/* $Id: PGMPool.cpp 45103 2013-03-20 11:13:27Z vboxsync $ */ /** @file * PGM Shadow Page Pool. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_pgm_pool PGM Shadow Page Pool * * Motivations: * -# Relationship between shadow page tables and physical guest pages. This * should allow us to skip most of the global flushes now following access * handler changes. The main expense is flushing shadow pages. * -# Limit the pool size if necessary (default is kind of limitless). * -# Allocate shadow pages from RC. We use to only do this in SyncCR3. * -# Required for 64-bit guests. * -# Combining the PD cache and page pool in order to simplify caching. * * * @section sec_pgm_pool_outline Design Outline * * The shadow page pool tracks pages used for shadowing paging structures (i.e. * page tables, page directory, page directory pointer table and page map * level-4). Each page in the pool has an unique identifier. This identifier is * used to link a guest physical page to a shadow PT. The identifier is a * non-zero value and has a relativly low max value - say 14 bits. This makes it * possible to fit it into the upper bits of the of the aHCPhys entries in the * ram range. * * By restricting host physical memory to the first 48 bits (which is the * announced physical memory range of the K8L chip (scheduled for 2008)), we * can safely use the upper 16 bits for shadow page ID and reference counting. * * Update: The 48 bit assumption will be lifted with the new physical memory * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB * into a box in some years. * * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT * or PD. This is solved by creating a list of physical cross reference extents * when ever this happens. Each node in the list (extent) is can contain 3 page * pool indexes. The list it self is chained using indexes into the paPhysExt * array. * * * @section sec_pgm_pool_life Life Cycle of a Shadow Page * * -# The SyncPT function requests a page from the pool. * The request includes the kind of page it is (PT/PD, PAE/legacy), the * address of the page it's shadowing, and more. * -# The pool responds to the request by allocating a new page. * When the cache is enabled, it will first check if it's in the cache. * Should the pool be exhausted, one of two things can be done: * -# Flush the whole pool and current CR3. * -# Use the cache to find a page which can be flushed (~age). * -# The SyncPT function will sync one or more pages and insert it into the * shadow PD. * -# The SyncPage function may sync more pages on a later \#PFs. * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases. * When caching is enabled, the page isn't flush but remains in the cache. * * * @section sec_pgm_pool_impl Monitoring * * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages * sharing the monitor get linked using the iMonitoredNext/Prev. The head page * is the pvUser to the access handlers. * * * @section sec_pgm_pool_impl Implementation * * The pool will take pages from the MM page pool. The tracking data * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The * pool content can be accessed both by using the page id and the physical * address (HC). The former is managed by means of an array, the latter by an * offset based AVL tree. * * Flushing of a pool page means that we iterate the content (we know what kind * it is) and updates the link information in the ram range. * * ... */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #include #include #include "PGMInternal.h" #include #include #include "PGMInline.h" #include #include #include #include #include /******************************************************************************* * Internal Functions * *******************************************************************************/ static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser); #ifdef VBOX_WITH_DEBUGGER static FNDBGCCMD pgmR3PoolCmdCheck; #endif #ifdef VBOX_WITH_DEBUGGER /** Command descriptors. */ static const DBGCCMD g_aCmds[] = { /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */ { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." }, }; #endif /** * Initializes the pool * * @returns VBox status code. * @param pVM Pointer to the VM. */ int pgmR3PoolInit(PVM pVM) { int rc; AssertCompile(NIL_PGMPOOL_IDX == 0); /* pPage->cLocked is an unsigned byte. */ AssertCompile(VMM_MAX_CPU_COUNT <= 255); /* * Query Pool config. */ PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool"); /* Default pgm pool size is 1024 pages (4MB). */ uint16_t cMaxPages = 1024; /* Adjust it up relative to the RAM size, using the nested paging formula. */ uint64_t cbRam; rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc); uint64_t u64MaxPages = (cbRam >> 9) + (cbRam >> 18) + (cbRam >> 27) + 32 * PAGE_SIZE; u64MaxPages >>= PAGE_SHIFT; if (u64MaxPages > PGMPOOL_IDX_LAST) cMaxPages = PGMPOOL_IDX_LAST; else cMaxPages = (uint16_t)u64MaxPages; /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, F(ram-size)} * The max size of the shadow page pool in pages. The pool will grow dynamically * up to this limit. */ rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages); AssertLogRelRCReturn(rc, rc); AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16), ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER); cMaxPages = RT_ALIGN(cMaxPages, 16); if (cMaxPages > PGMPOOL_IDX_LAST) cMaxPages = PGMPOOL_IDX_LAST; LogRel(("PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages)); /** todo: * We need to be much more careful with our allocation strategy here. * For nested paging we don't need pool user info nor extents at all, but * we can't check for nested paging here (too early during init to get a * confirmation it can be used). The default for large memory configs is a * bit large for shadow paging, so I've restricted the extent maximum to 8k * (8k * 16 = 128k of hyper heap). * * Also when large page support is enabled, we typically don't need so much, * although that depends on the availability of 2 MB chunks on the host. */ /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2} * The max number of shadow page user tracking records. Each shadow page has * zero of other shadow pages (or CR3s) that references it, or uses it if you * like. The structures describing these relationships are allocated from a * fixed sized pool. This configuration variable defines the pool size. */ uint16_t cMaxUsers; rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2); AssertLogRelRCReturn(rc, rc); AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K, ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER); /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MIN(MaxPages*2,8192)} * The max number of extents for tracking aliased guest pages. */ uint16_t cMaxPhysExts; rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */)); AssertLogRelRCReturn(rc, rc); AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST, ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER); /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true} * Enables or disabling caching of shadow pages. Caching means that we will try * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or * SyncPage requests one. When reusing a shadow page, we can save time * reconstructing it and it's children. */ bool fCacheEnabled; rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true); AssertLogRelRCReturn(rc, rc); LogRel(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n", cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled)); /* * Allocate the data structures. */ uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]); cb += cMaxUsers * sizeof(PGMPOOLUSER); cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT); PPGMPOOL pPool; rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool); if (RT_FAILURE(rc)) return rc; pVM->pgm.s.pPoolR3 = pPool; pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool); pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool); /* * Initialize it. */ pPool->pVMR3 = pVM; pPool->pVMR0 = pVM->pVMR0; pPool->pVMRC = pVM->pVMRC; pPool->cMaxPages = cMaxPages; pPool->cCurPages = PGMPOOL_IDX_FIRST; pPool->iUserFreeHead = 0; pPool->cMaxUsers = cMaxUsers; PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages]; pPool->paUsersR3 = paUsers; pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers); pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers); for (unsigned i = 0; i < cMaxUsers; i++) { paUsers[i].iNext = i + 1; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iUserTable = 0xfffffffe; } paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; pPool->iPhysExtFreeHead = 0; pPool->cMaxPhysExts = cMaxPhysExts; PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers]; pPool->paPhysExtsR3 = paPhysExts; pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts); pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts); for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++) pPool->aiHash[i] = NIL_PGMPOOL_IDX; pPool->iAgeHead = NIL_PGMPOOL_IDX; pPool->iAgeTail = NIL_PGMPOOL_IDX; pPool->fCacheEnabled = fCacheEnabled; pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler; pPool->pszAccessHandler = "Guest Paging Access Handler"; pPool->HCPhysTree = 0; /* * The NIL entry. */ Assert(NIL_PGMPOOL_IDX == 0); pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID; pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS; pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS; pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX; /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */ pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0; pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX; pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX; Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX); Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending); #ifdef VBOX_WITH_STATISTICS /* * Register statistics. */ STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size."); STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size."); STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use."); STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages."); STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc."); STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll."); STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset."); STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage."); STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree."); STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage()."); STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage()."); STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages."); STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc."); STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records."); STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries."); STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow."); STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries."); STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries."); STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records."); STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages."); STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches."); STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls."); STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler."); STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction."); STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler."); STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit."); STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often."); STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork()."); STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD)."); STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction."); STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing."); STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle."); STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults."); STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler."); STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction."); STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler."); STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit."); STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often."); STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork()."); STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD)."); STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle."); STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults."); STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush."); STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value."); STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages."); STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page)."); STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage."); STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management."); STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow."); STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache."); STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache."); STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)"); STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page."); STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations."); STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations."); #endif /* VBOX_WITH_STATISTICS */ #ifdef VBOX_WITH_DEBUGGER /* * Debugger commands. */ static bool s_fRegisteredCmds = false; if (!s_fRegisteredCmds) { rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds)); if (RT_SUCCESS(rc)) s_fRegisteredCmds = true; } #endif return VINF_SUCCESS; } /** * Relocate the page pool data. * * @param pVM Pointer to the VM. */ void pgmR3PoolRelocate(PVM pVM) { pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3); pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC; pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3); pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3); int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC); AssertReleaseRC(rc); /* init order hack. */ if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0) { rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0); AssertReleaseRC(rc); } } /** * Grows the shadow page pool. * * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR3DECL(int) PGMR3PoolGrow(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.pPoolR3; AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY); /* With 32-bit guests and no EPT, the CR3 limits the root pages to low (below 4 GB) memory. */ /** @todo change the pool to handle ROOT page allocations specially when * required. */ bool fCanUseHighMemory = HMIsNestedPagingActive(pVM) && HMGetShwPagingMode(pVM) == PGMMODE_EPT; pgmLock(pVM); /* * How much to grow it by? */ uint32_t cPages = pPool->cMaxPages - pPool->cCurPages; cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages); LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory)); for (unsigned i = pPool->cCurPages; cPages-- > 0; i++) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if (fCanUseHighMemory) pPage->pvPageR3 = MMR3PageAlloc(pVM); else pPage->pvPageR3 = MMR3PageAllocLow(pVM); if (!pPage->pvPageR3) { Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory)); pgmUnlock(pVM); return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY; } pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3); AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory); pPage->GCPhys = NIL_RTGCPHYS; pPage->enmKind = PGMPOOLKIND_FREE; pPage->idx = pPage - &pPool->aPages[0]; LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key)); pPage->iNext = pPool->iFreeHead; pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; /* commit it */ bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc); pPool->iFreeHead = i; pPool->cCurPages = i + 1; } pgmUnlock(pVM); Assert(pPool->cCurPages <= pPool->cMaxPages); return VINF_SUCCESS; } /** * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread. * * @param pPool The pool. * @param pPage The page. */ static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* for the present this should be safe enough I think... */ pgmLock(pPool->pVMR3); if ( pPage->fReusedFlushPending && pPage->enmKind != PGMPOOLKIND_FREE) pgmPoolFlushPage(pPool, pPage); pgmUnlock(pPool->pVMR3); } /** * \#PF Handler callback for PT write accesses. * * The handler can not raise any faults, it's mainly for monitoring write access * to certain pages. * * @returns VINF_SUCCESS if the handler has carried out the operation. * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation. * @param pVM Pointer to the VM. * @param GCPhys The physical address the guest is writing to. * @param pvPhys The HC mapping of that address. * @param pvBuf What the guest is reading/writing. * @param cbBuf How much it's reading/writing. * @param enmAccessType The access type. * @param pvUser User argument. */ static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser) { STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a); PPGMPOOL pPool = pVM->pgm.s.pPoolR3; PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser; PVMCPU pVCpu = VMMGetCpu(pVM); LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n", GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind)); NOREF(pvBuf); NOREF(enmAccessType); /* * We don't have to be very sophisticated about this since there are relativly few calls here. * However, we must try our best to detect any non-cpu accesses (disk / networking). * * Just to make life more interesting, we'll have to deal with the async threads too. * We cannot flush a page if we're in an async thread because of REM notifications. */ pgmLock(pVM); if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys)) { /* Pool page changed while we were waiting for the lock; ignore. */ Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys))); pgmUnlock(pVM); return VINF_PGM_HANDLER_DO_DEFAULT; } Assert(pPage->enmKind != PGMPOOLKIND_FREE); /* @todo this code doesn't make any sense. remove the if (!pVCpu) block */ if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */ { Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n", pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind)); STAM_COUNTER_INC(&pPool->StatMonitorR3Async); if (!pPage->fReusedFlushPending) { pgmUnlock(pVM); int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage); AssertRCReturn(rc, rc); pgmLock(pVM); pPage->fReusedFlushPending = true; pPage->cModifications += 0x1000; } pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */); /** @todo r=bird: making unsafe assumption about not crossing entries here! */ while (cbBuf > 4) { cbBuf -= 4; pvPhys = (uint8_t *)pvPhys + 4; GCPhys += 4; pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */); } STAM_PROFILE_STOP(&pPool->StatMonitorR3, a); } else if ( ( pPage->cModifications < 96 /* it's cheaper here. */ || pgmPoolIsPageLocked(pPage) ) && cbBuf <= 4) { /* Clear the shadow entry. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /** @todo r=bird: making unsafe assumption about not crossing entries here! */ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */); STAM_PROFILE_STOP(&pPool->StatMonitorR3, a); } else { pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */ STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a); } pgmUnlock(pVM); return VINF_PGM_HANDLER_DO_DEFAULT; } /** * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages * and all modification counters. * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM Pointer to the VM. * @param pVCpu The VMCPU for the EMT we're being called on. Unused. * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well. * (This is the pvUser, so it has to be void *.) * */ DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_START(&pPool->StatClearAll, c); NOREF(pVCpu); pgmLock(pVM); Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTbl=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTbl)); /* * Iterate all the pages until we've encountered all that are in use. * This is a simple but not quite optimal solution. */ unsigned cModifiedPages = 0; NOREF(cModifiedPages); unsigned cLeft = pPool->cUsedPages; uint32_t iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if (pPage->GCPhys != NIL_RTGCPHYS) { switch (pPage->enmKind) { /* * We only care about shadow page tables that reference physical memory */ #ifdef PGM_WITH_LARGE_PAGES case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */ if (pPage->cPresent) { PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { if ( pShwPD->a[i].n.u1Present && pShwPD->a[i].b.u1Size) { Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)); pShwPD->a[i].u = 0; Assert(pPage->cPresent); pPage->cPresent--; } } if (pPage->cPresent == 0) pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } goto default_case; case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */ if (pPage->cPresent) { PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); if ( pShwPD->a[i].n.u1Present && pShwPD->a[i].b.u1Size) { Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)); pShwPD->a[i].u = 0; Assert(pPage->cPresent); pPage->cPresent--; } } if (pPage->cPresent == 0) pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } goto default_case; #endif /* PGM_WITH_LARGE_PAGES */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: { if (pPage->cPresent) { void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); STAM_PROFILE_START(&pPool->StatZeroPage, z); #if 0 /* Useful check for leaking references; *very* expensive though. */ switch (pPage->enmKind) { case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { bool fFoundFirst = false; PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw; for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++) { if (pPT->a[ptIndex].u) { if (!fFoundFirst) { AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent)); if (pPage->iFirstPresent != ptIndex) Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent)); fFoundFirst = true; } if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex])) { pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS); if (pPage->iFirstPresent == ptIndex) pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } } } AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys)); break; } default: break; } #endif ASMMemZeroPage(pvShw); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); pPage->cPresent = 0; pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } } /* fall thru */ #ifdef PGM_WITH_LARGE_PAGES default_case: #endif default: Assert(!pPage->cModifications || ++cModifiedPages); Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications); Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; break; } if (!--cLeft) break; } } #ifndef DEBUG_michael AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages)); #endif pPool->iModifiedHead = NIL_PGMPOOL_IDX; pPool->cModifiedPages = 0; /* * Clear all the GCPhys links and rebuild the phys ext free list. */ for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX); pRam; pRam = pRam->CTX_SUFF(pNext)) { iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0); } pPool->iPhysExtFreeHead = 0; PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); const unsigned cMaxPhysExts = pPool->cMaxPhysExts; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT /* Reset all dirty pages to reactivate the page monitoring. */ /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint */ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { PPGMPOOLPAGE pPage; unsigned idxPage; if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX) continue; idxPage = pPool->aDirtyPages[i].uIdx; AssertRelease(idxPage != NIL_PGMPOOL_IDX); pPage = &pPool->aPages[idxPage]; Assert(pPage->idx == idxPage); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i)); Log(("Reactivate dirty page %RGp\n", pPage->GCPhys)); /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */ int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK); AssertRCSuccess(rc); pPage->fDirty = false; pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX; } /* Clear all dirty pages. */ pPool->idxFreeDirtyPage = 0; pPool->cDirtyPages = 0; #endif /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL; /* Flush job finished. */ VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING); pPool->cPresent = 0; pgmUnlock(pVM); PGM_INVL_ALL_VCPU_TLBS(pVM); if (fpvFlushRemTbl) for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); STAM_PROFILE_STOP(&pPool->StatClearAll, c); return VINF_SUCCESS; } /** * Clears the shadow page pool. * * @param pVM Pointer to the VM. * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as * well. */ void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb) { int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb); AssertRC(rc); } /** * Protect all pgm pool page table entries to monitor writes * * @param pVM Pointer to the VM. * * @remarks ASSUMES the caller will flush all TLBs!! */ void pgmR3PoolWriteProtectPages(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); unsigned cLeft = pPool->cUsedPages; unsigned iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if ( pPage->GCPhys != NIL_RTGCPHYS && pPage->cPresent) { union { void *pv; PX86PT pPT; PPGMSHWPTPAE pPTPae; PEPTPT pPTEpt; } uShw; uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); switch (pPage->enmKind) { /* * We only care about shadow page tables. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++) { if (uShw.pPT->a[iShw].n.u1Present) uShw.pPT->a[iShw].n.u1Write = 0; } break; case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++) { if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]); } break; case PGMPOOLKIND_EPT_PT_FOR_PHYS: for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++) { if (uShw.pPTEpt->a[iShw].n.u1Present) uShw.pPTEpt->a[iShw].n.u1Write = 0; } break; default: break; } if (!--cLeft) break; } } } #ifdef VBOX_WITH_DEBUGGER /** * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.} */ static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0); uint32_t cErrors = 0; NOREF(paArgs); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); for (unsigned i = 0; i < pPool->cCurPages; i++) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; bool fFirstMsg = true; /* Todo: cover other paging modes too. */ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage); { PX86PTPAE pGstPT; PGMPAGEMAPLOCK LockPage; int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc); /* Check if any PTEs are out of sync. */ for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) { if (PGMSHWPTEPAE_IS_P(pShwPT->a[j])) { RTHCPHYS HCPhys = NIL_RTHCPHYS; rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys); if ( rc != VINF_SUCCESS || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys) { if (fFirstMsg) { DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); fFirstMsg = false; } DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys); cErrors++; } else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j]) && !pGstPT->a[j].n.u1Write) { if (fFirstMsg) { DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); fFirstMsg = false; } DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys); cErrors++; } } } PGMPhysReleasePageMappingLock(pVM, &LockPage); } /* Make sure this page table can't be written to from any shadow mapping. */ RTHCPHYS HCPhysPT = NIL_RTHCPHYS; int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT); AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys)); if (rc == VINF_SUCCESS) { for (unsigned j = 0; j < pPool->cCurPages; j++) { PPGMPOOLPAGE pTempPage = &pPool->aPages[j]; if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage); for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++) { if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k]) # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && !pPage->fDirty # endif && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT) { if (fFirstMsg) { DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); fFirstMsg = false; } DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k])); cErrors++; } } } } } } } if (cErrors > 0) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors); return VINF_SUCCESS; } #endif /* VBOX_WITH_DEBUGGER */