VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/SELM.cpp@ 45485

Last change on this file since 45485 was 45485, checked in by vboxsync, 12 years ago
  • *: Where possible, drop the #ifdef VBOX_WITH_RAW_RING1 when EMIsRawRing1Enabled is used.
  • SELM: Don't shadow TSS.esp1/ss1 unless ring-1 compression is enabled (also fixed a log statement there).
  • SELM: selmGuestToShadowDesc should not push ring-1 selectors into ring-2 unless EMIsRawRing1Enabled() holds true.
  • REM: Don't set CPU_INTERRUPT_EXTERNAL_EXIT in helper_ltr() for now.
  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 108.2 KB
Line 
1/* $Id: SELM.cpp 45485 2013-04-11 14:46:04Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58/*******************************************************************************
59* Header Files *
60*******************************************************************************/
61#define LOG_GROUP LOG_GROUP_SELM
62#include <VBox/vmm/selm.h>
63#include <VBox/vmm/cpum.h>
64#include <VBox/vmm/stam.h>
65#include <VBox/vmm/em.h>
66#include <VBox/vmm/mm.h>
67#include <VBox/vmm/ssm.h>
68#include <VBox/vmm/pgm.h>
69#include <VBox/vmm/trpm.h>
70#include <VBox/vmm/dbgf.h>
71#include "SELMInternal.h"
72#include <VBox/vmm/vm.h>
73#include <VBox/err.h>
74#include <VBox/param.h>
75
76#include <iprt/assert.h>
77#include <VBox/log.h>
78#include <iprt/asm.h>
79#include <iprt/string.h>
80#include <iprt/thread.h>
81#include <iprt/string.h>
82
83#include "SELMInline.h"
84
85
86/** SELM saved state version. */
87#define SELM_SAVED_STATE_VERSION 5
88
89
90/*******************************************************************************
91* Internal Functions *
92*******************************************************************************/
93static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
94static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
95static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
96static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
97static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
98static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
99static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
100static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
101static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
102static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
103//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
104//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
105
106
107/*******************************************************************************
108* Global Variables *
109*******************************************************************************/
110#ifdef LOG_ENABLED
111/** Segment register names. */
112static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
113#endif
114
115
116/**
117 * Initializes the SELM.
118 *
119 * @returns VBox status code.
120 * @param pVM Pointer to the VM.
121 */
122VMMR3DECL(int) SELMR3Init(PVM pVM)
123{
124 LogFlow(("SELMR3Init\n"));
125
126 /*
127 * Assert alignment and sizes.
128 * (The TSS block requires contiguous back.)
129 */
130 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
131 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
132#if 0 /* doesn't work */
133 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
134 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
135#endif
136 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
137 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
138 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
139
140 /*
141 * Init the structure.
142 */
143 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
144 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
145 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
146 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
147 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
148 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
149
150 /*
151 * Allocate GDT table.
152 */
153 int rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
154 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
155 AssertRCReturn(rc, rc);
156
157 /*
158 * Allocate LDT area.
159 */
160 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
161 AssertRCReturn(rc, rc);
162
163 /*
164 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
165 */
166 pVM->selm.s.cbEffGuestGdtLimit = 0;
167 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
168 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
169 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
170
171 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
172 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
173 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
174 pVM->selm.s.GCSelTss = RTSEL_MAX;
175
176 pVM->selm.s.fDisableMonitoring = false;
177 pVM->selm.s.fSyncTSSRing0Stack = false;
178
179 /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it
180 * for I/O operations. */
181 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
182 /* bit set to 1 means no redirection */
183 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
184
185 /*
186 * Register the saved state data unit.
187 */
188 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
189 NULL, NULL, NULL,
190 NULL, selmR3Save, NULL,
191 NULL, selmR3Load, selmR3LoadDone);
192 if (RT_FAILURE(rc))
193 return rc;
194
195 /*
196 * Statistics.
197 */
198 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
199 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
200 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
201 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
202 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
203 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
204 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
205 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
206 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
207
208 STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
209 STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
210
211 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleES", STAMUNIT_OCCURENCES, "Stale ES was detected in UpdateFromCPUM.");
212 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleCS", STAMUNIT_OCCURENCES, "Stale CS was detected in UpdateFromCPUM.");
213 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleSS", STAMUNIT_OCCURENCES, "Stale SS was detected in UpdateFromCPUM.");
214 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleDS", STAMUNIT_OCCURENCES, "Stale DS was detected in UpdateFromCPUM.");
215 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleFS", STAMUNIT_OCCURENCES, "Stale FS was detected in UpdateFromCPUM.");
216 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleGS", STAMUNIT_OCCURENCES, "Stale GS was detected in UpdateFromCPUM.");
217
218 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleES", STAMUNIT_OCCURENCES, "Already stale ES in UpdateFromCPUM.");
219 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleCS", STAMUNIT_OCCURENCES, "Already stale CS in UpdateFromCPUM.");
220 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleSS", STAMUNIT_OCCURENCES, "Already stale SS in UpdateFromCPUM.");
221 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleDS", STAMUNIT_OCCURENCES, "Already stale DS in UpdateFromCPUM.");
222 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleFS", STAMUNIT_OCCURENCES, "Already stale FS in UpdateFromCPUM.");
223 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleGS", STAMUNIT_OCCURENCES, "Already stale GS in UpdateFromCPUM.");
224
225 STAM_REL_REG(pVM, &pVM->selm.s.StatStaleToUnstaleSReg, STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/StaleToUnstale", STAMUNIT_OCCURENCES, "Transitions from stale to unstale UpdateFromCPUM.");
226
227 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedES", STAMUNIT_OCCURENCES, "Updated hidden ES values in UpdateFromCPUM.");
228 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedCS", STAMUNIT_OCCURENCES, "Updated hidden CS values in UpdateFromCPUM.");
229 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedSS", STAMUNIT_OCCURENCES, "Updated hidden SS values in UpdateFromCPUM.");
230 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedDS", STAMUNIT_OCCURENCES, "Updated hidden DS values in UpdateFromCPUM.");
231 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedFS", STAMUNIT_OCCURENCES, "Updated hidden FS values in UpdateFromCPUM.");
232 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedGS", STAMUNIT_OCCURENCES, "Updated hidden GS values in UpdateFromCPUM.");
233
234 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelGst, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from guest tables.");
235 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelShw, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedShadow", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from shadow tables.");
236 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelReadErrors, STAMTYPE_COUNTER, "/SELM/LoadHidSel/GstReadErrors", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Guest table read errors.");
237 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelGstNoGood, STAMTYPE_COUNTER, "/SELM/LoadHidSel/NoGoodGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: No good guest table entry.");
238
239 /*
240 * Default action when entering raw mode for the first time
241 */
242 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
243 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
244 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
245 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
246
247 /*
248 * Register info handlers.
249 */
250 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
251 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
252 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
253 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
254 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
255 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
256
257 return rc;
258}
259
260
261/**
262 * Finalizes HMA page attributes.
263 *
264 * @returns VBox status code.
265 * @param pVM Pointer to the VM.
266 */
267VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
268{
269 /** @cfgm{/DoubleFault,bool,false}
270 * Enables catching of double faults in the raw-mode context VMM code. This can
271 * be used when the triple faults or hangs occur and one suspect an unhandled
272 * double fault. This is not enabled by default because it means making the
273 * hyper selectors writeable for all supervisor code, including the guest's.
274 * The double fault is a task switch and thus requires write access to the GDT
275 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
276 * 8 TSS for the back link.
277 */
278 bool f;
279#if defined(DEBUG_bird)
280 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
281#else
282 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
283#endif
284 AssertLogRelRCReturn(rc, rc);
285 if (f)
286 {
287 PX86DESC paGdt = pVM->selm.s.paGdtR3;
288 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
289 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
290 AssertRC(rc);
291 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
292 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
293 AssertRC(rc);
294 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
295 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
296 AssertRC(rc);
297 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
298 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
299 AssertRC(rc);
300 }
301 return VINF_SUCCESS;
302}
303
304
305/**
306 * Setup the hypervisor GDT selectors in our shadow table
307 *
308 * @param pVM Pointer to the VM.
309 */
310static void selmR3SetupHyperGDTSelectors(PVM pVM)
311{
312 PX86DESC paGdt = pVM->selm.s.paGdtR3;
313
314 /*
315 * Set up global code and data descriptors for use in the guest context.
316 * Both are wide open (base 0, limit 4GB)
317 */
318 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
319 pDesc->Gen.u16LimitLow = 0xffff;
320 pDesc->Gen.u4LimitHigh = 0xf;
321 pDesc->Gen.u16BaseLow = 0;
322 pDesc->Gen.u8BaseHigh1 = 0;
323 pDesc->Gen.u8BaseHigh2 = 0;
324 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
325 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
326 pDesc->Gen.u2Dpl = 0; /* supervisor */
327 pDesc->Gen.u1Present = 1;
328 pDesc->Gen.u1Available = 0;
329 pDesc->Gen.u1Long = 0;
330 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
331 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
332
333 /* data */
334 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
335 pDesc->Gen.u16LimitLow = 0xffff;
336 pDesc->Gen.u4LimitHigh = 0xf;
337 pDesc->Gen.u16BaseLow = 0;
338 pDesc->Gen.u8BaseHigh1 = 0;
339 pDesc->Gen.u8BaseHigh2 = 0;
340 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
341 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
342 pDesc->Gen.u2Dpl = 0; /* supervisor */
343 pDesc->Gen.u1Present = 1;
344 pDesc->Gen.u1Available = 0;
345 pDesc->Gen.u1Long = 0;
346 pDesc->Gen.u1DefBig = 1; /* big */
347 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
348
349 /* 64-bit mode code (& data?) */
350 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
351 pDesc->Gen.u16LimitLow = 0xffff;
352 pDesc->Gen.u4LimitHigh = 0xf;
353 pDesc->Gen.u16BaseLow = 0;
354 pDesc->Gen.u8BaseHigh1 = 0;
355 pDesc->Gen.u8BaseHigh2 = 0;
356 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
357 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
358 pDesc->Gen.u2Dpl = 0; /* supervisor */
359 pDesc->Gen.u1Present = 1;
360 pDesc->Gen.u1Available = 0;
361 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
362 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
363 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
364
365 /*
366 * TSS descriptor
367 */
368 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
369 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
370 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
371 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
372 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
373 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
374 pDesc->Gen.u4LimitHigh = 0;
375 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
376 pDesc->Gen.u1DescType = 0; /* system */
377 pDesc->Gen.u2Dpl = 0; /* supervisor */
378 pDesc->Gen.u1Present = 1;
379 pDesc->Gen.u1Available = 0;
380 pDesc->Gen.u1Long = 0;
381 pDesc->Gen.u1DefBig = 0;
382 pDesc->Gen.u1Granularity = 0; /* byte limit */
383
384 /*
385 * TSS descriptor for trap 08
386 */
387 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
388 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
389 pDesc->Gen.u4LimitHigh = 0;
390 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
391 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
392 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
393 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
394 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
395 pDesc->Gen.u1DescType = 0; /* system */
396 pDesc->Gen.u2Dpl = 0; /* supervisor */
397 pDesc->Gen.u1Present = 1;
398 pDesc->Gen.u1Available = 0;
399 pDesc->Gen.u1Long = 0;
400 pDesc->Gen.u1DefBig = 0;
401 pDesc->Gen.u1Granularity = 0; /* byte limit */
402}
403
404/**
405 * Applies relocations to data and code managed by this
406 * component. This function will be called at init and
407 * whenever the VMM need to relocate it self inside the GC.
408 *
409 * @param pVM The VM.
410 */
411VMMR3DECL(void) SELMR3Relocate(PVM pVM)
412{
413 PX86DESC paGdt = pVM->selm.s.paGdtR3;
414 LogFlow(("SELMR3Relocate\n"));
415
416 for (VMCPUID i = 0; i < pVM->cCpus; i++)
417 {
418 PVMCPU pVCpu = &pVM->aCpus[i];
419
420 /*
421 * Update GDTR and selector.
422 */
423 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
424
425 /** @todo selector relocations should be a separate operation? */
426 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
427 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
428 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
429 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
430 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
431 }
432
433 selmR3SetupHyperGDTSelectors(pVM);
434
435/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
436/** @todo PGM knows the proper CR3 values these days, not CPUM. */
437 /*
438 * Update the TSSes.
439 */
440 /* Only applies to raw mode which supports only 1 VCPU */
441 PVMCPU pVCpu = &pVM->aCpus[0];
442
443 /* Current TSS */
444 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
445 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
446 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
447 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
448 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
449 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
450 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
451
452 /* trap 08 */
453 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
454 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
455 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
456 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
457 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
458 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
459 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
460 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
461 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
462 pVM->selm.s.TssTrap08.fs = 0;
463 pVM->selm.s.TssTrap08.gs = 0;
464 pVM->selm.s.TssTrap08.selLdt = 0;
465 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
466 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
467 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
468 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
469 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
470 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
471 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
472 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
473 /* TRPM will be updating the eip */
474
475 if ( !pVM->selm.s.fDisableMonitoring
476 && !VMMIsHwVirtExtForced(pVM))
477 {
478 /*
479 * Update shadow GDT/LDT/TSS write access handlers.
480 */
481 int rc;
482#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
483 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
484 {
485 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
486 AssertRC(rc);
487 }
488 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
489 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
490 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
491 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
492 AssertRC(rc);
493#endif
494#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
495 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
496 {
497 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
498 AssertRC(rc);
499 }
500 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
501 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
502 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
503 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
504 AssertRC(rc);
505#endif
506
507 /*
508 * Update the GC LDT region handler and address.
509 */
510#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
511 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
512 {
513 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
514 AssertRC(rc);
515 }
516#endif
517 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
518#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
519 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
520 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
521 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
522 AssertRC(rc);
523#endif
524 }
525}
526
527
528/**
529 * Terminates the SELM.
530 *
531 * Termination means cleaning up and freeing all resources,
532 * the VM it self is at this point powered off or suspended.
533 *
534 * @returns VBox status code.
535 * @param pVM Pointer to the VM.
536 */
537VMMR3DECL(int) SELMR3Term(PVM pVM)
538{
539 NOREF(pVM);
540 return 0;
541}
542
543
544/**
545 * The VM is being reset.
546 *
547 * For the SELM component this means that any GDT/LDT/TSS monitors
548 * needs to be removed.
549 *
550 * @param pVM Pointer to the VM.
551 */
552VMMR3DECL(void) SELMR3Reset(PVM pVM)
553{
554 LogFlow(("SELMR3Reset:\n"));
555 VM_ASSERT_EMT(pVM);
556
557 /*
558 * Uninstall guest GDT/LDT/TSS write access handlers.
559 */
560 int rc = VINF_SUCCESS;
561 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
562 {
563#ifdef SELM_TRACK_GUEST_GDT_CHANGES
564 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
565 AssertRC(rc);
566#endif
567 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
568 pVM->selm.s.GuestGdtr.cbGdt = 0;
569 }
570 pVM->selm.s.fGDTRangeRegistered = false;
571 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
572 {
573#ifdef SELM_TRACK_GUEST_LDT_CHANGES
574 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
575 AssertRC(rc);
576#endif
577 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
578 }
579 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
580 {
581#ifdef SELM_TRACK_GUEST_TSS_CHANGES
582 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
583 AssertRC(rc);
584#endif
585 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
586 pVM->selm.s.GCSelTss = RTSEL_MAX;
587 }
588
589 /*
590 * Re-initialize other members.
591 */
592 pVM->selm.s.cbLdtLimit = 0;
593 pVM->selm.s.offLdtHyper = 0;
594 pVM->selm.s.cbMonitoredGuestTss = 0;
595
596 pVM->selm.s.fSyncTSSRing0Stack = false;
597
598 /*
599 * Default action when entering raw mode for the first time
600 */
601 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
602 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
603 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
605}
606
607/**
608 * Disable GDT/LDT/TSS monitoring and syncing
609 *
610 * @param pVM Pointer to the VM.
611 */
612VMMR3DECL(void) SELMR3DisableMonitoring(PVM pVM)
613{
614 /*
615 * Uninstall guest GDT/LDT/TSS write access handlers.
616 */
617 int rc;
618 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
619 {
620#ifdef SELM_TRACK_GUEST_GDT_CHANGES
621 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
622 AssertRC(rc);
623#endif
624 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
625 pVM->selm.s.GuestGdtr.cbGdt = 0;
626 }
627 pVM->selm.s.fGDTRangeRegistered = false;
628 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
629 {
630#ifdef SELM_TRACK_GUEST_LDT_CHANGES
631 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
632 AssertRC(rc);
633#endif
634 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
635 }
636 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
637 {
638#ifdef SELM_TRACK_GUEST_TSS_CHANGES
639 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
640 AssertRC(rc);
641#endif
642 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
643 pVM->selm.s.GCSelTss = RTSEL_MAX;
644 }
645
646 /*
647 * Unregister shadow GDT/LDT/TSS write access handlers.
648 */
649#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
650 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
651 {
652 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
653 AssertRC(rc);
654 pVM->selm.s.paGdtRC = NIL_RTRCPTR;
655 }
656#endif
657#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
658 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
659 {
660 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
661 AssertRC(rc);
662 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
663 }
664#endif
665#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
666 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
667 {
668 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
669 AssertRC(rc);
670 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
671 }
672#endif
673
674 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
675 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
676 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
677 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
678
679 pVM->selm.s.fDisableMonitoring = true;
680}
681
682
683/**
684 * Execute state save operation.
685 *
686 * @returns VBox status code.
687 * @param pVM Pointer to the VM.
688 * @param pSSM SSM operation handle.
689 */
690static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
691{
692 LogFlow(("selmR3Save:\n"));
693
694 /*
695 * Save the basic bits - fortunately all the other things can be resynced on load.
696 */
697 PSELM pSelm = &pVM->selm.s;
698
699 SSMR3PutBool(pSSM, pSelm->fDisableMonitoring);
700 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
701 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
702 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
703 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
704 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
705 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
706 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
707}
708
709
710/**
711 * Execute state load operation.
712 *
713 * @returns VBox status code.
714 * @param pVM Pointer to the VM.
715 * @param pSSM SSM operation handle.
716 * @param uVersion Data layout version.
717 * @param uPass The data pass.
718 */
719static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
720{
721 LogFlow(("selmR3Load:\n"));
722 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
723
724 /*
725 * Validate version.
726 */
727 if (uVersion != SELM_SAVED_STATE_VERSION)
728 {
729 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
730 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
731 }
732
733 /*
734 * Do a reset.
735 */
736 SELMR3Reset(pVM);
737
738 /* Get the monitoring flag. */
739 SSMR3GetBool(pSSM, &pVM->selm.s.fDisableMonitoring);
740
741 /* Get the TSS state flag. */
742 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
743
744 /*
745 * Get the selectors.
746 */
747 RTSEL SelCS;
748 SSMR3GetSel(pSSM, &SelCS);
749 RTSEL SelDS;
750 SSMR3GetSel(pSSM, &SelDS);
751 RTSEL SelCS64;
752 SSMR3GetSel(pSSM, &SelCS64);
753 RTSEL SelDS64;
754 SSMR3GetSel(pSSM, &SelDS64);
755 RTSEL SelTSS;
756 SSMR3GetSel(pSSM, &SelTSS);
757 RTSEL SelTSSTrap08;
758 SSMR3GetSel(pSSM, &SelTSSTrap08);
759
760 /* Copy the selectors; they will be checked during relocation. */
761 PSELM pSelm = &pVM->selm.s;
762 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
763 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
764 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
765 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
766 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
767
768 return VINF_SUCCESS;
769}
770
771
772/**
773 * Sync the GDT, LDT and TSS after loading the state.
774 *
775 * Just to play save, we set the FFs to force syncing before
776 * executing GC code.
777 *
778 * @returns VBox status code.
779 * @param pVM Pointer to the VM.
780 * @param pSSM SSM operation handle.
781 */
782static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
783{
784 PVMCPU pVCpu = VMMGetCpu(pVM);
785
786 LogFlow(("selmR3LoadDone:\n"));
787
788 /*
789 * Don't do anything if it's a load failure.
790 */
791 int rc = SSMR3HandleGetStatus(pSSM);
792 if (RT_FAILURE(rc))
793 return VINF_SUCCESS;
794
795 /*
796 * Do the syncing if we're in protected mode.
797 */
798 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
799 {
800 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
801 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
802 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
803 SELMR3UpdateFromCPUM(pVM, pVCpu);
804 }
805
806 /*
807 * Flag everything for resync on next raw mode entry.
808 */
809 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
810 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
811 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
812
813 return VINF_SUCCESS;
814}
815
816#ifdef VBOX_WITH_RAW_MODE
817
818/**
819 * Updates (syncs) the shadow GDT.
820 *
821 * @returns VBox status code.
822 * @param pVM The VM handle.
823 * @param pVCpu The current virtual CPU.
824 */
825static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
826{
827 /*
828 * Always assume the best...
829 */
830 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
831
832 /* If the GDT was changed, then make sure the LDT is checked too */
833 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
834 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
835 /* Same goes for the TSS selector */
836 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
837
838 /*
839 * Get the GDTR and check if there is anything to do (there usually is).
840 */
841 VBOXGDTR GDTR;
842 CPUMGetGuestGDTR(pVCpu, &GDTR);
843 if (GDTR.cbGdt < sizeof(X86DESC))
844 {
845 Log(("No GDT entries...\n"));
846 return VINF_SUCCESS;
847 }
848
849 /*
850 * Read the Guest GDT.
851 * ASSUMES that the entire GDT is in memory.
852 */
853 RTUINT cbEffLimit = GDTR.cbGdt;
854 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
855 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
856 if (RT_FAILURE(rc))
857 {
858 /*
859 * Read it page by page.
860 *
861 * Keep track of the last valid page and delay memsets and
862 * adjust cbEffLimit to reflect the effective size. The latter
863 * is something we do in the belief that the guest will probably
864 * never actually commit the last page, thus allowing us to keep
865 * our selectors in the high end of the GDT.
866 */
867 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
868 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
869 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
870 uint8_t *pu8DstInvalid = pu8Dst;
871
872 while (cbLeft)
873 {
874 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
875 cb = RT_MIN(cb, cbLeft);
876 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
877 if (RT_SUCCESS(rc))
878 {
879 if (pu8DstInvalid != pu8Dst)
880 RT_BZERO(pu8DstInvalid, pu8Dst - pu8DstInvalid);
881 GCPtrSrc += cb;
882 pu8Dst += cb;
883 pu8DstInvalid = pu8Dst;
884 }
885 else if ( rc == VERR_PAGE_NOT_PRESENT
886 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
887 {
888 GCPtrSrc += cb;
889 pu8Dst += cb;
890 }
891 else
892 {
893 AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
894 return VERR_SELM_GDT_READ_ERROR;
895 }
896 cbLeft -= cb;
897 }
898
899 /* any invalid pages at the end? */
900 if (pu8DstInvalid != pu8Dst)
901 {
902 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
903 /* If any GDTEs was invalidated, zero them. */
904 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
905 RT_BZERO(pu8DstInvalid + cbEffLimit + 1, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
906 }
907
908 /* keep track of the effective limit. */
909 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
910 {
911 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
912 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
913 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
914 }
915 }
916
917 /*
918 * Check if the Guest GDT intrudes on our GDT entries.
919 */
920 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
921 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
922 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
923 {
924 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
925 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
926 int iGDT = 0;
927
928 Log(("Internal SELM GDT conflict: use non-present entries\n"));
929 STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
930 while (pGDTECur > pGDTEStart)
931 {
932 /* We can reuse non-present entries */
933 if (!pGDTECur->Gen.u1Present)
934 {
935 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
936 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
937 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
938 iGDT++;
939 if (iGDT >= SELM_HYPER_SEL_MAX)
940 break;
941 }
942
943 pGDTECur--;
944 }
945 if (iGDT != SELM_HYPER_SEL_MAX)
946 {
947 AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
948 return VERR_SELM_GDT_TOO_FULL;
949 }
950 }
951 else
952 {
953 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
954 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
955 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
956 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
957 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
958 }
959
960#ifdef VBOX_WITH_SAFE_STR
961 /* Use the guest's TR selector to plug the str virtualization hole. */
962 if (CPUMGetGuestTR(pVCpu, NULL) != 0)
963 {
964 Log(("SELM: Use guest TSS selector %x\n", CPUMGetGuestTR(pVCpu, NULL)));
965 aHyperSel[SELM_HYPER_SEL_TSS] = CPUMGetGuestTR(pVCpu, NULL);
966 }
967#endif
968
969 /*
970 * Work thru the copied GDT entries adjusting them for correct virtualization.
971 */
972 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
973 while (pGDTE < pGDTEEnd)
974 {
975 if (pGDTE->Gen.u1Present)
976 selmGuestToShadowDesc(pVM, pGDTE);
977
978 /* Next GDT entry. */
979 pGDTE++;
980 }
981
982 /*
983 * Check if our hypervisor selectors were changed.
984 */
985 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
986 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
987 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
988 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
989 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
990 {
991 /* Reinitialize our hypervisor GDTs */
992 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
993 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
994 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
995 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
996 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
997
998 STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
999
1000 /*
1001 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
1002 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
1003 */
1004 VMR3Relocate(pVM, 0);
1005 }
1006 else
1007#ifdef VBOX_WITH_SAFE_STR
1008 if ( cbEffLimit >= SELM_HYPER_DEFAULT_BASE
1009 || CPUMGetGuestTR(pVCpu, NULL) != 0) /* Our shadow TR entry was overwritten when we synced the guest's GDT. */
1010#else
1011 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
1012#endif
1013 /* We overwrote all entries above, so we have to save them again. */
1014 selmR3SetupHyperGDTSelectors(pVM);
1015
1016 /*
1017 * Adjust the cached GDT limit.
1018 * Any GDT entries which have been removed must be cleared.
1019 */
1020 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
1021 {
1022 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
1023 RT_BZERO(pGDTE, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
1024 }
1025
1026 /*
1027 * Check if Guest's GDTR is changed.
1028 */
1029 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
1030 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1031 {
1032 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
1033
1034#ifdef SELM_TRACK_GUEST_GDT_CHANGES
1035 /*
1036 * [Re]Register write virtual handler for guest's GDT.
1037 */
1038 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
1039 {
1040 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
1041 AssertRC(rc);
1042 }
1043
1044 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1045 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1046 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1047 "Guest GDT write access handler");
1048# ifdef VBOX_WITH_RAW_RING1
1049 /** @todo !HACK ALERT!
1050 * Some guest OSes (QNX) share code and the GDT on the same page;
1051 * PGMR3HandlerVirtualRegister doesn't support more than one handler,
1052 * so we kick out the PATM handler as this one is more important.
1053 * Fix this properly in PGMR3HandlerVirtualRegister?
1054 */
1055 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1056 {
1057 LogRel(("selmR3UpdateShadowGdt: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority GDT page monitor\n", GDTR.pGdt));
1058 rc = PGMHandlerVirtualDeregister(pVM, GDTR.pGdt & PAGE_BASE_GC_MASK);
1059 AssertRC(rc);
1060
1061 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1062 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1063 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1064 "Guest GDT write access handler");
1065 }
1066# endif
1067 if (RT_FAILURE(rc))
1068 return rc;
1069#endif /* SELM_TRACK_GUEST_GDT_CHANGES */
1070
1071 /* Update saved Guest GDTR. */
1072 pVM->selm.s.GuestGdtr = GDTR;
1073 pVM->selm.s.fGDTRangeRegistered = true;
1074 }
1075
1076 return VINF_SUCCESS;
1077}
1078
1079
1080/**
1081 * Updates (syncs) the shadow LDT.
1082 *
1083 * @returns VBox status code.
1084 * @param pVM The VM handle.
1085 * @param pVCpu The current virtual CPU.
1086 */
1087static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
1088{
1089 int rc = VINF_SUCCESS;
1090
1091 /*
1092 * Always assume the best...
1093 */
1094 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1095
1096 /*
1097 * LDT handling is done similarly to the GDT handling with a shadow
1098 * array. However, since the LDT is expected to be swappable (at least
1099 * some ancient OSes makes it swappable) it must be floating and
1100 * synced on a per-page basis.
1101 *
1102 * Eventually we will change this to be fully on demand. Meaning that
1103 * we will only sync pages containing LDT selectors actually used and
1104 * let the #PF handler lazily sync pages as they are used.
1105 * (This applies to GDT too, when we start making OS/2 fast.)
1106 */
1107
1108 /*
1109 * First, determine the current LDT selector.
1110 */
1111 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1112 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
1113 {
1114 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1115 CPUMSetHyperLDTR(pVCpu, 0);
1116 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1117 {
1118 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1119 AssertRC(rc);
1120 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1121 }
1122 pVM->selm.s.cbLdtLimit = 0;
1123 return VINF_SUCCESS;
1124 }
1125
1126 /*
1127 * Get the LDT selector.
1128 */
1129/** @todo this is wrong, use CPUMGetGuestLdtrEx */
1130 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1131 RTGCPTR GCPtrLdt = X86DESC_BASE(pDesc);
1132 uint32_t cbLdt = X86DESC_LIMIT_G(pDesc);
1133
1134 /*
1135 * Validate it.
1136 */
1137 if ( !cbLdt
1138 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1139 || pDesc->Gen.u1DescType
1140 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1141 {
1142 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1143
1144 /* cbLdt > 0:
1145 * This is quite impossible, so we do as most people do when faced with
1146 * the impossible, we simply ignore it.
1147 */
1148 CPUMSetHyperLDTR(pVCpu, 0);
1149 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1150 {
1151 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1152 AssertRC(rc);
1153 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1154 }
1155 return VINF_SUCCESS;
1156 }
1157 /** @todo check what intel does about odd limits. */
1158 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1159
1160 /*
1161 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1162 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1163 */
1164 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1165 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1166
1167
1168 /** @todo Handle only present LDT segments. */
1169// if (pDesc->Gen.u1Present)
1170 {
1171 /*
1172 * Check if Guest's LDT address/limit is changed.
1173 */
1174 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1175 || cbLdt != pVM->selm.s.cbLdtLimit)
1176 {
1177 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1178 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1179
1180#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1181 /*
1182 * [Re]Register write virtual handler for guest's GDT.
1183 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1184 */
1185 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1186 {
1187 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1188 AssertRC(rc);
1189 }
1190# ifdef DEBUG
1191 if (pDesc->Gen.u1Present)
1192 Log(("LDT selector marked not present!!\n"));
1193# endif
1194 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1195 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1196 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1197 {
1198 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1199 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1200 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1201 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1202 }
1203 else if (RT_SUCCESS(rc))
1204 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1205 else
1206 {
1207 CPUMSetHyperLDTR(pVCpu, 0);
1208 return rc;
1209 }
1210#else
1211 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1212#endif
1213 pVM->selm.s.cbLdtLimit = cbLdt;
1214 }
1215 }
1216
1217 /*
1218 * Calc Shadow LDT base.
1219 */
1220 unsigned off;
1221 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1222 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1223 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1224
1225 /*
1226 * Enable the LDT selector in the shadow GDT.
1227 */
1228 pDesc->Gen.u1Present = 1;
1229 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1230 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1231 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1232 pDesc->Gen.u1Available = 0;
1233 pDesc->Gen.u1Long = 0;
1234 if (cbLdt > 0xffff)
1235 {
1236 cbLdt = 0xffff;
1237 pDesc->Gen.u4LimitHigh = 0;
1238 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1239 }
1240
1241 /*
1242 * Set Hyper LDTR and notify TRPM.
1243 */
1244 CPUMSetHyperLDTR(pVCpu, SelLdt);
1245
1246 /*
1247 * Loop synchronising the LDT page by page.
1248 */
1249 /** @todo investigate how intel handle various operations on half present cross page entries. */
1250 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1251 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1252
1253 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1254 unsigned cbLeft = cbLdt + 1;
1255 PX86DESC pLDTE = pShadowLDT;
1256 while (cbLeft)
1257 {
1258 /*
1259 * Read a chunk.
1260 */
1261 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1262 if (cbChunk > cbLeft)
1263 cbChunk = cbLeft;
1264 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1265 if (RT_SUCCESS(rc))
1266 {
1267 /*
1268 * Mark page
1269 */
1270 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1271 AssertRC(rc);
1272
1273 /*
1274 * Loop thru the available LDT entries.
1275 * Figure out where to start and end and the potential cross pageness of
1276 * things adds a little complexity. pLDTE is updated there and not in the
1277 * 'next' part of the loop. The pLDTEEnd is inclusive.
1278 */
1279 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1280 if (pLDTE + 1 < pShadowLDT)
1281 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1282 while (pLDTE <= pLDTEEnd)
1283 {
1284 if (pLDTE->Gen.u1Present)
1285 selmGuestToShadowDesc(pVM, pLDTE);
1286
1287 /* Next LDT entry. */
1288 pLDTE++;
1289 }
1290 }
1291 else
1292 {
1293 RT_BZERO(pShadowLDT, cbChunk);
1294 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1295 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1296 AssertRC(rc);
1297 }
1298
1299 /*
1300 * Advance to the next page.
1301 */
1302 cbLeft -= cbChunk;
1303 GCPtrShadowLDT += cbChunk;
1304 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1305 GCPtrLdt += cbChunk;
1306 }
1307
1308 return VINF_SUCCESS;
1309}
1310
1311
1312/**
1313 * Checks and updates segment selector registers.
1314 *
1315 * @returns VBox strict status code.
1316 * @retval VINF_EM_RESCHEDULE_REM if a stale register was found.
1317 *
1318 * @param pVM The VM handle.
1319 * @param pVCpu The current virtual CPU.
1320 */
1321static VBOXSTRICTRC selmR3UpdateSegmentRegisters(PVM pVM, PVMCPU pVCpu)
1322{
1323 Assert(CPUMIsGuestInProtectedMode(pVCpu));
1324
1325 /*
1326 * No stale selectors in V8086 mode.
1327 */
1328 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1329 if (pCtx->eflags.Bits.u1VM)
1330 return VINF_SUCCESS;
1331
1332 /*
1333 * Check for stale selectors and load hidden register bits where they
1334 * are missing.
1335 */
1336 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
1337 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1338 PCPUMSELREG paSReg = CPUMCTX_FIRST_SREG(pCtx);
1339 for (uint32_t iSReg = 0; iSReg < X86_SREG_COUNT; iSReg++)
1340 {
1341 RTSEL const Sel = paSReg[iSReg].Sel;
1342 if (Sel & X86_SEL_MASK_OFF_RPL)
1343 {
1344 /* Get the shadow descriptor entry corresponding to this. */
1345 static X86DESC const s_NotPresentDesc = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
1346 PCX86DESC pDesc;
1347 if (!(Sel & X86_SEL_LDT))
1348 {
1349 if ((Sel | (sizeof(*pDesc) - 1)) <= pCtx->gdtr.cbGdt)
1350 pDesc = &pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
1351 else
1352 pDesc = &s_NotPresentDesc;
1353 }
1354 else
1355 {
1356 if ((Sel | (sizeof(*pDesc) - 1)) <= pVM->selm.s.cbLdtLimit)
1357 pDesc = &((PCX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper))[Sel >> X86_SEL_SHIFT];
1358 else
1359 pDesc = &s_NotPresentDesc;
1360 }
1361
1362 /* Check the segment register. */
1363 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &paSReg[iSReg]))
1364 {
1365 if (!(paSReg[iSReg].fFlags & CPUMSELREG_FLAGS_STALE))
1366 {
1367 /* Did it go stale? */
1368 if (selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1369 {
1370 Log2(("SELM: Detected stale %s=%#x (was valid)\n", g_aszSRegNms[iSReg], Sel));
1371 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1372 paSReg[iSReg].fFlags |= CPUMSELREG_FLAGS_STALE;
1373 rcStrict = VINF_EM_RESCHEDULE_REM;
1374 }
1375 }
1376 else
1377 {
1378 /* Did it stop being stale? I.e. did the guest change it things
1379 back to the way they were? */
1380 if (!selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1381 {
1382 STAM_REL_COUNTER_INC(&pVM->selm.s.StatStaleToUnstaleSReg);
1383 paSReg[iSReg].fFlags &= CPUMSELREG_FLAGS_STALE;
1384 }
1385 else
1386 {
1387 Log2(("SELM: Already stale %s=%#x\n", g_aszSRegNms[iSReg], Sel));
1388 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatAlreadyStaleSReg[iSReg]);
1389 rcStrict = VINF_EM_RESCHEDULE_REM;
1390 }
1391 }
1392 }
1393 /* Load the hidden registers if it's a valid descriptor for the
1394 current segment register. */
1395 else if (selmIsShwDescGoodForSReg(&paSReg[iSReg], pDesc, iSReg, uCpl))
1396 {
1397 selmLoadHiddenSRegFromShadowDesc(&paSReg[iSReg], pDesc);
1398 STAM_COUNTER_INC(&pVM->selm.s.aStatUpdatedSReg[iSReg]);
1399 }
1400 /* It's stale. */
1401 else
1402 {
1403 Log2(("SELM: Detected stale %s=%#x (wasn't valid)\n", g_aszSRegNms[iSReg], Sel));
1404 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1405 paSReg[iSReg].fFlags = CPUMSELREG_FLAGS_STALE;
1406 rcStrict = VINF_EM_RESCHEDULE_REM;
1407 }
1408 }
1409 /* else: 0 selector, ignore. */
1410 }
1411
1412 return rcStrict;
1413}
1414
1415#endif /*VBOX_WITH_RAW_MODE*/
1416
1417
1418/**
1419 * Updates the Guest GDT & LDT virtualization based on current CPU state.
1420 *
1421 * @returns VBox status code.
1422 * @param pVM Pointer to the VM.
1423 * @param pVCpu Pointer to the VMCPU.
1424 */
1425VMMR3DECL(VBOXSTRICTRC) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
1426{
1427#ifdef VBOX_WITH_RAW_MODE
1428 if (pVM->selm.s.fDisableMonitoring)
1429#endif
1430 {
1431 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
1432 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1433 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1434 return VINF_SUCCESS;
1435 }
1436
1437#ifdef VBOX_WITH_RAW_MODE
1438 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
1439
1440 /*
1441 * GDT sync
1442 */
1443 int rc;
1444 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
1445 {
1446 rc = selmR3UpdateShadowGdt(pVM, pVCpu);
1447 if (RT_FAILURE(rc))
1448 return rc; /* We're toast, so forget the profiling. */
1449 AssertRCSuccess(rc);
1450 }
1451
1452 /*
1453 * TSS sync
1454 */
1455 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1456 {
1457 rc = SELMR3SyncTSS(pVM, pVCpu);
1458 if (RT_FAILURE(rc))
1459 return rc;
1460 AssertRCSuccess(rc);
1461 }
1462
1463 /*
1464 * LDT sync
1465 */
1466 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1467 {
1468 rc = selmR3UpdateShadowLdt(pVM, pVCpu);
1469 if (RT_FAILURE(rc))
1470 return rc;
1471 AssertRCSuccess(rc);
1472 }
1473
1474 /*
1475 * Check selector registers.
1476 */
1477 VBOXSTRICTRC rcStrict = selmR3UpdateSegmentRegisters(pVM, pVCpu);
1478
1479 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1480 return rcStrict;
1481#endif /* VBOX_WITH_RAW_MODE */
1482}
1483
1484
1485#ifdef SELM_TRACK_GUEST_GDT_CHANGES
1486/**
1487 * \#PF Handler callback for virtual access handler ranges.
1488 *
1489 * Important to realize that a physical page in a range can have aliases, and
1490 * for ALL and WRITE handlers these will also trigger.
1491 *
1492 * @returns VINF_SUCCESS if the handler have carried out the operation.
1493 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1494 * @param pVM Pointer to the VM.
1495 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1496 * @param pvPtr The HC mapping of that address.
1497 * @param pvBuf What the guest is reading/writing.
1498 * @param cbBuf How much it's reading/writing.
1499 * @param enmAccessType The access type.
1500 * @param pvUser User argument.
1501 */
1502static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1503 PGMACCESSTYPE enmAccessType, void *pvUser)
1504{
1505 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1506 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1507 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1508
1509 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
1510 return VINF_PGM_HANDLER_DO_DEFAULT;
1511}
1512#endif
1513
1514#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1515/**
1516 * \#PF Handler callback for virtual access handler ranges.
1517 *
1518 * Important to realize that a physical page in a range can have aliases, and
1519 * for ALL and WRITE handlers these will also trigger.
1520 *
1521 * @returns VINF_SUCCESS if the handler have carried out the operation.
1522 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1523 * @param pVM Pointer to the VM.
1524 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1525 * @param pvPtr The HC mapping of that address.
1526 * @param pvBuf What the guest is reading/writing.
1527 * @param cbBuf How much it's reading/writing.
1528 * @param enmAccessType The access type.
1529 * @param pvUser User argument.
1530 */
1531static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1532 PGMACCESSTYPE enmAccessType, void *pvUser)
1533{
1534 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1535 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1536 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1537
1538 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
1539 return VINF_PGM_HANDLER_DO_DEFAULT;
1540}
1541#endif
1542
1543
1544#ifdef SELM_TRACK_GUEST_TSS_CHANGES
1545/**
1546 * \#PF Handler callback for virtual access handler ranges.
1547 *
1548 * Important to realize that a physical page in a range can have aliases, and
1549 * for ALL and WRITE handlers these will also trigger.
1550 *
1551 * @returns VINF_SUCCESS if the handler have carried out the operation.
1552 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1553 * @param pVM Pointer to the VM.
1554 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1555 * @param pvPtr The HC mapping of that address.
1556 * @param pvBuf What the guest is reading/writing.
1557 * @param cbBuf How much it's reading/writing.
1558 * @param enmAccessType The access type.
1559 * @param pvUser User argument.
1560 */
1561static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1562 PGMACCESSTYPE enmAccessType, void *pvUser)
1563{
1564 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1565 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1566 NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(pvUser);NOREF(pvPtr);
1567
1568 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
1569 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
1570 * should probably also deregister the virtual handler if TR.base/size
1571 * changes while we're in REM. */
1572
1573 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
1574 return VINF_PGM_HANDLER_DO_DEFAULT;
1575}
1576#endif
1577
1578
1579/**
1580 * Synchronize the shadowed fields in the TSS.
1581 *
1582 * At present we're shadowing the ring-0 stack selector & pointer, and the
1583 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1584 * REM and this function is called both if REM made any changes to the TSS or
1585 * loaded TR.
1586 *
1587 * @returns VBox status code.
1588 * @param pVM Pointer to the VM.
1589 * @param pVCpu Pointer to the VMCPU.
1590 */
1591VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1592{
1593 int rc;
1594
1595#ifdef VBOX_WITH_RAW_MODE
1596 if (pVM->selm.s.fDisableMonitoring)
1597#endif
1598 {
1599 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1600 return VINF_SUCCESS;
1601 }
1602
1603#ifdef VBOX_WITH_RAW_MODE
1604 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1605 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1606
1607 /*
1608 * Get TR and extract and store the basic info.
1609 *
1610 * Note! The TSS limit is not checked by the LTR code, so we
1611 * have to be a bit careful with it. We make sure cbTss
1612 * won't be zero if TR is valid and if it's NULL we'll
1613 * make sure cbTss is 0.
1614 */
1615/** @todo use the hidden bits, not shadow GDT. */
1616 CPUMSELREGHID trHid;
1617 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1618 RTGCPTR GCPtrTss = trHid.u64Base;
1619 uint32_t cbTss = trHid.u32Limit;
1620 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1621 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1622 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1623 if (SelTss & X86_SEL_MASK_OFF_RPL)
1624 {
1625 Assert(!(SelTss & X86_SEL_LDT));
1626 Assert(trHid.Attr.n.u1DescType == 0);
1627 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1628 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1629 if (!++cbTss)
1630 cbTss = UINT32_MAX;
1631 }
1632 else
1633 {
1634 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1635 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1636 cbTss = 0; /* the reset case. */
1637 }
1638 pVM->selm.s.cbGuestTss = cbTss;
1639 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1640 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1641
1642 /*
1643 * Figure out the size of what need to monitor.
1644 */
1645 /* We're not interested in any 16-bit TSSes. */
1646 uint32_t cbMonitoredTss = cbTss;
1647 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1648 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1649 cbMonitoredTss = 0;
1650
1651 pVM->selm.s.offGuestIoBitmap = 0;
1652 bool fNoRing1Stack = true;
1653 if (cbMonitoredTss)
1654 {
1655 /*
1656 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1657 * If VME is enabled we also want to keep an eye on the interrupt
1658 * redirection bitmap.
1659 */
1660 VBOXTSS Tss;
1661 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1662 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1663 if ( !(cr4 & X86_CR4_VME)
1664 || ( RT_SUCCESS(rc)
1665 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1666 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1667 )
1668 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1669 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1670 else if (RT_SUCCESS(rc))
1671 {
1672 /*
1673 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1674 * this can be quite a large chunk. We use to skip it earlier and just hope it
1675 * was kind of static...
1676 *
1677 * Update the virtual interrupt redirection bitmap while we're here.
1678 * (It is located in the 32 bytes before TR:offIoBitmap.)
1679 */
1680 cbMonitoredTss = Tss.offIoBitmap;
1681 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1682
1683 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1684 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1685 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1686 AssertRC(rc);
1687 /** @todo memset the bitmap on failure? */
1688 Log2(("Redirection bitmap:\n"));
1689 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1690 }
1691 else
1692 {
1693 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1694 pVM->selm.s.offGuestIoBitmap = 0;
1695 /** @todo memset the bitmap? */
1696 }
1697
1698 /*
1699 * Update the ring 0 stack selector and base address.
1700 */
1701 if (RT_SUCCESS(rc))
1702 {
1703#ifdef LOG_ENABLED
1704 if (LogIsEnabled())
1705 {
1706 uint32_t ssr0, espr0;
1707 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1708 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1709 {
1710 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1711 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1712 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1713 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1714 AssertMsg(ssr0 != Tss.ss0,
1715 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1716 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1717 }
1718 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1719 }
1720#endif /* LOG_ENABLED */
1721 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1722
1723 /* Update our TSS structure for the guest's ring 1 stack */
1724 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1725 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1726
1727#ifdef VBOX_WITH_RAW_RING1
1728 /* Update our TSS structure for the guest's ring 2 stack */
1729 if (EMIsRawRing1Enabled(pVM))
1730 {
1731 if ( (pVM->selm.s.Tss.ss2 != ((Tss.ss1 & ~2) | 1))
1732 || pVM->selm.s.Tss.esp2 != Tss.esp1)
1733 Log(("SELMR3SyncTSS: Updating TSS ring 1 stack to %04X:%08X from %04X:%08X\n", Tss.ss1, Tss.esp1, (pVM->selm.s.Tss.ss2 & ~2) | 1, pVM->selm.s.Tss.esp2));
1734 selmSetRing2Stack(pVM, (Tss.ss1 & ~1) | 2, Tss.esp1);
1735 }
1736#endif
1737 }
1738 }
1739
1740 /*
1741 * Flush the ring-1 stack and the direct syscall dispatching if we
1742 * cannot obtain SS0:ESP0.
1743 */
1744 if (fNoRing1Stack)
1745 {
1746 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1747 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1748
1749 /** @todo handle these dependencies better! */
1750 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1751 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1752 }
1753
1754 /*
1755 * Check for monitor changes and apply them.
1756 */
1757 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1758 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1759 {
1760 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1761 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1762
1763 /* Release the old range first. */
1764 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1765 {
1766 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1767 AssertRC(rc);
1768 }
1769
1770 /* Register the write handler if TS != 0. */
1771 if (cbMonitoredTss != 0)
1772 {
1773#ifdef SELM_TRACK_GUEST_TSS_CHANGES
1774 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1775 0, selmR3GuestTSSWriteHandler,
1776 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1777 if (RT_FAILURE(rc))
1778 {
1779# ifdef VBOX_WITH_RAW_RING1
1780 /** @todo !HACK ALERT!
1781 * Some guest OSes (QNX) share code and the TSS on the same page;
1782 * PGMR3HandlerVirtualRegister doesn't support more than one
1783 * handler, so we kick out the PATM handler as this one is more
1784 * important. Fix this properly in PGMR3HandlerVirtualRegister?
1785 */
1786 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1787 {
1788 LogRel(("SELMR3SyncTSS: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority TSS page monitor\n", GCPtrTss));
1789 rc = PGMHandlerVirtualDeregister(pVM, GCPtrTss & PAGE_BASE_GC_MASK);
1790 AssertRC(rc);
1791
1792 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1793 0, selmR3GuestTSSWriteHandler,
1794 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1795 if (RT_FAILURE(rc))
1796 {
1797 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1798 return rc;
1799 }
1800 }
1801# else
1802 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1803 return rc;
1804# endif
1805 }
1806#endif /* SELM_TRACK_GUEST_TSS_CHANGES */
1807
1808 /* Update saved Guest TSS info. */
1809 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1810 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1811 pVM->selm.s.GCSelTss = SelTss;
1812 }
1813 else
1814 {
1815 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1816 pVM->selm.s.cbMonitoredGuestTss = 0;
1817 pVM->selm.s.GCSelTss = 0;
1818 }
1819 }
1820
1821 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1822
1823 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1824 return VINF_SUCCESS;
1825#endif /*VBOX_WITH_RAW_MODE*/
1826}
1827
1828#ifdef VBOX_WITH_RAW_MODE
1829
1830/**
1831 * Compares the Guest GDT and LDT with the shadow tables.
1832 * This is a VBOX_STRICT only function.
1833 *
1834 * @returns VBox status code.
1835 * @param pVM Pointer to the VM.
1836 */
1837VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1838{
1839#ifdef VBOX_STRICT
1840 PVMCPU pVCpu = VMMGetCpu(pVM);
1841
1842 /*
1843 * Get GDTR and check for conflict.
1844 */
1845 VBOXGDTR GDTR;
1846 CPUMGetGuestGDTR(pVCpu, &GDTR);
1847 if (GDTR.cbGdt == 0)
1848 return VINF_SUCCESS;
1849
1850 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1851 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1852
1853 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1854 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1855
1856 /*
1857 * Loop thru the GDT checking each entry.
1858 */
1859 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1860 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1861 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1862 while (pGDTE < pGDTEEnd)
1863 {
1864 X86DESC GDTEGuest;
1865 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1866 if (RT_SUCCESS(rc))
1867 {
1868 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1869 {
1870 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1871 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1872 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1873 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1874 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1875 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1876 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1877 {
1878 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1879 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1880 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1881 }
1882 }
1883 }
1884
1885 /* Advance to the next descriptor. */
1886 GCPtrGDTEGuest += sizeof(X86DESC);
1887 pGDTE++;
1888 }
1889
1890
1891 /*
1892 * LDT?
1893 */
1894 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1895 if ((SelLdt & X86_SEL_MASK_OFF_RPL) == 0)
1896 return VINF_SUCCESS;
1897 Assert(!(SelLdt & X86_SEL_LDT));
1898 if (SelLdt > GDTR.cbGdt)
1899 {
1900 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1901 return VERR_SELM_LDT_OUT_OF_BOUNDS;
1902 }
1903 X86DESC LDTDesc;
1904 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1905 if (RT_FAILURE(rc))
1906 {
1907 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1908 return rc;
1909 }
1910 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(&LDTDesc);
1911 uint32_t cbLdt = X86DESC_LIMIT_G(&LDTDesc);
1912
1913 /*
1914 * Validate it.
1915 */
1916 if (!cbLdt)
1917 return VINF_SUCCESS;
1918 /** @todo check what intel does about odd limits. */
1919 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1920 if ( LDTDesc.Gen.u1DescType
1921 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1922 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1923 {
1924 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1925 return VERR_SELM_INVALID_LDT;
1926 }
1927
1928 /*
1929 * Loop thru the LDT checking each entry.
1930 */
1931 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1932 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1933 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1934 while (pLDTE < pLDTEEnd)
1935 {
1936 X86DESC LDTEGuest;
1937 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1938 if (RT_SUCCESS(rc))
1939 {
1940 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1941 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1942 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1943 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1944 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1945 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1946 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1947 {
1948 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1949 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1950 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1951 }
1952 }
1953
1954 /* Advance to the next descriptor. */
1955 GCPtrLDTEGuest += sizeof(X86DESC);
1956 pLDTE++;
1957 }
1958
1959#else /* !VBOX_STRICT */
1960 NOREF(pVM);
1961#endif /* !VBOX_STRICT */
1962
1963 return VINF_SUCCESS;
1964}
1965
1966
1967/**
1968 * Validates the RawR0 TSS values against the one in the Guest TSS.
1969 *
1970 * @returns true if it matches.
1971 * @returns false and assertions on mismatch..
1972 * @param pVM Pointer to the VM.
1973 */
1974VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1975{
1976#if defined(VBOX_STRICT) && defined(SELM_TRACK_GUEST_TSS_CHANGES)
1977 PVMCPU pVCpu = VMMGetCpu(pVM);
1978
1979 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1980 return true;
1981
1982 /*
1983 * Get TR and extract the basic info.
1984 */
1985 CPUMSELREGHID trHid;
1986 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1987 RTGCPTR GCPtrTss = trHid.u64Base;
1988 uint32_t cbTss = trHid.u32Limit;
1989 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1990 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1991 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1992 if (SelTss & X86_SEL_MASK_OFF_RPL)
1993 {
1994 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1995 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1996 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1997 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1998 false);
1999 if (!++cbTss)
2000 cbTss = UINT32_MAX;
2001 }
2002 else
2003 {
2004 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
2005 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
2006 false);
2007 cbTss = 0; /* the reset case. */
2008 }
2009 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
2010 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2011 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
2012 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
2013 false);
2014 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
2015 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
2016 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
2017 false);
2018 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
2019 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
2020 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
2021 false);
2022
2023
2024 /*
2025 * Figure out the size of what need to monitor.
2026 */
2027 /* We're not interested in any 16-bit TSSes. */
2028 uint32_t cbMonitoredTss = cbTss;
2029 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
2030 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2031 cbMonitoredTss = 0;
2032 if (cbMonitoredTss)
2033 {
2034 VBOXTSS Tss;
2035 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
2036 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
2037 AssertReturn( rc == VINF_SUCCESS
2038 /* Happens early in XP boot during page table switching. */
2039 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
2040 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
2041 false);
2042 if ( !(cr4 & X86_CR4_VME)
2043 || ( RT_SUCCESS(rc)
2044 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
2045 && Tss.offIoBitmap > cbTss)
2046 )
2047 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
2048 else if (RT_SUCCESS(rc))
2049 {
2050 cbMonitoredTss = Tss.offIoBitmap;
2051 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
2052 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
2053 false);
2054
2055 /* check the bitmap */
2056 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
2057 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
2058 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
2059 AssertRCReturn(rc, false);
2060 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
2061 ("offIoBitmap=%#x cbTss=%#x\n"
2062 " Guest: %.32Rhxs\n"
2063 "Shadow: %.32Rhxs\n",
2064 Tss.offIoBitmap, cbTss,
2065 &Tss.IntRedirBitmap[0],
2066 &pVM->selm.s.Tss.IntRedirBitmap[0]),
2067 false);
2068 }
2069 else
2070 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
2071
2072 /*
2073 * Check SS0 and ESP0.
2074 */
2075 if ( !pVM->selm.s.fSyncTSSRing0Stack
2076 && RT_SUCCESS(rc))
2077 {
2078 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
2079 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
2080 {
2081 RTGCPHYS GCPhys;
2082 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
2083 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
2084 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
2085 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
2086 return false;
2087 }
2088 }
2089 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
2090 }
2091 else
2092 {
2093 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
2094 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
2095 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
2096 }
2097
2098
2099
2100 return true;
2101
2102#else /* !VBOX_STRICT */
2103 NOREF(pVM);
2104 return true;
2105#endif /* !VBOX_STRICT */
2106}
2107
2108
2109# ifdef VBOX_WITH_SAFE_STR
2110/**
2111 * Validates the RawR0 TR shadow GDT entry.
2112 *
2113 * @returns true if it matches.
2114 * @returns false and assertions on mismatch..
2115 * @param pVM Pointer to the VM.
2116 */
2117VMMR3DECL(bool) SELMR3CheckShadowTR(PVM pVM)
2118{
2119# ifdef VBOX_STRICT
2120 PX86DESC paGdt = pVM->selm.s.paGdtR3;
2121
2122 /*
2123 * TSS descriptor
2124 */
2125 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
2126 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
2127
2128 if ( pDesc->Gen.u16BaseLow != RT_LOWORD(RCPtrTSS)
2129 || pDesc->Gen.u8BaseHigh1 != RT_BYTE3(RCPtrTSS)
2130 || pDesc->Gen.u8BaseHigh2 != RT_BYTE4(RCPtrTSS)
2131 || pDesc->Gen.u16LimitLow != sizeof(VBOXTSS) - 1
2132 || pDesc->Gen.u4LimitHigh != 0
2133 || (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL && pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2134 || pDesc->Gen.u1DescType != 0 /* system */
2135 || pDesc->Gen.u2Dpl != 0 /* supervisor */
2136 || pDesc->Gen.u1Present != 1
2137 || pDesc->Gen.u1Available != 0
2138 || pDesc->Gen.u1Long != 0
2139 || pDesc->Gen.u1DefBig != 0
2140 || pDesc->Gen.u1Granularity != 0 /* byte limit */
2141 )
2142 {
2143 AssertFailed();
2144 return false;
2145 }
2146# endif
2147 return true;
2148}
2149# endif /* VBOX_WITH_SAFE_STR */
2150
2151#endif /* VBOX_WITH_RAW_MODE */
2152
2153/**
2154 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2155 *
2156 * See SELMR3GetSelectorInfo for details.
2157 *
2158 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2159 *
2160 * @param pVCpu Pointer to the VMCPU.
2161 * @param Sel The selector to get info about.
2162 * @param pSelInfo Where to store the information.
2163 */
2164static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2165{
2166 /*
2167 * Read it from the guest descriptor table.
2168 */
2169/** @todo this is bogus wrt the LDT/GDT limit on long selectors. */
2170 X86DESC64 Desc;
2171 RTGCPTR GCPtrDesc;
2172 if (!(Sel & X86_SEL_LDT))
2173 {
2174 /* GDT */
2175 VBOXGDTR Gdtr;
2176 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2177 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2178 return VERR_INVALID_SELECTOR;
2179 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2180 }
2181 else
2182 {
2183 /* LDT */
2184 uint64_t GCPtrBase;
2185 uint32_t cbLimit;
2186 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2187 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2188 return VERR_INVALID_SELECTOR;
2189
2190 /* calc the descriptor location. */
2191 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2192 }
2193
2194 /* read the descriptor. */
2195 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2196 if (RT_FAILURE(rc))
2197 {
2198 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2199 if (RT_FAILURE(rc))
2200 return rc;
2201 Desc.au64[1] = 0;
2202 }
2203
2204 /*
2205 * Extract the base and limit
2206 * (We ignore the present bit here, which is probably a bit silly...)
2207 */
2208 pSelInfo->Sel = Sel;
2209 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2210 pSelInfo->u.Raw64 = Desc;
2211 if (Desc.Gen.u1DescType)
2212 {
2213 /*
2214 * 64-bit code selectors are wide open, it's not possible to detect
2215 * 64-bit data or stack selectors without also dragging in assumptions
2216 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2217 * the selinfo user needs to deal with this in the context the info is
2218 * used unfortunately.
2219 */
2220 if ( Desc.Gen.u1Long
2221 && !Desc.Gen.u1DefBig
2222 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2223 {
2224 /* Note! We ignore the segment limit hacks that was added by AMD. */
2225 pSelInfo->GCPtrBase = 0;
2226 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2227 }
2228 else
2229 {
2230 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2231 pSelInfo->GCPtrBase = X86DESC_BASE(&Desc);
2232 }
2233 pSelInfo->SelGate = 0;
2234 }
2235 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2236 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2237 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2238 {
2239 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2240 in the AMD manual here as a simplification. */
2241 pSelInfo->GCPtrBase = X86DESC64_BASE(&Desc);
2242 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2243 pSelInfo->SelGate = 0;
2244 }
2245 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2246 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2247 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2248 {
2249 pSelInfo->cbLimit = X86DESC64_BASE(&Desc);
2250 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2251 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2252 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2253 pSelInfo->SelGate = Desc.Gate.u16Sel;
2254 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2255 }
2256 else
2257 {
2258 pSelInfo->cbLimit = 0;
2259 pSelInfo->GCPtrBase = 0;
2260 pSelInfo->SelGate = 0;
2261 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2262 }
2263 if (!Desc.Gen.u1Present)
2264 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2265
2266 return VINF_SUCCESS;
2267}
2268
2269
2270/**
2271 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2272 * interprets a legacy descriptor table entry and fills in the selector info
2273 * structure from it.
2274 *
2275 * @param pSelInfo Where to store the selector info. Only the fFlags and
2276 * Sel members have been initialized.
2277 * @param pDesc The legacy descriptor to parse.
2278 */
2279DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2280{
2281 pSelInfo->u.Raw64.au64[1] = 0;
2282 pSelInfo->u.Raw = *pDesc;
2283 if ( pDesc->Gen.u1DescType
2284 || !(pDesc->Gen.u4Type & 4))
2285 {
2286 pSelInfo->cbLimit = X86DESC_LIMIT_G(pDesc);
2287 pSelInfo->GCPtrBase = X86DESC_BASE(pDesc);
2288 pSelInfo->SelGate = 0;
2289 }
2290 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2291 {
2292 pSelInfo->cbLimit = 0;
2293 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2294 pSelInfo->GCPtrBase = 0;
2295 else
2296 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2297 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2298 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2299 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2300 }
2301 else
2302 {
2303 pSelInfo->cbLimit = 0;
2304 pSelInfo->GCPtrBase = 0;
2305 pSelInfo->SelGate = 0;
2306 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2307 }
2308 if (!pDesc->Gen.u1Present)
2309 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2310}
2311
2312
2313/**
2314 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2315 *
2316 * See SELMR3GetSelectorInfo for details.
2317 *
2318 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2319 *
2320 * @param pVM Pointer to the VM.
2321 * @param pVCpu Pointer to the VMCPU.
2322 * @param Sel The selector to get info about.
2323 * @param pSelInfo Where to store the information.
2324 */
2325static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2326{
2327 /*
2328 * Read the descriptor entry
2329 */
2330 pSelInfo->fFlags = 0;
2331 X86DESC Desc;
2332 if ( !(Sel & X86_SEL_LDT)
2333 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_RPL_LDT)
2334 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_RPL_LDT)
2335 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_RPL_LDT)
2336 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_RPL_LDT)
2337 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_RPL_LDT))
2338 )
2339 {
2340 /*
2341 * Hypervisor descriptor.
2342 */
2343 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2344 if (CPUMIsGuestInProtectedMode(pVCpu))
2345 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2346 else
2347 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2348
2349 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2350 }
2351 else if (CPUMIsGuestInProtectedMode(pVCpu))
2352 {
2353 /*
2354 * Read it from the guest descriptor table.
2355 */
2356 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2357
2358 RTGCPTR GCPtrDesc;
2359 if (!(Sel & X86_SEL_LDT))
2360 {
2361 /* GDT */
2362 VBOXGDTR Gdtr;
2363 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2364 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2365 return VERR_INVALID_SELECTOR;
2366 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2367 }
2368 else
2369 {
2370 /* LDT */
2371 uint64_t GCPtrBase;
2372 uint32_t cbLimit;
2373 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2374 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2375 return VERR_INVALID_SELECTOR;
2376
2377 /* calc the descriptor location. */
2378 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2379 }
2380
2381 /* read the descriptor. */
2382 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2383 if (RT_FAILURE(rc))
2384 return rc;
2385 }
2386 else
2387 {
2388 /*
2389 * We're in real mode.
2390 */
2391 pSelInfo->Sel = Sel;
2392 pSelInfo->GCPtrBase = Sel << 4;
2393 pSelInfo->cbLimit = 0xffff;
2394 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2395 pSelInfo->u.Raw64.au64[0] = 0;
2396 pSelInfo->u.Raw64.au64[1] = 0;
2397 pSelInfo->SelGate = 0;
2398 return VINF_SUCCESS;
2399 }
2400
2401 /*
2402 * Extract the base and limit or sel:offset for gates.
2403 */
2404 pSelInfo->Sel = Sel;
2405 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2406
2407 return VINF_SUCCESS;
2408}
2409
2410
2411/**
2412 * Gets information about a selector.
2413 *
2414 * Intended for the debugger mostly and will prefer the guest descriptor tables
2415 * over the shadow ones.
2416 *
2417 * @retval VINF_SUCCESS on success.
2418 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2419 * descriptor table.
2420 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2421 * is not returned if the selector itself isn't present, you have to
2422 * check that for yourself (see DBGFSELINFO::fFlags).
2423 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2424 * pagetable or page backing the selector table wasn't present.
2425 * @returns Other VBox status code on other errors.
2426 *
2427 * @param pVM Pointer to the VM.
2428 * @param pVCpu Pointer to the VMCPU.
2429 * @param Sel The selector to get info about.
2430 * @param pSelInfo Where to store the information.
2431 */
2432VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2433{
2434 AssertPtr(pSelInfo);
2435 if (CPUMIsGuestInLongMode(pVCpu))
2436 return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
2437 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2438}
2439
2440
2441/**
2442 * Gets information about a selector from the shadow tables.
2443 *
2444 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2445 * requires that the caller ensures that the shadow tables are up to date.
2446 *
2447 * @retval VINF_SUCCESS on success.
2448 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2449 * descriptor table.
2450 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2451 * is not returned if the selector itself isn't present, you have to
2452 * check that for yourself (see DBGFSELINFO::fFlags).
2453 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2454 * pagetable or page backing the selector table wasn't present.
2455 * @returns Other VBox status code on other errors.
2456 *
2457 * @param pVM Pointer to the VM.
2458 * @param Sel The selector to get info about.
2459 * @param pSelInfo Where to store the information.
2460 *
2461 * @remarks Don't use this when in hardware assisted virtualization mode.
2462 */
2463VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2464{
2465 Assert(pSelInfo);
2466
2467 /*
2468 * Read the descriptor entry
2469 */
2470 X86DESC Desc;
2471 if (!(Sel & X86_SEL_LDT))
2472 {
2473 /*
2474 * Global descriptor.
2475 */
2476 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2477 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK_OFF_RPL)
2478 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK_OFF_RPL)
2479 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK_OFF_RPL)
2480 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK_OFF_RPL)
2481 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK_OFF_RPL)
2482 ? DBGFSELINFO_FLAGS_HYPER
2483 : 0;
2484 /** @todo check that the GDT offset is valid. */
2485 }
2486 else
2487 {
2488 /*
2489 * Local Descriptor.
2490 */
2491 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2492 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2493 /** @todo check if the LDT page is actually available. */
2494 /** @todo check that the LDT offset is valid. */
2495 pSelInfo->fFlags = 0;
2496 }
2497 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2498 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2499 else
2500 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2501
2502 /*
2503 * Extract the base and limit or sel:offset for gates.
2504 */
2505 pSelInfo->Sel = Sel;
2506 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2507
2508 return VINF_SUCCESS;
2509}
2510
2511
2512/**
2513 * Formats a descriptor.
2514 *
2515 * @param Desc Descriptor to format.
2516 * @param Sel Selector number.
2517 * @param pszOutput Output buffer.
2518 * @param cchOutput Size of output buffer.
2519 */
2520static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2521{
2522 /*
2523 * Make variable description string.
2524 */
2525 static struct
2526 {
2527 unsigned cch;
2528 const char *psz;
2529 } const aTypes[32] =
2530 {
2531#define STRENTRY(str) { sizeof(str) - 1, str }
2532 /* system */
2533 STRENTRY("Reserved0 "), /* 0x00 */
2534 STRENTRY("TSS16Avail "), /* 0x01 */
2535 STRENTRY("LDT "), /* 0x02 */
2536 STRENTRY("TSS16Busy "), /* 0x03 */
2537 STRENTRY("Call16 "), /* 0x04 */
2538 STRENTRY("Task "), /* 0x05 */
2539 STRENTRY("Int16 "), /* 0x06 */
2540 STRENTRY("Trap16 "), /* 0x07 */
2541 STRENTRY("Reserved8 "), /* 0x08 */
2542 STRENTRY("TSS32Avail "), /* 0x09 */
2543 STRENTRY("ReservedA "), /* 0x0a */
2544 STRENTRY("TSS32Busy "), /* 0x0b */
2545 STRENTRY("Call32 "), /* 0x0c */
2546 STRENTRY("ReservedD "), /* 0x0d */
2547 STRENTRY("Int32 "), /* 0x0e */
2548 STRENTRY("Trap32 "), /* 0x0f */
2549 /* non system */
2550 STRENTRY("DataRO "), /* 0x10 */
2551 STRENTRY("DataRO Accessed "), /* 0x11 */
2552 STRENTRY("DataRW "), /* 0x12 */
2553 STRENTRY("DataRW Accessed "), /* 0x13 */
2554 STRENTRY("DataDownRO "), /* 0x14 */
2555 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2556 STRENTRY("DataDownRW "), /* 0x16 */
2557 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2558 STRENTRY("CodeEO "), /* 0x18 */
2559 STRENTRY("CodeEO Accessed "), /* 0x19 */
2560 STRENTRY("CodeER "), /* 0x1a */
2561 STRENTRY("CodeER Accessed "), /* 0x1b */
2562 STRENTRY("CodeConfEO "), /* 0x1c */
2563 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2564 STRENTRY("CodeConfER "), /* 0x1e */
2565 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2566#undef SYSENTRY
2567 };
2568#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2569 char szMsg[128];
2570 char *psz = &szMsg[0];
2571 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2572 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2573 psz += aTypes[i].cch;
2574
2575 if (Desc.Gen.u1Present)
2576 ADD_STR(psz, "Present ");
2577 else
2578 ADD_STR(psz, "Not-Present ");
2579 if (Desc.Gen.u1Granularity)
2580 ADD_STR(psz, "Page ");
2581 if (Desc.Gen.u1DefBig)
2582 ADD_STR(psz, "32-bit ");
2583 else
2584 ADD_STR(psz, "16-bit ");
2585#undef ADD_STR
2586 *psz = '\0';
2587
2588 /*
2589 * Limit and Base and format the output.
2590 */
2591 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
2592 uint32_t u32Base = X86DESC_BASE(&Desc);
2593
2594 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2595 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2596}
2597
2598
2599/**
2600 * Dumps a descriptor.
2601 *
2602 * @param Desc Descriptor to dump.
2603 * @param Sel Selector number.
2604 * @param pszMsg Message to prepend the log entry with.
2605 */
2606VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2607{
2608 char szOutput[128];
2609 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2610 Log(("%s: %s\n", pszMsg, szOutput));
2611 NOREF(szOutput[0]);
2612}
2613
2614
2615/**
2616 * Display the shadow gdt.
2617 *
2618 * @param pVM Pointer to the VM.
2619 * @param pHlp The info helpers.
2620 * @param pszArgs Arguments, ignored.
2621 */
2622static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2623{
2624 NOREF(pszArgs);
2625 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2626 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2627 {
2628 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2629 {
2630 char szOutput[128];
2631 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2632 const char *psz = "";
2633 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2634 psz = " HyperCS";
2635 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2636 psz = " HyperDS";
2637 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2638 psz = " HyperCS64";
2639 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2640 psz = " HyperTSS";
2641 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2642 psz = " HyperTSSTrap08";
2643 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2644 }
2645 }
2646}
2647
2648
2649/**
2650 * Display the guest gdt.
2651 *
2652 * @param pVM Pointer to the VM.
2653 * @param pHlp The info helpers.
2654 * @param pszArgs Arguments, ignored.
2655 */
2656static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2657{
2658 /** @todo SMP support! */
2659 PVMCPU pVCpu = &pVM->aCpus[0];
2660
2661 VBOXGDTR GDTR;
2662 CPUMGetGuestGDTR(pVCpu, &GDTR);
2663 RTGCPTR GCPtrGDT = GDTR.pGdt;
2664 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2665
2666 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2667 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2668 {
2669 X86DESC GDTE;
2670 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2671 if (RT_SUCCESS(rc))
2672 {
2673 if (GDTE.Gen.u1Present)
2674 {
2675 char szOutput[128];
2676 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2677 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2678 }
2679 }
2680 else if (rc == VERR_PAGE_NOT_PRESENT)
2681 {
2682 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2683 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2684 }
2685 else
2686 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2687 }
2688 NOREF(pszArgs);
2689}
2690
2691
2692/**
2693 * Display the shadow ldt.
2694 *
2695 * @param pVM Pointer to the VM.
2696 * @param pHlp The info helpers.
2697 * @param pszArgs Arguments, ignored.
2698 */
2699static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2700{
2701 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2702 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2703 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2704 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2705 {
2706 if (paLDT[iLDT].Gen.u1Present)
2707 {
2708 char szOutput[128];
2709 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2710 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2711 }
2712 }
2713 NOREF(pszArgs);
2714}
2715
2716
2717/**
2718 * Display the guest ldt.
2719 *
2720 * @param pVM Pointer to the VM.
2721 * @param pHlp The info helpers.
2722 * @param pszArgs Arguments, ignored.
2723 */
2724static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2725{
2726 /** @todo SMP support! */
2727 PVMCPU pVCpu = &pVM->aCpus[0];
2728
2729 uint64_t GCPtrLdt;
2730 uint32_t cbLdt;
2731 RTSEL SelLdt = CPUMGetGuestLdtrEx(pVCpu, &GCPtrLdt, &cbLdt);
2732 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
2733 {
2734 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2735 return;
2736 }
2737
2738 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RX64 limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2739 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2740 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2741 {
2742 X86DESC LdtE;
2743 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2744 if (RT_SUCCESS(rc))
2745 {
2746 if (LdtE.Gen.u1Present)
2747 {
2748 char szOutput[128];
2749 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2750 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2751 }
2752 }
2753 else if (rc == VERR_PAGE_NOT_PRESENT)
2754 {
2755 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2756 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2757 }
2758 else
2759 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2760 }
2761 NOREF(pszArgs);
2762}
2763
2764
2765/**
2766 * Dumps the hypervisor GDT
2767 *
2768 * @param pVM Pointer to the VM.
2769 */
2770VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2771{
2772 DBGFR3Info(pVM->pUVM, "gdt", NULL, NULL);
2773}
2774
2775
2776/**
2777 * Dumps the hypervisor LDT
2778 *
2779 * @param pVM Pointer to the VM.
2780 */
2781VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2782{
2783 DBGFR3Info(pVM->pUVM, "ldt", NULL, NULL);
2784}
2785
2786
2787/**
2788 * Dumps the guest GDT
2789 *
2790 * @param pVM Pointer to the VM.
2791 */
2792VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2793{
2794 DBGFR3Info(pVM->pUVM, "gdtguest", NULL, NULL);
2795}
2796
2797
2798/**
2799 * Dumps the guest LDT
2800 *
2801 * @param pVM Pointer to the VM.
2802 */
2803VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2804{
2805 DBGFR3Info(pVM->pUVM, "ldtguest", NULL, NULL);
2806}
2807
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette