIns The device instance owning the region.
3155 * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
3156 * regions for the given device is to be deregistered.
3157 */
3158VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3159{
3160 /*
3161 * Validate input.
3162 */
3163 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3164 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3165
3166 /*
3167 * The loop here scanning all registrations will make sure that multi-chunk ranges
3168 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3169 */
3170 PGM_LOCK_VOID(pVM);
3171 int rc = VINF_SUCCESS;
3172 unsigned cFound = 0;
3173 PPGMREGMMIO2RANGE pPrev = NULL;
3174 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3175 while (pCur)
3176 {
3177 uint32_t const fFlags = pCur->fFlags;
3178 if ( pCur->pDevInsR3 == pDevIns
3179 && ( hMmio2 == NIL_PGMMMIO2HANDLE
3180 || pCur->idMmio2 == hMmio2))
3181 {
3182 cFound++;
3183
3184 /*
3185 * Unmap it if it's mapped.
3186 */
3187 if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3188 {
3189 int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
3190 AssertRC(rc2);
3191 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3192 rc = rc2;
3193 }
3194
3195 /*
3196 * Unlink it
3197 */
3198 PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
3199 if (pPrev)
3200 pPrev->pNextR3 = pNext;
3201 else
3202 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3203 pCur->pNextR3 = NULL;
3204
3205 uint8_t idMmio2 = pCur->idMmio2;
3206 Assert(idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3));
3207 if (idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3))
3208 {
3209 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3210 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3211 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3212 }
3213
3214 /*
3215 * Free the memory.
3216 */
3217 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3218#ifdef VBOX_WITH_PGM_NEM_MODE
3219 if (!pVM->pgm.s.fNemMode)
3220#endif
3221 {
3222 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3223 AssertRC(rc2);
3224 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3225 rc = rc2;
3226
3227 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3228 AssertRC(rc2);
3229 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3230 rc = rc2;
3231 }
3232#ifdef VBOX_WITH_PGM_NEM_MODE
3233 else
3234 {
3235 int rc2 = SUPR3PageFree(pCur->pvR3, cPages);
3236 AssertRC(rc2);
3237 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3238 rc = rc2;
3239 }
3240#endif
3241
3242 if (pCur->pPhysHandlerR3)
3243 {
3244 pgmHandlerPhysicalExDestroy(pVM, pCur->pPhysHandlerR3);
3245 pCur->pPhysHandlerR3 = NULL;
3246 }
3247
3248 /* we're leaking hyper memory here if done at runtime. */
3249#ifdef VBOX_STRICT
3250 VMSTATE const enmState = VMR3GetState(pVM);
3251 AssertMsg( enmState == VMSTATE_POWERING_OFF
3252 || enmState == VMSTATE_POWERING_OFF_LS
3253 || enmState == VMSTATE_OFF
3254 || enmState == VMSTATE_OFF_LS
3255 || enmState == VMSTATE_DESTROYING
3256 || enmState == VMSTATE_TERMINATED
3257 || enmState == VMSTATE_CREATING
3258 , ("%s\n", VMR3GetStateName(enmState)));
3259#endif
3260
3261 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3262 {
3263 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
3264 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3265 SUPR3PageFreeEx(pCur, cChunkPages);
3266 }
3267 /*else
3268 {
3269 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3270 AssertRCReturn(rc, rc);
3271 } */
3272
3273
3274 /* update page count stats */
3275 pVM->pgm.s.cAllPages -= cPages;
3276 pVM->pgm.s.cPrivatePages -= cPages;
3277
3278 /* next */
3279 pCur = pNext;
3280 if (hMmio2 != NIL_PGMMMIO2HANDLE)
3281 {
3282 if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3283 break;
3284 hMmio2++;
3285 Assert(pCur->idMmio2 == hMmio2);
3286 Assert(pCur->pDevInsR3 == pDevIns);
3287 Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
3288 }
3289 }
3290 else
3291 {
3292 pPrev = pCur;
3293 pCur = pCur->pNextR3;
3294 }
3295 }
3296 pgmPhysInvalidatePageMapTLB(pVM);
3297 PGM_UNLOCK(pVM);
3298 return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
3299}
3300
3301
3302/**
3303 * Maps a MMIO2 region.
3304 *
3305 * This is typically done when a guest / the bios / state loading changes the
3306 * PCI config. The replacing of base memory has the same restrictions as during
3307 * registration, of course.
3308 *
3309 * @returns VBox status code.
3310 *
3311 * @param pVM The cross context VM structure.
3312 * @param pDevIns The device instance owning the region.
3313 * @param hMmio2 The handle of the region to map.
3314 * @param GCPhys The guest-physical address to be remapped.
3315 */
3316VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3317{
3318 /*
3319 * Validate input.
3320 *
3321 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3322 * happens during VM construction.
3323 */
3324 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3325 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3326 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3327 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3328 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3329 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3330
3331 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3332 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3333 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3334
3335 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3336 RTGCPHYS cbRange = 0;
3337 for (;;)
3338 {
3339 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
3340 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3341 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3342 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3343 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3344 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3345 cbRange += pLastMmio->RamRange.cb;
3346 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3347 break;
3348 pLastMmio = pLastMmio->pNextR3;
3349 }
3350
3351 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3352 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3353
3354 /*
3355 * Find our location in the ram range list, checking for restriction
3356 * we don't bother implementing yet (partially overlapping, multiple
3357 * ram ranges).
3358 */
3359 PGM_LOCK_VOID(pVM);
3360
3361 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3362
3363 bool fRamExists = false;
3364 PPGMRAMRANGE pRamPrev = NULL;
3365 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3366 while (pRam && GCPhysLast >= pRam->GCPhys)
3367 {
3368 if ( GCPhys <= pRam->GCPhysLast
3369 && GCPhysLast >= pRam->GCPhys)
3370 {
3371 /* Completely within? */
3372 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3373 && GCPhysLast <= pRam->GCPhysLast,
3374 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3375 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3376 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3377 PGM_UNLOCK(pVM),
3378 VERR_PGM_RAM_CONFLICT);
3379
3380 /* Check that all the pages are RAM pages. */
3381 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3382 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3383 while (cPagesLeft-- > 0)
3384 {
3385 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3386 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3387 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3388 PGM_UNLOCK(pVM),
3389 VERR_PGM_RAM_CONFLICT);
3390 pPage++;
3391 }
3392
3393 /* There can only be one MMIO/MMIO2 chunk matching here! */
3394 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3395 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3396 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3397 PGM_UNLOCK(pVM),
3398 VERR_PGM_PHYS_MMIO_EX_IPE);
3399
3400 fRamExists = true;
3401 break;
3402 }
3403
3404 /* next */
3405 pRamPrev = pRam;
3406 pRam = pRam->pNextR3;
3407 }
3408 Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3409
3410
3411 /*
3412 * Make the changes.
3413 */
3414 RTGCPHYS GCPhysCur = GCPhys;
3415 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3416 {
3417 pCurMmio->RamRange.GCPhys = GCPhysCur;
3418 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3419 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3420 {
3421 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3422 break;
3423 }
3424 GCPhysCur += pCurMmio->RamRange.cb;
3425 }
3426
3427 if (fRamExists)
3428 {
3429 /*
3430 * Make all the pages in the range MMIO/ZERO pages, freeing any
3431 * RAM pages currently mapped here. This might not be 100% correct
3432 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3433 *
3434 * We replace these MMIO/ZERO pages with real pages in the MMIO2 case.
3435 */
3436 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
3437 Assert(pFirstMmio->pvR3 == pFirstMmio->RamRange.pvR3);
3438 Assert(pFirstMmio->RamRange.pvR3 != NULL);
3439
3440#ifdef VBOX_WITH_PGM_NEM_MODE
3441 /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pRam->pvR3 can't point
3442 both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */
3443 AssertLogRelMsgReturn(!pVM->pgm.s.fNemMode, ("%s at %RGp-%RGp\n", pFirstMmio->RamRange.pszDesc, GCPhys, GCPhysLast),
3444 VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
3445#endif
3446
3447 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, pFirstMmio->RamRange.pvR3);
3448 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3449
3450 /* Replace the pages, freeing all present RAM pages. */
3451 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3452 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3453 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3454 while (cPagesLeft-- > 0)
3455 {
3456 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3457
3458 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3459 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3460 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3461 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3462 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3463 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3464 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3465 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3466 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3467 /* NEM state is set by pgmR3PhysFreePageRange. */
3468
3469 pVM->pgm.s.cZeroPages--;
3470 GCPhys += PAGE_SIZE;
3471 pPageSrc++;
3472 pPageDst++;
3473 }
3474
3475 /* Flush physical page map TLB. */
3476 pgmPhysInvalidatePageMapTLB(pVM);
3477
3478 /* Force a PGM pool flush as guest ram references have been changed. */
3479 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3480 * this internally (not touch mapped mmio while changing the mapping). */
3481 PVMCPU pVCpu = VMMGetCpu(pVM);
3482 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3483 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3484 }
3485 else
3486 {
3487 /*
3488 * No RAM range, insert the ones prepared during registration.
3489 */
3490 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3491 {
3492#ifdef VBOX_WITH_NATIVE_NEM
3493 /* Tell NEM and get the new NEM state for the pages. */
3494 uint8_t u2NemState = 0;
3495 if (VM_IS_NEM_ENABLED(pVM))
3496 {
3497 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, pCurMmio->RamRange.GCPhys,
3498 pCurMmio->RamRange.GCPhysLast - pCurMmio->RamRange.GCPhys + 1,
3499 NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3500 | (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3501 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0),
3502 NULL /*pvRam*/, pCurMmio->RamRange.pvR3,
3503 &u2NemState, &pCurMmio->RamRange.uNemRange);
3504 AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3505 }
3506#endif
3507
3508 /* Clear the tracking data of pages we're going to reactivate. */
3509 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3510 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3511 while (cPagesLeft-- > 0)
3512 {
3513 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3514 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3515#ifdef VBOX_WITH_NATIVE_NEM
3516 PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState);
3517#endif
3518 pPageSrc++;
3519 }
3520
3521 /* link in the ram range */
3522 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3523
3524 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3525 {
3526 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3527 break;
3528 }
3529 pRamPrev = &pCurMmio->RamRange;
3530 }
3531 }
3532
3533 /*
3534 * If the range have dirty page monitoring enabled, enable that.
3535 *
3536 * We ignore failures here for now because if we fail, the whole mapping
3537 * will have to be reversed and we'll end up with nothing at all on the
3538 * screen and a grumpy guest, whereas if we just go on, we'll only have
3539 * visual distortions to gripe about. There will be something in the
3540 * release log.
3541 */
3542 if ( pFirstMmio->pPhysHandlerR3
3543 && (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3544 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstMmio);
3545
3546 /*
3547 * We're good, set the flags and invalid the mapping TLB.
3548 */
3549 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3550 {
3551 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
3552 if (fRamExists)
3553 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
3554 else
3555 pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
3556 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3557 break;
3558 }
3559 pgmPhysInvalidatePageMapTLB(pVM);
3560
3561#ifdef VBOX_WITH_NATIVE_NEM
3562 /*
3563 * Late NEM notification.
3564 */
3565 if (VM_IS_NEM_ENABLED(pVM))
3566 {
3567 int rc;
3568 uint32_t fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2;
3569 if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES)
3570 fNemFlags |= NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES;
3571 if (fRamExists)
3572 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3573 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, pFirstMmio->pvR3,
3574 NULL /*puNemRange*/);
3575 else
3576 {
3577 rc = VINF_SUCCESS;
3578 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3579 {
3580 rc = NEMR3NotifyPhysMmioExMapLate(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3581 NULL, pCurMmio->RamRange.pvR3, &pCurMmio->RamRange.uNemRange);
3582 if ((pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) || RT_FAILURE(rc))
3583 break;
3584 }
3585 }
3586 AssertLogRelRCReturnStmt(rc, PGMR3PhysMmio2Unmap(pVM, pDevIns, hMmio2, GCPhys); PGM_UNLOCK(pVM), rc);
3587 }
3588#endif
3589
3590 PGM_UNLOCK(pVM);
3591
3592 return VINF_SUCCESS;
3593}
3594
3595
3596/**
3597 * Unmaps an MMIO2 region.
3598 *
3599 * This is typically done when a guest / the bios / state loading changes the
3600 * PCI config. The replacing of base memory has the same restrictions as during
3601 * registration, of course.
3602 */
3603VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3604{
3605 /*
3606 * Validate input
3607 */
3608 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3609 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3610 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3611 if (GCPhys != NIL_RTGCPHYS)
3612 {
3613 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3614 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3615 }
3616
3617 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3618 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3619 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3620
3621 int rc = PGM_LOCK(pVM);
3622 AssertRCReturn(rc, rc);
3623
3624 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3625 RTGCPHYS cbRange = 0;
3626 for (;;)
3627 {
3628 AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3629 AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, PGM_UNLOCK(pVM), VERR_INVALID_PARAMETER);
3630 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3631 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3632 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3633 cbRange += pLastMmio->RamRange.cb;
3634 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3635 break;
3636 pLastMmio = pLastMmio->pNextR3;
3637 }
3638
3639 Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
3640 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3641
3642 uint16_t const fOldFlags = pFirstMmio->fFlags;
3643 AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3644
3645 /*
3646 * If monitoring dirty pages, we must deregister the handlers first.
3647 */
3648 if ( pFirstMmio->pPhysHandlerR3
3649 && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3650 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstMmio);
3651
3652 /*
3653 * Unmap it.
3654 */
3655 int rcRet = VINF_SUCCESS;
3656#ifdef VBOX_WITH_NATIVE_NEM
3657 uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3658 | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3659 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
3660#endif
3661 if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
3662 {
3663 /*
3664 * We've replaced RAM, replace with zero pages.
3665 *
3666 * Note! This is where we might differ a little from a real system, because
3667 * it's likely to just show the RAM pages as they were before the
3668 * MMIO/MMIO2 region was mapped here.
3669 */
3670 /* Only one chunk allowed when overlapping! */
3671 Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
3672
3673 /* Restore the RAM pages we've replaced. */
3674 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3675 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3676 pRam = pRam->pNextR3;
3677
3678 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3679 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3680 pVM->pgm.s.cZeroPages += cPagesLeft; /** @todo not correct for NEM mode */
3681
3682#ifdef VBOX_WITH_NATIVE_NEM
3683 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. Note! we cannot be here in simple memory mode, see mapping function. */
3684 {
3685 uint8_t u2State = UINT8_MAX;
3686 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pFirstMmio->RamRange.GCPhys, pFirstMmio->RamRange.cb,
3687 fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3688 pRam->pvR3
3689 ? (uint8_t *)pRam->pvR3 + pFirstMmio->RamRange.GCPhys - pRam->GCPhys : NULL,
3690 pFirstMmio->pvR3, &u2State);
3691 AssertRCStmt(rc, rcRet = rc);
3692 if (u2State != UINT8_MAX)
3693 pgmPhysSetNemStateForPages(pPageDst, cPagesLeft, u2State);
3694 }
3695#endif
3696
3697 while (cPagesLeft-- > 0)
3698 {
3699 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3700 pPageDst++;
3701 }
3702
3703 /* Flush physical page map TLB. */
3704 pgmPhysInvalidatePageMapTLB(pVM);
3705
3706 /* Update range state. */
3707 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3708 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3709 pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3710 }
3711 else
3712 {
3713 /*
3714 * Unlink the chunks related to the MMIO/MMIO2 region.
3715 */
3716 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3717 {
3718#ifdef VBOX_WITH_NATIVE_NEM
3719 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */
3720 {
3721 uint8_t u2State = UINT8_MAX;
3722 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3723 NULL, pCurMmio->pvR3, &u2State);
3724 AssertRCStmt(rc, rcRet = rc);
3725 if (u2State != UINT8_MAX)
3726 pgmPhysSetNemStateForPages(pCurMmio->RamRange.aPages, pCurMmio->RamRange.cb >> PAGE_SHIFT, u2State);
3727 }
3728#endif
3729 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3730 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3731 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3732 pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3733 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3734 break;
3735 }
3736 }
3737
3738 /* Force a PGM pool flush as guest ram references have been changed. */
3739 /** @todo not entirely SMP safe; assuming for now the guest takes care
3740 * of this internally (not touch mapped mmio while changing the
3741 * mapping). */
3742 PVMCPU pVCpu = VMMGetCpu(pVM);
3743 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3744 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3745
3746 pgmPhysInvalidatePageMapTLB(pVM);
3747 pgmPhysInvalidRamRangeTlbs(pVM);
3748
3749 PGM_UNLOCK(pVM);
3750 return rcRet;
3751}
3752
3753
3754/**
3755 * Reduces the mapping size of a MMIO2 region.
3756 *
3757 * This is mainly for dealing with old saved states after changing the default
3758 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3759 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3760 *
3761 * The region must not currently be mapped when making this call. The VM state
3762 * must be state restore or VM construction.
3763 *
3764 * @returns VBox status code.
3765 * @param pVM The cross context VM structure.
3766 * @param pDevIns The device instance owning the region.
3767 * @param hMmio2 The handle of the region to reduce.
3768 * @param cbRegion The new mapping size.
3769 */
3770VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
3771{
3772 /*
3773 * Validate input
3774 */
3775 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3776 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3777 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3778 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3779 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3780 VMSTATE enmVmState = VMR3GetState(pVM);
3781 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3782 || enmVmState == VMSTATE_LOADING,
3783 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3784 VERR_VM_INVALID_VM_STATE);
3785
3786 int rc = PGM_LOCK(pVM);
3787 AssertRCReturn(rc, rc);
3788
3789 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3790 if (pFirstMmio)
3791 {
3792 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3793 if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
3794 {
3795 /*
3796 * NOTE! Current implementation does not support multiple ranges.
3797 * Implement when there is a real world need and thus a testcase.
3798 */
3799 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3800 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3801 rc = VERR_NOT_SUPPORTED);
3802 if (RT_SUCCESS(rc))
3803 {
3804 /*
3805 * Make the change.
3806 */
3807 Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3808 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3809
3810 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3811 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3812 rc = VERR_OUT_OF_RANGE);
3813 if (RT_SUCCESS(rc))
3814 {
3815 pFirstMmio->RamRange.cb = cbRegion;
3816 }
3817 }
3818 }
3819 else
3820 rc = VERR_WRONG_ORDER;
3821 }
3822 else
3823 rc = VERR_NOT_FOUND;
3824
3825 PGM_UNLOCK(pVM);
3826 return rc;
3827}
3828
3829
3830/**
3831 * Validates @a hMmio2, making sure it belongs to @a pDevIns.
3832 *
3833 * @returns VBox status code.
3834 * @param pVM The cross context VM structure.
3835 * @param pDevIns The device which allegedly owns @a hMmio2.
3836 * @param hMmio2 The handle to validate.
3837 */
3838VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3839{
3840 /*
3841 * Validate input
3842 */
3843 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3844 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
3845
3846 /*
3847 * Just do this the simple way. No need for locking as this is only taken at
3848 */
3849 PGM_LOCK_VOID(pVM);
3850 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3851 PGM_UNLOCK(pVM);
3852 AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
3853 AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
3854 return VINF_SUCCESS;
3855}
3856
3857
3858/**
3859 * Gets the mapping address of an MMIO2 region.
3860 *
3861 * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
3862 *
3863 * @param pVM The cross context VM structure.
3864 * @param pDevIns The device owning the MMIO2 handle.
3865 * @param hMmio2 The region handle.
3866 */
3867VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3868{
3869 AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
3870
3871 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3872 AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
3873
3874 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3875 return pFirstRegMmio->RamRange.GCPhys;
3876 return NIL_RTGCPHYS;
3877}
3878
3879
3880/**
3881 * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap.
3882 *
3883 * Called holding the PGM lock.
3884 */
3885static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
3886 void *pvBitmap, size_t cbBitmap)
3887{
3888 /*
3889 * Continue validation.
3890 */
3891 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3892 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
3893 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3894 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK),
3895 VERR_INVALID_FUNCTION);
3896 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
3897
3898 RTGCPHYS cbTotal = 0;
3899 uint16_t fTotalDirty = 0;
3900 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
3901 {
3902 cbTotal += pCur->RamRange.cb; /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */
3903 fTotalDirty |= pCur->fFlags;
3904 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3905 break;
3906 pCur = pCur->pNextR3;
3907 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
3908 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3909 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES,
3910 VERR_INTERNAL_ERROR_4);
3911 }
3912 size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, PAGE_SIZE * 64, RTGCPHYS) / PAGE_SIZE / 8;
3913
3914 if (cbBitmap)
3915 {
3916 AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER);
3917 AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER);
3918 AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER);
3919 }
3920
3921 /*
3922 * Do the work.
3923 */
3924 int rc = VINF_SUCCESS;
3925 if (pvBitmap)
3926 {
3927#ifdef VBOX_WITH_PGM_NEM_MODE
3928 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
3929 {
3930 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
3931 uint8_t *pbBitmap = (uint8_t *)pvBitmap;
3932 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3933 {
3934 size_t const cbBitmapChunk = pCur->RamRange.cb / PAGE_SIZE / 8;
3935 Assert((RTGCPHYS)cbBitmapChunk * PAGE_SIZE * 8 == pCur->RamRange.cb);
3936 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
3937 pCur->RamRange.uNemRange, pbBitmap, cbBitmapChunk);
3938 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3939 rc = rc2;
3940 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3941 break;
3942 pbBitmap += pCur->RamRange.cb / PAGE_SIZE / 8;
3943 }
3944 }
3945 else
3946#endif
3947 if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY)
3948 {
3949 if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3950 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3951 {
3952 /*
3953 * Reset each chunk, gathering dirty bits.
3954 */
3955 RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */
3956 uint32_t iPageNo = 0;
3957 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3958 {
3959 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3960 {
3961 int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pCur->RamRange.GCPhys, pvBitmap, iPageNo);
3962 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3963 rc = rc2;
3964 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3965 }
3966 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3967 break;
3968 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3969 }
3970 }
3971 else
3972 {
3973 /*
3974 * If not mapped or tracking is disabled, we return the
3975 * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot
3976 * get more accurate data than that after unmapping or disabling.
3977 */
3978 RT_BZERO(pvBitmap, cbBitmap);
3979 uint32_t iPageNo = 0;
3980 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3981 {
3982 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3983 {
3984 ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pCur->RamRange.cb >> PAGE_SHIFT));
3985 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3986 }
3987 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3988 break;
3989 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3990 }
3991 }
3992 }
3993 /*
3994 * No dirty chunks.
3995 */
3996 else
3997 RT_BZERO(pvBitmap, cbBitmap);
3998 }
3999 /*
4000 * No bitmap. Reset the region if tracking is currently enabled.
4001 */
4002 else if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4003 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4004 {
4005#ifdef VBOX_WITH_PGM_NEM_MODE
4006 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4007 {
4008 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4009 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4010 {
4011 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
4012 pCur->RamRange.uNemRange, NULL, 0);
4013 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4014 rc = rc2;
4015 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4016 break;
4017 }
4018 }
4019 else
4020#endif
4021 {
4022 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4023 {
4024 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
4025 int rc2 = PGMHandlerPhysicalReset(pVM, pCur->RamRange.GCPhys);
4026 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4027 rc = rc2;
4028 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4029 break;
4030 }
4031 }
4032 }
4033
4034 return rc;
4035}
4036
4037
4038/**
4039 * Queries the dirty page bitmap and resets the monitoring.
4040 *
4041 * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when
4042 * creating the range for this to work.
4043 *
4044 * @returns VBox status code.
4045 * @retval VERR_INVALID_FUNCTION if not created using
4046 * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES.
4047 * @param pVM The cross context VM structure.
4048 * @param pDevIns The device owning the MMIO2 handle.
4049 * @param hMmio2 The region handle.
4050 * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored
4051 * when @a cbBitmap is zero.
4052 * @param cbBitmap The size of the bitmap. Must be the size of the whole
4053 * MMIO2 range, rounded up to the nearest 8 bytes.
4054 * When zero only a reset is done.
4055 */
4056VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
4057 void *pvBitmap, size_t cbBitmap)
4058{
4059 /*
4060 * Do some basic validation before grapping the PGM lock and continuing.
4061 */
4062 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4063 AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER);
4064 int rc = PGM_LOCK(pVM);
4065 if (RT_SUCCESS(rc))
4066 {
4067 STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4068 rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap);
4069 STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4070 PGM_UNLOCK(pVM);
4071 }
4072 return rc;
4073}
4074
4075/**
4076 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking
4077 *
4078 * Called owning the PGM lock.
4079 */
4080static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4081{
4082 /*
4083 * Continue validation.
4084 */
4085 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4086 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
4087 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4088 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)
4089 , VERR_INVALID_FUNCTION);
4090 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
4091
4092#ifdef VBOX_WITH_PGM_NEM_MODE
4093 /*
4094 * This is a nop if NEM is responsible for doing the tracking, we simply
4095 * leave the tracking on all the time there.
4096 */
4097 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4098 {
4099 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4100 return VINF_SUCCESS;
4101 }
4102#endif
4103
4104 /*
4105 * Anyting needing doing?
4106 */
4107 if (fEnabled != RT_BOOL(pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4108 {
4109 LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4110
4111 /*
4112 * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag.
4113 */
4114 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
4115 {
4116 if (fEnabled)
4117 pCur->fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4118 else
4119 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4120 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4121 break;
4122 pCur = pCur->pNextR3;
4123 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
4124 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4125 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
4126 , VERR_INTERNAL_ERROR_4);
4127 }
4128
4129 /*
4130 * Enable/disable handlers if currently mapped.
4131 *
4132 * We ignore status codes here as we've already changed the flags and
4133 * returning a failure status now would be confusing. Besides, the two
4134 * functions will continue past failures. As argued in the mapping code,
4135 * it's in the release log.
4136 */
4137 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
4138 {
4139 if (fEnabled)
4140 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstRegMmio);
4141 else
4142 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstRegMmio);
4143 }
4144 }
4145 else
4146 LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4147
4148 return VINF_SUCCESS;
4149}
4150
4151
4152/**
4153 * Controls the dirty page tracking for an MMIO2 range.
4154 *
4155 * @returns VBox status code.
4156 * @param pVM The cross context VM structure.
4157 * @param pDevIns The device owning the MMIO2 memory.
4158 * @param hMmio2 The handle of the region.
4159 * @param fEnabled The new tracking state.
4160 */
4161VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4162{
4163 /*
4164 * Do some basic validation before grapping the PGM lock and continuing.
4165 */
4166 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4167 int rc = PGM_LOCK(pVM);
4168 if (RT_SUCCESS(rc))
4169 {
4170 rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled);
4171 PGM_UNLOCK(pVM);
4172 }
4173 return rc;
4174}
4175
4176
4177/**
4178 * Changes the region number of an MMIO2 region.
4179 *
4180 * This is only for dealing with save state issues, nothing else.
4181 *
4182 * @return VBox status code.
4183 *
4184 * @param pVM The cross context VM structure.
4185 * @param pDevIns The device owning the MMIO2 memory.
4186 * @param hMmio2 The handle of the region.
4187 * @param iNewRegion The new region index.
4188 *
4189 * @thread EMT(0)
4190 * @sa @bugref{9359}
4191 */
4192VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
4193{
4194 /*
4195 * Validate input.
4196 */
4197 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4198 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
4199 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4200 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
4201 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4202
4203 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
4204
4205 int rc = PGM_LOCK(pVM);
4206 AssertRCReturn(rc, rc);
4207
4208 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4209 AssertReturnStmt(pFirstRegMmio, PGM_UNLOCK(pVM), VERR_NOT_FOUND);
4210 AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
4211 PGM_UNLOCK(pVM), VERR_RESOURCE_IN_USE);
4212
4213 /*
4214 * Make the change.
4215 */
4216 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
4217
4218 PGM_UNLOCK(pVM);
4219 return VINF_SUCCESS;
4220}
4221
4222
4223
4224/*********************************************************************************************************************************
4225* ROM *
4226*********************************************************************************************************************************/
4227
4228/**
4229 * Worker for PGMR3PhysRomRegister.
4230 *
4231 * This is here to simplify lock management, i.e. the caller does all the
4232 * locking and we can simply return without needing to remember to unlock
4233 * anything first.
4234 *
4235 * @returns VBox status code.
4236 * @param pVM The cross context VM structure.
4237 * @param pDevIns The device instance owning the ROM.
4238 * @param GCPhys First physical address in the range.
4239 * Must be page aligned!
4240 * @param cb The size of the range (in bytes).
4241 * Must be page aligned!
4242 * @param pvBinary Pointer to the binary data backing the ROM image.
4243 * @param cbBinary The size of the binary data pvBinary points to.
4244 * This must be less or equal to @a cb.
4245 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4246 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4247 * @param pszDesc Pointer to description string. This must not be freed.
4248 */
4249static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4250 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4251{
4252 /*
4253 * Validate input.
4254 */
4255 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4256 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4257 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4258 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4259 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4260 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4261 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4262 AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
4263 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4264
4265 const uint32_t cPages = cb >> PAGE_SHIFT;
4266
4267 /*
4268 * Find the ROM location in the ROM list first.
4269 */
4270 PPGMROMRANGE pRomPrev = NULL;
4271 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4272 while (pRom && GCPhysLast >= pRom->GCPhys)
4273 {
4274 if ( GCPhys <= pRom->GCPhysLast
4275 && GCPhysLast >= pRom->GCPhys)
4276 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4277 GCPhys, GCPhysLast, pszDesc,
4278 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4279 VERR_PGM_RAM_CONFLICT);
4280 /* next */
4281 pRomPrev = pRom;
4282 pRom = pRom->pNextR3;
4283 }
4284
4285 /*
4286 * Find the RAM location and check for conflicts.
4287 *
4288 * Conflict detection is a bit different than for RAM registration since a
4289 * ROM can be located within a RAM range. So, what we have to check for is
4290 * other memory types (other than RAM that is) and that we don't span more
4291 * than one RAM range (lazy).
4292 */
4293 bool fRamExists = false;
4294 PPGMRAMRANGE pRamPrev = NULL;
4295 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4296 while (pRam && GCPhysLast >= pRam->GCPhys)
4297 {
4298 if ( GCPhys <= pRam->GCPhysLast
4299 && GCPhysLast >= pRam->GCPhys)
4300 {
4301 /* completely within? */
4302 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4303 && GCPhysLast <= pRam->GCPhysLast,
4304 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4305 GCPhys, GCPhysLast, pszDesc,
4306 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4307 VERR_PGM_RAM_CONFLICT);
4308 fRamExists = true;
4309 break;
4310 }
4311
4312 /* next */
4313 pRamPrev = pRam;
4314 pRam = pRam->pNextR3;
4315 }
4316 if (fRamExists)
4317 {
4318 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4319 uint32_t cPagesLeft = cPages;
4320 while (cPagesLeft-- > 0)
4321 {
4322 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4323 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4324 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4325 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4326 Assert(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM));
4327 pPage++;
4328 }
4329 }
4330
4331 /*
4332 * Update the base memory reservation if necessary.
4333 */
4334 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4335 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4336 cExtraBaseCost += cPages;
4337 if (cExtraBaseCost)
4338 {
4339 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4340 if (RT_FAILURE(rc))
4341 return rc;
4342 }
4343
4344#ifdef VBOX_WITH_NATIVE_NEM
4345 /*
4346 * Early NEM notification before we've made any changes or anything.
4347 */
4348 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4349 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4350 uint8_t u2NemState = UINT8_MAX;
4351 if (VM_IS_NEM_ENABLED(pVM))
4352 {
4353 int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cPages << PAGE_SHIFT,
4354 fRamExists ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhys) : NULL,
4355 fNemNotify, &u2NemState);
4356 AssertLogRelRCReturn(rc, rc);
4357 }
4358#endif
4359
4360 /*
4361 * Allocate memory for the virgin copy of the RAM. In simplified memory mode,
4362 * we allocate memory for any ad-hoc RAM range and for shadow pages.
4363 */
4364 PGMMALLOCATEPAGESREQ pReq = NULL;
4365#ifdef VBOX_WITH_PGM_NEM_MODE
4366 void *pvRam = NULL;
4367 void *pvAlt = NULL;
4368 if (pVM->pgm.s.fNemMode)
4369 {
4370 if (!fRamExists)
4371 {
4372 int rc = SUPR3PageAlloc(cPages, &pvRam);
4373 if (RT_FAILURE(rc))
4374 return rc;
4375 }
4376 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4377 {
4378 int rc = SUPR3PageAlloc(cPages, &pvAlt);
4379 if (RT_FAILURE(rc))
4380 {
4381 if (pvRam)
4382 SUPR3PageFree(pvRam, cPages);
4383 return rc;
4384 }
4385 }
4386 }
4387 else
4388#endif
4389 {
4390 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4391 AssertRCReturn(rc, rc);
4392
4393 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4394 {
4395 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4396 pReq->aPages[iPage].fZeroed = false;
4397 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4398 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4399 }
4400
4401 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4402 if (RT_FAILURE(rc))
4403 {
4404 GMMR3AllocatePagesCleanup(pReq);
4405 return rc;
4406 }
4407 }
4408
4409 /*
4410 * Allocate the new ROM range and RAM range (if necessary).
4411 */
4412 PPGMROMRANGE pRomNew;
4413 int rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4414 if (RT_SUCCESS(rc))
4415 {
4416 PPGMRAMRANGE pRamNew = NULL;
4417 if (!fRamExists)
4418 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4419 if (RT_SUCCESS(rc))
4420 {
4421 /*
4422 * Initialize and insert the RAM range (if required).
4423 */
4424 uint32_t const idxFirstRamPage = fRamExists ? (GCPhys - pRam->GCPhys) >> PAGE_SHIFT : 0;
4425 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4426 if (!fRamExists)
4427 {
4428 /* New RAM range. */
4429 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4430 pRamNew->GCPhys = GCPhys;
4431 pRamNew->GCPhysLast = GCPhysLast;
4432 pRamNew->cb = cb;
4433 pRamNew->pszDesc = pszDesc;
4434 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4435 pRamNew->pvR3 = NULL;
4436 pRamNew->paLSPages = NULL;
4437
4438 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4439#ifdef VBOX_WITH_PGM_NEM_MODE
4440 if (pVM->pgm.s.fNemMode)
4441 {
4442 AssertPtr(pvRam); Assert(pReq == NULL);
4443 pRamNew->pvR3 = pvRam;
4444 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4445 {
4446 PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4447 PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED);
4448 pRomPage->Virgin = *pRamPage;
4449 }
4450 }
4451 else
4452#endif
4453 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4454 {
4455 PGM_PAGE_INIT(pRamPage,
4456 pReq->aPages[iPage].HCPhysGCPhys,
4457 pReq->aPages[iPage].idPage,
4458 PGMPAGETYPE_ROM,
4459 PGM_PAGE_STATE_ALLOCATED);
4460
4461 pRomPage->Virgin = *pRamPage;
4462 }
4463
4464 pVM->pgm.s.cAllPages += cPages;
4465 pVM->pgm.s.cPrivatePages += cPages;
4466 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4467 }
4468 else
4469 {
4470 /* Existing RAM range. */
4471 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4472#ifdef VBOX_WITH_PGM_NEM_MODE
4473 if (pVM->pgm.s.fNemMode)
4474 {
4475 Assert(pvRam == NULL); Assert(pReq == NULL);
4476 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4477 {
4478 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4479 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4480 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4481 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4482 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4483 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4484 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4485 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4486
4487 pRomPage->Virgin = *pRamPage;
4488 }
4489 }
4490 else
4491#endif
4492 {
4493 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4494 {
4495 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4496 PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys);
4497 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4498 PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage);
4499 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4500 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4501 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4502
4503 pRomPage->Virgin = *pRamPage;
4504 }
4505 pVM->pgm.s.cZeroPages -= cPages;
4506 pVM->pgm.s.cPrivatePages += cPages;
4507 }
4508 pRamNew = pRam;
4509 }
4510
4511#ifdef VBOX_WITH_NATIVE_NEM
4512 /* Set the NEM state of the pages if needed. */
4513 if (u2NemState != UINT8_MAX)
4514 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4515#endif
4516
4517 /* Flush physical page map TLB. */
4518 pgmPhysInvalidatePageMapTLB(pVM);
4519
4520 /*
4521 * Register the ROM access handler.
4522 */
4523 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4524 pRomNew, MMHyperCCToR0(pVM, pRomNew), NIL_RTRCPTR, pszDesc);
4525 if (RT_SUCCESS(rc))
4526 {
4527 /*
4528 * Copy the image over to the virgin pages.
4529 * This must be done after linking in the RAM range.
4530 */
4531 size_t cbBinaryLeft = cbBinary;
4532 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4533 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4534 {
4535 void *pvDstPage;
4536 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4537 if (RT_FAILURE(rc))
4538 {
4539 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4540 break;
4541 }
4542 if (cbBinaryLeft >= PAGE_SIZE)
4543 {
4544 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4545 cbBinaryLeft -= PAGE_SIZE;
4546 }
4547 else
4548 {
4549 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4550 if (cbBinaryLeft > 0)
4551 {
4552 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4553 cbBinaryLeft = 0;
4554 }
4555 }
4556 }
4557 if (RT_SUCCESS(rc))
4558 {
4559 /*
4560 * Initialize the ROM range.
4561 * Note that the Virgin member of the pages has already been initialized above.
4562 */
4563 pRomNew->GCPhys = GCPhys;
4564 pRomNew->GCPhysLast = GCPhysLast;
4565 pRomNew->cb = cb;
4566 pRomNew->fFlags = fFlags;
4567 pRomNew->idSavedState = UINT8_MAX;
4568 pRomNew->cbOriginal = cbBinary;
4569 pRomNew->pszDesc = pszDesc;
4570#ifdef VBOX_WITH_PGM_NEM_MODE
4571 pRomNew->pbR3Alternate = (uint8_t *)pvAlt;
4572#endif
4573 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4574 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4575 if (pRomNew->pvOriginal)
4576 {
4577 for (unsigned iPage = 0; iPage < cPages; iPage++)
4578 {
4579 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4580 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4581#ifdef VBOX_WITH_PGM_NEM_MODE
4582 if (pVM->pgm.s.fNemMode)
4583 PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4584 PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED);
4585 else
4586#endif
4587 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4588 }
4589
4590 /* update the page count stats for the shadow pages. */
4591 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4592 {
4593#ifdef VBOX_WITH_PGM_NEM_MODE
4594 if (pVM->pgm.s.fNemMode)
4595 pVM->pgm.s.cPrivatePages += cPages;
4596 else
4597#endif
4598 pVM->pgm.s.cZeroPages += cPages;
4599 pVM->pgm.s.cAllPages += cPages;
4600 }
4601
4602 /*
4603 * Insert the ROM range, tell REM and return successfully.
4604 */
4605 pRomNew->pNextR3 = pRom;
4606 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4607
4608 if (pRomPrev)
4609 {
4610 pRomPrev->pNextR3 = pRomNew;
4611 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4612 }
4613 else
4614 {
4615 pVM->pgm.s.pRomRangesR3 = pRomNew;
4616 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4617 }
4618
4619 pgmPhysInvalidatePageMapTLB(pVM);
4620#ifdef VBOX_WITH_PGM_NEM_MODE
4621 if (!pVM->pgm.s.fNemMode)
4622#endif
4623 GMMR3AllocatePagesCleanup(pReq);
4624
4625#ifdef VBOX_WITH_NATIVE_NEM
4626 /*
4627 * Notify NEM again.
4628 */
4629 if (VM_IS_NEM_ENABLED(pVM))
4630 {
4631 u2NemState = UINT8_MAX;
4632 rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamNew, GCPhys),
4633 fNemNotify, &u2NemState);
4634 if (u2NemState != UINT8_MAX)
4635 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4636 if (RT_SUCCESS(rc))
4637 return rc;
4638 }
4639 else
4640#endif
4641 return rc;
4642
4643 /*
4644 * bail out
4645 */
4646#ifdef VBOX_WITH_NATIVE_NEM
4647 /* unlink */
4648 if (pRomPrev)
4649 {
4650 pRomPrev->pNextR3 = pRom;
4651 pRomPrev->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4652 }
4653 else
4654 {
4655 pVM->pgm.s.pRomRangesR3 = pRom;
4656 pVM->pgm.s.pRomRangesR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4657 }
4658
4659 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4660 {
4661# ifdef VBOX_WITH_PGM_NEM_MODE
4662 if (pVM->pgm.s.fNemMode)
4663 pVM->pgm.s.cPrivatePages -= cPages;
4664 else
4665# endif
4666 pVM->pgm.s.cZeroPages -= cPages;
4667 pVM->pgm.s.cAllPages -= cPages;
4668 }
4669#endif
4670 }
4671 else
4672 rc = VERR_NO_MEMORY;
4673 }
4674
4675 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4676 AssertRC(rc2);
4677 }
4678
4679 if (!fRamExists)
4680 {
4681 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4682 MMHyperFree(pVM, pRamNew);
4683 }
4684 else
4685 {
4686 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4687#ifdef VBOX_WITH_PGM_NEM_MODE
4688 if (pVM->pgm.s.fNemMode)
4689 {
4690 Assert(pvRam == NULL); Assert(pReq == NULL);
4691 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4692 {
4693 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4694 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4695 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4696 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM);
4697 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4698 }
4699 }
4700 else
4701#endif
4702 {
4703 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4704 PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM);
4705 pVM->pgm.s.cZeroPages += cPages;
4706 pVM->pgm.s.cPrivatePages -= cPages;
4707 }
4708 }
4709 }
4710 MMHyperFree(pVM, pRomNew);
4711 }
4712
4713 /** @todo Purge the mapping cache or something... */
4714#ifdef VBOX_WITH_PGM_NEM_MODE
4715 if (pVM->pgm.s.fNemMode)
4716 {
4717 Assert(!pReq);
4718 if (pvRam)
4719 SUPR3PageFree(pvRam, cPages);
4720 if (pvAlt)
4721 SUPR3PageFree(pvAlt, cPages);
4722 }
4723 else
4724#endif
4725 {
4726 GMMR3FreeAllocatedPages(pVM, pReq);
4727 GMMR3AllocatePagesCleanup(pReq);
4728 }
4729 return rc;
4730}
4731
4732
4733/**
4734 * Registers a ROM image.
4735 *
4736 * Shadowed ROM images requires double the amount of backing memory, so,
4737 * don't use that unless you have to. Shadowing of ROM images is process
4738 * where we can select where the reads go and where the writes go. On real
4739 * hardware the chipset provides means to configure this. We provide
4740 * PGMR3PhysProtectROM() for this purpose.
4741 *
4742 * A read-only copy of the ROM image will always be kept around while we
4743 * will allocate RAM pages for the changes on demand (unless all memory
4744 * is configured to be preallocated).
4745 *
4746 * @returns VBox status code.
4747 * @param pVM The cross context VM structure.
4748 * @param pDevIns The device instance owning the ROM.
4749 * @param GCPhys First physical address in the range.
4750 * Must be page aligned!
4751 * @param cb The size of the range (in bytes).
4752 * Must be page aligned!
4753 * @param pvBinary Pointer to the binary data backing the ROM image.
4754 * @param cbBinary The size of the binary data pvBinary points to.
4755 * This must be less or equal to @a cb.
4756 * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
4757 * @param pszDesc Pointer to description string. This must not be freed.
4758 *
4759 * @remark There is no way to remove the rom, automatically on device cleanup or
4760 * manually from the device yet. This isn't difficult in any way, it's
4761 * just not something we expect to be necessary for a while.
4762 */
4763VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4764 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4765{
4766 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4767 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4768 PGM_LOCK_VOID(pVM);
4769 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4770 PGM_UNLOCK(pVM);
4771 return rc;
4772}
4773
4774
4775/**
4776 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4777 * that the virgin part is untouched.
4778 *
4779 * This is done after the normal memory has been cleared.
4780 *
4781 * ASSUMES that the caller owns the PGM lock.
4782 *
4783 * @param pVM The cross context VM structure.
4784 */
4785int pgmR3PhysRomReset(PVM pVM)
4786{
4787 PGM_LOCK_ASSERT_OWNER(pVM);
4788 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4789 {
4790 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4791
4792 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4793 {
4794 /*
4795 * Reset the physical handler.
4796 */
4797 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4798 AssertRCReturn(rc, rc);
4799
4800 /*
4801 * What we do with the shadow pages depends on the memory
4802 * preallocation option. If not enabled, we'll just throw
4803 * out all the dirty pages and replace them by the zero page.
4804 */
4805#ifdef VBOX_WITH_PGM_NEM_MODE
4806 if (pVM->pgm.s.fNemMode)
4807 {
4808 /* Clear all the shadow pages (currently using alternate backing). */
4809 RT_BZERO(pRom->pbR3Alternate, pRom->cb);
4810 }
4811 else
4812#endif
4813 if (!pVM->pgm.s.fRamPreAlloc)
4814 {
4815 /* Free the dirty pages. */
4816 uint32_t cPendingPages = 0;
4817 PGMMFREEPAGESREQ pReq;
4818 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4819 AssertRCReturn(rc, rc);
4820
4821 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4822 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4823 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4824 {
4825 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4826 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4827 pRom->GCPhys + (iPage << PAGE_SHIFT),
4828 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4829 AssertLogRelRCReturn(rc, rc);
4830 }
4831
4832 if (cPendingPages)
4833 {
4834 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4835 AssertLogRelRCReturn(rc, rc);
4836 }
4837 GMMR3FreePagesCleanup(pReq);
4838 }
4839 else
4840 {
4841 /* clear all the shadow pages. */
4842 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4843 {
4844 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4845 continue;
4846 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4847 void *pvDstPage;
4848 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4849 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4850 if (RT_FAILURE(rc))
4851 break;
4852 ASMMemZeroPage(pvDstPage);
4853 }
4854 AssertRCReturn(rc, rc);
4855 }
4856 }
4857
4858 /*
4859 * Restore the original ROM pages after a saved state load.
4860 * Also, in strict builds check that ROM pages remain unmodified.
4861 */
4862#ifndef VBOX_STRICT
4863 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4864#endif
4865 {
4866 size_t cbSrcLeft = pRom->cbOriginal;
4867 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4868 uint32_t cRestored = 0;
4869 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4870 {
4871 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4872 PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys);
4873 void const *pvDstPage = NULL;
4874 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage);
4875 if (RT_FAILURE(rc))
4876 break;
4877
4878 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4879 {
4880 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4881 {
4882 void *pvDstPageW = NULL;
4883 rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW);
4884 AssertLogRelRCReturn(rc, rc);
4885 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4886 cRestored++;
4887 }
4888 else
4889 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4890 }
4891 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4892 }
4893 if (cRestored > 0)
4894 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4895 }
4896 }
4897
4898 /* Clear the ROM restore flag now as we only need to do this once after
4899 loading saved state. */
4900 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4901
4902 return VINF_SUCCESS;
4903}
4904
4905
4906/**
4907 * Called by PGMR3Term to free resources.
4908 *
4909 * ASSUMES that the caller owns the PGM lock.
4910 *
4911 * @param pVM The cross context VM structure.
4912 */
4913void pgmR3PhysRomTerm(PVM pVM)
4914{
4915 /*
4916 * Free the heap copy of the original bits.
4917 */
4918 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4919 {
4920 if ( pRom->pvOriginal
4921 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4922 {
4923 RTMemFree((void *)pRom->pvOriginal);
4924 pRom->pvOriginal = NULL;
4925 }
4926 }
4927}
4928
4929
4930/**
4931 * Change the shadowing of a range of ROM pages.
4932 *
4933 * This is intended for implementing chipset specific memory registers
4934 * and will not be very strict about the input. It will silently ignore
4935 * any pages that are not the part of a shadowed ROM.
4936 *
4937 * @returns VBox status code.
4938 * @retval VINF_PGM_SYNC_CR3
4939 *
4940 * @param pVM The cross context VM structure.
4941 * @param GCPhys Where to start. Page aligned.
4942 * @param cb How much to change. Page aligned.
4943 * @param enmProt The new ROM protection.
4944 */
4945VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4946{
4947 /*
4948 * Check input
4949 */
4950 if (!cb)
4951 return VINF_SUCCESS;
4952 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4953 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4954 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4955 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4956 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4957
4958 /*
4959 * Process the request.
4960 */
4961 PGM_LOCK_VOID(pVM);
4962 int rc = VINF_SUCCESS;
4963 bool fFlushTLB = false;
4964 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4965 {
4966 if ( GCPhys <= pRom->GCPhysLast
4967 && GCPhysLast >= pRom->GCPhys
4968 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4969 {
4970 /*
4971 * Iterate the relevant pages and make necessary the changes.
4972 */
4973#ifdef VBOX_WITH_NATIVE_NEM
4974 PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys);
4975 AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3);
4976#endif
4977 bool fChanges = false;
4978 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4979 ? pRom->cb >> PAGE_SHIFT
4980 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4981 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4982 iPage < cPages;
4983 iPage++)
4984 {
4985 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4986 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4987 {
4988 fChanges = true;
4989
4990 /* flush references to the page. */
4991 RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << PAGE_SHIFT);
4992 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage);
4993 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB);
4994 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
4995 rc = rc2;
4996#ifdef VBOX_WITH_NATIVE_NEM
4997 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
4998#endif
4999
5000 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
5001 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
5002
5003 *pOld = *pRamPage;
5004 *pRamPage = *pNew;
5005 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
5006
5007#ifdef VBOX_WITH_NATIVE_NEM
5008# ifdef VBOX_WITH_PGM_NEM_MODE
5009 /* In simplified mode we have to switch the page data around too. */
5010 if (pVM->pgm.s.fNemMode)
5011 {
5012 uint8_t abPage[PAGE_SIZE];
5013 uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage);
5014 memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], sizeof(abPage));
5015 memcpy(&pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], pbRamPage, sizeof(abPage));
5016 memcpy(pbRamPage, abPage, sizeof(abPage));
5017 }
5018# endif
5019 /* Tell NEM about the backing and protection change. */
5020 if (VM_IS_NEM_ENABLED(pVM))
5021 {
5022 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
5023 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
5024 PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage),
5025 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
5026 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
5027 }
5028#endif
5029 }
5030 pRomPage->enmProt = enmProt;
5031 }
5032
5033 /*
5034 * Reset the access handler if we made changes, no need
5035 * to optimize this.
5036 */
5037 if (fChanges)
5038 {
5039 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
5040 if (RT_FAILURE(rc2))
5041 {
5042 PGM_UNLOCK(pVM);
5043 AssertRC(rc);
5044 return rc2;
5045 }
5046 }
5047
5048 /* Advance - cb isn't updated. */
5049 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
5050 }
5051 }
5052 PGM_UNLOCK(pVM);
5053 if (fFlushTLB)
5054 PGM_INVL_ALL_VCPU_TLBS(pVM);
5055
5056 return rc;
5057}
5058
5059
5060
5061/*********************************************************************************************************************************
5062* Ballooning *
5063*********************************************************************************************************************************/
5064
5065#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5066
5067/**
5068 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
5069 *
5070 * This is only called on one of the EMTs while the other ones are waiting for
5071 * it to complete this function.
5072 *
5073 * @returns VINF_SUCCESS (VBox strict status code).
5074 * @param pVM The cross context VM structure.
5075 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5076 * @param pvUser User parameter
5077 */
5078static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5079{
5080 uintptr_t *paUser = (uintptr_t *)pvUser;
5081 bool fInflate = !!paUser[0];
5082 unsigned cPages = paUser[1];
5083 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
5084 uint32_t cPendingPages = 0;
5085 PGMMFREEPAGESREQ pReq;
5086 int rc;
5087
5088 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
5089 PGM_LOCK_VOID(pVM);
5090
5091 if (fInflate)
5092 {
5093 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
5094 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
5095
5096 /* Replace pages with ZERO pages. */
5097 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5098 if (RT_FAILURE(rc))
5099 {
5100 PGM_UNLOCK(pVM);
5101 AssertLogRelRC(rc);
5102 return rc;
5103 }
5104
5105 /* Iterate the pages. */
5106 for (unsigned i = 0; i < cPages; i++)
5107 {
5108 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5109 if ( pPage == NULL
5110 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
5111 {
5112 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
5113 break;
5114 }
5115
5116 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
5117
5118 /* Flush the shadow PT if this page was previously used as a guest page table. */
5119 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
5120
5121 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
5122 if (RT_FAILURE(rc))
5123 {
5124 PGM_UNLOCK(pVM);
5125 AssertLogRelRC(rc);
5126 return rc;
5127 }
5128 Assert(PGM_PAGE_IS_ZERO(pPage));
5129 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
5130 }
5131
5132 if (cPendingPages)
5133 {
5134 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
5135 if (RT_FAILURE(rc))
5136 {
5137 PGM_UNLOCK(pVM);
5138 AssertLogRelRC(rc);
5139 return rc;
5140 }
5141 }
5142 GMMR3FreePagesCleanup(pReq);
5143 }
5144 else
5145 {
5146 /* Iterate the pages. */
5147 for (unsigned i = 0; i < cPages; i++)
5148 {
5149 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5150 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
5151
5152 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
5153
5154 Assert(PGM_PAGE_IS_BALLOONED(pPage));
5155
5156 /* Change back to zero page. (NEM does not need to be informed.) */
5157 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5158 }
5159
5160 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
5161 }
5162
5163 /* Notify GMM about the balloon change. */
5164 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
5165 if (RT_SUCCESS(rc))
5166 {
5167 if (!fInflate)
5168 {
5169 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
5170 pVM->pgm.s.cBalloonedPages -= cPages;
5171 }
5172 else
5173 pVM->pgm.s.cBalloonedPages += cPages;
5174 }
5175
5176 PGM_UNLOCK(pVM);
5177
5178 /* Flush the recompiler's TLB as well. */
5179 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5180 CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5181
5182 AssertLogRelRC(rc);
5183 return rc;
5184}
5185
5186
5187/**
5188 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
5189 *
5190 * @returns VBox status code.
5191 * @param pVM The cross context VM structure.
5192 * @param fInflate Inflate or deflate memory balloon
5193 * @param cPages Number of pages to free
5194 * @param paPhysPage Array of guest physical addresses
5195 */
5196static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5197{
5198 uintptr_t paUser[3];
5199
5200 paUser[0] = fInflate;
5201 paUser[1] = cPages;
5202 paUser[2] = (uintptr_t)paPhysPage;
5203 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5204 AssertRC(rc);
5205
5206 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
5207 RTMemFree(paPhysPage);
5208}
5209
5210#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
5211
5212/**
5213 * Inflate or deflate a memory balloon
5214 *
5215 * @returns VBox status code.
5216 * @param pVM The cross context VM structure.
5217 * @param fInflate Inflate or deflate memory balloon
5218 * @param cPages Number of pages to free
5219 * @param paPhysPage Array of guest physical addresses
5220 */
5221VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5222{
5223 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
5224#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5225 int rc;
5226
5227 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
5228 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
5229
5230 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
5231 * In the SMP case we post a request packet to postpone the job.
5232 */
5233 if (pVM->cCpus > 1)
5234 {
5235 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
5236 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
5237 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
5238
5239 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
5240
5241 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
5242 AssertRC(rc);
5243 }
5244 else
5245 {
5246 uintptr_t paUser[3];
5247
5248 paUser[0] = fInflate;
5249 paUser[1] = cPages;
5250 paUser[2] = (uintptr_t)paPhysPage;
5251 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5252 AssertRC(rc);
5253 }
5254 return rc;
5255
5256#else
5257 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
5258 return VERR_NOT_IMPLEMENTED;
5259#endif
5260}
5261
5262
5263/*********************************************************************************************************************************
5264* Write Monitoring *
5265*********************************************************************************************************************************/
5266
5267/**
5268 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
5269 * physical RAM.
5270 *
5271 * This is only called on one of the EMTs while the other ones are waiting for
5272 * it to complete this function.
5273 *
5274 * @returns VINF_SUCCESS (VBox strict status code).
5275 * @param pVM The cross context VM structure.
5276 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5277 * @param pvUser User parameter, unused.
5278 */
5279static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5280{
5281 int rc = VINF_SUCCESS;
5282 NOREF(pvUser); NOREF(pVCpu);
5283
5284 PGM_LOCK_VOID(pVM);
5285#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5286 pgmPoolResetDirtyPages(pVM);
5287#endif
5288
5289 /** @todo pointless to write protect the physical page pointed to by RSP. */
5290
5291 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5292 pRam;
5293 pRam = pRam->CTX_SUFF(pNext))
5294 {
5295 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
5296 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5297 {
5298 PPGMPAGE pPage = &pRam->aPages[iPage];
5299 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
5300
5301 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
5302 || enmPageType == PGMPAGETYPE_MMIO2)
5303 {
5304 /*
5305 * A RAM page.
5306 */
5307 switch (PGM_PAGE_GET_STATE(pPage))
5308 {
5309 case PGM_PAGE_STATE_ALLOCATED:
5310 /** @todo Optimize this: Don't always re-enable write
5311 * monitoring if the page is known to be very busy. */
5312 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
5313 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
5314
5315 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
5316 break;
5317
5318 case PGM_PAGE_STATE_SHARED:
5319 AssertFailed();
5320 break;
5321
5322 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
5323 default:
5324 break;
5325 }
5326 }
5327 }
5328 }
5329 pgmR3PoolWriteProtectPages(pVM);
5330 PGM_INVL_ALL_VCPU_TLBS(pVM);
5331 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5332 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5333
5334 PGM_UNLOCK(pVM);
5335 return rc;
5336}
5337
5338/**
5339 * Protect all physical RAM to monitor writes
5340 *
5341 * @returns VBox status code.
5342 * @param pVM The cross context VM structure.
5343 */
5344VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
5345{
5346 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
5347
5348 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
5349 AssertRC(rc);
5350 return rc;
5351}
5352
5353
5354/*********************************************************************************************************************************
5355* Stats. *
5356*********************************************************************************************************************************/
5357
5358/**
5359 * Query the amount of free memory inside VMMR0
5360 *
5361 * @returns VBox status code.
5362 * @param pUVM The user mode VM handle.
5363 * @param pcbAllocMem Where to return the amount of memory allocated
5364 * by VMs.
5365 * @param pcbFreeMem Where to return the amount of memory that is
5366 * allocated from the host but not currently used
5367 * by any VMs.
5368 * @param pcbBallonedMem Where to return the sum of memory that is
5369 * currently ballooned by the VMs.
5370 * @param pcbSharedMem Where to return the amount of memory that is
5371 * currently shared.
5372 */
5373VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
5374 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
5375{
5376 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5377 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
5378
5379 uint64_t cAllocPages = 0;
5380 uint64_t cFreePages = 0;
5381 uint64_t cBalloonPages = 0;
5382 uint64_t cSharedPages = 0;
5383 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
5384 AssertRCReturn(rc, rc);
5385
5386 if (pcbAllocMem)
5387 *pcbAllocMem = cAllocPages * _4K;
5388
5389 if (pcbFreeMem)
5390 *pcbFreeMem = cFreePages * _4K;
5391
5392 if (pcbBallonedMem)
5393 *pcbBallonedMem = cBalloonPages * _4K;
5394
5395 if (pcbSharedMem)
5396 *pcbSharedMem = cSharedPages * _4K;
5397
5398 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
5399 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
5400 return VINF_SUCCESS;
5401}
5402
5403
5404/**
5405 * Query memory stats for the VM.
5406 *
5407 * @returns VBox status code.
5408 * @param pUVM The user mode VM handle.
5409 * @param pcbTotalMem Where to return total amount memory the VM may
5410 * possibly use.
5411 * @param pcbPrivateMem Where to return the amount of private memory
5412 * currently allocated.
5413 * @param pcbSharedMem Where to return the amount of actually shared
5414 * memory currently used by the VM.
5415 * @param pcbZeroMem Where to return the amount of memory backed by
5416 * zero pages.
5417 *
5418 * @remarks The total mem is normally larger than the sum of the three
5419 * components. There are two reasons for this, first the amount of
5420 * shared memory is what we're sure is shared instead of what could
5421 * possibly be shared with someone. Secondly, because the total may
5422 * include some pure MMIO pages that doesn't go into any of the three
5423 * sub-counts.
5424 *
5425 * @todo Why do we return reused shared pages instead of anything that could
5426 * potentially be shared? Doesn't this mean the first VM gets a much
5427 * lower number of shared pages?
5428 */
5429VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
5430 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
5431{
5432 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5433 PVM pVM = pUVM->pVM;
5434 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
5435
5436 if (pcbTotalMem)
5437 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
5438
5439 if (pcbPrivateMem)
5440 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
5441
5442 if (pcbSharedMem)
5443 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
5444
5445 if (pcbZeroMem)
5446 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
5447
5448 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
5449 return VINF_SUCCESS;
5450}
5451
5452
5453
5454/*********************************************************************************************************************************
5455* Chunk Mappings and Page Allocation *
5456*********************************************************************************************************************************/
5457
5458/**
5459 * Tree enumeration callback for dealing with age rollover.
5460 * It will perform a simple compression of the current age.
5461 */
5462static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
5463{
5464 /* Age compression - ASSUMES iNow == 4. */
5465 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5466 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
5467 pChunk->iLastUsed = 3;
5468 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
5469 pChunk->iLastUsed = 2;
5470 else if (pChunk->iLastUsed)
5471 pChunk->iLastUsed = 1;
5472 else /* iLastUsed = 0 */
5473 pChunk->iLastUsed = 4;
5474
5475 NOREF(pvUser);
5476 return 0;
5477}
5478
5479
5480/**
5481 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
5482 */
5483typedef struct PGMR3PHYSCHUNKUNMAPCB
5484{
5485 PVM pVM; /**< Pointer to the VM. */
5486 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
5487} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
5488
5489
5490/**
5491 * Callback used to find the mapping that's been unused for
5492 * the longest time.
5493 */
5494static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
5495{
5496 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5497 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
5498
5499 /*
5500 * Check for locks and compare when last used.
5501 */
5502 if (pChunk->cRefs)
5503 return 0;
5504 if (pChunk->cPermRefs)
5505 return 0;
5506 if ( pArg->pChunk
5507 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
5508 return 0;
5509
5510 /*
5511 * Check that it's not in any of the TLBs.
5512 */
5513 PVM pVM = pArg->pVM;
5514 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
5515 == pChunk->Core.Key)
5516 {
5517 pChunk = NULL;
5518 return 0;
5519 }
5520#ifdef VBOX_STRICT
5521 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5522 {
5523 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
5524 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
5525 }
5526#endif
5527
5528 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
5529 if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
5530 return 0;
5531
5532 pArg->pChunk = pChunk;
5533 return 0;
5534}
5535
5536
5537/**
5538 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
5539 *
5540 * The candidate will not be part of any TLBs, so no need to flush
5541 * anything afterwards.
5542 *
5543 * @returns Chunk id.
5544 * @param pVM The cross context VM structure.
5545 */
5546static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
5547{
5548 PGM_LOCK_ASSERT_OWNER(pVM);
5549
5550 /*
5551 * Enumerate the age tree starting with the left most node.
5552 */
5553 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5554 PGMR3PHYSCHUNKUNMAPCB Args;
5555 Args.pVM = pVM;
5556 Args.pChunk = NULL;
5557 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
5558 Assert(Args.pChunk);
5559 if (Args.pChunk)
5560 {
5561 Assert(Args.pChunk->cRefs == 0);
5562 Assert(Args.pChunk->cPermRefs == 0);
5563 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5564 return Args.pChunk->Core.Key;
5565 }
5566
5567 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5568 return INT32_MAX;
5569}
5570
5571
5572/**
5573 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
5574 *
5575 * This is only called on one of the EMTs while the other ones are waiting for
5576 * it to complete this function.
5577 *
5578 * @returns VINF_SUCCESS (VBox strict status code).
5579 * @param pVM The cross context VM structure.
5580 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5581 * @param pvUser User pointer. Unused
5582 *
5583 */
5584static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5585{
5586 int rc = VINF_SUCCESS;
5587 PGM_LOCK_VOID(pVM);
5588 NOREF(pVCpu); NOREF(pvUser);
5589
5590 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
5591 {
5592 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
5593 /** @todo also not really efficient to unmap a chunk that contains PD
5594 * or PT pages. */
5595 pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
5596
5597 /*
5598 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
5599 */
5600 GMMMAPUNMAPCHUNKREQ Req;
5601 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5602 Req.Hdr.cbReq = sizeof(Req);
5603 Req.pvR3 = NULL;
5604 Req.idChunkMap = NIL_GMM_CHUNKID;
5605 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
5606 if (Req.idChunkUnmap != INT32_MAX)
5607 {
5608 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5609 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5610 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5611 if (RT_SUCCESS(rc))
5612 {
5613 /*
5614 * Remove the unmapped one.
5615 */
5616 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
5617 AssertRelease(pUnmappedChunk);
5618 AssertRelease(!pUnmappedChunk->cRefs);
5619 AssertRelease(!pUnmappedChunk->cPermRefs);
5620 pUnmappedChunk->pv = NULL;
5621 pUnmappedChunk->Core.Key = UINT32_MAX;
5622 MMR3HeapFree(pUnmappedChunk);
5623 pVM->pgm.s.ChunkR3Map.c--;
5624 pVM->pgm.s.cUnmappedChunks++;
5625
5626 /*
5627 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
5628 */
5629 /** @todo We should not flush chunks which include cr3 mappings. */
5630 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5631 {
5632 PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
5633
5634 pPGM->pGst32BitPdR3 = NULL;
5635 pPGM->pGstPaePdptR3 = NULL;
5636 pPGM->pGstAmd64Pml4R3 = NULL;
5637 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
5638 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
5639 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
5640 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
5641 {
5642 pPGM->apGstPaePDsR3[i] = NULL;
5643 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
5644 }
5645
5646 /* Flush REM TLBs. */
5647 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5648 }
5649 }
5650 }
5651 }
5652 PGM_UNLOCK(pVM);
5653 return rc;
5654}
5655
5656/**
5657 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
5658 *
5659 * @returns VBox status code.
5660 * @param pVM The cross context VM structure.
5661 */
5662static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM)
5663{
5664 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
5665 AssertRC(rc);
5666}
5667
5668
5669/**
5670 * Maps the given chunk into the ring-3 mapping cache.
5671 *
5672 * This will call ring-0.
5673 *
5674 * @returns VBox status code.
5675 * @param pVM The cross context VM structure.
5676 * @param idChunk The chunk in question.
5677 * @param ppChunk Where to store the chunk tracking structure.
5678 *
5679 * @remarks Called from within the PGM critical section.
5680 * @remarks Can be called from any thread!
5681 */
5682int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
5683{
5684 int rc;
5685
5686 PGM_LOCK_ASSERT_OWNER(pVM);
5687
5688 /*
5689 * Move the chunk time forward.
5690 */
5691 pVM->pgm.s.ChunkR3Map.iNow++;
5692 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
5693 {
5694 pVM->pgm.s.ChunkR3Map.iNow = 4;
5695 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
5696 }
5697
5698 /*
5699 * Allocate a new tracking structure first.
5700 */
5701 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
5702 AssertReturn(pChunk, VERR_NO_MEMORY);
5703 pChunk->Core.Key = idChunk;
5704 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
5705
5706 /*
5707 * Request the ring-0 part to map the chunk in question.
5708 */
5709 GMMMAPUNMAPCHUNKREQ Req;
5710 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5711 Req.Hdr.cbReq = sizeof(Req);
5712 Req.pvR3 = NULL;
5713 Req.idChunkMap = idChunk;
5714 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5715
5716 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5717 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a);
5718 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5719 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a);
5720 if (RT_SUCCESS(rc))
5721 {
5722 pChunk->pv = Req.pvR3;
5723
5724 /*
5725 * If we're running out of virtual address space, then we should
5726 * unmap another chunk.
5727 *
5728 * Currently, an unmap operation requires that all other virtual CPUs
5729 * are idling and not by chance making use of the memory we're
5730 * unmapping. So, we create an async unmap operation here.
5731 *
5732 * Now, when creating or restoring a saved state this wont work very
5733 * well since we may want to restore all guest RAM + a little something.
5734 * So, we have to do the unmap synchronously. Fortunately for us
5735 * though, during these operations the other virtual CPUs are inactive
5736 * and it should be safe to do this.
5737 */
5738 /** @todo Eventually we should lock all memory when used and do
5739 * map+unmap as one kernel call without any rendezvous or
5740 * other precautions. */
5741 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5742 {
5743 switch (VMR3GetState(pVM))
5744 {
5745 case VMSTATE_LOADING:
5746 case VMSTATE_SAVING:
5747 {
5748 PVMCPU pVCpu = VMMGetCpu(pVM);
5749 if ( pVCpu
5750 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5751 {
5752 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5753 break;
5754 }
5755 }
5756 RT_FALL_THRU();
5757 default:
5758 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5759 AssertRC(rc);
5760 break;
5761 }
5762 }
5763
5764 /*
5765 * Update the tree. We must do this after any unmapping to make sure
5766 * the chunk we're going to return isn't unmapped by accident.
5767 */
5768 AssertPtr(Req.pvR3);
5769 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5770 AssertRelease(fRc);
5771 pVM->pgm.s.ChunkR3Map.c++;
5772 pVM->pgm.s.cMappedChunks++;
5773 }
5774 else
5775 {
5776 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5777 * should probably restrict ourselves on linux. */
5778 AssertRC(rc);
5779 MMR3HeapFree(pChunk);
5780 pChunk = NULL;
5781 }
5782
5783 *ppChunk = pChunk;
5784 return rc;
5785}
5786
5787
5788/**
5789 * Invalidates the TLB for the ring-3 mapping cache.
5790 *
5791 * @param pVM The cross context VM structure.
5792 */
5793VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5794{
5795 PGM_LOCK_VOID(pVM);
5796 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5797 {
5798 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5799 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5800 }
5801 /* The page map TLB references chunks, so invalidate that one too. */
5802 pgmPhysInvalidatePageMapTLB(pVM);
5803 PGM_UNLOCK(pVM);
5804}
5805
5806
5807/**
5808 * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage.
5809 *
5810 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5811 * signal and clear the out of memory condition. When called, this API is used
5812 * to try clear the condition when the user wants to resume.
5813 *
5814 * @returns The following VBox status codes.
5815 * @retval VINF_SUCCESS on success. FFs cleared.
5816 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5817 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5818 *
5819 * @param pVM The cross context VM structure.
5820 *
5821 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5822 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5823 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5824 * handler.
5825 */
5826VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5827{
5828 PGM_LOCK_VOID(pVM);
5829
5830 /*
5831 * Allocate more pages, noting down the index of the first new page.
5832 */
5833 uint32_t iClear = pVM->pgm.s.cHandyPages;
5834 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5835 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5836 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5837 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5838 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5839 && pVM->pgm.s.cHandyPages > 0)
5840 {
5841 /* Still handy pages left, so don't panic. */
5842 rc = VINF_SUCCESS;
5843 }
5844
5845 if (RT_SUCCESS(rc))
5846 {
5847 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5848 Assert(pVM->pgm.s.cHandyPages > 0);
5849#ifdef VBOX_STRICT
5850 uint32_t i;
5851 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5852 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5853 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5854 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5855 break;
5856 if (i != pVM->pgm.s.cHandyPages)
5857 {
5858 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5859 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5860 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5861 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j,
5862 pVM->pgm.s.aHandyPages[j].idPage,
5863 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5864 pVM->pgm.s.aHandyPages[j].idSharedPage,
5865 j == i ? " <---" : "");
5866 RTAssertPanic();
5867 }
5868#endif
5869 }
5870 else
5871 {
5872 /*
5873 * We should never get here unless there is a genuine shortage of
5874 * memory (or some internal error). Flag the error so the VM can be
5875 * suspended ASAP and the user informed. If we're totally out of
5876 * handy pages we will return failure.
5877 */
5878 /* Report the failure. */
5879 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
5880 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5881 rc, pVM->pgm.s.cHandyPages,
5882 pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages));
5883
5884 if ( rc != VERR_NO_MEMORY
5885 && rc != VERR_NO_PHYS_MEMORY
5886 && rc != VERR_LOCK_FAILED)
5887 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5888 {
5889 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5890 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5891 pVM->pgm.s.aHandyPages[i].idSharedPage));
5892 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5893 if (idPage != NIL_GMM_PAGEID)
5894 {
5895 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5896 pRam;
5897 pRam = pRam->pNextR3)
5898 {
5899 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5900 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5901 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5902 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5903 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5904 }
5905 }
5906 }
5907
5908 if (rc == VERR_NO_MEMORY)
5909 {
5910 uint64_t cbHostRamAvail = 0;
5911 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5912 if (RT_SUCCESS(rc2))
5913 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5914 else
5915 LogRel(("Cannot determine the amount of available host memory\n"));
5916 }
5917
5918 /* Set the FFs and adjust rc. */
5919 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5920 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5921 if ( rc == VERR_NO_MEMORY
5922 || rc == VERR_NO_PHYS_MEMORY
5923 || rc == VERR_LOCK_FAILED)
5924 rc = VINF_EM_NO_MEMORY;
5925 }
5926
5927 PGM_UNLOCK(pVM);
5928 return rc;
5929}
5930
5931
5932/*********************************************************************************************************************************
5933* Other Stuff *
5934*********************************************************************************************************************************/
5935
5936/**
5937 * Sets the Address Gate 20 state.
5938 *
5939 * @param pVCpu The cross context virtual CPU structure.
5940 * @param fEnable True if the gate should be enabled.
5941 * False if the gate should be disabled.
5942 */
5943VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
5944{
5945 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
5946 if (pVCpu->pgm.s.fA20Enabled != fEnable)
5947 {
5948#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5949 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
5950 if ( CPUMIsGuestInVmxRootMode(pCtx)
5951 && !fEnable)
5952 {
5953 Log(("Cannot enter A20M mode while in VMX root mode\n"));
5954 return;
5955 }
5956#endif
5957 pVCpu->pgm.s.fA20Enabled = fEnable;
5958 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
5959 if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)))
5960 NEMR3NotifySetA20(pVCpu, fEnable);
5961#ifdef PGM_WITH_A20
5962 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5963 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
5964 HMFlushTlb(pVCpu);
5965#endif
5966 IEMTlbInvalidateAllPhysical(pVCpu);
5967 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
5968 }
5969}
5970
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette