VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 92676

Last change on this file since 92676 was 92626, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 Adjust PGM APIs and translate nested-guest CR3 prior to mapping them when switching mode and other places.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 223.4 KB
Line 
1/* $Id: PGMPhys.cpp 92626 2021-11-29 12:32:58Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/iom.h>
27#include <VBox/vmm/mm.h>
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/stam.h>
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vmcc.h>
33
34#include "PGMInline.h"
35
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#ifdef VBOX_STRICT
44# include <iprt/crc.h>
45#endif
46#include <iprt/thread.h>
47#include <iprt/string.h>
48#include <iprt/system.h>
49
50
51/*********************************************************************************************************************************
52* Defined Constants And Macros *
53*********************************************************************************************************************************/
54/** The number of pages to free in one batch. */
55#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
56
57
58
59/*********************************************************************************************************************************
60* Reading and Writing Guest Pysical Memory *
61*********************************************************************************************************************************/
62
63/*
64 * PGMR3PhysReadU8-64
65 * PGMR3PhysWriteU8-64
66 */
67#define PGMPHYSFN_READNAME PGMR3PhysReadU8
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
69#define PGMPHYS_DATASIZE 1
70#define PGMPHYS_DATATYPE uint8_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU16
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
75#define PGMPHYS_DATASIZE 2
76#define PGMPHYS_DATATYPE uint16_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU32
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
81#define PGMPHYS_DATASIZE 4
82#define PGMPHYS_DATATYPE uint32_t
83#include "PGMPhysRWTmpl.h"
84
85#define PGMPHYSFN_READNAME PGMR3PhysReadU64
86#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
87#define PGMPHYS_DATASIZE 8
88#define PGMPHYS_DATATYPE uint64_t
89#include "PGMPhysRWTmpl.h"
90
91
92/**
93 * EMT worker for PGMR3PhysReadExternal.
94 */
95static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
96 PGMACCESSORIGIN enmOrigin)
97{
98 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
99 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
100 return VINF_SUCCESS;
101}
102
103
104/**
105 * Read from physical memory, external users.
106 *
107 * @returns VBox status code.
108 * @retval VINF_SUCCESS.
109 *
110 * @param pVM The cross context VM structure.
111 * @param GCPhys Physical address to read from.
112 * @param pvBuf Where to read into.
113 * @param cbRead How many bytes to read.
114 * @param enmOrigin Who is calling.
115 *
116 * @thread Any but EMTs.
117 */
118VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
119{
120 VM_ASSERT_OTHER_THREAD(pVM);
121
122 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
123 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
124
125 PGM_LOCK_VOID(pVM);
126
127 /*
128 * Copy loop on ram ranges.
129 */
130 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
131 for (;;)
132 {
133 /* Inside range or not? */
134 if (pRam && GCPhys >= pRam->GCPhys)
135 {
136 /*
137 * Must work our way thru this page by page.
138 */
139 RTGCPHYS off = GCPhys - pRam->GCPhys;
140 while (off < pRam->cb)
141 {
142 unsigned iPage = off >> PAGE_SHIFT;
143 PPGMPAGE pPage = &pRam->aPages[iPage];
144
145 /*
146 * If the page has an ALL access handler, we'll have to
147 * delegate the job to EMT.
148 */
149 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
150 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
151 {
152 PGM_UNLOCK(pVM);
153
154 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
155 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
156 }
157 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
158
159 /*
160 * Simple stuff, go ahead.
161 */
162 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
163 if (cb > cbRead)
164 cb = cbRead;
165 PGMPAGEMAPLOCK PgMpLck;
166 const void *pvSrc;
167 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
168 if (RT_SUCCESS(rc))
169 {
170 memcpy(pvBuf, pvSrc, cb);
171 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
172 }
173 else
174 {
175 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
176 pRam->GCPhys + off, pPage, rc));
177 memset(pvBuf, 0xff, cb);
178 }
179
180 /* next page */
181 if (cb >= cbRead)
182 {
183 PGM_UNLOCK(pVM);
184 return VINF_SUCCESS;
185 }
186 cbRead -= cb;
187 off += cb;
188 GCPhys += cb;
189 pvBuf = (char *)pvBuf + cb;
190 } /* walk pages in ram range. */
191 }
192 else
193 {
194 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
195
196 /*
197 * Unassigned address space.
198 */
199 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
200 if (cb >= cbRead)
201 {
202 memset(pvBuf, 0xff, cbRead);
203 break;
204 }
205 memset(pvBuf, 0xff, cb);
206
207 cbRead -= cb;
208 pvBuf = (char *)pvBuf + cb;
209 GCPhys += cb;
210 }
211
212 /* Advance range if necessary. */
213 while (pRam && GCPhys > pRam->GCPhysLast)
214 pRam = pRam->CTX_SUFF(pNext);
215 } /* Ram range walk */
216
217 PGM_UNLOCK(pVM);
218
219 return VINF_SUCCESS;
220}
221
222
223/**
224 * EMT worker for PGMR3PhysWriteExternal.
225 */
226static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
227 PGMACCESSORIGIN enmOrigin)
228{
229 /** @todo VERR_EM_NO_MEMORY */
230 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
231 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
232 return VINF_SUCCESS;
233}
234
235
236/**
237 * Write to physical memory, external users.
238 *
239 * @returns VBox status code.
240 * @retval VINF_SUCCESS.
241 * @retval VERR_EM_NO_MEMORY.
242 *
243 * @param pVM The cross context VM structure.
244 * @param GCPhys Physical address to write to.
245 * @param pvBuf What to write.
246 * @param cbWrite How many bytes to write.
247 * @param enmOrigin Who is calling.
248 *
249 * @thread Any but EMTs.
250 */
251VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
252{
253 VM_ASSERT_OTHER_THREAD(pVM);
254
255 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
256 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
257 GCPhys, cbWrite, enmOrigin));
258 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
259 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
260
261 PGM_LOCK_VOID(pVM);
262
263 /*
264 * Copy loop on ram ranges, stop when we hit something difficult.
265 */
266 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
267 for (;;)
268 {
269 /* Inside range or not? */
270 if (pRam && GCPhys >= pRam->GCPhys)
271 {
272 /*
273 * Must work our way thru this page by page.
274 */
275 RTGCPTR off = GCPhys - pRam->GCPhys;
276 while (off < pRam->cb)
277 {
278 RTGCPTR iPage = off >> PAGE_SHIFT;
279 PPGMPAGE pPage = &pRam->aPages[iPage];
280
281 /*
282 * Is the page problematic, we have to do the work on the EMT.
283 *
284 * Allocating writable pages and access handlers are
285 * problematic, write monitored pages are simple and can be
286 * dealt with here.
287 */
288 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
289 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
290 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
291 {
292 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
293 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
294 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
295 else
296 {
297 PGM_UNLOCK(pVM);
298
299 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
300 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
301 }
302 }
303 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
304
305 /*
306 * Simple stuff, go ahead.
307 */
308 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
309 if (cb > cbWrite)
310 cb = cbWrite;
311 PGMPAGEMAPLOCK PgMpLck;
312 void *pvDst;
313 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
314 if (RT_SUCCESS(rc))
315 {
316 memcpy(pvDst, pvBuf, cb);
317 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
318 }
319 else
320 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
321 pRam->GCPhys + off, pPage, rc));
322
323 /* next page */
324 if (cb >= cbWrite)
325 {
326 PGM_UNLOCK(pVM);
327 return VINF_SUCCESS;
328 }
329
330 cbWrite -= cb;
331 off += cb;
332 GCPhys += cb;
333 pvBuf = (const char *)pvBuf + cb;
334 } /* walk pages in ram range */
335 }
336 else
337 {
338 /*
339 * Unassigned address space, skip it.
340 */
341 if (!pRam)
342 break;
343 size_t cb = pRam->GCPhys - GCPhys;
344 if (cb >= cbWrite)
345 break;
346 cbWrite -= cb;
347 pvBuf = (const char *)pvBuf + cb;
348 GCPhys += cb;
349 }
350
351 /* Advance range if necessary. */
352 while (pRam && GCPhys > pRam->GCPhysLast)
353 pRam = pRam->CTX_SUFF(pNext);
354 } /* Ram range walk */
355
356 PGM_UNLOCK(pVM);
357 return VINF_SUCCESS;
358}
359
360
361/*********************************************************************************************************************************
362* Mapping Guest Physical Memory *
363*********************************************************************************************************************************/
364
365/**
366 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
367 *
368 * @returns see PGMR3PhysGCPhys2CCPtrExternal
369 * @param pVM The cross context VM structure.
370 * @param pGCPhys Pointer to the guest physical address.
371 * @param ppv Where to store the mapping address.
372 * @param pLock Where to store the lock.
373 */
374static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
375{
376 /*
377 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
378 * an access handler after it succeeds.
379 */
380 int rc = PGM_LOCK(pVM);
381 AssertRCReturn(rc, rc);
382
383 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
384 if (RT_SUCCESS(rc))
385 {
386 PPGMPAGEMAPTLBE pTlbe;
387 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
388 AssertFatalRC(rc2);
389 PPGMPAGE pPage = pTlbe->pPage;
390 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
391 {
392 PGMPhysReleasePageMappingLock(pVM, pLock);
393 rc = VERR_PGM_PHYS_PAGE_RESERVED;
394 }
395 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
396#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
397 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
398#endif
399 )
400 {
401 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
402 * not be informed about writes and keep bogus gst->shw mappings around.
403 */
404 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
405 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
406 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
407 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
408 }
409 }
410
411 PGM_UNLOCK(pVM);
412 return rc;
413}
414
415
416/**
417 * Requests the mapping of a guest page into ring-3, external threads.
418 *
419 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
420 * release it.
421 *
422 * This API will assume your intention is to write to the page, and will
423 * therefore replace shared and zero pages. If you do not intend to modify the
424 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
425 *
426 * @returns VBox status code.
427 * @retval VINF_SUCCESS on success.
428 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
429 * backing or if the page has any active access handlers. The caller
430 * must fall back on using PGMR3PhysWriteExternal.
431 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
432 *
433 * @param pVM The cross context VM structure.
434 * @param GCPhys The guest physical address of the page that should be mapped.
435 * @param ppv Where to store the address corresponding to GCPhys.
436 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
437 *
438 * @remark Avoid calling this API from within critical sections (other than the
439 * PGM one) because of the deadlock risk when we have to delegating the
440 * task to an EMT.
441 * @thread Any.
442 */
443VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
444{
445 AssertPtr(ppv);
446 AssertPtr(pLock);
447
448 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
449
450 int rc = PGM_LOCK(pVM);
451 AssertRCReturn(rc, rc);
452
453 /*
454 * Query the Physical TLB entry for the page (may fail).
455 */
456 PPGMPAGEMAPTLBE pTlbe;
457 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
458 if (RT_SUCCESS(rc))
459 {
460 PPGMPAGE pPage = pTlbe->pPage;
461 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
462 rc = VERR_PGM_PHYS_PAGE_RESERVED;
463 else
464 {
465 /*
466 * If the page is shared, the zero page, or being write monitored
467 * it must be converted to an page that's writable if possible.
468 * We can only deal with write monitored pages here, the rest have
469 * to be on an EMT.
470 */
471 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
472 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
473#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
474 || pgmPoolIsDirtyPage(pVM, GCPhys)
475#endif
476 )
477 {
478 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
479 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
480#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
481 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
482#endif
483 )
484 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
485 else
486 {
487 PGM_UNLOCK(pVM);
488
489 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
490 pVM, &GCPhys, ppv, pLock);
491 }
492 }
493
494 /*
495 * Now, just perform the locking and calculate the return address.
496 */
497 PPGMPAGEMAP pMap = pTlbe->pMap;
498 if (pMap)
499 pMap->cRefs++;
500
501 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
502 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
503 {
504 if (cLocks == 0)
505 pVM->pgm.s.cWriteLockedPages++;
506 PGM_PAGE_INC_WRITE_LOCKS(pPage);
507 }
508 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
509 {
510 PGM_PAGE_INC_WRITE_LOCKS(pPage);
511 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
512 if (pMap)
513 pMap->cRefs++; /* Extra ref to prevent it from going away. */
514 }
515
516 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
517 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
518 pLock->pvMap = pMap;
519 }
520 }
521
522 PGM_UNLOCK(pVM);
523 return rc;
524}
525
526
527/**
528 * Requests the mapping of a guest page into ring-3, external threads.
529 *
530 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
531 * release it.
532 *
533 * @returns VBox status code.
534 * @retval VINF_SUCCESS on success.
535 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
536 * backing or if the page as an active ALL access handler. The caller
537 * must fall back on using PGMPhysRead.
538 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
539 *
540 * @param pVM The cross context VM structure.
541 * @param GCPhys The guest physical address of the page that should be mapped.
542 * @param ppv Where to store the address corresponding to GCPhys.
543 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
544 *
545 * @remark Avoid calling this API from within critical sections (other than
546 * the PGM one) because of the deadlock risk.
547 * @thread Any.
548 */
549VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
550{
551 int rc = PGM_LOCK(pVM);
552 AssertRCReturn(rc, rc);
553
554 /*
555 * Query the Physical TLB entry for the page (may fail).
556 */
557 PPGMPAGEMAPTLBE pTlbe;
558 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
559 if (RT_SUCCESS(rc))
560 {
561 PPGMPAGE pPage = pTlbe->pPage;
562#if 1
563 /* MMIO pages doesn't have any readable backing. */
564 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
565 rc = VERR_PGM_PHYS_PAGE_RESERVED;
566#else
567 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
568 rc = VERR_PGM_PHYS_PAGE_RESERVED;
569#endif
570 else
571 {
572 /*
573 * Now, just perform the locking and calculate the return address.
574 */
575 PPGMPAGEMAP pMap = pTlbe->pMap;
576 if (pMap)
577 pMap->cRefs++;
578
579 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
580 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
581 {
582 if (cLocks == 0)
583 pVM->pgm.s.cReadLockedPages++;
584 PGM_PAGE_INC_READ_LOCKS(pPage);
585 }
586 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
587 {
588 PGM_PAGE_INC_READ_LOCKS(pPage);
589 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
590 if (pMap)
591 pMap->cRefs++; /* Extra ref to prevent it from going away. */
592 }
593
594 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
595 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
596 pLock->pvMap = pMap;
597 }
598 }
599
600 PGM_UNLOCK(pVM);
601 return rc;
602}
603
604
605/**
606 * Requests the mapping of multiple guest page into ring-3, external threads.
607 *
608 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
609 * ASAP to release them.
610 *
611 * This API will assume your intention is to write to the pages, and will
612 * therefore replace shared and zero pages. If you do not intend to modify the
613 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
614 *
615 * @returns VBox status code.
616 * @retval VINF_SUCCESS on success.
617 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
618 * backing or if any of the pages the page has any active access
619 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
620 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
621 * an invalid physical address.
622 *
623 * @param pVM The cross context VM structure.
624 * @param cPages Number of pages to lock.
625 * @param paGCPhysPages The guest physical address of the pages that
626 * should be mapped (@a cPages entries).
627 * @param papvPages Where to store the ring-3 mapping addresses
628 * corresponding to @a paGCPhysPages.
629 * @param paLocks Where to store the locking information that
630 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
631 * in length).
632 *
633 * @remark Avoid calling this API from within critical sections (other than the
634 * PGM one) because of the deadlock risk when we have to delegating the
635 * task to an EMT.
636 * @thread Any.
637 */
638VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
639 void **papvPages, PPGMPAGEMAPLOCK paLocks)
640{
641 Assert(cPages > 0);
642 AssertPtr(papvPages);
643 AssertPtr(paLocks);
644
645 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
646
647 int rc = PGM_LOCK(pVM);
648 AssertRCReturn(rc, rc);
649
650 /*
651 * Lock the pages one by one.
652 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
653 */
654 int32_t cNextYield = 128;
655 uint32_t iPage;
656 for (iPage = 0; iPage < cPages; iPage++)
657 {
658 if (--cNextYield > 0)
659 { /* likely */ }
660 else
661 {
662 PGM_UNLOCK(pVM);
663 ASMNopPause();
664 PGM_LOCK_VOID(pVM);
665 cNextYield = 128;
666 }
667
668 /*
669 * Query the Physical TLB entry for the page (may fail).
670 */
671 PPGMPAGEMAPTLBE pTlbe;
672 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
673 if (RT_SUCCESS(rc))
674 { }
675 else
676 break;
677 PPGMPAGE pPage = pTlbe->pPage;
678
679 /*
680 * No MMIO or active access handlers.
681 */
682 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
683 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
684 { }
685 else
686 {
687 rc = VERR_PGM_PHYS_PAGE_RESERVED;
688 break;
689 }
690
691 /*
692 * The page must be in the allocated state and not be a dirty pool page.
693 * We can handle converting a write monitored page to an allocated one, but
694 * anything more complicated must be delegated to an EMT.
695 */
696 bool fDelegateToEmt = false;
697 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
699 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
700#else
701 fDelegateToEmt = false;
702#endif
703 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
704 {
705#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
706 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
707 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
708 else
709 fDelegateToEmt = true;
710#endif
711 }
712 else
713 fDelegateToEmt = true;
714 if (!fDelegateToEmt)
715 { }
716 else
717 {
718 /* We could do this delegation in bulk, but considered too much work vs gain. */
719 PGM_UNLOCK(pVM);
720 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
721 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
722 PGM_LOCK_VOID(pVM);
723 if (RT_FAILURE(rc))
724 break;
725 cNextYield = 128;
726 }
727
728 /*
729 * Now, just perform the locking and address calculation.
730 */
731 PPGMPAGEMAP pMap = pTlbe->pMap;
732 if (pMap)
733 pMap->cRefs++;
734
735 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
736 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
737 {
738 if (cLocks == 0)
739 pVM->pgm.s.cWriteLockedPages++;
740 PGM_PAGE_INC_WRITE_LOCKS(pPage);
741 }
742 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
743 {
744 PGM_PAGE_INC_WRITE_LOCKS(pPage);
745 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
746 if (pMap)
747 pMap->cRefs++; /* Extra ref to prevent it from going away. */
748 }
749
750 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
751 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
752 paLocks[iPage].pvMap = pMap;
753 }
754
755 PGM_UNLOCK(pVM);
756
757 /*
758 * On failure we must unlock any pages we managed to get already.
759 */
760 if (RT_FAILURE(rc) && iPage > 0)
761 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
762
763 return rc;
764}
765
766
767/**
768 * Requests the mapping of multiple guest page into ring-3, for reading only,
769 * external threads.
770 *
771 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
772 * to release them.
773 *
774 * @returns VBox status code.
775 * @retval VINF_SUCCESS on success.
776 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
777 * backing or if any of the pages the page has an active ALL access
778 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
779 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
780 * an invalid physical address.
781 *
782 * @param pVM The cross context VM structure.
783 * @param cPages Number of pages to lock.
784 * @param paGCPhysPages The guest physical address of the pages that
785 * should be mapped (@a cPages entries).
786 * @param papvPages Where to store the ring-3 mapping addresses
787 * corresponding to @a paGCPhysPages.
788 * @param paLocks Where to store the lock information that
789 * pfnPhysReleasePageMappingLock needs (@a cPages
790 * in length).
791 *
792 * @remark Avoid calling this API from within critical sections (other than
793 * the PGM one) because of the deadlock risk.
794 * @thread Any.
795 */
796VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
797 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
798{
799 Assert(cPages > 0);
800 AssertPtr(papvPages);
801 AssertPtr(paLocks);
802
803 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
804
805 int rc = PGM_LOCK(pVM);
806 AssertRCReturn(rc, rc);
807
808 /*
809 * Lock the pages one by one.
810 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
811 */
812 int32_t cNextYield = 256;
813 uint32_t iPage;
814 for (iPage = 0; iPage < cPages; iPage++)
815 {
816 if (--cNextYield > 0)
817 { /* likely */ }
818 else
819 {
820 PGM_UNLOCK(pVM);
821 ASMNopPause();
822 PGM_LOCK_VOID(pVM);
823 cNextYield = 256;
824 }
825
826 /*
827 * Query the Physical TLB entry for the page (may fail).
828 */
829 PPGMPAGEMAPTLBE pTlbe;
830 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
831 if (RT_SUCCESS(rc))
832 { }
833 else
834 break;
835 PPGMPAGE pPage = pTlbe->pPage;
836
837 /*
838 * No MMIO or active all access handlers, everything else can be accessed.
839 */
840 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
841 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
842 { }
843 else
844 {
845 rc = VERR_PGM_PHYS_PAGE_RESERVED;
846 break;
847 }
848
849 /*
850 * Now, just perform the locking and address calculation.
851 */
852 PPGMPAGEMAP pMap = pTlbe->pMap;
853 if (pMap)
854 pMap->cRefs++;
855
856 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
857 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
858 {
859 if (cLocks == 0)
860 pVM->pgm.s.cReadLockedPages++;
861 PGM_PAGE_INC_READ_LOCKS(pPage);
862 }
863 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
864 {
865 PGM_PAGE_INC_READ_LOCKS(pPage);
866 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
867 if (pMap)
868 pMap->cRefs++; /* Extra ref to prevent it from going away. */
869 }
870
871 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
872 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
873 paLocks[iPage].pvMap = pMap;
874 }
875
876 PGM_UNLOCK(pVM);
877
878 /*
879 * On failure we must unlock any pages we managed to get already.
880 */
881 if (RT_FAILURE(rc) && iPage > 0)
882 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
883
884 return rc;
885}
886
887
888/**
889 * Converts a GC physical address to a HC ring-3 pointer, with some
890 * additional checks.
891 *
892 * @returns VBox status code.
893 * @retval VINF_SUCCESS on success.
894 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
895 * access handler of some kind.
896 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
897 * accesses or is odd in any way.
898 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
899 *
900 * @param pVM The cross context VM structure.
901 * @param GCPhys The GC physical address to convert. Since this is only
902 * used for filling the REM TLB, the A20 mask must be
903 * applied before calling this API.
904 * @param fWritable Whether write access is required.
905 * @param ppv Where to store the pointer corresponding to GCPhys on
906 * success.
907 */
908VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
909{
910 PGM_LOCK_VOID(pVM);
911 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
912
913 PPGMRAMRANGE pRam;
914 PPGMPAGE pPage;
915 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
916 if (RT_SUCCESS(rc))
917 {
918 if (PGM_PAGE_IS_BALLOONED(pPage))
919 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
920 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
921 rc = VINF_SUCCESS;
922 else
923 {
924 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
925 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
926 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
927 {
928 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
929 * in -norawr0 mode. */
930 if (fWritable)
931 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
932 }
933 else
934 {
935 /* Temporarily disabled physical handler(s), since the recompiler
936 doesn't get notified when it's reset we'll have to pretend it's
937 operating normally. */
938 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
939 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
940 else
941 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
942 }
943 }
944 if (RT_SUCCESS(rc))
945 {
946 int rc2;
947
948 /* Make sure what we return is writable. */
949 if (fWritable)
950 switch (PGM_PAGE_GET_STATE(pPage))
951 {
952 case PGM_PAGE_STATE_ALLOCATED:
953 break;
954 case PGM_PAGE_STATE_BALLOONED:
955 AssertFailed();
956 break;
957 case PGM_PAGE_STATE_ZERO:
958 case PGM_PAGE_STATE_SHARED:
959 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
960 break;
961 RT_FALL_THRU();
962 case PGM_PAGE_STATE_WRITE_MONITORED:
963 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
964 AssertLogRelRCReturn(rc2, rc2);
965 break;
966 }
967
968 /* Get a ring-3 mapping of the address. */
969 PPGMPAGER3MAPTLBE pTlbe;
970 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
971 AssertLogRelRCReturn(rc2, rc2);
972 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
973 /** @todo mapping/locking hell; this isn't horribly efficient since
974 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
975
976 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
977 }
978 else
979 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
980
981 /* else: handler catching all access, no pointer returned. */
982 }
983 else
984 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
985
986 PGM_UNLOCK(pVM);
987 return rc;
988}
989
990
991
992/*********************************************************************************************************************************
993* RAM Range Management *
994*********************************************************************************************************************************/
995
996#define MAKE_LEAF(a_pNode) \
997 do { \
998 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
999 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
1000 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
1001 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
1002 } while (0)
1003
1004#define INSERT_LEFT(a_pParent, a_pNode) \
1005 do { \
1006 (a_pParent)->pLeftR3 = (a_pNode); \
1007 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
1008 } while (0)
1009#define INSERT_RIGHT(a_pParent, a_pNode) \
1010 do { \
1011 (a_pParent)->pRightR3 = (a_pNode); \
1012 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
1013 } while (0)
1014
1015
1016/**
1017 * Recursive tree builder.
1018 *
1019 * @param ppRam Pointer to the iterator variable.
1020 * @param iDepth The current depth. Inserts a leaf node if 0.
1021 */
1022static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
1023{
1024 PPGMRAMRANGE pRam;
1025 if (iDepth <= 0)
1026 {
1027 /*
1028 * Leaf node.
1029 */
1030 pRam = *ppRam;
1031 if (pRam)
1032 {
1033 *ppRam = pRam->pNextR3;
1034 MAKE_LEAF(pRam);
1035 }
1036 }
1037 else
1038 {
1039
1040 /*
1041 * Intermediate node.
1042 */
1043 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1044
1045 pRam = *ppRam;
1046 if (!pRam)
1047 return pLeft;
1048 *ppRam = pRam->pNextR3;
1049 MAKE_LEAF(pRam);
1050 INSERT_LEFT(pRam, pLeft);
1051
1052 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1053 if (pRight)
1054 INSERT_RIGHT(pRam, pRight);
1055 }
1056 return pRam;
1057}
1058
1059
1060/**
1061 * Rebuilds the RAM range search trees.
1062 *
1063 * @param pVM The cross context VM structure.
1064 */
1065static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
1066{
1067
1068 /*
1069 * Create the reasonably balanced tree in a sequential fashion.
1070 * For simplicity (laziness) we use standard recursion here.
1071 */
1072 int iDepth = 0;
1073 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1074 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
1075 while (pRam)
1076 {
1077 PPGMRAMRANGE pLeft = pRoot;
1078
1079 pRoot = pRam;
1080 pRam = pRam->pNextR3;
1081 MAKE_LEAF(pRoot);
1082 INSERT_LEFT(pRoot, pLeft);
1083
1084 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
1085 if (pRight)
1086 INSERT_RIGHT(pRoot, pRight);
1087 /** @todo else: rotate the tree. */
1088
1089 iDepth++;
1090 }
1091
1092 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
1093 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
1094
1095#ifdef VBOX_STRICT
1096 /*
1097 * Verify that the above code works.
1098 */
1099 unsigned cRanges = 0;
1100 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1101 cRanges++;
1102 Assert(cRanges > 0);
1103
1104 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
1105 if ((1U << cMaxDepth) < cRanges)
1106 cMaxDepth++;
1107
1108 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1109 {
1110 unsigned cDepth = 0;
1111 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
1112 for (;;)
1113 {
1114 if (pRam == pRam2)
1115 break;
1116 Assert(pRam2);
1117 if (pRam->GCPhys < pRam2->GCPhys)
1118 pRam2 = pRam2->pLeftR3;
1119 else
1120 pRam2 = pRam2->pRightR3;
1121 }
1122 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1123 }
1124#endif /* VBOX_STRICT */
1125}
1126
1127#undef MAKE_LEAF
1128#undef INSERT_LEFT
1129#undef INSERT_RIGHT
1130
1131/**
1132 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1133 *
1134 * Called when anything was relocated.
1135 *
1136 * @param pVM The cross context VM structure.
1137 */
1138void pgmR3PhysRelinkRamRanges(PVM pVM)
1139{
1140 PPGMRAMRANGE pCur;
1141
1142#ifdef VBOX_STRICT
1143 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1144 {
1145 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1146 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1147 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1148 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1149 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1150 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1151 Assert( pCur2 == pCur
1152 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1153 }
1154#endif
1155
1156 pCur = pVM->pgm.s.pRamRangesXR3;
1157 if (pCur)
1158 {
1159 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1160
1161 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1162 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1163
1164 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1165 }
1166 else
1167 {
1168 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1169 }
1170 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1171
1172 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1173}
1174
1175
1176/**
1177 * Links a new RAM range into the list.
1178 *
1179 * @param pVM The cross context VM structure.
1180 * @param pNew Pointer to the new list entry.
1181 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1182 */
1183static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1184{
1185 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1186 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1187
1188 PGM_LOCK_VOID(pVM);
1189
1190 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1191 pNew->pNextR3 = pRam;
1192 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1193
1194 if (pPrev)
1195 {
1196 pPrev->pNextR3 = pNew;
1197 pPrev->pNextR0 = pNew->pSelfR0;
1198 }
1199 else
1200 {
1201 pVM->pgm.s.pRamRangesXR3 = pNew;
1202 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1203 }
1204 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1205
1206 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1207 PGM_UNLOCK(pVM);
1208}
1209
1210
1211/**
1212 * Unlink an existing RAM range from the list.
1213 *
1214 * @param pVM The cross context VM structure.
1215 * @param pRam Pointer to the new list entry.
1216 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1217 */
1218static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1219{
1220 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1221 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1222
1223 PGM_LOCK_VOID(pVM);
1224
1225 PPGMRAMRANGE pNext = pRam->pNextR3;
1226 if (pPrev)
1227 {
1228 pPrev->pNextR3 = pNext;
1229 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1230 }
1231 else
1232 {
1233 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1234 pVM->pgm.s.pRamRangesXR3 = pNext;
1235 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1236 }
1237 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1238
1239 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1240 PGM_UNLOCK(pVM);
1241}
1242
1243
1244/**
1245 * Unlink an existing RAM range from the list.
1246 *
1247 * @param pVM The cross context VM structure.
1248 * @param pRam Pointer to the new list entry.
1249 */
1250static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1251{
1252 PGM_LOCK_VOID(pVM);
1253
1254 /* find prev. */
1255 PPGMRAMRANGE pPrev = NULL;
1256 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1257 while (pCur != pRam)
1258 {
1259 pPrev = pCur;
1260 pCur = pCur->pNextR3;
1261 }
1262 AssertFatal(pCur);
1263
1264 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1265 PGM_UNLOCK(pVM);
1266}
1267
1268
1269/**
1270 * Gets the number of ram ranges.
1271 *
1272 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1273 * @param pVM The cross context VM structure.
1274 */
1275VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1276{
1277 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1278
1279 PGM_LOCK_VOID(pVM);
1280 uint32_t cRamRanges = 0;
1281 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1282 cRamRanges++;
1283 PGM_UNLOCK(pVM);
1284 return cRamRanges;
1285}
1286
1287
1288/**
1289 * Get information about a range.
1290 *
1291 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1292 * @param pVM The cross context VM structure.
1293 * @param iRange The ordinal of the range.
1294 * @param pGCPhysStart Where to return the start of the range. Optional.
1295 * @param pGCPhysLast Where to return the address of the last byte in the
1296 * range. Optional.
1297 * @param ppszDesc Where to return the range description. Optional.
1298 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1299 * Optional.
1300 */
1301VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1302 const char **ppszDesc, bool *pfIsMmio)
1303{
1304 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1305
1306 PGM_LOCK_VOID(pVM);
1307 uint32_t iCurRange = 0;
1308 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1309 if (iCurRange == iRange)
1310 {
1311 if (pGCPhysStart)
1312 *pGCPhysStart = pCur->GCPhys;
1313 if (pGCPhysLast)
1314 *pGCPhysLast = pCur->GCPhysLast;
1315 if (ppszDesc)
1316 *ppszDesc = pCur->pszDesc;
1317 if (pfIsMmio)
1318 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1319
1320 PGM_UNLOCK(pVM);
1321 return VINF_SUCCESS;
1322 }
1323 PGM_UNLOCK(pVM);
1324 return VERR_OUT_OF_RANGE;
1325}
1326
1327
1328/*********************************************************************************************************************************
1329* RAM *
1330*********************************************************************************************************************************/
1331
1332/**
1333 * Frees the specified RAM page and replaces it with the ZERO page.
1334 *
1335 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
1336 *
1337 * @param pVM The cross context VM structure.
1338 * @param pReq Pointer to the request. This is NULL when doing a
1339 * bulk free in NEM memory mode.
1340 * @param pcPendingPages Where the number of pages waiting to be freed are
1341 * kept. This will normally be incremented. This is
1342 * NULL when doing a bulk free in NEM memory mode.
1343 * @param pPage Pointer to the page structure.
1344 * @param GCPhys The guest physical address of the page, if applicable.
1345 * @param enmNewType New page type for NEM notification, since several
1346 * callers will change the type upon successful return.
1347 *
1348 * @remarks The caller must own the PGM lock.
1349 */
1350int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
1351 PGMPAGETYPE enmNewType)
1352{
1353 /*
1354 * Assert sanity.
1355 */
1356 PGM_LOCK_ASSERT_OWNER(pVM);
1357 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1358 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
1359 {
1360 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1361 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
1362 }
1363
1364 /** @todo What about ballooning of large pages??! */
1365 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1366 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
1367
1368 if ( PGM_PAGE_IS_ZERO(pPage)
1369 || PGM_PAGE_IS_BALLOONED(pPage))
1370 return VINF_SUCCESS;
1371
1372 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
1373 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
1374 if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM)
1375 ? idPage == NIL_GMM_PAGEID
1376 || idPage > GMM_PAGEID_LAST
1377 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID
1378 : idPage != NIL_GMM_PAGEID))
1379 {
1380 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1381 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
1382 }
1383#ifdef VBOX_WITH_NATIVE_NEM
1384 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
1385#endif
1386
1387 /* update page count stats. */
1388 if (PGM_PAGE_IS_SHARED(pPage))
1389 pVM->pgm.s.cSharedPages--;
1390 else
1391 pVM->pgm.s.cPrivatePages--;
1392 pVM->pgm.s.cZeroPages++;
1393
1394 /* Deal with write monitored pages. */
1395 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1396 {
1397 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1398 pVM->pgm.s.cWrittenToPages++;
1399 }
1400
1401 /*
1402 * pPage = ZERO page.
1403 */
1404 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
1405 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1406 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
1407 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
1408 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
1409 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
1410
1411 /* Flush physical page map TLB entry. */
1412 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
1413
1414#ifdef VBOX_WITH_PGM_NEM_MODE
1415 /*
1416 * Skip the rest if we're doing a bulk free in NEM memory mode.
1417 */
1418 if (!pReq)
1419 return VINF_SUCCESS;
1420 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1421#endif
1422
1423#ifdef VBOX_WITH_NATIVE_NEM
1424 /* Notify NEM. */
1425 /** @todo Remove this one? */
1426 if (VM_IS_NEM_ENABLED(pVM))
1427 {
1428 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
1429 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.pvZeroPgR3,
1430 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
1431 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
1432 }
1433#else
1434 RT_NOREF(enmNewType);
1435#endif
1436
1437 /*
1438 * Make sure it's not in the handy page array.
1439 */
1440 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1441 {
1442 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
1443 {
1444 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
1445 pVM->pgm.s.aHandyPages[i].fZeroed = false;
1446 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1447 break;
1448 }
1449 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
1450 {
1451 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1452 break;
1453 }
1454 }
1455
1456 /*
1457 * Push it onto the page array.
1458 */
1459 uint32_t iPage = *pcPendingPages;
1460 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
1461 *pcPendingPages += 1;
1462
1463 pReq->aPages[iPage].idPage = idPage;
1464
1465 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
1466 return VINF_SUCCESS;
1467
1468 /*
1469 * Flush the pages.
1470 */
1471 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
1472 if (RT_SUCCESS(rc))
1473 {
1474 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1475 *pcPendingPages = 0;
1476 }
1477 return rc;
1478}
1479
1480
1481/**
1482 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1483 *
1484 * @returns VBox status code.
1485 * @param pVM The cross context VM structure.
1486 * @param pRam The RAM range in which the pages resides.
1487 * @param GCPhys The address of the first page.
1488 * @param GCPhysLast The address of the last page.
1489 * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that
1490 * will replace the pages we're freeing up.
1491 */
1492static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2)
1493{
1494 PGM_LOCK_ASSERT_OWNER(pVM);
1495
1496#ifdef VBOX_WITH_PGM_NEM_MODE
1497 /*
1498 * In simplified memory mode we don't actually free the memory,
1499 * we just unmap it and let NEM do any unlocking of it.
1500 */
1501 if (pVM->pgm.s.fNemMode)
1502 {
1503 Assert(VM_IS_NEM_ENABLED(pVM));
1504 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1505 uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */
1506 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
1507 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
1508 pvMmio2, &u2State, NULL /*puNemRange*/);
1509 AssertLogRelRCReturn(rc, rc);
1510
1511 /* Iterate the pages. */
1512 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1513 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1514 while (cPagesLeft-- > 0)
1515 {
1516 rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1517 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1518
1519 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1520 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1521
1522 GCPhys += PAGE_SIZE;
1523 pPageDst++;
1524 }
1525 return rc;
1526 }
1527#else /* !VBOX_WITH_PGM_NEM_MODE */
1528 RT_NOREF(pvMmio2);
1529#endif /* !VBOX_WITH_PGM_NEM_MODE */
1530
1531 /*
1532 * Regular mode.
1533 */
1534 /* Prepare. */
1535 uint32_t cPendingPages = 0;
1536 PGMMFREEPAGESREQ pReq;
1537 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1538 AssertLogRelRCReturn(rc, rc);
1539
1540#ifdef VBOX_WITH_NATIVE_NEM
1541 /* Tell NEM up-front. */
1542 uint8_t u2State = UINT8_MAX;
1543 if (VM_IS_NEM_ENABLED(pVM))
1544 {
1545 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1546 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2,
1547 &u2State, NULL /*puNemRange*/);
1548 AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc);
1549 }
1550#endif
1551
1552 /* Iterate the pages. */
1553 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1554 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1555 while (cPagesLeft-- > 0)
1556 {
1557 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1558 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1559
1560 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1561#ifdef VBOX_WITH_NATIVE_NEM
1562 if (u2State != UINT8_MAX)
1563 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1564#endif
1565
1566 GCPhys += PAGE_SIZE;
1567 pPageDst++;
1568 }
1569
1570 /* Finish pending and cleanup. */
1571 if (cPendingPages)
1572 {
1573 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1574 AssertLogRelRCReturn(rc, rc);
1575 }
1576 GMMR3FreePagesCleanup(pReq);
1577
1578 return rc;
1579}
1580
1581
1582/**
1583 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1584 *
1585 * In NEM mode, this will allocate the pages backing the RAM range and this may
1586 * fail. NEM registration may also fail. (In regular HM mode it won't fail.)
1587 *
1588 * @returns VBox status code.
1589 * @param pVM The cross context VM structure.
1590 * @param pNew The new RAM range.
1591 * @param GCPhys The address of the RAM range.
1592 * @param GCPhysLast The last address of the RAM range.
1593 * @param R0PtrNew Ditto for R0.
1594 * @param fFlags PGM_RAM_RANGE_FLAGS_FLOATING or zero.
1595 * @param pszDesc The description.
1596 * @param pPrev The previous RAM range (for linking).
1597 */
1598static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1599 RTR0PTR R0PtrNew, uint32_t fFlags, const char *pszDesc, PPGMRAMRANGE pPrev)
1600{
1601 /*
1602 * Initialize the range.
1603 */
1604 pNew->pSelfR0 = R0PtrNew;
1605 pNew->GCPhys = GCPhys;
1606 pNew->GCPhysLast = GCPhysLast;
1607 pNew->cb = GCPhysLast - GCPhys + 1;
1608 pNew->pszDesc = pszDesc;
1609 pNew->fFlags = fFlags;
1610 pNew->uNemRange = UINT32_MAX;
1611 pNew->pvR3 = NULL;
1612 pNew->paLSPages = NULL;
1613
1614 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1615#ifdef VBOX_WITH_PGM_NEM_MODE
1616 if (!pVM->pgm.s.fNemMode)
1617#endif
1618 {
1619 RTGCPHYS iPage = cPages;
1620 while (iPage-- > 0)
1621 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1622
1623 /* Update the page count stats. */
1624 pVM->pgm.s.cZeroPages += cPages;
1625 pVM->pgm.s.cAllPages += cPages;
1626 }
1627#ifdef VBOX_WITH_PGM_NEM_MODE
1628 else
1629 {
1630 int rc = SUPR3PageAlloc(cPages, pVM->pgm.s.fUseLargePages ? SUP_PAGE_ALLOC_F_LARGE_PAGES : 0, &pNew->pvR3);
1631 if (RT_FAILURE(rc))
1632 return rc;
1633
1634 RTGCPHYS iPage = cPages;
1635 while (iPage-- > 0)
1636 PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
1637 PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED);
1638
1639 /* Update the page count stats. */
1640 pVM->pgm.s.cPrivatePages += cPages;
1641 pVM->pgm.s.cAllPages += cPages;
1642 }
1643#endif
1644
1645 /*
1646 * Link it.
1647 */
1648 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1649
1650#ifdef VBOX_WITH_NATIVE_NEM
1651 /*
1652 * Notify NEM now that it has been linked.
1653 */
1654 if (VM_IS_NEM_ENABLED(pVM))
1655 {
1656 uint8_t u2State = UINT8_MAX;
1657 int rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pvR3, &u2State, &pNew->uNemRange);
1658 if (RT_SUCCESS(rc))
1659 {
1660 if (u2State != UINT8_MAX)
1661 pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State);
1662 }
1663 else
1664 pgmR3PhysUnlinkRamRange2(pVM, pNew, pPrev);
1665 return rc;
1666 }
1667#endif
1668 return VINF_SUCCESS;
1669}
1670
1671
1672/**
1673 * PGMR3PhysRegisterRam worker that registers a high chunk.
1674 *
1675 * @returns VBox status code.
1676 * @param pVM The cross context VM structure.
1677 * @param GCPhys The address of the RAM.
1678 * @param cRamPages The number of RAM pages to register.
1679 * @param iChunk The chunk number.
1680 * @param pszDesc The RAM range description.
1681 * @param ppPrev Previous RAM range pointer. In/Out.
1682 */
1683static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, uint32_t iChunk,
1684 const char *pszDesc, PPGMRAMRANGE *ppPrev)
1685{
1686 const char *pszDescChunk = iChunk == 0
1687 ? pszDesc
1688 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1689 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1690
1691 /*
1692 * Allocate memory for the new chunk.
1693 */
1694 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1695 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1696 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1697 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1698 void *pvChunk = NULL;
1699 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
1700 if (RT_SUCCESS(rc))
1701 {
1702 Assert(R0PtrChunk != NIL_RTR0PTR);
1703 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1704
1705 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1706
1707 /*
1708 * Ok, init and link the range.
1709 */
1710 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1711 R0PtrChunk, PGM_RAM_RANGE_FLAGS_FLOATING, pszDescChunk, *ppPrev);
1712 if (RT_SUCCESS(rc))
1713 *ppPrev = pNew;
1714
1715 if (RT_FAILURE(rc))
1716 SUPR3PageFreeEx(pvChunk, cChunkPages);
1717 }
1718
1719 RTMemTmpFree(paChunkPages);
1720 return rc;
1721}
1722
1723
1724/**
1725 * Sets up a range RAM.
1726 *
1727 * This will check for conflicting registrations, make a resource
1728 * reservation for the memory (with GMM), and setup the per-page
1729 * tracking structures (PGMPAGE).
1730 *
1731 * @returns VBox status code.
1732 * @param pVM The cross context VM structure.
1733 * @param GCPhys The physical address of the RAM.
1734 * @param cb The size of the RAM.
1735 * @param pszDesc The description - not copied, so, don't free or change it.
1736 */
1737VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1738{
1739 /*
1740 * Validate input.
1741 */
1742 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1743 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1744 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1745 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1746 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1747 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1748 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1749 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1750
1751 PGM_LOCK_VOID(pVM);
1752
1753 /*
1754 * Find range location and check for conflicts.
1755 */
1756 PPGMRAMRANGE pPrev = NULL;
1757 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1758 while (pRam && GCPhysLast >= pRam->GCPhys)
1759 {
1760 AssertLogRelMsgReturnStmt( GCPhysLast < pRam->GCPhys
1761 || GCPhys > pRam->GCPhysLast,
1762 ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1763 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1764 PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT);
1765
1766 /* next */
1767 pPrev = pRam;
1768 pRam = pRam->pNextR3;
1769 }
1770
1771 /*
1772 * Register it with GMM (the API bitches).
1773 */
1774 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1775 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1776 if (RT_FAILURE(rc))
1777 {
1778 PGM_UNLOCK(pVM);
1779 return rc;
1780 }
1781
1782 if ( GCPhys >= _4G
1783 && cPages > 256)
1784 {
1785 /*
1786 * The PGMRAMRANGE structures for the high memory can get very big.
1787 * There used to be some limitations on SUPR3PageAllocEx allocation
1788 * sizes, so traditionally we limited this to 16MB chunks. These days
1789 * we do ~64 MB chunks each covering 16GB of guest RAM, making sure
1790 * each range is a multiple of 1GB to enable eager hosts to use 1GB
1791 * pages in NEM mode.
1792 *
1793 * See also pgmR3PhysMmio2CalcChunkCount.
1794 */
1795 uint32_t const cPagesPerChunk = _4M;
1796 Assert(RT_ALIGN_32(cPagesPerChunk, X86_PD_PAE_SHIFT - X86_PAGE_SHIFT)); /* NEM large page requirement: 1GB pages. */
1797
1798 RTGCPHYS cPagesLeft = cPages;
1799 RTGCPHYS GCPhysChunk = GCPhys;
1800 uint32_t iChunk = 0;
1801 while (cPagesLeft > 0)
1802 {
1803 uint32_t cPagesInChunk = cPagesLeft;
1804 if (cPagesInChunk > cPagesPerChunk)
1805 cPagesInChunk = cPagesPerChunk;
1806
1807 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, iChunk, pszDesc, &pPrev);
1808 AssertRCReturn(rc, rc);
1809
1810 /* advance */
1811 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1812 cPagesLeft -= cPagesInChunk;
1813 iChunk++;
1814 }
1815 }
1816 else
1817 {
1818 /*
1819 * Allocate, initialize and link the new RAM range.
1820 */
1821 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1822 PPGMRAMRANGE pNew;
1823 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1824 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1825
1826 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, MMHyperCCToR0(pVM, pNew), 0 /*fFlags*/, pszDesc, pPrev);
1827 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1828 }
1829 pgmPhysInvalidatePageMapTLB(pVM);
1830
1831 PGM_UNLOCK(pVM);
1832 return rc;
1833}
1834
1835
1836/**
1837 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1838 *
1839 * We do this late in the init process so that all the ROM and MMIO ranges have
1840 * been registered already and we don't go wasting memory on them.
1841 *
1842 * @returns VBox status code.
1843 *
1844 * @param pVM The cross context VM structure.
1845 */
1846int pgmR3PhysRamPreAllocate(PVM pVM)
1847{
1848 Assert(pVM->pgm.s.fRamPreAlloc);
1849 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1850#ifdef VBOX_WITH_PGM_NEM_MODE
1851 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1852#endif
1853
1854 /*
1855 * Walk the RAM ranges and allocate all RAM pages, halt at
1856 * the first allocation error.
1857 */
1858 uint64_t cPages = 0;
1859 uint64_t NanoTS = RTTimeNanoTS();
1860 PGM_LOCK_VOID(pVM);
1861 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1862 {
1863 PPGMPAGE pPage = &pRam->aPages[0];
1864 RTGCPHYS GCPhys = pRam->GCPhys;
1865 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1866 while (cLeft-- > 0)
1867 {
1868 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1869 {
1870 switch (PGM_PAGE_GET_STATE(pPage))
1871 {
1872 case PGM_PAGE_STATE_ZERO:
1873 {
1874 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1875 if (RT_FAILURE(rc))
1876 {
1877 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1878 PGM_UNLOCK(pVM);
1879 return rc;
1880 }
1881 cPages++;
1882 break;
1883 }
1884
1885 case PGM_PAGE_STATE_BALLOONED:
1886 case PGM_PAGE_STATE_ALLOCATED:
1887 case PGM_PAGE_STATE_WRITE_MONITORED:
1888 case PGM_PAGE_STATE_SHARED:
1889 /* nothing to do here. */
1890 break;
1891 }
1892 }
1893
1894 /* next */
1895 pPage++;
1896 GCPhys += PAGE_SIZE;
1897 }
1898 }
1899 PGM_UNLOCK(pVM);
1900 NanoTS = RTTimeNanoTS() - NanoTS;
1901
1902 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1903 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1904 return VINF_SUCCESS;
1905}
1906
1907
1908/**
1909 * Checks shared page checksums.
1910 *
1911 * @param pVM The cross context VM structure.
1912 */
1913void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1914{
1915#ifdef VBOX_STRICT
1916 PGM_LOCK_VOID(pVM);
1917
1918 if (pVM->pgm.s.cSharedPages > 0)
1919 {
1920 /*
1921 * Walk the ram ranges.
1922 */
1923 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1924 {
1925 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1926 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1927
1928 while (iPage-- > 0)
1929 {
1930 PPGMPAGE pPage = &pRam->aPages[iPage];
1931 if (PGM_PAGE_IS_SHARED(pPage))
1932 {
1933 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
1934 if (!u32Checksum)
1935 {
1936 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1937 void const *pvPage;
1938 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1939 if (RT_SUCCESS(rc))
1940 {
1941 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1942# if 0
1943 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1944# else
1945 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
1946 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1947 else
1948 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1949# endif
1950 }
1951 else
1952 AssertRC(rc);
1953 }
1954 }
1955
1956 } /* for each page */
1957
1958 } /* for each ram range */
1959 }
1960
1961 PGM_UNLOCK(pVM);
1962#endif /* VBOX_STRICT */
1963 NOREF(pVM);
1964}
1965
1966
1967/**
1968 * Resets the physical memory state.
1969 *
1970 * ASSUMES that the caller owns the PGM lock.
1971 *
1972 * @returns VBox status code.
1973 * @param pVM The cross context VM structure.
1974 */
1975int pgmR3PhysRamReset(PVM pVM)
1976{
1977 PGM_LOCK_ASSERT_OWNER(pVM);
1978
1979 /* Reset the memory balloon. */
1980 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1981 AssertRC(rc);
1982
1983#ifdef VBOX_WITH_PAGE_SHARING
1984 /* Clear all registered shared modules. */
1985 pgmR3PhysAssertSharedPageChecksums(pVM);
1986 rc = GMMR3ResetSharedModules(pVM);
1987 AssertRC(rc);
1988#endif
1989 /* Reset counters. */
1990 pVM->pgm.s.cReusedSharedPages = 0;
1991 pVM->pgm.s.cBalloonedPages = 0;
1992
1993 return VINF_SUCCESS;
1994}
1995
1996
1997/**
1998 * Resets (zeros) the RAM after all devices and components have been reset.
1999 *
2000 * ASSUMES that the caller owns the PGM lock.
2001 *
2002 * @returns VBox status code.
2003 * @param pVM The cross context VM structure.
2004 */
2005int pgmR3PhysRamZeroAll(PVM pVM)
2006{
2007 PGM_LOCK_ASSERT_OWNER(pVM);
2008
2009 /*
2010 * We batch up pages that should be freed instead of calling GMM for
2011 * each and every one of them.
2012 */
2013 uint32_t cPendingPages = 0;
2014 PGMMFREEPAGESREQ pReq;
2015 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2016 AssertLogRelRCReturn(rc, rc);
2017
2018 /*
2019 * Walk the ram ranges.
2020 */
2021 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2022 {
2023 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2024 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2025
2026 if ( !pVM->pgm.s.fRamPreAlloc
2027#ifdef VBOX_WITH_PGM_NEM_MODE
2028 && !pVM->pgm.s.fNemMode
2029#endif
2030 && pVM->pgm.s.fZeroRamPagesOnReset)
2031 {
2032 /* Replace all RAM pages by ZERO pages. */
2033 while (iPage-- > 0)
2034 {
2035 PPGMPAGE pPage = &pRam->aPages[iPage];
2036 switch (PGM_PAGE_GET_TYPE(pPage))
2037 {
2038 case PGMPAGETYPE_RAM:
2039 /* Do not replace pages part of a 2 MB continuous range
2040 with zero pages, but zero them instead. */
2041 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2042 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2043 {
2044 void *pvPage;
2045 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2046 AssertLogRelRCReturn(rc, rc);
2047 ASMMemZeroPage(pvPage);
2048 }
2049 else if (PGM_PAGE_IS_BALLOONED(pPage))
2050 {
2051 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2052 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2053 }
2054 else if (!PGM_PAGE_IS_ZERO(pPage))
2055 {
2056 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2057 PGMPAGETYPE_RAM);
2058 AssertLogRelRCReturn(rc, rc);
2059 }
2060 break;
2061
2062 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2063 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2064 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2065 pRam, true /*fDoAccounting*/);
2066 break;
2067
2068 case PGMPAGETYPE_MMIO2:
2069 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2070 case PGMPAGETYPE_ROM:
2071 case PGMPAGETYPE_MMIO:
2072 break;
2073 default:
2074 AssertFailed();
2075 }
2076 } /* for each page */
2077 }
2078 else
2079 {
2080 /* Zero the memory. */
2081 while (iPage-- > 0)
2082 {
2083 PPGMPAGE pPage = &pRam->aPages[iPage];
2084 switch (PGM_PAGE_GET_TYPE(pPage))
2085 {
2086 case PGMPAGETYPE_RAM:
2087 switch (PGM_PAGE_GET_STATE(pPage))
2088 {
2089 case PGM_PAGE_STATE_ZERO:
2090 break;
2091
2092 case PGM_PAGE_STATE_BALLOONED:
2093 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2094 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2095 break;
2096
2097 case PGM_PAGE_STATE_SHARED:
2098 case PGM_PAGE_STATE_WRITE_MONITORED:
2099 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2100 AssertLogRelRCReturn(rc, rc);
2101 RT_FALL_THRU();
2102
2103 case PGM_PAGE_STATE_ALLOCATED:
2104 if (pVM->pgm.s.fZeroRamPagesOnReset)
2105 {
2106 void *pvPage;
2107 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2108 AssertLogRelRCReturn(rc, rc);
2109 ASMMemZeroPage(pvPage);
2110 }
2111 break;
2112 }
2113 break;
2114
2115 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2116 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2117 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2118 pRam, true /*fDoAccounting*/);
2119 break;
2120
2121 case PGMPAGETYPE_MMIO2:
2122 case PGMPAGETYPE_ROM_SHADOW:
2123 case PGMPAGETYPE_ROM:
2124 case PGMPAGETYPE_MMIO:
2125 break;
2126 default:
2127 AssertFailed();
2128
2129 }
2130 } /* for each page */
2131 }
2132
2133 }
2134
2135 /*
2136 * Finish off any pages pending freeing.
2137 */
2138 if (cPendingPages)
2139 {
2140 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2141 AssertLogRelRCReturn(rc, rc);
2142 }
2143 GMMR3FreePagesCleanup(pReq);
2144 return VINF_SUCCESS;
2145}
2146
2147
2148/**
2149 * Frees all RAM during VM termination
2150 *
2151 * ASSUMES that the caller owns the PGM lock.
2152 *
2153 * @returns VBox status code.
2154 * @param pVM The cross context VM structure.
2155 */
2156int pgmR3PhysRamTerm(PVM pVM)
2157{
2158 PGM_LOCK_ASSERT_OWNER(pVM);
2159
2160 /* Reset the memory balloon. */
2161 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2162 AssertRC(rc);
2163
2164#ifdef VBOX_WITH_PAGE_SHARING
2165 /*
2166 * Clear all registered shared modules.
2167 */
2168 pgmR3PhysAssertSharedPageChecksums(pVM);
2169 rc = GMMR3ResetSharedModules(pVM);
2170 AssertRC(rc);
2171
2172 /*
2173 * Flush the handy pages updates to make sure no shared pages are hiding
2174 * in there. (Not unlikely if the VM shuts down, apparently.)
2175 */
2176 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2177#endif
2178
2179 /*
2180 * We batch up pages that should be freed instead of calling GMM for
2181 * each and every one of them.
2182 */
2183 uint32_t cPendingPages = 0;
2184 PGMMFREEPAGESREQ pReq;
2185 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2186 AssertLogRelRCReturn(rc, rc);
2187
2188 /*
2189 * Walk the ram ranges.
2190 */
2191 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2192 {
2193 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2194 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2195
2196 while (iPage-- > 0)
2197 {
2198 PPGMPAGE pPage = &pRam->aPages[iPage];
2199 switch (PGM_PAGE_GET_TYPE(pPage))
2200 {
2201 case PGMPAGETYPE_RAM:
2202 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2203 /** @todo change this to explicitly free private pages here. */
2204 if (PGM_PAGE_IS_SHARED(pPage))
2205 {
2206 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2207 PGMPAGETYPE_RAM);
2208 AssertLogRelRCReturn(rc, rc);
2209 }
2210 break;
2211
2212 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2213 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2214 case PGMPAGETYPE_MMIO2:
2215 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2216 case PGMPAGETYPE_ROM:
2217 case PGMPAGETYPE_MMIO:
2218 break;
2219 default:
2220 AssertFailed();
2221 }
2222 } /* for each page */
2223 }
2224
2225 /*
2226 * Finish off any pages pending freeing.
2227 */
2228 if (cPendingPages)
2229 {
2230 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2231 AssertLogRelRCReturn(rc, rc);
2232 }
2233 GMMR3FreePagesCleanup(pReq);
2234 return VINF_SUCCESS;
2235}
2236
2237
2238
2239/*********************************************************************************************************************************
2240* MMIO *
2241*********************************************************************************************************************************/
2242
2243/**
2244 * This is the interface IOM is using to register an MMIO region.
2245 *
2246 * It will check for conflicts and ensure that a RAM range structure
2247 * is present before calling the PGMR3HandlerPhysicalRegister API to
2248 * register the callbacks.
2249 *
2250 * @returns VBox status code.
2251 *
2252 * @param pVM The cross context VM structure.
2253 * @param GCPhys The start of the MMIO region.
2254 * @param cb The size of the MMIO region.
2255 * @param hType The physical access handler type registration.
2256 * @param pvUserR3 The user argument for R3.
2257 * @param pvUserR0 The user argument for R0.
2258 * @param pvUserRC The user argument for RC.
2259 * @param pszDesc The description of the MMIO region.
2260 */
2261VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2262 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2263{
2264 /*
2265 * Assert on some assumption.
2266 */
2267 VM_ASSERT_EMT(pVM);
2268 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2269 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2270 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2271 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2272 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2273
2274 int rc = PGM_LOCK(pVM);
2275 AssertRCReturn(rc, rc);
2276
2277 /*
2278 * Make sure there's a RAM range structure for the region.
2279 */
2280 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2281 bool fRamExists = false;
2282 PPGMRAMRANGE pRamPrev = NULL;
2283 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2284 while (pRam && GCPhysLast >= pRam->GCPhys)
2285 {
2286 if ( GCPhysLast >= pRam->GCPhys
2287 && GCPhys <= pRam->GCPhysLast)
2288 {
2289 /* Simplification: all within the same range. */
2290 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2291 && GCPhysLast <= pRam->GCPhysLast,
2292 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2293 GCPhys, GCPhysLast, pszDesc,
2294 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2295 PGM_UNLOCK(pVM),
2296 VERR_PGM_RAM_CONFLICT);
2297
2298 /* Check that it's all RAM or MMIO pages. */
2299 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2300 uint32_t cLeft = cb >> PAGE_SHIFT;
2301 while (cLeft-- > 0)
2302 {
2303 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2304 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2305 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2306 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2307 PGM_UNLOCK(pVM),
2308 VERR_PGM_RAM_CONFLICT);
2309 pPage++;
2310 }
2311
2312 /* Looks good. */
2313 fRamExists = true;
2314 break;
2315 }
2316
2317 /* next */
2318 pRamPrev = pRam;
2319 pRam = pRam->pNextR3;
2320 }
2321 PPGMRAMRANGE pNew;
2322 if (fRamExists)
2323 {
2324 pNew = NULL;
2325
2326 /*
2327 * Make all the pages in the range MMIO/ZERO pages, freeing any
2328 * RAM pages currently mapped here. This might not be 100% correct
2329 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2330 */
2331 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, NULL);
2332 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
2333
2334 /* Force a PGM pool flush as guest ram references have been changed. */
2335 /** @todo not entirely SMP safe; assuming for now the guest takes
2336 * care of this internally (not touch mapped mmio while changing the
2337 * mapping). */
2338 PVMCPU pVCpu = VMMGetCpu(pVM);
2339 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2340 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2341 }
2342 else
2343 {
2344 /*
2345 * No RAM range, insert an ad hoc one.
2346 *
2347 * Note that we don't have to tell REM about this range because
2348 * PGMHandlerPhysicalRegisterEx will do that for us.
2349 */
2350 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2351
2352 /* Alloc. */
2353 const uint32_t cPages = cb >> PAGE_SHIFT;
2354 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2355 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2356 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), PGM_UNLOCK(pVM), rc);
2357
2358#ifdef VBOX_WITH_NATIVE_NEM
2359 /* Notify NEM. */
2360 uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */
2361 if (VM_IS_NEM_ENABLED(pVM))
2362 {
2363 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cPages << PAGE_SHIFT, 0 /*fFlags*/, NULL, NULL,
2364 &u2State, &pNew->uNemRange);
2365 AssertLogRelRCReturnStmt(rc, MMHyperFree(pVM, pNew), rc);
2366 }
2367#endif
2368
2369 /* Initialize the range. */
2370 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2371 pNew->GCPhys = GCPhys;
2372 pNew->GCPhysLast = GCPhysLast;
2373 pNew->cb = cb;
2374 pNew->pszDesc = pszDesc;
2375 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2376 pNew->pvR3 = NULL;
2377 pNew->paLSPages = NULL;
2378
2379 uint32_t iPage = cPages;
2380 while (iPage-- > 0)
2381 {
2382 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2383#ifdef VBOX_WITH_NATIVE_NEM
2384 PGM_PAGE_SET_NEM_STATE(&pNew->aPages[iPage], u2State);
2385#endif
2386 }
2387 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2388
2389 /* update the page count stats. */
2390 pVM->pgm.s.cPureMmioPages += cPages;
2391 pVM->pgm.s.cAllPages += cPages;
2392
2393 /* link it */
2394 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2395 }
2396
2397 /*
2398 * Register the access handler.
2399 */
2400 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2401 if (RT_SUCCESS(rc))
2402 {
2403#ifdef VBOX_WITH_NATIVE_NEM
2404 /* Late NEM notification. */
2405 if (VM_IS_NEM_ENABLED(pVM))
2406 {
2407 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
2408 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
2409 fRamExists ? (uint8_t *)pRam->pvR3 + (uintptr_t)(GCPhys - pRam->GCPhys) : NULL,
2410 NULL, !fRamExists ? &pRam->uNemRange : NULL);
2411 AssertLogRelRCReturn(rc, rc);
2412 }
2413#endif
2414 }
2415 /** @todo the phys handler failure handling isn't complete, esp. wrt NEM. */
2416 else if (!fRamExists)
2417 {
2418 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2419 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2420
2421 /* remove the ad hoc range. */
2422 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2423 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2424 MMHyperFree(pVM, pRam);
2425 }
2426 pgmPhysInvalidatePageMapTLB(pVM);
2427
2428 PGM_UNLOCK(pVM);
2429 return rc;
2430}
2431
2432
2433/**
2434 * This is the interface IOM is using to register an MMIO region.
2435 *
2436 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2437 * any ad hoc PGMRAMRANGE left behind.
2438 *
2439 * @returns VBox status code.
2440 * @param pVM The cross context VM structure.
2441 * @param GCPhys The start of the MMIO region.
2442 * @param cb The size of the MMIO region.
2443 */
2444VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2445{
2446 VM_ASSERT_EMT(pVM);
2447
2448 int rc = PGM_LOCK(pVM);
2449 AssertRCReturn(rc, rc);
2450
2451 /*
2452 * First deregister the handler, then check if we should remove the ram range.
2453 */
2454 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2455 if (RT_SUCCESS(rc))
2456 {
2457 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2458 PPGMRAMRANGE pRamPrev = NULL;
2459 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2460 while (pRam && GCPhysLast >= pRam->GCPhys)
2461 {
2462 /** @todo We're being a bit too careful here. rewrite. */
2463 if ( GCPhysLast == pRam->GCPhysLast
2464 && GCPhys == pRam->GCPhys)
2465 {
2466 Assert(pRam->cb == cb);
2467
2468 /*
2469 * See if all the pages are dead MMIO pages.
2470 */
2471 uint32_t const cPages = cb >> PAGE_SHIFT;
2472 bool fAllMMIO = true;
2473 uint32_t iPage = 0;
2474 uint32_t cLeft = cPages;
2475 while (cLeft-- > 0)
2476 {
2477 PPGMPAGE pPage = &pRam->aPages[iPage];
2478 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2479 /*|| not-out-of-action later */)
2480 {
2481 fAllMMIO = false;
2482 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2483 break;
2484 }
2485 Assert( PGM_PAGE_IS_ZERO(pPage)
2486 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2487 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2488 pPage++;
2489 }
2490 if (fAllMMIO)
2491 {
2492 /*
2493 * Ad-hoc range, unlink and free it.
2494 */
2495 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2496 GCPhys, GCPhysLast, pRam->pszDesc));
2497 /** @todo check the ad-hoc flags? */
2498
2499#ifdef VBOX_WITH_NATIVE_NEM
2500 if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */
2501 {
2502 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/,
2503 NULL, NULL, NULL, &pRam->uNemRange);
2504 AssertLogRelRCReturn(rc, rc);
2505 }
2506#endif
2507
2508 pVM->pgm.s.cAllPages -= cPages;
2509 pVM->pgm.s.cPureMmioPages -= cPages;
2510
2511 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2512 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2513 MMHyperFree(pVM, pRam);
2514 break;
2515 }
2516 }
2517
2518 /*
2519 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2520 */
2521 if ( GCPhysLast >= pRam->GCPhys
2522 && GCPhys <= pRam->GCPhysLast)
2523 {
2524 Assert(GCPhys >= pRam->GCPhys);
2525 Assert(GCPhysLast <= pRam->GCPhysLast);
2526
2527 /*
2528 * Turn the pages back into RAM pages.
2529 */
2530 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2531 uint32_t cLeft = cb >> PAGE_SHIFT;
2532 while (cLeft--)
2533 {
2534 PPGMPAGE pPage = &pRam->aPages[iPage];
2535 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2536 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2537 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2538 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2539 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2540 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2541 iPage++;
2542 }
2543
2544#ifdef VBOX_WITH_NATIVE_NEM
2545 /* Notify REM (failure will probably leave things in a non-working state). */
2546 if (VM_IS_NEM_ENABLED(pVM))
2547 {
2548 uint8_t u2State = UINT8_MAX;
2549 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
2550 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
2551 NULL, &u2State, &pRam->uNemRange);
2552 AssertLogRelRCReturn(rc, rc);
2553 if (u2State != UINT8_MAX)
2554 pgmPhysSetNemStateForPages(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT],
2555 cb >> PAGE_SHIFT, u2State);
2556 }
2557#endif
2558 break;
2559 }
2560
2561 /* next */
2562 pRamPrev = pRam;
2563 pRam = pRam->pNextR3;
2564 }
2565 }
2566
2567 /* Force a PGM pool flush as guest ram references have been changed. */
2568 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2569 * this internally (not touch mapped mmio while changing the mapping). */
2570 PVMCPU pVCpu = VMMGetCpu(pVM);
2571 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2572 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2573
2574 pgmPhysInvalidatePageMapTLB(pVM);
2575 pgmPhysInvalidRamRangeTlbs(pVM);
2576 PGM_UNLOCK(pVM);
2577 return rc;
2578}
2579
2580
2581
2582/*********************************************************************************************************************************
2583* MMIO2 *
2584*********************************************************************************************************************************/
2585
2586/**
2587 * Locate a MMIO2 range.
2588 *
2589 * @returns Pointer to the MMIO2 range.
2590 * @param pVM The cross context VM structure.
2591 * @param pDevIns The device instance owning the region.
2592 * @param iSubDev The sub-device number.
2593 * @param iRegion The region.
2594 * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
2595 * @a iRegion.
2596 */
2597DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
2598 uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
2599{
2600 if (hMmio2 != NIL_PGMMMIO2HANDLE)
2601 {
2602 if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
2603 {
2604 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
2605 if (pCur && pCur->pDevInsR3 == pDevIns)
2606 {
2607 Assert(pCur->idMmio2 == hMmio2);
2608 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2609 return pCur;
2610 }
2611 Assert(!pCur);
2612 }
2613 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2614 if (pCur->idMmio2 == hMmio2)
2615 {
2616 AssertBreak(pCur->pDevInsR3 == pDevIns);
2617 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2618 return pCur;
2619 }
2620 }
2621 else
2622 {
2623 /*
2624 * Search the list. There shouldn't be many entries.
2625 */
2626 /** @todo Optimize this lookup! There may now be many entries and it'll
2627 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2628 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2629 if ( pCur->pDevInsR3 == pDevIns
2630 && pCur->iRegion == iRegion
2631 && pCur->iSubDev == iSubDev)
2632 return pCur;
2633 }
2634 return NULL;
2635}
2636
2637
2638/**
2639 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map.
2640 */
2641static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2642{
2643 int rc = VINF_SUCCESS;
2644 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2645 {
2646 Assert(!(pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING));
2647 int rc2 = pgmHandlerPhysicalExRegister(pVM, pCurMmio2->pPhysHandlerR3, pCurMmio2->RamRange.GCPhys,
2648 pCurMmio2->RamRange.GCPhysLast);
2649 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2650 pCurMmio2->RamRange.pszDesc, rc2));
2651 if (RT_SUCCESS(rc2))
2652 pCurMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING;
2653 else if (RT_SUCCESS(rc))
2654 rc = rc2;
2655 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2656 return rc;
2657 }
2658 AssertFailed();
2659 return rc;
2660}
2661
2662
2663/**
2664 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap.
2665 */
2666static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2667{
2668 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2669 {
2670 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)
2671 {
2672 int rc2 = pgmHandlerPhysicalExDeregister(pVM, pCurMmio2->pPhysHandlerR3);
2673 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2674 pCurMmio2->RamRange.pszDesc, rc2));
2675 pCurMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING;
2676 }
2677 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2678 return VINF_SUCCESS;
2679 }
2680 AssertFailed();
2681 return VINF_SUCCESS;
2682
2683}
2684
2685
2686/**
2687 * Calculates the number of chunks
2688 *
2689 * @returns Number of registration chunk needed.
2690 * @param pVM The cross context VM structure.
2691 * @param cb The size of the MMIO/MMIO2 range.
2692 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2693 * chunk. Optional.
2694 * @param pcbChunk Where to return the guest mapping size for a chunk.
2695 */
2696static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2697{
2698 RT_NOREF_PV(pVM); /* without raw mode */
2699
2700 /*
2701 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2702 * needing a few bytes extra the PGMREGMMIO2RANGE structure.
2703 *
2704 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2705 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2706 */
2707 uint32_t const cPagesPerChunk = _4M;
2708 Assert(RT_ALIGN_32(cPagesPerChunk, X86_PD_PAE_SHIFT - X86_PAGE_SHIFT)); /* NEM large page requirement: 1GB pages. */
2709 uint32_t const cbChunk = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]);
2710 AssertRelease(cPagesPerChunk < _16M);
2711
2712 if (pcbChunk)
2713 *pcbChunk = cbChunk;
2714 if (pcPagesPerChunk)
2715 *pcPagesPerChunk = cPagesPerChunk;
2716
2717 /* Calc the number of chunks we need. */
2718 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2719 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2720 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2721 return cChunks;
2722}
2723
2724
2725/**
2726 * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
2727 * structures and does basic initialization.
2728 *
2729 * Caller must set type specfic members and initialize the PGMPAGE structures.
2730 *
2731 * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
2732 * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
2733 * interface. The reference to caller and type above is purely historical.
2734 *
2735 * @returns VBox status code.
2736 * @param pVM The cross context VM structure.
2737 * @param pDevIns The device instance owning the region.
2738 * @param iSubDev The sub-device number (internal PCI config number).
2739 * @param iRegion The region number. If the MMIO2 memory is a PCI
2740 * I/O region this number has to be the number of that
2741 * region. Otherwise it can be any number safe
2742 * UINT8_MAX.
2743 * @param cb The size of the region. Must be page aligned.
2744 * @param fFlags PGMPHYS_MMIO2_FLAGS_XXX.
2745 * @param idMmio2 The MMIO2 ID for the first chunk.
2746 * @param pszDesc The description.
2747 * @param ppHeadRet Where to return the pointer to the first
2748 * registration chunk.
2749 *
2750 * @thread EMT
2751 */
2752static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2753 uint8_t idMmio2, const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
2754{
2755 /*
2756 * Figure out how many chunks we need and of which size.
2757 */
2758 uint32_t cPagesPerChunk;
2759 uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2760 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2761
2762 /*
2763 * Allocate the chunks.
2764 */
2765 PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
2766 *ppNext = NULL;
2767
2768 int rc = VINF_SUCCESS;
2769 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2770 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++, idMmio2++)
2771 {
2772 /*
2773 * We currently do a single RAM range for the whole thing. This will
2774 * probably have to change once someone needs really large MMIO regions,
2775 * as we will be running into SUPR3PageAllocEx limitations and such.
2776 */
2777 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2778 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
2779 PPGMREGMMIO2RANGE pNew = NULL;
2780 if ( iChunk + 1 < cChunks
2781 || cbRange >= _1M)
2782 {
2783 /*
2784 * Allocate memory for the registration structure.
2785 */
2786 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2787 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2788 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2789 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2790 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2791 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2792 void *pvChunk = NULL;
2793 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
2794 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2795
2796 Assert(R0PtrChunk != NIL_RTR0PTR);
2797 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2798
2799 pNew = (PPGMREGMMIO2RANGE)pvChunk;
2800 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2801 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2802
2803 RTMemTmpFree(paChunkPages);
2804 }
2805 /*
2806 * Not so big, do a one time hyper allocation.
2807 */
2808 else
2809 {
2810 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2811 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2812
2813 /*
2814 * Initialize allocation specific items.
2815 */
2816 //pNew->RamRange.fFlags = 0;
2817 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2818 }
2819
2820 /*
2821 * Initialize the registration structure (caller does specific bits).
2822 */
2823 pNew->pDevInsR3 = pDevIns;
2824 //pNew->pvR3 = NULL;
2825 //pNew->pNext = NULL;
2826 if (iChunk == 0)
2827 pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
2828 if (iChunk + 1 == cChunks)
2829 pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
2830 if (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2831 pNew->fFlags |= PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES;
2832 pNew->iSubDev = iSubDev;
2833 pNew->iRegion = iRegion;
2834 pNew->idSavedState = UINT8_MAX;
2835 pNew->idMmio2 = idMmio2;
2836 //pNew->pPhysHandlerR3 = NULL;
2837 //pNew->paLSPages = NULL;
2838 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2839 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2840 pNew->RamRange.pszDesc = pszDesc;
2841 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2842 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2843 pNew->RamRange.uNemRange = UINT32_MAX;
2844 //pNew->RamRange.pvR3 = NULL;
2845 //pNew->RamRange.paLSPages = NULL;
2846
2847 *ppNext = pNew;
2848 ASMCompilerBarrier();
2849 cPagesLeft -= cPagesTrackedByChunk;
2850 ppNext = &pNew->pNextR3;
2851
2852 /*
2853 * Pre-allocate a handler if we're tracking dirty pages, unless NEM takes care of this.
2854 */
2855 if ( (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2856#ifdef VBOX_WITH_PGM_NEM_MODE
2857 && (!VM_IS_NEM_ENABLED(pVM) || !NEMR3IsMmio2DirtyPageTrackingSupported(pVM))
2858#endif
2859 )
2860
2861 {
2862 rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType,
2863 (RTR3PTR)(uintptr_t)idMmio2, idMmio2, idMmio2, pszDesc, &pNew->pPhysHandlerR3);
2864 AssertLogRelMsgRCBreak(rc, ("idMmio2=%zu\n", idMmio2));
2865 }
2866 }
2867 Assert(cPagesLeft == 0);
2868
2869 if (RT_SUCCESS(rc))
2870 {
2871 Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
2872 return VINF_SUCCESS;
2873 }
2874
2875 /*
2876 * Free floating ranges.
2877 */
2878 while (*ppHeadRet)
2879 {
2880 PPGMREGMMIO2RANGE pFree = *ppHeadRet;
2881 *ppHeadRet = pFree->pNextR3;
2882
2883 if (pFree->pPhysHandlerR3)
2884 {
2885 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
2886 pFree->pPhysHandlerR3 = NULL;
2887 }
2888
2889 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2890 {
2891 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2892 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2893 SUPR3PageFreeEx(pFree, cChunkPages);
2894 }
2895 }
2896
2897 return rc;
2898}
2899
2900
2901/**
2902 * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
2903 * complete registration entry into the lists and lookup tables.
2904 *
2905 * @param pVM The cross context VM structure.
2906 * @param pNew The new MMIO / MMIO2 registration to link.
2907 */
2908static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
2909{
2910 Assert(pNew->idMmio2 != UINT8_MAX);
2911
2912 /*
2913 * Link it into the list (order doesn't matter, so insert it at the head).
2914 *
2915 * Note! The range we're linking may consist of multiple chunks, so we
2916 * have to find the last one.
2917 */
2918 PPGMREGMMIO2RANGE pLast = pNew;
2919 for (pLast = pNew; ; pLast = pLast->pNextR3)
2920 {
2921 if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2922 break;
2923 Assert(pLast->pNextR3);
2924 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2925 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2926 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2927 Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1);
2928 }
2929
2930 PGM_LOCK_VOID(pVM);
2931
2932 /* Link in the chain of ranges at the head of the list. */
2933 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2934 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2935
2936 /* Insert the MMIO2 range/page IDs. */
2937 uint8_t idMmio2 = pNew->idMmio2;
2938 for (;;)
2939 {
2940 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2941 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2942 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2943 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2944 if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2945 break;
2946 pNew = pNew->pNextR3;
2947 idMmio2++;
2948 }
2949
2950 pgmPhysInvalidatePageMapTLB(pVM);
2951 PGM_UNLOCK(pVM);
2952}
2953
2954
2955/**
2956 * Allocate and register an MMIO2 region.
2957 *
2958 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2959 * associated with a device. It is also non-shared memory with a permanent
2960 * ring-3 mapping and page backing (presently).
2961 *
2962 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2963 * the VM, in which case we'll drop the base memory pages. Presently we will
2964 * make no attempt to preserve anything that happens to be present in the base
2965 * memory that is replaced, this is of course incorrect but it's too much
2966 * effort.
2967 *
2968 * @returns VBox status code.
2969 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2970 * memory.
2971 * @retval VERR_ALREADY_EXISTS if the region already exists.
2972 *
2973 * @param pVM The cross context VM structure.
2974 * @param pDevIns The device instance owning the region.
2975 * @param iSubDev The sub-device number.
2976 * @param iRegion The region number. If the MMIO2 memory is a PCI
2977 * I/O region this number has to be the number of that
2978 * region. Otherwise it can be any number save
2979 * UINT8_MAX.
2980 * @param cb The size of the region. Must be page aligned.
2981 * @param fFlags Reserved for future use, must be zero.
2982 * @param pszDesc The description.
2983 * @param ppv Where to store the pointer to the ring-3 mapping of
2984 * the memory.
2985 * @param phRegion Where to return the MMIO2 region handle. Optional.
2986 * @thread EMT
2987 */
2988VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2989 uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
2990{
2991 /*
2992 * Validate input.
2993 */
2994 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2995 *ppv = NULL;
2996 if (phRegion)
2997 {
2998 AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
2999 *phRegion = NIL_PGMMMIO2HANDLE;
3000 }
3001 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3002 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3003 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3004 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3005 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3006 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3007 AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
3008 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3009 AssertReturn(cb, VERR_INVALID_PARAMETER);
3010 AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS);
3011
3012 const uint32_t cPages = cb >> PAGE_SHIFT;
3013 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3014 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3015 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
3016
3017 /*
3018 * For the 2nd+ instance, mangle the description string so it's unique.
3019 */
3020 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3021 {
3022 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3023 if (!pszDesc)
3024 return VERR_NO_MEMORY;
3025 }
3026
3027 /*
3028 * Allocate an MMIO2 range ID (not freed on failure).
3029 *
3030 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3031 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3032 */
3033 unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
3034
3035 PGM_LOCK_VOID(pVM);
3036 AssertCompile(PGM_MMIO2_MAX_RANGES < 255);
3037 uint8_t const idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3038 unsigned const cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3039 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3040 {
3041 PGM_UNLOCK(pVM);
3042 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3043 }
3044 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3045 PGM_UNLOCK(pVM);
3046
3047 /*
3048 * Try reserve and allocate the backing memory first as this is what is
3049 * most likely to fail.
3050 */
3051 int rc = VINF_SUCCESS;
3052#ifdef VBOX_WITH_PGM_NEM_MODE
3053 if (!pVM->pgm.s.fNemMode)
3054#endif
3055 rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3056 if (RT_SUCCESS(rc))
3057 {
3058 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3059 if (RT_SUCCESS(rc))
3060 {
3061 void *pvPages;
3062#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3063 RTR0PTR pvPagesR0 = NIL_RTR0PTR;
3064#endif
3065
3066#ifdef VBOX_WITH_PGM_NEM_MODE
3067 if (!pVM->pgm.s.fNemMode)
3068#endif
3069 {
3070#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3071 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
3072#else
3073 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3074#endif
3075 }
3076#ifdef VBOX_WITH_PGM_NEM_MODE
3077 else
3078 {
3079 rc = SUPR3PageAlloc(cPages, pVM->pgm.s.fUseLargePages ? SUP_PAGE_ALLOC_F_LARGE_PAGES : 0, &pvPages);
3080 if (RT_SUCCESS(rc))
3081 for (uint32_t i = 0; i < cPages; i++)
3082 paPages[i].Phys = UINT64_C(0x0000fffffffff000);
3083 }
3084#endif
3085 if (RT_SUCCESS(rc))
3086 {
3087 memset(pvPages, 0, cPages * PAGE_SIZE);
3088
3089 /*
3090 * Create the registered MMIO range record for it.
3091 */
3092 PPGMREGMMIO2RANGE pNew;
3093 rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, fFlags, idMmio2, pszDesc, &pNew);
3094 if (RT_SUCCESS(rc))
3095 {
3096 if (phRegion)
3097 *phRegion = idMmio2; /* The ID of the first chunk. */
3098
3099 uint32_t iSrcPage = 0;
3100 uint8_t *pbCurPages = (uint8_t *)pvPages;
3101 for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3102 {
3103 pCur->pvR3 = pbCurPages;
3104#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3105 pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
3106#endif
3107 pCur->RamRange.pvR3 = pbCurPages;
3108
3109 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3110 while (iDstPage-- > 0)
3111 {
3112 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3113 paPages[iDstPage + iSrcPage].Phys,
3114 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3115 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3116 }
3117
3118 /* advance. */
3119 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3120 pbCurPages += pCur->RamRange.cb;
3121 }
3122
3123 RTMemTmpFree(paPages);
3124
3125 /*
3126 * Update the page count stats, link the registration and we're done.
3127 */
3128 pVM->pgm.s.cAllPages += cPages;
3129 pVM->pgm.s.cPrivatePages += cPages;
3130
3131 pgmR3PhysMmio2Link(pVM, pNew);
3132
3133 *ppv = pvPages;
3134 return VINF_SUCCESS;
3135 }
3136
3137 SUPR3PageFreeEx(pvPages, cPages);
3138 }
3139 }
3140 RTMemTmpFree(paPages);
3141 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3142 }
3143 if (pDevIns->iInstance > 0)
3144 MMR3HeapFree((void *)pszDesc);
3145 return rc;
3146}
3147
3148
3149/**
3150 * Deregisters and frees an MMIO2 region.
3151 *
3152 * Any physical access handlers registered for the region must be deregistered
3153 * before calling this function.
3154 *
3155 * @returns VBox status code.
3156 * @param pVM The cross context VM structure.
3157 * @param pDevIns The device instance owning the region.
3158 * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
3159 * regions for the given device is to be deregistered.
3160 */
3161VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3162{
3163 /*
3164 * Validate input.
3165 */
3166 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3167 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3168
3169 /*
3170 * The loop here scanning all registrations will make sure that multi-chunk ranges
3171 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3172 */
3173 PGM_LOCK_VOID(pVM);
3174 int rc = VINF_SUCCESS;
3175 unsigned cFound = 0;
3176 PPGMREGMMIO2RANGE pPrev = NULL;
3177 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3178 while (pCur)
3179 {
3180 uint32_t const fFlags = pCur->fFlags;
3181 if ( pCur->pDevInsR3 == pDevIns
3182 && ( hMmio2 == NIL_PGMMMIO2HANDLE
3183 || pCur->idMmio2 == hMmio2))
3184 {
3185 cFound++;
3186
3187 /*
3188 * Unmap it if it's mapped.
3189 */
3190 if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3191 {
3192 int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
3193 AssertRC(rc2);
3194 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3195 rc = rc2;
3196 }
3197
3198 /*
3199 * Unlink it
3200 */
3201 PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
3202 if (pPrev)
3203 pPrev->pNextR3 = pNext;
3204 else
3205 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3206 pCur->pNextR3 = NULL;
3207
3208 uint8_t idMmio2 = pCur->idMmio2;
3209 Assert(idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3));
3210 if (idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3))
3211 {
3212 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3213 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3214 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3215 }
3216
3217 /*
3218 * Free the memory.
3219 */
3220 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3221#ifdef VBOX_WITH_PGM_NEM_MODE
3222 if (!pVM->pgm.s.fNemMode)
3223#endif
3224 {
3225 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3226 AssertRC(rc2);
3227 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3228 rc = rc2;
3229
3230 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3231 AssertRC(rc2);
3232 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3233 rc = rc2;
3234 }
3235#ifdef VBOX_WITH_PGM_NEM_MODE
3236 else
3237 {
3238 int rc2 = SUPR3PageFree(pCur->pvR3, cPages);
3239 AssertRC(rc2);
3240 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3241 rc = rc2;
3242 }
3243#endif
3244
3245 if (pCur->pPhysHandlerR3)
3246 {
3247 pgmHandlerPhysicalExDestroy(pVM, pCur->pPhysHandlerR3);
3248 pCur->pPhysHandlerR3 = NULL;
3249 }
3250
3251 /* we're leaking hyper memory here if done at runtime. */
3252#ifdef VBOX_STRICT
3253 VMSTATE const enmState = VMR3GetState(pVM);
3254 AssertMsg( enmState == VMSTATE_POWERING_OFF
3255 || enmState == VMSTATE_POWERING_OFF_LS
3256 || enmState == VMSTATE_OFF
3257 || enmState == VMSTATE_OFF_LS
3258 || enmState == VMSTATE_DESTROYING
3259 || enmState == VMSTATE_TERMINATED
3260 || enmState == VMSTATE_CREATING
3261 , ("%s\n", VMR3GetStateName(enmState)));
3262#endif
3263
3264 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3265 {
3266 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
3267 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3268 SUPR3PageFreeEx(pCur, cChunkPages);
3269 }
3270 /*else
3271 {
3272 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3273 AssertRCReturn(rc, rc);
3274 } */
3275
3276
3277 /* update page count stats */
3278 pVM->pgm.s.cAllPages -= cPages;
3279 pVM->pgm.s.cPrivatePages -= cPages;
3280
3281 /* next */
3282 pCur = pNext;
3283 if (hMmio2 != NIL_PGMMMIO2HANDLE)
3284 {
3285 if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3286 break;
3287 hMmio2++;
3288 Assert(pCur->idMmio2 == hMmio2);
3289 Assert(pCur->pDevInsR3 == pDevIns);
3290 Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
3291 }
3292 }
3293 else
3294 {
3295 pPrev = pCur;
3296 pCur = pCur->pNextR3;
3297 }
3298 }
3299 pgmPhysInvalidatePageMapTLB(pVM);
3300 PGM_UNLOCK(pVM);
3301 return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
3302}
3303
3304
3305/**
3306 * Maps a MMIO2 region.
3307 *
3308 * This is typically done when a guest / the bios / state loading changes the
3309 * PCI config. The replacing of base memory has the same restrictions as during
3310 * registration, of course.
3311 *
3312 * @returns VBox status code.
3313 *
3314 * @param pVM The cross context VM structure.
3315 * @param pDevIns The device instance owning the region.
3316 * @param hMmio2 The handle of the region to map.
3317 * @param GCPhys The guest-physical address to be remapped.
3318 */
3319VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3320{
3321 /*
3322 * Validate input.
3323 *
3324 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3325 * happens during VM construction.
3326 */
3327 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3328 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3329 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3330 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3331 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3332 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3333
3334 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3335 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3336 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3337
3338 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3339 RTGCPHYS cbRange = 0;
3340 for (;;)
3341 {
3342 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
3343 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3344 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3345 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3346 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3347 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3348 cbRange += pLastMmio->RamRange.cb;
3349 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3350 break;
3351 pLastMmio = pLastMmio->pNextR3;
3352 }
3353
3354 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3355 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3356
3357 /*
3358 * Find our location in the ram range list, checking for restriction
3359 * we don't bother implementing yet (partially overlapping, multiple
3360 * ram ranges).
3361 */
3362 PGM_LOCK_VOID(pVM);
3363
3364 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3365
3366 bool fRamExists = false;
3367 PPGMRAMRANGE pRamPrev = NULL;
3368 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3369 while (pRam && GCPhysLast >= pRam->GCPhys)
3370 {
3371 if ( GCPhys <= pRam->GCPhysLast
3372 && GCPhysLast >= pRam->GCPhys)
3373 {
3374 /* Completely within? */
3375 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3376 && GCPhysLast <= pRam->GCPhysLast,
3377 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3378 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3379 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3380 PGM_UNLOCK(pVM),
3381 VERR_PGM_RAM_CONFLICT);
3382
3383 /* Check that all the pages are RAM pages. */
3384 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3385 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3386 while (cPagesLeft-- > 0)
3387 {
3388 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3389 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3390 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3391 PGM_UNLOCK(pVM),
3392 VERR_PGM_RAM_CONFLICT);
3393 pPage++;
3394 }
3395
3396 /* There can only be one MMIO/MMIO2 chunk matching here! */
3397 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3398 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3399 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3400 PGM_UNLOCK(pVM),
3401 VERR_PGM_PHYS_MMIO_EX_IPE);
3402
3403 fRamExists = true;
3404 break;
3405 }
3406
3407 /* next */
3408 pRamPrev = pRam;
3409 pRam = pRam->pNextR3;
3410 }
3411 Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3412
3413
3414 /*
3415 * Make the changes.
3416 */
3417 RTGCPHYS GCPhysCur = GCPhys;
3418 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3419 {
3420 pCurMmio->RamRange.GCPhys = GCPhysCur;
3421 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3422 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3423 {
3424 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3425 break;
3426 }
3427 GCPhysCur += pCurMmio->RamRange.cb;
3428 }
3429
3430 if (fRamExists)
3431 {
3432 /*
3433 * Make all the pages in the range MMIO/ZERO pages, freeing any
3434 * RAM pages currently mapped here. This might not be 100% correct
3435 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3436 *
3437 * We replace these MMIO/ZERO pages with real pages in the MMIO2 case.
3438 */
3439 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
3440 Assert(pFirstMmio->pvR3 == pFirstMmio->RamRange.pvR3);
3441 Assert(pFirstMmio->RamRange.pvR3 != NULL);
3442
3443#ifdef VBOX_WITH_PGM_NEM_MODE
3444 /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pRam->pvR3 can't point
3445 both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */
3446 AssertLogRelMsgReturn(!pVM->pgm.s.fNemMode, ("%s at %RGp-%RGp\n", pFirstMmio->RamRange.pszDesc, GCPhys, GCPhysLast),
3447 VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
3448#endif
3449
3450 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, pFirstMmio->RamRange.pvR3);
3451 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3452
3453 /* Replace the pages, freeing all present RAM pages. */
3454 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3455 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3456 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3457 while (cPagesLeft-- > 0)
3458 {
3459 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3460
3461 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3462 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3463 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3464 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3465 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3466 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3467 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3468 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3469 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3470 /* NEM state is set by pgmR3PhysFreePageRange. */
3471
3472 pVM->pgm.s.cZeroPages--;
3473 GCPhys += PAGE_SIZE;
3474 pPageSrc++;
3475 pPageDst++;
3476 }
3477
3478 /* Flush physical page map TLB. */
3479 pgmPhysInvalidatePageMapTLB(pVM);
3480
3481 /* Force a PGM pool flush as guest ram references have been changed. */
3482 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3483 * this internally (not touch mapped mmio while changing the mapping). */
3484 PVMCPU pVCpu = VMMGetCpu(pVM);
3485 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3486 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3487 }
3488 else
3489 {
3490 /*
3491 * No RAM range, insert the ones prepared during registration.
3492 */
3493 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3494 {
3495#ifdef VBOX_WITH_NATIVE_NEM
3496 /* Tell NEM and get the new NEM state for the pages. */
3497 uint8_t u2NemState = 0;
3498 if (VM_IS_NEM_ENABLED(pVM))
3499 {
3500 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, pCurMmio->RamRange.GCPhys,
3501 pCurMmio->RamRange.GCPhysLast - pCurMmio->RamRange.GCPhys + 1,
3502 NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3503 | (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3504 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0),
3505 NULL /*pvRam*/, pCurMmio->RamRange.pvR3,
3506 &u2NemState, &pCurMmio->RamRange.uNemRange);
3507 AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3508 }
3509#endif
3510
3511 /* Clear the tracking data of pages we're going to reactivate. */
3512 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3513 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3514 while (cPagesLeft-- > 0)
3515 {
3516 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3517 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3518#ifdef VBOX_WITH_NATIVE_NEM
3519 PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState);
3520#endif
3521 pPageSrc++;
3522 }
3523
3524 /* link in the ram range */
3525 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3526
3527 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3528 {
3529 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3530 break;
3531 }
3532 pRamPrev = &pCurMmio->RamRange;
3533 }
3534 }
3535
3536 /*
3537 * If the range have dirty page monitoring enabled, enable that.
3538 *
3539 * We ignore failures here for now because if we fail, the whole mapping
3540 * will have to be reversed and we'll end up with nothing at all on the
3541 * screen and a grumpy guest, whereas if we just go on, we'll only have
3542 * visual distortions to gripe about. There will be something in the
3543 * release log.
3544 */
3545 if ( pFirstMmio->pPhysHandlerR3
3546 && (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3547 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstMmio);
3548
3549 /*
3550 * We're good, set the flags and invalid the mapping TLB.
3551 */
3552 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3553 {
3554 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
3555 if (fRamExists)
3556 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
3557 else
3558 pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
3559 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3560 break;
3561 }
3562 pgmPhysInvalidatePageMapTLB(pVM);
3563
3564#ifdef VBOX_WITH_NATIVE_NEM
3565 /*
3566 * Late NEM notification.
3567 */
3568 if (VM_IS_NEM_ENABLED(pVM))
3569 {
3570 int rc;
3571 uint32_t fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2;
3572 if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES)
3573 fNemFlags |= NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES;
3574 if (fRamExists)
3575 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3576 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, pFirstMmio->pvR3,
3577 NULL /*puNemRange*/);
3578 else
3579 {
3580 rc = VINF_SUCCESS;
3581 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3582 {
3583 rc = NEMR3NotifyPhysMmioExMapLate(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3584 NULL, pCurMmio->RamRange.pvR3, &pCurMmio->RamRange.uNemRange);
3585 if ((pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) || RT_FAILURE(rc))
3586 break;
3587 }
3588 }
3589 AssertLogRelRCReturnStmt(rc, PGMR3PhysMmio2Unmap(pVM, pDevIns, hMmio2, GCPhys); PGM_UNLOCK(pVM), rc);
3590 }
3591#endif
3592
3593 PGM_UNLOCK(pVM);
3594
3595 return VINF_SUCCESS;
3596}
3597
3598
3599/**
3600 * Unmaps an MMIO2 region.
3601 *
3602 * This is typically done when a guest / the bios / state loading changes the
3603 * PCI config. The replacing of base memory has the same restrictions as during
3604 * registration, of course.
3605 */
3606VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3607{
3608 /*
3609 * Validate input
3610 */
3611 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3612 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3613 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3614 if (GCPhys != NIL_RTGCPHYS)
3615 {
3616 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3617 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3618 }
3619
3620 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3621 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3622 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3623
3624 int rc = PGM_LOCK(pVM);
3625 AssertRCReturn(rc, rc);
3626
3627 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3628 RTGCPHYS cbRange = 0;
3629 for (;;)
3630 {
3631 AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3632 AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, PGM_UNLOCK(pVM), VERR_INVALID_PARAMETER);
3633 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3634 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3635 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3636 cbRange += pLastMmio->RamRange.cb;
3637 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3638 break;
3639 pLastMmio = pLastMmio->pNextR3;
3640 }
3641
3642 Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
3643 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3644
3645 uint16_t const fOldFlags = pFirstMmio->fFlags;
3646 AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3647
3648 /*
3649 * If monitoring dirty pages, we must deregister the handlers first.
3650 */
3651 if ( pFirstMmio->pPhysHandlerR3
3652 && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3653 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstMmio);
3654
3655 /*
3656 * Unmap it.
3657 */
3658 int rcRet = VINF_SUCCESS;
3659#ifdef VBOX_WITH_NATIVE_NEM
3660 uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3661 | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3662 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
3663#endif
3664 if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
3665 {
3666 /*
3667 * We've replaced RAM, replace with zero pages.
3668 *
3669 * Note! This is where we might differ a little from a real system, because
3670 * it's likely to just show the RAM pages as they were before the
3671 * MMIO/MMIO2 region was mapped here.
3672 */
3673 /* Only one chunk allowed when overlapping! */
3674 Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
3675
3676 /* Restore the RAM pages we've replaced. */
3677 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3678 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3679 pRam = pRam->pNextR3;
3680
3681 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3682 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3683 pVM->pgm.s.cZeroPages += cPagesLeft; /** @todo not correct for NEM mode */
3684
3685#ifdef VBOX_WITH_NATIVE_NEM
3686 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. Note! we cannot be here in simple memory mode, see mapping function. */
3687 {
3688 uint8_t u2State = UINT8_MAX;
3689 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pFirstMmio->RamRange.GCPhys, pFirstMmio->RamRange.cb,
3690 fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3691 pRam->pvR3
3692 ? (uint8_t *)pRam->pvR3 + pFirstMmio->RamRange.GCPhys - pRam->GCPhys : NULL,
3693 pFirstMmio->pvR3, &u2State, &pRam->uNemRange);
3694 AssertRCStmt(rc, rcRet = rc);
3695 if (u2State != UINT8_MAX)
3696 pgmPhysSetNemStateForPages(pPageDst, cPagesLeft, u2State);
3697 }
3698#endif
3699
3700 while (cPagesLeft-- > 0)
3701 {
3702 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3703 pPageDst++;
3704 }
3705
3706 /* Flush physical page map TLB. */
3707 pgmPhysInvalidatePageMapTLB(pVM);
3708
3709 /* Update range state. */
3710 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3711 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3712 pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3713 }
3714 else
3715 {
3716 /*
3717 * Unlink the chunks related to the MMIO/MMIO2 region.
3718 */
3719 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3720 {
3721#ifdef VBOX_WITH_NATIVE_NEM
3722 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */
3723 {
3724 uint8_t u2State = UINT8_MAX;
3725 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3726 NULL, pCurMmio->pvR3, &u2State, &pCurMmio->RamRange.uNemRange);
3727 AssertRCStmt(rc, rcRet = rc);
3728 if (u2State != UINT8_MAX)
3729 pgmPhysSetNemStateForPages(pCurMmio->RamRange.aPages, pCurMmio->RamRange.cb >> PAGE_SHIFT, u2State);
3730 }
3731#endif
3732 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3733 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3734 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3735 pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3736 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3737 break;
3738 }
3739 }
3740
3741 /* Force a PGM pool flush as guest ram references have been changed. */
3742 /** @todo not entirely SMP safe; assuming for now the guest takes care
3743 * of this internally (not touch mapped mmio while changing the
3744 * mapping). */
3745 PVMCPU pVCpu = VMMGetCpu(pVM);
3746 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3747 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3748
3749 pgmPhysInvalidatePageMapTLB(pVM);
3750 pgmPhysInvalidRamRangeTlbs(pVM);
3751
3752 PGM_UNLOCK(pVM);
3753 return rcRet;
3754}
3755
3756
3757/**
3758 * Reduces the mapping size of a MMIO2 region.
3759 *
3760 * This is mainly for dealing with old saved states after changing the default
3761 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3762 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3763 *
3764 * The region must not currently be mapped when making this call. The VM state
3765 * must be state restore or VM construction.
3766 *
3767 * @returns VBox status code.
3768 * @param pVM The cross context VM structure.
3769 * @param pDevIns The device instance owning the region.
3770 * @param hMmio2 The handle of the region to reduce.
3771 * @param cbRegion The new mapping size.
3772 */
3773VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
3774{
3775 /*
3776 * Validate input
3777 */
3778 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3779 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3780 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3781 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3782 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3783 VMSTATE enmVmState = VMR3GetState(pVM);
3784 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3785 || enmVmState == VMSTATE_LOADING,
3786 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3787 VERR_VM_INVALID_VM_STATE);
3788
3789 int rc = PGM_LOCK(pVM);
3790 AssertRCReturn(rc, rc);
3791
3792 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3793 if (pFirstMmio)
3794 {
3795 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3796 if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
3797 {
3798 /*
3799 * NOTE! Current implementation does not support multiple ranges.
3800 * Implement when there is a real world need and thus a testcase.
3801 */
3802 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3803 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3804 rc = VERR_NOT_SUPPORTED);
3805 if (RT_SUCCESS(rc))
3806 {
3807 /*
3808 * Make the change.
3809 */
3810 Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3811 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3812
3813 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3814 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3815 rc = VERR_OUT_OF_RANGE);
3816 if (RT_SUCCESS(rc))
3817 {
3818 pFirstMmio->RamRange.cb = cbRegion;
3819 }
3820 }
3821 }
3822 else
3823 rc = VERR_WRONG_ORDER;
3824 }
3825 else
3826 rc = VERR_NOT_FOUND;
3827
3828 PGM_UNLOCK(pVM);
3829 return rc;
3830}
3831
3832
3833/**
3834 * Validates @a hMmio2, making sure it belongs to @a pDevIns.
3835 *
3836 * @returns VBox status code.
3837 * @param pVM The cross context VM structure.
3838 * @param pDevIns The device which allegedly owns @a hMmio2.
3839 * @param hMmio2 The handle to validate.
3840 */
3841VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3842{
3843 /*
3844 * Validate input
3845 */
3846 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3847 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
3848
3849 /*
3850 * Just do this the simple way. No need for locking as this is only taken at
3851 */
3852 PGM_LOCK_VOID(pVM);
3853 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3854 PGM_UNLOCK(pVM);
3855 AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
3856 AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
3857 return VINF_SUCCESS;
3858}
3859
3860
3861/**
3862 * Gets the mapping address of an MMIO2 region.
3863 *
3864 * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
3865 *
3866 * @param pVM The cross context VM structure.
3867 * @param pDevIns The device owning the MMIO2 handle.
3868 * @param hMmio2 The region handle.
3869 */
3870VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3871{
3872 AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
3873
3874 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3875 AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
3876
3877 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3878 return pFirstRegMmio->RamRange.GCPhys;
3879 return NIL_RTGCPHYS;
3880}
3881
3882
3883/**
3884 * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap.
3885 *
3886 * Called holding the PGM lock.
3887 */
3888static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
3889 void *pvBitmap, size_t cbBitmap)
3890{
3891 /*
3892 * Continue validation.
3893 */
3894 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3895 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
3896 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3897 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK),
3898 VERR_INVALID_FUNCTION);
3899 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
3900
3901 RTGCPHYS cbTotal = 0;
3902 uint16_t fTotalDirty = 0;
3903 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
3904 {
3905 cbTotal += pCur->RamRange.cb; /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */
3906 fTotalDirty |= pCur->fFlags;
3907 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3908 break;
3909 pCur = pCur->pNextR3;
3910 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
3911 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3912 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES,
3913 VERR_INTERNAL_ERROR_4);
3914 }
3915 size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, PAGE_SIZE * 64, RTGCPHYS) / PAGE_SIZE / 8;
3916
3917 if (cbBitmap)
3918 {
3919 AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER);
3920 AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER);
3921 AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER);
3922 }
3923
3924 /*
3925 * Do the work.
3926 */
3927 int rc = VINF_SUCCESS;
3928 if (pvBitmap)
3929 {
3930#ifdef VBOX_WITH_PGM_NEM_MODE
3931 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
3932 {
3933 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
3934 uint8_t *pbBitmap = (uint8_t *)pvBitmap;
3935 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3936 {
3937 size_t const cbBitmapChunk = pCur->RamRange.cb / PAGE_SIZE / 8;
3938 Assert((RTGCPHYS)cbBitmapChunk * PAGE_SIZE * 8 == pCur->RamRange.cb);
3939 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
3940 pCur->RamRange.uNemRange, pbBitmap, cbBitmapChunk);
3941 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3942 rc = rc2;
3943 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3944 break;
3945 pbBitmap += pCur->RamRange.cb / PAGE_SIZE / 8;
3946 }
3947 }
3948 else
3949#endif
3950 if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY)
3951 {
3952 if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3953 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3954 {
3955 /*
3956 * Reset each chunk, gathering dirty bits.
3957 */
3958 RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */
3959 uint32_t iPageNo = 0;
3960 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3961 {
3962 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3963 {
3964 int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pCur->RamRange.GCPhys, pvBitmap, iPageNo);
3965 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3966 rc = rc2;
3967 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3968 }
3969 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3970 break;
3971 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3972 }
3973 }
3974 else
3975 {
3976 /*
3977 * If not mapped or tracking is disabled, we return the
3978 * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot
3979 * get more accurate data than that after unmapping or disabling.
3980 */
3981 RT_BZERO(pvBitmap, cbBitmap);
3982 uint32_t iPageNo = 0;
3983 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3984 {
3985 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3986 {
3987 ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pCur->RamRange.cb >> PAGE_SHIFT));
3988 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3989 }
3990 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3991 break;
3992 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3993 }
3994 }
3995 }
3996 /*
3997 * No dirty chunks.
3998 */
3999 else
4000 RT_BZERO(pvBitmap, cbBitmap);
4001 }
4002 /*
4003 * No bitmap. Reset the region if tracking is currently enabled.
4004 */
4005 else if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4006 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4007 {
4008#ifdef VBOX_WITH_PGM_NEM_MODE
4009 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4010 {
4011 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4012 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4013 {
4014 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
4015 pCur->RamRange.uNemRange, NULL, 0);
4016 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4017 rc = rc2;
4018 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4019 break;
4020 }
4021 }
4022 else
4023#endif
4024 {
4025 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4026 {
4027 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
4028 int rc2 = PGMHandlerPhysicalReset(pVM, pCur->RamRange.GCPhys);
4029 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4030 rc = rc2;
4031 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4032 break;
4033 }
4034 }
4035 }
4036
4037 return rc;
4038}
4039
4040
4041/**
4042 * Queries the dirty page bitmap and resets the monitoring.
4043 *
4044 * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when
4045 * creating the range for this to work.
4046 *
4047 * @returns VBox status code.
4048 * @retval VERR_INVALID_FUNCTION if not created using
4049 * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES.
4050 * @param pVM The cross context VM structure.
4051 * @param pDevIns The device owning the MMIO2 handle.
4052 * @param hMmio2 The region handle.
4053 * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored
4054 * when @a cbBitmap is zero.
4055 * @param cbBitmap The size of the bitmap. Must be the size of the whole
4056 * MMIO2 range, rounded up to the nearest 8 bytes.
4057 * When zero only a reset is done.
4058 */
4059VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
4060 void *pvBitmap, size_t cbBitmap)
4061{
4062 /*
4063 * Do some basic validation before grapping the PGM lock and continuing.
4064 */
4065 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4066 AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER);
4067 int rc = PGM_LOCK(pVM);
4068 if (RT_SUCCESS(rc))
4069 {
4070 STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4071 rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap);
4072 STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4073 PGM_UNLOCK(pVM);
4074 }
4075 return rc;
4076}
4077
4078/**
4079 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking
4080 *
4081 * Called owning the PGM lock.
4082 */
4083static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4084{
4085 /*
4086 * Continue validation.
4087 */
4088 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4089 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
4090 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4091 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)
4092 , VERR_INVALID_FUNCTION);
4093 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
4094
4095#ifdef VBOX_WITH_PGM_NEM_MODE
4096 /*
4097 * This is a nop if NEM is responsible for doing the tracking, we simply
4098 * leave the tracking on all the time there.
4099 */
4100 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4101 {
4102 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4103 return VINF_SUCCESS;
4104 }
4105#endif
4106
4107 /*
4108 * Anyting needing doing?
4109 */
4110 if (fEnabled != RT_BOOL(pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4111 {
4112 LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4113
4114 /*
4115 * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag.
4116 */
4117 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
4118 {
4119 if (fEnabled)
4120 pCur->fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4121 else
4122 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4123 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4124 break;
4125 pCur = pCur->pNextR3;
4126 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
4127 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4128 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
4129 , VERR_INTERNAL_ERROR_4);
4130 }
4131
4132 /*
4133 * Enable/disable handlers if currently mapped.
4134 *
4135 * We ignore status codes here as we've already changed the flags and
4136 * returning a failure status now would be confusing. Besides, the two
4137 * functions will continue past failures. As argued in the mapping code,
4138 * it's in the release log.
4139 */
4140 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
4141 {
4142 if (fEnabled)
4143 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstRegMmio);
4144 else
4145 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstRegMmio);
4146 }
4147 }
4148 else
4149 LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4150
4151 return VINF_SUCCESS;
4152}
4153
4154
4155/**
4156 * Controls the dirty page tracking for an MMIO2 range.
4157 *
4158 * @returns VBox status code.
4159 * @param pVM The cross context VM structure.
4160 * @param pDevIns The device owning the MMIO2 memory.
4161 * @param hMmio2 The handle of the region.
4162 * @param fEnabled The new tracking state.
4163 */
4164VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4165{
4166 /*
4167 * Do some basic validation before grapping the PGM lock and continuing.
4168 */
4169 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4170 int rc = PGM_LOCK(pVM);
4171 if (RT_SUCCESS(rc))
4172 {
4173 rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled);
4174 PGM_UNLOCK(pVM);
4175 }
4176 return rc;
4177}
4178
4179
4180/**
4181 * Changes the region number of an MMIO2 region.
4182 *
4183 * This is only for dealing with save state issues, nothing else.
4184 *
4185 * @return VBox status code.
4186 *
4187 * @param pVM The cross context VM structure.
4188 * @param pDevIns The device owning the MMIO2 memory.
4189 * @param hMmio2 The handle of the region.
4190 * @param iNewRegion The new region index.
4191 *
4192 * @thread EMT(0)
4193 * @sa @bugref{9359}
4194 */
4195VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
4196{
4197 /*
4198 * Validate input.
4199 */
4200 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4201 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
4202 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4203 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
4204 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4205
4206 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
4207
4208 int rc = PGM_LOCK(pVM);
4209 AssertRCReturn(rc, rc);
4210
4211 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4212 AssertReturnStmt(pFirstRegMmio, PGM_UNLOCK(pVM), VERR_NOT_FOUND);
4213 AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
4214 PGM_UNLOCK(pVM), VERR_RESOURCE_IN_USE);
4215
4216 /*
4217 * Make the change.
4218 */
4219 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
4220
4221 PGM_UNLOCK(pVM);
4222 return VINF_SUCCESS;
4223}
4224
4225
4226
4227/*********************************************************************************************************************************
4228* ROM *
4229*********************************************************************************************************************************/
4230
4231/**
4232 * Worker for PGMR3PhysRomRegister.
4233 *
4234 * This is here to simplify lock management, i.e. the caller does all the
4235 * locking and we can simply return without needing to remember to unlock
4236 * anything first.
4237 *
4238 * @returns VBox status code.
4239 * @param pVM The cross context VM structure.
4240 * @param pDevIns The device instance owning the ROM.
4241 * @param GCPhys First physical address in the range.
4242 * Must be page aligned!
4243 * @param cb The size of the range (in bytes).
4244 * Must be page aligned!
4245 * @param pvBinary Pointer to the binary data backing the ROM image.
4246 * @param cbBinary The size of the binary data pvBinary points to.
4247 * This must be less or equal to @a cb.
4248 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4249 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4250 * @param pszDesc Pointer to description string. This must not be freed.
4251 */
4252static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4253 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4254{
4255 /*
4256 * Validate input.
4257 */
4258 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4259 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4260 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4261 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4262 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4263 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4264 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4265 AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
4266 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4267
4268 const uint32_t cPages = cb >> PAGE_SHIFT;
4269
4270 /*
4271 * Find the ROM location in the ROM list first.
4272 */
4273 PPGMROMRANGE pRomPrev = NULL;
4274 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4275 while (pRom && GCPhysLast >= pRom->GCPhys)
4276 {
4277 if ( GCPhys <= pRom->GCPhysLast
4278 && GCPhysLast >= pRom->GCPhys)
4279 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4280 GCPhys, GCPhysLast, pszDesc,
4281 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4282 VERR_PGM_RAM_CONFLICT);
4283 /* next */
4284 pRomPrev = pRom;
4285 pRom = pRom->pNextR3;
4286 }
4287
4288 /*
4289 * Find the RAM location and check for conflicts.
4290 *
4291 * Conflict detection is a bit different than for RAM registration since a
4292 * ROM can be located within a RAM range. So, what we have to check for is
4293 * other memory types (other than RAM that is) and that we don't span more
4294 * than one RAM range (lazy).
4295 */
4296 bool fRamExists = false;
4297 PPGMRAMRANGE pRamPrev = NULL;
4298 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4299 while (pRam && GCPhysLast >= pRam->GCPhys)
4300 {
4301 if ( GCPhys <= pRam->GCPhysLast
4302 && GCPhysLast >= pRam->GCPhys)
4303 {
4304 /* completely within? */
4305 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4306 && GCPhysLast <= pRam->GCPhysLast,
4307 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4308 GCPhys, GCPhysLast, pszDesc,
4309 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4310 VERR_PGM_RAM_CONFLICT);
4311 fRamExists = true;
4312 break;
4313 }
4314
4315 /* next */
4316 pRamPrev = pRam;
4317 pRam = pRam->pNextR3;
4318 }
4319 if (fRamExists)
4320 {
4321 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4322 uint32_t cPagesLeft = cPages;
4323 while (cPagesLeft-- > 0)
4324 {
4325 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4326 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4327 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4328 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4329 Assert(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM));
4330 pPage++;
4331 }
4332 }
4333
4334 /*
4335 * Update the base memory reservation if necessary.
4336 */
4337 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4338 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4339 cExtraBaseCost += cPages;
4340 if (cExtraBaseCost)
4341 {
4342 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4343 if (RT_FAILURE(rc))
4344 return rc;
4345 }
4346
4347#ifdef VBOX_WITH_NATIVE_NEM
4348 /*
4349 * Early NEM notification before we've made any changes or anything.
4350 */
4351 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4352 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4353 uint8_t u2NemState = UINT8_MAX;
4354 uint32_t uNemRange = 0;
4355 if (VM_IS_NEM_ENABLED(pVM))
4356 {
4357 int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cPages << PAGE_SHIFT,
4358 fRamExists ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhys) : NULL,
4359 fNemNotify, &u2NemState, fRamExists ? &pRam->uNemRange : &uNemRange);
4360 AssertLogRelRCReturn(rc, rc);
4361 }
4362#endif
4363
4364 /*
4365 * Allocate memory for the virgin copy of the RAM. In simplified memory mode,
4366 * we allocate memory for any ad-hoc RAM range and for shadow pages.
4367 */
4368 PGMMALLOCATEPAGESREQ pReq = NULL;
4369#ifdef VBOX_WITH_PGM_NEM_MODE
4370 void *pvRam = NULL;
4371 void *pvAlt = NULL;
4372 if (pVM->pgm.s.fNemMode)
4373 {
4374 if (!fRamExists)
4375 {
4376 int rc = SUPR3PageAlloc(cPages, 0, &pvRam);
4377 if (RT_FAILURE(rc))
4378 return rc;
4379 }
4380 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4381 {
4382 int rc = SUPR3PageAlloc(cPages, 0, &pvAlt);
4383 if (RT_FAILURE(rc))
4384 {
4385 if (pvRam)
4386 SUPR3PageFree(pvRam, cPages);
4387 return rc;
4388 }
4389 }
4390 }
4391 else
4392#endif
4393 {
4394 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4395 AssertRCReturn(rc, rc);
4396
4397 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4398 {
4399 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4400 pReq->aPages[iPage].fZeroed = false;
4401 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4402 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4403 }
4404
4405 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4406 if (RT_FAILURE(rc))
4407 {
4408 GMMR3AllocatePagesCleanup(pReq);
4409 return rc;
4410 }
4411 }
4412
4413 /*
4414 * Allocate the new ROM range and RAM range (if necessary).
4415 */
4416 PPGMROMRANGE pRomNew;
4417 int rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4418 if (RT_SUCCESS(rc))
4419 {
4420 PPGMRAMRANGE pRamNew = NULL;
4421 if (!fRamExists)
4422 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4423 if (RT_SUCCESS(rc))
4424 {
4425 /*
4426 * Initialize and insert the RAM range (if required).
4427 */
4428 uint32_t const idxFirstRamPage = fRamExists ? (GCPhys - pRam->GCPhys) >> PAGE_SHIFT : 0;
4429 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4430 if (!fRamExists)
4431 {
4432 /* New RAM range. */
4433 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4434 pRamNew->GCPhys = GCPhys;
4435 pRamNew->GCPhysLast = GCPhysLast;
4436 pRamNew->cb = cb;
4437 pRamNew->pszDesc = pszDesc;
4438 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4439 pRamNew->pvR3 = NULL;
4440 pRamNew->paLSPages = NULL;
4441#ifdef VBOX_WITH_NATIVE_NEM
4442 pRamNew->uNemRange = uNemRange;
4443#endif
4444
4445 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4446#ifdef VBOX_WITH_PGM_NEM_MODE
4447 if (pVM->pgm.s.fNemMode)
4448 {
4449 AssertPtr(pvRam); Assert(pReq == NULL);
4450 pRamNew->pvR3 = pvRam;
4451 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4452 {
4453 PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4454 PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED);
4455 pRomPage->Virgin = *pRamPage;
4456 }
4457 }
4458 else
4459#endif
4460 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4461 {
4462 PGM_PAGE_INIT(pRamPage,
4463 pReq->aPages[iPage].HCPhysGCPhys,
4464 pReq->aPages[iPage].idPage,
4465 PGMPAGETYPE_ROM,
4466 PGM_PAGE_STATE_ALLOCATED);
4467
4468 pRomPage->Virgin = *pRamPage;
4469 }
4470
4471 pVM->pgm.s.cAllPages += cPages;
4472 pVM->pgm.s.cPrivatePages += cPages;
4473 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4474 }
4475 else
4476 {
4477 /* Existing RAM range. */
4478 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4479#ifdef VBOX_WITH_PGM_NEM_MODE
4480 if (pVM->pgm.s.fNemMode)
4481 {
4482 Assert(pvRam == NULL); Assert(pReq == NULL);
4483 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4484 {
4485 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4486 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4487 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4488 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4489 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4490 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4491 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4492 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4493
4494 pRomPage->Virgin = *pRamPage;
4495 }
4496 }
4497 else
4498#endif
4499 {
4500 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4501 {
4502 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4503 PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys);
4504 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4505 PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage);
4506 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4507 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4508 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4509
4510 pRomPage->Virgin = *pRamPage;
4511 }
4512 pVM->pgm.s.cZeroPages -= cPages;
4513 pVM->pgm.s.cPrivatePages += cPages;
4514 }
4515 pRamNew = pRam;
4516 }
4517
4518#ifdef VBOX_WITH_NATIVE_NEM
4519 /* Set the NEM state of the pages if needed. */
4520 if (u2NemState != UINT8_MAX)
4521 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4522#endif
4523
4524 /* Flush physical page map TLB. */
4525 pgmPhysInvalidatePageMapTLB(pVM);
4526
4527 /*
4528 * Register the ROM access handler.
4529 */
4530 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4531 pRomNew, MMHyperCCToR0(pVM, pRomNew), NIL_RTRCPTR, pszDesc);
4532 if (RT_SUCCESS(rc))
4533 {
4534 /*
4535 * Copy the image over to the virgin pages.
4536 * This must be done after linking in the RAM range.
4537 */
4538 size_t cbBinaryLeft = cbBinary;
4539 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4540 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4541 {
4542 void *pvDstPage;
4543 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4544 if (RT_FAILURE(rc))
4545 {
4546 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4547 break;
4548 }
4549 if (cbBinaryLeft >= PAGE_SIZE)
4550 {
4551 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4552 cbBinaryLeft -= PAGE_SIZE;
4553 }
4554 else
4555 {
4556 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4557 if (cbBinaryLeft > 0)
4558 {
4559 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4560 cbBinaryLeft = 0;
4561 }
4562 }
4563 }
4564 if (RT_SUCCESS(rc))
4565 {
4566 /*
4567 * Initialize the ROM range.
4568 * Note that the Virgin member of the pages has already been initialized above.
4569 */
4570 pRomNew->GCPhys = GCPhys;
4571 pRomNew->GCPhysLast = GCPhysLast;
4572 pRomNew->cb = cb;
4573 pRomNew->fFlags = fFlags;
4574 pRomNew->idSavedState = UINT8_MAX;
4575 pRomNew->cbOriginal = cbBinary;
4576 pRomNew->pszDesc = pszDesc;
4577#ifdef VBOX_WITH_PGM_NEM_MODE
4578 pRomNew->pbR3Alternate = (uint8_t *)pvAlt;
4579#endif
4580 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4581 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4582 if (pRomNew->pvOriginal)
4583 {
4584 for (unsigned iPage = 0; iPage < cPages; iPage++)
4585 {
4586 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4587 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4588#ifdef VBOX_WITH_PGM_NEM_MODE
4589 if (pVM->pgm.s.fNemMode)
4590 PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4591 PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED);
4592 else
4593#endif
4594 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4595 }
4596
4597 /* update the page count stats for the shadow pages. */
4598 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4599 {
4600#ifdef VBOX_WITH_PGM_NEM_MODE
4601 if (pVM->pgm.s.fNemMode)
4602 pVM->pgm.s.cPrivatePages += cPages;
4603 else
4604#endif
4605 pVM->pgm.s.cZeroPages += cPages;
4606 pVM->pgm.s.cAllPages += cPages;
4607 }
4608
4609 /*
4610 * Insert the ROM range, tell REM and return successfully.
4611 */
4612 pRomNew->pNextR3 = pRom;
4613 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4614
4615 if (pRomPrev)
4616 {
4617 pRomPrev->pNextR3 = pRomNew;
4618 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4619 }
4620 else
4621 {
4622 pVM->pgm.s.pRomRangesR3 = pRomNew;
4623 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4624 }
4625
4626 pgmPhysInvalidatePageMapTLB(pVM);
4627#ifdef VBOX_WITH_PGM_NEM_MODE
4628 if (!pVM->pgm.s.fNemMode)
4629#endif
4630 GMMR3AllocatePagesCleanup(pReq);
4631
4632#ifdef VBOX_WITH_NATIVE_NEM
4633 /*
4634 * Notify NEM again.
4635 */
4636 if (VM_IS_NEM_ENABLED(pVM))
4637 {
4638 u2NemState = UINT8_MAX;
4639 rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamNew, GCPhys),
4640 fNemNotify, &u2NemState,
4641 fRamExists ? &pRam->uNemRange : &pRamNew->uNemRange);
4642 if (u2NemState != UINT8_MAX)
4643 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4644 if (RT_SUCCESS(rc))
4645 return rc;
4646 }
4647 else
4648#endif
4649 return rc;
4650
4651 /*
4652 * bail out
4653 */
4654#ifdef VBOX_WITH_NATIVE_NEM
4655 /* unlink */
4656 if (pRomPrev)
4657 {
4658 pRomPrev->pNextR3 = pRom;
4659 pRomPrev->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4660 }
4661 else
4662 {
4663 pVM->pgm.s.pRomRangesR3 = pRom;
4664 pVM->pgm.s.pRomRangesR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4665 }
4666
4667 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4668 {
4669# ifdef VBOX_WITH_PGM_NEM_MODE
4670 if (pVM->pgm.s.fNemMode)
4671 pVM->pgm.s.cPrivatePages -= cPages;
4672 else
4673# endif
4674 pVM->pgm.s.cZeroPages -= cPages;
4675 pVM->pgm.s.cAllPages -= cPages;
4676 }
4677#endif
4678 }
4679 else
4680 rc = VERR_NO_MEMORY;
4681 }
4682
4683 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4684 AssertRC(rc2);
4685 }
4686
4687 if (!fRamExists)
4688 {
4689 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4690 MMHyperFree(pVM, pRamNew);
4691 }
4692 else
4693 {
4694 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4695#ifdef VBOX_WITH_PGM_NEM_MODE
4696 if (pVM->pgm.s.fNemMode)
4697 {
4698 Assert(pvRam == NULL); Assert(pReq == NULL);
4699 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4700 {
4701 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4702 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4703 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4704 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM);
4705 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4706 }
4707 }
4708 else
4709#endif
4710 {
4711 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4712 PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM);
4713 pVM->pgm.s.cZeroPages += cPages;
4714 pVM->pgm.s.cPrivatePages -= cPages;
4715 }
4716 }
4717 }
4718 MMHyperFree(pVM, pRomNew);
4719 }
4720
4721 /** @todo Purge the mapping cache or something... */
4722#ifdef VBOX_WITH_PGM_NEM_MODE
4723 if (pVM->pgm.s.fNemMode)
4724 {
4725 Assert(!pReq);
4726 if (pvRam)
4727 SUPR3PageFree(pvRam, cPages);
4728 if (pvAlt)
4729 SUPR3PageFree(pvAlt, cPages);
4730 }
4731 else
4732#endif
4733 {
4734 GMMR3FreeAllocatedPages(pVM, pReq);
4735 GMMR3AllocatePagesCleanup(pReq);
4736 }
4737 return rc;
4738}
4739
4740
4741/**
4742 * Registers a ROM image.
4743 *
4744 * Shadowed ROM images requires double the amount of backing memory, so,
4745 * don't use that unless you have to. Shadowing of ROM images is process
4746 * where we can select where the reads go and where the writes go. On real
4747 * hardware the chipset provides means to configure this. We provide
4748 * PGMR3PhysProtectROM() for this purpose.
4749 *
4750 * A read-only copy of the ROM image will always be kept around while we
4751 * will allocate RAM pages for the changes on demand (unless all memory
4752 * is configured to be preallocated).
4753 *
4754 * @returns VBox status code.
4755 * @param pVM The cross context VM structure.
4756 * @param pDevIns The device instance owning the ROM.
4757 * @param GCPhys First physical address in the range.
4758 * Must be page aligned!
4759 * @param cb The size of the range (in bytes).
4760 * Must be page aligned!
4761 * @param pvBinary Pointer to the binary data backing the ROM image.
4762 * @param cbBinary The size of the binary data pvBinary points to.
4763 * This must be less or equal to @a cb.
4764 * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
4765 * @param pszDesc Pointer to description string. This must not be freed.
4766 *
4767 * @remark There is no way to remove the rom, automatically on device cleanup or
4768 * manually from the device yet. This isn't difficult in any way, it's
4769 * just not something we expect to be necessary for a while.
4770 */
4771VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4772 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4773{
4774 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4775 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4776 PGM_LOCK_VOID(pVM);
4777 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4778 PGM_UNLOCK(pVM);
4779 return rc;
4780}
4781
4782
4783/**
4784 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4785 * that the virgin part is untouched.
4786 *
4787 * This is done after the normal memory has been cleared.
4788 *
4789 * ASSUMES that the caller owns the PGM lock.
4790 *
4791 * @param pVM The cross context VM structure.
4792 */
4793int pgmR3PhysRomReset(PVM pVM)
4794{
4795 PGM_LOCK_ASSERT_OWNER(pVM);
4796 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4797 {
4798 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4799
4800 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4801 {
4802 /*
4803 * Reset the physical handler.
4804 */
4805 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4806 AssertRCReturn(rc, rc);
4807
4808 /*
4809 * What we do with the shadow pages depends on the memory
4810 * preallocation option. If not enabled, we'll just throw
4811 * out all the dirty pages and replace them by the zero page.
4812 */
4813#ifdef VBOX_WITH_PGM_NEM_MODE
4814 if (pVM->pgm.s.fNemMode)
4815 {
4816 /* Clear all the shadow pages (currently using alternate backing). */
4817 RT_BZERO(pRom->pbR3Alternate, pRom->cb);
4818 }
4819 else
4820#endif
4821 if (!pVM->pgm.s.fRamPreAlloc)
4822 {
4823 /* Free the dirty pages. */
4824 uint32_t cPendingPages = 0;
4825 PGMMFREEPAGESREQ pReq;
4826 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4827 AssertRCReturn(rc, rc);
4828
4829 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4830 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4831 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4832 {
4833 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4834 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4835 pRom->GCPhys + (iPage << PAGE_SHIFT),
4836 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4837 AssertLogRelRCReturn(rc, rc);
4838 }
4839
4840 if (cPendingPages)
4841 {
4842 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4843 AssertLogRelRCReturn(rc, rc);
4844 }
4845 GMMR3FreePagesCleanup(pReq);
4846 }
4847 else
4848 {
4849 /* clear all the shadow pages. */
4850 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4851 {
4852 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4853 continue;
4854 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4855 void *pvDstPage;
4856 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4857 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4858 if (RT_FAILURE(rc))
4859 break;
4860 ASMMemZeroPage(pvDstPage);
4861 }
4862 AssertRCReturn(rc, rc);
4863 }
4864 }
4865
4866 /*
4867 * Restore the original ROM pages after a saved state load.
4868 * Also, in strict builds check that ROM pages remain unmodified.
4869 */
4870#ifndef VBOX_STRICT
4871 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4872#endif
4873 {
4874 size_t cbSrcLeft = pRom->cbOriginal;
4875 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4876 uint32_t cRestored = 0;
4877 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4878 {
4879 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4880 PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys);
4881 void const *pvDstPage = NULL;
4882 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage);
4883 if (RT_FAILURE(rc))
4884 break;
4885
4886 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4887 {
4888 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4889 {
4890 void *pvDstPageW = NULL;
4891 rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW);
4892 AssertLogRelRCReturn(rc, rc);
4893 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4894 cRestored++;
4895 }
4896 else
4897 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4898 }
4899 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4900 }
4901 if (cRestored > 0)
4902 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4903 }
4904 }
4905
4906 /* Clear the ROM restore flag now as we only need to do this once after
4907 loading saved state. */
4908 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4909
4910 return VINF_SUCCESS;
4911}
4912
4913
4914/**
4915 * Called by PGMR3Term to free resources.
4916 *
4917 * ASSUMES that the caller owns the PGM lock.
4918 *
4919 * @param pVM The cross context VM structure.
4920 */
4921void pgmR3PhysRomTerm(PVM pVM)
4922{
4923 /*
4924 * Free the heap copy of the original bits.
4925 */
4926 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4927 {
4928 if ( pRom->pvOriginal
4929 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4930 {
4931 RTMemFree((void *)pRom->pvOriginal);
4932 pRom->pvOriginal = NULL;
4933 }
4934 }
4935}
4936
4937
4938/**
4939 * Change the shadowing of a range of ROM pages.
4940 *
4941 * This is intended for implementing chipset specific memory registers
4942 * and will not be very strict about the input. It will silently ignore
4943 * any pages that are not the part of a shadowed ROM.
4944 *
4945 * @returns VBox status code.
4946 * @retval VINF_PGM_SYNC_CR3
4947 *
4948 * @param pVM The cross context VM structure.
4949 * @param GCPhys Where to start. Page aligned.
4950 * @param cb How much to change. Page aligned.
4951 * @param enmProt The new ROM protection.
4952 */
4953VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4954{
4955 /*
4956 * Check input
4957 */
4958 if (!cb)
4959 return VINF_SUCCESS;
4960 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4961 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4962 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4963 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4964 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4965
4966 /*
4967 * Process the request.
4968 */
4969 PGM_LOCK_VOID(pVM);
4970 int rc = VINF_SUCCESS;
4971 bool fFlushTLB = false;
4972 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4973 {
4974 if ( GCPhys <= pRom->GCPhysLast
4975 && GCPhysLast >= pRom->GCPhys
4976 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4977 {
4978 /*
4979 * Iterate the relevant pages and make necessary the changes.
4980 */
4981#ifdef VBOX_WITH_NATIVE_NEM
4982 PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys);
4983 AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3);
4984#endif
4985 bool fChanges = false;
4986 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4987 ? pRom->cb >> PAGE_SHIFT
4988 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4989 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4990 iPage < cPages;
4991 iPage++)
4992 {
4993 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4994 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4995 {
4996 fChanges = true;
4997
4998 /* flush references to the page. */
4999 RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << PAGE_SHIFT);
5000 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage);
5001 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB);
5002 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
5003 rc = rc2;
5004#ifdef VBOX_WITH_NATIVE_NEM
5005 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
5006#endif
5007
5008 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
5009 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
5010
5011 *pOld = *pRamPage;
5012 *pRamPage = *pNew;
5013 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
5014
5015#ifdef VBOX_WITH_NATIVE_NEM
5016# ifdef VBOX_WITH_PGM_NEM_MODE
5017 /* In simplified mode we have to switch the page data around too. */
5018 if (pVM->pgm.s.fNemMode)
5019 {
5020 uint8_t abPage[PAGE_SIZE];
5021 uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage);
5022 memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], sizeof(abPage));
5023 memcpy(&pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], pbRamPage, sizeof(abPage));
5024 memcpy(pbRamPage, abPage, sizeof(abPage));
5025 }
5026# endif
5027 /* Tell NEM about the backing and protection change. */
5028 if (VM_IS_NEM_ENABLED(pVM))
5029 {
5030 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
5031 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
5032 PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage),
5033 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
5034 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
5035 }
5036#endif
5037 }
5038 pRomPage->enmProt = enmProt;
5039 }
5040
5041 /*
5042 * Reset the access handler if we made changes, no need
5043 * to optimize this.
5044 */
5045 if (fChanges)
5046 {
5047 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
5048 if (RT_FAILURE(rc2))
5049 {
5050 PGM_UNLOCK(pVM);
5051 AssertRC(rc);
5052 return rc2;
5053 }
5054 }
5055
5056 /* Advance - cb isn't updated. */
5057 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
5058 }
5059 }
5060 PGM_UNLOCK(pVM);
5061 if (fFlushTLB)
5062 PGM_INVL_ALL_VCPU_TLBS(pVM);
5063
5064 return rc;
5065}
5066
5067
5068
5069/*********************************************************************************************************************************
5070* Ballooning *
5071*********************************************************************************************************************************/
5072
5073#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5074
5075/**
5076 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
5077 *
5078 * This is only called on one of the EMTs while the other ones are waiting for
5079 * it to complete this function.
5080 *
5081 * @returns VINF_SUCCESS (VBox strict status code).
5082 * @param pVM The cross context VM structure.
5083 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5084 * @param pvUser User parameter
5085 */
5086static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5087{
5088 uintptr_t *paUser = (uintptr_t *)pvUser;
5089 bool fInflate = !!paUser[0];
5090 unsigned cPages = paUser[1];
5091 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
5092 uint32_t cPendingPages = 0;
5093 PGMMFREEPAGESREQ pReq;
5094 int rc;
5095
5096 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
5097 PGM_LOCK_VOID(pVM);
5098
5099 if (fInflate)
5100 {
5101 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
5102 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
5103
5104 /* Replace pages with ZERO pages. */
5105 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5106 if (RT_FAILURE(rc))
5107 {
5108 PGM_UNLOCK(pVM);
5109 AssertLogRelRC(rc);
5110 return rc;
5111 }
5112
5113 /* Iterate the pages. */
5114 for (unsigned i = 0; i < cPages; i++)
5115 {
5116 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5117 if ( pPage == NULL
5118 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
5119 {
5120 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
5121 break;
5122 }
5123
5124 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
5125
5126 /* Flush the shadow PT if this page was previously used as a guest page table. */
5127 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
5128
5129 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
5130 if (RT_FAILURE(rc))
5131 {
5132 PGM_UNLOCK(pVM);
5133 AssertLogRelRC(rc);
5134 return rc;
5135 }
5136 Assert(PGM_PAGE_IS_ZERO(pPage));
5137 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
5138 }
5139
5140 if (cPendingPages)
5141 {
5142 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
5143 if (RT_FAILURE(rc))
5144 {
5145 PGM_UNLOCK(pVM);
5146 AssertLogRelRC(rc);
5147 return rc;
5148 }
5149 }
5150 GMMR3FreePagesCleanup(pReq);
5151 }
5152 else
5153 {
5154 /* Iterate the pages. */
5155 for (unsigned i = 0; i < cPages; i++)
5156 {
5157 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5158 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
5159
5160 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
5161
5162 Assert(PGM_PAGE_IS_BALLOONED(pPage));
5163
5164 /* Change back to zero page. (NEM does not need to be informed.) */
5165 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5166 }
5167
5168 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
5169 }
5170
5171 /* Notify GMM about the balloon change. */
5172 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
5173 if (RT_SUCCESS(rc))
5174 {
5175 if (!fInflate)
5176 {
5177 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
5178 pVM->pgm.s.cBalloonedPages -= cPages;
5179 }
5180 else
5181 pVM->pgm.s.cBalloonedPages += cPages;
5182 }
5183
5184 PGM_UNLOCK(pVM);
5185
5186 /* Flush the recompiler's TLB as well. */
5187 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5188 CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5189
5190 AssertLogRelRC(rc);
5191 return rc;
5192}
5193
5194
5195/**
5196 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
5197 *
5198 * @returns VBox status code.
5199 * @param pVM The cross context VM structure.
5200 * @param fInflate Inflate or deflate memory balloon
5201 * @param cPages Number of pages to free
5202 * @param paPhysPage Array of guest physical addresses
5203 */
5204static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5205{
5206 uintptr_t paUser[3];
5207
5208 paUser[0] = fInflate;
5209 paUser[1] = cPages;
5210 paUser[2] = (uintptr_t)paPhysPage;
5211 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5212 AssertRC(rc);
5213
5214 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
5215 RTMemFree(paPhysPage);
5216}
5217
5218#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
5219
5220/**
5221 * Inflate or deflate a memory balloon
5222 *
5223 * @returns VBox status code.
5224 * @param pVM The cross context VM structure.
5225 * @param fInflate Inflate or deflate memory balloon
5226 * @param cPages Number of pages to free
5227 * @param paPhysPage Array of guest physical addresses
5228 */
5229VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5230{
5231 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
5232#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5233 int rc;
5234
5235 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
5236 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
5237
5238 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
5239 * In the SMP case we post a request packet to postpone the job.
5240 */
5241 if (pVM->cCpus > 1)
5242 {
5243 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
5244 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
5245 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
5246
5247 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
5248
5249 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
5250 AssertRC(rc);
5251 }
5252 else
5253 {
5254 uintptr_t paUser[3];
5255
5256 paUser[0] = fInflate;
5257 paUser[1] = cPages;
5258 paUser[2] = (uintptr_t)paPhysPage;
5259 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5260 AssertRC(rc);
5261 }
5262 return rc;
5263
5264#else
5265 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
5266 return VERR_NOT_IMPLEMENTED;
5267#endif
5268}
5269
5270
5271/*********************************************************************************************************************************
5272* Write Monitoring *
5273*********************************************************************************************************************************/
5274
5275/**
5276 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
5277 * physical RAM.
5278 *
5279 * This is only called on one of the EMTs while the other ones are waiting for
5280 * it to complete this function.
5281 *
5282 * @returns VINF_SUCCESS (VBox strict status code).
5283 * @param pVM The cross context VM structure.
5284 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5285 * @param pvUser User parameter, unused.
5286 */
5287static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5288{
5289 int rc = VINF_SUCCESS;
5290 NOREF(pvUser); NOREF(pVCpu);
5291
5292 PGM_LOCK_VOID(pVM);
5293#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5294 pgmPoolResetDirtyPages(pVM);
5295#endif
5296
5297 /** @todo pointless to write protect the physical page pointed to by RSP. */
5298
5299 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5300 pRam;
5301 pRam = pRam->CTX_SUFF(pNext))
5302 {
5303 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
5304 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5305 {
5306 PPGMPAGE pPage = &pRam->aPages[iPage];
5307 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
5308
5309 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
5310 || enmPageType == PGMPAGETYPE_MMIO2)
5311 {
5312 /*
5313 * A RAM page.
5314 */
5315 switch (PGM_PAGE_GET_STATE(pPage))
5316 {
5317 case PGM_PAGE_STATE_ALLOCATED:
5318 /** @todo Optimize this: Don't always re-enable write
5319 * monitoring if the page is known to be very busy. */
5320 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
5321 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
5322
5323 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
5324 break;
5325
5326 case PGM_PAGE_STATE_SHARED:
5327 AssertFailed();
5328 break;
5329
5330 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
5331 default:
5332 break;
5333 }
5334 }
5335 }
5336 }
5337 pgmR3PoolWriteProtectPages(pVM);
5338 PGM_INVL_ALL_VCPU_TLBS(pVM);
5339 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5340 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5341
5342 PGM_UNLOCK(pVM);
5343 return rc;
5344}
5345
5346/**
5347 * Protect all physical RAM to monitor writes
5348 *
5349 * @returns VBox status code.
5350 * @param pVM The cross context VM structure.
5351 */
5352VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
5353{
5354 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
5355
5356 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
5357 AssertRC(rc);
5358 return rc;
5359}
5360
5361
5362/*********************************************************************************************************************************
5363* Stats. *
5364*********************************************************************************************************************************/
5365
5366/**
5367 * Query the amount of free memory inside VMMR0
5368 *
5369 * @returns VBox status code.
5370 * @param pUVM The user mode VM handle.
5371 * @param pcbAllocMem Where to return the amount of memory allocated
5372 * by VMs.
5373 * @param pcbFreeMem Where to return the amount of memory that is
5374 * allocated from the host but not currently used
5375 * by any VMs.
5376 * @param pcbBallonedMem Where to return the sum of memory that is
5377 * currently ballooned by the VMs.
5378 * @param pcbSharedMem Where to return the amount of memory that is
5379 * currently shared.
5380 */
5381VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
5382 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
5383{
5384 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5385 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
5386
5387 uint64_t cAllocPages = 0;
5388 uint64_t cFreePages = 0;
5389 uint64_t cBalloonPages = 0;
5390 uint64_t cSharedPages = 0;
5391 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
5392 AssertRCReturn(rc, rc);
5393
5394 if (pcbAllocMem)
5395 *pcbAllocMem = cAllocPages * _4K;
5396
5397 if (pcbFreeMem)
5398 *pcbFreeMem = cFreePages * _4K;
5399
5400 if (pcbBallonedMem)
5401 *pcbBallonedMem = cBalloonPages * _4K;
5402
5403 if (pcbSharedMem)
5404 *pcbSharedMem = cSharedPages * _4K;
5405
5406 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
5407 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
5408 return VINF_SUCCESS;
5409}
5410
5411
5412/**
5413 * Query memory stats for the VM.
5414 *
5415 * @returns VBox status code.
5416 * @param pUVM The user mode VM handle.
5417 * @param pcbTotalMem Where to return total amount memory the VM may
5418 * possibly use.
5419 * @param pcbPrivateMem Where to return the amount of private memory
5420 * currently allocated.
5421 * @param pcbSharedMem Where to return the amount of actually shared
5422 * memory currently used by the VM.
5423 * @param pcbZeroMem Where to return the amount of memory backed by
5424 * zero pages.
5425 *
5426 * @remarks The total mem is normally larger than the sum of the three
5427 * components. There are two reasons for this, first the amount of
5428 * shared memory is what we're sure is shared instead of what could
5429 * possibly be shared with someone. Secondly, because the total may
5430 * include some pure MMIO pages that doesn't go into any of the three
5431 * sub-counts.
5432 *
5433 * @todo Why do we return reused shared pages instead of anything that could
5434 * potentially be shared? Doesn't this mean the first VM gets a much
5435 * lower number of shared pages?
5436 */
5437VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
5438 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
5439{
5440 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5441 PVM pVM = pUVM->pVM;
5442 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
5443
5444 if (pcbTotalMem)
5445 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
5446
5447 if (pcbPrivateMem)
5448 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
5449
5450 if (pcbSharedMem)
5451 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
5452
5453 if (pcbZeroMem)
5454 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
5455
5456 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
5457 return VINF_SUCCESS;
5458}
5459
5460
5461
5462/*********************************************************************************************************************************
5463* Chunk Mappings and Page Allocation *
5464*********************************************************************************************************************************/
5465
5466/**
5467 * Tree enumeration callback for dealing with age rollover.
5468 * It will perform a simple compression of the current age.
5469 */
5470static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
5471{
5472 /* Age compression - ASSUMES iNow == 4. */
5473 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5474 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
5475 pChunk->iLastUsed = 3;
5476 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
5477 pChunk->iLastUsed = 2;
5478 else if (pChunk->iLastUsed)
5479 pChunk->iLastUsed = 1;
5480 else /* iLastUsed = 0 */
5481 pChunk->iLastUsed = 4;
5482
5483 NOREF(pvUser);
5484 return 0;
5485}
5486
5487
5488/**
5489 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
5490 */
5491typedef struct PGMR3PHYSCHUNKUNMAPCB
5492{
5493 PVM pVM; /**< Pointer to the VM. */
5494 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
5495} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
5496
5497
5498/**
5499 * Callback used to find the mapping that's been unused for
5500 * the longest time.
5501 */
5502static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
5503{
5504 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5505 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
5506
5507 /*
5508 * Check for locks and compare when last used.
5509 */
5510 if (pChunk->cRefs)
5511 return 0;
5512 if (pChunk->cPermRefs)
5513 return 0;
5514 if ( pArg->pChunk
5515 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
5516 return 0;
5517
5518 /*
5519 * Check that it's not in any of the TLBs.
5520 */
5521 PVM pVM = pArg->pVM;
5522 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
5523 == pChunk->Core.Key)
5524 {
5525 pChunk = NULL;
5526 return 0;
5527 }
5528#ifdef VBOX_STRICT
5529 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5530 {
5531 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
5532 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
5533 }
5534#endif
5535
5536 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
5537 if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
5538 return 0;
5539
5540 pArg->pChunk = pChunk;
5541 return 0;
5542}
5543
5544
5545/**
5546 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
5547 *
5548 * The candidate will not be part of any TLBs, so no need to flush
5549 * anything afterwards.
5550 *
5551 * @returns Chunk id.
5552 * @param pVM The cross context VM structure.
5553 */
5554static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
5555{
5556 PGM_LOCK_ASSERT_OWNER(pVM);
5557
5558 /*
5559 * Enumerate the age tree starting with the left most node.
5560 */
5561 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5562 PGMR3PHYSCHUNKUNMAPCB Args;
5563 Args.pVM = pVM;
5564 Args.pChunk = NULL;
5565 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
5566 Assert(Args.pChunk);
5567 if (Args.pChunk)
5568 {
5569 Assert(Args.pChunk->cRefs == 0);
5570 Assert(Args.pChunk->cPermRefs == 0);
5571 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5572 return Args.pChunk->Core.Key;
5573 }
5574
5575 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5576 return INT32_MAX;
5577}
5578
5579
5580/**
5581 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
5582 *
5583 * This is only called on one of the EMTs while the other ones are waiting for
5584 * it to complete this function.
5585 *
5586 * @returns VINF_SUCCESS (VBox strict status code).
5587 * @param pVM The cross context VM structure.
5588 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5589 * @param pvUser User pointer. Unused
5590 *
5591 */
5592static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5593{
5594 int rc = VINF_SUCCESS;
5595 PGM_LOCK_VOID(pVM);
5596 NOREF(pVCpu); NOREF(pvUser);
5597
5598 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
5599 {
5600 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
5601 /** @todo also not really efficient to unmap a chunk that contains PD
5602 * or PT pages. */
5603 pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
5604
5605 /*
5606 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
5607 */
5608 GMMMAPUNMAPCHUNKREQ Req;
5609 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5610 Req.Hdr.cbReq = sizeof(Req);
5611 Req.pvR3 = NULL;
5612 Req.idChunkMap = NIL_GMM_CHUNKID;
5613 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
5614 if (Req.idChunkUnmap != INT32_MAX)
5615 {
5616 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5617 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5618 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5619 if (RT_SUCCESS(rc))
5620 {
5621 /*
5622 * Remove the unmapped one.
5623 */
5624 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
5625 AssertRelease(pUnmappedChunk);
5626 AssertRelease(!pUnmappedChunk->cRefs);
5627 AssertRelease(!pUnmappedChunk->cPermRefs);
5628 pUnmappedChunk->pv = NULL;
5629 pUnmappedChunk->Core.Key = UINT32_MAX;
5630 MMR3HeapFree(pUnmappedChunk);
5631 pVM->pgm.s.ChunkR3Map.c--;
5632 pVM->pgm.s.cUnmappedChunks++;
5633
5634 /*
5635 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
5636 */
5637 /** @todo We should not flush chunks which include cr3 mappings. */
5638 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5639 {
5640 PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
5641
5642 pPGM->pGst32BitPdR3 = NULL;
5643 pPGM->pGstPaePdptR3 = NULL;
5644 pPGM->pGstAmd64Pml4R3 = NULL;
5645 pPGM->pGstEptPml4R3 = NULL;
5646 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
5647 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
5648 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
5649 pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
5650 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
5651 {
5652 pPGM->apGstPaePDsR3[i] = NULL;
5653 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
5654 }
5655
5656 /* Flush REM TLBs. */
5657 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5658 }
5659 }
5660 }
5661 }
5662 PGM_UNLOCK(pVM);
5663 return rc;
5664}
5665
5666/**
5667 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
5668 *
5669 * @returns VBox status code.
5670 * @param pVM The cross context VM structure.
5671 */
5672static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM)
5673{
5674 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
5675 AssertRC(rc);
5676}
5677
5678
5679/**
5680 * Maps the given chunk into the ring-3 mapping cache.
5681 *
5682 * This will call ring-0.
5683 *
5684 * @returns VBox status code.
5685 * @param pVM The cross context VM structure.
5686 * @param idChunk The chunk in question.
5687 * @param ppChunk Where to store the chunk tracking structure.
5688 *
5689 * @remarks Called from within the PGM critical section.
5690 * @remarks Can be called from any thread!
5691 */
5692int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
5693{
5694 int rc;
5695
5696 PGM_LOCK_ASSERT_OWNER(pVM);
5697
5698 /*
5699 * Move the chunk time forward.
5700 */
5701 pVM->pgm.s.ChunkR3Map.iNow++;
5702 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
5703 {
5704 pVM->pgm.s.ChunkR3Map.iNow = 4;
5705 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
5706 }
5707
5708 /*
5709 * Allocate a new tracking structure first.
5710 */
5711 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
5712 AssertReturn(pChunk, VERR_NO_MEMORY);
5713 pChunk->Core.Key = idChunk;
5714 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
5715
5716 /*
5717 * Request the ring-0 part to map the chunk in question.
5718 */
5719 GMMMAPUNMAPCHUNKREQ Req;
5720 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5721 Req.Hdr.cbReq = sizeof(Req);
5722 Req.pvR3 = NULL;
5723 Req.idChunkMap = idChunk;
5724 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5725
5726 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5727 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a);
5728 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5729 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a);
5730 if (RT_SUCCESS(rc))
5731 {
5732 pChunk->pv = Req.pvR3;
5733
5734 /*
5735 * If we're running out of virtual address space, then we should
5736 * unmap another chunk.
5737 *
5738 * Currently, an unmap operation requires that all other virtual CPUs
5739 * are idling and not by chance making use of the memory we're
5740 * unmapping. So, we create an async unmap operation here.
5741 *
5742 * Now, when creating or restoring a saved state this wont work very
5743 * well since we may want to restore all guest RAM + a little something.
5744 * So, we have to do the unmap synchronously. Fortunately for us
5745 * though, during these operations the other virtual CPUs are inactive
5746 * and it should be safe to do this.
5747 */
5748 /** @todo Eventually we should lock all memory when used and do
5749 * map+unmap as one kernel call without any rendezvous or
5750 * other precautions. */
5751 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5752 {
5753 switch (VMR3GetState(pVM))
5754 {
5755 case VMSTATE_LOADING:
5756 case VMSTATE_SAVING:
5757 {
5758 PVMCPU pVCpu = VMMGetCpu(pVM);
5759 if ( pVCpu
5760 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5761 {
5762 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5763 break;
5764 }
5765 }
5766 RT_FALL_THRU();
5767 default:
5768 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5769 AssertRC(rc);
5770 break;
5771 }
5772 }
5773
5774 /*
5775 * Update the tree. We must do this after any unmapping to make sure
5776 * the chunk we're going to return isn't unmapped by accident.
5777 */
5778 AssertPtr(Req.pvR3);
5779 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5780 AssertRelease(fRc);
5781 pVM->pgm.s.ChunkR3Map.c++;
5782 pVM->pgm.s.cMappedChunks++;
5783 }
5784 else
5785 {
5786 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5787 * should probably restrict ourselves on linux. */
5788 AssertRC(rc);
5789 MMR3HeapFree(pChunk);
5790 pChunk = NULL;
5791 }
5792
5793 *ppChunk = pChunk;
5794 return rc;
5795}
5796
5797
5798/**
5799 * Invalidates the TLB for the ring-3 mapping cache.
5800 *
5801 * @param pVM The cross context VM structure.
5802 */
5803VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5804{
5805 PGM_LOCK_VOID(pVM);
5806 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5807 {
5808 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5809 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5810 }
5811 /* The page map TLB references chunks, so invalidate that one too. */
5812 pgmPhysInvalidatePageMapTLB(pVM);
5813 PGM_UNLOCK(pVM);
5814}
5815
5816
5817/**
5818 * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage.
5819 *
5820 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5821 * signal and clear the out of memory condition. When called, this API is used
5822 * to try clear the condition when the user wants to resume.
5823 *
5824 * @returns The following VBox status codes.
5825 * @retval VINF_SUCCESS on success. FFs cleared.
5826 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5827 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5828 *
5829 * @param pVM The cross context VM structure.
5830 *
5831 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5832 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5833 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5834 * handler.
5835 */
5836VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5837{
5838 PGM_LOCK_VOID(pVM);
5839
5840 /*
5841 * Allocate more pages, noting down the index of the first new page.
5842 */
5843 uint32_t iClear = pVM->pgm.s.cHandyPages;
5844 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5845 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5846 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5847 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5848 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5849 && pVM->pgm.s.cHandyPages > 0)
5850 {
5851 /* Still handy pages left, so don't panic. */
5852 rc = VINF_SUCCESS;
5853 }
5854
5855 if (RT_SUCCESS(rc))
5856 {
5857 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5858 Assert(pVM->pgm.s.cHandyPages > 0);
5859#ifdef VBOX_STRICT
5860 uint32_t i;
5861 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5862 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5863 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5864 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5865 break;
5866 if (i != pVM->pgm.s.cHandyPages)
5867 {
5868 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5869 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5870 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5871 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j,
5872 pVM->pgm.s.aHandyPages[j].idPage,
5873 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5874 pVM->pgm.s.aHandyPages[j].idSharedPage,
5875 j == i ? " <---" : "");
5876 RTAssertPanic();
5877 }
5878#endif
5879 }
5880 else
5881 {
5882 /*
5883 * We should never get here unless there is a genuine shortage of
5884 * memory (or some internal error). Flag the error so the VM can be
5885 * suspended ASAP and the user informed. If we're totally out of
5886 * handy pages we will return failure.
5887 */
5888 /* Report the failure. */
5889 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
5890 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5891 rc, pVM->pgm.s.cHandyPages,
5892 pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages));
5893
5894 if ( rc != VERR_NO_MEMORY
5895 && rc != VERR_NO_PHYS_MEMORY
5896 && rc != VERR_LOCK_FAILED)
5897 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5898 {
5899 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5900 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5901 pVM->pgm.s.aHandyPages[i].idSharedPage));
5902 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5903 if (idPage != NIL_GMM_PAGEID)
5904 {
5905 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5906 pRam;
5907 pRam = pRam->pNextR3)
5908 {
5909 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5910 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5911 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5912 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5913 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5914 }
5915 }
5916 }
5917
5918 if (rc == VERR_NO_MEMORY)
5919 {
5920 uint64_t cbHostRamAvail = 0;
5921 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5922 if (RT_SUCCESS(rc2))
5923 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5924 else
5925 LogRel(("Cannot determine the amount of available host memory\n"));
5926 }
5927
5928 /* Set the FFs and adjust rc. */
5929 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5930 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5931 if ( rc == VERR_NO_MEMORY
5932 || rc == VERR_NO_PHYS_MEMORY
5933 || rc == VERR_LOCK_FAILED)
5934 rc = VINF_EM_NO_MEMORY;
5935 }
5936
5937 PGM_UNLOCK(pVM);
5938 return rc;
5939}
5940
5941
5942/*********************************************************************************************************************************
5943* Other Stuff *
5944*********************************************************************************************************************************/
5945
5946/**
5947 * Sets the Address Gate 20 state.
5948 *
5949 * @param pVCpu The cross context virtual CPU structure.
5950 * @param fEnable True if the gate should be enabled.
5951 * False if the gate should be disabled.
5952 */
5953VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
5954{
5955 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
5956 if (pVCpu->pgm.s.fA20Enabled != fEnable)
5957 {
5958#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5959 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
5960 if ( CPUMIsGuestInVmxRootMode(pCtx)
5961 && !fEnable)
5962 {
5963 Log(("Cannot enter A20M mode while in VMX root mode\n"));
5964 return;
5965 }
5966#endif
5967 pVCpu->pgm.s.fA20Enabled = fEnable;
5968 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
5969 if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)))
5970 NEMR3NotifySetA20(pVCpu, fEnable);
5971#ifdef PGM_WITH_A20
5972 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5973 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
5974 HMFlushTlb(pVCpu);
5975#endif
5976 IEMTlbInvalidateAllPhysical(pVCpu);
5977 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
5978 }
5979}
5980
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette