VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPool.cpp@ 93617

Last change on this file since 93617 was 93617, checked in by vboxsync, 3 years ago

VMM/PGMPool: Replaced MMR3HyperAllocOnceNoRel call with direct SUPR3PageAllocEx call, replacing a few associated MMHyperCCToR3/R0 calls with speedier pgmPoolConvertPageToR3/R0 ones. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 54.3 KB
Line 
1/* $Id: PGMPool.cpp 93617 2022-02-06 08:35:16Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_monitoring Monitoring
73 *
74 * We always monitor GUEST_PAGE_SIZE chunks of memory. When we've got multiple
75 * shadow pages for the same GUEST_PAGE_SIZE of guest memory (PAE and mixed
76 * PD/PT) the pages sharing the monitor get linked using the
77 * iMonitoredNext/Prev. The head page is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*********************************************************************************************************************************
96* Header Files *
97*********************************************************************************************************************************/
98#define LOG_GROUP LOG_GROUP_PGM_POOL
99#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
100#include <VBox/vmm/pgm.h>
101#include <VBox/vmm/mm.h>
102#include "PGMInternal.h"
103#include <VBox/vmm/vm.h>
104#include <VBox/vmm/uvm.h>
105#include "PGMInline.h"
106
107#include <VBox/log.h>
108#include <VBox/err.h>
109#include <iprt/asm.h>
110#include <iprt/string.h>
111#include <VBox/dbg.h>
112
113
114/*********************************************************************************************************************************
115* Internal Functions *
116*********************************************************************************************************************************/
117#ifdef VBOX_WITH_DEBUGGER
118static FNDBGCCMD pgmR3PoolCmdCheck;
119#endif
120
121#ifdef VBOX_WITH_DEBUGGER
122/** Command descriptors. */
123static const DBGCCMD g_aCmds[] =
124{
125 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
126 { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
127};
128#endif
129
130/**
131 * Initializes the pool
132 *
133 * @returns VBox status code.
134 * @param pVM The cross context VM structure.
135 */
136int pgmR3PoolInit(PVM pVM)
137{
138 int rc;
139
140 AssertCompile(NIL_PGMPOOL_IDX == 0);
141 /* pPage->cLocked is an unsigned byte. */
142 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
143
144 /*
145 * Query Pool config.
146 */
147 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
148
149 /* Default pgm pool size is 1024 pages (4MB). */
150 uint16_t cMaxPages = 1024;
151
152 /* Adjust it up relative to the RAM size, using the nested paging formula. */
153 uint64_t cbRam;
154 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
155 /** @todo guest x86 specific */
156 uint64_t u64MaxPages = (cbRam >> 9)
157 + (cbRam >> 18)
158 + (cbRam >> 27)
159 + 32 * GUEST_PAGE_SIZE;
160 u64MaxPages >>= GUEST_PAGE_SHIFT;
161 if (u64MaxPages > PGMPOOL_IDX_LAST)
162 cMaxPages = PGMPOOL_IDX_LAST;
163 else
164 cMaxPages = (uint16_t)u64MaxPages;
165
166 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)}
167 * The max size of the shadow page pool in pages. The pool will grow dynamically
168 * up to this limit.
169 */
170 rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
171 AssertLogRelRCReturn(rc, rc);
172 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
173 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
174 AssertCompile(RT_IS_POWER_OF_TWO(PGMPOOL_CFG_MAX_GROW));
175 if (cMaxPages < PGMPOOL_IDX_LAST)
176 cMaxPages = RT_ALIGN(cMaxPages, PGMPOOL_CFG_MAX_GROW / 2);
177 if (cMaxPages > PGMPOOL_IDX_LAST)
178 cMaxPages = PGMPOOL_IDX_LAST;
179 LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
180
181 /** @todo
182 * We need to be much more careful with our allocation strategy here.
183 * For nested paging we don't need pool user info nor extents at all, but
184 * we can't check for nested paging here (too early during init to get a
185 * confirmation it can be used). The default for large memory configs is a
186 * bit large for shadow paging, so I've restricted the extent maximum to 8k
187 * (8k * 16 = 128k of hyper heap).
188 *
189 * Also when large page support is enabled, we typically don't need so much,
190 * although that depends on the availability of 2 MB chunks on the host.
191 */
192
193 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2}
194 * The max number of shadow page user tracking records. Each shadow page has
195 * zero of other shadow pages (or CR3s) that references it, or uses it if you
196 * like. The structures describing these relationships are allocated from a
197 * fixed sized pool. This configuration variable defines the pool size.
198 */
199 uint16_t cMaxUsers;
200 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
201 AssertLogRelRCReturn(rc, rc);
202 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
203 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
204
205 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)}
206 * The max number of extents for tracking aliased guest pages.
207 */
208 uint16_t cMaxPhysExts;
209 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
210 RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
211 AssertLogRelRCReturn(rc, rc);
212 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
213 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
214
215 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
216 * Enables or disabling caching of shadow pages. Caching means that we will try
217 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
218 * SyncPage requests one. When reusing a shadow page, we can save time
219 * reconstructing it and it's children.
220 */
221 bool fCacheEnabled;
222 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
223 AssertLogRelRCReturn(rc, rc);
224
225 LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
226 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
227
228 /*
229 * Allocate the data structures.
230 */
231 uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]);
232 cb += cMaxUsers * sizeof(PGMPOOLUSER);
233 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
234 PPGMPOOL pPool;
235 RTR0PTR pPoolR0;
236 rc = SUPR3PageAllocEx(RT_ALIGN_32(cb, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT, 0 /*fFlags*/, (void **)&pPool, &pPoolR0, NULL);
237 if (RT_FAILURE(rc))
238 return rc;
239 Assert(ASMMemIsZero(pPool, cb));
240 pVM->pgm.s.pPoolR3 = pPool->pPoolR3 = pPool;
241 pVM->pgm.s.pPoolR0 = pPool->pPoolR0 = pPoolR0;
242
243 /*
244 * Initialize it.
245 */
246 pPool->pVMR3 = pVM;
247 pPool->pVMR0 = pVM->pVMR0ForCall;
248 pPool->cMaxPages = cMaxPages;
249 pPool->cCurPages = PGMPOOL_IDX_FIRST;
250 pPool->iUserFreeHead = 0;
251 pPool->cMaxUsers = cMaxUsers;
252 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
253 pPool->paUsersR3 = paUsers;
254 pPool->paUsersR0 = pPoolR0 + (uintptr_t)paUsers - (uintptr_t)pPool;
255 for (unsigned i = 0; i < cMaxUsers; i++)
256 {
257 paUsers[i].iNext = i + 1;
258 paUsers[i].iUser = NIL_PGMPOOL_IDX;
259 paUsers[i].iUserTable = 0xfffffffe;
260 }
261 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
262 pPool->iPhysExtFreeHead = 0;
263 pPool->cMaxPhysExts = cMaxPhysExts;
264 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
265 pPool->paPhysExtsR3 = paPhysExts;
266 pPool->paPhysExtsR0 = pPoolR0 + (uintptr_t)paPhysExts - (uintptr_t)pPool;
267 for (unsigned i = 0; i < cMaxPhysExts; i++)
268 {
269 paPhysExts[i].iNext = i + 1;
270 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
271 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
272 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
273 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
274 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
275 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
276 }
277 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
278 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
279 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
280 pPool->iAgeHead = NIL_PGMPOOL_IDX;
281 pPool->iAgeTail = NIL_PGMPOOL_IDX;
282 pPool->fCacheEnabled = fCacheEnabled;
283
284 pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE;
285 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, true /*fKeepPgmLock*/,
286 pgmPoolAccessHandler,
287 NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
288 NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
289 "Guest Paging Access Handler",
290 &pPool->hAccessHandlerType);
291 AssertLogRelRCReturn(rc, rc);
292
293 pPool->HCPhysTree = 0;
294
295 /*
296 * The NIL entry.
297 */
298 Assert(NIL_PGMPOOL_IDX == 0);
299 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
300 pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
301 pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
302 pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
303 pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
304 /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
305 pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
306 pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
307 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
308 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
309 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
310 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX;
311 pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
312 pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
313
314 Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
315 Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
316 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
317 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
318 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
319 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
320 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
321
322 /*
323 * Register statistics.
324 */
325 STAM_REL_REG(pVM, &pPool->StatGrow, STAMTYPE_PROFILE, "/PGM/Pool/Grow", STAMUNIT_TICKS_PER_CALL, "Profiling PGMR0PoolGrow");
326#ifdef VBOX_WITH_STATISTICS
327 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
328 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
329 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
330 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
331 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
332 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
333 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
334 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
335 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
336 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
337 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
338 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
339 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
340 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
341 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
342 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
343 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
344 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
345 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
346 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
347 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
348 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
349 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
350 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
351 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
352
353 STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler.");
354 STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
355 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
356 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
357 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
358 STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
359 STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD).");
360 STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
361 STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
362 STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
363 STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
364
365 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler.");
366 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler.");
367 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses.");
368 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses.");
369 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses.");
370 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses.");
371 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses.");
372 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses.");
373 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses.");
374 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses.");
375 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses.");
376 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses.");
377 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses.");
378 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses.");
379 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses.");
380 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses.");
381 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses.");
382 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses.");
383 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
384 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
385 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
386 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1.");
387 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2.");
388 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3.");
389 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4.");
390 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5.");
391 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6.");
392 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7.");
393
394 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
395 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
396 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
397 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
398
399 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
400 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
401 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3).");
402 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3).");
403 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3).");
404 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3).");
405 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3).");
406 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3).");
407 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3).");
408 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3).");
409 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3).");
410 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3).");
411 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3).");
412 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3).");
413 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3).");
414 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3).");
415 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3).");
416 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3).");
417 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
418 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
419 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
420 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3.");
421 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3.");
422 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3.");
423 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3.");
424 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3.");
425 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3.");
426 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3.");
427
428 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
429 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
430 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
431 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
432
433 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
434 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
435 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
436 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
437 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
438 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
439 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
440 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
441 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
442 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
443 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
444 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
445#endif /* VBOX_WITH_STATISTICS */
446
447#ifdef VBOX_WITH_DEBUGGER
448 /*
449 * Debugger commands.
450 */
451 static bool s_fRegisteredCmds = false;
452 if (!s_fRegisteredCmds)
453 {
454 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
455 if (RT_SUCCESS(rc))
456 s_fRegisteredCmds = true;
457 }
458#endif
459
460 return VINF_SUCCESS;
461}
462
463
464/**
465 * Relocate the page pool data.
466 *
467 * @param pVM The cross context VM structure.
468 */
469void pgmR3PoolRelocate(PVM pVM)
470{
471 RT_NOREF(pVM);
472}
473
474
475/**
476 * Grows the shadow page pool.
477 *
478 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
479 *
480 * @returns VBox status code.
481 * @param pVM The cross context VM structure.
482 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
483 */
484VMMR3_INT_DECL(int) PGMR3PoolGrow(PVM pVM, PVMCPU pVCpu)
485{
486 /* This used to do a lot of stuff, but it has moved to ring-0 (PGMR0PoolGrow). */
487 AssertReturn(pVM->pgm.s.pPoolR3->cCurPages < pVM->pgm.s.pPoolR3->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
488 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_POOL_GROW, 0, NULL);
489 if (rc == VINF_SUCCESS)
490 return rc;
491 LogRel(("PGMR3PoolGrow: rc=%Rrc cCurPages=%#x cMaxPages=%#x\n",
492 rc, pVM->pgm.s.pPoolR3->cCurPages, pVM->pgm.s.pPoolR3->cMaxPages));
493 if (pVM->pgm.s.pPoolR3->cCurPages > 128 && RT_FAILURE_NP(rc))
494 return -rc;
495 return rc;
496}
497
498
499/**
500 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
501 * and all modification counters.
502 *
503 * This is only called on one of the EMTs while the other ones are waiting for
504 * it to complete this function.
505 *
506 * @returns VINF_SUCCESS (VBox strict status code).
507 * @param pVM The cross context VM structure.
508 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
509 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
510 * (This is the pvUser, so it has to be void *.)
511 *
512 */
513DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb)
514{
515 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
516 STAM_PROFILE_START(&pPool->StatClearAll, c);
517 NOREF(pVCpu);
518
519 PGM_LOCK_VOID(pVM);
520 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb));
521
522 /*
523 * Iterate all the pages until we've encountered all that are in use.
524 * This is a simple but not quite optimal solution.
525 */
526 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
527 unsigned cLeft = pPool->cUsedPages;
528 uint32_t iPage = pPool->cCurPages;
529 while (--iPage >= PGMPOOL_IDX_FIRST)
530 {
531 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
532 if (pPage->GCPhys != NIL_RTGCPHYS)
533 {
534 switch (pPage->enmKind)
535 {
536 /*
537 * We only care about shadow page tables that reference physical memory
538 */
539#ifdef PGM_WITH_LARGE_PAGES
540 case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
541 if (pPage->cPresent)
542 {
543 PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
544 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
545 {
546 //Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); - bogus, includes X86_PDE_PS.
547 if ((pShwPD->a[i].u & (X86_PDE_P | X86_PDE_PS)) == (X86_PDE_P | X86_PDE_PS))
548 {
549 pShwPD->a[i].u = 0;
550 Assert(pPage->cPresent);
551 pPage->cPresent--;
552 }
553 }
554 if (pPage->cPresent == 0)
555 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
556 }
557 goto default_case;
558
559 case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
560 if (pPage->cPresent)
561 {
562 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
563 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
564 {
565 if ((pShwPD->a[i].u & (EPT_E_READ | EPT_E_LEAF)) == (EPT_E_READ | EPT_E_LEAF))
566 {
567 pShwPD->a[i].u = 0;
568 Assert(pPage->cPresent);
569 pPage->cPresent--;
570 }
571 }
572 if (pPage->cPresent == 0)
573 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
574 }
575 goto default_case;
576#endif /* PGM_WITH_LARGE_PAGES */
577
578 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
579 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
580 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
581 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
582 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
583 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
584 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
585 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
586 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
587 {
588 if (pPage->cPresent)
589 {
590 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
591 STAM_PROFILE_START(&pPool->StatZeroPage, z);
592#if 0
593 /* Useful check for leaking references; *very* expensive though. */
594 switch (pPage->enmKind)
595 {
596 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
597 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
598 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
599 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
600 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
601 {
602 bool fFoundFirst = false;
603 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
604 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
605 {
606 if (pPT->a[ptIndex].u)
607 {
608 if (!fFoundFirst)
609 {
610 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
611 if (pPage->iFirstPresent != ptIndex)
612 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
613 fFoundFirst = true;
614 }
615 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
616 {
617 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
618 if (pPage->iFirstPresent == ptIndex)
619 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
620 }
621 }
622 }
623 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
624 break;
625 }
626 default:
627 break;
628 }
629#endif
630 ASMMemZeroPage(pvShw);
631 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
632 pPage->cPresent = 0;
633 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
634 }
635 }
636 RT_FALL_THRU();
637 default:
638#ifdef PGM_WITH_LARGE_PAGES
639 default_case:
640#endif
641 Assert(!pPage->cModifications || ++cModifiedPages);
642 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
643 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
644 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
645 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
646 pPage->cModifications = 0;
647 break;
648
649 }
650 if (!--cLeft)
651 break;
652 }
653 }
654
655#ifndef DEBUG_michael
656 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
657#endif
658 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
659 pPool->cModifiedPages = 0;
660
661 /*
662 * Clear all the GCPhys links and rebuild the phys ext free list.
663 */
664 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
665 pRam;
666 pRam = pRam->CTX_SUFF(pNext))
667 {
668 iPage = pRam->cb >> GUEST_PAGE_SHIFT;
669 while (iPage-- > 0)
670 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
671 }
672
673 pPool->iPhysExtFreeHead = 0;
674 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
675 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
676 for (unsigned i = 0; i < cMaxPhysExts; i++)
677 {
678 paPhysExts[i].iNext = i + 1;
679 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
680 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
681 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
682 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
683 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
684 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
685 }
686 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
687
688
689#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
690 /* Reset all dirty pages to reactivate the page monitoring. */
691 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
692 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
693 */
694 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
695 {
696 unsigned idxPage = pPool->aidxDirtyPages[i];
697 if (idxPage == NIL_PGMPOOL_IDX)
698 continue;
699
700 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
701 Assert(pPage->idx == idxPage);
702 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
703
704 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
705
706 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
707
708 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
709 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
710 AssertRCSuccess(rc);
711 pPage->fDirty = false;
712
713 pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX;
714 }
715
716 /* Clear all dirty pages. */
717 pPool->idxFreeDirtyPage = 0;
718 pPool->cDirtyPages = 0;
719#endif
720
721 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
722 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
723 pVM->apCpusR3[idCpu]->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
724
725 /* Flush job finished. */
726 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
727 pPool->cPresent = 0;
728 PGM_UNLOCK(pVM);
729
730 PGM_INVL_ALL_VCPU_TLBS(pVM);
731
732 if (fpvFlushRemTlb)
733 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
734 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
735
736 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
737 return VINF_SUCCESS;
738}
739
740
741/**
742 * Clears the shadow page pool.
743 *
744 * @param pVM The cross context VM structure.
745 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
746 * well.
747 */
748void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
749{
750 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
751 AssertRC(rc);
752}
753
754
755/**
756 * Protect all pgm pool page table entries to monitor writes
757 *
758 * @param pVM The cross context VM structure.
759 *
760 * @remarks ASSUMES the caller will flush all TLBs!!
761 */
762void pgmR3PoolWriteProtectPages(PVM pVM)
763{
764 PGM_LOCK_ASSERT_OWNER(pVM);
765 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
766 unsigned cLeft = pPool->cUsedPages;
767 unsigned iPage = pPool->cCurPages;
768 while (--iPage >= PGMPOOL_IDX_FIRST)
769 {
770 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
771 if ( pPage->GCPhys != NIL_RTGCPHYS
772 && pPage->cPresent)
773 {
774 union
775 {
776 void *pv;
777 PX86PT pPT;
778 PPGMSHWPTPAE pPTPae;
779 PEPTPT pPTEpt;
780 } uShw;
781 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
782
783 switch (pPage->enmKind)
784 {
785 /*
786 * We only care about shadow page tables.
787 */
788 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
789 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
790 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
791 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
792 if (uShw.pPT->a[iShw].u & X86_PTE_P)
793 uShw.pPT->a[iShw].u = ~(X86PGUINT)X86_PTE_RW;
794 break;
795
796 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
797 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
798 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
799 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
800 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
801 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
802 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
803 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
804 break;
805
806 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
807 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
808 if (uShw.pPTEpt->a[iShw].u & EPT_E_READ)
809 uShw.pPTEpt->a[iShw].u &= ~(X86PGPAEUINT)EPT_E_WRITE;
810 break;
811
812 default:
813 break;
814 }
815 if (!--cLeft)
816 break;
817 }
818 }
819}
820
821#ifdef VBOX_WITH_DEBUGGER
822/**
823 * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
824 */
825static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
826{
827 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
828 PVM pVM = pUVM->pVM;
829 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
830 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
831 uint32_t cErrors = 0;
832 NOREF(paArgs);
833
834 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
835 for (unsigned i = 0; i < pPool->cCurPages; i++)
836 {
837 PPGMPOOLPAGE pPage = &pPool->aPages[i];
838 bool fFirstMsg = true;
839
840 /** @todo cover other paging modes too. */
841 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
842 {
843 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
844 {
845 PX86PTPAE pGstPT;
846 PGMPAGEMAPLOCK LockPage;
847 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
848
849 /* Check if any PTEs are out of sync. */
850 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
851 {
852 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
853 {
854 RTHCPHYS HCPhys = NIL_RTHCPHYS;
855 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
856 if ( rc != VINF_SUCCESS
857 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
858 {
859 if (fFirstMsg)
860 {
861 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
862 fFirstMsg = false;
863 }
864 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
865 cErrors++;
866 }
867 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
868 && !(pGstPT->a[j].u & X86_PTE_RW))
869 {
870 if (fFirstMsg)
871 {
872 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
873 fFirstMsg = false;
874 }
875 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
876 cErrors++;
877 }
878 }
879 }
880 PGMPhysReleasePageMappingLock(pVM, &LockPage);
881 }
882
883 /* Make sure this page table can't be written to from any shadow mapping. */
884 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
885 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
886 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
887 if (rc == VINF_SUCCESS)
888 {
889 for (unsigned j = 0; j < pPool->cCurPages; j++)
890 {
891 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
892
893 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
894 {
895 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
896
897 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
898 {
899 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
900# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
901 && !pPage->fDirty
902# endif
903 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
904 {
905 if (fFirstMsg)
906 {
907 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
908 fFirstMsg = false;
909 }
910 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
911 cErrors++;
912 }
913 }
914 }
915 }
916 }
917 }
918 }
919 if (cErrors > 0)
920 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
921 return VINF_SUCCESS;
922}
923#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette