VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMSavedState.cpp@ 65793

Last change on this file since 65793 was 64327, checked in by vboxsync, 8 years ago

PGM: Allow pre-registered MMIO regions up to 1TB in size by using multiple registration chunks (just like we do for RAM). The limits are now defined in VBox/param.h instead of being hardcoded in the sources.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 129.2 KB
Line 
1/* $Id: PGMSavedState.cpp 64327 2016-10-19 17:42:18Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/stam.h>
25#include <VBox/vmm/ssm.h>
26#include <VBox/vmm/pdmdrv.h>
27#include <VBox/vmm/pdmdev.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vm.h>
30#include "PGMInline.h"
31
32#include <VBox/param.h>
33#include <VBox/err.h>
34#include <VBox/vmm/ftm.h>
35
36#include <iprt/asm.h>
37#include <iprt/assert.h>
38#include <iprt/crc.h>
39#include <iprt/mem.h>
40#include <iprt/sha.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43
44
45/*********************************************************************************************************************************
46* Defined Constants And Macros *
47*********************************************************************************************************************************/
48/** Saved state data unit version. */
49#define PGM_SAVED_STATE_VERSION 14
50/** Saved state data unit version before the PAE PDPE registers. */
51#define PGM_SAVED_STATE_VERSION_PRE_PAE 13
52/** Saved state data unit version after this includes ballooned page flags in
53 * the state (see @bugref{5515}). */
54#define PGM_SAVED_STATE_VERSION_BALLOON_BROKEN 12
55/** Saved state before the balloon change. */
56#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
57/** Saved state data unit version used during 3.1 development, misses the RAM
58 * config. */
59#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
60/** Saved state data unit version for 3.0 (pre teleportation). */
61#define PGM_SAVED_STATE_VERSION_3_0_0 9
62/** Saved state data unit version for 2.2.2 and later. */
63#define PGM_SAVED_STATE_VERSION_2_2_2 8
64/** Saved state data unit version for 2.2.0. */
65#define PGM_SAVED_STATE_VERSION_RR_DESC 7
66/** Saved state data unit version. */
67#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
68
69
70/** @name Sparse state record types
71 * @{ */
72/** Zero page. No data. */
73#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
74/** Raw page. */
75#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
76/** Raw MMIO2 page. */
77#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
78/** Zero MMIO2 page. */
79#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
80/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
81#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
82/** Raw shadowed ROM page. The protection (8-bit) precedes the raw bits. */
83#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
84/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
85#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
86/** ROM protection (8-bit). */
87#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
88/** Ballooned page. No data. */
89#define PGM_STATE_REC_RAM_BALLOONED UINT8_C(0x08)
90/** The last record type. */
91#define PGM_STATE_REC_LAST PGM_STATE_REC_RAM_BALLOONED
92/** End marker. */
93#define PGM_STATE_REC_END UINT8_C(0xff)
94/** Flag indicating that the data is preceded by the page address.
95 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
96 * range ID and a 32-bit page index.
97 */
98#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
99/** @} */
100
101/** The CRC-32 for a zero page. */
102#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
103/** The CRC-32 for a zero half page. */
104#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
105
106
107
108/** @name Old Page types used in older saved states.
109 * @{ */
110/** Old saved state: The usual invalid zero entry. */
111#define PGMPAGETYPE_OLD_INVALID 0
112/** Old saved state: RAM page. (RWX) */
113#define PGMPAGETYPE_OLD_RAM 1
114/** Old saved state: MMIO2 page. (RWX) */
115#define PGMPAGETYPE_OLD_MMIO2 1
116/** Old saved state: MMIO2 page aliased over an MMIO page. (RWX)
117 * See PGMHandlerPhysicalPageAlias(). */
118#define PGMPAGETYPE_OLD_MMIO2_ALIAS_MMIO 2
119/** Old saved state: Shadowed ROM. (RWX) */
120#define PGMPAGETYPE_OLD_ROM_SHADOW 3
121/** Old saved state: ROM page. (R-X) */
122#define PGMPAGETYPE_OLD_ROM 4
123/** Old saved state: MMIO page. (---) */
124#define PGMPAGETYPE_OLD_MMIO 5
125/** @} */
126
127
128/*********************************************************************************************************************************
129* Structures and Typedefs *
130*********************************************************************************************************************************/
131/** For loading old saved states. (pre-smp) */
132typedef struct
133{
134 /** If set no conflict checks are required. (boolean) */
135 bool fMappingsFixed;
136 /** Size of fixed mapping */
137 uint32_t cbMappingFixed;
138 /** Base address (GC) of fixed mapping */
139 RTGCPTR GCPtrMappingFixed;
140 /** A20 gate mask.
141 * Our current approach to A20 emulation is to let REM do it and don't bother
142 * anywhere else. The interesting guests will be operating with it enabled anyway.
143 * But should the need arise, we'll subject physical addresses to this mask. */
144 RTGCPHYS GCPhysA20Mask;
145 /** A20 gate state - boolean! */
146 bool fA20Enabled;
147 /** The guest paging mode. */
148 PGMMODE enmGuestMode;
149} PGMOLD;
150
151
152/*********************************************************************************************************************************
153* Global Variables *
154*********************************************************************************************************************************/
155/** PGM fields to save/load. */
156
157static const SSMFIELD s_aPGMFields[] =
158{
159 SSMFIELD_ENTRY( PGM, fMappingsFixed),
160 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
161 SSMFIELD_ENTRY( PGM, cbMappingFixed),
162 SSMFIELD_ENTRY( PGM, cBalloonedPages),
163 SSMFIELD_ENTRY_TERM()
164};
165
166static const SSMFIELD s_aPGMFieldsPreBalloon[] =
167{
168 SSMFIELD_ENTRY( PGM, fMappingsFixed),
169 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
170 SSMFIELD_ENTRY( PGM, cbMappingFixed),
171 SSMFIELD_ENTRY_TERM()
172};
173
174static const SSMFIELD s_aPGMCpuFields[] =
175{
176 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
177 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
178 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
179 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[0]),
180 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[1]),
181 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[2]),
182 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[3]),
183 SSMFIELD_ENTRY_TERM()
184};
185
186static const SSMFIELD s_aPGMCpuFieldsPrePae[] =
187{
188 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
189 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
190 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
191 SSMFIELD_ENTRY_TERM()
192};
193
194static const SSMFIELD s_aPGMFields_Old[] =
195{
196 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
197 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
198 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
199 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
200 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
201 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
202 SSMFIELD_ENTRY_TERM()
203};
204
205
206/**
207 * Find the ROM tracking structure for the given page.
208 *
209 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
210 * that it's a ROM page.
211 * @param pVM The cross context VM structure.
212 * @param GCPhys The address of the ROM page.
213 */
214static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
215{
216 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
217 pRomRange;
218 pRomRange = pRomRange->CTX_SUFF(pNext))
219 {
220 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
221 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
222 return &pRomRange->aPages[off >> PAGE_SHIFT];
223 }
224 return NULL;
225}
226
227
228/**
229 * Prepares the ROM pages for a live save.
230 *
231 * @returns VBox status code.
232 * @param pVM The cross context VM structure.
233 */
234static int pgmR3PrepRomPages(PVM pVM)
235{
236 /*
237 * Initialize the live save tracking in the ROM page descriptors.
238 */
239 pgmLock(pVM);
240 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
241 {
242 PPGMRAMRANGE pRamHint = NULL;;
243 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
244
245 for (uint32_t iPage = 0; iPage < cPages; iPage++)
246 {
247 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
248 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
249 pRom->aPages[iPage].LiveSave.fDirty = true;
250 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
251 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
252 {
253 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
254 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
255 else
256 {
257 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
258 PPGMPAGE pPage;
259 int rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
260 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
261 if (RT_SUCCESS(rc))
262 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
263 else
264 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
265 }
266 }
267 }
268
269 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
270 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
271 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
272 }
273 pgmUnlock(pVM);
274
275 return VINF_SUCCESS;
276}
277
278
279/**
280 * Assigns IDs to the ROM ranges and saves them.
281 *
282 * @returns VBox status code.
283 * @param pVM The cross context VM structure.
284 * @param pSSM Saved state handle.
285 */
286static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
287{
288 pgmLock(pVM);
289 uint8_t id = 1;
290 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
291 {
292 pRom->idSavedState = id;
293 SSMR3PutU8(pSSM, id);
294 SSMR3PutStrZ(pSSM, ""); /* device name */
295 SSMR3PutU32(pSSM, 0); /* device instance */
296 SSMR3PutU8(pSSM, 0); /* region */
297 SSMR3PutStrZ(pSSM, pRom->pszDesc);
298 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
299 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
300 if (RT_FAILURE(rc))
301 break;
302 }
303 pgmUnlock(pVM);
304 return SSMR3PutU8(pSSM, UINT8_MAX);
305}
306
307
308/**
309 * Loads the ROM range ID assignments.
310 *
311 * @returns VBox status code.
312 *
313 * @param pVM The cross context VM structure.
314 * @param pSSM The saved state handle.
315 */
316static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
317{
318 PGM_LOCK_ASSERT_OWNER(pVM);
319
320 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
321 pRom->idSavedState = UINT8_MAX;
322
323 for (;;)
324 {
325 /*
326 * Read the data.
327 */
328 uint8_t id;
329 int rc = SSMR3GetU8(pSSM, &id);
330 if (RT_FAILURE(rc))
331 return rc;
332 if (id == UINT8_MAX)
333 {
334 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
335 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
336 ("The \"%s\" ROM was not found in the saved state. Probably due to some misconfiguration\n",
337 pRom->pszDesc));
338 return VINF_SUCCESS; /* the end */
339 }
340 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
341
342 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
343 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
344 AssertLogRelRCReturn(rc, rc);
345
346 uint32_t uInstance;
347 SSMR3GetU32(pSSM, &uInstance);
348 uint8_t iRegion;
349 SSMR3GetU8(pSSM, &iRegion);
350
351 char szDesc[64];
352 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
353 AssertLogRelRCReturn(rc, rc);
354
355 RTGCPHYS GCPhys;
356 SSMR3GetGCPhys(pSSM, &GCPhys);
357 RTGCPHYS cb;
358 rc = SSMR3GetGCPhys(pSSM, &cb);
359 if (RT_FAILURE(rc))
360 return rc;
361 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
362 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
363
364 /*
365 * Locate a matching ROM range.
366 */
367 AssertLogRelMsgReturn( uInstance == 0
368 && iRegion == 0
369 && szDevName[0] == '\0',
370 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
371 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
372 PPGMROMRANGE pRom;
373 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
374 {
375 if ( pRom->idSavedState == UINT8_MAX
376 && !strcmp(pRom->pszDesc, szDesc))
377 {
378 pRom->idSavedState = id;
379 break;
380 }
381 }
382 if (!pRom)
383 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
384 } /* forever */
385}
386
387
388/**
389 * Scan ROM pages.
390 *
391 * @param pVM The cross context VM structure.
392 */
393static void pgmR3ScanRomPages(PVM pVM)
394{
395 /*
396 * The shadow ROMs.
397 */
398 pgmLock(pVM);
399 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
400 {
401 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
402 {
403 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
404 for (uint32_t iPage = 0; iPage < cPages; iPage++)
405 {
406 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
407 if (pRomPage->LiveSave.fWrittenTo)
408 {
409 pRomPage->LiveSave.fWrittenTo = false;
410 if (!pRomPage->LiveSave.fDirty)
411 {
412 pRomPage->LiveSave.fDirty = true;
413 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
414 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
415 }
416 pRomPage->LiveSave.fDirtiedRecently = true;
417 }
418 else
419 pRomPage->LiveSave.fDirtiedRecently = false;
420 }
421 }
422 }
423 pgmUnlock(pVM);
424}
425
426
427/**
428 * Takes care of the virgin ROM pages in the first pass.
429 *
430 * This is an attempt at simplifying the handling of ROM pages a little bit.
431 * This ASSUMES that no new ROM ranges will be added and that they won't be
432 * relinked in any way.
433 *
434 * @param pVM The cross context VM structure.
435 * @param pSSM The SSM handle.
436 * @param fLiveSave Whether we're in a live save or not.
437 */
438static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
439{
440 if (FTMIsDeltaLoadSaveActive(pVM))
441 return VINF_SUCCESS; /* nothing to do as nothing has changed here */
442
443 pgmLock(pVM);
444 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
445 {
446 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
447 for (uint32_t iPage = 0; iPage < cPages; iPage++)
448 {
449 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
450 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
451
452 /* Get the virgin page descriptor. */
453 PPGMPAGE pPage;
454 if (PGMROMPROT_IS_ROM(enmProt))
455 pPage = pgmPhysGetPage(pVM, GCPhys);
456 else
457 pPage = &pRom->aPages[iPage].Virgin;
458
459 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
460 int rc = VINF_SUCCESS;
461 char abPage[PAGE_SIZE];
462 if ( !PGM_PAGE_IS_ZERO(pPage)
463 && !PGM_PAGE_IS_BALLOONED(pPage))
464 {
465 void const *pvPage;
466 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
467 if (RT_SUCCESS(rc))
468 memcpy(abPage, pvPage, PAGE_SIZE);
469 }
470 else
471 ASMMemZeroPage(abPage);
472 pgmUnlock(pVM);
473 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
474
475 /* Save it. */
476 if (iPage > 0)
477 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
478 else
479 {
480 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
481 SSMR3PutU8(pSSM, pRom->idSavedState);
482 SSMR3PutU32(pSSM, iPage);
483 }
484 SSMR3PutU8(pSSM, (uint8_t)enmProt);
485 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
486 if (RT_FAILURE(rc))
487 return rc;
488
489 /* Update state. */
490 pgmLock(pVM);
491 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
492 if (fLiveSave)
493 {
494 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
495 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
496 pVM->pgm.s.LiveSave.cSavedPages++;
497 }
498 }
499 }
500 pgmUnlock(pVM);
501 return VINF_SUCCESS;
502}
503
504
505/**
506 * Saves dirty pages in the shadowed ROM ranges.
507 *
508 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
509 *
510 * @returns VBox status code.
511 * @param pVM The cross context VM structure.
512 * @param pSSM The SSM handle.
513 * @param fLiveSave Whether it's a live save or not.
514 * @param fFinalPass Whether this is the final pass or not.
515 */
516static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
517{
518 if (FTMIsDeltaLoadSaveActive(pVM))
519 return VINF_SUCCESS; /* nothing to do as we deal with those pages separately */
520
521 /*
522 * The Shadowed ROMs.
523 *
524 * ASSUMES that the ROM ranges are fixed.
525 * ASSUMES that all the ROM ranges are mapped.
526 */
527 pgmLock(pVM);
528 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
529 {
530 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
531 {
532 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
533 uint32_t iPrevPage = cPages;
534 for (uint32_t iPage = 0; iPage < cPages; iPage++)
535 {
536 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
537 if ( !fLiveSave
538 || ( pRomPage->LiveSave.fDirty
539 && ( ( !pRomPage->LiveSave.fDirtiedRecently
540 && !pRomPage->LiveSave.fWrittenTo)
541 || fFinalPass
542 )
543 )
544 )
545 {
546 uint8_t abPage[PAGE_SIZE];
547 PGMROMPROT enmProt = pRomPage->enmProt;
548 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
549 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(pVM, GCPhys);
550 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage); Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* Shouldn't be ballooned. */
551 int rc = VINF_SUCCESS;
552 if (!fZero)
553 {
554 void const *pvPage;
555 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
556 if (RT_SUCCESS(rc))
557 memcpy(abPage, pvPage, PAGE_SIZE);
558 }
559 if (fLiveSave && RT_SUCCESS(rc))
560 {
561 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
562 pRomPage->LiveSave.fDirty = false;
563 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
564 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
565 pVM->pgm.s.LiveSave.cSavedPages++;
566 }
567 pgmUnlock(pVM);
568 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
569
570 if (iPage - 1U == iPrevPage && iPage > 0)
571 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
572 else
573 {
574 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
575 SSMR3PutU8(pSSM, pRom->idSavedState);
576 SSMR3PutU32(pSSM, iPage);
577 }
578 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
579 if (!fZero)
580 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
581 if (RT_FAILURE(rc))
582 return rc;
583
584 pgmLock(pVM);
585 iPrevPage = iPage;
586 }
587 /*
588 * In the final pass, make sure the protection is in sync.
589 */
590 else if ( fFinalPass
591 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
592 {
593 PGMROMPROT enmProt = pRomPage->enmProt;
594 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
595 pgmUnlock(pVM);
596
597 if (iPage - 1U == iPrevPage && iPage > 0)
598 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
599 else
600 {
601 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
602 SSMR3PutU8(pSSM, pRom->idSavedState);
603 SSMR3PutU32(pSSM, iPage);
604 }
605 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
606 if (RT_FAILURE(rc))
607 return rc;
608
609 pgmLock(pVM);
610 iPrevPage = iPage;
611 }
612 }
613 }
614 }
615 pgmUnlock(pVM);
616 return VINF_SUCCESS;
617}
618
619
620/**
621 * Cleans up ROM pages after a live save.
622 *
623 * @param pVM The cross context VM structure.
624 */
625static void pgmR3DoneRomPages(PVM pVM)
626{
627 NOREF(pVM);
628}
629
630
631/**
632 * Prepares the MMIO2 pages for a live save.
633 *
634 * @returns VBox status code.
635 * @param pVM The cross context VM structure.
636 */
637static int pgmR3PrepMmio2Pages(PVM pVM)
638{
639 /*
640 * Initialize the live save tracking in the MMIO2 ranges.
641 * ASSUME nothing changes here.
642 */
643 pgmLock(pVM);
644 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
645 {
646 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
647 {
648 uint32_t const cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
649 pgmUnlock(pVM);
650
651 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
652 if (!paLSPages)
653 return VERR_NO_MEMORY;
654 for (uint32_t iPage = 0; iPage < cPages; iPage++)
655 {
656 /* Initialize it as a dirty zero page. */
657 paLSPages[iPage].fDirty = true;
658 paLSPages[iPage].cUnchangedScans = 0;
659 paLSPages[iPage].fZero = true;
660 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
661 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
662 }
663
664 pgmLock(pVM);
665 pRegMmio->paLSPages = paLSPages;
666 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
667 }
668 }
669 pgmUnlock(pVM);
670 return VINF_SUCCESS;
671}
672
673
674/**
675 * Assigns IDs to the MMIO2 ranges and saves them.
676 *
677 * @returns VBox status code.
678 * @param pVM The cross context VM structure.
679 * @param pSSM Saved state handle.
680 */
681static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
682{
683 pgmLock(pVM);
684 uint8_t id = 1;
685 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
686 {
687 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
688 {
689 pRegMmio->idSavedState = id;
690 SSMR3PutU8(pSSM, id);
691 SSMR3PutStrZ(pSSM, pRegMmio->pDevInsR3->pReg->szName);
692 SSMR3PutU32(pSSM, pRegMmio->pDevInsR3->iInstance);
693 SSMR3PutU8(pSSM, pRegMmio->iRegion);
694 SSMR3PutStrZ(pSSM, pRegMmio->RamRange.pszDesc);
695 int rc = SSMR3PutGCPhys(pSSM, pRegMmio->RamRange.cb);
696 if (RT_FAILURE(rc))
697 break;
698 id++;
699 }
700 }
701 pgmUnlock(pVM);
702 return SSMR3PutU8(pSSM, UINT8_MAX);
703}
704
705
706/**
707 * Loads the MMIO2 range ID assignments.
708 *
709 * @returns VBox status code.
710 *
711 * @param pVM The cross context VM structure.
712 * @param pSSM The saved state handle.
713 */
714static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
715{
716 PGM_LOCK_ASSERT_OWNER(pVM);
717
718 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
719 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
720 pRegMmio->idSavedState = UINT8_MAX;
721
722 for (;;)
723 {
724 /*
725 * Read the data.
726 */
727 uint8_t id;
728 int rc = SSMR3GetU8(pSSM, &id);
729 if (RT_FAILURE(rc))
730 return rc;
731 if (id == UINT8_MAX)
732 {
733 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
734 AssertLogRelMsg( pRegMmio->idSavedState != UINT8_MAX
735 || !(pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2),
736 ("%s\n", pRegMmio->RamRange.pszDesc));
737 return VINF_SUCCESS; /* the end */
738 }
739 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
740
741 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
742 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
743 AssertLogRelRCReturn(rc, rc);
744
745 uint32_t uInstance;
746 SSMR3GetU32(pSSM, &uInstance);
747 uint8_t iRegion;
748 SSMR3GetU8(pSSM, &iRegion);
749
750 char szDesc[64];
751 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
752 AssertLogRelRCReturn(rc, rc);
753
754 RTGCPHYS cb;
755 rc = SSMR3GetGCPhys(pSSM, &cb);
756 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
757
758 /*
759 * Locate a matching MMIO2 range.
760 */
761 PPGMREGMMIORANGE pRegMmio;
762 for (pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
763 {
764 if ( pRegMmio->idSavedState == UINT8_MAX
765 && pRegMmio->iRegion == iRegion
766 && pRegMmio->pDevInsR3->iInstance == uInstance
767 && (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
768 && !strcmp(pRegMmio->pDevInsR3->pReg->szName, szDevName))
769 {
770 pRegMmio->idSavedState = id;
771 break;
772 }
773 }
774 if (!pRegMmio)
775 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
776 szDesc, szDevName, uInstance, iRegion);
777
778 /*
779 * Validate the configuration, the size of the MMIO2 region should be
780 * the same.
781 */
782 if (cb != pRegMmio->RamRange.cb)
783 {
784 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
785 pRegMmio->RamRange.pszDesc, cb, pRegMmio->RamRange.cb));
786 if (cb > pRegMmio->RamRange.cb) /* bad idea? */
787 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
788 pRegMmio->RamRange.pszDesc, cb, pRegMmio->RamRange.cb);
789 }
790 } /* forever */
791}
792
793
794/**
795 * Scans one MMIO2 page.
796 *
797 * @returns True if changed, false if unchanged.
798 *
799 * @param pVM The cross context VM structure.
800 * @param pbPage The page bits.
801 * @param pLSPage The live save tracking structure for the page.
802 *
803 */
804DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
805{
806 /*
807 * Special handling of zero pages.
808 */
809 bool const fZero = pLSPage->fZero;
810 if (fZero)
811 {
812 if (ASMMemIsZeroPage(pbPage))
813 {
814 /* Not modified. */
815 if (pLSPage->fDirty)
816 pLSPage->cUnchangedScans++;
817 return false;
818 }
819
820 pLSPage->fZero = false;
821 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
822 }
823 else
824 {
825 /*
826 * CRC the first half, if it doesn't match the page is dirty and
827 * we won't check the 2nd half (we'll do that next time).
828 */
829 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
830 if (u32CrcH1 == pLSPage->u32CrcH1)
831 {
832 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
833 if (u32CrcH2 == pLSPage->u32CrcH2)
834 {
835 /* Probably not modified. */
836 if (pLSPage->fDirty)
837 pLSPage->cUnchangedScans++;
838 return false;
839 }
840
841 pLSPage->u32CrcH2 = u32CrcH2;
842 }
843 else
844 {
845 pLSPage->u32CrcH1 = u32CrcH1;
846 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
847 && ASMMemIsZeroPage(pbPage))
848 {
849 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
850 pLSPage->fZero = true;
851 }
852 }
853 }
854
855 /* dirty page path */
856 pLSPage->cUnchangedScans = 0;
857 if (!pLSPage->fDirty)
858 {
859 pLSPage->fDirty = true;
860 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
861 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
862 if (fZero)
863 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
864 }
865 return true;
866}
867
868
869/**
870 * Scan for MMIO2 page modifications.
871 *
872 * @param pVM The cross context VM structure.
873 * @param uPass The pass number.
874 */
875static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
876{
877 /*
878 * Since this is a bit expensive we lower the scan rate after a little while.
879 */
880 if ( ( (uPass & 3) != 0
881 && uPass > 10)
882 || uPass == SSM_PASS_FINAL)
883 return;
884
885 pgmLock(pVM); /* paranoia */
886 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
887 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
888 {
889 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
890 uint32_t cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
891 pgmUnlock(pVM);
892
893 for (uint32_t iPage = 0; iPage < cPages; iPage++)
894 {
895 uint8_t const *pbPage = (uint8_t const *)pRegMmio->pvR3 + iPage * PAGE_SIZE;
896 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
897 }
898
899 pgmLock(pVM);
900 }
901 pgmUnlock(pVM);
902
903}
904
905
906/**
907 * Save quiescent MMIO2 pages.
908 *
909 * @returns VBox status code.
910 * @param pVM The cross context VM structure.
911 * @param pSSM The SSM handle.
912 * @param fLiveSave Whether it's a live save or not.
913 * @param uPass The pass number.
914 */
915static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
916{
917 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
918 * device that we wish to know about changes.) */
919
920 int rc = VINF_SUCCESS;
921 if (uPass == SSM_PASS_FINAL)
922 {
923 /*
924 * The mop up round.
925 */
926 pgmLock(pVM);
927 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3;
928 pRegMmio && RT_SUCCESS(rc);
929 pRegMmio = pRegMmio->pNextR3)
930 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
931 {
932 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
933 uint8_t const *pbPage = (uint8_t const *)pRegMmio->RamRange.pvR3;
934 uint32_t cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
935 uint32_t iPageLast = cPages;
936 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
937 {
938 uint8_t u8Type;
939 if (!fLiveSave)
940 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
941 else
942 {
943 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
944 if ( !paLSPages[iPage].fDirty
945 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
946 {
947 if (paLSPages[iPage].fZero)
948 continue;
949
950 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
951 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
952 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
953 continue;
954 }
955 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
956 pVM->pgm.s.LiveSave.cSavedPages++;
957 }
958
959 if (iPage != 0 && iPage == iPageLast + 1)
960 rc = SSMR3PutU8(pSSM, u8Type);
961 else
962 {
963 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
964 SSMR3PutU8(pSSM, pRegMmio->idSavedState);
965 rc = SSMR3PutU32(pSSM, iPage);
966 }
967 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
968 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
969 if (RT_FAILURE(rc))
970 break;
971 iPageLast = iPage;
972 }
973 }
974 pgmUnlock(pVM);
975 }
976 /*
977 * Reduce the rate after a little while since the current MMIO2 approach is
978 * a bit expensive.
979 * We position it two passes after the scan pass to avoid saving busy pages.
980 */
981 else if ( uPass <= 10
982 || (uPass & 3) == 2)
983 {
984 pgmLock(pVM);
985 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3;
986 pRegMmio && RT_SUCCESS(rc);
987 pRegMmio = pRegMmio->pNextR3)
988 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
989 {
990 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
991 uint8_t const *pbPage = (uint8_t const *)pRegMmio->RamRange.pvR3;
992 uint32_t cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
993 uint32_t iPageLast = cPages;
994 pgmUnlock(pVM);
995
996 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
997 {
998 /* Skip clean pages and pages which hasn't quiesced. */
999 if (!paLSPages[iPage].fDirty)
1000 continue;
1001 if (paLSPages[iPage].cUnchangedScans < 3)
1002 continue;
1003 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
1004 continue;
1005
1006 /* Save it. */
1007 bool const fZero = paLSPages[iPage].fZero;
1008 uint8_t abPage[PAGE_SIZE];
1009 if (!fZero)
1010 {
1011 memcpy(abPage, pbPage, PAGE_SIZE);
1012 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
1013 }
1014
1015 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
1016 if (iPage != 0 && iPage == iPageLast + 1)
1017 rc = SSMR3PutU8(pSSM, u8Type);
1018 else
1019 {
1020 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
1021 SSMR3PutU8(pSSM, pRegMmio->idSavedState);
1022 rc = SSMR3PutU32(pSSM, iPage);
1023 }
1024 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
1025 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1026 if (RT_FAILURE(rc))
1027 break;
1028
1029 /* Housekeeping. */
1030 paLSPages[iPage].fDirty = false;
1031 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
1032 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
1033 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
1034 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
1035 pVM->pgm.s.LiveSave.cSavedPages++;
1036 iPageLast = iPage;
1037 }
1038
1039 pgmLock(pVM);
1040 }
1041 pgmUnlock(pVM);
1042 }
1043
1044 return rc;
1045}
1046
1047
1048/**
1049 * Cleans up MMIO2 pages after a live save.
1050 *
1051 * @param pVM The cross context VM structure.
1052 */
1053static void pgmR3DoneMmio2Pages(PVM pVM)
1054{
1055 /*
1056 * Free the tracking structures for the MMIO2 pages.
1057 * We do the freeing outside the lock in case the VM is running.
1058 */
1059 pgmLock(pVM);
1060 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
1061 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
1062 {
1063 void *pvMmio2ToFree = pRegMmio->paLSPages;
1064 if (pvMmio2ToFree)
1065 {
1066 pRegMmio->paLSPages = NULL;
1067 pgmUnlock(pVM);
1068 MMR3HeapFree(pvMmio2ToFree);
1069 pgmLock(pVM);
1070 }
1071 }
1072 pgmUnlock(pVM);
1073}
1074
1075
1076/**
1077 * Prepares the RAM pages for a live save.
1078 *
1079 * @returns VBox status code.
1080 * @param pVM The cross context VM structure.
1081 */
1082static int pgmR3PrepRamPages(PVM pVM)
1083{
1084
1085 /*
1086 * Try allocating tracking structures for the ram ranges.
1087 *
1088 * To avoid lock contention, we leave the lock every time we're allocating
1089 * a new array. This means we'll have to ditch the allocation and start
1090 * all over again if the RAM range list changes in-between.
1091 *
1092 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1093 * for cleaning up.
1094 */
1095 PPGMRAMRANGE pCur;
1096 pgmLock(pVM);
1097 do
1098 {
1099 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1100 {
1101 if ( !pCur->paLSPages
1102 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1103 {
1104 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1105 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1106 pgmUnlock(pVM);
1107 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1108 if (!paLSPages)
1109 return VERR_NO_MEMORY;
1110 pgmLock(pVM);
1111 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1112 {
1113 pgmUnlock(pVM);
1114 MMR3HeapFree(paLSPages);
1115 pgmLock(pVM);
1116 break; /* try again */
1117 }
1118 pCur->paLSPages = paLSPages;
1119
1120 /*
1121 * Initialize the array.
1122 */
1123 uint32_t iPage = cPages;
1124 while (iPage-- > 0)
1125 {
1126 /** @todo yield critsect! (after moving this away from EMT0) */
1127 PCPGMPAGE pPage = &pCur->aPages[iPage];
1128 paLSPages[iPage].cDirtied = 0;
1129 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1130 paLSPages[iPage].fWriteMonitored = 0;
1131 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1132 paLSPages[iPage].u2Reserved = 0;
1133 switch (PGM_PAGE_GET_TYPE(pPage))
1134 {
1135 case PGMPAGETYPE_RAM:
1136 if ( PGM_PAGE_IS_ZERO(pPage)
1137 || PGM_PAGE_IS_BALLOONED(pPage))
1138 {
1139 paLSPages[iPage].fZero = 1;
1140 paLSPages[iPage].fShared = 0;
1141#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1142 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1143#endif
1144 }
1145 else if (PGM_PAGE_IS_SHARED(pPage))
1146 {
1147 paLSPages[iPage].fZero = 0;
1148 paLSPages[iPage].fShared = 1;
1149#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1150 paLSPages[iPage].u32Crc = UINT32_MAX;
1151#endif
1152 }
1153 else
1154 {
1155 paLSPages[iPage].fZero = 0;
1156 paLSPages[iPage].fShared = 0;
1157#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1158 paLSPages[iPage].u32Crc = UINT32_MAX;
1159#endif
1160 }
1161 paLSPages[iPage].fIgnore = 0;
1162 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1163 break;
1164
1165 case PGMPAGETYPE_ROM_SHADOW:
1166 case PGMPAGETYPE_ROM:
1167 {
1168 paLSPages[iPage].fZero = 0;
1169 paLSPages[iPage].fShared = 0;
1170 paLSPages[iPage].fDirty = 0;
1171 paLSPages[iPage].fIgnore = 1;
1172#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1173 paLSPages[iPage].u32Crc = UINT32_MAX;
1174#endif
1175 pVM->pgm.s.LiveSave.cIgnoredPages++;
1176 break;
1177 }
1178
1179 default:
1180 AssertMsgFailed(("%R[pgmpage]", pPage));
1181 case PGMPAGETYPE_MMIO2:
1182 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1183 paLSPages[iPage].fZero = 0;
1184 paLSPages[iPage].fShared = 0;
1185 paLSPages[iPage].fDirty = 0;
1186 paLSPages[iPage].fIgnore = 1;
1187#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1188 paLSPages[iPage].u32Crc = UINT32_MAX;
1189#endif
1190 pVM->pgm.s.LiveSave.cIgnoredPages++;
1191 break;
1192
1193 case PGMPAGETYPE_MMIO:
1194 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
1195 paLSPages[iPage].fZero = 0;
1196 paLSPages[iPage].fShared = 0;
1197 paLSPages[iPage].fDirty = 0;
1198 paLSPages[iPage].fIgnore = 1;
1199#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1200 paLSPages[iPage].u32Crc = UINT32_MAX;
1201#endif
1202 pVM->pgm.s.LiveSave.cIgnoredPages++;
1203 break;
1204 }
1205 }
1206 }
1207 }
1208 } while (pCur);
1209 pgmUnlock(pVM);
1210
1211 return VINF_SUCCESS;
1212}
1213
1214
1215/**
1216 * Saves the RAM configuration.
1217 *
1218 * @returns VBox status code.
1219 * @param pVM The cross context VM structure.
1220 * @param pSSM The saved state handle.
1221 */
1222static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1223{
1224 uint32_t cbRamHole = 0;
1225 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1226 AssertRCReturn(rc, rc);
1227
1228 uint64_t cbRam = 0;
1229 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1230 AssertRCReturn(rc, rc);
1231
1232 SSMR3PutU32(pSSM, cbRamHole);
1233 return SSMR3PutU64(pSSM, cbRam);
1234}
1235
1236
1237/**
1238 * Loads and verifies the RAM configuration.
1239 *
1240 * @returns VBox status code.
1241 * @param pVM The cross context VM structure.
1242 * @param pSSM The saved state handle.
1243 */
1244static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1245{
1246 uint32_t cbRamHoleCfg = 0;
1247 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1248 AssertRCReturn(rc, rc);
1249
1250 uint64_t cbRamCfg = 0;
1251 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1252 AssertRCReturn(rc, rc);
1253
1254 uint32_t cbRamHoleSaved;
1255 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1256
1257 uint64_t cbRamSaved;
1258 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1259 AssertRCReturn(rc, rc);
1260
1261 if ( cbRamHoleCfg != cbRamHoleSaved
1262 || cbRamCfg != cbRamSaved)
1263 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1264 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1265 return VINF_SUCCESS;
1266}
1267
1268#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1269
1270/**
1271 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1272 * info with it.
1273 *
1274 * @param pVM The cross context VM structure.
1275 * @param pCur The current RAM range.
1276 * @param paLSPages The current array of live save page tracking
1277 * structures.
1278 * @param iPage The page index.
1279 */
1280static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1281{
1282 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1283 PGMPAGEMAPLOCK PgMpLck;
1284 void const *pvPage;
1285 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
1286 if (RT_SUCCESS(rc))
1287 {
1288 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1289 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1290 }
1291 else
1292 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1293}
1294
1295
1296/**
1297 * Verifies the CRC-32 for a page given it's raw bits.
1298 *
1299 * @param pvPage The page bits.
1300 * @param pCur The current RAM range.
1301 * @param paLSPages The current array of live save page tracking
1302 * structures.
1303 * @param iPage The page index.
1304 */
1305static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1306{
1307 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1308 {
1309 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1310 Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
1311 && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
1312 || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1313 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1314 ("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
1315 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
1316 }
1317}
1318
1319
1320/**
1321 * Verifies the CRC-32 for a RAM page.
1322 *
1323 * @param pVM The cross context VM structure.
1324 * @param pCur The current RAM range.
1325 * @param paLSPages The current array of live save page tracking
1326 * structures.
1327 * @param iPage The page index.
1328 */
1329static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1330{
1331 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1332 {
1333 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1334 PGMPAGEMAPLOCK PgMpLck;
1335 void const *pvPage;
1336 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
1337 if (RT_SUCCESS(rc))
1338 {
1339 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
1340 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1341 }
1342 }
1343}
1344
1345#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1346
1347/**
1348 * Scan for RAM page modifications and reprotect them.
1349 *
1350 * @param pVM The cross context VM structure.
1351 * @param fFinalPass Whether this is the final pass or not.
1352 */
1353static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1354{
1355 /*
1356 * The RAM.
1357 */
1358 RTGCPHYS GCPhysCur = 0;
1359 PPGMRAMRANGE pCur;
1360 pgmLock(pVM);
1361 do
1362 {
1363 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1364 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1365 {
1366 if ( pCur->GCPhysLast > GCPhysCur
1367 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1368 {
1369 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1370 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1371 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1372 GCPhysCur = 0;
1373 for (; iPage < cPages; iPage++)
1374 {
1375 /* Do yield first. */
1376 if ( !fFinalPass
1377#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1378 && (iPage & 0x7ff) == 0x100
1379#endif
1380 && PDMR3CritSectYield(&pVM->pgm.s.CritSectX)
1381 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1382 {
1383 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1384 break; /* restart */
1385 }
1386
1387 /* Skip already ignored pages. */
1388 if (paLSPages[iPage].fIgnore)
1389 continue;
1390
1391 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1392 {
1393 /*
1394 * A RAM page.
1395 */
1396 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1397 {
1398 case PGM_PAGE_STATE_ALLOCATED:
1399 /** @todo Optimize this: Don't always re-enable write
1400 * monitoring if the page is known to be very busy. */
1401 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1402 {
1403 AssertMsg(paLSPages[iPage].fWriteMonitored,
1404 ("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
1405 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1406 Assert(pVM->pgm.s.cWrittenToPages > 0);
1407 pVM->pgm.s.cWrittenToPages--;
1408 }
1409 else
1410 {
1411 AssertMsg(!paLSPages[iPage].fWriteMonitored,
1412 ("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
1413 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1414 }
1415
1416 if (!paLSPages[iPage].fDirty)
1417 {
1418 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1419 if (paLSPages[iPage].fZero)
1420 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1421 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1422 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1423 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1424 }
1425
1426 pgmPhysPageWriteMonitor(pVM, &pCur->aPages[iPage],
1427 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1428 paLSPages[iPage].fWriteMonitored = 1;
1429 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1430 paLSPages[iPage].fDirty = 1;
1431 paLSPages[iPage].fZero = 0;
1432 paLSPages[iPage].fShared = 0;
1433#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1434 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1435#endif
1436 break;
1437
1438 case PGM_PAGE_STATE_WRITE_MONITORED:
1439 Assert(paLSPages[iPage].fWriteMonitored);
1440 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1441 {
1442#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1443 if (paLSPages[iPage].fWriteMonitoredJustNow)
1444 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1445 else
1446 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
1447#endif
1448 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1449 }
1450 else
1451 {
1452 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1453#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1454 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1455#endif
1456 if (!paLSPages[iPage].fDirty)
1457 {
1458 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1459 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1460 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1461 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1462 }
1463 }
1464 break;
1465
1466 case PGM_PAGE_STATE_ZERO:
1467 case PGM_PAGE_STATE_BALLOONED:
1468 if (!paLSPages[iPage].fZero)
1469 {
1470 if (!paLSPages[iPage].fDirty)
1471 {
1472 paLSPages[iPage].fDirty = 1;
1473 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1474 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1475 }
1476 paLSPages[iPage].fZero = 1;
1477 paLSPages[iPage].fShared = 0;
1478#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1479 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1480#endif
1481 }
1482 break;
1483
1484 case PGM_PAGE_STATE_SHARED:
1485 if (!paLSPages[iPage].fShared)
1486 {
1487 if (!paLSPages[iPage].fDirty)
1488 {
1489 paLSPages[iPage].fDirty = 1;
1490 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1491 if (paLSPages[iPage].fZero)
1492 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1493 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1494 }
1495 paLSPages[iPage].fZero = 0;
1496 paLSPages[iPage].fShared = 1;
1497#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1498 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1499#endif
1500 }
1501 break;
1502 }
1503 }
1504 else
1505 {
1506 /*
1507 * All other types => Ignore the page.
1508 */
1509 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1510 paLSPages[iPage].fIgnore = 1;
1511 if (paLSPages[iPage].fWriteMonitored)
1512 {
1513 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1514 * pages! */
1515 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1516 {
1517 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1518 PGM_PAGE_SET_STATE(pVM, &pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1519 Assert(pVM->pgm.s.cMonitoredPages > 0);
1520 pVM->pgm.s.cMonitoredPages--;
1521 }
1522 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1523 {
1524 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1525 Assert(pVM->pgm.s.cWrittenToPages > 0);
1526 pVM->pgm.s.cWrittenToPages--;
1527 }
1528 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1529 }
1530
1531 /** @todo the counting doesn't quite work out here. fix later? */
1532 if (paLSPages[iPage].fDirty)
1533 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1534 else
1535 {
1536 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1537 if (paLSPages[iPage].fZero)
1538 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1539 }
1540 pVM->pgm.s.LiveSave.cIgnoredPages++;
1541 }
1542 } /* for each page in range */
1543
1544 if (GCPhysCur != 0)
1545 break; /* Yield + ramrange change */
1546 GCPhysCur = pCur->GCPhysLast;
1547 }
1548 } /* for each range */
1549 } while (pCur);
1550 pgmUnlock(pVM);
1551}
1552
1553
1554/**
1555 * Save quiescent RAM pages.
1556 *
1557 * @returns VBox status code.
1558 * @param pVM The cross context VM structure.
1559 * @param pSSM The SSM handle.
1560 * @param fLiveSave Whether it's a live save or not.
1561 * @param uPass The pass number.
1562 */
1563static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1564{
1565 NOREF(fLiveSave);
1566
1567 /*
1568 * The RAM.
1569 */
1570 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1571 RTGCPHYS GCPhysCur = 0;
1572 PPGMRAMRANGE pCur;
1573 bool fFTMDeltaSaveActive = FTMIsDeltaLoadSaveActive(pVM);
1574
1575 pgmLock(pVM);
1576 do
1577 {
1578 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1579 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1580 {
1581 if ( pCur->GCPhysLast > GCPhysCur
1582 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1583 {
1584 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1585 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1586 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1587 GCPhysCur = 0;
1588 for (; iPage < cPages; iPage++)
1589 {
1590 /* Do yield first. */
1591 if ( uPass != SSM_PASS_FINAL
1592 && (iPage & 0x7ff) == 0x100
1593 && PDMR3CritSectYield(&pVM->pgm.s.CritSectX)
1594 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1595 {
1596 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1597 break; /* restart */
1598 }
1599
1600 PPGMPAGE pCurPage = &pCur->aPages[iPage];
1601
1602 /*
1603 * Only save pages that haven't changed since last scan and are dirty.
1604 */
1605 if ( uPass != SSM_PASS_FINAL
1606 && paLSPages)
1607 {
1608 if (!paLSPages[iPage].fDirty)
1609 continue;
1610 if (paLSPages[iPage].fWriteMonitoredJustNow)
1611 continue;
1612 if (paLSPages[iPage].fIgnore)
1613 continue;
1614 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM) /* in case of recent remappings */
1615 continue;
1616 if ( PGM_PAGE_GET_STATE(pCurPage)
1617 != ( paLSPages[iPage].fZero
1618 ? PGM_PAGE_STATE_ZERO
1619 : paLSPages[iPage].fShared
1620 ? PGM_PAGE_STATE_SHARED
1621 : PGM_PAGE_STATE_WRITE_MONITORED))
1622 continue;
1623 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1624 continue;
1625 }
1626 else
1627 {
1628 if ( paLSPages
1629 && !paLSPages[iPage].fDirty
1630 && !paLSPages[iPage].fIgnore)
1631 {
1632#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1633 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1634 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
1635#endif
1636 continue;
1637 }
1638 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1639 continue;
1640 }
1641
1642 /*
1643 * Do the saving outside the PGM critsect since SSM may block on I/O.
1644 */
1645 int rc;
1646 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1647 bool fZero = PGM_PAGE_IS_ZERO(pCurPage);
1648 bool fBallooned = PGM_PAGE_IS_BALLOONED(pCurPage);
1649 bool fSkipped = false;
1650
1651 if (!fZero && !fBallooned)
1652 {
1653 /*
1654 * Copy the page and then save it outside the lock (since any
1655 * SSM call may block).
1656 */
1657 uint8_t abPage[PAGE_SIZE];
1658 PGMPAGEMAPLOCK PgMpLck;
1659 void const *pvPage;
1660 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pCurPage, GCPhys, &pvPage, &PgMpLck);
1661 if (RT_SUCCESS(rc))
1662 {
1663 memcpy(abPage, pvPage, PAGE_SIZE);
1664#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1665 if (paLSPages)
1666 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
1667#endif
1668 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1669 }
1670 pgmUnlock(pVM);
1671 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1672
1673 /* Try save some memory when restoring. */
1674 if (!ASMMemIsZeroPage(pvPage))
1675 {
1676 if (fFTMDeltaSaveActive)
1677 {
1678 if ( PGM_PAGE_IS_WRITTEN_TO(pCurPage)
1679 || PGM_PAGE_IS_FT_DIRTY(pCurPage))
1680 {
1681 if (GCPhys == GCPhysLast + PAGE_SIZE)
1682 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1683 else
1684 {
1685 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1686 SSMR3PutGCPhys(pSSM, GCPhys);
1687 }
1688 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1689 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pCurPage);
1690 PGM_PAGE_CLEAR_FT_DIRTY(pCurPage);
1691 }
1692 /* else nothing changed, so skip it. */
1693 else
1694 fSkipped = true;
1695 }
1696 else
1697 {
1698 if (GCPhys == GCPhysLast + PAGE_SIZE)
1699 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1700 else
1701 {
1702 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1703 SSMR3PutGCPhys(pSSM, GCPhys);
1704 }
1705 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1706 }
1707 }
1708 else
1709 {
1710 if (GCPhys == GCPhysLast + PAGE_SIZE)
1711 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1712 else
1713 {
1714 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1715 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1716 }
1717 }
1718 }
1719 else
1720 {
1721 /*
1722 * Dirty zero or ballooned page.
1723 */
1724#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1725 if (paLSPages)
1726 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
1727#endif
1728 pgmUnlock(pVM);
1729
1730 uint8_t u8RecType = fBallooned ? PGM_STATE_REC_RAM_BALLOONED : PGM_STATE_REC_RAM_ZERO;
1731 if (GCPhys == GCPhysLast + PAGE_SIZE)
1732 rc = SSMR3PutU8(pSSM, u8RecType);
1733 else
1734 {
1735 SSMR3PutU8(pSSM, u8RecType | PGM_STATE_REC_FLAG_ADDR);
1736 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1737 }
1738 }
1739 if (RT_FAILURE(rc))
1740 return rc;
1741
1742 pgmLock(pVM);
1743 if (!fSkipped)
1744 GCPhysLast = GCPhys;
1745 if (paLSPages)
1746 {
1747 paLSPages[iPage].fDirty = 0;
1748 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1749 if (fZero)
1750 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1751 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1752 pVM->pgm.s.LiveSave.cSavedPages++;
1753 }
1754 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1755 {
1756 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1757 break; /* restart */
1758 }
1759
1760 } /* for each page in range */
1761
1762 if (GCPhysCur != 0)
1763 break; /* Yield + ramrange change */
1764 GCPhysCur = pCur->GCPhysLast;
1765 }
1766 } /* for each range */
1767 } while (pCur);
1768
1769 pgmUnlock(pVM);
1770
1771 return VINF_SUCCESS;
1772}
1773
1774
1775/**
1776 * Cleans up RAM pages after a live save.
1777 *
1778 * @param pVM The cross context VM structure.
1779 */
1780static void pgmR3DoneRamPages(PVM pVM)
1781{
1782 /*
1783 * Free the tracking arrays and disable write monitoring.
1784 *
1785 * Play nice with the PGM lock in case we're called while the VM is still
1786 * running. This means we have to delay the freeing since we wish to use
1787 * paLSPages as an indicator of which RAM ranges which we need to scan for
1788 * write monitored pages.
1789 */
1790 void *pvToFree = NULL;
1791 PPGMRAMRANGE pCur;
1792 uint32_t cMonitoredPages = 0;
1793 pgmLock(pVM);
1794 do
1795 {
1796 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1797 {
1798 if (pCur->paLSPages)
1799 {
1800 if (pvToFree)
1801 {
1802 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1803 pgmUnlock(pVM);
1804 MMR3HeapFree(pvToFree);
1805 pvToFree = NULL;
1806 pgmLock(pVM);
1807 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1808 break; /* start over again. */
1809 }
1810
1811 pvToFree = pCur->paLSPages;
1812 pCur->paLSPages = NULL;
1813
1814 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1815 while (iPage--)
1816 {
1817 PPGMPAGE pPage = &pCur->aPages[iPage];
1818 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1819 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1820 {
1821 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1822 cMonitoredPages++;
1823 }
1824 }
1825 }
1826 }
1827 } while (pCur);
1828
1829 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1830 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1831 pVM->pgm.s.cMonitoredPages = 0;
1832 else
1833 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1834
1835 pgmUnlock(pVM);
1836
1837 MMR3HeapFree(pvToFree);
1838 pvToFree = NULL;
1839}
1840
1841
1842/**
1843 * @callback_method_impl{FNSSMINTLIVEEXEC}
1844 */
1845static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1846{
1847 int rc;
1848
1849 /*
1850 * Save the MMIO2 and ROM range IDs in pass 0.
1851 */
1852 if (uPass == 0)
1853 {
1854 rc = pgmR3SaveRamConfig(pVM, pSSM);
1855 if (RT_FAILURE(rc))
1856 return rc;
1857 rc = pgmR3SaveRomRanges(pVM, pSSM);
1858 if (RT_FAILURE(rc))
1859 return rc;
1860 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1861 if (RT_FAILURE(rc))
1862 return rc;
1863 }
1864 /*
1865 * Reset the page-per-second estimate to avoid inflation by the initial
1866 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1867 */
1868 else if (uPass == 7)
1869 {
1870 pVM->pgm.s.LiveSave.cSavedPages = 0;
1871 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1872 }
1873
1874 /*
1875 * Do the scanning.
1876 */
1877 pgmR3ScanRomPages(pVM);
1878 pgmR3ScanMmio2Pages(pVM, uPass);
1879 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1880 pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
1881
1882 /*
1883 * Save the pages.
1884 */
1885 if (uPass == 0)
1886 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1887 else
1888 rc = VINF_SUCCESS;
1889 if (RT_SUCCESS(rc))
1890 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1891 if (RT_SUCCESS(rc))
1892 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1893 if (RT_SUCCESS(rc))
1894 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1895 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
1896
1897 return rc;
1898}
1899
1900
1901/**
1902 * @callback_method_impl{FNSSMINTLIVEVOTE}
1903 */
1904static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1905{
1906 /*
1907 * Update and calculate parameters used in the decision making.
1908 */
1909 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1910
1911 /* update history. */
1912 pgmLock(pVM);
1913 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1914 pgmUnlock(pVM);
1915 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1916 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1917 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1918 + cWrittenToPages;
1919 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1920 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1921 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1922
1923 /* calc shortterm average (4 passes). */
1924 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1925 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1926 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1927 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1928 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1929 uint32_t const cDirtyPagesShort = cTotal / 4;
1930 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1931
1932 /* calc longterm average. */
1933 cTotal = 0;
1934 if (uPass < cHistoryEntries)
1935 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1936 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1937 else
1938 for (i = 0; i < cHistoryEntries; i++)
1939 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1940 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1941 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1942
1943 /* estimate the speed */
1944 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1945 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1946 / ((long double)cNsElapsed / 1000000000.0) );
1947 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1948
1949 /*
1950 * Try make a decision.
1951 */
1952 if ( cDirtyPagesShort <= cDirtyPagesLong
1953 && ( cDirtyNow <= cDirtyPagesShort
1954 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1955 )
1956 )
1957 {
1958 if (uPass > 10)
1959 {
1960 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1961 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1962 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1963 if (cMsMaxDowntime < 32)
1964 cMsMaxDowntime = 32;
1965 if ( ( cMsLeftLong <= cMsMaxDowntime
1966 && cMsLeftShort < cMsMaxDowntime)
1967 || cMsLeftShort < cMsMaxDowntime / 2
1968 )
1969 {
1970 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1971 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1972 return VINF_SUCCESS;
1973 }
1974 }
1975 else
1976 {
1977 if ( ( cDirtyPagesShort <= 128
1978 && cDirtyPagesLong <= 1024)
1979 || cDirtyPagesLong <= 256
1980 )
1981 {
1982 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1983 return VINF_SUCCESS;
1984 }
1985 }
1986 }
1987
1988 /*
1989 * Come up with a completion percentage. Currently this is a simple
1990 * dirty page (long term) vs. total pages ratio + some pass trickery.
1991 */
1992 unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
1993 / (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
1994 if (uPctDirty <= 100)
1995 SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
1996 else
1997 AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
1998 uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
1999
2000 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
2001}
2002
2003
2004/**
2005 * @callback_method_impl{FNSSMINTLIVEPREP}
2006 *
2007 * This will attempt to allocate and initialize the tracking structures. It
2008 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
2009 * pgmR3SaveDone will do the cleanups.
2010 */
2011static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
2012{
2013 /*
2014 * Indicate that we will be using the write monitoring.
2015 */
2016 pgmLock(pVM);
2017 /** @todo find a way of mediating this when more users are added. */
2018 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
2019 {
2020 pgmUnlock(pVM);
2021 AssertLogRelFailedReturn(VERR_PGM_WRITE_MONITOR_ENGAGED);
2022 }
2023 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
2024 pgmUnlock(pVM);
2025
2026 /*
2027 * Initialize the statistics.
2028 */
2029 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
2030 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
2031 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
2032 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
2033 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
2034 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
2035 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
2036 pVM->pgm.s.LiveSave.fActive = true;
2037 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
2038 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
2039 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
2040 pVM->pgm.s.LiveSave.cSavedPages = 0;
2041 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
2042 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
2043
2044 /*
2045 * Per page type.
2046 */
2047 int rc = pgmR3PrepRomPages(pVM);
2048 if (RT_SUCCESS(rc))
2049 rc = pgmR3PrepMmio2Pages(pVM);
2050 if (RT_SUCCESS(rc))
2051 rc = pgmR3PrepRamPages(pVM);
2052
2053 NOREF(pSSM);
2054 return rc;
2055}
2056
2057
2058/**
2059 * @callback_method_impl{FNSSMINTSAVEEXEC}
2060 */
2061static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2062{
2063 int rc = VINF_SUCCESS;
2064 PPGM pPGM = &pVM->pgm.s;
2065
2066 /*
2067 * Lock PGM and set the no-more-writes indicator.
2068 */
2069 pgmLock(pVM);
2070 pVM->pgm.s.fNoMorePhysWrites = true;
2071
2072 /*
2073 * Save basic data (required / unaffected by relocation).
2074 */
2075 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
2076 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
2077 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2078 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
2079
2080 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2081 rc = SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
2082
2083 /*
2084 * Save the (remainder of the) memory.
2085 */
2086 if (RT_SUCCESS(rc))
2087 {
2088 if (pVM->pgm.s.LiveSave.fActive)
2089 {
2090 pgmR3ScanRomPages(pVM);
2091 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2092 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2093
2094 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2095 if (RT_SUCCESS(rc))
2096 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2097 if (RT_SUCCESS(rc))
2098 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2099 }
2100 else
2101 {
2102 rc = pgmR3SaveRamConfig(pVM, pSSM);
2103 if (RT_SUCCESS(rc))
2104 rc = pgmR3SaveRomRanges(pVM, pSSM);
2105 if (RT_SUCCESS(rc))
2106 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2107 if (RT_SUCCESS(rc))
2108 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2109 if (RT_SUCCESS(rc))
2110 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2111 if (RT_SUCCESS(rc))
2112 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2113 if (RT_SUCCESS(rc))
2114 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2115 }
2116 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2117 }
2118
2119 pgmUnlock(pVM);
2120 return rc;
2121}
2122
2123
2124/**
2125 * @callback_method_impl{FNSSMINTSAVEDONE}
2126 */
2127static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2128{
2129 /*
2130 * Do per page type cleanups first.
2131 */
2132 if (pVM->pgm.s.LiveSave.fActive)
2133 {
2134 pgmR3DoneRomPages(pVM);
2135 pgmR3DoneMmio2Pages(pVM);
2136 pgmR3DoneRamPages(pVM);
2137 }
2138
2139 /*
2140 * Clear the live save indicator and disengage write monitoring.
2141 */
2142 pgmLock(pVM);
2143 pVM->pgm.s.LiveSave.fActive = false;
2144 /** @todo this is blindly assuming that we're the only user of write
2145 * monitoring. Fix this when more users are added. */
2146 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2147 pgmUnlock(pVM);
2148
2149 NOREF(pSSM);
2150 return VINF_SUCCESS;
2151}
2152
2153
2154/**
2155 * @callback_method_impl{FNSSMINTLOADPREP}
2156 */
2157static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2158{
2159 /*
2160 * Call the reset function to make sure all the memory is cleared.
2161 */
2162 PGMR3Reset(pVM);
2163 pVM->pgm.s.LiveSave.fActive = false;
2164 NOREF(pSSM);
2165 return VINF_SUCCESS;
2166}
2167
2168
2169/**
2170 * Load an ignored page.
2171 *
2172 * @returns VBox status code.
2173 * @param pSSM The saved state handle.
2174 */
2175static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2176{
2177 uint8_t abPage[PAGE_SIZE];
2178 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2179}
2180
2181
2182/**
2183 * Compares a page with an old save type value.
2184 *
2185 * @returns true if equal, false if not.
2186 * @param pPage The page to compare.
2187 * @param uOldType The old type value from the saved state.
2188 */
2189DECLINLINE(bool) pgmR3CompareNewAndOldPageTypes(PPGMPAGE pPage, uint8_t uOldType)
2190{
2191 uint8_t uOldPageType;
2192 switch (PGM_PAGE_GET_TYPE(pPage))
2193 {
2194 case PGMPAGETYPE_INVALID: uOldPageType = PGMPAGETYPE_OLD_INVALID; break;
2195 case PGMPAGETYPE_RAM: uOldPageType = PGMPAGETYPE_OLD_RAM; break;
2196 case PGMPAGETYPE_MMIO2: uOldPageType = PGMPAGETYPE_OLD_MMIO2; break;
2197 case PGMPAGETYPE_MMIO2_ALIAS_MMIO: uOldPageType = PGMPAGETYPE_OLD_MMIO2_ALIAS_MMIO; break;
2198 case PGMPAGETYPE_ROM_SHADOW: uOldPageType = PGMPAGETYPE_OLD_ROM_SHADOW; break;
2199 case PGMPAGETYPE_ROM: uOldPageType = PGMPAGETYPE_OLD_ROM; break;
2200 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /* fall thru */
2201 case PGMPAGETYPE_MMIO: uOldPageType = PGMPAGETYPE_OLD_MMIO; break;
2202 default:
2203 AssertFailed();
2204 uOldPageType = PGMPAGETYPE_OLD_INVALID;
2205 break;
2206 }
2207 return uOldPageType == uOldType;
2208}
2209
2210
2211/**
2212 * Loads a page without any bits in the saved state, i.e. making sure it's
2213 * really zero.
2214 *
2215 * @returns VBox status code.
2216 * @param pVM The cross context VM structure.
2217 * @param uOldType The page type or PGMPAGETYPE_OLD_INVALID (old saved
2218 * state).
2219 * @param pPage The guest page tracking structure.
2220 * @param GCPhys The page address.
2221 * @param pRam The ram range (logging).
2222 */
2223static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2224{
2225 if ( uOldType != PGMPAGETYPE_OLD_INVALID
2226 && !pgmR3CompareNewAndOldPageTypes(pPage, uOldType))
2227 return VERR_SSM_UNEXPECTED_DATA;
2228
2229 /* I think this should be sufficient. */
2230 if ( !PGM_PAGE_IS_ZERO(pPage)
2231 && !PGM_PAGE_IS_BALLOONED(pPage))
2232 return VERR_SSM_UNEXPECTED_DATA;
2233
2234 NOREF(pVM);
2235 NOREF(GCPhys);
2236 NOREF(pRam);
2237 return VINF_SUCCESS;
2238}
2239
2240
2241/**
2242 * Loads a page from the saved state.
2243 *
2244 * @returns VBox status code.
2245 * @param pVM The cross context VM structure.
2246 * @param pSSM The SSM handle.
2247 * @param uOldType The page type or PGMPAGETYPE_OLD_INVALID (old saved
2248 * state).
2249 * @param pPage The guest page tracking structure.
2250 * @param GCPhys The page address.
2251 * @param pRam The ram range (logging).
2252 */
2253static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2254{
2255 /*
2256 * Match up the type, dealing with MMIO2 aliases (dropped).
2257 */
2258 AssertLogRelMsgReturn( uOldType == PGMPAGETYPE_INVALID
2259 || pgmR3CompareNewAndOldPageTypes(pPage, uOldType)
2260 /* kudge for the expanded PXE bios (r67885) - @bugref{5687}: */
2261 || ( uOldType == PGMPAGETYPE_OLD_RAM
2262 && GCPhys >= 0xed000
2263 && GCPhys <= 0xeffff
2264 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM)
2265 ,
2266 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2267 VERR_SSM_UNEXPECTED_DATA);
2268
2269 /*
2270 * Load the page.
2271 */
2272 PGMPAGEMAPLOCK PgMpLck;
2273 void *pvPage;
2274 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage, &PgMpLck);
2275 if (RT_SUCCESS(rc))
2276 {
2277 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2278 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2279 }
2280
2281 return rc;
2282}
2283
2284
2285/**
2286 * Loads a page (counter part to pgmR3SavePage).
2287 *
2288 * @returns VBox status code, fully bitched errors.
2289 * @param pVM The cross context VM structure.
2290 * @param pSSM The SSM handle.
2291 * @param uOldType The page type.
2292 * @param pPage The page.
2293 * @param GCPhys The page address.
2294 * @param pRam The RAM range (for error messages).
2295 */
2296static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2297{
2298 uint8_t uState;
2299 int rc = SSMR3GetU8(pSSM, &uState);
2300 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2301 if (uState == 0 /* zero */)
2302 rc = pgmR3LoadPageZeroOld(pVM, uOldType, pPage, GCPhys, pRam);
2303 else if (uState == 1)
2304 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uOldType, pPage, GCPhys, pRam);
2305 else
2306 rc = VERR_PGM_INVALID_SAVED_PAGE_STATE;
2307 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uOldType=%d GCPhys=%RGp %s rc=%Rrc\n",
2308 pPage, uState, uOldType, GCPhys, pRam->pszDesc, rc),
2309 rc);
2310 return VINF_SUCCESS;
2311}
2312
2313
2314/**
2315 * Loads a shadowed ROM page.
2316 *
2317 * @returns VBox status code, errors are fully bitched.
2318 * @param pVM The cross context VM structure.
2319 * @param pSSM The saved state handle.
2320 * @param pPage The page.
2321 * @param GCPhys The page address.
2322 * @param pRam The RAM range (for error messages).
2323 */
2324static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2325{
2326 /*
2327 * Load and set the protection first, then load the two pages, the first
2328 * one is the active the other is the passive.
2329 */
2330 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2331 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
2332
2333 uint8_t uProt;
2334 int rc = SSMR3GetU8(pSSM, &uProt);
2335 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2336 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2337 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2338 && enmProt < PGMROMPROT_END,
2339 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2340 VERR_SSM_UNEXPECTED_DATA);
2341
2342 if (pRomPage->enmProt != enmProt)
2343 {
2344 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2345 AssertLogRelRCReturn(rc, rc);
2346 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
2347 }
2348
2349 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2350 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2351 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2352 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2353
2354 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2355 * used down the line (will the 2nd page will be written to the first
2356 * one because of a false TLB hit since the TLB is using GCPhys and
2357 * doesn't check the HCPhys of the desired page). */
2358 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2359 if (RT_SUCCESS(rc))
2360 {
2361 *pPageActive = *pPage;
2362 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2363 }
2364 return rc;
2365}
2366
2367/**
2368 * Ram range flags and bits for older versions of the saved state.
2369 *
2370 * @returns VBox status code.
2371 *
2372 * @param pVM The cross context VM structure.
2373 * @param pSSM The SSM handle.
2374 * @param uVersion The saved state version.
2375 */
2376static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2377{
2378 PPGM pPGM = &pVM->pgm.s;
2379
2380 /*
2381 * Ram range flags and bits.
2382 */
2383 uint32_t i = 0;
2384 for (PPGMRAMRANGE pRam = pPGM->pRamRangesXR3; ; pRam = pRam->pNextR3, i++)
2385 {
2386 /* Check the sequence number / separator. */
2387 uint32_t u32Sep;
2388 int rc = SSMR3GetU32(pSSM, &u32Sep);
2389 if (RT_FAILURE(rc))
2390 return rc;
2391 if (u32Sep == ~0U)
2392 break;
2393 if (u32Sep != i)
2394 {
2395 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2396 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2397 }
2398 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2399
2400 /* Get the range details. */
2401 RTGCPHYS GCPhys;
2402 SSMR3GetGCPhys(pSSM, &GCPhys);
2403 RTGCPHYS GCPhysLast;
2404 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2405 RTGCPHYS cb;
2406 SSMR3GetGCPhys(pSSM, &cb);
2407 uint8_t fHaveBits;
2408 rc = SSMR3GetU8(pSSM, &fHaveBits);
2409 if (RT_FAILURE(rc))
2410 return rc;
2411 if (fHaveBits & ~1)
2412 {
2413 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2414 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2415 }
2416 size_t cchDesc = 0;
2417 char szDesc[256];
2418 szDesc[0] = '\0';
2419 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2420 {
2421 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2422 if (RT_FAILURE(rc))
2423 return rc;
2424 /* Since we've modified the description strings in r45878, only compare
2425 them if the saved state is more recent. */
2426 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2427 cchDesc = strlen(szDesc);
2428 }
2429
2430 /*
2431 * Match it up with the current range.
2432 *
2433 * Note there is a hack for dealing with the high BIOS mapping
2434 * in the old saved state format, this means we might not have
2435 * a 1:1 match on success.
2436 */
2437 if ( ( GCPhys != pRam->GCPhys
2438 || GCPhysLast != pRam->GCPhysLast
2439 || cb != pRam->cb
2440 || ( cchDesc
2441 && strcmp(szDesc, pRam->pszDesc)) )
2442 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2443 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2444 || GCPhys != UINT32_C(0xfff80000)
2445 || GCPhysLast != UINT32_C(0xffffffff)
2446 || pRam->GCPhysLast != GCPhysLast
2447 || pRam->GCPhys < GCPhys
2448 || !fHaveBits)
2449 )
2450 {
2451 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2452 "State : %RGp-%RGp %RGp bytes %s %s\n",
2453 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2454 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2455 /*
2456 * If we're loading a state for debugging purpose, don't make a fuss if
2457 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2458 */
2459 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2460 || GCPhys < 8 * _1M)
2461 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2462 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2463 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2464 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2465
2466 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2467 continue;
2468 }
2469
2470 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2471 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2472 {
2473 /*
2474 * Load the pages one by one.
2475 */
2476 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2477 {
2478 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2479 PPGMPAGE pPage = &pRam->aPages[iPage];
2480 uint8_t uOldType;
2481 rc = SSMR3GetU8(pSSM, &uOldType);
2482 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2483 if (uOldType == PGMPAGETYPE_OLD_ROM_SHADOW)
2484 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2485 else
2486 rc = pgmR3LoadPageOld(pVM, pSSM, uOldType, pPage, GCPhysPage, pRam);
2487 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2488 }
2489 }
2490 else
2491 {
2492 /*
2493 * Old format.
2494 */
2495
2496 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2497 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2498 uint32_t fFlags = 0;
2499 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2500 {
2501 uint16_t u16Flags;
2502 rc = SSMR3GetU16(pSSM, &u16Flags);
2503 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2504 fFlags |= u16Flags;
2505 }
2506
2507 /* Load the bits */
2508 if ( !fHaveBits
2509 && GCPhysLast < UINT32_C(0xe0000000))
2510 {
2511 /*
2512 * Dynamic chunks.
2513 */
2514 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2515 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2516 ("cPages=%#x cPagesInChunk=%#x GCPhys=%RGp %s\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2517 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2518
2519 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2520 {
2521 uint8_t fPresent;
2522 rc = SSMR3GetU8(pSSM, &fPresent);
2523 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2524 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2525 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2526 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2527
2528 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2529 {
2530 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2531 PPGMPAGE pPage = &pRam->aPages[iPage];
2532 if (fPresent)
2533 {
2534 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO
2535 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO)
2536 rc = pgmR3LoadPageToDevNullOld(pSSM);
2537 else
2538 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2539 }
2540 else
2541 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2542 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2543 }
2544 }
2545 }
2546 else if (pRam->pvR3)
2547 {
2548 /*
2549 * MMIO2.
2550 */
2551 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2552 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2553 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2554 AssertLogRelMsgReturn(pRam->pvR3,
2555 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2556 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2557
2558 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2559 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2560 }
2561 else if (GCPhysLast < UINT32_C(0xfff80000))
2562 {
2563 /*
2564 * PCI MMIO, no pages saved.
2565 */
2566 }
2567 else
2568 {
2569 /*
2570 * Load the 0xfff80000..0xffffffff BIOS range.
2571 * It starts with X reserved pages that we have to skip over since
2572 * the RAMRANGE create by the new code won't include those.
2573 */
2574 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2575 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2576 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2577 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2578 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2579 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2580 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2581
2582 /* Skip wasted reserved pages before the ROM. */
2583 while (GCPhys < pRam->GCPhys)
2584 {
2585 rc = pgmR3LoadPageToDevNullOld(pSSM);
2586 GCPhys += PAGE_SIZE;
2587 }
2588
2589 /* Load the bios pages. */
2590 cPages = pRam->cb >> PAGE_SHIFT;
2591 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2592 {
2593 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2594 PPGMPAGE pPage = &pRam->aPages[iPage];
2595
2596 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2597 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2598 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2599 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2600 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2601 }
2602 }
2603 }
2604 }
2605
2606 return VINF_SUCCESS;
2607}
2608
2609
2610/**
2611 * Worker for pgmR3Load and pgmR3LoadLocked.
2612 *
2613 * @returns VBox status code.
2614 *
2615 * @param pVM The cross context VM structure.
2616 * @param pSSM The SSM handle.
2617 * @param uVersion The PGM saved state unit version.
2618 * @param uPass The pass number.
2619 *
2620 * @todo This needs splitting up if more record types or code twists are
2621 * added...
2622 */
2623static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2624{
2625 NOREF(uPass);
2626
2627 /*
2628 * Process page records until we hit the terminator.
2629 */
2630 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2631 PPGMRAMRANGE pRamHint = NULL;
2632 uint8_t id = UINT8_MAX;
2633 uint32_t iPage = UINT32_MAX - 10;
2634 PPGMROMRANGE pRom = NULL;
2635 PPGMREGMMIORANGE pRegMmio = NULL;
2636
2637 /*
2638 * We batch up pages that should be freed instead of calling GMM for
2639 * each and every one of them. Note that we'll lose the pages in most
2640 * failure paths - this should probably be addressed one day.
2641 */
2642 uint32_t cPendingPages = 0;
2643 PGMMFREEPAGESREQ pReq;
2644 int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
2645 AssertLogRelRCReturn(rc, rc);
2646
2647 for (;;)
2648 {
2649 /*
2650 * Get the record type and flags.
2651 */
2652 uint8_t u8;
2653 rc = SSMR3GetU8(pSSM, &u8);
2654 if (RT_FAILURE(rc))
2655 return rc;
2656 if (u8 == PGM_STATE_REC_END)
2657 {
2658 /*
2659 * Finish off any pages pending freeing.
2660 */
2661 if (cPendingPages)
2662 {
2663 Log(("pgmR3LoadMemory: GMMR3FreePagesPerform pVM=%p cPendingPages=%u\n", pVM, cPendingPages));
2664 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2665 AssertLogRelRCReturn(rc, rc);
2666 }
2667 GMMR3FreePagesCleanup(pReq);
2668 return VINF_SUCCESS;
2669 }
2670 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2671 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2672 {
2673 /*
2674 * RAM page.
2675 */
2676 case PGM_STATE_REC_RAM_ZERO:
2677 case PGM_STATE_REC_RAM_RAW:
2678 case PGM_STATE_REC_RAM_BALLOONED:
2679 {
2680 /*
2681 * Get the address and resolve it into a page descriptor.
2682 */
2683 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2684 GCPhys += PAGE_SIZE;
2685 else
2686 {
2687 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2688 if (RT_FAILURE(rc))
2689 return rc;
2690 }
2691 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2692
2693 PPGMPAGE pPage;
2694 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
2695 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2696
2697 /*
2698 * Take action according to the record type.
2699 */
2700 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2701 {
2702 case PGM_STATE_REC_RAM_ZERO:
2703 {
2704 if (PGM_PAGE_IS_ZERO(pPage))
2705 break;
2706
2707 /* Ballooned pages must be unmarked (live snapshot and
2708 teleportation scenarios). */
2709 if (PGM_PAGE_IS_BALLOONED(pPage))
2710 {
2711 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2712 if (uVersion == PGM_SAVED_STATE_VERSION_BALLOON_BROKEN)
2713 break;
2714 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2715 break;
2716 }
2717
2718 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_UNEXPECTED_PAGE_STATE);
2719
2720 /* If this is a ROM page, we must clear it and not try to
2721 * free it. Ditto if the VM is using RamPreAlloc (see
2722 * @bugref{6318}). */
2723 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM
2724 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM_SHADOW
2725 || pVM->pgm.s.fRamPreAlloc)
2726 {
2727 PGMPAGEMAPLOCK PgMpLck;
2728 void *pvDstPage;
2729 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
2730 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2731
2732 ASMMemZeroPage(pvDstPage);
2733 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2734 }
2735 /* Free it only if it's not part of a previously
2736 allocated large page (no need to clear the page). */
2737 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2738 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2739 {
2740 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2741 AssertRCReturn(rc, rc);
2742 }
2743 /** @todo handle large pages (see @bugref{5545}) */
2744 break;
2745 }
2746
2747 case PGM_STATE_REC_RAM_BALLOONED:
2748 {
2749 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2750 if (PGM_PAGE_IS_BALLOONED(pPage))
2751 break;
2752
2753 /* We don't map ballooned pages in our shadow page tables, let's
2754 just free it if allocated and mark as ballooned. See @bugref{5515}. */
2755 if (PGM_PAGE_IS_ALLOCATED(pPage))
2756 {
2757 /** @todo handle large pages + ballooning when it works. (see @bugref{5515},
2758 * @bugref{5545}). */
2759 AssertLogRelMsgReturn( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2760 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED,
2761 ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_LOAD_UNEXPECTED_PAGE_TYPE);
2762
2763 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2764 AssertRCReturn(rc, rc);
2765 }
2766 Assert(PGM_PAGE_IS_ZERO(pPage));
2767 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
2768 break;
2769 }
2770
2771 case PGM_STATE_REC_RAM_RAW:
2772 {
2773 PGMPAGEMAPLOCK PgMpLck;
2774 void *pvDstPage;
2775 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
2776 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2777 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2778 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2779 if (RT_FAILURE(rc))
2780 return rc;
2781 break;
2782 }
2783
2784 default:
2785 AssertMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
2786 }
2787 id = UINT8_MAX;
2788 break;
2789 }
2790
2791 /*
2792 * MMIO2 page.
2793 */
2794 case PGM_STATE_REC_MMIO2_RAW:
2795 case PGM_STATE_REC_MMIO2_ZERO:
2796 {
2797 /*
2798 * Get the ID + page number and resolved that into a MMIO2 page.
2799 */
2800 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2801 iPage++;
2802 else
2803 {
2804 SSMR3GetU8(pSSM, &id);
2805 rc = SSMR3GetU32(pSSM, &iPage);
2806 if (RT_FAILURE(rc))
2807 return rc;
2808 }
2809 if ( !pRegMmio
2810 || pRegMmio->idSavedState != id)
2811 {
2812 for (pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
2813 if ( pRegMmio->idSavedState == id
2814 && (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2))
2815 break;
2816 AssertLogRelMsgReturn(pRegMmio, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_MMIO2_RANGE_NOT_FOUND);
2817 }
2818 AssertLogRelMsgReturn(iPage < (pRegMmio->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRegMmio->RamRange.cb, pRegMmio->RamRange.pszDesc), VERR_PGM_SAVED_MMIO2_PAGE_NOT_FOUND);
2819 void *pvDstPage = (uint8_t *)pRegMmio->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2820
2821 /*
2822 * Load the page bits.
2823 */
2824 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2825 ASMMemZeroPage(pvDstPage);
2826 else
2827 {
2828 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2829 if (RT_FAILURE(rc))
2830 return rc;
2831 }
2832 GCPhys = NIL_RTGCPHYS;
2833 break;
2834 }
2835
2836 /*
2837 * ROM pages.
2838 */
2839 case PGM_STATE_REC_ROM_VIRGIN:
2840 case PGM_STATE_REC_ROM_SHW_RAW:
2841 case PGM_STATE_REC_ROM_SHW_ZERO:
2842 case PGM_STATE_REC_ROM_PROT:
2843 {
2844 /*
2845 * Get the ID + page number and resolved that into a ROM page descriptor.
2846 */
2847 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2848 iPage++;
2849 else
2850 {
2851 SSMR3GetU8(pSSM, &id);
2852 rc = SSMR3GetU32(pSSM, &iPage);
2853 if (RT_FAILURE(rc))
2854 return rc;
2855 }
2856 if ( !pRom
2857 || pRom->idSavedState != id)
2858 {
2859 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2860 if (pRom->idSavedState == id)
2861 break;
2862 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_ROM_RANGE_NOT_FOUND);
2863 }
2864 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
2865 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2866 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2867
2868 /*
2869 * Get and set the protection.
2870 */
2871 uint8_t u8Prot;
2872 rc = SSMR3GetU8(pSSM, &u8Prot);
2873 if (RT_FAILURE(rc))
2874 return rc;
2875 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2876 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_PGM_SAVED_ROM_PAGE_PROT);
2877
2878 if (enmProt != pRomPage->enmProt)
2879 {
2880 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2881 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2882 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2883 GCPhys, enmProt, pRom->pszDesc);
2884 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2885 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2886 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
2887 }
2888 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2889 break; /* done */
2890
2891 /*
2892 * Get the right page descriptor.
2893 */
2894 PPGMPAGE pRealPage;
2895 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2896 {
2897 case PGM_STATE_REC_ROM_VIRGIN:
2898 if (!PGMROMPROT_IS_ROM(enmProt))
2899 pRealPage = &pRomPage->Virgin;
2900 else
2901 pRealPage = NULL;
2902 break;
2903
2904 case PGM_STATE_REC_ROM_SHW_RAW:
2905 case PGM_STATE_REC_ROM_SHW_ZERO:
2906 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2907 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2908 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2909 GCPhys, enmProt, pRom->pszDesc);
2910 if (PGMROMPROT_IS_ROM(enmProt))
2911 pRealPage = &pRomPage->Shadow;
2912 else
2913 pRealPage = NULL;
2914 break;
2915
2916 default: AssertLogRelFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE); /* shut up gcc */
2917 }
2918 if (!pRealPage)
2919 {
2920 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pRealPage, &pRamHint);
2921 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2922 }
2923
2924 /*
2925 * Make it writable and map it (if necessary).
2926 */
2927 void *pvDstPage = NULL;
2928 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2929 {
2930 case PGM_STATE_REC_ROM_SHW_ZERO:
2931 if ( PGM_PAGE_IS_ZERO(pRealPage)
2932 || PGM_PAGE_IS_BALLOONED(pRealPage))
2933 break;
2934 /** @todo implement zero page replacing. */
2935 /* fall thru */
2936 case PGM_STATE_REC_ROM_VIRGIN:
2937 case PGM_STATE_REC_ROM_SHW_RAW:
2938 {
2939 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2940 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2941 break;
2942 }
2943 }
2944
2945 /*
2946 * Load the bits.
2947 */
2948 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2949 {
2950 case PGM_STATE_REC_ROM_SHW_ZERO:
2951 if (pvDstPage)
2952 ASMMemZeroPage(pvDstPage);
2953 break;
2954
2955 case PGM_STATE_REC_ROM_VIRGIN:
2956 case PGM_STATE_REC_ROM_SHW_RAW:
2957 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2958 if (RT_FAILURE(rc))
2959 return rc;
2960 break;
2961 }
2962 GCPhys = NIL_RTGCPHYS;
2963 break;
2964 }
2965
2966 /*
2967 * Unknown type.
2968 */
2969 default:
2970 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
2971 }
2972 } /* forever */
2973}
2974
2975
2976/**
2977 * Worker for pgmR3Load.
2978 *
2979 * @returns VBox status code.
2980 *
2981 * @param pVM The cross context VM structure.
2982 * @param pSSM The SSM handle.
2983 * @param uVersion The saved state version.
2984 */
2985static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2986{
2987 PPGM pPGM = &pVM->pgm.s;
2988 int rc;
2989 uint32_t u32Sep;
2990
2991 /*
2992 * Load basic data (required / unaffected by relocation).
2993 */
2994 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2995 {
2996 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2997 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2998 else
2999 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
3000
3001 AssertLogRelRCReturn(rc, rc);
3002
3003 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3004 {
3005 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3006 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFieldsPrePae[0]);
3007 else
3008 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
3009 AssertLogRelRCReturn(rc, rc);
3010 }
3011 }
3012 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
3013 {
3014 AssertRelease(pVM->cCpus == 1);
3015
3016 PGMOLD pgmOld;
3017 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
3018 AssertLogRelRCReturn(rc, rc);
3019
3020 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
3021 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
3022 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
3023
3024 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
3025 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
3026 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
3027 }
3028 else
3029 {
3030 AssertRelease(pVM->cCpus == 1);
3031
3032 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
3033 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
3034 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
3035
3036 uint32_t cbRamSizeIgnored;
3037 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
3038 if (RT_FAILURE(rc))
3039 return rc;
3040 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
3041
3042 uint32_t u32 = 0;
3043 SSMR3GetUInt(pSSM, &u32);
3044 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
3045 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
3046 RTUINT uGuestMode;
3047 SSMR3GetUInt(pSSM, &uGuestMode);
3048 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
3049
3050 /* check separator. */
3051 SSMR3GetU32(pSSM, &u32Sep);
3052 if (RT_FAILURE(rc))
3053 return rc;
3054 if (u32Sep != (uint32_t)~0)
3055 {
3056 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
3057 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3058 }
3059 }
3060
3061 /*
3062 * Fix the A20 mask.
3063 */
3064 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3065 {
3066 PVMCPU pVCpu = &pVM->aCpus[i];
3067 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
3068 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3069 }
3070
3071 /*
3072 * The guest mappings - skipped now, see re-fixation in the caller.
3073 */
3074 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3075 {
3076 for (uint32_t i = 0; ; i++)
3077 {
3078 rc = SSMR3GetU32(pSSM, &u32Sep); /* sequence number */
3079 if (RT_FAILURE(rc))
3080 return rc;
3081 if (u32Sep == ~0U)
3082 break;
3083 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3084
3085 char szDesc[256];
3086 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
3087 if (RT_FAILURE(rc))
3088 return rc;
3089 RTGCPTR GCPtrIgnore;
3090 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
3091 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
3092 if (RT_FAILURE(rc))
3093 return rc;
3094 }
3095 }
3096
3097 /*
3098 * Load the RAM contents.
3099 */
3100 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
3101 {
3102 if (!pVM->pgm.s.LiveSave.fActive)
3103 {
3104 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3105 {
3106 rc = pgmR3LoadRamConfig(pVM, pSSM);
3107 if (RT_FAILURE(rc))
3108 return rc;
3109 }
3110 rc = pgmR3LoadRomRanges(pVM, pSSM);
3111 if (RT_FAILURE(rc))
3112 return rc;
3113 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3114 if (RT_FAILURE(rc))
3115 return rc;
3116 }
3117
3118 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, SSM_PASS_FINAL);
3119 }
3120 else
3121 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
3122
3123 /* Refresh balloon accounting. */
3124 if (pVM->pgm.s.cBalloonedPages)
3125 {
3126 Log(("pgmR3LoadFinalLocked: pVM=%p cBalloonedPages=%#x\n", pVM, pVM->pgm.s.cBalloonedPages));
3127 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
3128 AssertRCReturn(rc, rc);
3129 }
3130 return rc;
3131}
3132
3133
3134/**
3135 * @callback_method_impl{FNSSMINTLOADEXEC}
3136 */
3137static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3138{
3139 int rc;
3140
3141 /*
3142 * Validate version.
3143 */
3144 if ( ( uPass != SSM_PASS_FINAL
3145 && uVersion != PGM_SAVED_STATE_VERSION
3146 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3147 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3148 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3149 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3150 || ( uVersion != PGM_SAVED_STATE_VERSION
3151 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3152 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3153 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3154 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
3155 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
3156 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3157 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3158 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3159 )
3160 {
3161 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3162 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3163 }
3164
3165 /*
3166 * Do the loading while owning the lock because a bunch of the functions
3167 * we're using requires this.
3168 */
3169 if (uPass != SSM_PASS_FINAL)
3170 {
3171 pgmLock(pVM);
3172 if (uPass != 0)
3173 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3174 else
3175 {
3176 pVM->pgm.s.LiveSave.fActive = true;
3177 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3178 rc = pgmR3LoadRamConfig(pVM, pSSM);
3179 else
3180 rc = VINF_SUCCESS;
3181 if (RT_SUCCESS(rc))
3182 rc = pgmR3LoadRomRanges(pVM, pSSM);
3183 if (RT_SUCCESS(rc))
3184 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3185 if (RT_SUCCESS(rc))
3186 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3187 }
3188 pgmUnlock(pVM);
3189 }
3190 else
3191 {
3192 pgmLock(pVM);
3193 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
3194 pVM->pgm.s.LiveSave.fActive = false;
3195 pgmUnlock(pVM);
3196 if (RT_SUCCESS(rc))
3197 {
3198 /*
3199 * We require a full resync now.
3200 */
3201 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3202 {
3203 PVMCPU pVCpu = &pVM->aCpus[i];
3204 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3205 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3206 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3207 /** @todo For guest PAE, we might get the wrong
3208 * aGCPhysGstPaePDs values now. We should used the
3209 * saved ones... Postponing this since it nothing new
3210 * and PAE/PDPTR needs some general readjusting, see
3211 * @bugref{5880}. */
3212 }
3213
3214 pgmR3HandlerPhysicalUpdateAll(pVM);
3215
3216 /*
3217 * Change the paging mode and restore PGMCPU::GCPhysCR3.
3218 * (The latter requires the CPUM state to be restored already.)
3219 */
3220 if (CPUMR3IsStateRestorePending(pVM))
3221 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3222 N_("PGM was unexpectedly restored before CPUM"));
3223
3224 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3225 {
3226 PVMCPU pVCpu = &pVM->aCpus[i];
3227
3228 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3229 AssertLogRelRCReturn(rc, rc);
3230
3231 /* Update pVM->pgm.s.GCPhysCR3. */
3232 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS || FTMIsDeltaLoadSaveActive(pVM));
3233 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3234 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3235 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3236 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3237 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3238 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3239 else
3240 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3241 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3242
3243 /* Update the PSE, NX flags and validity masks. */
3244 pVCpu->pgm.s.fGst32BitPageSizeExtension = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3245 PGMNotifyNxeChanged(pVCpu, CPUMIsGuestNXEnabled(pVCpu));
3246 }
3247
3248 /*
3249 * Try re-fixate the guest mappings.
3250 */
3251 pVM->pgm.s.fMappingsFixedRestored = false;
3252 if ( pVM->pgm.s.fMappingsFixed
3253 && pgmMapAreMappingsEnabled(pVM))
3254 {
3255#ifndef PGM_WITHOUT_MAPPINGS
3256 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
3257 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
3258 pVM->pgm.s.fMappingsFixed = false;
3259
3260 uint32_t cbRequired;
3261 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
3262 if ( RT_SUCCESS(rc2)
3263 && cbRequired > cbFixed)
3264 rc2 = VERR_OUT_OF_RANGE;
3265 if (RT_SUCCESS(rc2))
3266 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
3267 if (RT_FAILURE(rc2))
3268 {
3269 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
3270 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
3271 pVM->pgm.s.fMappingsFixed = false;
3272 pVM->pgm.s.fMappingsFixedRestored = true;
3273 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
3274 pVM->pgm.s.cbMappingFixed = cbFixed;
3275 }
3276#else
3277 AssertFailed();
3278#endif
3279 }
3280 else
3281 {
3282 /* We used to set fixed + disabled while we only use disabled now,
3283 so wipe the state to avoid any confusion. */
3284 pVM->pgm.s.fMappingsFixed = false;
3285 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3286 pVM->pgm.s.cbMappingFixed = 0;
3287 }
3288
3289 /*
3290 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3291 * doesn't conflict with guest code / data and thereby cause trouble
3292 * when restoring other components like PATM.
3293 */
3294 if (pgmMapAreMappingsFloating(pVM))
3295 {
3296 PVMCPU pVCpu = &pVM->aCpus[0];
3297 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3298 if (RT_FAILURE(rc))
3299 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3300 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3301
3302 /* Make sure to re-sync before executing code. */
3303 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3304 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3305 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3306 }
3307 }
3308 }
3309
3310 return rc;
3311}
3312
3313
3314/**
3315 * @callback_method_impl{FNSSMINTLOADDONE}
3316 */
3317static DECLCALLBACK(int) pgmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3318{
3319 pVM->pgm.s.fRestoreRomPagesOnReset = true;
3320 NOREF(pSSM);
3321 return VINF_SUCCESS;
3322}
3323
3324
3325/**
3326 * Registers the saved state callbacks with SSM.
3327 *
3328 * @returns VBox status code.
3329 * @param pVM The cross context VM structure.
3330 * @param cbRam The RAM size.
3331 */
3332int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3333{
3334 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3335 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3336 NULL, pgmR3SaveExec, pgmR3SaveDone,
3337 pgmR3LoadPrep, pgmR3Load, pgmR3LoadDone);
3338}
3339
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette