1 | /* $Id: PGMPool.cpp 69111 2017-10-17 14:26:02Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * PGM Shadow Page Pool.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2017 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /** @page pg_pgm_pool PGM Shadow Page Pool
|
---|
19 | *
|
---|
20 | * Motivations:
|
---|
21 | * -# Relationship between shadow page tables and physical guest pages. This
|
---|
22 | * should allow us to skip most of the global flushes now following access
|
---|
23 | * handler changes. The main expense is flushing shadow pages.
|
---|
24 | * -# Limit the pool size if necessary (default is kind of limitless).
|
---|
25 | * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
|
---|
26 | * -# Required for 64-bit guests.
|
---|
27 | * -# Combining the PD cache and page pool in order to simplify caching.
|
---|
28 | *
|
---|
29 | *
|
---|
30 | * @section sec_pgm_pool_outline Design Outline
|
---|
31 | *
|
---|
32 | * The shadow page pool tracks pages used for shadowing paging structures (i.e.
|
---|
33 | * page tables, page directory, page directory pointer table and page map
|
---|
34 | * level-4). Each page in the pool has an unique identifier. This identifier is
|
---|
35 | * used to link a guest physical page to a shadow PT. The identifier is a
|
---|
36 | * non-zero value and has a relativly low max value - say 14 bits. This makes it
|
---|
37 | * possible to fit it into the upper bits of the of the aHCPhys entries in the
|
---|
38 | * ram range.
|
---|
39 | *
|
---|
40 | * By restricting host physical memory to the first 48 bits (which is the
|
---|
41 | * announced physical memory range of the K8L chip (scheduled for 2008)), we
|
---|
42 | * can safely use the upper 16 bits for shadow page ID and reference counting.
|
---|
43 | *
|
---|
44 | * Update: The 48 bit assumption will be lifted with the new physical memory
|
---|
45 | * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
|
---|
46 | * into a box in some years.
|
---|
47 | *
|
---|
48 | * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
|
---|
49 | * or PD. This is solved by creating a list of physical cross reference extents
|
---|
50 | * when ever this happens. Each node in the list (extent) is can contain 3 page
|
---|
51 | * pool indexes. The list it self is chained using indexes into the paPhysExt
|
---|
52 | * array.
|
---|
53 | *
|
---|
54 | *
|
---|
55 | * @section sec_pgm_pool_life Life Cycle of a Shadow Page
|
---|
56 | *
|
---|
57 | * -# The SyncPT function requests a page from the pool.
|
---|
58 | * The request includes the kind of page it is (PT/PD, PAE/legacy), the
|
---|
59 | * address of the page it's shadowing, and more.
|
---|
60 | * -# The pool responds to the request by allocating a new page.
|
---|
61 | * When the cache is enabled, it will first check if it's in the cache.
|
---|
62 | * Should the pool be exhausted, one of two things can be done:
|
---|
63 | * -# Flush the whole pool and current CR3.
|
---|
64 | * -# Use the cache to find a page which can be flushed (~age).
|
---|
65 | * -# The SyncPT function will sync one or more pages and insert it into the
|
---|
66 | * shadow PD.
|
---|
67 | * -# The SyncPage function may sync more pages on a later \#PFs.
|
---|
68 | * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
|
---|
69 | * When caching is enabled, the page isn't flush but remains in the cache.
|
---|
70 | *
|
---|
71 | *
|
---|
72 | * @section sec_pgm_pool_monitoring Monitoring
|
---|
73 | *
|
---|
74 | * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
|
---|
75 | * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
|
---|
76 | * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
|
---|
77 | * is the pvUser to the access handlers.
|
---|
78 | *
|
---|
79 | *
|
---|
80 | * @section sec_pgm_pool_impl Implementation
|
---|
81 | *
|
---|
82 | * The pool will take pages from the MM page pool. The tracking data
|
---|
83 | * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
|
---|
84 | * pool content can be accessed both by using the page id and the physical
|
---|
85 | * address (HC). The former is managed by means of an array, the latter by an
|
---|
86 | * offset based AVL tree.
|
---|
87 | *
|
---|
88 | * Flushing of a pool page means that we iterate the content (we know what kind
|
---|
89 | * it is) and updates the link information in the ram range.
|
---|
90 | *
|
---|
91 | * ...
|
---|
92 | */
|
---|
93 |
|
---|
94 |
|
---|
95 | /*********************************************************************************************************************************
|
---|
96 | * Header Files *
|
---|
97 | *********************************************************************************************************************************/
|
---|
98 | #define LOG_GROUP LOG_GROUP_PGM_POOL
|
---|
99 | #include <VBox/vmm/pgm.h>
|
---|
100 | #include <VBox/vmm/mm.h>
|
---|
101 | #include "PGMInternal.h"
|
---|
102 | #include <VBox/vmm/vm.h>
|
---|
103 | #include <VBox/vmm/uvm.h>
|
---|
104 | #include "PGMInline.h"
|
---|
105 |
|
---|
106 | #include <VBox/log.h>
|
---|
107 | #include <VBox/err.h>
|
---|
108 | #include <iprt/asm.h>
|
---|
109 | #include <iprt/string.h>
|
---|
110 | #include <VBox/dbg.h>
|
---|
111 |
|
---|
112 |
|
---|
113 | /*********************************************************************************************************************************
|
---|
114 | * Internal Functions *
|
---|
115 | *********************************************************************************************************************************/
|
---|
116 | #ifdef VBOX_WITH_DEBUGGER
|
---|
117 | static FNDBGCCMD pgmR3PoolCmdCheck;
|
---|
118 | #endif
|
---|
119 |
|
---|
120 | #ifdef VBOX_WITH_DEBUGGER
|
---|
121 | /** Command descriptors. */
|
---|
122 | static const DBGCCMD g_aCmds[] =
|
---|
123 | {
|
---|
124 | /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
|
---|
125 | { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
|
---|
126 | };
|
---|
127 | #endif
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Initializes the pool
|
---|
131 | *
|
---|
132 | * @returns VBox status code.
|
---|
133 | * @param pVM The cross context VM structure.
|
---|
134 | */
|
---|
135 | int pgmR3PoolInit(PVM pVM)
|
---|
136 | {
|
---|
137 | int rc;
|
---|
138 |
|
---|
139 | AssertCompile(NIL_PGMPOOL_IDX == 0);
|
---|
140 | /* pPage->cLocked is an unsigned byte. */
|
---|
141 | AssertCompile(VMM_MAX_CPU_COUNT <= 255);
|
---|
142 |
|
---|
143 | /*
|
---|
144 | * Query Pool config.
|
---|
145 | */
|
---|
146 | PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
|
---|
147 |
|
---|
148 | /* Default pgm pool size is 1024 pages (4MB). */
|
---|
149 | uint16_t cMaxPages = 1024;
|
---|
150 |
|
---|
151 | /* Adjust it up relative to the RAM size, using the nested paging formula. */
|
---|
152 | uint64_t cbRam;
|
---|
153 | rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
|
---|
154 | uint64_t u64MaxPages = (cbRam >> 9)
|
---|
155 | + (cbRam >> 18)
|
---|
156 | + (cbRam >> 27)
|
---|
157 | + 32 * PAGE_SIZE;
|
---|
158 | u64MaxPages >>= PAGE_SHIFT;
|
---|
159 | if (u64MaxPages > PGMPOOL_IDX_LAST)
|
---|
160 | cMaxPages = PGMPOOL_IDX_LAST;
|
---|
161 | else
|
---|
162 | cMaxPages = (uint16_t)u64MaxPages;
|
---|
163 |
|
---|
164 | /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)}
|
---|
165 | * The max size of the shadow page pool in pages. The pool will grow dynamically
|
---|
166 | * up to this limit.
|
---|
167 | */
|
---|
168 | rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
|
---|
169 | AssertLogRelRCReturn(rc, rc);
|
---|
170 | AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
|
---|
171 | ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
|
---|
172 | cMaxPages = RT_ALIGN(cMaxPages, 16);
|
---|
173 | if (cMaxPages > PGMPOOL_IDX_LAST)
|
---|
174 | cMaxPages = PGMPOOL_IDX_LAST;
|
---|
175 | LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
|
---|
176 |
|
---|
177 | /** @todo
|
---|
178 | * We need to be much more careful with our allocation strategy here.
|
---|
179 | * For nested paging we don't need pool user info nor extents at all, but
|
---|
180 | * we can't check for nested paging here (too early during init to get a
|
---|
181 | * confirmation it can be used). The default for large memory configs is a
|
---|
182 | * bit large for shadow paging, so I've restricted the extent maximum to 8k
|
---|
183 | * (8k * 16 = 128k of hyper heap).
|
---|
184 | *
|
---|
185 | * Also when large page support is enabled, we typically don't need so much,
|
---|
186 | * although that depends on the availability of 2 MB chunks on the host.
|
---|
187 | */
|
---|
188 |
|
---|
189 | /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2}
|
---|
190 | * The max number of shadow page user tracking records. Each shadow page has
|
---|
191 | * zero of other shadow pages (or CR3s) that references it, or uses it if you
|
---|
192 | * like. The structures describing these relationships are allocated from a
|
---|
193 | * fixed sized pool. This configuration variable defines the pool size.
|
---|
194 | */
|
---|
195 | uint16_t cMaxUsers;
|
---|
196 | rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
|
---|
197 | AssertLogRelRCReturn(rc, rc);
|
---|
198 | AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
|
---|
199 | ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
|
---|
200 |
|
---|
201 | /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)}
|
---|
202 | * The max number of extents for tracking aliased guest pages.
|
---|
203 | */
|
---|
204 | uint16_t cMaxPhysExts;
|
---|
205 | rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
|
---|
206 | RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
|
---|
207 | AssertLogRelRCReturn(rc, rc);
|
---|
208 | AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
|
---|
209 | ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
|
---|
210 |
|
---|
211 | /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
|
---|
212 | * Enables or disabling caching of shadow pages. Caching means that we will try
|
---|
213 | * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
|
---|
214 | * SyncPage requests one. When reusing a shadow page, we can save time
|
---|
215 | * reconstructing it and it's children.
|
---|
216 | */
|
---|
217 | bool fCacheEnabled;
|
---|
218 | rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
|
---|
219 | AssertLogRelRCReturn(rc, rc);
|
---|
220 |
|
---|
221 | LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
|
---|
222 | cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
|
---|
223 |
|
---|
224 | /*
|
---|
225 | * Allocate the data structures.
|
---|
226 | */
|
---|
227 | uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
|
---|
228 | cb += cMaxUsers * sizeof(PGMPOOLUSER);
|
---|
229 | cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
|
---|
230 | PPGMPOOL pPool;
|
---|
231 | rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
|
---|
232 | if (RT_FAILURE(rc))
|
---|
233 | return rc;
|
---|
234 | pVM->pgm.s.pPoolR3 = pPool;
|
---|
235 | pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
|
---|
236 | pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
|
---|
237 |
|
---|
238 | /*
|
---|
239 | * Initialize it.
|
---|
240 | */
|
---|
241 | pPool->pVMR3 = pVM;
|
---|
242 | pPool->pVMR0 = pVM->pVMR0;
|
---|
243 | pPool->pVMRC = pVM->pVMRC;
|
---|
244 | pPool->cMaxPages = cMaxPages;
|
---|
245 | pPool->cCurPages = PGMPOOL_IDX_FIRST;
|
---|
246 | pPool->iUserFreeHead = 0;
|
---|
247 | pPool->cMaxUsers = cMaxUsers;
|
---|
248 | PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
|
---|
249 | pPool->paUsersR3 = paUsers;
|
---|
250 | pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
|
---|
251 | pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
|
---|
252 | for (unsigned i = 0; i < cMaxUsers; i++)
|
---|
253 | {
|
---|
254 | paUsers[i].iNext = i + 1;
|
---|
255 | paUsers[i].iUser = NIL_PGMPOOL_IDX;
|
---|
256 | paUsers[i].iUserTable = 0xfffffffe;
|
---|
257 | }
|
---|
258 | paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
|
---|
259 | pPool->iPhysExtFreeHead = 0;
|
---|
260 | pPool->cMaxPhysExts = cMaxPhysExts;
|
---|
261 | PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
|
---|
262 | pPool->paPhysExtsR3 = paPhysExts;
|
---|
263 | pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
|
---|
264 | pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
|
---|
265 | for (unsigned i = 0; i < cMaxPhysExts; i++)
|
---|
266 | {
|
---|
267 | paPhysExts[i].iNext = i + 1;
|
---|
268 | paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
|
---|
269 | paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
|
---|
270 | paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
|
---|
271 | paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
|
---|
272 | paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
|
---|
273 | paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
|
---|
274 | }
|
---|
275 | paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
|
---|
276 | for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
|
---|
277 | pPool->aiHash[i] = NIL_PGMPOOL_IDX;
|
---|
278 | pPool->iAgeHead = NIL_PGMPOOL_IDX;
|
---|
279 | pPool->iAgeTail = NIL_PGMPOOL_IDX;
|
---|
280 | pPool->fCacheEnabled = fCacheEnabled;
|
---|
281 |
|
---|
282 | pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE;
|
---|
283 | rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
|
---|
284 | pgmPoolAccessHandler,
|
---|
285 | NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
|
---|
286 | NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
|
---|
287 | "Guest Paging Access Handler",
|
---|
288 | &pPool->hAccessHandlerType);
|
---|
289 | AssertLogRelRCReturn(rc, rc);
|
---|
290 |
|
---|
291 | pPool->HCPhysTree = 0;
|
---|
292 |
|
---|
293 | /*
|
---|
294 | * The NIL entry.
|
---|
295 | */
|
---|
296 | Assert(NIL_PGMPOOL_IDX == 0);
|
---|
297 | pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
|
---|
298 | pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
|
---|
299 | pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
|
---|
300 | pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
|
---|
301 | pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
|
---|
302 | /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
|
---|
303 | pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
|
---|
304 | pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
|
---|
305 | pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
|
---|
306 | pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
|
---|
307 | pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
|
---|
308 | pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX;
|
---|
309 | pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
|
---|
310 | pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
|
---|
311 |
|
---|
312 | Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
|
---|
313 | Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
|
---|
314 | Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
|
---|
315 | Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
|
---|
316 | Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
|
---|
317 | Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
|
---|
318 | Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
|
---|
319 |
|
---|
320 | #ifdef VBOX_WITH_STATISTICS
|
---|
321 | /*
|
---|
322 | * Register statistics.
|
---|
323 | */
|
---|
324 | STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
|
---|
325 | STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
|
---|
326 | STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
|
---|
327 | STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
|
---|
328 | STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
|
---|
329 | STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
|
---|
330 | STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
|
---|
331 | STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
|
---|
332 | STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
|
---|
333 | STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
|
---|
334 | STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
|
---|
335 | STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
|
---|
336 | STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
|
---|
337 | STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
|
---|
338 | STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
|
---|
339 | STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
|
---|
340 | STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
|
---|
341 | STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
|
---|
342 | STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
|
---|
343 | STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
|
---|
344 | STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
|
---|
345 | STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
|
---|
346 | STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
|
---|
347 | STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
|
---|
348 | STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
|
---|
349 |
|
---|
350 | STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler.");
|
---|
351 | STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
|
---|
352 | STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
|
---|
353 | STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
|
---|
354 | STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
|
---|
355 | STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
|
---|
356 | STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD).");
|
---|
357 | STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
|
---|
358 | STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
|
---|
359 | STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
|
---|
360 | STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
|
---|
361 |
|
---|
362 | STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler.");
|
---|
363 | STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler.");
|
---|
364 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses.");
|
---|
365 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses.");
|
---|
366 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses.");
|
---|
367 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses.");
|
---|
368 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses.");
|
---|
369 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses.");
|
---|
370 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses.");
|
---|
371 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses.");
|
---|
372 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses.");
|
---|
373 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses.");
|
---|
374 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses.");
|
---|
375 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses.");
|
---|
376 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses.");
|
---|
377 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses.");
|
---|
378 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses.");
|
---|
379 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses.");
|
---|
380 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
|
---|
381 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
|
---|
382 | STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
|
---|
383 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1.");
|
---|
384 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2.");
|
---|
385 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3.");
|
---|
386 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4.");
|
---|
387 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5.");
|
---|
388 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6.");
|
---|
389 | STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7.");
|
---|
390 |
|
---|
391 | STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
|
---|
392 | STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
|
---|
393 | STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
|
---|
394 | STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
|
---|
395 |
|
---|
396 | STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
|
---|
397 | STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
|
---|
398 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3).");
|
---|
399 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3).");
|
---|
400 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3).");
|
---|
401 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3).");
|
---|
402 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3).");
|
---|
403 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3).");
|
---|
404 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3).");
|
---|
405 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3).");
|
---|
406 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3).");
|
---|
407 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3).");
|
---|
408 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3).");
|
---|
409 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3).");
|
---|
410 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3).");
|
---|
411 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3).");
|
---|
412 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3).");
|
---|
413 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3).");
|
---|
414 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
|
---|
415 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
|
---|
416 | STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
|
---|
417 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3.");
|
---|
418 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3.");
|
---|
419 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3.");
|
---|
420 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3.");
|
---|
421 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3.");
|
---|
422 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3.");
|
---|
423 | STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3.");
|
---|
424 |
|
---|
425 | STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
|
---|
426 | STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
|
---|
427 | STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
|
---|
428 | STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
|
---|
429 |
|
---|
430 | STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
|
---|
431 | STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
|
---|
432 | STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
|
---|
433 | STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
|
---|
434 | STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
|
---|
435 | STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
|
---|
436 | STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
|
---|
437 | STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
|
---|
438 | STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
|
---|
439 | STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
|
---|
440 | STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
|
---|
441 | STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
|
---|
442 | #endif /* VBOX_WITH_STATISTICS */
|
---|
443 |
|
---|
444 | #ifdef VBOX_WITH_DEBUGGER
|
---|
445 | /*
|
---|
446 | * Debugger commands.
|
---|
447 | */
|
---|
448 | static bool s_fRegisteredCmds = false;
|
---|
449 | if (!s_fRegisteredCmds)
|
---|
450 | {
|
---|
451 | rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
|
---|
452 | if (RT_SUCCESS(rc))
|
---|
453 | s_fRegisteredCmds = true;
|
---|
454 | }
|
---|
455 | #endif
|
---|
456 |
|
---|
457 | return VINF_SUCCESS;
|
---|
458 | }
|
---|
459 |
|
---|
460 |
|
---|
461 | /**
|
---|
462 | * Relocate the page pool data.
|
---|
463 | *
|
---|
464 | * @param pVM The cross context VM structure.
|
---|
465 | */
|
---|
466 | void pgmR3PoolRelocate(PVM pVM)
|
---|
467 | {
|
---|
468 | pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
|
---|
469 | pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
|
---|
470 | pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
|
---|
471 | pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
|
---|
472 | }
|
---|
473 |
|
---|
474 |
|
---|
475 | /**
|
---|
476 | * Grows the shadow page pool.
|
---|
477 | *
|
---|
478 | * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
|
---|
479 | *
|
---|
480 | * @returns VBox status code.
|
---|
481 | * @param pVM The cross context VM structure.
|
---|
482 | */
|
---|
483 | VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
|
---|
484 | {
|
---|
485 | PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
|
---|
486 | AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
|
---|
487 |
|
---|
488 | /* With 32-bit guests and no EPT, the CR3 limits the root pages to low
|
---|
489 | (below 4 GB) memory. */
|
---|
490 | /** @todo change the pool to handle ROOT page allocations specially when
|
---|
491 | * required. */
|
---|
492 | bool fCanUseHighMemory = HMIsNestedPagingActive(pVM)
|
---|
493 | && HMGetShwPagingMode(pVM) == PGMMODE_EPT;
|
---|
494 |
|
---|
495 | pgmLock(pVM);
|
---|
496 |
|
---|
497 | /*
|
---|
498 | * How much to grow it by?
|
---|
499 | */
|
---|
500 | uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
|
---|
501 | cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
|
---|
502 | LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory));
|
---|
503 |
|
---|
504 | for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
|
---|
505 | {
|
---|
506 | PPGMPOOLPAGE pPage = &pPool->aPages[i];
|
---|
507 |
|
---|
508 | if (fCanUseHighMemory)
|
---|
509 | pPage->pvPageR3 = MMR3PageAlloc(pVM);
|
---|
510 | else
|
---|
511 | pPage->pvPageR3 = MMR3PageAllocLow(pVM);
|
---|
512 | if (!pPage->pvPageR3)
|
---|
513 | {
|
---|
514 | Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory));
|
---|
515 | pgmUnlock(pVM);
|
---|
516 | return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
|
---|
517 | }
|
---|
518 | pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
|
---|
519 | AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
|
---|
520 | pPage->GCPhys = NIL_RTGCPHYS;
|
---|
521 | pPage->enmKind = PGMPOOLKIND_FREE;
|
---|
522 | pPage->idx = pPage - &pPool->aPages[0];
|
---|
523 | LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
|
---|
524 | pPage->iNext = pPool->iFreeHead;
|
---|
525 | pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
|
---|
526 | pPage->iModifiedNext = NIL_PGMPOOL_IDX;
|
---|
527 | pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
|
---|
528 | pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
|
---|
529 | pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
|
---|
530 | pPage->iAgeNext = NIL_PGMPOOL_IDX;
|
---|
531 | pPage->iAgePrev = NIL_PGMPOOL_IDX;
|
---|
532 | /* commit it */
|
---|
533 | bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
|
---|
534 | pPool->iFreeHead = i;
|
---|
535 | pPool->cCurPages = i + 1;
|
---|
536 | }
|
---|
537 |
|
---|
538 | pgmUnlock(pVM);
|
---|
539 | Assert(pPool->cCurPages <= pPool->cMaxPages);
|
---|
540 | return VINF_SUCCESS;
|
---|
541 | }
|
---|
542 |
|
---|
543 |
|
---|
544 | /**
|
---|
545 | * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
|
---|
546 | * and all modification counters.
|
---|
547 | *
|
---|
548 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
549 | * it to complete this function.
|
---|
550 | *
|
---|
551 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
552 | * @param pVM The cross context VM structure.
|
---|
553 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
554 | * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
|
---|
555 | * (This is the pvUser, so it has to be void *.)
|
---|
556 | *
|
---|
557 | */
|
---|
558 | DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb)
|
---|
559 | {
|
---|
560 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
561 | STAM_PROFILE_START(&pPool->StatClearAll, c);
|
---|
562 | NOREF(pVCpu);
|
---|
563 |
|
---|
564 | pgmLock(pVM);
|
---|
565 | Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb));
|
---|
566 |
|
---|
567 | /*
|
---|
568 | * Iterate all the pages until we've encountered all that are in use.
|
---|
569 | * This is a simple but not quite optimal solution.
|
---|
570 | */
|
---|
571 | unsigned cModifiedPages = 0; NOREF(cModifiedPages);
|
---|
572 | unsigned cLeft = pPool->cUsedPages;
|
---|
573 | uint32_t iPage = pPool->cCurPages;
|
---|
574 | while (--iPage >= PGMPOOL_IDX_FIRST)
|
---|
575 | {
|
---|
576 | PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
|
---|
577 | if (pPage->GCPhys != NIL_RTGCPHYS)
|
---|
578 | {
|
---|
579 | switch (pPage->enmKind)
|
---|
580 | {
|
---|
581 | /*
|
---|
582 | * We only care about shadow page tables that reference physical memory
|
---|
583 | */
|
---|
584 | #ifdef PGM_WITH_LARGE_PAGES
|
---|
585 | case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
|
---|
586 | if (pPage->cPresent)
|
---|
587 | {
|
---|
588 | PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
|
---|
589 | for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
|
---|
590 | {
|
---|
591 | if ( pShwPD->a[i].n.u1Present
|
---|
592 | && pShwPD->a[i].b.u1Size)
|
---|
593 | {
|
---|
594 | Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
|
---|
595 | pShwPD->a[i].u = 0;
|
---|
596 | Assert(pPage->cPresent);
|
---|
597 | pPage->cPresent--;
|
---|
598 | }
|
---|
599 | }
|
---|
600 | if (pPage->cPresent == 0)
|
---|
601 | pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
|
---|
602 | }
|
---|
603 | goto default_case;
|
---|
604 |
|
---|
605 | case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
|
---|
606 | if (pPage->cPresent)
|
---|
607 | {
|
---|
608 | PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
|
---|
609 | for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
|
---|
610 | {
|
---|
611 | Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
|
---|
612 | if ( pShwPD->a[i].n.u1Present
|
---|
613 | && pShwPD->a[i].b.u1Size)
|
---|
614 | {
|
---|
615 | Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
|
---|
616 | pShwPD->a[i].u = 0;
|
---|
617 | Assert(pPage->cPresent);
|
---|
618 | pPage->cPresent--;
|
---|
619 | }
|
---|
620 | }
|
---|
621 | if (pPage->cPresent == 0)
|
---|
622 | pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
|
---|
623 | }
|
---|
624 | goto default_case;
|
---|
625 | #endif /* PGM_WITH_LARGE_PAGES */
|
---|
626 |
|
---|
627 | case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
|
---|
628 | case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
|
---|
629 | case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
|
---|
630 | case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
|
---|
631 | case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
|
---|
632 | case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
|
---|
633 | case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
|
---|
634 | case PGMPOOLKIND_PAE_PT_FOR_PHYS:
|
---|
635 | case PGMPOOLKIND_EPT_PT_FOR_PHYS:
|
---|
636 | {
|
---|
637 | if (pPage->cPresent)
|
---|
638 | {
|
---|
639 | void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
|
---|
640 | STAM_PROFILE_START(&pPool->StatZeroPage, z);
|
---|
641 | #if 0
|
---|
642 | /* Useful check for leaking references; *very* expensive though. */
|
---|
643 | switch (pPage->enmKind)
|
---|
644 | {
|
---|
645 | case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
|
---|
646 | case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
|
---|
647 | case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
|
---|
648 | case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
|
---|
649 | case PGMPOOLKIND_PAE_PT_FOR_PHYS:
|
---|
650 | {
|
---|
651 | bool fFoundFirst = false;
|
---|
652 | PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
|
---|
653 | for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
|
---|
654 | {
|
---|
655 | if (pPT->a[ptIndex].u)
|
---|
656 | {
|
---|
657 | if (!fFoundFirst)
|
---|
658 | {
|
---|
659 | AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
|
---|
660 | if (pPage->iFirstPresent != ptIndex)
|
---|
661 | Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
|
---|
662 | fFoundFirst = true;
|
---|
663 | }
|
---|
664 | if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
|
---|
665 | {
|
---|
666 | pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
|
---|
667 | if (pPage->iFirstPresent == ptIndex)
|
---|
668 | pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
|
---|
669 | }
|
---|
670 | }
|
---|
671 | }
|
---|
672 | AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
|
---|
673 | break;
|
---|
674 | }
|
---|
675 | default:
|
---|
676 | break;
|
---|
677 | }
|
---|
678 | #endif
|
---|
679 | ASMMemZeroPage(pvShw);
|
---|
680 | STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
|
---|
681 | pPage->cPresent = 0;
|
---|
682 | pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
|
---|
683 | }
|
---|
684 | }
|
---|
685 | RT_FALL_THRU();
|
---|
686 | #ifdef PGM_WITH_LARGE_PAGES
|
---|
687 | default_case:
|
---|
688 | #endif
|
---|
689 | default:
|
---|
690 | Assert(!pPage->cModifications || ++cModifiedPages);
|
---|
691 | Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
|
---|
692 | Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
|
---|
693 | pPage->iModifiedNext = NIL_PGMPOOL_IDX;
|
---|
694 | pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
|
---|
695 | pPage->cModifications = 0;
|
---|
696 | break;
|
---|
697 |
|
---|
698 | }
|
---|
699 | if (!--cLeft)
|
---|
700 | break;
|
---|
701 | }
|
---|
702 | }
|
---|
703 |
|
---|
704 | #ifndef DEBUG_michael
|
---|
705 | AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
|
---|
706 | #endif
|
---|
707 | pPool->iModifiedHead = NIL_PGMPOOL_IDX;
|
---|
708 | pPool->cModifiedPages = 0;
|
---|
709 |
|
---|
710 | /*
|
---|
711 | * Clear all the GCPhys links and rebuild the phys ext free list.
|
---|
712 | */
|
---|
713 | for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
|
---|
714 | pRam;
|
---|
715 | pRam = pRam->CTX_SUFF(pNext))
|
---|
716 | {
|
---|
717 | iPage = pRam->cb >> PAGE_SHIFT;
|
---|
718 | while (iPage-- > 0)
|
---|
719 | PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
|
---|
720 | }
|
---|
721 |
|
---|
722 | pPool->iPhysExtFreeHead = 0;
|
---|
723 | PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
|
---|
724 | const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
|
---|
725 | for (unsigned i = 0; i < cMaxPhysExts; i++)
|
---|
726 | {
|
---|
727 | paPhysExts[i].iNext = i + 1;
|
---|
728 | paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
|
---|
729 | paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
|
---|
730 | paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
|
---|
731 | paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
|
---|
732 | paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
|
---|
733 | paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
|
---|
734 | }
|
---|
735 | paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
|
---|
736 |
|
---|
737 |
|
---|
738 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
739 | /* Reset all dirty pages to reactivate the page monitoring. */
|
---|
740 | /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
|
---|
741 | * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
|
---|
742 | */
|
---|
743 | for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
|
---|
744 | {
|
---|
745 | PPGMPOOLPAGE pPage;
|
---|
746 | unsigned idxPage;
|
---|
747 |
|
---|
748 | if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
|
---|
749 | continue;
|
---|
750 |
|
---|
751 | idxPage = pPool->aDirtyPages[i].uIdx;
|
---|
752 | AssertRelease(idxPage != NIL_PGMPOOL_IDX);
|
---|
753 | pPage = &pPool->aPages[idxPage];
|
---|
754 | Assert(pPage->idx == idxPage);
|
---|
755 | Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
|
---|
756 |
|
---|
757 | AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
|
---|
758 |
|
---|
759 | Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
|
---|
760 |
|
---|
761 | /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
|
---|
762 | int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
|
---|
763 | AssertRCSuccess(rc);
|
---|
764 | pPage->fDirty = false;
|
---|
765 |
|
---|
766 | pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
|
---|
767 | }
|
---|
768 |
|
---|
769 | /* Clear all dirty pages. */
|
---|
770 | pPool->idxFreeDirtyPage = 0;
|
---|
771 | pPool->cDirtyPages = 0;
|
---|
772 | #endif
|
---|
773 |
|
---|
774 | /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
|
---|
775 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
776 | pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
|
---|
777 |
|
---|
778 | /* Flush job finished. */
|
---|
779 | VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
|
---|
780 | pPool->cPresent = 0;
|
---|
781 | pgmUnlock(pVM);
|
---|
782 |
|
---|
783 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
784 |
|
---|
785 | if (fpvFlushRemTlb)
|
---|
786 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
787 | CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
788 |
|
---|
789 | STAM_PROFILE_STOP(&pPool->StatClearAll, c);
|
---|
790 | return VINF_SUCCESS;
|
---|
791 | }
|
---|
792 |
|
---|
793 |
|
---|
794 | /**
|
---|
795 | * Clears the shadow page pool.
|
---|
796 | *
|
---|
797 | * @param pVM The cross context VM structure.
|
---|
798 | * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
|
---|
799 | * well.
|
---|
800 | */
|
---|
801 | void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
|
---|
802 | {
|
---|
803 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
|
---|
804 | AssertRC(rc);
|
---|
805 | }
|
---|
806 |
|
---|
807 |
|
---|
808 | /**
|
---|
809 | * Protect all pgm pool page table entries to monitor writes
|
---|
810 | *
|
---|
811 | * @param pVM The cross context VM structure.
|
---|
812 | *
|
---|
813 | * @remarks ASSUMES the caller will flush all TLBs!!
|
---|
814 | */
|
---|
815 | void pgmR3PoolWriteProtectPages(PVM pVM)
|
---|
816 | {
|
---|
817 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
818 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
819 | unsigned cLeft = pPool->cUsedPages;
|
---|
820 | unsigned iPage = pPool->cCurPages;
|
---|
821 | while (--iPage >= PGMPOOL_IDX_FIRST)
|
---|
822 | {
|
---|
823 | PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
|
---|
824 | if ( pPage->GCPhys != NIL_RTGCPHYS
|
---|
825 | && pPage->cPresent)
|
---|
826 | {
|
---|
827 | union
|
---|
828 | {
|
---|
829 | void *pv;
|
---|
830 | PX86PT pPT;
|
---|
831 | PPGMSHWPTPAE pPTPae;
|
---|
832 | PEPTPT pPTEpt;
|
---|
833 | } uShw;
|
---|
834 | uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
|
---|
835 |
|
---|
836 | switch (pPage->enmKind)
|
---|
837 | {
|
---|
838 | /*
|
---|
839 | * We only care about shadow page tables.
|
---|
840 | */
|
---|
841 | case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
|
---|
842 | case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
|
---|
843 | case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
|
---|
844 | for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
|
---|
845 | {
|
---|
846 | if (uShw.pPT->a[iShw].n.u1Present)
|
---|
847 | uShw.pPT->a[iShw].n.u1Write = 0;
|
---|
848 | }
|
---|
849 | break;
|
---|
850 |
|
---|
851 | case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
|
---|
852 | case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
|
---|
853 | case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
|
---|
854 | case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
|
---|
855 | case PGMPOOLKIND_PAE_PT_FOR_PHYS:
|
---|
856 | for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
|
---|
857 | {
|
---|
858 | if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
|
---|
859 | PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
|
---|
860 | }
|
---|
861 | break;
|
---|
862 |
|
---|
863 | case PGMPOOLKIND_EPT_PT_FOR_PHYS:
|
---|
864 | for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
|
---|
865 | {
|
---|
866 | if (uShw.pPTEpt->a[iShw].n.u1Present)
|
---|
867 | uShw.pPTEpt->a[iShw].n.u1Write = 0;
|
---|
868 | }
|
---|
869 | break;
|
---|
870 |
|
---|
871 | default:
|
---|
872 | break;
|
---|
873 | }
|
---|
874 | if (!--cLeft)
|
---|
875 | break;
|
---|
876 | }
|
---|
877 | }
|
---|
878 | }
|
---|
879 |
|
---|
880 | #ifdef VBOX_WITH_DEBUGGER
|
---|
881 | /**
|
---|
882 | * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
|
---|
883 | */
|
---|
884 | static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
|
---|
885 | {
|
---|
886 | DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
|
---|
887 | PVM pVM = pUVM->pVM;
|
---|
888 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
889 | DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
|
---|
890 | uint32_t cErrors = 0;
|
---|
891 | NOREF(paArgs);
|
---|
892 |
|
---|
893 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
894 | for (unsigned i = 0; i < pPool->cCurPages; i++)
|
---|
895 | {
|
---|
896 | PPGMPOOLPAGE pPage = &pPool->aPages[i];
|
---|
897 | bool fFirstMsg = true;
|
---|
898 |
|
---|
899 | /** @todo cover other paging modes too. */
|
---|
900 | if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
|
---|
901 | {
|
---|
902 | PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
|
---|
903 | {
|
---|
904 | PX86PTPAE pGstPT;
|
---|
905 | PGMPAGEMAPLOCK LockPage;
|
---|
906 | int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
|
---|
907 |
|
---|
908 | /* Check if any PTEs are out of sync. */
|
---|
909 | for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
|
---|
910 | {
|
---|
911 | if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
|
---|
912 | {
|
---|
913 | RTHCPHYS HCPhys = NIL_RTHCPHYS;
|
---|
914 | rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
|
---|
915 | if ( rc != VINF_SUCCESS
|
---|
916 | || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
|
---|
917 | {
|
---|
918 | if (fFirstMsg)
|
---|
919 | {
|
---|
920 | DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
|
---|
921 | fFirstMsg = false;
|
---|
922 | }
|
---|
923 | DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
|
---|
924 | cErrors++;
|
---|
925 | }
|
---|
926 | else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
|
---|
927 | && !pGstPT->a[j].n.u1Write)
|
---|
928 | {
|
---|
929 | if (fFirstMsg)
|
---|
930 | {
|
---|
931 | DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
|
---|
932 | fFirstMsg = false;
|
---|
933 | }
|
---|
934 | DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
|
---|
935 | cErrors++;
|
---|
936 | }
|
---|
937 | }
|
---|
938 | }
|
---|
939 | PGMPhysReleasePageMappingLock(pVM, &LockPage);
|
---|
940 | }
|
---|
941 |
|
---|
942 | /* Make sure this page table can't be written to from any shadow mapping. */
|
---|
943 | RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
|
---|
944 | int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
|
---|
945 | AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
|
---|
946 | if (rc == VINF_SUCCESS)
|
---|
947 | {
|
---|
948 | for (unsigned j = 0; j < pPool->cCurPages; j++)
|
---|
949 | {
|
---|
950 | PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
|
---|
951 |
|
---|
952 | if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
|
---|
953 | {
|
---|
954 | PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
|
---|
955 |
|
---|
956 | for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
|
---|
957 | {
|
---|
958 | if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
|
---|
959 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
960 | && !pPage->fDirty
|
---|
961 | # endif
|
---|
962 | && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
|
---|
963 | {
|
---|
964 | if (fFirstMsg)
|
---|
965 | {
|
---|
966 | DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
|
---|
967 | fFirstMsg = false;
|
---|
968 | }
|
---|
969 | DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
|
---|
970 | cErrors++;
|
---|
971 | }
|
---|
972 | }
|
---|
973 | }
|
---|
974 | }
|
---|
975 | }
|
---|
976 | }
|
---|
977 | }
|
---|
978 | if (cErrors > 0)
|
---|
979 | return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
|
---|
980 | return VINF_SUCCESS;
|
---|
981 | }
|
---|
982 | #endif /* VBOX_WITH_DEBUGGER */
|
---|