VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/SELM.cpp@ 42393

Last change on this file since 42393 was 42372, checked in by vboxsync, 12 years ago

SELM: Moving the code around and replacing two AssertRelease+VERR_NOT_SUPPORTED/IMPLEMENTED with proper status codes. Should be an real changes in this commit, just making the SELMR3UpdateFromCPUM code more managable.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 100.3 KB
Line 
1/* $Id: SELM.cpp 42372 2012-07-24 21:50:16Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58/*******************************************************************************
59* Header Files *
60*******************************************************************************/
61#define LOG_GROUP LOG_GROUP_SELM
62#include <VBox/vmm/selm.h>
63#include <VBox/vmm/cpum.h>
64#include <VBox/vmm/stam.h>
65#include <VBox/vmm/mm.h>
66#include <VBox/vmm/ssm.h>
67#include <VBox/vmm/pgm.h>
68#include <VBox/vmm/trpm.h>
69#include <VBox/vmm/dbgf.h>
70#include "SELMInternal.h"
71#include <VBox/vmm/vm.h>
72#include <VBox/err.h>
73#include <VBox/param.h>
74
75#include <iprt/assert.h>
76#include <VBox/log.h>
77#include <iprt/asm.h>
78#include <iprt/string.h>
79#include <iprt/thread.h>
80#include <iprt/string.h>
81
82
83/**
84 * Enable or disable tracking of Shadow GDT/LDT/TSS.
85 * @{
86 */
87#define SELM_TRACK_SHADOW_GDT_CHANGES
88#define SELM_TRACK_SHADOW_LDT_CHANGES
89#define SELM_TRACK_SHADOW_TSS_CHANGES
90/** @} */
91
92
93/** SELM saved state version. */
94#define SELM_SAVED_STATE_VERSION 5
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
101static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
102static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
103static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
104static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
105static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
106static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
107static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112
113
114
115/**
116 * Initializes the SELM.
117 *
118 * @returns VBox status code.
119 * @param pVM Pointer to the VM.
120 */
121VMMR3DECL(int) SELMR3Init(PVM pVM)
122{
123 LogFlow(("SELMR3Init\n"));
124
125 /*
126 * Assert alignment and sizes.
127 * (The TSS block requires contiguous back.)
128 */
129 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
130 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
131#if 0 /* doesn't work */
132 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
133 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
134#endif
135 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
136 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
137 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
138
139 /*
140 * Init the structure.
141 */
142 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
143 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
144 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
145 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
146 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
147 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
148
149 /*
150 * Allocate GDT table.
151 */
152 int rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
153 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
154 AssertRCReturn(rc, rc);
155
156 /*
157 * Allocate LDT area.
158 */
159 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
160 AssertRCReturn(rc, rc);
161
162 /*
163 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
164 */
165 pVM->selm.s.cbEffGuestGdtLimit = 0;
166 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
167 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
168 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
169
170 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
171 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
172 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
173 pVM->selm.s.GCSelTss = RTSEL_MAX;
174
175 pVM->selm.s.fDisableMonitoring = false;
176 pVM->selm.s.fSyncTSSRing0Stack = false;
177
178 /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it
179 * for I/O operations. */
180 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
181 /* bit set to 1 means no redirection */
182 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
183
184 /*
185 * Register the saved state data unit.
186 */
187 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
188 NULL, NULL, NULL,
189 NULL, selmR3Save, NULL,
190 NULL, selmR3Load, selmR3LoadDone);
191 if (RT_FAILURE(rc))
192 return rc;
193
194 /*
195 * Statistics.
196 */
197 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
198 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
199 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
200 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
201 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
202 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
203 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
204 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
205 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
206
207 STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
208 STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
209
210 /*
211 * Default action when entering raw mode for the first time
212 */
213 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
214 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
215 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
216 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
217
218 /*
219 * Register info handlers.
220 */
221 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
222 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
223 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
224 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
225 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
226 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
227
228 return rc;
229}
230
231
232/**
233 * Finalizes HMA page attributes.
234 *
235 * @returns VBox status code.
236 * @param pVM Pointer to the VM.
237 */
238VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
239{
240 /** @cfgm{/DoubleFault,bool,false}
241 * Enables catching of double faults in the raw-mode context VMM code. This can
242 * be used when the triple faults or hangs occur and one suspect an unhandled
243 * double fault. This is not enabled by default because it means making the
244 * hyper selectors writeable for all supervisor code, including the guest's.
245 * The double fault is a task switch and thus requires write access to the GDT
246 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
247 * 8 TSS for the back link.
248 */
249 bool f;
250#if defined(DEBUG_bird)
251 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
252#else
253 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
254#endif
255 AssertLogRelRCReturn(rc, rc);
256 if (f)
257 {
258 PX86DESC paGdt = pVM->selm.s.paGdtR3;
259 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
260 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
261 AssertRC(rc);
262 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
263 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
264 AssertRC(rc);
265 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
266 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
267 AssertRC(rc);
268 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
269 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
270 AssertRC(rc);
271 }
272 return VINF_SUCCESS;
273}
274
275
276/**
277 * Setup the hypervisor GDT selectors in our shadow table
278 *
279 * @param pVM Pointer to the VM.
280 */
281static void selmR3SetupHyperGDTSelectors(PVM pVM)
282{
283 PX86DESC paGdt = pVM->selm.s.paGdtR3;
284
285 /*
286 * Set up global code and data descriptors for use in the guest context.
287 * Both are wide open (base 0, limit 4GB)
288 */
289 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
290 pDesc->Gen.u16LimitLow = 0xffff;
291 pDesc->Gen.u4LimitHigh = 0xf;
292 pDesc->Gen.u16BaseLow = 0;
293 pDesc->Gen.u8BaseHigh1 = 0;
294 pDesc->Gen.u8BaseHigh2 = 0;
295 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
296 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
297 pDesc->Gen.u2Dpl = 0; /* supervisor */
298 pDesc->Gen.u1Present = 1;
299 pDesc->Gen.u1Available = 0;
300 pDesc->Gen.u1Long = 0;
301 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
302 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
303
304 /* data */
305 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
306 pDesc->Gen.u16LimitLow = 0xffff;
307 pDesc->Gen.u4LimitHigh = 0xf;
308 pDesc->Gen.u16BaseLow = 0;
309 pDesc->Gen.u8BaseHigh1 = 0;
310 pDesc->Gen.u8BaseHigh2 = 0;
311 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
312 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
313 pDesc->Gen.u2Dpl = 0; /* supervisor */
314 pDesc->Gen.u1Present = 1;
315 pDesc->Gen.u1Available = 0;
316 pDesc->Gen.u1Long = 0;
317 pDesc->Gen.u1DefBig = 1; /* big */
318 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
319
320 /* 64-bit mode code (& data?) */
321 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
322 pDesc->Gen.u16LimitLow = 0xffff;
323 pDesc->Gen.u4LimitHigh = 0xf;
324 pDesc->Gen.u16BaseLow = 0;
325 pDesc->Gen.u8BaseHigh1 = 0;
326 pDesc->Gen.u8BaseHigh2 = 0;
327 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
328 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
329 pDesc->Gen.u2Dpl = 0; /* supervisor */
330 pDesc->Gen.u1Present = 1;
331 pDesc->Gen.u1Available = 0;
332 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
333 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
334 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
335
336 /*
337 * TSS descriptor
338 */
339 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
340 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
341 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
342 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
343 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
344 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
345 pDesc->Gen.u4LimitHigh = 0;
346 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
347 pDesc->Gen.u1DescType = 0; /* system */
348 pDesc->Gen.u2Dpl = 0; /* supervisor */
349 pDesc->Gen.u1Present = 1;
350 pDesc->Gen.u1Available = 0;
351 pDesc->Gen.u1Long = 0;
352 pDesc->Gen.u1DefBig = 0;
353 pDesc->Gen.u1Granularity = 0; /* byte limit */
354
355 /*
356 * TSS descriptor for trap 08
357 */
358 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
359 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
360 pDesc->Gen.u4LimitHigh = 0;
361 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
362 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
363 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
364 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
365 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
366 pDesc->Gen.u1DescType = 0; /* system */
367 pDesc->Gen.u2Dpl = 0; /* supervisor */
368 pDesc->Gen.u1Present = 1;
369 pDesc->Gen.u1Available = 0;
370 pDesc->Gen.u1Long = 0;
371 pDesc->Gen.u1DefBig = 0;
372 pDesc->Gen.u1Granularity = 0; /* byte limit */
373}
374
375/**
376 * Applies relocations to data and code managed by this
377 * component. This function will be called at init and
378 * whenever the VMM need to relocate it self inside the GC.
379 *
380 * @param pVM The VM.
381 */
382VMMR3DECL(void) SELMR3Relocate(PVM pVM)
383{
384 PX86DESC paGdt = pVM->selm.s.paGdtR3;
385 LogFlow(("SELMR3Relocate\n"));
386
387 for (VMCPUID i = 0; i < pVM->cCpus; i++)
388 {
389 PVMCPU pVCpu = &pVM->aCpus[i];
390
391 /*
392 * Update GDTR and selector.
393 */
394 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
395
396 /** @todo selector relocations should be a separate operation? */
397 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
398 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
399 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
400 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
401 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
402 }
403
404 selmR3SetupHyperGDTSelectors(pVM);
405
406/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
407/** @todo PGM knows the proper CR3 values these days, not CPUM. */
408 /*
409 * Update the TSSes.
410 */
411 /* Only applies to raw mode which supports only 1 VCPU */
412 PVMCPU pVCpu = &pVM->aCpus[0];
413
414 /* Current TSS */
415 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
416 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
417 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
418 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
419 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
420 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
421 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
422
423 /* trap 08 */
424 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
425 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
426 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
427 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
428 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
429 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
430 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
431 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
432 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
433 pVM->selm.s.TssTrap08.fs = 0;
434 pVM->selm.s.TssTrap08.gs = 0;
435 pVM->selm.s.TssTrap08.selLdt = 0;
436 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
437 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
438 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
439 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
440 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
441 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
442 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
443 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
444 /* TRPM will be updating the eip */
445
446 if ( !pVM->selm.s.fDisableMonitoring
447 && !VMMIsHwVirtExtForced(pVM))
448 {
449 /*
450 * Update shadow GDT/LDT/TSS write access handlers.
451 */
452 int rc;
453#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
454 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
455 {
456 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
457 AssertRC(rc);
458 }
459 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
460 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
461 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
462 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
463 AssertRC(rc);
464#endif
465#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
466 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
467 {
468 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
469 AssertRC(rc);
470 }
471 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
472 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
473 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
474 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
475 AssertRC(rc);
476#endif
477
478 /*
479 * Update the GC LDT region handler and address.
480 */
481#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
482 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
483 {
484 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
485 AssertRC(rc);
486 }
487#endif
488 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
489#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
490 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
491 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
492 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
493 AssertRC(rc);
494#endif
495 }
496}
497
498
499/**
500 * Terminates the SELM.
501 *
502 * Termination means cleaning up and freeing all resources,
503 * the VM it self is at this point powered off or suspended.
504 *
505 * @returns VBox status code.
506 * @param pVM Pointer to the VM.
507 */
508VMMR3DECL(int) SELMR3Term(PVM pVM)
509{
510 NOREF(pVM);
511 return 0;
512}
513
514
515/**
516 * The VM is being reset.
517 *
518 * For the SELM component this means that any GDT/LDT/TSS monitors
519 * needs to be removed.
520 *
521 * @param pVM Pointer to the VM.
522 */
523VMMR3DECL(void) SELMR3Reset(PVM pVM)
524{
525 LogFlow(("SELMR3Reset:\n"));
526 VM_ASSERT_EMT(pVM);
527
528 /*
529 * Uninstall guest GDT/LDT/TSS write access handlers.
530 */
531 int rc;
532 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
533 {
534 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
535 AssertRC(rc);
536 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
537 pVM->selm.s.GuestGdtr.cbGdt = 0;
538 }
539 pVM->selm.s.fGDTRangeRegistered = false;
540 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
541 {
542 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
543 AssertRC(rc);
544 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
545 }
546 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
547 {
548 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
549 AssertRC(rc);
550 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
551 pVM->selm.s.GCSelTss = RTSEL_MAX;
552 }
553
554 /*
555 * Re-initialize other members.
556 */
557 pVM->selm.s.cbLdtLimit = 0;
558 pVM->selm.s.offLdtHyper = 0;
559 pVM->selm.s.cbMonitoredGuestTss = 0;
560
561 pVM->selm.s.fSyncTSSRing0Stack = false;
562
563 /*
564 * Default action when entering raw mode for the first time
565 */
566 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
567 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
568 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
569 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
570}
571
572/**
573 * Disable GDT/LDT/TSS monitoring and syncing
574 *
575 * @param pVM Pointer to the VM.
576 */
577VMMR3DECL(void) SELMR3DisableMonitoring(PVM pVM)
578{
579 /*
580 * Uninstall guest GDT/LDT/TSS write access handlers.
581 */
582 int rc;
583 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
584 {
585 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
586 AssertRC(rc);
587 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
588 pVM->selm.s.GuestGdtr.cbGdt = 0;
589 }
590 pVM->selm.s.fGDTRangeRegistered = false;
591 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
592 {
593 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
594 AssertRC(rc);
595 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
596 }
597 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
598 {
599 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
600 AssertRC(rc);
601 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
602 pVM->selm.s.GCSelTss = RTSEL_MAX;
603 }
604
605 /*
606 * Unregister shadow GDT/LDT/TSS write access handlers.
607 */
608#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
609 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
610 {
611 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
612 AssertRC(rc);
613 pVM->selm.s.paGdtRC = NIL_RTRCPTR;
614 }
615#endif
616#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
617 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
618 {
619 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
620 AssertRC(rc);
621 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
622 }
623#endif
624#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
625 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
626 {
627 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
628 AssertRC(rc);
629 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
630 }
631#endif
632
633 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
634 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
635 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
636 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
637
638 pVM->selm.s.fDisableMonitoring = true;
639}
640
641
642/**
643 * Execute state save operation.
644 *
645 * @returns VBox status code.
646 * @param pVM Pointer to the VM.
647 * @param pSSM SSM operation handle.
648 */
649static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
650{
651 LogFlow(("selmR3Save:\n"));
652
653 /*
654 * Save the basic bits - fortunately all the other things can be resynced on load.
655 */
656 PSELM pSelm = &pVM->selm.s;
657
658 SSMR3PutBool(pSSM, pSelm->fDisableMonitoring);
659 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
660 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
661 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
662 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
663 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
664 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
665 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
666}
667
668
669/**
670 * Execute state load operation.
671 *
672 * @returns VBox status code.
673 * @param pVM Pointer to the VM.
674 * @param pSSM SSM operation handle.
675 * @param uVersion Data layout version.
676 * @param uPass The data pass.
677 */
678static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
679{
680 LogFlow(("selmR3Load:\n"));
681 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
682
683 /*
684 * Validate version.
685 */
686 if (uVersion != SELM_SAVED_STATE_VERSION)
687 {
688 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
689 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
690 }
691
692 /*
693 * Do a reset.
694 */
695 SELMR3Reset(pVM);
696
697 /* Get the monitoring flag. */
698 SSMR3GetBool(pSSM, &pVM->selm.s.fDisableMonitoring);
699
700 /* Get the TSS state flag. */
701 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
702
703 /*
704 * Get the selectors.
705 */
706 RTSEL SelCS;
707 SSMR3GetSel(pSSM, &SelCS);
708 RTSEL SelDS;
709 SSMR3GetSel(pSSM, &SelDS);
710 RTSEL SelCS64;
711 SSMR3GetSel(pSSM, &SelCS64);
712 RTSEL SelDS64;
713 SSMR3GetSel(pSSM, &SelDS64);
714 RTSEL SelTSS;
715 SSMR3GetSel(pSSM, &SelTSS);
716 RTSEL SelTSSTrap08;
717 SSMR3GetSel(pSSM, &SelTSSTrap08);
718
719 /* Copy the selectors; they will be checked during relocation. */
720 PSELM pSelm = &pVM->selm.s;
721 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
722 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
723 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
724 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
725 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
726
727 return VINF_SUCCESS;
728}
729
730
731/**
732 * Sync the GDT, LDT and TSS after loading the state.
733 *
734 * Just to play save, we set the FFs to force syncing before
735 * executing GC code.
736 *
737 * @returns VBox status code.
738 * @param pVM Pointer to the VM.
739 * @param pSSM SSM operation handle.
740 */
741static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
742{
743 PVMCPU pVCpu = VMMGetCpu(pVM);
744
745 LogFlow(("selmR3LoadDone:\n"));
746
747 /*
748 * Don't do anything if it's a load failure.
749 */
750 int rc = SSMR3HandleGetStatus(pSSM);
751 if (RT_FAILURE(rc))
752 return VINF_SUCCESS;
753
754 /*
755 * Do the syncing if we're in protected mode.
756 */
757 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
758 {
759 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
760 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
761 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
762 SELMR3UpdateFromCPUM(pVM, pVCpu);
763 }
764
765 /*
766 * Flag everything for resync on next raw mode entry.
767 */
768 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
769 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
770 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
771
772 return VINF_SUCCESS;
773}
774
775
776static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
777{
778 /*
779 * Always assume the best...
780 */
781 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
782
783 /* If the GDT was changed, then make sure the LDT is checked too */
784 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
785 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
786 /* Same goes for the TSS selector */
787 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
788
789 /*
790 * Get the GDTR and check if there is anything to do (there usually is).
791 */
792 VBOXGDTR GDTR;
793 CPUMGetGuestGDTR(pVCpu, &GDTR);
794 if (GDTR.cbGdt < sizeof(X86DESC))
795 {
796 Log(("No GDT entries...\n"));
797 return VINF_SUCCESS;
798 }
799
800 /*
801 * Read the Guest GDT.
802 * ASSUMES that the entire GDT is in memory.
803 */
804 RTUINT cbEffLimit = GDTR.cbGdt;
805 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
806 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
807 if (RT_FAILURE(rc))
808 {
809 /*
810 * Read it page by page.
811 *
812 * Keep track of the last valid page and delay memsets and
813 * adjust cbEffLimit to reflect the effective size. The latter
814 * is something we do in the belief that the guest will probably
815 * never actually commit the last page, thus allowing us to keep
816 * our selectors in the high end of the GDT.
817 */
818 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
819 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
820 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
821 uint8_t *pu8DstInvalid = pu8Dst;
822
823 while (cbLeft)
824 {
825 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
826 cb = RT_MIN(cb, cbLeft);
827 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
828 if (RT_SUCCESS(rc))
829 {
830 if (pu8DstInvalid != pu8Dst)
831 memset(pu8DstInvalid, 0, pu8Dst - pu8DstInvalid);
832 GCPtrSrc += cb;
833 pu8Dst += cb;
834 pu8DstInvalid = pu8Dst;
835 }
836 else if ( rc == VERR_PAGE_NOT_PRESENT
837 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
838 {
839 GCPtrSrc += cb;
840 pu8Dst += cb;
841 }
842 else
843 {
844 AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
845 return VERR_SELM_GDT_READ_ERROR;
846 }
847 cbLeft -= cb;
848 }
849
850 /* any invalid pages at the end? */
851 if (pu8DstInvalid != pu8Dst)
852 {
853 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
854 /* If any GDTEs was invalidated, zero them. */
855 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
856 memset(pu8DstInvalid + cbEffLimit + 1, 0, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
857 }
858
859 /* keep track of the effective limit. */
860 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
861 {
862 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
863 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
864 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
865 }
866 }
867
868 /*
869 * Check if the Guest GDT intrudes on our GDT entries.
870 */
871 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
872 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
873 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
874 {
875 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
876 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
877 int iGDT = 0;
878
879 Log(("Internal SELM GDT conflict: use non-present entries\n"));
880 STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
881 while (pGDTECur > pGDTEStart)
882 {
883 /* We can reuse non-present entries */
884 if (!pGDTECur->Gen.u1Present)
885 {
886 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
887 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
888 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
889 iGDT++;
890 if (iGDT >= SELM_HYPER_SEL_MAX)
891 break;
892 }
893
894 pGDTECur--;
895 }
896 if (iGDT != SELM_HYPER_SEL_MAX)
897 {
898 AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
899 return VERR_SELM_GDT_TOO_FULL;
900 }
901 }
902 else
903 {
904 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
905 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
906 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
907 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
908 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
909 }
910
911 /*
912 * Work thru the copied GDT entries adjusting them for correct virtualization.
913 */
914 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
915 while (pGDTE < pGDTEEnd)
916 {
917 if (pGDTE->Gen.u1Present)
918 {
919 /*
920 * Code and data selectors are generally 1:1, with the
921 * 'little' adjustment we do for DPL 0 selectors.
922 */
923 if (pGDTE->Gen.u1DescType)
924 {
925 /*
926 * Hack for A-bit against Trap E on read-only GDT.
927 */
928 /** @todo Fix this by loading ds and cs before turning off WP. */
929 pGDTE->Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
930
931 /*
932 * All DPL 0 code and data segments are squeezed into DPL 1.
933 *
934 * We're skipping conforming segments here because those
935 * cannot give us any trouble.
936 */
937 if ( pGDTE->Gen.u2Dpl == 0
938 && (pGDTE->Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
939 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) )
940 pGDTE->Gen.u2Dpl = 1;
941 }
942 else
943 {
944 /*
945 * System type selectors are marked not present.
946 * Recompiler or special handling is required for these.
947 */
948 /** @todo what about interrupt gates and rawr0? */
949 pGDTE->Gen.u1Present = 0;
950 }
951 }
952
953 /* Next GDT entry. */
954 pGDTE++;
955 }
956
957 /*
958 * Check if our hypervisor selectors were changed.
959 */
960 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
961 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
962 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
963 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
964 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
965 {
966 /* Reinitialize our hypervisor GDTs */
967 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
968 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
969 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
970 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
971 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
972
973 STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
974
975 /*
976 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
977 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
978 */
979 VMR3Relocate(pVM, 0);
980 }
981 else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
982 /* We overwrote all entries above, so we have to save them again. */
983 selmR3SetupHyperGDTSelectors(pVM);
984
985 /*
986 * Adjust the cached GDT limit.
987 * Any GDT entries which have been removed must be cleared.
988 */
989 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
990 {
991 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
992 memset(pGDTE, 0, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
993 }
994
995 /*
996 * Check if Guest's GDTR is changed.
997 */
998 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
999 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1000 {
1001 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
1002
1003 /*
1004 * [Re]Register write virtual handler for guest's GDT.
1005 */
1006 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
1007 {
1008 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
1009 AssertRC(rc);
1010 }
1011
1012 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1013 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1014 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1015 "Guest GDT write access handler");
1016 if (RT_FAILURE(rc))
1017 return rc;
1018
1019 /* Update saved Guest GDTR. */
1020 pVM->selm.s.GuestGdtr = GDTR;
1021 pVM->selm.s.fGDTRangeRegistered = true;
1022 }
1023
1024 return VINF_SUCCESS;
1025}
1026
1027
1028/**
1029 * Updates (syncs) the shadow LDT.
1030 *
1031 * @returns VBox status code.
1032 * @param pVM The VM handle.
1033 * @param pVCpu The current virtual CPU.
1034 */
1035static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
1036{
1037 int rc = VINF_SUCCESS;
1038
1039 /*
1040 * Always assume the best...
1041 */
1042 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1043
1044 /*
1045 * LDT handling is done similarly to the GDT handling with a shadow
1046 * array. However, since the LDT is expected to be swappable (at least
1047 * some ancient OSes makes it swappable) it must be floating and
1048 * synced on a per-page basis.
1049 *
1050 * Eventually we will change this to be fully on demand. Meaning that
1051 * we will only sync pages containing LDT selectors actually used and
1052 * let the #PF handler lazily sync pages as they are used.
1053 * (This applies to GDT too, when we start making OS/2 fast.)
1054 */
1055
1056 /*
1057 * First, determine the current LDT selector.
1058 */
1059 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1060 if ((SelLdt & X86_SEL_MASK) == 0)
1061 {
1062 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1063 CPUMSetHyperLDTR(pVCpu, 0);
1064 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1065 {
1066 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1067 AssertRC(rc);
1068 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1069 }
1070 return VINF_SUCCESS;
1071 }
1072
1073 /*
1074 * Get the LDT selector.
1075 */
1076 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1077 RTGCPTR GCPtrLdt = X86DESC_BASE(*pDesc);
1078 unsigned cbLdt = X86DESC_LIMIT(*pDesc);
1079 if (pDesc->Gen.u1Granularity)
1080 cbLdt = (cbLdt << PAGE_SHIFT) | PAGE_OFFSET_MASK;
1081
1082 /*
1083 * Validate it.
1084 */
1085 if ( !cbLdt
1086 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1087 || pDesc->Gen.u1DescType
1088 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1089 {
1090 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1091
1092 /* cbLdt > 0:
1093 * This is quite impossible, so we do as most people do when faced with
1094 * the impossible, we simply ignore it.
1095 */
1096 CPUMSetHyperLDTR(pVCpu, 0);
1097 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1098 {
1099 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1100 AssertRC(rc);
1101 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1102 }
1103 return VINF_SUCCESS;
1104 }
1105 /** @todo check what intel does about odd limits. */
1106 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1107
1108 /*
1109 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1110 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1111 */
1112 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1113 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1114
1115
1116 /** @todo Handle only present LDT segments. */
1117// if (pDesc->Gen.u1Present)
1118 {
1119 /*
1120 * Check if Guest's LDT address/limit is changed.
1121 */
1122 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1123 || cbLdt != pVM->selm.s.cbLdtLimit)
1124 {
1125 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1126 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1127
1128 /*
1129 * [Re]Register write virtual handler for guest's GDT.
1130 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1131 */
1132 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1133 {
1134 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1135 AssertRC(rc);
1136 }
1137#ifdef DEBUG
1138 if (pDesc->Gen.u1Present)
1139 Log(("LDT selector marked not present!!\n"));
1140#endif
1141 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1142 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1143 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1144 {
1145 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1146 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1147 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1148 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1149 }
1150 else if (RT_SUCCESS(rc))
1151 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1152 else
1153 {
1154 CPUMSetHyperLDTR(pVCpu, 0);
1155 return rc;
1156 }
1157
1158 pVM->selm.s.cbLdtLimit = cbLdt;
1159 }
1160 }
1161
1162 /*
1163 * Calc Shadow LDT base.
1164 */
1165 unsigned off;
1166 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1167 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1168 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1169
1170 /*
1171 * Enable the LDT selector in the shadow GDT.
1172 */
1173 pDesc->Gen.u1Present = 1;
1174 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1175 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1176 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1177 pDesc->Gen.u1Available = 0;
1178 pDesc->Gen.u1Long = 0;
1179 if (cbLdt > 0xffff)
1180 {
1181 cbLdt = 0xffff;
1182 pDesc->Gen.u4LimitHigh = 0;
1183 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1184 }
1185
1186 /*
1187 * Set Hyper LDTR and notify TRPM.
1188 */
1189 CPUMSetHyperLDTR(pVCpu, SelLdt);
1190
1191 /*
1192 * Loop synchronising the LDT page by page.
1193 */
1194 /** @todo investigate how intel handle various operations on half present cross page entries. */
1195 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1196 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1197
1198 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1199 unsigned cbLeft = cbLdt + 1;
1200 PX86DESC pLDTE = pShadowLDT;
1201 while (cbLeft)
1202 {
1203 /*
1204 * Read a chunk.
1205 */
1206 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1207 if (cbChunk > cbLeft)
1208 cbChunk = cbLeft;
1209 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1210 if (RT_SUCCESS(rc))
1211 {
1212 /*
1213 * Mark page
1214 */
1215 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1216 AssertRC(rc);
1217
1218 /*
1219 * Loop thru the available LDT entries.
1220 * Figure out where to start and end and the potential cross pageness of
1221 * things adds a little complexity. pLDTE is updated there and not in the
1222 * 'next' part of the loop. The pLDTEEnd is inclusive.
1223 */
1224 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1225 if (pLDTE + 1 < pShadowLDT)
1226 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1227 while (pLDTE <= pLDTEEnd)
1228 {
1229 if (pLDTE->Gen.u1Present)
1230 {
1231 /*
1232 * Code and data selectors are generally 1:1, with the
1233 * 'little' adjustment we do for DPL 0 selectors.
1234 */
1235 if (pLDTE->Gen.u1DescType)
1236 {
1237 /*
1238 * Hack for A-bit against Trap E on read-only GDT.
1239 */
1240 /** @todo Fix this by loading ds and cs before turning off WP. */
1241 if (!(pLDTE->Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1242 pLDTE->Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1243
1244 /*
1245 * All DPL 0 code and data segments are squeezed into DPL 1.
1246 *
1247 * We're skipping conforming segments here because those
1248 * cannot give us any trouble.
1249 */
1250 if ( pLDTE->Gen.u2Dpl == 0
1251 && (pLDTE->Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
1252 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) )
1253 pLDTE->Gen.u2Dpl = 1;
1254 }
1255 else
1256 {
1257 /*
1258 * System type selectors are marked not present.
1259 * Recompiler or special handling is required for these.
1260 */
1261 /** @todo what about interrupt gates and rawr0? */
1262 pLDTE->Gen.u1Present = 0;
1263 }
1264 }
1265
1266 /* Next LDT entry. */
1267 pLDTE++;
1268 }
1269 }
1270 else
1271 {
1272 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1273 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1274 AssertRC(rc);
1275 }
1276
1277 /*
1278 * Advance to the next page.
1279 */
1280 cbLeft -= cbChunk;
1281 GCPtrShadowLDT += cbChunk;
1282 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1283 GCPtrLdt += cbChunk;
1284 }
1285
1286 return VINF_SUCCESS;
1287}
1288
1289
1290/**
1291 * Updates the Guest GDT & LDT virtualization based on current CPU state.
1292 *
1293 * @returns VBox status code.
1294 * @param pVM Pointer to the VM.
1295 * @param pVCpu Pointer to the VMCPU.
1296 */
1297VMMR3DECL(int) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
1298{
1299 if (pVM->selm.s.fDisableMonitoring)
1300 {
1301 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
1302 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1303 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1304 return VINF_SUCCESS;
1305 }
1306
1307 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
1308
1309 /*
1310 * GDT sync
1311 */
1312 int rc;
1313 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
1314 {
1315 rc = selmR3UpdateShadowGdt(pVM, pVCpu);
1316 if (RT_FAILURE(rc))
1317 return rc; /* We're toast, so forget the profiling. */
1318 AssertRCSuccess(rc);
1319 }
1320
1321 /*
1322 * TSS sync
1323 */
1324 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1325 {
1326 rc = SELMR3SyncTSS(pVM, pVCpu);
1327 if (RT_FAILURE(rc))
1328 return rc;
1329 AssertRCSuccess(rc);
1330 }
1331
1332 /*
1333 * LDT sync
1334 */
1335 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1336 {
1337 rc = selmR3UpdateShadowLdt(pVM, pVCpu);
1338 if (RT_FAILURE(rc))
1339 return rc;
1340 AssertRCSuccess(rc);
1341 }
1342
1343#if 0
1344 /*
1345 * Check for stale selectors and load hidden register bits where they
1346 * are missing.
1347 */
1348 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1349#endif
1350 rc = VINF_SUCCESS;
1351
1352 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1353 return rc;
1354}
1355
1356
1357/**
1358 * \#PF Handler callback for virtual access handler ranges.
1359 *
1360 * Important to realize that a physical page in a range can have aliases, and
1361 * for ALL and WRITE handlers these will also trigger.
1362 *
1363 * @returns VINF_SUCCESS if the handler have carried out the operation.
1364 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1365 * @param pVM Pointer to the VM.
1366 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1367 * @param pvPtr The HC mapping of that address.
1368 * @param pvBuf What the guest is reading/writing.
1369 * @param cbBuf How much it's reading/writing.
1370 * @param enmAccessType The access type.
1371 * @param pvUser User argument.
1372 */
1373static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1374 PGMACCESSTYPE enmAccessType, void *pvUser)
1375{
1376 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1377 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1378 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1379
1380 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
1381 return VINF_PGM_HANDLER_DO_DEFAULT;
1382}
1383
1384
1385/**
1386 * \#PF Handler callback for virtual access handler ranges.
1387 *
1388 * Important to realize that a physical page in a range can have aliases, and
1389 * for ALL and WRITE handlers these will also trigger.
1390 *
1391 * @returns VINF_SUCCESS if the handler have carried out the operation.
1392 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1393 * @param pVM Pointer to the VM.
1394 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1395 * @param pvPtr The HC mapping of that address.
1396 * @param pvBuf What the guest is reading/writing.
1397 * @param cbBuf How much it's reading/writing.
1398 * @param enmAccessType The access type.
1399 * @param pvUser User argument.
1400 */
1401static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1402 PGMACCESSTYPE enmAccessType, void *pvUser)
1403{
1404 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1405 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1406 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1407
1408 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
1409 return VINF_PGM_HANDLER_DO_DEFAULT;
1410}
1411
1412
1413/**
1414 * \#PF Handler callback for virtual access handler ranges.
1415 *
1416 * Important to realize that a physical page in a range can have aliases, and
1417 * for ALL and WRITE handlers these will also trigger.
1418 *
1419 * @returns VINF_SUCCESS if the handler have carried out the operation.
1420 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1421 * @param pVM Pointer to the VM.
1422 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1423 * @param pvPtr The HC mapping of that address.
1424 * @param pvBuf What the guest is reading/writing.
1425 * @param cbBuf How much it's reading/writing.
1426 * @param enmAccessType The access type.
1427 * @param pvUser User argument.
1428 */
1429static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1430 PGMACCESSTYPE enmAccessType, void *pvUser)
1431{
1432 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1433 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1434 NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(pvUser);NOREF(pvPtr);
1435
1436 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
1437 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
1438 * should probably also deregister the virtual handler if TR.base/size
1439 * changes while we're in REM. */
1440
1441 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
1442 return VINF_PGM_HANDLER_DO_DEFAULT;
1443}
1444
1445
1446/**
1447 * Synchronize the shadowed fields in the TSS.
1448 *
1449 * At present we're shadowing the ring-0 stack selector & pointer, and the
1450 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1451 * REM and this function is called both if REM made any changes to the TSS or
1452 * loaded TR.
1453 *
1454 * @returns VBox status code.
1455 * @param pVM Pointer to the VM.
1456 * @param pVCpu Pointer to the VMCPU.
1457 */
1458VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1459{
1460 int rc;
1461
1462 if (pVM->selm.s.fDisableMonitoring)
1463 {
1464 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1465 return VINF_SUCCESS;
1466 }
1467
1468 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1469 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1470
1471 /*
1472 * Get TR and extract and store the basic info.
1473 *
1474 * Note! The TSS limit is not checked by the LTR code, so we
1475 * have to be a bit careful with it. We make sure cbTss
1476 * won't be zero if TR is valid and if it's NULL we'll
1477 * make sure cbTss is 0.
1478 */
1479 CPUMSELREGHID trHid;
1480 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1481 RTGCPTR GCPtrTss = trHid.u64Base;
1482 uint32_t cbTss = trHid.u32Limit;
1483 Assert( (SelTss & X86_SEL_MASK)
1484 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1485 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1486 if (SelTss & X86_SEL_MASK)
1487 {
1488 Assert(!(SelTss & X86_SEL_LDT));
1489 Assert(trHid.Attr.n.u1DescType == 0);
1490 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1491 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1492 if (!++cbTss)
1493 cbTss = UINT32_MAX;
1494 }
1495 else
1496 {
1497 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1498 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1499 cbTss = 0; /* the reset case. */
1500 }
1501 pVM->selm.s.cbGuestTss = cbTss;
1502 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1503 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1504
1505 /*
1506 * Figure out the size of what need to monitor.
1507 */
1508 /* We're not interested in any 16-bit TSSes. */
1509 uint32_t cbMonitoredTss = cbTss;
1510 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1511 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1512 cbMonitoredTss = 0;
1513
1514 pVM->selm.s.offGuestIoBitmap = 0;
1515 bool fNoRing1Stack = true;
1516 if (cbMonitoredTss)
1517 {
1518 /*
1519 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1520 * If VME is enabled we also want to keep an eye on the interrupt
1521 * redirection bitmap.
1522 */
1523 VBOXTSS Tss;
1524 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1525 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1526 if ( !(cr4 & X86_CR4_VME)
1527 || ( RT_SUCCESS(rc)
1528 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1529 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1530 )
1531 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1532 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1533 else if (RT_SUCCESS(rc))
1534 {
1535 /*
1536 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1537 * this can be quite a large chunk. We use to skip it earlier and just hope it
1538 * was kind of static...
1539 *
1540 * Update the virtual interrupt redirection bitmap while we're here.
1541 * (It is located in the 32 bytes before TR:offIoBitmap.)
1542 */
1543 cbMonitoredTss = Tss.offIoBitmap;
1544 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1545
1546 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1547 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1548 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1549 AssertRC(rc);
1550 /** @todo memset the bitmap on failure? */
1551 Log2(("Redirection bitmap:\n"));
1552 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1553 }
1554 else
1555 {
1556 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1557 pVM->selm.s.offGuestIoBitmap = 0;
1558 /** @todo memset the bitmap? */
1559 }
1560
1561 /*
1562 * Update the ring 0 stack selector and base address.
1563 */
1564 if (RT_SUCCESS(rc))
1565 {
1566#ifdef LOG_ENABLED
1567 if (LogIsEnabled())
1568 {
1569 uint32_t ssr0, espr0;
1570 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1571 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1572 {
1573 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1574 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1575 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1576 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1577 AssertMsg(ssr0 != Tss.ss0,
1578 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1579 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1580 }
1581 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1582 }
1583#endif /* LOG_ENABLED */
1584 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1585
1586 /* Update our TSS structure for the guest's ring 1 stack */
1587 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1588 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1589 }
1590 }
1591
1592 /*
1593 * Flush the ring-1 stack and the direct syscall dispatching if we
1594 * cannot obtain SS0:ESP0.
1595 */
1596 if (fNoRing1Stack)
1597 {
1598 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1599 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1600
1601 /** @todo handle these dependencies better! */
1602 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1603 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1604 }
1605
1606 /*
1607 * Check for monitor changes and apply them.
1608 */
1609 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1610 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1611 {
1612 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1613 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1614
1615 /* Release the old range first. */
1616 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1617 {
1618 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1619 AssertRC(rc);
1620 }
1621
1622 /* Register the write handler if TS != 0. */
1623 if (cbMonitoredTss != 0)
1624 {
1625 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1626 0, selmR3GuestTSSWriteHandler,
1627 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1628 if (RT_FAILURE(rc))
1629 {
1630 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1631 return rc;
1632 }
1633
1634 /* Update saved Guest TSS info. */
1635 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1636 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1637 pVM->selm.s.GCSelTss = SelTss;
1638 }
1639 else
1640 {
1641 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1642 pVM->selm.s.cbMonitoredGuestTss = 0;
1643 pVM->selm.s.GCSelTss = 0;
1644 }
1645 }
1646
1647 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1648
1649 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1650 return VINF_SUCCESS;
1651}
1652
1653
1654/**
1655 * Compares the Guest GDT and LDT with the shadow tables.
1656 * This is a VBOX_STRICT only function.
1657 *
1658 * @returns VBox status code.
1659 * @param pVM Pointer to the VM.
1660 */
1661VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1662{
1663#ifdef VBOX_STRICT
1664 PVMCPU pVCpu = VMMGetCpu(pVM);
1665
1666 /*
1667 * Get GDTR and check for conflict.
1668 */
1669 VBOXGDTR GDTR;
1670 CPUMGetGuestGDTR(pVCpu, &GDTR);
1671 if (GDTR.cbGdt == 0)
1672 return VINF_SUCCESS;
1673
1674 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1675 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1676
1677 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1678 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1679
1680 /*
1681 * Loop thru the GDT checking each entry.
1682 */
1683 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1684 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1685 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1686 while (pGDTE < pGDTEEnd)
1687 {
1688 X86DESC GDTEGuest;
1689 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1690 if (RT_SUCCESS(rc))
1691 {
1692 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1693 {
1694 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1695 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1696 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1697 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1698 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1699 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1700 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1701 {
1702 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1703 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1704 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1705 }
1706 }
1707 }
1708
1709 /* Advance to the next descriptor. */
1710 GCPtrGDTEGuest += sizeof(X86DESC);
1711 pGDTE++;
1712 }
1713
1714
1715 /*
1716 * LDT?
1717 */
1718 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1719 if ((SelLdt & X86_SEL_MASK) == 0)
1720 return VINF_SUCCESS;
1721 if (SelLdt > GDTR.cbGdt)
1722 {
1723 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1724 return VERR_SELM_LDT_OUT_OF_BOUNDS;
1725 }
1726 X86DESC LDTDesc;
1727 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1728 if (RT_FAILURE(rc))
1729 {
1730 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1731 return rc;
1732 }
1733 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(LDTDesc);
1734 unsigned cbLdt = X86DESC_LIMIT(LDTDesc);
1735 if (LDTDesc.Gen.u1Granularity)
1736 cbLdt = (cbLdt << PAGE_SHIFT) | PAGE_OFFSET_MASK;
1737
1738 /*
1739 * Validate it.
1740 */
1741 if (!cbLdt)
1742 return VINF_SUCCESS;
1743 /** @todo check what intel does about odd limits. */
1744 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1745 if ( LDTDesc.Gen.u1DescType
1746 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1747 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1748 {
1749 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1750 return VERR_SELM_INVALID_LDT;
1751 }
1752
1753 /*
1754 * Loop thru the LDT checking each entry.
1755 */
1756 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1757 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1758 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1759 while (pLDTE < pLDTEEnd)
1760 {
1761 X86DESC LDTEGuest;
1762 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1763 if (RT_SUCCESS(rc))
1764 {
1765 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1766 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1767 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1768 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1769 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1770 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1771 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1772 {
1773 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1774 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1775 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1776 }
1777 }
1778
1779 /* Advance to the next descriptor. */
1780 GCPtrLDTEGuest += sizeof(X86DESC);
1781 pLDTE++;
1782 }
1783
1784#else /* !VBOX_STRICT */
1785 NOREF(pVM);
1786#endif /* !VBOX_STRICT */
1787
1788 return VINF_SUCCESS;
1789}
1790
1791
1792/**
1793 * Validates the RawR0 TSS values against the one in the Guest TSS.
1794 *
1795 * @returns true if it matches.
1796 * @returns false and assertions on mismatch..
1797 * @param pVM Pointer to the VM.
1798 */
1799VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1800{
1801#ifdef VBOX_STRICT
1802 PVMCPU pVCpu = VMMGetCpu(pVM);
1803
1804 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1805 return true;
1806
1807 /*
1808 * Get TR and extract the basic info.
1809 */
1810 CPUMSELREGHID trHid;
1811 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1812 RTGCPTR GCPtrTss = trHid.u64Base;
1813 uint32_t cbTss = trHid.u32Limit;
1814 Assert( (SelTss & X86_SEL_MASK)
1815 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1816 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1817 if (SelTss & X86_SEL_MASK)
1818 {
1819 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1820 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1821 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1822 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1823 false);
1824 if (!++cbTss)
1825 cbTss = UINT32_MAX;
1826 }
1827 else
1828 {
1829 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1830 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
1831 false);
1832 cbTss = 0; /* the reset case. */
1833 }
1834 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1835 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1836 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1837 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1838 false);
1839 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1840 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1841 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1842 false);
1843 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1844 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1845 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1846 false);
1847
1848
1849 /*
1850 * Figure out the size of what need to monitor.
1851 */
1852 /* We're not interested in any 16-bit TSSes. */
1853 uint32_t cbMonitoredTss = cbTss;
1854 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1855 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1856 cbMonitoredTss = 0;
1857 if (cbMonitoredTss)
1858 {
1859 VBOXTSS Tss;
1860 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1861 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1862 AssertReturn( rc == VINF_SUCCESS
1863 /* Happens early in XP boot during page table switching. */
1864 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1865 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
1866 false);
1867 if ( !(cr4 & X86_CR4_VME)
1868 || ( RT_SUCCESS(rc)
1869 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1870 && Tss.offIoBitmap > cbTss)
1871 )
1872 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1873 else if (RT_SUCCESS(rc))
1874 {
1875 cbMonitoredTss = Tss.offIoBitmap;
1876 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1877 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1878 false);
1879
1880 /* check the bitmap */
1881 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1882 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
1883 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1884 AssertRCReturn(rc, false);
1885 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
1886 ("offIoBitmap=%#x cbTss=%#x\n"
1887 " Guest: %.32Rhxs\n"
1888 "Shadow: %.32Rhxs\n",
1889 Tss.offIoBitmap, cbTss,
1890 &Tss.IntRedirBitmap[0],
1891 &pVM->selm.s.Tss.IntRedirBitmap[0]),
1892 false);
1893 }
1894 else
1895 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1896
1897 /*
1898 * Check SS0 and ESP0.
1899 */
1900 if ( !pVM->selm.s.fSyncTSSRing0Stack
1901 && RT_SUCCESS(rc))
1902 {
1903 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
1904 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
1905 {
1906 RTGCPHYS GCPhys;
1907 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1908 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
1909 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
1910 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
1911 return false;
1912 }
1913 }
1914 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1915 }
1916 else
1917 {
1918 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
1919 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
1920 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1921 }
1922
1923
1924
1925 return true;
1926
1927#else /* !VBOX_STRICT */
1928 NOREF(pVM);
1929 return true;
1930#endif /* !VBOX_STRICT */
1931}
1932
1933
1934/**
1935 * Returns flat address and limit of LDT by LDT selector from guest GDTR.
1936 *
1937 * Fully validate selector.
1938 *
1939 * @returns VBox status.
1940 * @param pVM Pointer to the VM.
1941 * @param SelLdt LDT selector.
1942 * @param ppvLdt Where to store the flat address of LDT.
1943 * @param pcbLimit Where to store LDT limit.
1944 */
1945VMMDECL(int) SELMGetLDTFromSel(PVM pVM, RTSEL SelLdt, PRTGCPTR ppvLdt, unsigned *pcbLimit)
1946{
1947 PVMCPU pVCpu = VMMGetCpu(pVM);
1948
1949 /* Get guest GDTR. */
1950 VBOXGDTR GDTR;
1951 CPUMGetGuestGDTR(pVCpu, &GDTR);
1952
1953 /* Check selector TI and GDT limit. */
1954 if ( (SelLdt & X86_SEL_LDT)
1955 || SelLdt > GDTR.cbGdt)
1956 return VERR_INVALID_SELECTOR;
1957
1958 /* Read descriptor from GC. */
1959 X86DESC Desc;
1960 int rc = PGMPhysSimpleReadGCPtr(pVCpu, (void *)&Desc, (RTGCPTR)(GDTR.pGdt + (SelLdt & X86_SEL_MASK)), sizeof(Desc));
1961 if (RT_FAILURE(rc))
1962 {
1963 /* fatal */
1964 Log(("Can't read LDT descriptor for selector=%04X\n", SelLdt));
1965 return VERR_SELECTOR_NOT_PRESENT;
1966 }
1967
1968 /* Check if LDT descriptor is not present. */
1969 if (Desc.Gen.u1Present == 0)
1970 return VERR_SELECTOR_NOT_PRESENT;
1971
1972 /* Check LDT descriptor type. */
1973 if ( Desc.Gen.u1DescType == 1
1974 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1975 return VERR_INVALID_SELECTOR;
1976
1977 /* LDT descriptor is ok. */
1978 if (ppvLdt)
1979 {
1980 *ppvLdt = (RTGCPTR)X86DESC_BASE(Desc);
1981 *pcbLimit = X86DESC_LIMIT(Desc);
1982 }
1983 return VINF_SUCCESS;
1984}
1985
1986
1987/**
1988 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
1989 *
1990 * See SELMR3GetSelectorInfo for details.
1991 *
1992 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
1993 *
1994 * @param pVCpu Pointer to the VMCPU.
1995 * @param Sel The selector to get info about.
1996 * @param pSelInfo Where to store the information.
1997 */
1998static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
1999{
2000 /*
2001 * Read it from the guest descriptor table.
2002 */
2003 X86DESC64 Desc;
2004 VBOXGDTR Gdtr;
2005 RTGCPTR GCPtrDesc;
2006 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2007 if (!(Sel & X86_SEL_LDT))
2008 {
2009 /* GDT */
2010 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2011 return VERR_INVALID_SELECTOR;
2012 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2013 }
2014 else
2015 {
2016 /*
2017 * LDT - must locate the LDT first.
2018 */
2019 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2020 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */ /** @todo r=bird: No, I don't think so */
2021 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2022 return VERR_INVALID_SELECTOR;
2023 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2024 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2025 if (RT_FAILURE(rc))
2026 return rc;
2027
2028 /* validate the LDT descriptor. */
2029 if (Desc.Gen.u1Present == 0)
2030 return VERR_SELECTOR_NOT_PRESENT;
2031 if ( Desc.Gen.u1DescType == 1
2032 || Desc.Gen.u4Type != AMD64_SEL_TYPE_SYS_LDT)
2033 return VERR_INVALID_SELECTOR;
2034
2035 uint32_t cbLimit = X86DESC_LIMIT(Desc);
2036 if (Desc.Gen.u1Granularity)
2037 cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2038 if ((uint32_t)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2039 return VERR_INVALID_SELECTOR;
2040
2041 /* calc the descriptor location. */
2042 GCPtrDesc = X86DESC64_BASE(Desc);
2043 GCPtrDesc += (Sel & X86_SEL_MASK);
2044 }
2045
2046 /* read the descriptor. */
2047 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2048 if (RT_FAILURE(rc))
2049 {
2050 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2051 if (RT_FAILURE(rc))
2052 return rc;
2053 Desc.au64[1] = 0;
2054 }
2055
2056 /*
2057 * Extract the base and limit
2058 * (We ignore the present bit here, which is probably a bit silly...)
2059 */
2060 pSelInfo->Sel = Sel;
2061 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2062 pSelInfo->u.Raw64 = Desc;
2063 if (Desc.Gen.u1DescType)
2064 {
2065 /*
2066 * 64-bit code selectors are wide open, it's not possible to detect
2067 * 64-bit data or stack selectors without also dragging in assumptions
2068 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2069 * the selinfo user needs to deal with this in the context the info is
2070 * used unfortunately.
2071 */
2072 if ( Desc.Gen.u1Long
2073 && !Desc.Gen.u1DefBig
2074 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2075 {
2076 /* Note! We ignore the segment limit hacks that was added by AMD. */
2077 pSelInfo->GCPtrBase = 0;
2078 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2079 }
2080 else
2081 {
2082 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2083 if (Desc.Gen.u1Granularity)
2084 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2085 pSelInfo->GCPtrBase = X86DESC_BASE(Desc);
2086 }
2087 pSelInfo->SelGate = 0;
2088 }
2089 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2090 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2091 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2092 {
2093 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2094 in the AMD manual here as a simplification. */
2095 pSelInfo->GCPtrBase = X86DESC64_BASE(Desc);
2096 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2097 if (Desc.Gen.u1Granularity)
2098 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2099 pSelInfo->SelGate = 0;
2100 }
2101 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2102 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2103 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2104 {
2105 pSelInfo->cbLimit = X86DESC64_BASE(Desc);
2106 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2107 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2108 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2109 pSelInfo->SelGate = Desc.Gate.u16Sel;
2110 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2111 }
2112 else
2113 {
2114 pSelInfo->cbLimit = 0;
2115 pSelInfo->GCPtrBase = 0;
2116 pSelInfo->SelGate = 0;
2117 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2118 }
2119 if (!Desc.Gen.u1Present)
2120 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2121
2122 return VINF_SUCCESS;
2123}
2124
2125
2126/**
2127 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2128 * interprets a legacy descriptor table entry and fills in the selector info
2129 * structure from it.
2130 *
2131 * @param pSelInfo Where to store the selector info. Only the fFlags and
2132 * Sel members have been initialized.
2133 * @param pDesc The legacy descriptor to parse.
2134 */
2135DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2136{
2137 pSelInfo->u.Raw64.au64[1] = 0;
2138 pSelInfo->u.Raw = *pDesc;
2139 if ( pDesc->Gen.u1DescType
2140 || !(pDesc->Gen.u4Type & 4))
2141 {
2142 pSelInfo->cbLimit = X86DESC_LIMIT(*pDesc);
2143 if (pDesc->Gen.u1Granularity)
2144 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2145 pSelInfo->GCPtrBase = X86DESC_BASE(*pDesc);
2146 pSelInfo->SelGate = 0;
2147 }
2148 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2149 {
2150 pSelInfo->cbLimit = 0;
2151 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2152 pSelInfo->GCPtrBase = 0;
2153 else
2154 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2155 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2156 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2157 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2158 }
2159 else
2160 {
2161 pSelInfo->cbLimit = 0;
2162 pSelInfo->GCPtrBase = 0;
2163 pSelInfo->SelGate = 0;
2164 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2165 }
2166 if (!pDesc->Gen.u1Present)
2167 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2168}
2169
2170
2171/**
2172 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2173 *
2174 * See SELMR3GetSelectorInfo for details.
2175 *
2176 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2177 *
2178 * @param pVM Pointer to the VM.
2179 * @param pVCpu Pointer to the VMCPU.
2180 * @param Sel The selector to get info about.
2181 * @param pSelInfo Where to store the information.
2182 */
2183static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2184{
2185 /*
2186 * Read the descriptor entry
2187 */
2188 pSelInfo->fFlags = 0;
2189 X86DESC Desc;
2190 if ( !(Sel & X86_SEL_LDT)
2191 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2192 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2193 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2194 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2195 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK))
2196 )
2197 {
2198 /*
2199 * Hypervisor descriptor.
2200 */
2201 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2202 if (CPUMIsGuestInProtectedMode(pVCpu))
2203 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2204 else
2205 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2206
2207 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2208 }
2209 else if (CPUMIsGuestInProtectedMode(pVCpu))
2210 {
2211 /*
2212 * Read it from the guest descriptor table.
2213 */
2214 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2215
2216 VBOXGDTR Gdtr;
2217 RTGCPTR GCPtrDesc;
2218 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2219 if (!(Sel & X86_SEL_LDT))
2220 {
2221 /* GDT */
2222 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2223 return VERR_INVALID_SELECTOR;
2224 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2225 }
2226 else
2227 {
2228 /*
2229 * LDT - must locate the LDT first...
2230 */
2231 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2232 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */ /** @todo r=bird: No, I don't think so */
2233 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2234 return VERR_INVALID_SELECTOR;
2235 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2236 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2237 if (RT_FAILURE(rc))
2238 return rc;
2239
2240 /* validate the LDT descriptor. */
2241 if (Desc.Gen.u1Present == 0)
2242 return VERR_SELECTOR_NOT_PRESENT;
2243 if ( Desc.Gen.u1DescType == 1
2244 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
2245 return VERR_INVALID_SELECTOR;
2246
2247 unsigned cbLimit = X86DESC_LIMIT(Desc);
2248 if (Desc.Gen.u1Granularity)
2249 cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2250 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2251 return VERR_INVALID_SELECTOR;
2252
2253 /* calc the descriptor location. */
2254 GCPtrDesc = X86DESC_BASE(Desc);
2255 GCPtrDesc += (Sel & X86_SEL_MASK);
2256 }
2257
2258 /* read the descriptor. */
2259 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2260 if (RT_FAILURE(rc))
2261 return rc;
2262 }
2263 else
2264 {
2265 /*
2266 * We're in real mode.
2267 */
2268 pSelInfo->Sel = Sel;
2269 pSelInfo->GCPtrBase = Sel << 4;
2270 pSelInfo->cbLimit = 0xffff;
2271 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2272 pSelInfo->u.Raw64.au64[0] = 0;
2273 pSelInfo->u.Raw64.au64[1] = 0;
2274 pSelInfo->SelGate = 0;
2275 return VINF_SUCCESS;
2276 }
2277
2278 /*
2279 * Extract the base and limit or sel:offset for gates.
2280 */
2281 pSelInfo->Sel = Sel;
2282 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2283
2284 return VINF_SUCCESS;
2285}
2286
2287
2288/**
2289 * Gets information about a selector.
2290 *
2291 * Intended for the debugger mostly and will prefer the guest descriptor tables
2292 * over the shadow ones.
2293 *
2294 * @retval VINF_SUCCESS on success.
2295 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2296 * descriptor table.
2297 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2298 * is not returned if the selector itself isn't present, you have to
2299 * check that for yourself (see DBGFSELINFO::fFlags).
2300 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2301 * pagetable or page backing the selector table wasn't present.
2302 * @returns Other VBox status code on other errors.
2303 *
2304 * @param pVM Pointer to the VM.
2305 * @param pVCpu Pointer to the VMCPU.
2306 * @param Sel The selector to get info about.
2307 * @param pSelInfo Where to store the information.
2308 */
2309VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2310{
2311 AssertPtr(pSelInfo);
2312 if (CPUMIsGuestInLongMode(pVCpu))
2313 return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
2314 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2315}
2316
2317
2318/**
2319 * Gets information about a selector from the shadow tables.
2320 *
2321 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2322 * requires that the caller ensures that the shadow tables are up to date.
2323 *
2324 * @retval VINF_SUCCESS on success.
2325 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2326 * descriptor table.
2327 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2328 * is not returned if the selector itself isn't present, you have to
2329 * check that for yourself (see DBGFSELINFO::fFlags).
2330 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2331 * pagetable or page backing the selector table wasn't present.
2332 * @returns Other VBox status code on other errors.
2333 *
2334 * @param pVM Pointer to the VM.
2335 * @param Sel The selector to get info about.
2336 * @param pSelInfo Where to store the information.
2337 *
2338 * @remarks Don't use this when in hardware assisted virtualization mode.
2339 */
2340VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2341{
2342 Assert(pSelInfo);
2343
2344 /*
2345 * Read the descriptor entry
2346 */
2347 X86DESC Desc;
2348 if (!(Sel & X86_SEL_LDT))
2349 {
2350 /*
2351 * Global descriptor.
2352 */
2353 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2354 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2355 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2356 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2357 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2358 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK)
2359 ? DBGFSELINFO_FLAGS_HYPER
2360 : 0;
2361 /** @todo check that the GDT offset is valid. */
2362 }
2363 else
2364 {
2365 /*
2366 * Local Descriptor.
2367 */
2368 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2369 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2370 /** @todo check if the LDT page is actually available. */
2371 /** @todo check that the LDT offset is valid. */
2372 pSelInfo->fFlags = 0;
2373 }
2374 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2375 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2376 else
2377 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2378
2379 /*
2380 * Extract the base and limit or sel:offset for gates.
2381 */
2382 pSelInfo->Sel = Sel;
2383 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2384
2385 return VINF_SUCCESS;
2386}
2387
2388
2389/**
2390 * Formats a descriptor.
2391 *
2392 * @param Desc Descriptor to format.
2393 * @param Sel Selector number.
2394 * @param pszOutput Output buffer.
2395 * @param cchOutput Size of output buffer.
2396 */
2397static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2398{
2399 /*
2400 * Make variable description string.
2401 */
2402 static struct
2403 {
2404 unsigned cch;
2405 const char *psz;
2406 } const aTypes[32] =
2407 {
2408#define STRENTRY(str) { sizeof(str) - 1, str }
2409 /* system */
2410 STRENTRY("Reserved0 "), /* 0x00 */
2411 STRENTRY("TSS16Avail "), /* 0x01 */
2412 STRENTRY("LDT "), /* 0x02 */
2413 STRENTRY("TSS16Busy "), /* 0x03 */
2414 STRENTRY("Call16 "), /* 0x04 */
2415 STRENTRY("Task "), /* 0x05 */
2416 STRENTRY("Int16 "), /* 0x06 */
2417 STRENTRY("Trap16 "), /* 0x07 */
2418 STRENTRY("Reserved8 "), /* 0x08 */
2419 STRENTRY("TSS32Avail "), /* 0x09 */
2420 STRENTRY("ReservedA "), /* 0x0a */
2421 STRENTRY("TSS32Busy "), /* 0x0b */
2422 STRENTRY("Call32 "), /* 0x0c */
2423 STRENTRY("ReservedD "), /* 0x0d */
2424 STRENTRY("Int32 "), /* 0x0e */
2425 STRENTRY("Trap32 "), /* 0x0f */
2426 /* non system */
2427 STRENTRY("DataRO "), /* 0x10 */
2428 STRENTRY("DataRO Accessed "), /* 0x11 */
2429 STRENTRY("DataRW "), /* 0x12 */
2430 STRENTRY("DataRW Accessed "), /* 0x13 */
2431 STRENTRY("DataDownRO "), /* 0x14 */
2432 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2433 STRENTRY("DataDownRW "), /* 0x16 */
2434 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2435 STRENTRY("CodeEO "), /* 0x18 */
2436 STRENTRY("CodeEO Accessed "), /* 0x19 */
2437 STRENTRY("CodeER "), /* 0x1a */
2438 STRENTRY("CodeER Accessed "), /* 0x1b */
2439 STRENTRY("CodeConfEO "), /* 0x1c */
2440 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2441 STRENTRY("CodeConfER "), /* 0x1e */
2442 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2443#undef SYSENTRY
2444 };
2445#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2446 char szMsg[128];
2447 char *psz = &szMsg[0];
2448 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2449 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2450 psz += aTypes[i].cch;
2451
2452 if (Desc.Gen.u1Present)
2453 ADD_STR(psz, "Present ");
2454 else
2455 ADD_STR(psz, "Not-Present ");
2456 if (Desc.Gen.u1Granularity)
2457 ADD_STR(psz, "Page ");
2458 if (Desc.Gen.u1DefBig)
2459 ADD_STR(psz, "32-bit ");
2460 else
2461 ADD_STR(psz, "16-bit ");
2462#undef ADD_STR
2463 *psz = '\0';
2464
2465 /*
2466 * Limit and Base and format the output.
2467 */
2468 uint32_t u32Limit = X86DESC_LIMIT(Desc);
2469 if (Desc.Gen.u1Granularity)
2470 u32Limit = u32Limit << PAGE_SHIFT | PAGE_OFFSET_MASK;
2471 uint32_t u32Base = X86DESC_BASE(Desc);
2472
2473 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2474 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2475}
2476
2477
2478/**
2479 * Dumps a descriptor.
2480 *
2481 * @param Desc Descriptor to dump.
2482 * @param Sel Selector number.
2483 * @param pszMsg Message to prepend the log entry with.
2484 */
2485VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2486{
2487 char szOutput[128];
2488 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2489 Log(("%s: %s\n", pszMsg, szOutput));
2490 NOREF(szOutput[0]);
2491}
2492
2493
2494/**
2495 * Display the shadow gdt.
2496 *
2497 * @param pVM Pointer to the VM.
2498 * @param pHlp The info helpers.
2499 * @param pszArgs Arguments, ignored.
2500 */
2501static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2502{
2503 NOREF(pszArgs);
2504 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2505 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2506 {
2507 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2508 {
2509 char szOutput[128];
2510 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2511 const char *psz = "";
2512 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2513 psz = " HyperCS";
2514 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2515 psz = " HyperDS";
2516 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2517 psz = " HyperCS64";
2518 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2519 psz = " HyperTSS";
2520 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2521 psz = " HyperTSSTrap08";
2522 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2523 }
2524 }
2525}
2526
2527
2528/**
2529 * Display the guest gdt.
2530 *
2531 * @param pVM Pointer to the VM.
2532 * @param pHlp The info helpers.
2533 * @param pszArgs Arguments, ignored.
2534 */
2535static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2536{
2537 /** @todo SMP support! */
2538 PVMCPU pVCpu = &pVM->aCpus[0];
2539
2540 VBOXGDTR GDTR;
2541 CPUMGetGuestGDTR(pVCpu, &GDTR);
2542 RTGCPTR GCPtrGDT = GDTR.pGdt;
2543 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2544
2545 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2546 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2547 {
2548 X86DESC GDTE;
2549 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2550 if (RT_SUCCESS(rc))
2551 {
2552 if (GDTE.Gen.u1Present)
2553 {
2554 char szOutput[128];
2555 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2556 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2557 }
2558 }
2559 else if (rc == VERR_PAGE_NOT_PRESENT)
2560 {
2561 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2562 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2563 }
2564 else
2565 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2566 }
2567 NOREF(pszArgs);
2568}
2569
2570
2571/**
2572 * Display the shadow ldt.
2573 *
2574 * @param pVM Pointer to the VM.
2575 * @param pHlp The info helpers.
2576 * @param pszArgs Arguments, ignored.
2577 */
2578static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2579{
2580 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2581 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2582 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2583 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2584 {
2585 if (paLDT[iLDT].Gen.u1Present)
2586 {
2587 char szOutput[128];
2588 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2589 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2590 }
2591 }
2592 NOREF(pszArgs);
2593}
2594
2595
2596/**
2597 * Display the guest ldt.
2598 *
2599 * @param pVM Pointer to the VM.
2600 * @param pHlp The info helpers.
2601 * @param pszArgs Arguments, ignored.
2602 */
2603static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2604{
2605 /** @todo SMP support! */
2606 PVMCPU pVCpu = &pVM->aCpus[0];
2607
2608 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2609 if (!(SelLdt & X86_SEL_MASK))
2610 {
2611 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2612 return;
2613 }
2614
2615 RTGCPTR GCPtrLdt;
2616 unsigned cbLdt;
2617 int rc = SELMGetLDTFromSel(pVM, SelLdt, &GCPtrLdt, &cbLdt);
2618 if (RT_FAILURE(rc))
2619 {
2620 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): rc=%Rrc\n", SelLdt, rc);
2621 return;
2622 }
2623
2624 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RGv limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2625 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2626 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2627 {
2628 X86DESC LdtE;
2629 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2630 if (RT_SUCCESS(rc))
2631 {
2632 if (LdtE.Gen.u1Present)
2633 {
2634 char szOutput[128];
2635 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2636 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2637 }
2638 }
2639 else if (rc == VERR_PAGE_NOT_PRESENT)
2640 {
2641 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2642 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2643 }
2644 else
2645 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2646 }
2647 NOREF(pszArgs);
2648}
2649
2650
2651/**
2652 * Dumps the hypervisor GDT
2653 *
2654 * @param pVM Pointer to the VM.
2655 */
2656VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2657{
2658 DBGFR3Info(pVM, "gdt", NULL, NULL);
2659}
2660
2661
2662/**
2663 * Dumps the hypervisor LDT
2664 *
2665 * @param pVM Pointer to the VM.
2666 */
2667VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2668{
2669 DBGFR3Info(pVM, "ldt", NULL, NULL);
2670}
2671
2672
2673/**
2674 * Dumps the guest GDT
2675 *
2676 * @param pVM Pointer to the VM.
2677 */
2678VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2679{
2680 DBGFR3Info(pVM, "gdtguest", NULL, NULL);
2681}
2682
2683
2684/**
2685 * Dumps the guest LDT
2686 *
2687 * @param pVM Pointer to the VM.
2688 */
2689VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2690{
2691 DBGFR3Info(pVM, "ldtguest", NULL, NULL);
2692}
2693
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette