VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPool.cpp@ 80191

Last change on this file since 80191 was 80191, checked in by vboxsync, 5 years ago

VMM/r3: Refactored VMCPU enumeration in preparation that aCpus will be replaced with a pointer array. Removed two raw-mode offset members from the CPUM and CPUMCPU sub-structures. bugref:9217 bugref:9517

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 55.4 KB
Line 
1/* $Id: PGMPool.cpp 80191 2019-08-08 00:36:57Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_monitoring Monitoring
73 *
74 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
75 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
76 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
77 * is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*********************************************************************************************************************************
96* Header Files *
97*********************************************************************************************************************************/
98#define VBOX_BUGREF_9217_PART_I
99#define LOG_GROUP LOG_GROUP_PGM_POOL
100#include <VBox/vmm/pgm.h>
101#include <VBox/vmm/mm.h>
102#include "PGMInternal.h"
103#include <VBox/vmm/vm.h>
104#include <VBox/vmm/uvm.h>
105#include "PGMInline.h"
106
107#include <VBox/log.h>
108#include <VBox/err.h>
109#include <iprt/asm.h>
110#include <iprt/string.h>
111#include <VBox/dbg.h>
112
113
114/*********************************************************************************************************************************
115* Internal Functions *
116*********************************************************************************************************************************/
117#ifdef VBOX_WITH_DEBUGGER
118static FNDBGCCMD pgmR3PoolCmdCheck;
119#endif
120
121#ifdef VBOX_WITH_DEBUGGER
122/** Command descriptors. */
123static const DBGCCMD g_aCmds[] =
124{
125 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
126 { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
127};
128#endif
129
130/**
131 * Initializes the pool
132 *
133 * @returns VBox status code.
134 * @param pVM The cross context VM structure.
135 */
136int pgmR3PoolInit(PVM pVM)
137{
138 int rc;
139
140 AssertCompile(NIL_PGMPOOL_IDX == 0);
141 /* pPage->cLocked is an unsigned byte. */
142 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
143
144 /*
145 * Query Pool config.
146 */
147 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
148
149 /* Default pgm pool size is 1024 pages (4MB). */
150 uint16_t cMaxPages = 1024;
151
152 /* Adjust it up relative to the RAM size, using the nested paging formula. */
153 uint64_t cbRam;
154 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
155 uint64_t u64MaxPages = (cbRam >> 9)
156 + (cbRam >> 18)
157 + (cbRam >> 27)
158 + 32 * PAGE_SIZE;
159 u64MaxPages >>= PAGE_SHIFT;
160 if (u64MaxPages > PGMPOOL_IDX_LAST)
161 cMaxPages = PGMPOOL_IDX_LAST;
162 else
163 cMaxPages = (uint16_t)u64MaxPages;
164
165 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)}
166 * The max size of the shadow page pool in pages. The pool will grow dynamically
167 * up to this limit.
168 */
169 rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
170 AssertLogRelRCReturn(rc, rc);
171 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
172 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
173 cMaxPages = RT_ALIGN(cMaxPages, 16);
174 if (cMaxPages > PGMPOOL_IDX_LAST)
175 cMaxPages = PGMPOOL_IDX_LAST;
176 LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
177
178 /** @todo
179 * We need to be much more careful with our allocation strategy here.
180 * For nested paging we don't need pool user info nor extents at all, but
181 * we can't check for nested paging here (too early during init to get a
182 * confirmation it can be used). The default for large memory configs is a
183 * bit large for shadow paging, so I've restricted the extent maximum to 8k
184 * (8k * 16 = 128k of hyper heap).
185 *
186 * Also when large page support is enabled, we typically don't need so much,
187 * although that depends on the availability of 2 MB chunks on the host.
188 */
189
190 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2}
191 * The max number of shadow page user tracking records. Each shadow page has
192 * zero of other shadow pages (or CR3s) that references it, or uses it if you
193 * like. The structures describing these relationships are allocated from a
194 * fixed sized pool. This configuration variable defines the pool size.
195 */
196 uint16_t cMaxUsers;
197 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
198 AssertLogRelRCReturn(rc, rc);
199 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
200 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
201
202 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)}
203 * The max number of extents for tracking aliased guest pages.
204 */
205 uint16_t cMaxPhysExts;
206 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
207 RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
208 AssertLogRelRCReturn(rc, rc);
209 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
210 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
211
212 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
213 * Enables or disabling caching of shadow pages. Caching means that we will try
214 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
215 * SyncPage requests one. When reusing a shadow page, we can save time
216 * reconstructing it and it's children.
217 */
218 bool fCacheEnabled;
219 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
220 AssertLogRelRCReturn(rc, rc);
221
222 LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
223 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
224
225 /*
226 * Allocate the data structures.
227 */
228 uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]);
229 cb += cMaxUsers * sizeof(PGMPOOLUSER);
230 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
231 PPGMPOOL pPool;
232 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
233 if (RT_FAILURE(rc))
234 return rc;
235 pVM->pgm.s.pPoolR3 = pPool;
236 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
237
238 /*
239 * Initialize it.
240 */
241 pPool->pVMR3 = pVM;
242 pPool->pVMR0 = pVM->pVMR0;
243 pPool->cMaxPages = cMaxPages;
244 pPool->cCurPages = PGMPOOL_IDX_FIRST;
245 pPool->iUserFreeHead = 0;
246 pPool->cMaxUsers = cMaxUsers;
247 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
248 pPool->paUsersR3 = paUsers;
249 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
250 for (unsigned i = 0; i < cMaxUsers; i++)
251 {
252 paUsers[i].iNext = i + 1;
253 paUsers[i].iUser = NIL_PGMPOOL_IDX;
254 paUsers[i].iUserTable = 0xfffffffe;
255 }
256 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
257 pPool->iPhysExtFreeHead = 0;
258 pPool->cMaxPhysExts = cMaxPhysExts;
259 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
260 pPool->paPhysExtsR3 = paPhysExts;
261 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
262 for (unsigned i = 0; i < cMaxPhysExts; i++)
263 {
264 paPhysExts[i].iNext = i + 1;
265 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
266 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
267 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
268 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
269 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
270 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
271 }
272 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
273 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
274 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
275 pPool->iAgeHead = NIL_PGMPOOL_IDX;
276 pPool->iAgeTail = NIL_PGMPOOL_IDX;
277 pPool->fCacheEnabled = fCacheEnabled;
278
279 pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE;
280 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
281 pgmPoolAccessHandler,
282 NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
283 NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
284 "Guest Paging Access Handler",
285 &pPool->hAccessHandlerType);
286 AssertLogRelRCReturn(rc, rc);
287
288 pPool->HCPhysTree = 0;
289
290 /*
291 * The NIL entry.
292 */
293 Assert(NIL_PGMPOOL_IDX == 0);
294 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
295 pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
296 pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
297 pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
298 pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
299 /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
300 pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
301 pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
302 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
303 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
304 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
305 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX;
306 pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
307 pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
308
309 Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
310 Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
311 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
312 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
313 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
314 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
315 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
316
317#ifdef VBOX_WITH_STATISTICS
318 /*
319 * Register statistics.
320 */
321 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
322 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
323 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
324 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
325 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
326 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
327 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
328 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
329 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
330 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
331 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
332 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
333 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
334 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
335 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
336 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
337 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
338 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
339 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
340 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
341 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
342 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
343 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
344 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
345 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
346
347 STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler.");
348 STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
349 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
350 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
351 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
352 STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
353 STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD).");
354 STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
355 STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
356 STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
357 STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
358
359 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler.");
360 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler.");
361 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses.");
362 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses.");
363 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses.");
364 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses.");
365 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses.");
366 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses.");
367 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses.");
368 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses.");
369 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses.");
370 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses.");
371 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses.");
372 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses.");
373 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses.");
374 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses.");
375 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses.");
376 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses.");
377 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
378 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
379 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
380 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1.");
381 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2.");
382 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3.");
383 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4.");
384 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5.");
385 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6.");
386 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7.");
387
388 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
389 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
390 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
391 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
392
393 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
394 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
395 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3).");
396 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3).");
397 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3).");
398 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3).");
399 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3).");
400 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3).");
401 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3).");
402 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3).");
403 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3).");
404 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3).");
405 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3).");
406 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3).");
407 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3).");
408 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3).");
409 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3).");
410 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3).");
411 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
412 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
413 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
414 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3.");
415 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3.");
416 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3.");
417 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3.");
418 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3.");
419 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3.");
420 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3.");
421
422 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
423 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
424 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
425 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
426
427 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
428 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
429 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
430 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
431 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
432 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
433 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
434 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
435 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
436 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
437 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
438 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
439#endif /* VBOX_WITH_STATISTICS */
440
441#ifdef VBOX_WITH_DEBUGGER
442 /*
443 * Debugger commands.
444 */
445 static bool s_fRegisteredCmds = false;
446 if (!s_fRegisteredCmds)
447 {
448 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
449 if (RT_SUCCESS(rc))
450 s_fRegisteredCmds = true;
451 }
452#endif
453
454 return VINF_SUCCESS;
455}
456
457
458/**
459 * Relocate the page pool data.
460 *
461 * @param pVM The cross context VM structure.
462 */
463void pgmR3PoolRelocate(PVM pVM)
464{
465 RT_NOREF(pVM);
466}
467
468
469/**
470 * Grows the shadow page pool.
471 *
472 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
473 *
474 * @returns VBox status code.
475 * @param pVM The cross context VM structure.
476 */
477VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
478{
479 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
480 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
481
482 /* With 32-bit guests and no EPT, the CR3 limits the root pages to low
483 (below 4 GB) memory. */
484 /** @todo change the pool to handle ROOT page allocations specially when
485 * required. */
486 bool fCanUseHighMemory = HMIsNestedPagingActive(pVM);
487
488 pgmLock(pVM);
489
490 /*
491 * How much to grow it by?
492 */
493 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
494 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
495 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory));
496
497 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
498 {
499 PPGMPOOLPAGE pPage = &pPool->aPages[i];
500
501 if (fCanUseHighMemory)
502 pPage->pvPageR3 = MMR3PageAlloc(pVM);
503 else
504 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
505 if (!pPage->pvPageR3)
506 {
507 Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory));
508 pgmUnlock(pVM);
509 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
510 }
511 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
512 AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
513 pPage->GCPhys = NIL_RTGCPHYS;
514 pPage->enmKind = PGMPOOLKIND_FREE;
515 pPage->idx = pPage - &pPool->aPages[0];
516 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
517 pPage->iNext = pPool->iFreeHead;
518 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
519 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
520 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
521 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
522 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
523 pPage->iAgeNext = NIL_PGMPOOL_IDX;
524 pPage->iAgePrev = NIL_PGMPOOL_IDX;
525 /* commit it */
526 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
527 pPool->iFreeHead = i;
528 pPool->cCurPages = i + 1;
529 }
530
531 pgmUnlock(pVM);
532 Assert(pPool->cCurPages <= pPool->cMaxPages);
533 return VINF_SUCCESS;
534}
535
536
537/**
538 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
539 * and all modification counters.
540 *
541 * This is only called on one of the EMTs while the other ones are waiting for
542 * it to complete this function.
543 *
544 * @returns VINF_SUCCESS (VBox strict status code).
545 * @param pVM The cross context VM structure.
546 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
547 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
548 * (This is the pvUser, so it has to be void *.)
549 *
550 */
551DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb)
552{
553 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
554 STAM_PROFILE_START(&pPool->StatClearAll, c);
555 NOREF(pVCpu);
556
557 pgmLock(pVM);
558 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb));
559
560 /*
561 * Iterate all the pages until we've encountered all that are in use.
562 * This is a simple but not quite optimal solution.
563 */
564 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
565 unsigned cLeft = pPool->cUsedPages;
566 uint32_t iPage = pPool->cCurPages;
567 while (--iPage >= PGMPOOL_IDX_FIRST)
568 {
569 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
570 if (pPage->GCPhys != NIL_RTGCPHYS)
571 {
572 switch (pPage->enmKind)
573 {
574 /*
575 * We only care about shadow page tables that reference physical memory
576 */
577#ifdef PGM_WITH_LARGE_PAGES
578 case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
579 if (pPage->cPresent)
580 {
581 PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
582 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
583 {
584 if ( pShwPD->a[i].n.u1Present
585 && pShwPD->a[i].b.u1Size)
586 {
587 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
588 pShwPD->a[i].u = 0;
589 Assert(pPage->cPresent);
590 pPage->cPresent--;
591 }
592 }
593 if (pPage->cPresent == 0)
594 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
595 }
596 goto default_case;
597
598 case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
599 if (pPage->cPresent)
600 {
601 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
602 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
603 {
604 Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
605 if ( pShwPD->a[i].n.u1Present
606 && pShwPD->a[i].b.u1Size)
607 {
608 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
609 pShwPD->a[i].u = 0;
610 Assert(pPage->cPresent);
611 pPage->cPresent--;
612 }
613 }
614 if (pPage->cPresent == 0)
615 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
616 }
617 goto default_case;
618#endif /* PGM_WITH_LARGE_PAGES */
619
620 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
621 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
622 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
623 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
624 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
625 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
626 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
627 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
628 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
629 {
630 if (pPage->cPresent)
631 {
632 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
633 STAM_PROFILE_START(&pPool->StatZeroPage, z);
634#if 0
635 /* Useful check for leaking references; *very* expensive though. */
636 switch (pPage->enmKind)
637 {
638 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
639 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
640 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
641 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
642 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
643 {
644 bool fFoundFirst = false;
645 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
646 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
647 {
648 if (pPT->a[ptIndex].u)
649 {
650 if (!fFoundFirst)
651 {
652 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
653 if (pPage->iFirstPresent != ptIndex)
654 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
655 fFoundFirst = true;
656 }
657 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
658 {
659 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
660 if (pPage->iFirstPresent == ptIndex)
661 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
662 }
663 }
664 }
665 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
666 break;
667 }
668 default:
669 break;
670 }
671#endif
672 ASMMemZeroPage(pvShw);
673 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
674 pPage->cPresent = 0;
675 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
676 }
677 }
678 RT_FALL_THRU();
679#ifdef PGM_WITH_LARGE_PAGES
680 default_case:
681#endif
682 default:
683 Assert(!pPage->cModifications || ++cModifiedPages);
684 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
685 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
686 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
687 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
688 pPage->cModifications = 0;
689 break;
690
691 }
692 if (!--cLeft)
693 break;
694 }
695 }
696
697#ifndef DEBUG_michael
698 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
699#endif
700 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
701 pPool->cModifiedPages = 0;
702
703 /*
704 * Clear all the GCPhys links and rebuild the phys ext free list.
705 */
706 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
707 pRam;
708 pRam = pRam->CTX_SUFF(pNext))
709 {
710 iPage = pRam->cb >> PAGE_SHIFT;
711 while (iPage-- > 0)
712 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
713 }
714
715 pPool->iPhysExtFreeHead = 0;
716 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
717 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
718 for (unsigned i = 0; i < cMaxPhysExts; i++)
719 {
720 paPhysExts[i].iNext = i + 1;
721 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
722 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
723 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
724 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
725 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
726 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
727 }
728 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
729
730
731#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
732 /* Reset all dirty pages to reactivate the page monitoring. */
733 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
734 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
735 */
736 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
737 {
738 unsigned idxPage = pPool->aidxDirtyPages[i];
739 if (idxPage == NIL_PGMPOOL_IDX)
740 continue;
741
742 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
743 Assert(pPage->idx == idxPage);
744 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
745
746 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
747
748 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
749
750 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
751 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
752 AssertRCSuccess(rc);
753 pPage->fDirty = false;
754
755 pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX;
756 }
757
758 /* Clear all dirty pages. */
759 pPool->idxFreeDirtyPage = 0;
760 pPool->cDirtyPages = 0;
761#endif
762
763 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
764 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
765 pVM->apCpusR3[idCpu]->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
766
767 /* Flush job finished. */
768 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
769 pPool->cPresent = 0;
770 pgmUnlock(pVM);
771
772 PGM_INVL_ALL_VCPU_TLBS(pVM);
773
774 if (fpvFlushRemTlb)
775 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
776 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
777
778 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
779 return VINF_SUCCESS;
780}
781
782
783/**
784 * Clears the shadow page pool.
785 *
786 * @param pVM The cross context VM structure.
787 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
788 * well.
789 */
790void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
791{
792 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
793 AssertRC(rc);
794}
795
796
797/**
798 * Protect all pgm pool page table entries to monitor writes
799 *
800 * @param pVM The cross context VM structure.
801 *
802 * @remarks ASSUMES the caller will flush all TLBs!!
803 */
804void pgmR3PoolWriteProtectPages(PVM pVM)
805{
806 PGM_LOCK_ASSERT_OWNER(pVM);
807 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
808 unsigned cLeft = pPool->cUsedPages;
809 unsigned iPage = pPool->cCurPages;
810 while (--iPage >= PGMPOOL_IDX_FIRST)
811 {
812 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
813 if ( pPage->GCPhys != NIL_RTGCPHYS
814 && pPage->cPresent)
815 {
816 union
817 {
818 void *pv;
819 PX86PT pPT;
820 PPGMSHWPTPAE pPTPae;
821 PEPTPT pPTEpt;
822 } uShw;
823 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
824
825 switch (pPage->enmKind)
826 {
827 /*
828 * We only care about shadow page tables.
829 */
830 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
831 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
832 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
833 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
834 {
835 if (uShw.pPT->a[iShw].n.u1Present)
836 uShw.pPT->a[iShw].n.u1Write = 0;
837 }
838 break;
839
840 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
841 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
842 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
843 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
844 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
845 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
846 {
847 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
848 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
849 }
850 break;
851
852 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
853 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
854 {
855 if (uShw.pPTEpt->a[iShw].n.u1Present)
856 uShw.pPTEpt->a[iShw].n.u1Write = 0;
857 }
858 break;
859
860 default:
861 break;
862 }
863 if (!--cLeft)
864 break;
865 }
866 }
867}
868
869#ifdef VBOX_WITH_DEBUGGER
870/**
871 * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
872 */
873static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
874{
875 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
876 PVM pVM = pUVM->pVM;
877 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
878 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
879 uint32_t cErrors = 0;
880 NOREF(paArgs);
881
882 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
883 for (unsigned i = 0; i < pPool->cCurPages; i++)
884 {
885 PPGMPOOLPAGE pPage = &pPool->aPages[i];
886 bool fFirstMsg = true;
887
888 /** @todo cover other paging modes too. */
889 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
890 {
891 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
892 {
893 PX86PTPAE pGstPT;
894 PGMPAGEMAPLOCK LockPage;
895 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
896
897 /* Check if any PTEs are out of sync. */
898 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
899 {
900 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
901 {
902 RTHCPHYS HCPhys = NIL_RTHCPHYS;
903 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
904 if ( rc != VINF_SUCCESS
905 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
906 {
907 if (fFirstMsg)
908 {
909 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
910 fFirstMsg = false;
911 }
912 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
913 cErrors++;
914 }
915 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
916 && !pGstPT->a[j].n.u1Write)
917 {
918 if (fFirstMsg)
919 {
920 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
921 fFirstMsg = false;
922 }
923 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
924 cErrors++;
925 }
926 }
927 }
928 PGMPhysReleasePageMappingLock(pVM, &LockPage);
929 }
930
931 /* Make sure this page table can't be written to from any shadow mapping. */
932 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
933 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
934 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
935 if (rc == VINF_SUCCESS)
936 {
937 for (unsigned j = 0; j < pPool->cCurPages; j++)
938 {
939 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
940
941 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
942 {
943 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
944
945 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
946 {
947 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
948# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
949 && !pPage->fDirty
950# endif
951 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
952 {
953 if (fFirstMsg)
954 {
955 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
956 fFirstMsg = false;
957 }
958 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
959 cErrors++;
960 }
961 }
962 }
963 }
964 }
965 }
966 }
967 if (cErrors > 0)
968 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
969 return VINF_SUCCESS;
970}
971#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette