VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMSavedState.cpp@ 73009

Last change on this file since 73009 was 70977, checked in by vboxsync, 7 years ago

NEM: Working on PGM notifications. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 128.6 KB
Line 
1/* $Id: PGMSavedState.cpp 70977 2018-02-12 20:45:31Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/stam.h>
25#include <VBox/vmm/ssm.h>
26#include <VBox/vmm/pdmdrv.h>
27#include <VBox/vmm/pdmdev.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vm.h>
30#include "PGMInline.h"
31
32#include <VBox/param.h>
33#include <VBox/err.h>
34#include <VBox/vmm/ftm.h>
35
36#include <iprt/asm.h>
37#include <iprt/assert.h>
38#include <iprt/crc.h>
39#include <iprt/mem.h>
40#include <iprt/sha.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43
44
45/*********************************************************************************************************************************
46* Defined Constants And Macros *
47*********************************************************************************************************************************/
48/** Saved state data unit version. */
49#define PGM_SAVED_STATE_VERSION 14
50/** Saved state data unit version before the PAE PDPE registers. */
51#define PGM_SAVED_STATE_VERSION_PRE_PAE 13
52/** Saved state data unit version after this includes ballooned page flags in
53 * the state (see @bugref{5515}). */
54#define PGM_SAVED_STATE_VERSION_BALLOON_BROKEN 12
55/** Saved state before the balloon change. */
56#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
57/** Saved state data unit version used during 3.1 development, misses the RAM
58 * config. */
59#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
60/** Saved state data unit version for 3.0 (pre teleportation). */
61#define PGM_SAVED_STATE_VERSION_3_0_0 9
62/** Saved state data unit version for 2.2.2 and later. */
63#define PGM_SAVED_STATE_VERSION_2_2_2 8
64/** Saved state data unit version for 2.2.0. */
65#define PGM_SAVED_STATE_VERSION_RR_DESC 7
66/** Saved state data unit version. */
67#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
68
69
70/** @name Sparse state record types
71 * @{ */
72/** Zero page. No data. */
73#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
74/** Raw page. */
75#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
76/** Raw MMIO2 page. */
77#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
78/** Zero MMIO2 page. */
79#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
80/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
81#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
82/** Raw shadowed ROM page. The protection (8-bit) precedes the raw bits. */
83#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
84/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
85#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
86/** ROM protection (8-bit). */
87#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
88/** Ballooned page. No data. */
89#define PGM_STATE_REC_RAM_BALLOONED UINT8_C(0x08)
90/** The last record type. */
91#define PGM_STATE_REC_LAST PGM_STATE_REC_RAM_BALLOONED
92/** End marker. */
93#define PGM_STATE_REC_END UINT8_C(0xff)
94/** Flag indicating that the data is preceded by the page address.
95 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
96 * range ID and a 32-bit page index.
97 */
98#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
99/** @} */
100
101/** The CRC-32 for a zero page. */
102#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
103/** The CRC-32 for a zero half page. */
104#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
105
106
107
108/** @name Old Page types used in older saved states.
109 * @{ */
110/** Old saved state: The usual invalid zero entry. */
111#define PGMPAGETYPE_OLD_INVALID 0
112/** Old saved state: RAM page. (RWX) */
113#define PGMPAGETYPE_OLD_RAM 1
114/** Old saved state: MMIO2 page. (RWX) */
115#define PGMPAGETYPE_OLD_MMIO2 1
116/** Old saved state: MMIO2 page aliased over an MMIO page. (RWX)
117 * See PGMHandlerPhysicalPageAlias(). */
118#define PGMPAGETYPE_OLD_MMIO2_ALIAS_MMIO 2
119/** Old saved state: Shadowed ROM. (RWX) */
120#define PGMPAGETYPE_OLD_ROM_SHADOW 3
121/** Old saved state: ROM page. (R-X) */
122#define PGMPAGETYPE_OLD_ROM 4
123/** Old saved state: MMIO page. (---) */
124#define PGMPAGETYPE_OLD_MMIO 5
125/** @} */
126
127
128/*********************************************************************************************************************************
129* Structures and Typedefs *
130*********************************************************************************************************************************/
131/** For loading old saved states. (pre-smp) */
132typedef struct
133{
134 /** If set no conflict checks are required. (boolean) */
135 bool fMappingsFixed;
136 /** Size of fixed mapping */
137 uint32_t cbMappingFixed;
138 /** Base address (GC) of fixed mapping */
139 RTGCPTR GCPtrMappingFixed;
140 /** A20 gate mask.
141 * Our current approach to A20 emulation is to let REM do it and don't bother
142 * anywhere else. The interesting guests will be operating with it enabled anyway.
143 * But should the need arise, we'll subject physical addresses to this mask. */
144 RTGCPHYS GCPhysA20Mask;
145 /** A20 gate state - boolean! */
146 bool fA20Enabled;
147 /** The guest paging mode. */
148 PGMMODE enmGuestMode;
149} PGMOLD;
150
151
152/*********************************************************************************************************************************
153* Global Variables *
154*********************************************************************************************************************************/
155/** PGM fields to save/load. */
156
157static const SSMFIELD s_aPGMFields[] =
158{
159 SSMFIELD_ENTRY( PGM, fMappingsFixed),
160 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
161 SSMFIELD_ENTRY( PGM, cbMappingFixed),
162 SSMFIELD_ENTRY( PGM, cBalloonedPages),
163 SSMFIELD_ENTRY_TERM()
164};
165
166static const SSMFIELD s_aPGMFieldsPreBalloon[] =
167{
168 SSMFIELD_ENTRY( PGM, fMappingsFixed),
169 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
170 SSMFIELD_ENTRY( PGM, cbMappingFixed),
171 SSMFIELD_ENTRY_TERM()
172};
173
174static const SSMFIELD s_aPGMCpuFields[] =
175{
176 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
177 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
178 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
179 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[0]),
180 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[1]),
181 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[2]),
182 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[3]),
183 SSMFIELD_ENTRY_TERM()
184};
185
186static const SSMFIELD s_aPGMCpuFieldsPrePae[] =
187{
188 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
189 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
190 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
191 SSMFIELD_ENTRY_TERM()
192};
193
194static const SSMFIELD s_aPGMFields_Old[] =
195{
196 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
197 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
198 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
199 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
200 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
201 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
202 SSMFIELD_ENTRY_TERM()
203};
204
205
206/**
207 * Find the ROM tracking structure for the given page.
208 *
209 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
210 * that it's a ROM page.
211 * @param pVM The cross context VM structure.
212 * @param GCPhys The address of the ROM page.
213 */
214static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
215{
216 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
217 pRomRange;
218 pRomRange = pRomRange->CTX_SUFF(pNext))
219 {
220 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
221 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
222 return &pRomRange->aPages[off >> PAGE_SHIFT];
223 }
224 return NULL;
225}
226
227
228/**
229 * Prepares the ROM pages for a live save.
230 *
231 * @returns VBox status code.
232 * @param pVM The cross context VM structure.
233 */
234static int pgmR3PrepRomPages(PVM pVM)
235{
236 /*
237 * Initialize the live save tracking in the ROM page descriptors.
238 */
239 pgmLock(pVM);
240 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
241 {
242 PPGMRAMRANGE pRamHint = NULL;;
243 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
244
245 for (uint32_t iPage = 0; iPage < cPages; iPage++)
246 {
247 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
248 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
249 pRom->aPages[iPage].LiveSave.fDirty = true;
250 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
251 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
252 {
253 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
254 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
255 else
256 {
257 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
258 PPGMPAGE pPage;
259 int rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
260 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
261 if (RT_SUCCESS(rc))
262 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
263 else
264 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
265 }
266 }
267 }
268
269 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
270 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
271 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
272 }
273 pgmUnlock(pVM);
274
275 return VINF_SUCCESS;
276}
277
278
279/**
280 * Assigns IDs to the ROM ranges and saves them.
281 *
282 * @returns VBox status code.
283 * @param pVM The cross context VM structure.
284 * @param pSSM Saved state handle.
285 */
286static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
287{
288 pgmLock(pVM);
289 uint8_t id = 1;
290 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
291 {
292 pRom->idSavedState = id;
293 SSMR3PutU8(pSSM, id);
294 SSMR3PutStrZ(pSSM, ""); /* device name */
295 SSMR3PutU32(pSSM, 0); /* device instance */
296 SSMR3PutU8(pSSM, 0); /* region */
297 SSMR3PutStrZ(pSSM, pRom->pszDesc);
298 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
299 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
300 if (RT_FAILURE(rc))
301 break;
302 }
303 pgmUnlock(pVM);
304 return SSMR3PutU8(pSSM, UINT8_MAX);
305}
306
307
308/**
309 * Loads the ROM range ID assignments.
310 *
311 * @returns VBox status code.
312 *
313 * @param pVM The cross context VM structure.
314 * @param pSSM The saved state handle.
315 */
316static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
317{
318 PGM_LOCK_ASSERT_OWNER(pVM);
319
320 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
321 pRom->idSavedState = UINT8_MAX;
322
323 for (;;)
324 {
325 /*
326 * Read the data.
327 */
328 uint8_t id;
329 int rc = SSMR3GetU8(pSSM, &id);
330 if (RT_FAILURE(rc))
331 return rc;
332 if (id == UINT8_MAX)
333 {
334 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
335 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
336 ("The \"%s\" ROM was not found in the saved state. Probably due to some misconfiguration\n",
337 pRom->pszDesc));
338 return VINF_SUCCESS; /* the end */
339 }
340 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
341
342 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
343 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
344 AssertLogRelRCReturn(rc, rc);
345
346 uint32_t uInstance;
347 SSMR3GetU32(pSSM, &uInstance);
348 uint8_t iRegion;
349 SSMR3GetU8(pSSM, &iRegion);
350
351 char szDesc[64];
352 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
353 AssertLogRelRCReturn(rc, rc);
354
355 RTGCPHYS GCPhys;
356 SSMR3GetGCPhys(pSSM, &GCPhys);
357 RTGCPHYS cb;
358 rc = SSMR3GetGCPhys(pSSM, &cb);
359 if (RT_FAILURE(rc))
360 return rc;
361 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
362 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
363
364 /*
365 * Locate a matching ROM range.
366 */
367 AssertLogRelMsgReturn( uInstance == 0
368 && iRegion == 0
369 && szDevName[0] == '\0',
370 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
371 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
372 PPGMROMRANGE pRom;
373 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
374 {
375 if ( pRom->idSavedState == UINT8_MAX
376 && !strcmp(pRom->pszDesc, szDesc))
377 {
378 pRom->idSavedState = id;
379 break;
380 }
381 }
382 if (!pRom)
383 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
384 } /* forever */
385}
386
387
388/**
389 * Scan ROM pages.
390 *
391 * @param pVM The cross context VM structure.
392 */
393static void pgmR3ScanRomPages(PVM pVM)
394{
395 /*
396 * The shadow ROMs.
397 */
398 pgmLock(pVM);
399 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
400 {
401 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
402 {
403 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
404 for (uint32_t iPage = 0; iPage < cPages; iPage++)
405 {
406 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
407 if (pRomPage->LiveSave.fWrittenTo)
408 {
409 pRomPage->LiveSave.fWrittenTo = false;
410 if (!pRomPage->LiveSave.fDirty)
411 {
412 pRomPage->LiveSave.fDirty = true;
413 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
414 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
415 }
416 pRomPage->LiveSave.fDirtiedRecently = true;
417 }
418 else
419 pRomPage->LiveSave.fDirtiedRecently = false;
420 }
421 }
422 }
423 pgmUnlock(pVM);
424}
425
426
427/**
428 * Takes care of the virgin ROM pages in the first pass.
429 *
430 * This is an attempt at simplifying the handling of ROM pages a little bit.
431 * This ASSUMES that no new ROM ranges will be added and that they won't be
432 * relinked in any way.
433 *
434 * @param pVM The cross context VM structure.
435 * @param pSSM The SSM handle.
436 * @param fLiveSave Whether we're in a live save or not.
437 */
438static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
439{
440 if (FTMIsDeltaLoadSaveActive(pVM))
441 return VINF_SUCCESS; /* nothing to do as nothing has changed here */
442
443 pgmLock(pVM);
444 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
445 {
446 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
447 for (uint32_t iPage = 0; iPage < cPages; iPage++)
448 {
449 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
450 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
451
452 /* Get the virgin page descriptor. */
453 PPGMPAGE pPage;
454 if (PGMROMPROT_IS_ROM(enmProt))
455 pPage = pgmPhysGetPage(pVM, GCPhys);
456 else
457 pPage = &pRom->aPages[iPage].Virgin;
458
459 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
460 int rc = VINF_SUCCESS;
461 char abPage[PAGE_SIZE];
462 if ( !PGM_PAGE_IS_ZERO(pPage)
463 && !PGM_PAGE_IS_BALLOONED(pPage))
464 {
465 void const *pvPage;
466 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
467 if (RT_SUCCESS(rc))
468 memcpy(abPage, pvPage, PAGE_SIZE);
469 }
470 else
471 ASMMemZeroPage(abPage);
472 pgmUnlock(pVM);
473 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
474
475 /* Save it. */
476 if (iPage > 0)
477 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
478 else
479 {
480 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
481 SSMR3PutU8(pSSM, pRom->idSavedState);
482 SSMR3PutU32(pSSM, iPage);
483 }
484 SSMR3PutU8(pSSM, (uint8_t)enmProt);
485 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
486 if (RT_FAILURE(rc))
487 return rc;
488
489 /* Update state. */
490 pgmLock(pVM);
491 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
492 if (fLiveSave)
493 {
494 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
495 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
496 pVM->pgm.s.LiveSave.cSavedPages++;
497 }
498 }
499 }
500 pgmUnlock(pVM);
501 return VINF_SUCCESS;
502}
503
504
505/**
506 * Saves dirty pages in the shadowed ROM ranges.
507 *
508 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
509 *
510 * @returns VBox status code.
511 * @param pVM The cross context VM structure.
512 * @param pSSM The SSM handle.
513 * @param fLiveSave Whether it's a live save or not.
514 * @param fFinalPass Whether this is the final pass or not.
515 */
516static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
517{
518 if (FTMIsDeltaLoadSaveActive(pVM))
519 return VINF_SUCCESS; /* nothing to do as we deal with those pages separately */
520
521 /*
522 * The Shadowed ROMs.
523 *
524 * ASSUMES that the ROM ranges are fixed.
525 * ASSUMES that all the ROM ranges are mapped.
526 */
527 pgmLock(pVM);
528 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
529 {
530 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
531 {
532 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
533 uint32_t iPrevPage = cPages;
534 for (uint32_t iPage = 0; iPage < cPages; iPage++)
535 {
536 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
537 if ( !fLiveSave
538 || ( pRomPage->LiveSave.fDirty
539 && ( ( !pRomPage->LiveSave.fDirtiedRecently
540 && !pRomPage->LiveSave.fWrittenTo)
541 || fFinalPass
542 )
543 )
544 )
545 {
546 uint8_t abPage[PAGE_SIZE];
547 PGMROMPROT enmProt = pRomPage->enmProt;
548 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
549 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(pVM, GCPhys);
550 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage); Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* Shouldn't be ballooned. */
551 int rc = VINF_SUCCESS;
552 if (!fZero)
553 {
554 void const *pvPage;
555 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
556 if (RT_SUCCESS(rc))
557 memcpy(abPage, pvPage, PAGE_SIZE);
558 }
559 if (fLiveSave && RT_SUCCESS(rc))
560 {
561 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
562 pRomPage->LiveSave.fDirty = false;
563 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
564 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
565 pVM->pgm.s.LiveSave.cSavedPages++;
566 }
567 pgmUnlock(pVM);
568 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
569
570 if (iPage - 1U == iPrevPage && iPage > 0)
571 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
572 else
573 {
574 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
575 SSMR3PutU8(pSSM, pRom->idSavedState);
576 SSMR3PutU32(pSSM, iPage);
577 }
578 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
579 if (!fZero)
580 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
581 if (RT_FAILURE(rc))
582 return rc;
583
584 pgmLock(pVM);
585 iPrevPage = iPage;
586 }
587 /*
588 * In the final pass, make sure the protection is in sync.
589 */
590 else if ( fFinalPass
591 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
592 {
593 PGMROMPROT enmProt = pRomPage->enmProt;
594 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
595 pgmUnlock(pVM);
596
597 if (iPage - 1U == iPrevPage && iPage > 0)
598 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
599 else
600 {
601 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
602 SSMR3PutU8(pSSM, pRom->idSavedState);
603 SSMR3PutU32(pSSM, iPage);
604 }
605 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
606 if (RT_FAILURE(rc))
607 return rc;
608
609 pgmLock(pVM);
610 iPrevPage = iPage;
611 }
612 }
613 }
614 }
615 pgmUnlock(pVM);
616 return VINF_SUCCESS;
617}
618
619
620/**
621 * Cleans up ROM pages after a live save.
622 *
623 * @param pVM The cross context VM structure.
624 */
625static void pgmR3DoneRomPages(PVM pVM)
626{
627 NOREF(pVM);
628}
629
630
631/**
632 * Prepares the MMIO2 pages for a live save.
633 *
634 * @returns VBox status code.
635 * @param pVM The cross context VM structure.
636 */
637static int pgmR3PrepMmio2Pages(PVM pVM)
638{
639 /*
640 * Initialize the live save tracking in the MMIO2 ranges.
641 * ASSUME nothing changes here.
642 */
643 pgmLock(pVM);
644 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
645 {
646 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
647 {
648 uint32_t const cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
649 pgmUnlock(pVM);
650
651 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
652 if (!paLSPages)
653 return VERR_NO_MEMORY;
654 for (uint32_t iPage = 0; iPage < cPages; iPage++)
655 {
656 /* Initialize it as a dirty zero page. */
657 paLSPages[iPage].fDirty = true;
658 paLSPages[iPage].cUnchangedScans = 0;
659 paLSPages[iPage].fZero = true;
660 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
661 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
662 }
663
664 pgmLock(pVM);
665 pRegMmio->paLSPages = paLSPages;
666 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
667 }
668 }
669 pgmUnlock(pVM);
670 return VINF_SUCCESS;
671}
672
673
674/**
675 * Assigns IDs to the MMIO2 ranges and saves them.
676 *
677 * @returns VBox status code.
678 * @param pVM The cross context VM structure.
679 * @param pSSM Saved state handle.
680 */
681static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
682{
683 pgmLock(pVM);
684 uint8_t id = 1;
685 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
686 {
687 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
688 {
689 pRegMmio->idSavedState = id;
690 SSMR3PutU8(pSSM, id);
691 SSMR3PutStrZ(pSSM, pRegMmio->pDevInsR3->pReg->szName);
692 SSMR3PutU32(pSSM, pRegMmio->pDevInsR3->iInstance);
693 SSMR3PutU8(pSSM, pRegMmio->iRegion);
694 SSMR3PutStrZ(pSSM, pRegMmio->RamRange.pszDesc);
695 int rc = SSMR3PutGCPhys(pSSM, pRegMmio->RamRange.cb);
696 if (RT_FAILURE(rc))
697 break;
698 id++;
699 }
700 }
701 pgmUnlock(pVM);
702 return SSMR3PutU8(pSSM, UINT8_MAX);
703}
704
705
706/**
707 * Loads the MMIO2 range ID assignments.
708 *
709 * @returns VBox status code.
710 *
711 * @param pVM The cross context VM structure.
712 * @param pSSM The saved state handle.
713 */
714static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
715{
716 PGM_LOCK_ASSERT_OWNER(pVM);
717
718 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
719 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
720 pRegMmio->idSavedState = UINT8_MAX;
721
722 for (;;)
723 {
724 /*
725 * Read the data.
726 */
727 uint8_t id;
728 int rc = SSMR3GetU8(pSSM, &id);
729 if (RT_FAILURE(rc))
730 return rc;
731 if (id == UINT8_MAX)
732 {
733 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
734 AssertLogRelMsg( pRegMmio->idSavedState != UINT8_MAX
735 || !(pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2),
736 ("%s\n", pRegMmio->RamRange.pszDesc));
737 return VINF_SUCCESS; /* the end */
738 }
739 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
740
741 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
742 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
743 AssertLogRelRCReturn(rc, rc);
744
745 uint32_t uInstance;
746 SSMR3GetU32(pSSM, &uInstance);
747 uint8_t iRegion;
748 SSMR3GetU8(pSSM, &iRegion);
749
750 char szDesc[64];
751 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
752 AssertLogRelRCReturn(rc, rc);
753
754 RTGCPHYS cb;
755 rc = SSMR3GetGCPhys(pSSM, &cb);
756 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
757
758 /*
759 * Locate a matching MMIO2 range.
760 */
761 PPGMREGMMIORANGE pRegMmio;
762 for (pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
763 {
764 if ( pRegMmio->idSavedState == UINT8_MAX
765 && pRegMmio->iRegion == iRegion
766 && pRegMmio->pDevInsR3->iInstance == uInstance
767 && (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
768 && !strcmp(pRegMmio->pDevInsR3->pReg->szName, szDevName))
769 {
770 pRegMmio->idSavedState = id;
771 break;
772 }
773 }
774 if (!pRegMmio)
775 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
776 szDesc, szDevName, uInstance, iRegion);
777
778 /*
779 * Validate the configuration, the size of the MMIO2 region should be
780 * the same.
781 */
782 if (cb != pRegMmio->RamRange.cb)
783 {
784 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
785 pRegMmio->RamRange.pszDesc, cb, pRegMmio->RamRange.cb));
786 if (cb > pRegMmio->RamRange.cb) /* bad idea? */
787 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
788 pRegMmio->RamRange.pszDesc, cb, pRegMmio->RamRange.cb);
789 }
790 } /* forever */
791}
792
793
794/**
795 * Scans one MMIO2 page.
796 *
797 * @returns True if changed, false if unchanged.
798 *
799 * @param pVM The cross context VM structure.
800 * @param pbPage The page bits.
801 * @param pLSPage The live save tracking structure for the page.
802 *
803 */
804DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
805{
806 /*
807 * Special handling of zero pages.
808 */
809 bool const fZero = pLSPage->fZero;
810 if (fZero)
811 {
812 if (ASMMemIsZeroPage(pbPage))
813 {
814 /* Not modified. */
815 if (pLSPage->fDirty)
816 pLSPage->cUnchangedScans++;
817 return false;
818 }
819
820 pLSPage->fZero = false;
821 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
822 }
823 else
824 {
825 /*
826 * CRC the first half, if it doesn't match the page is dirty and
827 * we won't check the 2nd half (we'll do that next time).
828 */
829 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
830 if (u32CrcH1 == pLSPage->u32CrcH1)
831 {
832 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
833 if (u32CrcH2 == pLSPage->u32CrcH2)
834 {
835 /* Probably not modified. */
836 if (pLSPage->fDirty)
837 pLSPage->cUnchangedScans++;
838 return false;
839 }
840
841 pLSPage->u32CrcH2 = u32CrcH2;
842 }
843 else
844 {
845 pLSPage->u32CrcH1 = u32CrcH1;
846 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
847 && ASMMemIsZeroPage(pbPage))
848 {
849 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
850 pLSPage->fZero = true;
851 }
852 }
853 }
854
855 /* dirty page path */
856 pLSPage->cUnchangedScans = 0;
857 if (!pLSPage->fDirty)
858 {
859 pLSPage->fDirty = true;
860 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
861 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
862 if (fZero)
863 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
864 }
865 return true;
866}
867
868
869/**
870 * Scan for MMIO2 page modifications.
871 *
872 * @param pVM The cross context VM structure.
873 * @param uPass The pass number.
874 */
875static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
876{
877 /*
878 * Since this is a bit expensive we lower the scan rate after a little while.
879 */
880 if ( ( (uPass & 3) != 0
881 && uPass > 10)
882 || uPass == SSM_PASS_FINAL)
883 return;
884
885 pgmLock(pVM); /* paranoia */
886 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
887 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
888 {
889 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
890 uint32_t cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
891 pgmUnlock(pVM);
892
893 for (uint32_t iPage = 0; iPage < cPages; iPage++)
894 {
895 uint8_t const *pbPage = (uint8_t const *)pRegMmio->pvR3 + iPage * PAGE_SIZE;
896 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
897 }
898
899 pgmLock(pVM);
900 }
901 pgmUnlock(pVM);
902
903}
904
905
906/**
907 * Save quiescent MMIO2 pages.
908 *
909 * @returns VBox status code.
910 * @param pVM The cross context VM structure.
911 * @param pSSM The SSM handle.
912 * @param fLiveSave Whether it's a live save or not.
913 * @param uPass The pass number.
914 */
915static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
916{
917 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
918 * device that we wish to know about changes.) */
919
920 int rc = VINF_SUCCESS;
921 if (uPass == SSM_PASS_FINAL)
922 {
923 /*
924 * The mop up round.
925 */
926 pgmLock(pVM);
927 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3;
928 pRegMmio && RT_SUCCESS(rc);
929 pRegMmio = pRegMmio->pNextR3)
930 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
931 {
932 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
933 uint8_t const *pbPage = (uint8_t const *)pRegMmio->RamRange.pvR3;
934 uint32_t cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
935 uint32_t iPageLast = cPages;
936 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
937 {
938 uint8_t u8Type;
939 if (!fLiveSave)
940 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
941 else
942 {
943 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
944 if ( !paLSPages[iPage].fDirty
945 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
946 {
947 if (paLSPages[iPage].fZero)
948 continue;
949
950 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
951 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
952 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
953 continue;
954 }
955 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
956 pVM->pgm.s.LiveSave.cSavedPages++;
957 }
958
959 if (iPage != 0 && iPage == iPageLast + 1)
960 rc = SSMR3PutU8(pSSM, u8Type);
961 else
962 {
963 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
964 SSMR3PutU8(pSSM, pRegMmio->idSavedState);
965 rc = SSMR3PutU32(pSSM, iPage);
966 }
967 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
968 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
969 if (RT_FAILURE(rc))
970 break;
971 iPageLast = iPage;
972 }
973 }
974 pgmUnlock(pVM);
975 }
976 /*
977 * Reduce the rate after a little while since the current MMIO2 approach is
978 * a bit expensive.
979 * We position it two passes after the scan pass to avoid saving busy pages.
980 */
981 else if ( uPass <= 10
982 || (uPass & 3) == 2)
983 {
984 pgmLock(pVM);
985 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3;
986 pRegMmio && RT_SUCCESS(rc);
987 pRegMmio = pRegMmio->pNextR3)
988 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
989 {
990 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
991 uint8_t const *pbPage = (uint8_t const *)pRegMmio->RamRange.pvR3;
992 uint32_t cPages = pRegMmio->RamRange.cb >> PAGE_SHIFT;
993 uint32_t iPageLast = cPages;
994 pgmUnlock(pVM);
995
996 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
997 {
998 /* Skip clean pages and pages which hasn't quiesced. */
999 if (!paLSPages[iPage].fDirty)
1000 continue;
1001 if (paLSPages[iPage].cUnchangedScans < 3)
1002 continue;
1003 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
1004 continue;
1005
1006 /* Save it. */
1007 bool const fZero = paLSPages[iPage].fZero;
1008 uint8_t abPage[PAGE_SIZE];
1009 if (!fZero)
1010 {
1011 memcpy(abPage, pbPage, PAGE_SIZE);
1012 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
1013 }
1014
1015 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
1016 if (iPage != 0 && iPage == iPageLast + 1)
1017 rc = SSMR3PutU8(pSSM, u8Type);
1018 else
1019 {
1020 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
1021 SSMR3PutU8(pSSM, pRegMmio->idSavedState);
1022 rc = SSMR3PutU32(pSSM, iPage);
1023 }
1024 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
1025 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1026 if (RT_FAILURE(rc))
1027 break;
1028
1029 /* Housekeeping. */
1030 paLSPages[iPage].fDirty = false;
1031 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
1032 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
1033 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
1034 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
1035 pVM->pgm.s.LiveSave.cSavedPages++;
1036 iPageLast = iPage;
1037 }
1038
1039 pgmLock(pVM);
1040 }
1041 pgmUnlock(pVM);
1042 }
1043
1044 return rc;
1045}
1046
1047
1048/**
1049 * Cleans up MMIO2 pages after a live save.
1050 *
1051 * @param pVM The cross context VM structure.
1052 */
1053static void pgmR3DoneMmio2Pages(PVM pVM)
1054{
1055 /*
1056 * Free the tracking structures for the MMIO2 pages.
1057 * We do the freeing outside the lock in case the VM is running.
1058 */
1059 pgmLock(pVM);
1060 for (PPGMREGMMIORANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
1061 if (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
1062 {
1063 void *pvMmio2ToFree = pRegMmio->paLSPages;
1064 if (pvMmio2ToFree)
1065 {
1066 pRegMmio->paLSPages = NULL;
1067 pgmUnlock(pVM);
1068 MMR3HeapFree(pvMmio2ToFree);
1069 pgmLock(pVM);
1070 }
1071 }
1072 pgmUnlock(pVM);
1073}
1074
1075
1076/**
1077 * Prepares the RAM pages for a live save.
1078 *
1079 * @returns VBox status code.
1080 * @param pVM The cross context VM structure.
1081 */
1082static int pgmR3PrepRamPages(PVM pVM)
1083{
1084
1085 /*
1086 * Try allocating tracking structures for the ram ranges.
1087 *
1088 * To avoid lock contention, we leave the lock every time we're allocating
1089 * a new array. This means we'll have to ditch the allocation and start
1090 * all over again if the RAM range list changes in-between.
1091 *
1092 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1093 * for cleaning up.
1094 */
1095 PPGMRAMRANGE pCur;
1096 pgmLock(pVM);
1097 do
1098 {
1099 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1100 {
1101 if ( !pCur->paLSPages
1102 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1103 {
1104 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1105 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1106 pgmUnlock(pVM);
1107 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1108 if (!paLSPages)
1109 return VERR_NO_MEMORY;
1110 pgmLock(pVM);
1111 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1112 {
1113 pgmUnlock(pVM);
1114 MMR3HeapFree(paLSPages);
1115 pgmLock(pVM);
1116 break; /* try again */
1117 }
1118 pCur->paLSPages = paLSPages;
1119
1120 /*
1121 * Initialize the array.
1122 */
1123 uint32_t iPage = cPages;
1124 while (iPage-- > 0)
1125 {
1126 /** @todo yield critsect! (after moving this away from EMT0) */
1127 PCPGMPAGE pPage = &pCur->aPages[iPage];
1128 paLSPages[iPage].cDirtied = 0;
1129 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1130 paLSPages[iPage].fWriteMonitored = 0;
1131 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1132 paLSPages[iPage].u2Reserved = 0;
1133 switch (PGM_PAGE_GET_TYPE(pPage))
1134 {
1135 case PGMPAGETYPE_RAM:
1136 if ( PGM_PAGE_IS_ZERO(pPage)
1137 || PGM_PAGE_IS_BALLOONED(pPage))
1138 {
1139 paLSPages[iPage].fZero = 1;
1140 paLSPages[iPage].fShared = 0;
1141#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1142 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1143#endif
1144 }
1145 else if (PGM_PAGE_IS_SHARED(pPage))
1146 {
1147 paLSPages[iPage].fZero = 0;
1148 paLSPages[iPage].fShared = 1;
1149#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1150 paLSPages[iPage].u32Crc = UINT32_MAX;
1151#endif
1152 }
1153 else
1154 {
1155 paLSPages[iPage].fZero = 0;
1156 paLSPages[iPage].fShared = 0;
1157#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1158 paLSPages[iPage].u32Crc = UINT32_MAX;
1159#endif
1160 }
1161 paLSPages[iPage].fIgnore = 0;
1162 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1163 break;
1164
1165 case PGMPAGETYPE_ROM_SHADOW:
1166 case PGMPAGETYPE_ROM:
1167 {
1168 paLSPages[iPage].fZero = 0;
1169 paLSPages[iPage].fShared = 0;
1170 paLSPages[iPage].fDirty = 0;
1171 paLSPages[iPage].fIgnore = 1;
1172#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1173 paLSPages[iPage].u32Crc = UINT32_MAX;
1174#endif
1175 pVM->pgm.s.LiveSave.cIgnoredPages++;
1176 break;
1177 }
1178
1179 default:
1180 AssertMsgFailed(("%R[pgmpage]", pPage));
1181 RT_FALL_THRU();
1182 case PGMPAGETYPE_MMIO2:
1183 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1184 paLSPages[iPage].fZero = 0;
1185 paLSPages[iPage].fShared = 0;
1186 paLSPages[iPage].fDirty = 0;
1187 paLSPages[iPage].fIgnore = 1;
1188#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1189 paLSPages[iPage].u32Crc = UINT32_MAX;
1190#endif
1191 pVM->pgm.s.LiveSave.cIgnoredPages++;
1192 break;
1193
1194 case PGMPAGETYPE_MMIO:
1195 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
1196 paLSPages[iPage].fZero = 0;
1197 paLSPages[iPage].fShared = 0;
1198 paLSPages[iPage].fDirty = 0;
1199 paLSPages[iPage].fIgnore = 1;
1200#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1201 paLSPages[iPage].u32Crc = UINT32_MAX;
1202#endif
1203 pVM->pgm.s.LiveSave.cIgnoredPages++;
1204 break;
1205 }
1206 }
1207 }
1208 }
1209 } while (pCur);
1210 pgmUnlock(pVM);
1211
1212 return VINF_SUCCESS;
1213}
1214
1215
1216/**
1217 * Saves the RAM configuration.
1218 *
1219 * @returns VBox status code.
1220 * @param pVM The cross context VM structure.
1221 * @param pSSM The saved state handle.
1222 */
1223static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1224{
1225 uint32_t cbRamHole = 0;
1226 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1227 AssertRCReturn(rc, rc);
1228
1229 uint64_t cbRam = 0;
1230 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1231 AssertRCReturn(rc, rc);
1232
1233 SSMR3PutU32(pSSM, cbRamHole);
1234 return SSMR3PutU64(pSSM, cbRam);
1235}
1236
1237
1238/**
1239 * Loads and verifies the RAM configuration.
1240 *
1241 * @returns VBox status code.
1242 * @param pVM The cross context VM structure.
1243 * @param pSSM The saved state handle.
1244 */
1245static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1246{
1247 uint32_t cbRamHoleCfg = 0;
1248 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1249 AssertRCReturn(rc, rc);
1250
1251 uint64_t cbRamCfg = 0;
1252 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1253 AssertRCReturn(rc, rc);
1254
1255 uint32_t cbRamHoleSaved;
1256 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1257
1258 uint64_t cbRamSaved;
1259 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1260 AssertRCReturn(rc, rc);
1261
1262 if ( cbRamHoleCfg != cbRamHoleSaved
1263 || cbRamCfg != cbRamSaved)
1264 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1265 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1266 return VINF_SUCCESS;
1267}
1268
1269#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1270
1271/**
1272 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1273 * info with it.
1274 *
1275 * @param pVM The cross context VM structure.
1276 * @param pCur The current RAM range.
1277 * @param paLSPages The current array of live save page tracking
1278 * structures.
1279 * @param iPage The page index.
1280 */
1281static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1282{
1283 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1284 PGMPAGEMAPLOCK PgMpLck;
1285 void const *pvPage;
1286 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
1287 if (RT_SUCCESS(rc))
1288 {
1289 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1290 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1291 }
1292 else
1293 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1294}
1295
1296
1297/**
1298 * Verifies the CRC-32 for a page given it's raw bits.
1299 *
1300 * @param pvPage The page bits.
1301 * @param pCur The current RAM range.
1302 * @param paLSPages The current array of live save page tracking
1303 * structures.
1304 * @param iPage The page index.
1305 */
1306static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1307{
1308 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1309 {
1310 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1311 Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
1312 && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
1313 || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1314 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1315 ("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
1316 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
1317 }
1318}
1319
1320
1321/**
1322 * Verifies the CRC-32 for a RAM page.
1323 *
1324 * @param pVM The cross context VM structure.
1325 * @param pCur The current RAM range.
1326 * @param paLSPages The current array of live save page tracking
1327 * structures.
1328 * @param iPage The page index.
1329 */
1330static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1331{
1332 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1333 {
1334 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1335 PGMPAGEMAPLOCK PgMpLck;
1336 void const *pvPage;
1337 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
1338 if (RT_SUCCESS(rc))
1339 {
1340 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
1341 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1342 }
1343 }
1344}
1345
1346#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1347
1348/**
1349 * Scan for RAM page modifications and reprotect them.
1350 *
1351 * @param pVM The cross context VM structure.
1352 * @param fFinalPass Whether this is the final pass or not.
1353 */
1354static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1355{
1356 /*
1357 * The RAM.
1358 */
1359 RTGCPHYS GCPhysCur = 0;
1360 PPGMRAMRANGE pCur;
1361 pgmLock(pVM);
1362 do
1363 {
1364 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1365 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1366 {
1367 if ( pCur->GCPhysLast > GCPhysCur
1368 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1369 {
1370 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1371 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1372 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1373 GCPhysCur = 0;
1374 for (; iPage < cPages; iPage++)
1375 {
1376 /* Do yield first. */
1377 if ( !fFinalPass
1378#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1379 && (iPage & 0x7ff) == 0x100
1380#endif
1381 && PDMR3CritSectYield(&pVM->pgm.s.CritSectX)
1382 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1383 {
1384 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1385 break; /* restart */
1386 }
1387
1388 /* Skip already ignored pages. */
1389 if (paLSPages[iPage].fIgnore)
1390 continue;
1391
1392 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1393 {
1394 /*
1395 * A RAM page.
1396 */
1397 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1398 {
1399 case PGM_PAGE_STATE_ALLOCATED:
1400 /** @todo Optimize this: Don't always re-enable write
1401 * monitoring if the page is known to be very busy. */
1402 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1403 {
1404 AssertMsg(paLSPages[iPage].fWriteMonitored,
1405 ("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
1406 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1407 Assert(pVM->pgm.s.cWrittenToPages > 0);
1408 pVM->pgm.s.cWrittenToPages--;
1409 }
1410 else
1411 {
1412 AssertMsg(!paLSPages[iPage].fWriteMonitored,
1413 ("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
1414 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1415 }
1416
1417 if (!paLSPages[iPage].fDirty)
1418 {
1419 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1420 if (paLSPages[iPage].fZero)
1421 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1422 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1423 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1424 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1425 }
1426
1427 pgmPhysPageWriteMonitor(pVM, &pCur->aPages[iPage],
1428 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1429 paLSPages[iPage].fWriteMonitored = 1;
1430 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1431 paLSPages[iPage].fDirty = 1;
1432 paLSPages[iPage].fZero = 0;
1433 paLSPages[iPage].fShared = 0;
1434#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1435 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1436#endif
1437 break;
1438
1439 case PGM_PAGE_STATE_WRITE_MONITORED:
1440 Assert(paLSPages[iPage].fWriteMonitored);
1441 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1442 {
1443#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1444 if (paLSPages[iPage].fWriteMonitoredJustNow)
1445 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1446 else
1447 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
1448#endif
1449 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1450 }
1451 else
1452 {
1453 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1454#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1455 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1456#endif
1457 if (!paLSPages[iPage].fDirty)
1458 {
1459 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1460 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1461 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1462 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1463 }
1464 }
1465 break;
1466
1467 case PGM_PAGE_STATE_ZERO:
1468 case PGM_PAGE_STATE_BALLOONED:
1469 if (!paLSPages[iPage].fZero)
1470 {
1471 if (!paLSPages[iPage].fDirty)
1472 {
1473 paLSPages[iPage].fDirty = 1;
1474 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1475 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1476 }
1477 paLSPages[iPage].fZero = 1;
1478 paLSPages[iPage].fShared = 0;
1479#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1480 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1481#endif
1482 }
1483 break;
1484
1485 case PGM_PAGE_STATE_SHARED:
1486 if (!paLSPages[iPage].fShared)
1487 {
1488 if (!paLSPages[iPage].fDirty)
1489 {
1490 paLSPages[iPage].fDirty = 1;
1491 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1492 if (paLSPages[iPage].fZero)
1493 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1494 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1495 }
1496 paLSPages[iPage].fZero = 0;
1497 paLSPages[iPage].fShared = 1;
1498#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1499 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1500#endif
1501 }
1502 break;
1503 }
1504 }
1505 else
1506 {
1507 /*
1508 * All other types => Ignore the page.
1509 */
1510 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1511 paLSPages[iPage].fIgnore = 1;
1512 if (paLSPages[iPage].fWriteMonitored)
1513 {
1514 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1515 * pages! */
1516 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1517 {
1518 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1519 PGM_PAGE_SET_STATE(pVM, &pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1520 Assert(pVM->pgm.s.cMonitoredPages > 0);
1521 pVM->pgm.s.cMonitoredPages--;
1522 }
1523 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1524 {
1525 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1526 Assert(pVM->pgm.s.cWrittenToPages > 0);
1527 pVM->pgm.s.cWrittenToPages--;
1528 }
1529 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1530 }
1531
1532 /** @todo the counting doesn't quite work out here. fix later? */
1533 if (paLSPages[iPage].fDirty)
1534 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1535 else
1536 {
1537 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1538 if (paLSPages[iPage].fZero)
1539 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1540 }
1541 pVM->pgm.s.LiveSave.cIgnoredPages++;
1542 }
1543 } /* for each page in range */
1544
1545 if (GCPhysCur != 0)
1546 break; /* Yield + ramrange change */
1547 GCPhysCur = pCur->GCPhysLast;
1548 }
1549 } /* for each range */
1550 } while (pCur);
1551 pgmUnlock(pVM);
1552}
1553
1554
1555/**
1556 * Save quiescent RAM pages.
1557 *
1558 * @returns VBox status code.
1559 * @param pVM The cross context VM structure.
1560 * @param pSSM The SSM handle.
1561 * @param fLiveSave Whether it's a live save or not.
1562 * @param uPass The pass number.
1563 */
1564static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1565{
1566 NOREF(fLiveSave);
1567
1568 /*
1569 * The RAM.
1570 */
1571 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1572 RTGCPHYS GCPhysCur = 0;
1573 PPGMRAMRANGE pCur;
1574 bool fFTMDeltaSaveActive = FTMIsDeltaLoadSaveActive(pVM);
1575
1576 pgmLock(pVM);
1577 do
1578 {
1579 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1580 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1581 {
1582 if ( pCur->GCPhysLast > GCPhysCur
1583 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1584 {
1585 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1586 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1587 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1588 GCPhysCur = 0;
1589 for (; iPage < cPages; iPage++)
1590 {
1591 /* Do yield first. */
1592 if ( uPass != SSM_PASS_FINAL
1593 && (iPage & 0x7ff) == 0x100
1594 && PDMR3CritSectYield(&pVM->pgm.s.CritSectX)
1595 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1596 {
1597 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1598 break; /* restart */
1599 }
1600
1601 PPGMPAGE pCurPage = &pCur->aPages[iPage];
1602
1603 /*
1604 * Only save pages that haven't changed since last scan and are dirty.
1605 */
1606 if ( uPass != SSM_PASS_FINAL
1607 && paLSPages)
1608 {
1609 if (!paLSPages[iPage].fDirty)
1610 continue;
1611 if (paLSPages[iPage].fWriteMonitoredJustNow)
1612 continue;
1613 if (paLSPages[iPage].fIgnore)
1614 continue;
1615 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM) /* in case of recent remappings */
1616 continue;
1617 if ( PGM_PAGE_GET_STATE(pCurPage)
1618 != ( paLSPages[iPage].fZero
1619 ? PGM_PAGE_STATE_ZERO
1620 : paLSPages[iPage].fShared
1621 ? PGM_PAGE_STATE_SHARED
1622 : PGM_PAGE_STATE_WRITE_MONITORED))
1623 continue;
1624 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1625 continue;
1626 }
1627 else
1628 {
1629 if ( paLSPages
1630 && !paLSPages[iPage].fDirty
1631 && !paLSPages[iPage].fIgnore)
1632 {
1633#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1634 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1635 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
1636#endif
1637 continue;
1638 }
1639 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1640 continue;
1641 }
1642
1643 /*
1644 * Do the saving outside the PGM critsect since SSM may block on I/O.
1645 */
1646 int rc;
1647 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1648 bool fZero = PGM_PAGE_IS_ZERO(pCurPage);
1649 bool fBallooned = PGM_PAGE_IS_BALLOONED(pCurPage);
1650 bool fSkipped = false;
1651
1652 if (!fZero && !fBallooned)
1653 {
1654 /*
1655 * Copy the page and then save it outside the lock (since any
1656 * SSM call may block).
1657 */
1658 uint8_t abPage[PAGE_SIZE];
1659 PGMPAGEMAPLOCK PgMpLck;
1660 void const *pvPage;
1661 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pCurPage, GCPhys, &pvPage, &PgMpLck);
1662 if (RT_SUCCESS(rc))
1663 {
1664 memcpy(abPage, pvPage, PAGE_SIZE);
1665#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1666 if (paLSPages)
1667 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
1668#endif
1669 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1670 }
1671 pgmUnlock(pVM);
1672 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1673
1674 /* Try save some memory when restoring. */
1675 if (!ASMMemIsZeroPage(pvPage))
1676 {
1677 if (fFTMDeltaSaveActive)
1678 {
1679 if ( PGM_PAGE_IS_WRITTEN_TO(pCurPage)
1680 || PGM_PAGE_IS_FT_DIRTY(pCurPage))
1681 {
1682 if (GCPhys == GCPhysLast + PAGE_SIZE)
1683 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1684 else
1685 {
1686 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1687 SSMR3PutGCPhys(pSSM, GCPhys);
1688 }
1689 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1690 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pCurPage);
1691 PGM_PAGE_CLEAR_FT_DIRTY(pCurPage);
1692 }
1693 /* else nothing changed, so skip it. */
1694 else
1695 fSkipped = true;
1696 }
1697 else
1698 {
1699 if (GCPhys == GCPhysLast + PAGE_SIZE)
1700 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1701 else
1702 {
1703 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1704 SSMR3PutGCPhys(pSSM, GCPhys);
1705 }
1706 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1707 }
1708 }
1709 else
1710 {
1711 if (GCPhys == GCPhysLast + PAGE_SIZE)
1712 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1713 else
1714 {
1715 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1716 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1717 }
1718 }
1719 }
1720 else
1721 {
1722 /*
1723 * Dirty zero or ballooned page.
1724 */
1725#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1726 if (paLSPages)
1727 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
1728#endif
1729 pgmUnlock(pVM);
1730
1731 uint8_t u8RecType = fBallooned ? PGM_STATE_REC_RAM_BALLOONED : PGM_STATE_REC_RAM_ZERO;
1732 if (GCPhys == GCPhysLast + PAGE_SIZE)
1733 rc = SSMR3PutU8(pSSM, u8RecType);
1734 else
1735 {
1736 SSMR3PutU8(pSSM, u8RecType | PGM_STATE_REC_FLAG_ADDR);
1737 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1738 }
1739 }
1740 if (RT_FAILURE(rc))
1741 return rc;
1742
1743 pgmLock(pVM);
1744 if (!fSkipped)
1745 GCPhysLast = GCPhys;
1746 if (paLSPages)
1747 {
1748 paLSPages[iPage].fDirty = 0;
1749 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1750 if (fZero)
1751 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1752 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1753 pVM->pgm.s.LiveSave.cSavedPages++;
1754 }
1755 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1756 {
1757 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1758 break; /* restart */
1759 }
1760
1761 } /* for each page in range */
1762
1763 if (GCPhysCur != 0)
1764 break; /* Yield + ramrange change */
1765 GCPhysCur = pCur->GCPhysLast;
1766 }
1767 } /* for each range */
1768 } while (pCur);
1769
1770 pgmUnlock(pVM);
1771
1772 return VINF_SUCCESS;
1773}
1774
1775
1776/**
1777 * Cleans up RAM pages after a live save.
1778 *
1779 * @param pVM The cross context VM structure.
1780 */
1781static void pgmR3DoneRamPages(PVM pVM)
1782{
1783 /*
1784 * Free the tracking arrays and disable write monitoring.
1785 *
1786 * Play nice with the PGM lock in case we're called while the VM is still
1787 * running. This means we have to delay the freeing since we wish to use
1788 * paLSPages as an indicator of which RAM ranges which we need to scan for
1789 * write monitored pages.
1790 */
1791 void *pvToFree = NULL;
1792 PPGMRAMRANGE pCur;
1793 uint32_t cMonitoredPages = 0;
1794 pgmLock(pVM);
1795 do
1796 {
1797 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1798 {
1799 if (pCur->paLSPages)
1800 {
1801 if (pvToFree)
1802 {
1803 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1804 pgmUnlock(pVM);
1805 MMR3HeapFree(pvToFree);
1806 pvToFree = NULL;
1807 pgmLock(pVM);
1808 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1809 break; /* start over again. */
1810 }
1811
1812 pvToFree = pCur->paLSPages;
1813 pCur->paLSPages = NULL;
1814
1815 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1816 while (iPage--)
1817 {
1818 PPGMPAGE pPage = &pCur->aPages[iPage];
1819 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1820 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1821 {
1822 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1823 cMonitoredPages++;
1824 }
1825 }
1826 }
1827 }
1828 } while (pCur);
1829
1830 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1831 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1832 pVM->pgm.s.cMonitoredPages = 0;
1833 else
1834 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1835
1836 pgmUnlock(pVM);
1837
1838 MMR3HeapFree(pvToFree);
1839 pvToFree = NULL;
1840}
1841
1842
1843/**
1844 * @callback_method_impl{FNSSMINTLIVEEXEC}
1845 */
1846static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1847{
1848 int rc;
1849
1850 /*
1851 * Save the MMIO2 and ROM range IDs in pass 0.
1852 */
1853 if (uPass == 0)
1854 {
1855 rc = pgmR3SaveRamConfig(pVM, pSSM);
1856 if (RT_FAILURE(rc))
1857 return rc;
1858 rc = pgmR3SaveRomRanges(pVM, pSSM);
1859 if (RT_FAILURE(rc))
1860 return rc;
1861 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1862 if (RT_FAILURE(rc))
1863 return rc;
1864 }
1865 /*
1866 * Reset the page-per-second estimate to avoid inflation by the initial
1867 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1868 */
1869 else if (uPass == 7)
1870 {
1871 pVM->pgm.s.LiveSave.cSavedPages = 0;
1872 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1873 }
1874
1875 /*
1876 * Do the scanning.
1877 */
1878 pgmR3ScanRomPages(pVM);
1879 pgmR3ScanMmio2Pages(pVM, uPass);
1880 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1881 pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
1882
1883 /*
1884 * Save the pages.
1885 */
1886 if (uPass == 0)
1887 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1888 else
1889 rc = VINF_SUCCESS;
1890 if (RT_SUCCESS(rc))
1891 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1892 if (RT_SUCCESS(rc))
1893 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1894 if (RT_SUCCESS(rc))
1895 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1896 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
1897
1898 return rc;
1899}
1900
1901
1902/**
1903 * @callback_method_impl{FNSSMINTLIVEVOTE}
1904 */
1905static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1906{
1907 /*
1908 * Update and calculate parameters used in the decision making.
1909 */
1910 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1911
1912 /* update history. */
1913 pgmLock(pVM);
1914 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1915 pgmUnlock(pVM);
1916 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1917 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1918 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1919 + cWrittenToPages;
1920 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1921 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1922 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1923
1924 /* calc shortterm average (4 passes). */
1925 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1926 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1927 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1928 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1929 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1930 uint32_t const cDirtyPagesShort = cTotal / 4;
1931 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1932
1933 /* calc longterm average. */
1934 cTotal = 0;
1935 if (uPass < cHistoryEntries)
1936 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1937 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1938 else
1939 for (i = 0; i < cHistoryEntries; i++)
1940 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1941 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1942 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1943
1944 /* estimate the speed */
1945 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1946 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1947 / ((long double)cNsElapsed / 1000000000.0) );
1948 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1949
1950 /*
1951 * Try make a decision.
1952 */
1953 if ( cDirtyPagesShort <= cDirtyPagesLong
1954 && ( cDirtyNow <= cDirtyPagesShort
1955 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1956 )
1957 )
1958 {
1959 if (uPass > 10)
1960 {
1961 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1962 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1963 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1964 if (cMsMaxDowntime < 32)
1965 cMsMaxDowntime = 32;
1966 if ( ( cMsLeftLong <= cMsMaxDowntime
1967 && cMsLeftShort < cMsMaxDowntime)
1968 || cMsLeftShort < cMsMaxDowntime / 2
1969 )
1970 {
1971 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1972 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1973 return VINF_SUCCESS;
1974 }
1975 }
1976 else
1977 {
1978 if ( ( cDirtyPagesShort <= 128
1979 && cDirtyPagesLong <= 1024)
1980 || cDirtyPagesLong <= 256
1981 )
1982 {
1983 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1984 return VINF_SUCCESS;
1985 }
1986 }
1987 }
1988
1989 /*
1990 * Come up with a completion percentage. Currently this is a simple
1991 * dirty page (long term) vs. total pages ratio + some pass trickery.
1992 */
1993 unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
1994 / (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
1995 if (uPctDirty <= 100)
1996 SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
1997 else
1998 AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
1999 uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
2000
2001 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
2002}
2003
2004
2005/**
2006 * @callback_method_impl{FNSSMINTLIVEPREP}
2007 *
2008 * This will attempt to allocate and initialize the tracking structures. It
2009 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
2010 * pgmR3SaveDone will do the cleanups.
2011 */
2012static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
2013{
2014 /*
2015 * Indicate that we will be using the write monitoring.
2016 */
2017 pgmLock(pVM);
2018 /** @todo find a way of mediating this when more users are added. */
2019 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
2020 {
2021 pgmUnlock(pVM);
2022 AssertLogRelFailedReturn(VERR_PGM_WRITE_MONITOR_ENGAGED);
2023 }
2024 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
2025 pgmUnlock(pVM);
2026
2027 /*
2028 * Initialize the statistics.
2029 */
2030 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
2031 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
2032 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
2033 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
2034 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
2035 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
2036 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
2037 pVM->pgm.s.LiveSave.fActive = true;
2038 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
2039 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
2040 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
2041 pVM->pgm.s.LiveSave.cSavedPages = 0;
2042 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
2043 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
2044
2045 /*
2046 * Per page type.
2047 */
2048 int rc = pgmR3PrepRomPages(pVM);
2049 if (RT_SUCCESS(rc))
2050 rc = pgmR3PrepMmio2Pages(pVM);
2051 if (RT_SUCCESS(rc))
2052 rc = pgmR3PrepRamPages(pVM);
2053
2054 NOREF(pSSM);
2055 return rc;
2056}
2057
2058
2059/**
2060 * @callback_method_impl{FNSSMINTSAVEEXEC}
2061 */
2062static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2063{
2064 int rc = VINF_SUCCESS;
2065 PPGM pPGM = &pVM->pgm.s;
2066
2067 /*
2068 * Lock PGM and set the no-more-writes indicator.
2069 */
2070 pgmLock(pVM);
2071 pVM->pgm.s.fNoMorePhysWrites = true;
2072
2073 /*
2074 * Save basic data (required / unaffected by relocation).
2075 */
2076 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
2077 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
2078 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2079 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
2080
2081 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2082 rc = SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
2083
2084 /*
2085 * Save the (remainder of the) memory.
2086 */
2087 if (RT_SUCCESS(rc))
2088 {
2089 if (pVM->pgm.s.LiveSave.fActive)
2090 {
2091 pgmR3ScanRomPages(pVM);
2092 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2093 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2094
2095 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2096 if (RT_SUCCESS(rc))
2097 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2098 if (RT_SUCCESS(rc))
2099 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2100 }
2101 else
2102 {
2103 rc = pgmR3SaveRamConfig(pVM, pSSM);
2104 if (RT_SUCCESS(rc))
2105 rc = pgmR3SaveRomRanges(pVM, pSSM);
2106 if (RT_SUCCESS(rc))
2107 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2108 if (RT_SUCCESS(rc))
2109 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2110 if (RT_SUCCESS(rc))
2111 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2112 if (RT_SUCCESS(rc))
2113 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2114 if (RT_SUCCESS(rc))
2115 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2116 }
2117 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2118 }
2119
2120 pgmUnlock(pVM);
2121 return rc;
2122}
2123
2124
2125/**
2126 * @callback_method_impl{FNSSMINTSAVEDONE}
2127 */
2128static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2129{
2130 /*
2131 * Do per page type cleanups first.
2132 */
2133 if (pVM->pgm.s.LiveSave.fActive)
2134 {
2135 pgmR3DoneRomPages(pVM);
2136 pgmR3DoneMmio2Pages(pVM);
2137 pgmR3DoneRamPages(pVM);
2138 }
2139
2140 /*
2141 * Clear the live save indicator and disengage write monitoring.
2142 */
2143 pgmLock(pVM);
2144 pVM->pgm.s.LiveSave.fActive = false;
2145 /** @todo this is blindly assuming that we're the only user of write
2146 * monitoring. Fix this when more users are added. */
2147 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2148 pgmUnlock(pVM);
2149
2150 NOREF(pSSM);
2151 return VINF_SUCCESS;
2152}
2153
2154
2155/**
2156 * @callback_method_impl{FNSSMINTLOADPREP}
2157 */
2158static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2159{
2160 /*
2161 * Call the reset function to make sure all the memory is cleared.
2162 */
2163 PGMR3Reset(pVM);
2164 pVM->pgm.s.LiveSave.fActive = false;
2165 NOREF(pSSM);
2166 return VINF_SUCCESS;
2167}
2168
2169
2170/**
2171 * Load an ignored page.
2172 *
2173 * @returns VBox status code.
2174 * @param pSSM The saved state handle.
2175 */
2176static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2177{
2178 uint8_t abPage[PAGE_SIZE];
2179 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2180}
2181
2182
2183/**
2184 * Compares a page with an old save type value.
2185 *
2186 * @returns true if equal, false if not.
2187 * @param pPage The page to compare.
2188 * @param uOldType The old type value from the saved state.
2189 */
2190DECLINLINE(bool) pgmR3CompareNewAndOldPageTypes(PPGMPAGE pPage, uint8_t uOldType)
2191{
2192 uint8_t uOldPageType;
2193 switch (PGM_PAGE_GET_TYPE(pPage))
2194 {
2195 case PGMPAGETYPE_INVALID: uOldPageType = PGMPAGETYPE_OLD_INVALID; break;
2196 case PGMPAGETYPE_RAM: uOldPageType = PGMPAGETYPE_OLD_RAM; break;
2197 case PGMPAGETYPE_MMIO2: uOldPageType = PGMPAGETYPE_OLD_MMIO2; break;
2198 case PGMPAGETYPE_MMIO2_ALIAS_MMIO: uOldPageType = PGMPAGETYPE_OLD_MMIO2_ALIAS_MMIO; break;
2199 case PGMPAGETYPE_ROM_SHADOW: uOldPageType = PGMPAGETYPE_OLD_ROM_SHADOW; break;
2200 case PGMPAGETYPE_ROM: uOldPageType = PGMPAGETYPE_OLD_ROM; break;
2201 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: RT_FALL_THRU();
2202 case PGMPAGETYPE_MMIO: uOldPageType = PGMPAGETYPE_OLD_MMIO; break;
2203 default:
2204 AssertFailed();
2205 uOldPageType = PGMPAGETYPE_OLD_INVALID;
2206 break;
2207 }
2208 return uOldPageType == uOldType;
2209}
2210
2211
2212/**
2213 * Loads a page without any bits in the saved state, i.e. making sure it's
2214 * really zero.
2215 *
2216 * @returns VBox status code.
2217 * @param pVM The cross context VM structure.
2218 * @param uOldType The page type or PGMPAGETYPE_OLD_INVALID (old saved
2219 * state).
2220 * @param pPage The guest page tracking structure.
2221 * @param GCPhys The page address.
2222 * @param pRam The ram range (logging).
2223 */
2224static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2225{
2226 if ( uOldType != PGMPAGETYPE_OLD_INVALID
2227 && !pgmR3CompareNewAndOldPageTypes(pPage, uOldType))
2228 return VERR_SSM_UNEXPECTED_DATA;
2229
2230 /* I think this should be sufficient. */
2231 if ( !PGM_PAGE_IS_ZERO(pPage)
2232 && !PGM_PAGE_IS_BALLOONED(pPage))
2233 return VERR_SSM_UNEXPECTED_DATA;
2234
2235 NOREF(pVM);
2236 NOREF(GCPhys);
2237 NOREF(pRam);
2238 return VINF_SUCCESS;
2239}
2240
2241
2242/**
2243 * Loads a page from the saved state.
2244 *
2245 * @returns VBox status code.
2246 * @param pVM The cross context VM structure.
2247 * @param pSSM The SSM handle.
2248 * @param uOldType The page type or PGMPAGETYPE_OLD_INVALID (old saved
2249 * state).
2250 * @param pPage The guest page tracking structure.
2251 * @param GCPhys The page address.
2252 * @param pRam The ram range (logging).
2253 */
2254static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2255{
2256 /*
2257 * Match up the type, dealing with MMIO2 aliases (dropped).
2258 */
2259 AssertLogRelMsgReturn( uOldType == PGMPAGETYPE_INVALID
2260 || pgmR3CompareNewAndOldPageTypes(pPage, uOldType)
2261 /* kudge for the expanded PXE bios (r67885) - @bugref{5687}: */
2262 || ( uOldType == PGMPAGETYPE_OLD_RAM
2263 && GCPhys >= 0xed000
2264 && GCPhys <= 0xeffff
2265 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM)
2266 ,
2267 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2268 VERR_SSM_UNEXPECTED_DATA);
2269
2270 /*
2271 * Load the page.
2272 */
2273 PGMPAGEMAPLOCK PgMpLck;
2274 void *pvPage;
2275 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage, &PgMpLck);
2276 if (RT_SUCCESS(rc))
2277 {
2278 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2279 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2280 }
2281
2282 return rc;
2283}
2284
2285
2286/**
2287 * Loads a page (counter part to pgmR3SavePage).
2288 *
2289 * @returns VBox status code, fully bitched errors.
2290 * @param pVM The cross context VM structure.
2291 * @param pSSM The SSM handle.
2292 * @param uOldType The page type.
2293 * @param pPage The page.
2294 * @param GCPhys The page address.
2295 * @param pRam The RAM range (for error messages).
2296 */
2297static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2298{
2299 uint8_t uState;
2300 int rc = SSMR3GetU8(pSSM, &uState);
2301 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2302 if (uState == 0 /* zero */)
2303 rc = pgmR3LoadPageZeroOld(pVM, uOldType, pPage, GCPhys, pRam);
2304 else if (uState == 1)
2305 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uOldType, pPage, GCPhys, pRam);
2306 else
2307 rc = VERR_PGM_INVALID_SAVED_PAGE_STATE;
2308 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uOldType=%d GCPhys=%RGp %s rc=%Rrc\n",
2309 pPage, uState, uOldType, GCPhys, pRam->pszDesc, rc),
2310 rc);
2311 return VINF_SUCCESS;
2312}
2313
2314
2315/**
2316 * Loads a shadowed ROM page.
2317 *
2318 * @returns VBox status code, errors are fully bitched.
2319 * @param pVM The cross context VM structure.
2320 * @param pSSM The saved state handle.
2321 * @param pPage The page.
2322 * @param GCPhys The page address.
2323 * @param pRam The RAM range (for error messages).
2324 */
2325static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2326{
2327 /*
2328 * Load and set the protection first, then load the two pages, the first
2329 * one is the active the other is the passive.
2330 */
2331 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2332 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
2333
2334 uint8_t uProt;
2335 int rc = SSMR3GetU8(pSSM, &uProt);
2336 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2337 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2338 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2339 && enmProt < PGMROMPROT_END,
2340 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2341 VERR_SSM_UNEXPECTED_DATA);
2342
2343 if (pRomPage->enmProt != enmProt)
2344 {
2345 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2346 AssertLogRelRCReturn(rc, rc);
2347 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
2348 }
2349
2350 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2351 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2352 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2353 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2354
2355 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2356 * used down the line (will the 2nd page will be written to the first
2357 * one because of a false TLB hit since the TLB is using GCPhys and
2358 * doesn't check the HCPhys of the desired page). */
2359 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2360 if (RT_SUCCESS(rc))
2361 {
2362 *pPageActive = *pPage;
2363 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2364 }
2365 return rc;
2366}
2367
2368/**
2369 * Ram range flags and bits for older versions of the saved state.
2370 *
2371 * @returns VBox status code.
2372 *
2373 * @param pVM The cross context VM structure.
2374 * @param pSSM The SSM handle.
2375 * @param uVersion The saved state version.
2376 */
2377static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2378{
2379 PPGM pPGM = &pVM->pgm.s;
2380
2381 /*
2382 * Ram range flags and bits.
2383 */
2384 uint32_t i = 0;
2385 for (PPGMRAMRANGE pRam = pPGM->pRamRangesXR3; ; pRam = pRam->pNextR3, i++)
2386 {
2387 /* Check the sequence number / separator. */
2388 uint32_t u32Sep;
2389 int rc = SSMR3GetU32(pSSM, &u32Sep);
2390 if (RT_FAILURE(rc))
2391 return rc;
2392 if (u32Sep == ~0U)
2393 break;
2394 if (u32Sep != i)
2395 {
2396 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2397 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2398 }
2399 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2400
2401 /* Get the range details. */
2402 RTGCPHYS GCPhys;
2403 SSMR3GetGCPhys(pSSM, &GCPhys);
2404 RTGCPHYS GCPhysLast;
2405 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2406 RTGCPHYS cb;
2407 SSMR3GetGCPhys(pSSM, &cb);
2408 uint8_t fHaveBits;
2409 rc = SSMR3GetU8(pSSM, &fHaveBits);
2410 if (RT_FAILURE(rc))
2411 return rc;
2412 if (fHaveBits & ~1)
2413 {
2414 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2415 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2416 }
2417 size_t cchDesc = 0;
2418 char szDesc[256];
2419 szDesc[0] = '\0';
2420 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2421 {
2422 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2423 if (RT_FAILURE(rc))
2424 return rc;
2425 /* Since we've modified the description strings in r45878, only compare
2426 them if the saved state is more recent. */
2427 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2428 cchDesc = strlen(szDesc);
2429 }
2430
2431 /*
2432 * Match it up with the current range.
2433 *
2434 * Note there is a hack for dealing with the high BIOS mapping
2435 * in the old saved state format, this means we might not have
2436 * a 1:1 match on success.
2437 */
2438 if ( ( GCPhys != pRam->GCPhys
2439 || GCPhysLast != pRam->GCPhysLast
2440 || cb != pRam->cb
2441 || ( cchDesc
2442 && strcmp(szDesc, pRam->pszDesc)) )
2443 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2444 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2445 || GCPhys != UINT32_C(0xfff80000)
2446 || GCPhysLast != UINT32_C(0xffffffff)
2447 || pRam->GCPhysLast != GCPhysLast
2448 || pRam->GCPhys < GCPhys
2449 || !fHaveBits)
2450 )
2451 {
2452 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2453 "State : %RGp-%RGp %RGp bytes %s %s\n",
2454 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2455 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2456 /*
2457 * If we're loading a state for debugging purpose, don't make a fuss if
2458 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2459 */
2460 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2461 || GCPhys < 8 * _1M)
2462 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2463 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2464 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2465 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2466
2467 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2468 continue;
2469 }
2470
2471 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2472 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2473 {
2474 /*
2475 * Load the pages one by one.
2476 */
2477 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2478 {
2479 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2480 PPGMPAGE pPage = &pRam->aPages[iPage];
2481 uint8_t uOldType;
2482 rc = SSMR3GetU8(pSSM, &uOldType);
2483 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2484 if (uOldType == PGMPAGETYPE_OLD_ROM_SHADOW)
2485 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2486 else
2487 rc = pgmR3LoadPageOld(pVM, pSSM, uOldType, pPage, GCPhysPage, pRam);
2488 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2489 }
2490 }
2491 else
2492 {
2493 /*
2494 * Old format.
2495 */
2496
2497 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2498 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2499 uint32_t fFlags = 0;
2500 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2501 {
2502 uint16_t u16Flags;
2503 rc = SSMR3GetU16(pSSM, &u16Flags);
2504 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2505 fFlags |= u16Flags;
2506 }
2507
2508 /* Load the bits */
2509 if ( !fHaveBits
2510 && GCPhysLast < UINT32_C(0xe0000000))
2511 {
2512 /*
2513 * Dynamic chunks.
2514 */
2515 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2516 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2517 ("cPages=%#x cPagesInChunk=%#x GCPhys=%RGp %s\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2518 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2519
2520 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2521 {
2522 uint8_t fPresent;
2523 rc = SSMR3GetU8(pSSM, &fPresent);
2524 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2525 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2526 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2527 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2528
2529 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2530 {
2531 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2532 PPGMPAGE pPage = &pRam->aPages[iPage];
2533 if (fPresent)
2534 {
2535 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO
2536 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO)
2537 rc = pgmR3LoadPageToDevNullOld(pSSM);
2538 else
2539 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2540 }
2541 else
2542 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2543 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2544 }
2545 }
2546 }
2547 else if (pRam->pvR3)
2548 {
2549 /*
2550 * MMIO2.
2551 */
2552 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2553 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2554 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2555 AssertLogRelMsgReturn(pRam->pvR3,
2556 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2557 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2558
2559 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2560 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2561 }
2562 else if (GCPhysLast < UINT32_C(0xfff80000))
2563 {
2564 /*
2565 * PCI MMIO, no pages saved.
2566 */
2567 }
2568 else
2569 {
2570 /*
2571 * Load the 0xfff80000..0xffffffff BIOS range.
2572 * It starts with X reserved pages that we have to skip over since
2573 * the RAMRANGE create by the new code won't include those.
2574 */
2575 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2576 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2577 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2578 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2579 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2580 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2581 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2582
2583 /* Skip wasted reserved pages before the ROM. */
2584 while (GCPhys < pRam->GCPhys)
2585 {
2586 rc = pgmR3LoadPageToDevNullOld(pSSM);
2587 GCPhys += PAGE_SIZE;
2588 }
2589
2590 /* Load the bios pages. */
2591 cPages = pRam->cb >> PAGE_SHIFT;
2592 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2593 {
2594 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2595 PPGMPAGE pPage = &pRam->aPages[iPage];
2596
2597 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2598 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2599 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2600 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2601 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2602 }
2603 }
2604 }
2605 }
2606
2607 return VINF_SUCCESS;
2608}
2609
2610
2611/**
2612 * Worker for pgmR3Load and pgmR3LoadLocked.
2613 *
2614 * @returns VBox status code.
2615 *
2616 * @param pVM The cross context VM structure.
2617 * @param pSSM The SSM handle.
2618 * @param uVersion The PGM saved state unit version.
2619 * @param uPass The pass number.
2620 *
2621 * @todo This needs splitting up if more record types or code twists are
2622 * added...
2623 */
2624static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2625{
2626 NOREF(uPass);
2627
2628 /*
2629 * Process page records until we hit the terminator.
2630 */
2631 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2632 PPGMRAMRANGE pRamHint = NULL;
2633 uint8_t id = UINT8_MAX;
2634 uint32_t iPage = UINT32_MAX - 10;
2635 PPGMROMRANGE pRom = NULL;
2636 PPGMREGMMIORANGE pRegMmio = NULL;
2637
2638 /*
2639 * We batch up pages that should be freed instead of calling GMM for
2640 * each and every one of them. Note that we'll lose the pages in most
2641 * failure paths - this should probably be addressed one day.
2642 */
2643 uint32_t cPendingPages = 0;
2644 PGMMFREEPAGESREQ pReq;
2645 int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
2646 AssertLogRelRCReturn(rc, rc);
2647
2648 for (;;)
2649 {
2650 /*
2651 * Get the record type and flags.
2652 */
2653 uint8_t u8;
2654 rc = SSMR3GetU8(pSSM, &u8);
2655 if (RT_FAILURE(rc))
2656 return rc;
2657 if (u8 == PGM_STATE_REC_END)
2658 {
2659 /*
2660 * Finish off any pages pending freeing.
2661 */
2662 if (cPendingPages)
2663 {
2664 Log(("pgmR3LoadMemory: GMMR3FreePagesPerform pVM=%p cPendingPages=%u\n", pVM, cPendingPages));
2665 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2666 AssertLogRelRCReturn(rc, rc);
2667 }
2668 GMMR3FreePagesCleanup(pReq);
2669 return VINF_SUCCESS;
2670 }
2671 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2672 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2673 {
2674 /*
2675 * RAM page.
2676 */
2677 case PGM_STATE_REC_RAM_ZERO:
2678 case PGM_STATE_REC_RAM_RAW:
2679 case PGM_STATE_REC_RAM_BALLOONED:
2680 {
2681 /*
2682 * Get the address and resolve it into a page descriptor.
2683 */
2684 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2685 GCPhys += PAGE_SIZE;
2686 else
2687 {
2688 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2689 if (RT_FAILURE(rc))
2690 return rc;
2691 }
2692 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2693
2694 PPGMPAGE pPage;
2695 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
2696 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2697
2698 /*
2699 * Take action according to the record type.
2700 */
2701 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2702 {
2703 case PGM_STATE_REC_RAM_ZERO:
2704 {
2705 if (PGM_PAGE_IS_ZERO(pPage))
2706 break;
2707
2708 /* Ballooned pages must be unmarked (live snapshot and
2709 teleportation scenarios). */
2710 if (PGM_PAGE_IS_BALLOONED(pPage))
2711 {
2712 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2713 if (uVersion == PGM_SAVED_STATE_VERSION_BALLOON_BROKEN)
2714 break;
2715 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2716 break;
2717 }
2718
2719 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_UNEXPECTED_PAGE_STATE);
2720
2721 /* If this is a ROM page, we must clear it and not try to
2722 * free it. Ditto if the VM is using RamPreAlloc (see
2723 * @bugref{6318}). */
2724 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM
2725 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM_SHADOW
2726 || pVM->pgm.s.fRamPreAlloc)
2727 {
2728 PGMPAGEMAPLOCK PgMpLck;
2729 void *pvDstPage;
2730 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
2731 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2732
2733 ASMMemZeroPage(pvDstPage);
2734 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2735 }
2736 /* Free it only if it's not part of a previously
2737 allocated large page (no need to clear the page). */
2738 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2739 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2740 {
2741 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys, (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
2742 AssertRCReturn(rc, rc);
2743 }
2744 /** @todo handle large pages (see @bugref{5545}) */
2745 break;
2746 }
2747
2748 case PGM_STATE_REC_RAM_BALLOONED:
2749 {
2750 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2751 if (PGM_PAGE_IS_BALLOONED(pPage))
2752 break;
2753
2754 /* We don't map ballooned pages in our shadow page tables, let's
2755 just free it if allocated and mark as ballooned. See @bugref{5515}. */
2756 if (PGM_PAGE_IS_ALLOCATED(pPage))
2757 {
2758 /** @todo handle large pages + ballooning when it works. (see @bugref{5515},
2759 * @bugref{5545}). */
2760 AssertLogRelMsgReturn( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2761 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED,
2762 ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_LOAD_UNEXPECTED_PAGE_TYPE);
2763
2764 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys, (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
2765 AssertRCReturn(rc, rc);
2766 }
2767 Assert(PGM_PAGE_IS_ZERO(pPage));
2768 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
2769 break;
2770 }
2771
2772 case PGM_STATE_REC_RAM_RAW:
2773 {
2774 PGMPAGEMAPLOCK PgMpLck;
2775 void *pvDstPage;
2776 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
2777 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2778 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2779 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2780 if (RT_FAILURE(rc))
2781 return rc;
2782 break;
2783 }
2784
2785 default:
2786 AssertMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
2787 }
2788 id = UINT8_MAX;
2789 break;
2790 }
2791
2792 /*
2793 * MMIO2 page.
2794 */
2795 case PGM_STATE_REC_MMIO2_RAW:
2796 case PGM_STATE_REC_MMIO2_ZERO:
2797 {
2798 /*
2799 * Get the ID + page number and resolved that into a MMIO2 page.
2800 */
2801 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2802 iPage++;
2803 else
2804 {
2805 SSMR3GetU8(pSSM, &id);
2806 rc = SSMR3GetU32(pSSM, &iPage);
2807 if (RT_FAILURE(rc))
2808 return rc;
2809 }
2810 if ( !pRegMmio
2811 || pRegMmio->idSavedState != id)
2812 {
2813 for (pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
2814 if ( pRegMmio->idSavedState == id
2815 && (pRegMmio->fFlags & PGMREGMMIORANGE_F_MMIO2))
2816 break;
2817 AssertLogRelMsgReturn(pRegMmio, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_MMIO2_RANGE_NOT_FOUND);
2818 }
2819 AssertLogRelMsgReturn(iPage < (pRegMmio->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRegMmio->RamRange.cb, pRegMmio->RamRange.pszDesc), VERR_PGM_SAVED_MMIO2_PAGE_NOT_FOUND);
2820 void *pvDstPage = (uint8_t *)pRegMmio->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2821
2822 /*
2823 * Load the page bits.
2824 */
2825 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2826 ASMMemZeroPage(pvDstPage);
2827 else
2828 {
2829 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2830 if (RT_FAILURE(rc))
2831 return rc;
2832 }
2833 GCPhys = NIL_RTGCPHYS;
2834 break;
2835 }
2836
2837 /*
2838 * ROM pages.
2839 */
2840 case PGM_STATE_REC_ROM_VIRGIN:
2841 case PGM_STATE_REC_ROM_SHW_RAW:
2842 case PGM_STATE_REC_ROM_SHW_ZERO:
2843 case PGM_STATE_REC_ROM_PROT:
2844 {
2845 /*
2846 * Get the ID + page number and resolved that into a ROM page descriptor.
2847 */
2848 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2849 iPage++;
2850 else
2851 {
2852 SSMR3GetU8(pSSM, &id);
2853 rc = SSMR3GetU32(pSSM, &iPage);
2854 if (RT_FAILURE(rc))
2855 return rc;
2856 }
2857 if ( !pRom
2858 || pRom->idSavedState != id)
2859 {
2860 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2861 if (pRom->idSavedState == id)
2862 break;
2863 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_ROM_RANGE_NOT_FOUND);
2864 }
2865 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
2866 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2867 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2868
2869 /*
2870 * Get and set the protection.
2871 */
2872 uint8_t u8Prot;
2873 rc = SSMR3GetU8(pSSM, &u8Prot);
2874 if (RT_FAILURE(rc))
2875 return rc;
2876 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2877 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_PGM_SAVED_ROM_PAGE_PROT);
2878
2879 if (enmProt != pRomPage->enmProt)
2880 {
2881 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2882 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2883 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2884 GCPhys, enmProt, pRom->pszDesc);
2885 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2886 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2887 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
2888 }
2889 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2890 break; /* done */
2891
2892 /*
2893 * Get the right page descriptor.
2894 */
2895 PPGMPAGE pRealPage;
2896 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2897 {
2898 case PGM_STATE_REC_ROM_VIRGIN:
2899 if (!PGMROMPROT_IS_ROM(enmProt))
2900 pRealPage = &pRomPage->Virgin;
2901 else
2902 pRealPage = NULL;
2903 break;
2904
2905 case PGM_STATE_REC_ROM_SHW_RAW:
2906 case PGM_STATE_REC_ROM_SHW_ZERO:
2907 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2908 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2909 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2910 GCPhys, enmProt, pRom->pszDesc);
2911 if (PGMROMPROT_IS_ROM(enmProt))
2912 pRealPage = &pRomPage->Shadow;
2913 else
2914 pRealPage = NULL;
2915 break;
2916
2917 default: AssertLogRelFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE); /* shut up gcc */
2918 }
2919 if (!pRealPage)
2920 {
2921 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pRealPage, &pRamHint);
2922 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2923 }
2924
2925 /*
2926 * Make it writable and map it (if necessary).
2927 */
2928 void *pvDstPage = NULL;
2929 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2930 {
2931 case PGM_STATE_REC_ROM_SHW_ZERO:
2932 if ( PGM_PAGE_IS_ZERO(pRealPage)
2933 || PGM_PAGE_IS_BALLOONED(pRealPage))
2934 break;
2935 /** @todo implement zero page replacing. */
2936 RT_FALL_THRU();
2937 case PGM_STATE_REC_ROM_VIRGIN:
2938 case PGM_STATE_REC_ROM_SHW_RAW:
2939 {
2940 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2941 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2942 break;
2943 }
2944 }
2945
2946 /*
2947 * Load the bits.
2948 */
2949 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2950 {
2951 case PGM_STATE_REC_ROM_SHW_ZERO:
2952 if (pvDstPage)
2953 ASMMemZeroPage(pvDstPage);
2954 break;
2955
2956 case PGM_STATE_REC_ROM_VIRGIN:
2957 case PGM_STATE_REC_ROM_SHW_RAW:
2958 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2959 if (RT_FAILURE(rc))
2960 return rc;
2961 break;
2962 }
2963 GCPhys = NIL_RTGCPHYS;
2964 break;
2965 }
2966
2967 /*
2968 * Unknown type.
2969 */
2970 default:
2971 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
2972 }
2973 } /* forever */
2974}
2975
2976
2977/**
2978 * Worker for pgmR3Load.
2979 *
2980 * @returns VBox status code.
2981 *
2982 * @param pVM The cross context VM structure.
2983 * @param pSSM The SSM handle.
2984 * @param uVersion The saved state version.
2985 */
2986static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2987{
2988 PPGM pPGM = &pVM->pgm.s;
2989 int rc;
2990 uint32_t u32Sep;
2991
2992 /*
2993 * Load basic data (required / unaffected by relocation).
2994 */
2995 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2996 {
2997 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2998 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2999 else
3000 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
3001
3002 AssertLogRelRCReturn(rc, rc);
3003
3004 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3005 {
3006 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3007 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFieldsPrePae[0]);
3008 else
3009 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
3010 AssertLogRelRCReturn(rc, rc);
3011 }
3012 }
3013 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
3014 {
3015 AssertRelease(pVM->cCpus == 1);
3016
3017 PGMOLD pgmOld;
3018 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
3019 AssertLogRelRCReturn(rc, rc);
3020
3021 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
3022 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
3023 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
3024
3025 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
3026 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
3027 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
3028 }
3029 else
3030 {
3031 AssertRelease(pVM->cCpus == 1);
3032
3033 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
3034 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
3035 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
3036
3037 uint32_t cbRamSizeIgnored;
3038 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
3039 if (RT_FAILURE(rc))
3040 return rc;
3041 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
3042
3043 uint32_t u32 = 0;
3044 SSMR3GetUInt(pSSM, &u32);
3045 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
3046 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
3047 RTUINT uGuestMode;
3048 SSMR3GetUInt(pSSM, &uGuestMode);
3049 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
3050
3051 /* check separator. */
3052 SSMR3GetU32(pSSM, &u32Sep);
3053 if (RT_FAILURE(rc))
3054 return rc;
3055 if (u32Sep != (uint32_t)~0)
3056 {
3057 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
3058 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3059 }
3060 }
3061
3062 /*
3063 * Fix the A20 mask.
3064 */
3065 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3066 {
3067 PVMCPU pVCpu = &pVM->aCpus[i];
3068 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
3069 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3070 }
3071
3072 /*
3073 * The guest mappings - skipped now, see re-fixation in the caller.
3074 */
3075 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3076 {
3077 for (uint32_t i = 0; ; i++)
3078 {
3079 rc = SSMR3GetU32(pSSM, &u32Sep); /* sequence number */
3080 if (RT_FAILURE(rc))
3081 return rc;
3082 if (u32Sep == ~0U)
3083 break;
3084 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3085
3086 char szDesc[256];
3087 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
3088 if (RT_FAILURE(rc))
3089 return rc;
3090 RTGCPTR GCPtrIgnore;
3091 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
3092 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
3093 if (RT_FAILURE(rc))
3094 return rc;
3095 }
3096 }
3097
3098 /*
3099 * Load the RAM contents.
3100 */
3101 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
3102 {
3103 if (!pVM->pgm.s.LiveSave.fActive)
3104 {
3105 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3106 {
3107 rc = pgmR3LoadRamConfig(pVM, pSSM);
3108 if (RT_FAILURE(rc))
3109 return rc;
3110 }
3111 rc = pgmR3LoadRomRanges(pVM, pSSM);
3112 if (RT_FAILURE(rc))
3113 return rc;
3114 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3115 if (RT_FAILURE(rc))
3116 return rc;
3117 }
3118
3119 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, SSM_PASS_FINAL);
3120 }
3121 else
3122 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
3123
3124 /* Refresh balloon accounting. */
3125 if (pVM->pgm.s.cBalloonedPages)
3126 {
3127 Log(("pgmR3LoadFinalLocked: pVM=%p cBalloonedPages=%#x\n", pVM, pVM->pgm.s.cBalloonedPages));
3128 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
3129 AssertRCReturn(rc, rc);
3130 }
3131 return rc;
3132}
3133
3134
3135/**
3136 * @callback_method_impl{FNSSMINTLOADEXEC}
3137 */
3138static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3139{
3140 int rc;
3141
3142 /*
3143 * Validate version.
3144 */
3145 if ( ( uPass != SSM_PASS_FINAL
3146 && uVersion != PGM_SAVED_STATE_VERSION
3147 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3148 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3149 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3150 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3151 || ( uVersion != PGM_SAVED_STATE_VERSION
3152 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3153 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3154 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3155 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
3156 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
3157 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3158 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3159 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3160 )
3161 {
3162 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3163 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3164 }
3165
3166 /*
3167 * Do the loading while owning the lock because a bunch of the functions
3168 * we're using requires this.
3169 */
3170 if (uPass != SSM_PASS_FINAL)
3171 {
3172 pgmLock(pVM);
3173 if (uPass != 0)
3174 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3175 else
3176 {
3177 pVM->pgm.s.LiveSave.fActive = true;
3178 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3179 rc = pgmR3LoadRamConfig(pVM, pSSM);
3180 else
3181 rc = VINF_SUCCESS;
3182 if (RT_SUCCESS(rc))
3183 rc = pgmR3LoadRomRanges(pVM, pSSM);
3184 if (RT_SUCCESS(rc))
3185 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3186 if (RT_SUCCESS(rc))
3187 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3188 }
3189 pgmUnlock(pVM);
3190 }
3191 else
3192 {
3193 pgmLock(pVM);
3194 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
3195 pVM->pgm.s.LiveSave.fActive = false;
3196 pgmUnlock(pVM);
3197 if (RT_SUCCESS(rc))
3198 {
3199 /*
3200 * We require a full resync now.
3201 */
3202 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3203 {
3204 PVMCPU pVCpu = &pVM->aCpus[i];
3205 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3206 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3207 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3208 /** @todo For guest PAE, we might get the wrong
3209 * aGCPhysGstPaePDs values now. We should used the
3210 * saved ones... Postponing this since it nothing new
3211 * and PAE/PDPTR needs some general readjusting, see
3212 * @bugref{5880}. */
3213 }
3214
3215 pgmR3HandlerPhysicalUpdateAll(pVM);
3216
3217 /*
3218 * Change the paging mode (indirectly restores PGMCPU::GCPhysCR3).
3219 * (Requires the CPUM state to be restored already!)
3220 */
3221 if (CPUMR3IsStateRestorePending(pVM))
3222 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3223 N_("PGM was unexpectedly restored before CPUM"));
3224
3225 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3226 {
3227 PVMCPU pVCpu = &pVM->aCpus[i];
3228
3229 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3230 AssertLogRelRCReturn(rc, rc);
3231
3232 /* Update the PSE, NX flags and validity masks. */
3233 pVCpu->pgm.s.fGst32BitPageSizeExtension = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3234 PGMNotifyNxeChanged(pVCpu, CPUMIsGuestNXEnabled(pVCpu));
3235 }
3236
3237 /*
3238 * Try re-fixate the guest mappings.
3239 */
3240 pVM->pgm.s.fMappingsFixedRestored = false;
3241 if ( pVM->pgm.s.fMappingsFixed
3242 && pgmMapAreMappingsEnabled(pVM))
3243 {
3244#ifndef PGM_WITHOUT_MAPPINGS
3245 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
3246 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
3247 pVM->pgm.s.fMappingsFixed = false;
3248
3249 uint32_t cbRequired;
3250 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
3251 if ( RT_SUCCESS(rc2)
3252 && cbRequired > cbFixed)
3253 rc2 = VERR_OUT_OF_RANGE;
3254 if (RT_SUCCESS(rc2))
3255 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
3256 if (RT_FAILURE(rc2))
3257 {
3258 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
3259 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
3260 pVM->pgm.s.fMappingsFixed = false;
3261 pVM->pgm.s.fMappingsFixedRestored = true;
3262 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
3263 pVM->pgm.s.cbMappingFixed = cbFixed;
3264 }
3265#else
3266 AssertFailed();
3267#endif
3268 }
3269 else
3270 {
3271 /* We used to set fixed + disabled while we only use disabled now,
3272 so wipe the state to avoid any confusion. */
3273 pVM->pgm.s.fMappingsFixed = false;
3274 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3275 pVM->pgm.s.cbMappingFixed = 0;
3276 }
3277
3278 /*
3279 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3280 * doesn't conflict with guest code / data and thereby cause trouble
3281 * when restoring other components like PATM.
3282 */
3283 if (pgmMapAreMappingsFloating(pVM))
3284 {
3285 PVMCPU pVCpu = &pVM->aCpus[0];
3286 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3287 if (RT_FAILURE(rc))
3288 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3289 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3290
3291 /* Make sure to re-sync before executing code. */
3292 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3293 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3294 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3295 }
3296 }
3297 }
3298
3299 return rc;
3300}
3301
3302
3303/**
3304 * @callback_method_impl{FNSSMINTLOADDONE}
3305 */
3306static DECLCALLBACK(int) pgmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3307{
3308 pVM->pgm.s.fRestoreRomPagesOnReset = true;
3309 NOREF(pSSM);
3310 return VINF_SUCCESS;
3311}
3312
3313
3314/**
3315 * Registers the saved state callbacks with SSM.
3316 *
3317 * @returns VBox status code.
3318 * @param pVM The cross context VM structure.
3319 * @param cbRam The RAM size.
3320 */
3321int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3322{
3323 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3324 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3325 NULL, pgmR3SaveExec, pgmR3SaveDone,
3326 pgmR3LoadPrep, pgmR3Load, pgmR3LoadDone);
3327}
3328
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette