VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPool.cpp@ 44410

Last change on this file since 44410 was 44399, checked in by vboxsync, 12 years ago

DBGF,DBGC,++: PVM -> PUVM. Some refactoring and cleanup as well.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 53.6 KB
Line 
1/* $Id: PGMPool.cpp 44399 2013-01-27 21:12:53Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_impl Monitoring
73 *
74 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
75 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
76 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
77 * is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*******************************************************************************
96* Header Files *
97*******************************************************************************/
98#define LOG_GROUP LOG_GROUP_PGM_POOL
99#include <VBox/vmm/pgm.h>
100#include <VBox/vmm/mm.h>
101#include "PGMInternal.h"
102#include <VBox/vmm/vm.h>
103#include <VBox/vmm/uvm.h>
104#include "PGMInline.h"
105
106#include <VBox/log.h>
107#include <VBox/err.h>
108#include <iprt/asm.h>
109#include <iprt/string.h>
110#include <VBox/dbg.h>
111
112
113/*******************************************************************************
114* Internal Functions *
115*******************************************************************************/
116static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
117#ifdef VBOX_WITH_DEBUGGER
118static FNDBGCCMD pgmR3PoolCmdCheck;
119#endif
120
121#ifdef VBOX_WITH_DEBUGGER
122/** Command descriptors. */
123static const DBGCCMD g_aCmds[] =
124{
125 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
126 { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
127};
128#endif
129
130/**
131 * Initializes the pool
132 *
133 * @returns VBox status code.
134 * @param pVM Pointer to the VM.
135 */
136int pgmR3PoolInit(PVM pVM)
137{
138 int rc;
139
140 AssertCompile(NIL_PGMPOOL_IDX == 0);
141 /* pPage->cLocked is an unsigned byte. */
142 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
143
144 /*
145 * Query Pool config.
146 */
147 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
148
149 /* Default pgm pool size is 1024 pages (4MB). */
150 uint16_t cMaxPages = 1024;
151
152 /* Adjust it up relative to the RAM size, using the nested paging formula. */
153 uint64_t cbRam;
154 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
155 uint64_t u64MaxPages = (cbRam >> 9)
156 + (cbRam >> 18)
157 + (cbRam >> 27)
158 + 32 * PAGE_SIZE;
159 u64MaxPages >>= PAGE_SHIFT;
160 if (u64MaxPages > PGMPOOL_IDX_LAST)
161 cMaxPages = PGMPOOL_IDX_LAST;
162 else
163 cMaxPages = (uint16_t)u64MaxPages;
164
165 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, F(ram-size)}
166 * The max size of the shadow page pool in pages. The pool will grow dynamically
167 * up to this limit.
168 */
169 rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
170 AssertLogRelRCReturn(rc, rc);
171 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
172 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
173 cMaxPages = RT_ALIGN(cMaxPages, 16);
174 if (cMaxPages > PGMPOOL_IDX_LAST)
175 cMaxPages = PGMPOOL_IDX_LAST;
176 LogRel(("PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
177
178 /** todo:
179 * We need to be much more careful with our allocation strategy here.
180 * For nested paging we don't need pool user info nor extents at all, but
181 * we can't check for nested paging here (too early during init to get a
182 * confirmation it can be used). The default for large memory configs is a
183 * bit large for shadow paging, so I've restricted the extent maximum to 8k
184 * (8k * 16 = 128k of hyper heap).
185 *
186 * Also when large page support is enabled, we typically don't need so much,
187 * although that depends on the availability of 2 MB chunks on the host.
188 */
189
190 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
191 * The max number of shadow page user tracking records. Each shadow page has
192 * zero of other shadow pages (or CR3s) that references it, or uses it if you
193 * like. The structures describing these relationships are allocated from a
194 * fixed sized pool. This configuration variable defines the pool size.
195 */
196 uint16_t cMaxUsers;
197 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
198 AssertLogRelRCReturn(rc, rc);
199 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
200 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
201
202 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MIN(MaxPages*2,8192)}
203 * The max number of extents for tracking aliased guest pages.
204 */
205 uint16_t cMaxPhysExts;
206 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
207 RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
208 AssertLogRelRCReturn(rc, rc);
209 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
210 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
211
212 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
213 * Enables or disabling caching of shadow pages. Caching means that we will try
214 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
215 * SyncPage requests one. When reusing a shadow page, we can save time
216 * reconstructing it and it's children.
217 */
218 bool fCacheEnabled;
219 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
220 AssertLogRelRCReturn(rc, rc);
221
222 LogRel(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
223 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
224
225 /*
226 * Allocate the data structures.
227 */
228 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
229 cb += cMaxUsers * sizeof(PGMPOOLUSER);
230 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
231 PPGMPOOL pPool;
232 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
233 if (RT_FAILURE(rc))
234 return rc;
235 pVM->pgm.s.pPoolR3 = pPool;
236 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
237 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
238
239 /*
240 * Initialize it.
241 */
242 pPool->pVMR3 = pVM;
243 pPool->pVMR0 = pVM->pVMR0;
244 pPool->pVMRC = pVM->pVMRC;
245 pPool->cMaxPages = cMaxPages;
246 pPool->cCurPages = PGMPOOL_IDX_FIRST;
247 pPool->iUserFreeHead = 0;
248 pPool->cMaxUsers = cMaxUsers;
249 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
250 pPool->paUsersR3 = paUsers;
251 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
252 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
253 for (unsigned i = 0; i < cMaxUsers; i++)
254 {
255 paUsers[i].iNext = i + 1;
256 paUsers[i].iUser = NIL_PGMPOOL_IDX;
257 paUsers[i].iUserTable = 0xfffffffe;
258 }
259 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
260 pPool->iPhysExtFreeHead = 0;
261 pPool->cMaxPhysExts = cMaxPhysExts;
262 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
263 pPool->paPhysExtsR3 = paPhysExts;
264 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
265 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
266 for (unsigned i = 0; i < cMaxPhysExts; i++)
267 {
268 paPhysExts[i].iNext = i + 1;
269 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
270 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
271 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
272 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
273 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
274 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
275 }
276 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
277 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
278 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
279 pPool->iAgeHead = NIL_PGMPOOL_IDX;
280 pPool->iAgeTail = NIL_PGMPOOL_IDX;
281 pPool->fCacheEnabled = fCacheEnabled;
282 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
283 pPool->pszAccessHandler = "Guest Paging Access Handler";
284 pPool->HCPhysTree = 0;
285
286 /* The NIL entry. */
287 Assert(NIL_PGMPOOL_IDX == 0);
288 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
289 pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
290
291 /* The Shadow 32-bit PD. (32 bits guest paging) */
292 pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
293 pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
294
295 /* The Shadow PDPT. */
296 pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
297 pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
298
299 /* The Shadow AMD64 CR3. */
300 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
301 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
302
303 /* The Nested Paging CR3. */
304 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
305 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
306
307 /*
308 * Set common stuff.
309 */
310 for (unsigned iPage = 0; iPage < PGMPOOL_IDX_FIRST; iPage++)
311 {
312 pPool->aPages[iPage].Core.Key = NIL_RTHCPHYS;
313 pPool->aPages[iPage].GCPhys = NIL_RTGCPHYS;
314 pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
315 /* pPool->aPages[iPage].cLocked = INT32_MAX; - test this out... */
316 pPool->aPages[iPage].pvPageR3 = 0;
317 pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
318 pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
319 pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
320 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
321 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
322 pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
323 pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
324
325 Assert(pPool->aPages[iPage].idx == iPage);
326 Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
327 Assert(!pPool->aPages[iPage].fSeenNonGlobal);
328 Assert(!pPool->aPages[iPage].fMonitored);
329 Assert(!pPool->aPages[iPage].fCached);
330 Assert(!pPool->aPages[iPage].fZeroed);
331 Assert(!pPool->aPages[iPage].fReusedFlushPending);
332 }
333
334#ifdef VBOX_WITH_STATISTICS
335 /*
336 * Register statistics.
337 */
338 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
339 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
340 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
341 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
342 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
343 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
344 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
345 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
346 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
347 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
348 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
349 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
350 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
351 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
352 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
353 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
354 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
355 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
356 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
357 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
358 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
359 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
360 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
361 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
362 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
363 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
364 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
365 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
366 STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
367 STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
368 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
369 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
370 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
371 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
372 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
373 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
374 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
375 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
376 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
377 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
378 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
379 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
380 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
381 STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
382 STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
383 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
384 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
385 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
386 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
387 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
388 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
389 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
390 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
391 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
392 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
393 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
394 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
395 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
396 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
397 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
398 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
399 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
400 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
401 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
402 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
403 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
404#endif /* VBOX_WITH_STATISTICS */
405
406#ifdef VBOX_WITH_DEBUGGER
407 /*
408 * Debugger commands.
409 */
410 static bool s_fRegisteredCmds = false;
411 if (!s_fRegisteredCmds)
412 {
413 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
414 if (RT_SUCCESS(rc))
415 s_fRegisteredCmds = true;
416 }
417#endif
418
419 return VINF_SUCCESS;
420}
421
422
423/**
424 * Relocate the page pool data.
425 *
426 * @param pVM Pointer to the VM.
427 */
428void pgmR3PoolRelocate(PVM pVM)
429{
430 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
431 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
432 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
433 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
434 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
435 AssertReleaseRC(rc);
436 /* init order hack. */
437 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
438 {
439 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
440 AssertReleaseRC(rc);
441 }
442}
443
444
445/**
446 * Grows the shadow page pool.
447 *
448 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
449 *
450 * @returns VBox status code.
451 * @param pVM Pointer to the VM.
452 */
453VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
454{
455 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
456 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
457
458 /* With 32-bit guests and no EPT, the CR3 limits the root pages to low
459 (below 4 GB) memory. */
460 /** @todo change the pool to handle ROOT page allocations specially when
461 * required. */
462 bool fCanUseHighMemory = HMIsNestedPagingActive(pVM)
463 && HMGetShwPagingMode(pVM) == PGMMODE_EPT;
464
465 pgmLock(pVM);
466
467 /*
468 * How much to grow it by?
469 */
470 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
471 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
472 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory));
473
474 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
475 {
476 PPGMPOOLPAGE pPage = &pPool->aPages[i];
477
478 if (fCanUseHighMemory)
479 pPage->pvPageR3 = MMR3PageAlloc(pVM);
480 else
481 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
482 if (!pPage->pvPageR3)
483 {
484 Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory));
485 pgmUnlock(pVM);
486 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
487 }
488 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
489 AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
490 pPage->GCPhys = NIL_RTGCPHYS;
491 pPage->enmKind = PGMPOOLKIND_FREE;
492 pPage->idx = pPage - &pPool->aPages[0];
493 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
494 pPage->iNext = pPool->iFreeHead;
495 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
496 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
497 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
498 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
499 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
500 pPage->iAgeNext = NIL_PGMPOOL_IDX;
501 pPage->iAgePrev = NIL_PGMPOOL_IDX;
502 /* commit it */
503 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
504 pPool->iFreeHead = i;
505 pPool->cCurPages = i + 1;
506 }
507
508 pgmUnlock(pVM);
509 Assert(pPool->cCurPages <= pPool->cMaxPages);
510 return VINF_SUCCESS;
511}
512
513
514
515/**
516 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
517 *
518 * @param pPool The pool.
519 * @param pPage The page.
520 */
521static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
522{
523 /* for the present this should be safe enough I think... */
524 pgmLock(pPool->pVMR3);
525 if ( pPage->fReusedFlushPending
526 && pPage->enmKind != PGMPOOLKIND_FREE)
527 pgmPoolFlushPage(pPool, pPage);
528 pgmUnlock(pPool->pVMR3);
529}
530
531
532/**
533 * \#PF Handler callback for PT write accesses.
534 *
535 * The handler can not raise any faults, it's mainly for monitoring write access
536 * to certain pages.
537 *
538 * @returns VINF_SUCCESS if the handler has carried out the operation.
539 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
540 * @param pVM Pointer to the VM.
541 * @param GCPhys The physical address the guest is writing to.
542 * @param pvPhys The HC mapping of that address.
543 * @param pvBuf What the guest is reading/writing.
544 * @param cbBuf How much it's reading/writing.
545 * @param enmAccessType The access type.
546 * @param pvUser User argument.
547 */
548static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
549 PGMACCESSTYPE enmAccessType, void *pvUser)
550{
551 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
552 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
553 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
554 PVMCPU pVCpu = VMMGetCpu(pVM);
555 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
556 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
557
558 NOREF(pvBuf); NOREF(enmAccessType);
559
560 /*
561 * We don't have to be very sophisticated about this since there are relativly few calls here.
562 * However, we must try our best to detect any non-cpu accesses (disk / networking).
563 *
564 * Just to make life more interesting, we'll have to deal with the async threads too.
565 * We cannot flush a page if we're in an async thread because of REM notifications.
566 */
567 pgmLock(pVM);
568 if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
569 {
570 /* Pool page changed while we were waiting for the lock; ignore. */
571 Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
572 pgmUnlock(pVM);
573 return VINF_PGM_HANDLER_DO_DEFAULT;
574 }
575
576 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
577
578 /* @todo this code doesn't make any sense. remove the if (!pVCpu) block */
579 if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
580 {
581 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
582 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
583 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
584 if (!pPage->fReusedFlushPending)
585 {
586 pgmUnlock(pVM);
587 int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
588 AssertRCReturn(rc, rc);
589 pgmLock(pVM);
590 pPage->fReusedFlushPending = true;
591 pPage->cModifications += 0x1000;
592 }
593
594 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
595 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
596 while (cbBuf > 4)
597 {
598 cbBuf -= 4;
599 pvPhys = (uint8_t *)pvPhys + 4;
600 GCPhys += 4;
601 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
602 }
603 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
604 }
605 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
606 || pgmPoolIsPageLocked(pPage)
607 )
608 && cbBuf <= 4)
609 {
610 /* Clear the shadow entry. */
611 if (!pPage->cModifications++)
612 pgmPoolMonitorModifiedInsert(pPool, pPage);
613 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
614 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
615 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
616 }
617 else
618 {
619 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
620 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
621 }
622 pgmUnlock(pVM);
623 return VINF_PGM_HANDLER_DO_DEFAULT;
624}
625
626
627/**
628 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
629 * and all modification counters.
630 *
631 * This is only called on one of the EMTs while the other ones are waiting for
632 * it to complete this function.
633 *
634 * @returns VINF_SUCCESS (VBox strict status code).
635 * @param pVM Pointer to the VM.
636 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
637 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
638 * (This is the pvUser, so it has to be void *.)
639 *
640 */
641DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl)
642{
643 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
644 STAM_PROFILE_START(&pPool->StatClearAll, c);
645 NOREF(pVCpu);
646
647 pgmLock(pVM);
648 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTbl=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTbl));
649
650 /*
651 * Iterate all the pages until we've encountered all that are in use.
652 * This is a simple but not quite optimal solution.
653 */
654 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
655 unsigned cLeft = pPool->cUsedPages;
656 uint32_t iPage = pPool->cCurPages;
657 while (--iPage >= PGMPOOL_IDX_FIRST)
658 {
659 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
660 if (pPage->GCPhys != NIL_RTGCPHYS)
661 {
662 switch (pPage->enmKind)
663 {
664 /*
665 * We only care about shadow page tables that reference physical memory
666 */
667#ifdef PGM_WITH_LARGE_PAGES
668 case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
669 if (pPage->cPresent)
670 {
671 PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
672 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
673 {
674 if ( pShwPD->a[i].n.u1Present
675 && pShwPD->a[i].b.u1Size)
676 {
677 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
678 pShwPD->a[i].u = 0;
679 Assert(pPage->cPresent);
680 pPage->cPresent--;
681 }
682 }
683 if (pPage->cPresent == 0)
684 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
685 }
686 goto default_case;
687
688 case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
689 if (pPage->cPresent)
690 {
691 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
692 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
693 {
694 Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
695 if ( pShwPD->a[i].n.u1Present
696 && pShwPD->a[i].b.u1Size)
697 {
698 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
699 pShwPD->a[i].u = 0;
700 Assert(pPage->cPresent);
701 pPage->cPresent--;
702 }
703 }
704 if (pPage->cPresent == 0)
705 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
706 }
707 goto default_case;
708#endif /* PGM_WITH_LARGE_PAGES */
709
710 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
711 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
712 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
713 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
714 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
715 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
716 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
717 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
718 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
719 {
720 if (pPage->cPresent)
721 {
722 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
723 STAM_PROFILE_START(&pPool->StatZeroPage, z);
724#if 0
725 /* Useful check for leaking references; *very* expensive though. */
726 switch (pPage->enmKind)
727 {
728 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
729 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
730 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
731 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
732 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
733 {
734 bool fFoundFirst = false;
735 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
736 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
737 {
738 if (pPT->a[ptIndex].u)
739 {
740 if (!fFoundFirst)
741 {
742 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
743 if (pPage->iFirstPresent != ptIndex)
744 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
745 fFoundFirst = true;
746 }
747 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
748 {
749 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
750 if (pPage->iFirstPresent == ptIndex)
751 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
752 }
753 }
754 }
755 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
756 break;
757 }
758 default:
759 break;
760 }
761#endif
762 ASMMemZeroPage(pvShw);
763 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
764 pPage->cPresent = 0;
765 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
766 }
767 }
768 /* fall thru */
769
770#ifdef PGM_WITH_LARGE_PAGES
771 default_case:
772#endif
773 default:
774 Assert(!pPage->cModifications || ++cModifiedPages);
775 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
776 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
777 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
778 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
779 pPage->cModifications = 0;
780 break;
781
782 }
783 if (!--cLeft)
784 break;
785 }
786 }
787
788 /* swipe the special pages too. */
789 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
790 {
791 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
792 if (pPage->GCPhys != NIL_RTGCPHYS)
793 {
794 Assert(!pPage->cModifications || ++cModifiedPages);
795 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
796 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
797 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
798 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
799 pPage->cModifications = 0;
800 }
801 }
802
803#ifndef DEBUG_michael
804 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
805#endif
806 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
807 pPool->cModifiedPages = 0;
808
809 /*
810 * Clear all the GCPhys links and rebuild the phys ext free list.
811 */
812 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
813 pRam;
814 pRam = pRam->CTX_SUFF(pNext))
815 {
816 iPage = pRam->cb >> PAGE_SHIFT;
817 while (iPage-- > 0)
818 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
819 }
820
821 pPool->iPhysExtFreeHead = 0;
822 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
823 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
824 for (unsigned i = 0; i < cMaxPhysExts; i++)
825 {
826 paPhysExts[i].iNext = i + 1;
827 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
828 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
829 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
830 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
831 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
832 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
833 }
834 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
835
836
837#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
838 /* Reset all dirty pages to reactivate the page monitoring. */
839 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
840 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
841 */
842 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
843 {
844 PPGMPOOLPAGE pPage;
845 unsigned idxPage;
846
847 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
848 continue;
849
850 idxPage = pPool->aDirtyPages[i].uIdx;
851 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
852 pPage = &pPool->aPages[idxPage];
853 Assert(pPage->idx == idxPage);
854 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
855
856 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
857
858 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
859
860 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
861 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
862 AssertRCSuccess(rc);
863 pPage->fDirty = false;
864
865 pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
866 }
867
868 /* Clear all dirty pages. */
869 pPool->idxFreeDirtyPage = 0;
870 pPool->cDirtyPages = 0;
871#endif
872
873 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
874 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
875 pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
876
877 /* Flush job finished. */
878 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
879 pPool->cPresent = 0;
880 pgmUnlock(pVM);
881
882 PGM_INVL_ALL_VCPU_TLBS(pVM);
883
884 if (fpvFlushRemTbl)
885 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
886 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
887
888 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
889 return VINF_SUCCESS;
890}
891
892
893/**
894 * Clears the shadow page pool.
895 *
896 * @param pVM Pointer to the VM.
897 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
898 * well.
899 */
900void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
901{
902 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
903 AssertRC(rc);
904}
905
906
907/**
908 * Protect all pgm pool page table entries to monitor writes
909 *
910 * @param pVM Pointer to the VM.
911 *
912 * @remarks ASSUMES the caller will flush all TLBs!!
913 */
914void pgmR3PoolWriteProtectPages(PVM pVM)
915{
916 PGM_LOCK_ASSERT_OWNER(pVM);
917 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
918 unsigned cLeft = pPool->cUsedPages;
919 unsigned iPage = pPool->cCurPages;
920 while (--iPage >= PGMPOOL_IDX_FIRST)
921 {
922 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
923 if ( pPage->GCPhys != NIL_RTGCPHYS
924 && pPage->cPresent)
925 {
926 union
927 {
928 void *pv;
929 PX86PT pPT;
930 PPGMSHWPTPAE pPTPae;
931 PEPTPT pPTEpt;
932 } uShw;
933 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
934
935 switch (pPage->enmKind)
936 {
937 /*
938 * We only care about shadow page tables.
939 */
940 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
941 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
942 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
943 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
944 {
945 if (uShw.pPT->a[iShw].n.u1Present)
946 uShw.pPT->a[iShw].n.u1Write = 0;
947 }
948 break;
949
950 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
951 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
952 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
953 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
954 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
955 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
956 {
957 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
958 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
959 }
960 break;
961
962 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
963 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
964 {
965 if (uShw.pPTEpt->a[iShw].n.u1Present)
966 uShw.pPTEpt->a[iShw].n.u1Write = 0;
967 }
968 break;
969
970 default:
971 break;
972 }
973 if (!--cLeft)
974 break;
975 }
976 }
977}
978
979#ifdef VBOX_WITH_DEBUGGER
980/**
981 * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
982 */
983static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
984{
985 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
986 PVM pVM = pUVM->pVM;
987 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
988 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
989 uint32_t cErrors = 0;
990 NOREF(paArgs);
991
992 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
993 for (unsigned i = 0; i < pPool->cCurPages; i++)
994 {
995 PPGMPOOLPAGE pPage = &pPool->aPages[i];
996 bool fFirstMsg = true;
997
998 /* Todo: cover other paging modes too. */
999 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1000 {
1001 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1002 {
1003 PX86PTPAE pGstPT;
1004 PGMPAGEMAPLOCK LockPage;
1005 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
1006
1007 /* Check if any PTEs are out of sync. */
1008 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1009 {
1010 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
1011 {
1012 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1013 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1014 if ( rc != VINF_SUCCESS
1015 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
1016 {
1017 if (fFirstMsg)
1018 {
1019 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
1020 fFirstMsg = false;
1021 }
1022 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
1023 cErrors++;
1024 }
1025 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
1026 && !pGstPT->a[j].n.u1Write)
1027 {
1028 if (fFirstMsg)
1029 {
1030 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
1031 fFirstMsg = false;
1032 }
1033 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
1034 cErrors++;
1035 }
1036 }
1037 }
1038 PGMPhysReleasePageMappingLock(pVM, &LockPage);
1039 }
1040
1041 /* Make sure this page table can't be written to from any shadow mapping. */
1042 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1043 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
1044 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
1045 if (rc == VINF_SUCCESS)
1046 {
1047 for (unsigned j = 0; j < pPool->cCurPages; j++)
1048 {
1049 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
1050
1051 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1052 {
1053 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
1054
1055 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
1056 {
1057 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
1058# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1059 && !pPage->fDirty
1060# endif
1061 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
1062 {
1063 if (fFirstMsg)
1064 {
1065 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
1066 fFirstMsg = false;
1067 }
1068 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
1069 cErrors++;
1070 }
1071 }
1072 }
1073 }
1074 }
1075 }
1076 }
1077 if (cErrors > 0)
1078 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
1079 return VINF_SUCCESS;
1080}
1081#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette