VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 56017

Last change on this file since 56017 was 55537, checked in by vboxsync, 10 years ago

VMM/TM: nit.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 148.0 KB
Line 
1/* $Id: TM.cpp 55537 2015-04-30 09:35:59Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119/*******************************************************************************
120* Header Files *
121*******************************************************************************/
122#define LOG_GROUP LOG_GROUP_TM
123#include <VBox/vmm/tm.h>
124#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGIP from sup.h */
125#include <VBox/vmm/vmm.h>
126#include <VBox/vmm/mm.h>
127#include <VBox/vmm/hm.h>
128#include <VBox/vmm/gim.h>
129#include <VBox/vmm/ssm.h>
130#include <VBox/vmm/dbgf.h>
131#include <VBox/vmm/dbgftrace.h>
132#ifdef VBOX_WITH_REM
133# include <VBox/vmm/rem.h>
134#endif
135#include <VBox/vmm/pdmapi.h>
136#include <VBox/vmm/iom.h>
137#include "TMInternal.h"
138#include <VBox/vmm/vm.h>
139#include <VBox/vmm/uvm.h>
140
141#include <VBox/vmm/pdmdev.h>
142#include <VBox/param.h>
143#include <VBox/err.h>
144
145#include <VBox/log.h>
146#include <iprt/asm.h>
147#include <iprt/asm-math.h>
148#include <iprt/assert.h>
149#include <iprt/thread.h>
150#include <iprt/time.h>
151#include <iprt/timer.h>
152#include <iprt/semaphore.h>
153#include <iprt/string.h>
154#include <iprt/env.h>
155
156#include "TMInline.h"
157
158
159/*******************************************************************************
160* Defined Constants And Macros *
161*******************************************************************************/
162/** The current saved state version.*/
163#define TM_SAVED_STATE_VERSION 3
164
165
166/*******************************************************************************
167* Internal Functions *
168*******************************************************************************/
169static bool tmR3HasFixedTSC(PVM pVM);
170static const char * tmR3GetTSCModeName(PVM pVM);
171static uint64_t tmR3CalibrateTSC(PVM pVM);
172static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
173static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
174static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
175static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
176static void tmR3TimerQueueRunVirtualSync(PVM pVM);
177static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
178#ifndef VBOX_WITHOUT_NS_ACCOUNTING
179static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
180#endif
181static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
182static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
183static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
184static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
185
186
187/**
188 * Initializes the TM.
189 *
190 * @returns VBox status code.
191 * @param pVM Pointer to the VM.
192 */
193VMM_INT_DECL(int) TMR3Init(PVM pVM)
194{
195 LogFlow(("TMR3Init:\n"));
196
197 /*
198 * Assert alignment and sizes.
199 */
200 AssertCompileMemberAlignment(VM, tm.s, 32);
201 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
202 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
203 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
204
205 /*
206 * Init the structure.
207 */
208 void *pv;
209 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
210 AssertRCReturn(rc, rc);
211 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
212 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
213 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
214
215 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
216 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
217 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
218 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
219 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
220 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
221 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
222 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
223 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
224 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
225
226
227 /*
228 * We directly use the GIP to calculate the virtual time. We map the
229 * the GIP into the guest context so we can do this calculation there
230 * as well and save costly world switches.
231 */
232 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
233 pVM->tm.s.pvGIPR3 = (void *)pGip;
234 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
235 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
236 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
237 VERR_TM_GIP_VERSION);
238
239 RTHCPHYS HCPhysGIP;
240 rc = SUPR3GipGetPhys(&HCPhysGIP);
241 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
242
243 RTGCPTR GCPtr;
244#ifdef SUP_WITH_LOTS_OF_CPUS
245 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
246 "GIP", &GCPtr);
247#else
248 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
249#endif
250 if (RT_FAILURE(rc))
251 {
252 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
253 return rc;
254 }
255 pVM->tm.s.pvGIPRC = GCPtr;
256 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
257 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
258
259 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
260 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
261 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
262 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
263 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
264 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
265
266 /* Log GIP info that may come in handy. */
267 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
268 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
269 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
270 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
271 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
272 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
273 {
274 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
275 if (iGipCpu != UINT16_MAX)
276 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
277 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
278 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
279 }
280
281 /*
282 * Setup the VirtualGetRaw backend.
283 */
284 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
285 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
286 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBadPrev;
287 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
288 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
289 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
290 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
291 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
292 /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
293
294 /*
295 * Init the locks.
296 */
297 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
298 if (RT_FAILURE(rc))
299 return rc;
300 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
301 if (RT_FAILURE(rc))
302 return rc;
303
304 /*
305 * Get our CFGM node, create it if necessary.
306 */
307 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
308 if (!pCfgHandle)
309 {
310 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
311 AssertRCReturn(rc, rc);
312 }
313
314 /*
315 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
316 */
317 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
318 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
319 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"Mode\" setting instead."));
320 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
321 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
322 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"Mode\" setting instead."));
323
324 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
325 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
326 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"Mode\" setting instead."));
327
328 /*
329 * Validate the rest of the TM settings.
330 */
331 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
332 "TSCMode|"
333 "TSCModeSwitchAllowed|"
334 "TSCTicksPerSecond|"
335 "TSCTiedToExecution|"
336 "TSCNotTiedToHalt|"
337 "ScheduleSlack|"
338 "CatchUpStopThreshold|"
339 "CatchUpGiveUpThreshold|"
340 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
341 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
342 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
343 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
344 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
345 "CatchUpPrecentage8|CatchUpPrecentage9|"
346 "UTCOffset|"
347 "WarpDrivePercentage|"
348 "HostHzMax|"
349 "HostHzFudgeFactorTimerCpu|"
350 "HostHzFudgeFactorOtherCpu|"
351 "HostHzFudgeFactorCatchUp100|"
352 "HostHzFudgeFactorCatchUp200|"
353 "HostHzFudgeFactorCatchUp400|"
354 "TimerMillies",
355 "",
356 "TM", 0);
357 if (RT_FAILURE(rc))
358 return rc;
359
360 /*
361 * Determine the TSC configuration and frequency.
362 */
363 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
364 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
365 * The default depends on the VM configuration and the capabilities of the
366 * host CPU. Other config options or runtime changes may override the TSC
367 * mode specified here.
368 */
369 char szTSCMode[32];
370 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
371 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
372 {
373 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
374 * fall back on the more expensive emulated mode. With the current TSC handling
375 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
376 * without any kind of coordination) will lead to inconsistent TSC behavior with
377 * guest SMP, including TSC going backwards. */
378 pVM->tm.s.enmTSCMode = pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
379 }
380 else if (RT_FAILURE(rc))
381 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
382 else
383 {
384 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
385 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
386 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
387 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
388 else if (!RTStrCmp(szTSCMode, "Dynamic"))
389 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
390 else
391 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
392 }
393
394 /**
395 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
396 * at runtime}
397 * When using paravirtualized guests, we dynamically switch TSC modes to a more
398 * optimal one for performance. This setting allows overriding this behaviour.
399 */
400 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
401 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
402 {
403 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
404 pVM->tm.s.fTSCModeSwitchAllowed = true;
405 }
406 else if (RT_FAILURE(rc))
407 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
408
409 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
410 * The number of TSC ticks per second (i.e. the TSC frequency). This will
411 * override enmTSCMode.
412 */
413 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
414 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
415 {
416 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
417 if ( pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET
418 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
419 {
420 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
421 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
422 }
423 }
424 else if (RT_FAILURE(rc))
425 return VMSetError(pVM, rc, RT_SRC_POS,
426 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
427 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
428 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
429 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
430 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
431 pVM->tm.s.cTSCTicksPerSecond);
432 else
433 {
434 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
435 }
436
437 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
438 * Whether the TSC should be tied to execution. This will exclude most of the
439 * virtualization overhead, but will by default include the time spent in the
440 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
441 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
442 * be used avoided or used with great care. Note that this will only work right
443 * together with VT-x or AMD-V, and with a single virtual CPU. */
444 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
445 if (RT_FAILURE(rc))
446 return VMSetError(pVM, rc, RT_SRC_POS,
447 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
448 if (pVM->tm.s.fTSCTiedToExecution)
449 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
450
451 /** @cfgm{/TM/TSCNotTiedToHalt, bool, true}
452 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
453 * to make the TSC freeze during HLT. */
454 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
455 if (RT_FAILURE(rc))
456 return VMSetError(pVM, rc, RT_SRC_POS,
457 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
458
459 /*
460 * Configure the timer synchronous virtual time.
461 */
462 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
463 * Scheduling slack when processing timers. */
464 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
465 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
466 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
467 else if (RT_FAILURE(rc))
468 return VMSetError(pVM, rc, RT_SRC_POS,
469 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
470
471 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
472 * When to stop a catch-up, considering it successful. */
473 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
474 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
475 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
476 else if (RT_FAILURE(rc))
477 return VMSetError(pVM, rc, RT_SRC_POS,
478 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
479
480 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
481 * When to give up a catch-up attempt. */
482 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
483 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
484 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
485 else if (RT_FAILURE(rc))
486 return VMSetError(pVM, rc, RT_SRC_POS,
487 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
488
489
490 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
491 * The catch-up percent for a given period. */
492 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
493 * The catch-up period threshold, or if you like, when a period starts. */
494#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
495 do \
496 { \
497 uint64_t u64; \
498 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
499 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
500 u64 = UINT64_C(DefStart); \
501 else if (RT_FAILURE(rc)) \
502 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
503 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
504 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
505 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
506 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
507 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
508 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
509 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
510 else if (RT_FAILURE(rc)) \
511 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
512 } while (0)
513 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
514 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
515 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
516 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
517 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
518 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
519 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
520 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
521 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
522 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
523 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
524 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
525#undef TM_CFG_PERIOD
526
527 /*
528 * Configure real world time (UTC).
529 */
530 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
531 * The UTC offset. This is used to put the guest back or forwards in time. */
532 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
533 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
534 pVM->tm.s.offUTC = 0; /* ns */
535 else if (RT_FAILURE(rc))
536 return VMSetError(pVM, rc, RT_SRC_POS,
537 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
538
539 /*
540 * Setup the warp drive.
541 */
542 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
543 * The warp drive percentage, 100% is normal speed. This is used to speed up
544 * or slow down the virtual clock, which can be useful for fast forwarding
545 * borring periods during tests. */
546 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
547 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
548 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
549 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
550 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
551 else if (RT_FAILURE(rc))
552 return VMSetError(pVM, rc, RT_SRC_POS,
553 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
554 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
555 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
556 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
557 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
558 pVM->tm.s.u32VirtualWarpDrivePercentage);
559 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
560 if (pVM->tm.s.fVirtualWarpDrive)
561 {
562 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
563 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
564 }
565
566 /*
567 * Gather the Host Hz configuration values.
568 */
569 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
570 if (RT_FAILURE(rc))
571 return VMSetError(pVM, rc, RT_SRC_POS,
572 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
573
574 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
575 if (RT_FAILURE(rc))
576 return VMSetError(pVM, rc, RT_SRC_POS,
577 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
578
579 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
580 if (RT_FAILURE(rc))
581 return VMSetError(pVM, rc, RT_SRC_POS,
582 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
583
584 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
585 if (RT_FAILURE(rc))
586 return VMSetError(pVM, rc, RT_SRC_POS,
587 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
588
589 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
590 if (RT_FAILURE(rc))
591 return VMSetError(pVM, rc, RT_SRC_POS,
592 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
593
594 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
595 if (RT_FAILURE(rc))
596 return VMSetError(pVM, rc, RT_SRC_POS,
597 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
598
599 /*
600 * Finally, setup and report.
601 */
602 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
603 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
604 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
605 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
606 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
607 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
608
609 /*
610 * Start the timer (guard against REM not yielding).
611 */
612 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
613 * The watchdog timer interval. */
614 uint32_t u32Millies;
615 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
616 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
617 u32Millies = 10;
618 else if (RT_FAILURE(rc))
619 return VMSetError(pVM, rc, RT_SRC_POS,
620 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
621 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
622 if (RT_FAILURE(rc))
623 {
624 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
625 return rc;
626 }
627 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
628 pVM->tm.s.u32TimerMillies = u32Millies;
629
630 /*
631 * Register saved state.
632 */
633 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
634 NULL, NULL, NULL,
635 NULL, tmR3Save, NULL,
636 NULL, tmR3Load, NULL);
637 if (RT_FAILURE(rc))
638 return rc;
639
640 /*
641 * Register statistics.
642 */
643 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
644 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
645 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
646 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
647 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
648 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
649 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
650 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
651 STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
652
653#ifdef VBOX_WITH_STATISTICS
654 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
655 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
656 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
657 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
658 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
659 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
660 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
661 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
662 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
663 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
664
665 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
666 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
667 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
668 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
669 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
670 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
671 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
672 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
673
674 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
675 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
676
677 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
678 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
679 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
680
681 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
682 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
683 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
684 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
685 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
686 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
687 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
688 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
689 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
690 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
691 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
692 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
693
694 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
695 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
696 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
697 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
698 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
699 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
700
701 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
702 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
703 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
704 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
705 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
706 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
707 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
708 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
709 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
710 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
711 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
712 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
713
714 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
715 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
716 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
717 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
718 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
719 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
720
721 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
722 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
723
724 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
725 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
726 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
727 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
728 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
729 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
730 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
731 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
732 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
733 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
734 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
735
736 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
737 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
738
739 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
740 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
741 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
742 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
743 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
744 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
745 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
746 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
747 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
748 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
749 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
750 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
751#endif /* VBOX_WITH_STATISTICS */
752
753 for (VMCPUID i = 0; i < pVM->cCpus; i++)
754 {
755 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
756#ifndef VBOX_WITHOUT_NS_ACCOUNTING
757# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
758 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
759 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
760 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
761 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
762 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
763 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
764 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
765# endif
766 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
767 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
768 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
769 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
770 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
771 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
772 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
773 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
774 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
775#endif
776 }
777#ifndef VBOX_WITHOUT_NS_ACCOUNTING
778 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
779 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
780 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
781#endif
782
783#ifdef VBOX_WITH_STATISTICS
784 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
785 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
786 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
787 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
788 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
789 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
790 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
791 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
792 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
793 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
794 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
795 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
796 {
797 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
798 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
799 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
800 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
801 }
802#endif /* VBOX_WITH_STATISTICS */
803
804 /*
805 * Register info handlers.
806 */
807 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
808 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
809 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
810
811 return VINF_SUCCESS;
812}
813
814
815/**
816 * Checks if the host CPU has a fixed TSC frequency.
817 *
818 * @returns true if it has, false if it hasn't.
819 *
820 * @remarks This test doesn't bother with very old CPUs that don't do power
821 * management or any other stuff that might influence the TSC rate.
822 * This isn't currently relevant.
823 */
824static bool tmR3HasFixedTSC(PVM pVM)
825{
826 /*
827 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
828 * actually has invariant TSC.
829 */
830 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
831 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
832 return true;
833
834 /*
835 * Go by features and model info from the CPUID instruction.
836 */
837 if (ASMHasCpuId())
838 {
839 uint32_t uEAX, uEBX, uECX, uEDX;
840
841 /*
842 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
843 */
844 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
845 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
846 {
847 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
848 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
849 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
850 return true;
851 }
852
853 /*
854 * By model.
855 */
856 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
857 {
858 /*
859 * AuthenticAMD - Check for APM support and that TscInvariant is set.
860 *
861 * This test isn't correct with respect to fixed/non-fixed TSC and
862 * older models, but this isn't relevant since the result is currently
863 * only used for making a decision on AMD-V models.
864 */
865#if 0 /* Promoted to generic */
866 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
867 if (uEAX >= 0x80000007)
868 {
869 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
870 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
871 && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
872 || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
873 return true;
874 }
875#endif
876 }
877 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
878 {
879 /*
880 * GenuineIntel - Check the model number.
881 *
882 * This test is lacking in the same way and for the same reasons
883 * as the AMD test above.
884 */
885 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
886 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
887 unsigned uModel = (uEAX >> 4) & 0x0f;
888 unsigned uFamily = (uEAX >> 8) & 0x0f;
889 if (uFamily == 0x0f)
890 uFamily += (uEAX >> 20) & 0xff;
891 if (uFamily >= 0x06)
892 uModel += ((uEAX >> 16) & 0x0f) << 4;
893 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
894 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
895 return true;
896 }
897 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
898 {
899 /*
900 * CentaurHauls - Check the model, family and stepping.
901 *
902 * This only checks for VIA CPU models Nano X2, Nano X3,
903 * Eden X2 and QuadCore.
904 */
905 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
906 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
907 unsigned uStepping = (uEAX & 0x0f);
908 unsigned uModel = (uEAX >> 4) & 0x0f;
909 unsigned uFamily = (uEAX >> 8) & 0x0f;
910 if ( uFamily == 0x06
911 && uModel == 0x0f
912 && uStepping >= 0x0c
913 && uStepping <= 0x0f)
914 return true;
915 }
916 }
917 return false;
918}
919
920
921/**
922 * Calibrate the CPU tick.
923 *
924 * @returns Number of ticks per second.
925 */
926static uint64_t tmR3CalibrateTSC(PVM pVM)
927{
928 uint64_t u64Hz;
929
930 /*
931 * Use GIP when available. Prefere the nominal one, no need to wait for it.
932 */
933 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
934 if (pGip)
935 {
936 u64Hz = pGip->u64CpuHz;
937 if (u64Hz < _1T && u64Hz > _1M)
938 return u64Hz;
939 AssertFailed(); /* This shouldn't happen. */
940
941 u64Hz = SUPGetCpuHzFromGip(pGip);
942 if (u64Hz < _1T && u64Hz > _1M)
943 return u64Hz;
944
945 AssertFailed(); /* This shouldn't happen. */
946 }
947 /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
948
949 /* Call this once first to make sure it's initialized. */
950 RTTimeNanoTS();
951
952 /*
953 * Yield the CPU to increase our chances of getting
954 * a correct value.
955 */
956 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
957 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
958 uint64_t au64Samples[5];
959 unsigned i;
960 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
961 {
962 RTMSINTERVAL cMillies;
963 int cTries = 5;
964 uint64_t u64Start = ASMReadTSC();
965 uint64_t u64End;
966 uint64_t StartTS = RTTimeNanoTS();
967 uint64_t EndTS;
968 do
969 {
970 RTThreadSleep(s_auSleep[i]);
971 u64End = ASMReadTSC();
972 EndTS = RTTimeNanoTS();
973 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
974 } while ( cMillies == 0 /* the sleep may be interrupted... */
975 || (cMillies < 20 && --cTries > 0));
976 uint64_t u64Diff = u64End - u64Start;
977
978 au64Samples[i] = (u64Diff * 1000) / cMillies;
979 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
980 }
981
982 /*
983 * Discard the highest and lowest results and calculate the average.
984 */
985 unsigned iHigh = 0;
986 unsigned iLow = 0;
987 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
988 {
989 if (au64Samples[i] < au64Samples[iLow])
990 iLow = i;
991 if (au64Samples[i] > au64Samples[iHigh])
992 iHigh = i;
993 }
994 au64Samples[iLow] = 0;
995 au64Samples[iHigh] = 0;
996
997 u64Hz = au64Samples[0];
998 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
999 u64Hz += au64Samples[i];
1000 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1001
1002 return u64Hz;
1003}
1004
1005
1006/**
1007 * Finalizes the TM initialization.
1008 *
1009 * @returns VBox status code.
1010 * @param pVM Pointer to the VM.
1011 */
1012VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1013{
1014 int rc;
1015
1016 /*
1017 * Resolve symbols.
1018 */
1019 if (!HMIsEnabled(pVM))
1020 {
1021 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadPrev", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
1022 AssertRCReturn(rc, rc);
1023 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
1024 AssertRCReturn(rc, rc);
1025 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
1026 AssertRCReturn(rc, rc);
1027 pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
1028 }
1029
1030 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadPrev", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1031 AssertRCReturn(rc, rc);
1032 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1033 AssertRCReturn(rc, rc);
1034 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1035 AssertRCReturn(rc, rc);
1036 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1037
1038#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1039 /*
1040 * Create a timer for refreshing the CPU load stats.
1041 */
1042 PTMTIMER pTimer;
1043 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
1044 if (RT_SUCCESS(rc))
1045 rc = TMTimerSetMillies(pTimer, 1000);
1046#endif
1047
1048 /*
1049 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1050 */
1051 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && HMIsEnabled(pVM);
1052 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1053 return rc;
1054}
1055
1056
1057/**
1058 * Applies relocations to data and code managed by this
1059 * component. This function will be called at init and
1060 * whenever the VMM need to relocate it self inside the GC.
1061 *
1062 * @param pVM The VM.
1063 * @param offDelta Relocation delta relative to old location.
1064 */
1065VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1066{
1067 LogFlow(("TMR3Relocate\n"));
1068
1069 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
1070
1071 if (!HMIsEnabled(pVM))
1072 {
1073 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
1074 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
1075 pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
1076 pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
1077 pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
1078 pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
1079 pVM->tm.s.pfnVirtualGetRawRC += offDelta;
1080 }
1081
1082 /*
1083 * Iterate the timers updating the pVMRC pointers.
1084 */
1085 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1086 {
1087 pTimer->pVMRC = pVM->pVMRC;
1088 pTimer->pVMR0 = pVM->pVMR0;
1089 }
1090}
1091
1092
1093/**
1094 * Terminates the TM.
1095 *
1096 * Termination means cleaning up and freeing all resources,
1097 * the VM it self is at this point powered off or suspended.
1098 *
1099 * @returns VBox status code.
1100 * @param pVM Pointer to the VM.
1101 */
1102VMM_INT_DECL(int) TMR3Term(PVM pVM)
1103{
1104 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
1105 if (pVM->tm.s.pTimer)
1106 {
1107 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1108 AssertRC(rc);
1109 pVM->tm.s.pTimer = NULL;
1110 }
1111
1112 return VINF_SUCCESS;
1113}
1114
1115
1116/**
1117 * The VM is being reset.
1118 *
1119 * For the TM component this means that a rescheduling is preformed,
1120 * the FF is cleared and but without running the queues. We'll have to
1121 * check if this makes sense or not, but it seems like a good idea now....
1122 *
1123 * @param pVM Pointer to the VM.
1124 */
1125VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1126{
1127 LogFlow(("TMR3Reset:\n"));
1128 VM_ASSERT_EMT(pVM);
1129 TM_LOCK_TIMERS(pVM);
1130
1131 /*
1132 * Abort any pending catch up.
1133 * This isn't perfect...
1134 */
1135 if (pVM->tm.s.fVirtualSyncCatchUp)
1136 {
1137 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1138 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1139 if (pVM->tm.s.fVirtualSyncCatchUp)
1140 {
1141 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1142
1143 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1144 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1145 Assert(offOld <= offNew);
1146 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1147 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1148 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1149 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1150 }
1151 }
1152
1153 /*
1154 * Process the queues.
1155 */
1156 for (int i = 0; i < TMCLOCK_MAX; i++)
1157 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1158#ifdef VBOX_STRICT
1159 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1160#endif
1161
1162 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1163 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1164
1165 /*
1166 * Switch TM TSC mode back to the original mode after a reset for
1167 * paravirtualized guests that alter the TM TSC mode during operation.
1168 */
1169 if ( pVM->tm.s.fTSCModeSwitchAllowed
1170 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1171 {
1172 VM_ASSERT_EMT0(pVM);
1173 tmR3CpuTickParavirtDisable(pVM, &pVM->aCpus[0], NULL /* pvData */);
1174 }
1175 Assert(!GIMIsParavirtTscEnabled(pVM));
1176 pVM->tm.s.fParavirtTscEnabled = false;
1177
1178 TM_UNLOCK_TIMERS(pVM);
1179}
1180
1181
1182/**
1183 * Resolve a builtin RC symbol.
1184 * Called by PDM when loading or relocating GC modules.
1185 *
1186 * @returns VBox status
1187 * @param pVM Pointer to the VM.
1188 * @param pszSymbol Symbol to resolve.
1189 * @param pRCPtrValue Where to store the symbol value.
1190 * @remark This has to work before TMR3Relocate() is called.
1191 */
1192VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1193{
1194 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1195 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1196 //else if (..)
1197 else
1198 return VERR_SYMBOL_NOT_FOUND;
1199 return VINF_SUCCESS;
1200}
1201
1202
1203/**
1204 * Execute state save operation.
1205 *
1206 * @returns VBox status code.
1207 * @param pVM Pointer to the VM.
1208 * @param pSSM SSM operation handle.
1209 */
1210static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1211{
1212 LogFlow(("tmR3Save:\n"));
1213#ifdef VBOX_STRICT
1214 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1215 {
1216 PVMCPU pVCpu = &pVM->aCpus[i];
1217 Assert(!pVCpu->tm.s.fTSCTicking);
1218 }
1219 Assert(!pVM->tm.s.cVirtualTicking);
1220 Assert(!pVM->tm.s.fVirtualSyncTicking);
1221 Assert(!pVM->tm.s.cTSCsTicking);
1222#endif
1223
1224 /*
1225 * Save the virtual clocks.
1226 */
1227 /* the virtual clock. */
1228 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1229 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1230
1231 /* the virtual timer synchronous clock. */
1232 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1233 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1234 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1235 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1236 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1237
1238 /* real time clock */
1239 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1240
1241 /* the cpu tick clock. */
1242 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1243 {
1244 PVMCPU pVCpu = &pVM->aCpus[i];
1245 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1246 }
1247 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1248}
1249
1250
1251/**
1252 * Execute state load operation.
1253 *
1254 * @returns VBox status code.
1255 * @param pVM Pointer to the VM.
1256 * @param pSSM SSM operation handle.
1257 * @param uVersion Data layout version.
1258 * @param uPass The data pass.
1259 */
1260static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1261{
1262 LogFlow(("tmR3Load:\n"));
1263
1264 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1265#ifdef VBOX_STRICT
1266 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1267 {
1268 PVMCPU pVCpu = &pVM->aCpus[i];
1269 Assert(!pVCpu->tm.s.fTSCTicking);
1270 }
1271 Assert(!pVM->tm.s.cVirtualTicking);
1272 Assert(!pVM->tm.s.fVirtualSyncTicking);
1273 Assert(!pVM->tm.s.cTSCsTicking);
1274#endif
1275
1276 /*
1277 * Validate version.
1278 */
1279 if (uVersion != TM_SAVED_STATE_VERSION)
1280 {
1281 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1282 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1283 }
1284
1285 /*
1286 * Load the virtual clock.
1287 */
1288 pVM->tm.s.cVirtualTicking = 0;
1289 /* the virtual clock. */
1290 uint64_t u64Hz;
1291 int rc = SSMR3GetU64(pSSM, &u64Hz);
1292 if (RT_FAILURE(rc))
1293 return rc;
1294 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1295 {
1296 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1297 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1298 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1299 }
1300 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1301 pVM->tm.s.u64VirtualOffset = 0;
1302
1303 /* the virtual timer synchronous clock. */
1304 pVM->tm.s.fVirtualSyncTicking = false;
1305 uint64_t u64;
1306 SSMR3GetU64(pSSM, &u64);
1307 pVM->tm.s.u64VirtualSync = u64;
1308 SSMR3GetU64(pSSM, &u64);
1309 pVM->tm.s.offVirtualSync = u64;
1310 SSMR3GetU64(pSSM, &u64);
1311 pVM->tm.s.offVirtualSyncGivenUp = u64;
1312 SSMR3GetU64(pSSM, &u64);
1313 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1314 bool f;
1315 SSMR3GetBool(pSSM, &f);
1316 pVM->tm.s.fVirtualSyncCatchUp = f;
1317
1318 /* the real clock */
1319 rc = SSMR3GetU64(pSSM, &u64Hz);
1320 if (RT_FAILURE(rc))
1321 return rc;
1322 if (u64Hz != TMCLOCK_FREQ_REAL)
1323 {
1324 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1325 u64Hz, TMCLOCK_FREQ_REAL));
1326 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1327 }
1328
1329 /* the cpu tick clock. */
1330 pVM->tm.s.cTSCsTicking = 0;
1331 pVM->tm.s.offTSCPause = 0;
1332 pVM->tm.s.u64LastPausedTSC = 0;
1333 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1334 {
1335 PVMCPU pVCpu = &pVM->aCpus[i];
1336
1337 pVCpu->tm.s.fTSCTicking = false;
1338 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1339 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1340 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1341
1342 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1343 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1344 }
1345
1346 rc = SSMR3GetU64(pSSM, &u64Hz);
1347 if (RT_FAILURE(rc))
1348 return rc;
1349 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1350 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1351 /** @todo Compare with real TSC rate even when restoring with real-tsc-offset
1352 * mode. */
1353
1354 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1355 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1356
1357 /*
1358 * Make sure timers get rescheduled immediately.
1359 */
1360 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1361 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1362
1363 return VINF_SUCCESS;
1364}
1365
1366
1367/**
1368 * Internal TMR3TimerCreate worker.
1369 *
1370 * @returns VBox status code.
1371 * @param pVM Pointer to the VM.
1372 * @param enmClock The timer clock.
1373 * @param pszDesc The timer description.
1374 * @param ppTimer Where to store the timer pointer on success.
1375 */
1376static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1377{
1378 VM_ASSERT_EMT(pVM);
1379
1380 /*
1381 * Allocate the timer.
1382 */
1383 PTMTIMERR3 pTimer = NULL;
1384 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1385 {
1386 pTimer = pVM->tm.s.pFree;
1387 pVM->tm.s.pFree = pTimer->pBigNext;
1388 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1389 }
1390
1391 if (!pTimer)
1392 {
1393 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1394 if (RT_FAILURE(rc))
1395 return rc;
1396 Log3(("TM: Allocated new timer %p\n", pTimer));
1397 }
1398
1399 /*
1400 * Initialize it.
1401 */
1402 pTimer->u64Expire = 0;
1403 pTimer->enmClock = enmClock;
1404 pTimer->pVMR3 = pVM;
1405 pTimer->pVMR0 = pVM->pVMR0;
1406 pTimer->pVMRC = pVM->pVMRC;
1407 pTimer->enmState = TMTIMERSTATE_STOPPED;
1408 pTimer->offScheduleNext = 0;
1409 pTimer->offNext = 0;
1410 pTimer->offPrev = 0;
1411 pTimer->pvUser = NULL;
1412 pTimer->pCritSect = NULL;
1413 pTimer->pszDesc = pszDesc;
1414
1415 /* insert into the list of created timers. */
1416 TM_LOCK_TIMERS(pVM);
1417 pTimer->pBigPrev = NULL;
1418 pTimer->pBigNext = pVM->tm.s.pCreated;
1419 pVM->tm.s.pCreated = pTimer;
1420 if (pTimer->pBigNext)
1421 pTimer->pBigNext->pBigPrev = pTimer;
1422#ifdef VBOX_STRICT
1423 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1424#endif
1425 TM_UNLOCK_TIMERS(pVM);
1426
1427 *ppTimer = pTimer;
1428 return VINF_SUCCESS;
1429}
1430
1431
1432/**
1433 * Creates a device timer.
1434 *
1435 * @returns VBox status.
1436 * @param pVM The VM to create the timer in.
1437 * @param pDevIns Device instance.
1438 * @param enmClock The clock to use on this timer.
1439 * @param pfnCallback Callback function.
1440 * @param pvUser The user argument to the callback.
1441 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1442 * @param pszDesc Pointer to description string which must stay around
1443 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1444 * @param ppTimer Where to store the timer on success.
1445 */
1446VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1447 PFNTMTIMERDEV pfnCallback, void *pvUser,
1448 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1449{
1450 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1451
1452 /*
1453 * Allocate and init stuff.
1454 */
1455 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1456 if (RT_SUCCESS(rc))
1457 {
1458 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1459 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1460 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1461 (*ppTimer)->pvUser = pvUser;
1462 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1463 (*ppTimer)->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1464 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1465 }
1466
1467 return rc;
1468}
1469
1470
1471
1472
1473/**
1474 * Creates a USB device timer.
1475 *
1476 * @returns VBox status.
1477 * @param pVM The VM to create the timer in.
1478 * @param pUsbIns The USB device instance.
1479 * @param enmClock The clock to use on this timer.
1480 * @param pfnCallback Callback function.
1481 * @param pvUser The user argument to the callback.
1482 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1483 * @param pszDesc Pointer to description string which must stay around
1484 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1485 * @param ppTimer Where to store the timer on success.
1486 */
1487VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1488 PFNTMTIMERUSB pfnCallback, void *pvUser,
1489 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1490{
1491 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1492
1493 /*
1494 * Allocate and init stuff.
1495 */
1496 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1497 if (RT_SUCCESS(rc))
1498 {
1499 (*ppTimer)->enmType = TMTIMERTYPE_USB;
1500 (*ppTimer)->u.Usb.pfnTimer = pfnCallback;
1501 (*ppTimer)->u.Usb.pUsbIns = pUsbIns;
1502 (*ppTimer)->pvUser = pvUser;
1503 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1504 //{
1505 // if (pDevIns->pCritSectR3)
1506 // (*ppTimer)->pCritSect = pUsbIns->pCritSectR3;
1507 // else
1508 // (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1509 //}
1510 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1511 }
1512
1513 return rc;
1514}
1515
1516
1517/**
1518 * Creates a driver timer.
1519 *
1520 * @returns VBox status.
1521 * @param pVM The VM to create the timer in.
1522 * @param pDrvIns Driver instance.
1523 * @param enmClock The clock to use on this timer.
1524 * @param pfnCallback Callback function.
1525 * @param pvUser The user argument to the callback.
1526 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1527 * @param pszDesc Pointer to description string which must stay around
1528 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1529 * @param ppTimer Where to store the timer on success.
1530 */
1531VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1532 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1533{
1534 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1535
1536 /*
1537 * Allocate and init stuff.
1538 */
1539 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1540 if (RT_SUCCESS(rc))
1541 {
1542 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1543 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1544 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1545 (*ppTimer)->pvUser = pvUser;
1546 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1547 }
1548
1549 return rc;
1550}
1551
1552
1553/**
1554 * Creates an internal timer.
1555 *
1556 * @returns VBox status.
1557 * @param pVM The VM to create the timer in.
1558 * @param enmClock The clock to use on this timer.
1559 * @param pfnCallback Callback function.
1560 * @param pvUser User argument to be passed to the callback.
1561 * @param pszDesc Pointer to description string which must stay around
1562 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1563 * @param ppTimer Where to store the timer on success.
1564 */
1565VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1566{
1567 /*
1568 * Allocate and init stuff.
1569 */
1570 PTMTIMER pTimer;
1571 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1572 if (RT_SUCCESS(rc))
1573 {
1574 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1575 pTimer->u.Internal.pfnTimer = pfnCallback;
1576 pTimer->pvUser = pvUser;
1577 *ppTimer = pTimer;
1578 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1579 }
1580
1581 return rc;
1582}
1583
1584/**
1585 * Creates an external timer.
1586 *
1587 * @returns Timer handle on success.
1588 * @returns NULL on failure.
1589 * @param pVM The VM to create the timer in.
1590 * @param enmClock The clock to use on this timer.
1591 * @param pfnCallback Callback function.
1592 * @param pvUser User argument.
1593 * @param pszDesc Pointer to description string which must stay around
1594 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1595 */
1596VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1597{
1598 /*
1599 * Allocate and init stuff.
1600 */
1601 PTMTIMERR3 pTimer;
1602 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1603 if (RT_SUCCESS(rc))
1604 {
1605 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1606 pTimer->u.External.pfnTimer = pfnCallback;
1607 pTimer->pvUser = pvUser;
1608 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1609 return pTimer;
1610 }
1611
1612 return NULL;
1613}
1614
1615
1616/**
1617 * Destroy a timer
1618 *
1619 * @returns VBox status.
1620 * @param pTimer Timer handle as returned by one of the create functions.
1621 */
1622VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1623{
1624 /*
1625 * Be extra careful here.
1626 */
1627 if (!pTimer)
1628 return VINF_SUCCESS;
1629 AssertPtr(pTimer);
1630 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1631
1632 PVM pVM = pTimer->CTX_SUFF(pVM);
1633 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1634 bool fActive = false;
1635 bool fPending = false;
1636
1637 AssertMsg( !pTimer->pCritSect
1638 || VMR3GetState(pVM) != VMSTATE_RUNNING
1639 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1640
1641 /*
1642 * The rest of the game happens behind the lock, just
1643 * like create does. All the work is done here.
1644 */
1645 TM_LOCK_TIMERS(pVM);
1646 for (int cRetries = 1000;; cRetries--)
1647 {
1648 /*
1649 * Change to the DESTROY state.
1650 */
1651 TMTIMERSTATE const enmState = pTimer->enmState;
1652 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1653 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1654 switch (enmState)
1655 {
1656 case TMTIMERSTATE_STOPPED:
1657 case TMTIMERSTATE_EXPIRED_DELIVER:
1658 break;
1659
1660 case TMTIMERSTATE_ACTIVE:
1661 fActive = true;
1662 break;
1663
1664 case TMTIMERSTATE_PENDING_STOP:
1665 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1666 case TMTIMERSTATE_PENDING_RESCHEDULE:
1667 fActive = true;
1668 fPending = true;
1669 break;
1670
1671 case TMTIMERSTATE_PENDING_SCHEDULE:
1672 fPending = true;
1673 break;
1674
1675 /*
1676 * This shouldn't happen as the caller should make sure there are no races.
1677 */
1678 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1679 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1680 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1681 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1682 TM_UNLOCK_TIMERS(pVM);
1683 if (!RTThreadYield())
1684 RTThreadSleep(1);
1685 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1686 VERR_TM_UNSTABLE_STATE);
1687 TM_LOCK_TIMERS(pVM);
1688 continue;
1689
1690 /*
1691 * Invalid states.
1692 */
1693 case TMTIMERSTATE_FREE:
1694 case TMTIMERSTATE_DESTROY:
1695 TM_UNLOCK_TIMERS(pVM);
1696 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1697
1698 default:
1699 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1700 TM_UNLOCK_TIMERS(pVM);
1701 return VERR_TM_UNKNOWN_STATE;
1702 }
1703
1704 /*
1705 * Try switch to the destroy state.
1706 * This should always succeed as the caller should make sure there are no race.
1707 */
1708 bool fRc;
1709 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1710 if (fRc)
1711 break;
1712 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1713 TM_UNLOCK_TIMERS(pVM);
1714 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1715 VERR_TM_UNSTABLE_STATE);
1716 TM_LOCK_TIMERS(pVM);
1717 }
1718
1719 /*
1720 * Unlink from the active list.
1721 */
1722 if (fActive)
1723 {
1724 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1725 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1726 if (pPrev)
1727 TMTIMER_SET_NEXT(pPrev, pNext);
1728 else
1729 {
1730 TMTIMER_SET_HEAD(pQueue, pNext);
1731 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1732 }
1733 if (pNext)
1734 TMTIMER_SET_PREV(pNext, pPrev);
1735 pTimer->offNext = 0;
1736 pTimer->offPrev = 0;
1737 }
1738
1739 /*
1740 * Unlink from the schedule list by running it.
1741 */
1742 if (fPending)
1743 {
1744 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1745 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1746 Assert(pQueue->offSchedule);
1747 tmTimerQueueSchedule(pVM, pQueue);
1748 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1749 }
1750
1751 /*
1752 * Read to move the timer from the created list and onto the free list.
1753 */
1754 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1755
1756 /* unlink from created list */
1757 if (pTimer->pBigPrev)
1758 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1759 else
1760 pVM->tm.s.pCreated = pTimer->pBigNext;
1761 if (pTimer->pBigNext)
1762 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1763 pTimer->pBigNext = 0;
1764 pTimer->pBigPrev = 0;
1765
1766 /* free */
1767 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1768 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1769 pTimer->pBigNext = pVM->tm.s.pFree;
1770 pVM->tm.s.pFree = pTimer;
1771
1772#ifdef VBOX_STRICT
1773 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1774#endif
1775 TM_UNLOCK_TIMERS(pVM);
1776 return VINF_SUCCESS;
1777}
1778
1779
1780/**
1781 * Destroy all timers owned by a device.
1782 *
1783 * @returns VBox status.
1784 * @param pVM Pointer to the VM.
1785 * @param pDevIns Device which timers should be destroyed.
1786 */
1787VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1788{
1789 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1790 if (!pDevIns)
1791 return VERR_INVALID_PARAMETER;
1792
1793 TM_LOCK_TIMERS(pVM);
1794 PTMTIMER pCur = pVM->tm.s.pCreated;
1795 while (pCur)
1796 {
1797 PTMTIMER pDestroy = pCur;
1798 pCur = pDestroy->pBigNext;
1799 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1800 && pDestroy->u.Dev.pDevIns == pDevIns)
1801 {
1802 int rc = TMR3TimerDestroy(pDestroy);
1803 AssertRC(rc);
1804 }
1805 }
1806 TM_UNLOCK_TIMERS(pVM);
1807
1808 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1809 return VINF_SUCCESS;
1810}
1811
1812
1813/**
1814 * Destroy all timers owned by a USB device.
1815 *
1816 * @returns VBox status.
1817 * @param pVM Pointer to the VM.
1818 * @param pUsbIns USB device which timers should be destroyed.
1819 */
1820VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
1821{
1822 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
1823 if (!pUsbIns)
1824 return VERR_INVALID_PARAMETER;
1825
1826 TM_LOCK_TIMERS(pVM);
1827 PTMTIMER pCur = pVM->tm.s.pCreated;
1828 while (pCur)
1829 {
1830 PTMTIMER pDestroy = pCur;
1831 pCur = pDestroy->pBigNext;
1832 if ( pDestroy->enmType == TMTIMERTYPE_USB
1833 && pDestroy->u.Usb.pUsbIns == pUsbIns)
1834 {
1835 int rc = TMR3TimerDestroy(pDestroy);
1836 AssertRC(rc);
1837 }
1838 }
1839 TM_UNLOCK_TIMERS(pVM);
1840
1841 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
1842 return VINF_SUCCESS;
1843}
1844
1845
1846/**
1847 * Destroy all timers owned by a driver.
1848 *
1849 * @returns VBox status.
1850 * @param pVM Pointer to the VM.
1851 * @param pDrvIns Driver which timers should be destroyed.
1852 */
1853VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1854{
1855 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1856 if (!pDrvIns)
1857 return VERR_INVALID_PARAMETER;
1858
1859 TM_LOCK_TIMERS(pVM);
1860 PTMTIMER pCur = pVM->tm.s.pCreated;
1861 while (pCur)
1862 {
1863 PTMTIMER pDestroy = pCur;
1864 pCur = pDestroy->pBigNext;
1865 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1866 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1867 {
1868 int rc = TMR3TimerDestroy(pDestroy);
1869 AssertRC(rc);
1870 }
1871 }
1872 TM_UNLOCK_TIMERS(pVM);
1873
1874 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1875 return VINF_SUCCESS;
1876}
1877
1878
1879/**
1880 * Internal function for getting the clock time.
1881 *
1882 * @returns clock time.
1883 * @param pVM Pointer to the VM.
1884 * @param enmClock The clock.
1885 */
1886DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1887{
1888 switch (enmClock)
1889 {
1890 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1891 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1892 case TMCLOCK_REAL: return TMRealGet(pVM);
1893 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1894 default:
1895 AssertMsgFailed(("enmClock=%d\n", enmClock));
1896 return ~(uint64_t)0;
1897 }
1898}
1899
1900
1901/**
1902 * Checks if the sync queue has one or more expired timers.
1903 *
1904 * @returns true / false.
1905 *
1906 * @param pVM Pointer to the VM.
1907 * @param enmClock The queue.
1908 */
1909DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1910{
1911 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1912 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1913}
1914
1915
1916/**
1917 * Checks for expired timers in all the queues.
1918 *
1919 * @returns true / false.
1920 * @param pVM Pointer to the VM.
1921 */
1922DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1923{
1924 /*
1925 * Combine the time calculation for the first two since we're not on EMT
1926 * TMVirtualSyncGet only permits EMT.
1927 */
1928 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1929 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1930 return true;
1931 u64Now = pVM->tm.s.fVirtualSyncTicking
1932 ? u64Now - pVM->tm.s.offVirtualSync
1933 : pVM->tm.s.u64VirtualSync;
1934 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1935 return true;
1936
1937 /*
1938 * The remaining timers.
1939 */
1940 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1941 return true;
1942 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1943 return true;
1944 return false;
1945}
1946
1947
1948/**
1949 * Schedule timer callback.
1950 *
1951 * @param pTimer Timer handle.
1952 * @param pvUser Pointer to the VM.
1953 * @thread Timer thread.
1954 *
1955 * @remark We cannot do the scheduling and queues running from a timer handler
1956 * since it's not executing in EMT, and even if it was it would be async
1957 * and we wouldn't know the state of the affairs.
1958 * So, we'll just raise the timer FF and force any REM execution to exit.
1959 */
1960static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1961{
1962 PVM pVM = (PVM)pvUser;
1963 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1964 NOREF(pTimer);
1965
1966 AssertCompile(TMCLOCK_MAX == 4);
1967 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
1968
1969#ifdef DEBUG_Sander /* very annoying, keep it private. */
1970 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
1971 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1972#endif
1973 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
1974 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1975 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1976 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1977 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1978 || tmR3AnyExpiredTimers(pVM)
1979 )
1980 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
1981 && !pVM->tm.s.fRunningQueues
1982 )
1983 {
1984 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1985 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1986#ifdef VBOX_WITH_REM
1987 REMR3NotifyTimerPending(pVM, pVCpuDst);
1988#endif
1989 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
1990 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1991 }
1992}
1993
1994
1995/**
1996 * Schedules and runs any pending timers.
1997 *
1998 * This is normally called from a forced action handler in EMT.
1999 *
2000 * @param pVM The VM to run the timers for.
2001 *
2002 * @thread EMT (actually EMT0, but we fend off the others)
2003 */
2004VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2005{
2006 /*
2007 * Only the dedicated timer EMT should do stuff here.
2008 * (fRunningQueues is only used as an indicator.)
2009 */
2010 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2011 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
2012 if (VMMGetCpu(pVM) != pVCpuDst)
2013 {
2014 Assert(pVM->cCpus > 1);
2015 return;
2016 }
2017 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2018 Log2(("TMR3TimerQueuesDo:\n"));
2019 Assert(!pVM->tm.s.fRunningQueues);
2020 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2021 TM_LOCK_TIMERS(pVM);
2022
2023 /*
2024 * Process the queues.
2025 */
2026 AssertCompile(TMCLOCK_MAX == 4);
2027
2028 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
2029 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2030 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2031 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2032 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2033
2034 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2035 tmR3TimerQueueRunVirtualSync(pVM);
2036 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2037 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2038
2039 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2040 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2041 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2042
2043 /* TMCLOCK_VIRTUAL */
2044 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2045 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
2046 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2047 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2048 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2049
2050 /* TMCLOCK_TSC */
2051 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
2052
2053 /* TMCLOCK_REAL */
2054 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2055 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
2056 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2057 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2058 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2059
2060#ifdef VBOX_STRICT
2061 /* check that we didn't screw up. */
2062 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2063#endif
2064
2065 /* done */
2066 Log2(("TMR3TimerQueuesDo: returns void\n"));
2067 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2068 TM_UNLOCK_TIMERS(pVM);
2069 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2070}
2071
2072//RT_C_DECLS_BEGIN
2073//int iomLock(PVM pVM);
2074//void iomUnlock(PVM pVM);
2075//RT_C_DECLS_END
2076
2077
2078/**
2079 * Schedules and runs any pending times in the specified queue.
2080 *
2081 * This is normally called from a forced action handler in EMT.
2082 *
2083 * @param pVM The VM to run the timers for.
2084 * @param pQueue The queue to run.
2085 */
2086static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
2087{
2088 VM_ASSERT_EMT(pVM);
2089
2090 /*
2091 * Run timers.
2092 *
2093 * We check the clock once and run all timers which are ACTIVE
2094 * and have an expire time less or equal to the time we read.
2095 *
2096 * N.B. A generic unlink must be applied since other threads
2097 * are allowed to mess with any active timer at any time.
2098 * However, we only allow EMT to handle EXPIRED_PENDING
2099 * timers, thus enabling the timer handler function to
2100 * arm the timer again.
2101 */
2102 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2103 if (!pNext)
2104 return;
2105 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2106 while (pNext && pNext->u64Expire <= u64Now)
2107 {
2108 PTMTIMER pTimer = pNext;
2109 pNext = TMTIMER_GET_NEXT(pTimer);
2110 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2111 if (pCritSect)
2112 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2113 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2114 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2115 bool fRc;
2116 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2117 if (fRc)
2118 {
2119 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
2120
2121 /* unlink */
2122 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2123 if (pPrev)
2124 TMTIMER_SET_NEXT(pPrev, pNext);
2125 else
2126 {
2127 TMTIMER_SET_HEAD(pQueue, pNext);
2128 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2129 }
2130 if (pNext)
2131 TMTIMER_SET_PREV(pNext, pPrev);
2132 pTimer->offNext = 0;
2133 pTimer->offPrev = 0;
2134
2135 /* fire */
2136 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2137 switch (pTimer->enmType)
2138 {
2139 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2140 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2141 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2142 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2143 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2144 default:
2145 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2146 break;
2147 }
2148
2149 /* change the state if it wasn't changed already in the handler. */
2150 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2151 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2152 }
2153 if (pCritSect)
2154 PDMCritSectLeave(pCritSect);
2155 } /* run loop */
2156}
2157
2158
2159/**
2160 * Schedules and runs any pending times in the timer queue for the
2161 * synchronous virtual clock.
2162 *
2163 * This scheduling is a bit different from the other queues as it need
2164 * to implement the special requirements of the timer synchronous virtual
2165 * clock, thus this 2nd queue run function.
2166 *
2167 * @param pVM The VM to run the timers for.
2168 *
2169 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2170 * longer important.
2171 */
2172static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2173{
2174 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
2175 VM_ASSERT_EMT(pVM);
2176 Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
2177
2178 /*
2179 * Any timers?
2180 */
2181 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2182 if (RT_UNLIKELY(!pNext))
2183 {
2184 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2185 return;
2186 }
2187 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2188
2189 /*
2190 * Calculate the time frame for which we will dispatch timers.
2191 *
2192 * We use a time frame ranging from the current sync time (which is most likely the
2193 * same as the head timer) and some configurable period (100000ns) up towards the
2194 * current virtual time. This period might also need to be restricted by the catch-up
2195 * rate so frequent calls to this function won't accelerate the time too much, however
2196 * this will be implemented at a later point if necessary.
2197 *
2198 * Without this frame we would 1) having to run timers much more frequently
2199 * and 2) lag behind at a steady rate.
2200 */
2201 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2202 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2203 uint64_t u64Now;
2204 if (!pVM->tm.s.fVirtualSyncTicking)
2205 {
2206 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2207 u64Now = pVM->tm.s.u64VirtualSync;
2208 Assert(u64Now <= pNext->u64Expire);
2209 }
2210 else
2211 {
2212 /* Calc 'now'. */
2213 bool fStopCatchup = false;
2214 bool fUpdateStuff = false;
2215 uint64_t off = pVM->tm.s.offVirtualSync;
2216 if (pVM->tm.s.fVirtualSyncCatchUp)
2217 {
2218 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2219 if (RT_LIKELY(!(u64Delta >> 32)))
2220 {
2221 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2222 if (off > u64Sub + offSyncGivenUp)
2223 {
2224 off -= u64Sub;
2225 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2226 }
2227 else
2228 {
2229 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2230 fStopCatchup = true;
2231 off = offSyncGivenUp;
2232 }
2233 fUpdateStuff = true;
2234 }
2235 }
2236 u64Now = u64VirtualNow - off;
2237
2238 /* Adjust against last returned time. */
2239 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2240 if (u64Last > u64Now)
2241 {
2242 u64Now = u64Last + 1;
2243 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2244 }
2245
2246 /* Check if stopped by expired timer. */
2247 uint64_t const u64Expire = pNext->u64Expire;
2248 if (u64Now >= u64Expire)
2249 {
2250 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2251 u64Now = u64Expire;
2252 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2253 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2254 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2255 }
2256 else
2257 {
2258 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2259 if (fUpdateStuff)
2260 {
2261 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2262 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2263 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2264 if (fStopCatchup)
2265 {
2266 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2267 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2268 }
2269 }
2270 }
2271 }
2272
2273 /* calc end of frame. */
2274 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2275 if (u64Max > u64VirtualNow - offSyncGivenUp)
2276 u64Max = u64VirtualNow - offSyncGivenUp;
2277
2278 /* assert sanity */
2279 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2280 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2281 Assert(u64Now <= u64Max);
2282 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2283
2284 /*
2285 * Process the expired timers moving the clock along as we progress.
2286 */
2287#ifdef VBOX_STRICT
2288 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2289#endif
2290 while (pNext && pNext->u64Expire <= u64Max)
2291 {
2292 /* Advance */
2293 PTMTIMER pTimer = pNext;
2294 pNext = TMTIMER_GET_NEXT(pTimer);
2295
2296 /* Take the associated lock. */
2297 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2298 if (pCritSect)
2299 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2300
2301 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2302 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2303
2304 /* Advance the clock - don't permit timers to be out of order or armed
2305 in the 'past'. */
2306#ifdef VBOX_STRICT
2307 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2308 u64Prev = pTimer->u64Expire;
2309#endif
2310 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2311 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2312
2313 /* Unlink it, change the state and do the callout. */
2314 tmTimerQueueUnlinkActive(pQueue, pTimer);
2315 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2316 switch (pTimer->enmType)
2317 {
2318 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2319 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2320 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2321 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2322 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2323 default:
2324 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2325 break;
2326 }
2327
2328 /* Change the state if it wasn't changed already in the handler.
2329 Reset the Hz hint too since this is the same as TMTimerStop. */
2330 bool fRc;
2331 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2332 if (fRc && pTimer->uHzHint)
2333 {
2334 if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
2335 ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
2336 pTimer->uHzHint = 0;
2337 }
2338 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2339
2340 /* Leave the associated lock. */
2341 if (pCritSect)
2342 PDMCritSectLeave(pCritSect);
2343 } /* run loop */
2344
2345
2346 /*
2347 * Restart the clock if it was stopped to serve any timers,
2348 * and start/adjust catch-up if necessary.
2349 */
2350 if ( !pVM->tm.s.fVirtualSyncTicking
2351 && pVM->tm.s.cVirtualTicking)
2352 {
2353 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2354
2355 /* calc the slack we've handed out. */
2356 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2357 Assert(u64VirtualNow2 >= u64VirtualNow);
2358 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2359 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2360 STAM_STATS({
2361 if (offSlack)
2362 {
2363 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2364 p->cPeriods++;
2365 p->cTicks += offSlack;
2366 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2367 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2368 }
2369 });
2370
2371 /* Let the time run a little bit while we were busy running timers(?). */
2372 uint64_t u64Elapsed;
2373#define MAX_ELAPSED 30000U /* ns */
2374 if (offSlack > MAX_ELAPSED)
2375 u64Elapsed = 0;
2376 else
2377 {
2378 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2379 if (u64Elapsed > MAX_ELAPSED)
2380 u64Elapsed = MAX_ELAPSED;
2381 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2382 }
2383#undef MAX_ELAPSED
2384
2385 /* Calc the current offset. */
2386 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2387 Assert(!(offNew & RT_BIT_64(63)));
2388 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2389 Assert(!(offLag & RT_BIT_64(63)));
2390
2391 /*
2392 * Deal with starting, adjusting and stopping catchup.
2393 */
2394 if (pVM->tm.s.fVirtualSyncCatchUp)
2395 {
2396 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2397 {
2398 /* stop */
2399 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2400 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2401 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2402 }
2403 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2404 {
2405 /* adjust */
2406 unsigned i = 0;
2407 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2408 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2409 i++;
2410 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2411 {
2412 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2413 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2414 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2415 }
2416 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2417 }
2418 else
2419 {
2420 /* give up */
2421 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2422 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2423 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2424 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2425 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2426 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2427 }
2428 }
2429 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2430 {
2431 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2432 {
2433 /* start */
2434 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2435 unsigned i = 0;
2436 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2437 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2438 i++;
2439 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2440 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2441 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2442 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2443 }
2444 else
2445 {
2446 /* don't bother */
2447 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2448 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2449 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2450 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2451 }
2452 }
2453
2454 /*
2455 * Update the offset and restart the clock.
2456 */
2457 Assert(!(offNew & RT_BIT_64(63)));
2458 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2459 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2460 }
2461}
2462
2463
2464/**
2465 * Deals with stopped Virtual Sync clock.
2466 *
2467 * This is called by the forced action flag handling code in EM when it
2468 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2469 * will block on the VirtualSyncLock until the pending timers has been executed
2470 * and the clock restarted.
2471 *
2472 * @param pVM The VM to run the timers for.
2473 * @param pVCpu The virtual CPU we're running at.
2474 *
2475 * @thread EMTs
2476 */
2477VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2478{
2479 Log2(("TMR3VirtualSyncFF:\n"));
2480
2481 /*
2482 * The EMT doing the timers is diverted to them.
2483 */
2484 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2485 TMR3TimerQueuesDo(pVM);
2486 /*
2487 * The other EMTs will block on the virtual sync lock and the first owner
2488 * will run the queue and thus restarting the clock.
2489 *
2490 * Note! This is very suboptimal code wrt to resuming execution when there
2491 * are more than two Virtual CPUs, since they will all have to enter
2492 * the critical section one by one. But it's a very simple solution
2493 * which will have to do the job for now.
2494 */
2495 else
2496 {
2497 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2498 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2499 if (pVM->tm.s.fVirtualSyncTicking)
2500 {
2501 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2502 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2503 Log2(("TMR3VirtualSyncFF: ticking\n"));
2504 }
2505 else
2506 {
2507 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2508
2509 /* try run it. */
2510 TM_LOCK_TIMERS(pVM);
2511 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2512 if (pVM->tm.s.fVirtualSyncTicking)
2513 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2514 else
2515 {
2516 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2517 Log2(("TMR3VirtualSyncFF: running queue\n"));
2518
2519 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2520 tmR3TimerQueueRunVirtualSync(pVM);
2521 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2522 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2523
2524 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2525 }
2526 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2527 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2528 TM_UNLOCK_TIMERS(pVM);
2529 }
2530 }
2531}
2532
2533
2534/** @name Saved state values
2535 * @{ */
2536#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2537#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2538/** @} */
2539
2540
2541/**
2542 * Saves the state of a timer to a saved state.
2543 *
2544 * @returns VBox status.
2545 * @param pTimer Timer to save.
2546 * @param pSSM Save State Manager handle.
2547 */
2548VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2549{
2550 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2551 switch (pTimer->enmState)
2552 {
2553 case TMTIMERSTATE_STOPPED:
2554 case TMTIMERSTATE_PENDING_STOP:
2555 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2556 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2557
2558 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2559 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2560 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2561 if (!RTThreadYield())
2562 RTThreadSleep(1);
2563 /* fall thru */
2564 case TMTIMERSTATE_ACTIVE:
2565 case TMTIMERSTATE_PENDING_SCHEDULE:
2566 case TMTIMERSTATE_PENDING_RESCHEDULE:
2567 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2568 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2569
2570 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2571 case TMTIMERSTATE_EXPIRED_DELIVER:
2572 case TMTIMERSTATE_DESTROY:
2573 case TMTIMERSTATE_FREE:
2574 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2575 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2576 }
2577
2578 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2579 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2580}
2581
2582
2583/**
2584 * Loads the state of a timer from a saved state.
2585 *
2586 * @returns VBox status.
2587 * @param pTimer Timer to restore.
2588 * @param pSSM Save State Manager handle.
2589 */
2590VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2591{
2592 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2593 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2594
2595 /*
2596 * Load the state and validate it.
2597 */
2598 uint8_t u8State;
2599 int rc = SSMR3GetU8(pSSM, &u8State);
2600 if (RT_FAILURE(rc))
2601 return rc;
2602#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2603 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2604 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2605 u8State--;
2606#endif
2607 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2608 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2609 {
2610 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2611 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2612 }
2613
2614 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2615 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2616 PDMCritSectEnter(&pTimer->pVMR3->tm.s.VirtualSyncLock, VERR_IGNORED);
2617 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2618 if (pCritSect)
2619 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2620
2621 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2622 {
2623 /*
2624 * Load the expire time.
2625 */
2626 uint64_t u64Expire;
2627 rc = SSMR3GetU64(pSSM, &u64Expire);
2628 if (RT_FAILURE(rc))
2629 return rc;
2630
2631 /*
2632 * Set it.
2633 */
2634 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2635 rc = TMTimerSet(pTimer, u64Expire);
2636 }
2637 else
2638 {
2639 /*
2640 * Stop it.
2641 */
2642 Log(("u8State=%d\n", u8State));
2643 rc = TMTimerStop(pTimer);
2644 }
2645
2646 if (pCritSect)
2647 PDMCritSectLeave(pCritSect);
2648 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2649 PDMCritSectLeave(&pTimer->pVMR3->tm.s.VirtualSyncLock);
2650
2651 /*
2652 * On failure set SSM status.
2653 */
2654 if (RT_FAILURE(rc))
2655 rc = SSMR3HandleSetStatus(pSSM, rc);
2656 return rc;
2657}
2658
2659
2660/**
2661 * Associates a critical section with a timer.
2662 *
2663 * The critical section will be entered prior to doing the timer call back, thus
2664 * avoiding potential races between the timer thread and other threads trying to
2665 * stop or adjust the timer expiration while it's being delivered. The timer
2666 * thread will leave the critical section when the timer callback returns.
2667 *
2668 * In strict builds, ownership of the critical section will be asserted by
2669 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2670 * runtime).
2671 *
2672 * @retval VINF_SUCCESS on success.
2673 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2674 * (asserted).
2675 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2676 * (asserted).
2677 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2678 * with the timer (asserted).
2679 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2680 *
2681 * @param pTimer The timer handle.
2682 * @param pCritSect The critical section. The caller must make sure this
2683 * is around for the life time of the timer.
2684 *
2685 * @thread Any, but the caller is responsible for making sure the timer is not
2686 * active.
2687 */
2688VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2689{
2690 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2691 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2692 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2693 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2694 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2695 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2696 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2697
2698 pTimer->pCritSect = pCritSect;
2699 return VINF_SUCCESS;
2700}
2701
2702
2703/**
2704 * Get the real world UTC time adjusted for VM lag.
2705 *
2706 * @returns pTime.
2707 * @param pVM The VM instance.
2708 * @param pTime Where to store the time.
2709 */
2710VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2711{
2712 /* Get a stable set of VirtualSync parameters before querying UTC. */
2713 uint64_t offVirtualSync;
2714 uint64_t offVirtualSyncGivenUp;
2715 do
2716 {
2717 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
2718 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
2719 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
2720
2721 Assert(offVirtualSync >= offVirtualSyncGivenUp);
2722 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
2723
2724 RTTimeNow(pTime);
2725 RTTimeSpecSubNano(pTime, offLag);
2726 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2727 return pTime;
2728}
2729
2730
2731/**
2732 * Pauses all clocks except TMCLOCK_REAL.
2733 *
2734 * @returns VBox status code, all errors are asserted.
2735 * @param pVM Pointer to the VM.
2736 * @param pVCpu Pointer to the VMCPU.
2737 * @thread EMT corresponding to Pointer to the VMCPU.
2738 */
2739VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2740{
2741 VMCPU_ASSERT_EMT(pVCpu);
2742
2743 /*
2744 * The shared virtual clock (includes virtual sync which is tied to it).
2745 */
2746 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2747 int rc = tmVirtualPauseLocked(pVM);
2748 TM_UNLOCK_TIMERS(pVM);
2749 if (RT_FAILURE(rc))
2750 return rc;
2751
2752 /*
2753 * Pause the TSC last since it is normally linked to the virtual
2754 * sync clock, so the above code may actually stop both clocks.
2755 */
2756 if (!pVM->tm.s.fTSCTiedToExecution)
2757 {
2758 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2759 rc = tmCpuTickPauseLocked(pVM, pVCpu);
2760 TM_UNLOCK_TIMERS(pVM);
2761 if (RT_FAILURE(rc))
2762 return rc;
2763 }
2764
2765#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2766 /*
2767 * Update cNsTotal.
2768 */
2769 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
2770 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
2771 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
2772 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
2773#endif
2774
2775 return VINF_SUCCESS;
2776}
2777
2778
2779/**
2780 * Resumes all clocks except TMCLOCK_REAL.
2781 *
2782 * @returns VBox status code, all errors are asserted.
2783 * @param pVM Pointer to the VM.
2784 * @param pVCpu Pointer to the VMCPU.
2785 * @thread EMT corresponding to Pointer to the VMCPU.
2786 */
2787VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2788{
2789 VMCPU_ASSERT_EMT(pVCpu);
2790 int rc;
2791
2792#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2793 /*
2794 * Set u64NsTsStartTotal. There is no need to back this out if either of
2795 * the two calls below fail.
2796 */
2797 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
2798#endif
2799
2800 /*
2801 * Resume the TSC first since it is normally linked to the virtual sync
2802 * clock, so it may actually not be resumed until we've executed the code
2803 * below.
2804 */
2805 if (!pVM->tm.s.fTSCTiedToExecution)
2806 {
2807 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2808 rc = tmCpuTickResumeLocked(pVM, pVCpu);
2809 TM_UNLOCK_TIMERS(pVM);
2810 if (RT_FAILURE(rc))
2811 return rc;
2812 }
2813
2814 /*
2815 * The shared virtual clock (includes virtual sync which is tied to it).
2816 */
2817 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2818 rc = tmVirtualResumeLocked(pVM);
2819 TM_UNLOCK_TIMERS(pVM);
2820
2821 return rc;
2822}
2823
2824
2825/**
2826 * Sets the warp drive percent of the virtual time.
2827 *
2828 * @returns VBox status code.
2829 * @param pVM Pointer to the VM.
2830 * @param u32Percent The new percentage. 100 means normal operation.
2831 */
2832VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
2833{
2834 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
2835}
2836
2837
2838/**
2839 * EMT worker for TMR3SetWarpDrive.
2840 *
2841 * @returns VBox status code.
2842 * @param pUVM The user mode VM handle.
2843 * @param u32Percent See TMR3SetWarpDrive().
2844 * @internal
2845 */
2846static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
2847{
2848 PVM pVM = pUVM->pVM;
2849 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2850 PVMCPU pVCpu = VMMGetCpu(pVM);
2851
2852 /*
2853 * Validate it.
2854 */
2855 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2856 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2857 VERR_INVALID_PARAMETER);
2858
2859/** @todo This isn't a feature specific to virtual time, move the variables to
2860 * TM level and make it affect TMR3UTCNow as well! */
2861
2862 /*
2863 * If the time is running we'll have to pause it before we can change
2864 * the warp drive settings.
2865 */
2866 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2867 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2868 if (fPaused) /** @todo this isn't really working, but wtf. */
2869 TMR3NotifySuspend(pVM, pVCpu);
2870
2871 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
2872 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2873 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2874 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2875 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2876
2877 if (fPaused)
2878 TMR3NotifyResume(pVM, pVCpu);
2879 TM_UNLOCK_TIMERS(pVM);
2880 return VINF_SUCCESS;
2881}
2882
2883
2884/**
2885 * Gets the current warp drive percent.
2886 *
2887 * @returns The warp drive percent.
2888 * @param pVM Pointer to the VM.
2889 */
2890VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
2891{
2892 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
2893 PVM pVM = pUVM->pVM;
2894 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
2895 return pVM->tm.s.u32VirtualWarpDrivePercentage;
2896}
2897
2898
2899/**
2900 * Gets the performance information for one virtual CPU as seen by the VMM.
2901 *
2902 * The returned times covers the period where the VM is running and will be
2903 * reset when restoring a previous VM state (at least for the time being).
2904 *
2905 * @retval VINF_SUCCESS on success.
2906 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
2907 * @retval VERR_INVALID_STATE if the VM handle is bad.
2908 * @retval VERR_INVALID_PARAMETER if idCpu is out of range.
2909 *
2910 * @param pVM Pointer to the VM.
2911 * @param idCpu The ID of the virtual CPU which times to get.
2912 * @param pcNsTotal Where to store the total run time (nano seconds) of
2913 * the CPU, i.e. the sum of the three other returns.
2914 * Optional.
2915 * @param pcNsExecuting Where to store the time (nano seconds) spent
2916 * executing guest code. Optional.
2917 * @param pcNsHalted Where to store the time (nano seconds) spent
2918 * halted. Optional
2919 * @param pcNsOther Where to store the time (nano seconds) spent
2920 * preempted by the host scheduler, on virtualization
2921 * overhead and on other tasks.
2922 */
2923VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
2924 uint64_t *pcNsHalted, uint64_t *pcNsOther)
2925{
2926 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
2927 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
2928
2929#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2930 /*
2931 * Get a stable result set.
2932 * This should be way quicker than an EMT request.
2933 */
2934 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2935 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2936 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2937 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2938 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2939 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
2940 while ( (uTimesGen & 1) /* update in progress */
2941 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
2942 {
2943 RTThreadYield();
2944 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2945 cNsTotal = pVCpu->tm.s.cNsTotal;
2946 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2947 cNsHalted = pVCpu->tm.s.cNsHalted;
2948 cNsOther = pVCpu->tm.s.cNsOther;
2949 }
2950
2951 /*
2952 * Fill in the return values.
2953 */
2954 if (pcNsTotal)
2955 *pcNsTotal = cNsTotal;
2956 if (pcNsExecuting)
2957 *pcNsExecuting = cNsExecuting;
2958 if (pcNsHalted)
2959 *pcNsHalted = cNsHalted;
2960 if (pcNsOther)
2961 *pcNsOther = cNsOther;
2962
2963 return VINF_SUCCESS;
2964
2965#else
2966 return VERR_NOT_IMPLEMENTED;
2967#endif
2968}
2969
2970#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2971
2972/**
2973 * Helper for tmR3CpuLoadTimer.
2974 * @returns
2975 * @param pState The state to update.
2976 * @param cNsTotalDelta Total time.
2977 * @param cNsExecutingDelta Time executing.
2978 * @param cNsHaltedDelta Time halted.
2979 */
2980DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState,
2981 uint64_t cNsTotal,
2982 uint64_t cNsExecuting,
2983 uint64_t cNsHalted)
2984{
2985 /* Calc deltas */
2986 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
2987 pState->cNsPrevTotal = cNsTotal;
2988
2989 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
2990 pState->cNsPrevExecuting = cNsExecuting;
2991
2992 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
2993 pState->cNsPrevHalted = cNsHalted;
2994
2995 /* Calc pcts. */
2996 if (!cNsTotalDelta)
2997 {
2998 pState->cPctExecuting = 0;
2999 pState->cPctHalted = 100;
3000 pState->cPctOther = 0;
3001 }
3002 else if (cNsTotalDelta < UINT64_MAX / 4)
3003 {
3004 pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3005 pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3006 pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3007 }
3008 else
3009 {
3010 pState->cPctExecuting = 0;
3011 pState->cPctHalted = 100;
3012 pState->cPctOther = 0;
3013 }
3014}
3015
3016
3017/**
3018 * Timer callback that calculates the CPU load since the last time it was
3019 * called.
3020 *
3021 * @param pVM Pointer to the VM.
3022 * @param pTimer The timer.
3023 * @param pvUser NULL, unused.
3024 */
3025static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
3026{
3027 /*
3028 * Re-arm the timer first.
3029 */
3030 int rc = TMTimerSetMillies(pTimer, 1000);
3031 AssertLogRelRC(rc);
3032 NOREF(pvUser);
3033
3034 /*
3035 * Update the values for each CPU.
3036 */
3037 uint64_t cNsTotalAll = 0;
3038 uint64_t cNsExecutingAll = 0;
3039 uint64_t cNsHaltedAll = 0;
3040 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3041 {
3042 PVMCPU pVCpu = &pVM->aCpus[iCpu];
3043
3044 /* Try get a stable data set. */
3045 uint32_t cTries = 3;
3046 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3047 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3048 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3049 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3050 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3051 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3052 {
3053 if (!--cTries)
3054 break;
3055 ASMNopPause();
3056 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3057 cNsTotal = pVCpu->tm.s.cNsTotal;
3058 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3059 cNsHalted = pVCpu->tm.s.cNsHalted;
3060 }
3061
3062 /* Totals */
3063 cNsTotalAll += cNsTotal;
3064 cNsExecutingAll += cNsExecuting;
3065 cNsHaltedAll += cNsHalted;
3066
3067 /* Calc the PCTs and update the state. */
3068 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3069 }
3070
3071 /*
3072 * Update the value for all the CPUs.
3073 */
3074 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3075
3076 /** @todo Try add 1, 5 and 15 min load stats. */
3077
3078}
3079
3080#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3081
3082
3083/**
3084 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3085 * Worker for TMR3CpuTickParavirtEnable}
3086 */
3087static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3088{
3089 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3090 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
3091 Assert(tmR3HasFixedTSC(pVM));
3092
3093 /*
3094 * The return value of TMCpuTickGet() and the guest's TSC value for each
3095 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3096 * the following equation (new/old signifies the new/old tsc modes):
3097 * uNewTsc = uOldTsc
3098 *
3099 * Where (see tmCpuTickGetInternal):
3100 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3101 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3102 *
3103 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3104 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3105 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3106 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3107 */
3108 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3109 uint64_t uRawNewTsc = SUPReadTsc();
3110 uint32_t cCpus = pVM->cCpus;
3111 for (uint32_t i = 0; i < cCpus; i++)
3112 {
3113 PVMCPU pVCpu = &pVM->aCpus[i];
3114 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3115 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3116 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3117 }
3118
3119 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3120 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3121 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3122 return VINF_SUCCESS;
3123}
3124
3125
3126/**
3127 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3128 *
3129 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3130 *
3131 * @returns VBox status code.
3132 * @param pVM Pointer to the VM.
3133 */
3134VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3135{
3136 int rc = VINF_SUCCESS;
3137 if (pVM->tm.s.fTSCModeSwitchAllowed)
3138 {
3139 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3140 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3141 }
3142 else
3143 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3144 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3145 pVM->tm.s.fParavirtTscEnabled = true;
3146 return rc;
3147}
3148
3149
3150/**
3151 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3152 * Worker for TMR3CpuTickParavirtDisable}
3153 */
3154static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3155{
3156 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3157 Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3158 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
3159
3160 /*
3161 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3162 */
3163 uint64_t uRawOldTsc = SUPReadTsc();
3164 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3165 uint32_t cCpus = pVM->cCpus;
3166 for (uint32_t i = 0; i < cCpus; i++)
3167 {
3168 PVMCPU pVCpu = &pVM->aCpus[i];
3169 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3170 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3171 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3172
3173 /* Update the last-seen tick here as we havent't been updating it (as we don't
3174 need it) while in pure TSC-offsetting mode. */
3175 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3176 }
3177
3178 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3179 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3180 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3181 return VINF_SUCCESS;
3182}
3183
3184
3185/**
3186 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3187 *
3188 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3189 * perform an EMT rendezvous to revert those changes.
3190 *
3191 * @returns VBox status code.
3192 * @param pVM Pointer to the VM.
3193 */
3194VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3195{
3196 int rc = VINF_SUCCESS;
3197 if ( pVM->tm.s.fTSCModeSwitchAllowed
3198 && pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3199 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3200 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3201 pVM->tm.s.fParavirtTscEnabled = false;
3202 return rc;
3203}
3204
3205
3206/**
3207 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3208 *
3209 * @returns true if TSC is stable, false otherwise.
3210 * @param pVM Pointer to the VM.
3211 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3212 * paravirt. TSC is enabled or not.
3213 *
3214 * @remarks Must be called only after TMR3InitFinalize().
3215 */
3216VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3217{
3218 /** @todo figure out what exactly we want here later. */
3219 NOREF(fWithParavirtEnabled);
3220 return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3221 && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
3222}
3223
3224
3225/**
3226 * Gets the 5 char clock name for the info tables.
3227 *
3228 * @returns The name.
3229 * @param enmClock The clock.
3230 */
3231DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3232{
3233 switch (enmClock)
3234 {
3235 case TMCLOCK_REAL: return "Real ";
3236 case TMCLOCK_VIRTUAL: return "Virt ";
3237 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3238 case TMCLOCK_TSC: return "TSC ";
3239 default: return "Bad ";
3240 }
3241}
3242
3243
3244/**
3245 * Display all timers.
3246 *
3247 * @param pVM Pointer to the VM.
3248 * @param pHlp The info helpers.
3249 * @param pszArgs Arguments, ignored.
3250 */
3251static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3252{
3253 NOREF(pszArgs);
3254 pHlp->pfnPrintf(pHlp,
3255 "Timers (pVM=%p)\n"
3256 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3257 pVM,
3258 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3259 sizeof(int32_t) * 2, "offNext ",
3260 sizeof(int32_t) * 2, "offPrev ",
3261 sizeof(int32_t) * 2, "offSched ",
3262 "Time",
3263 "Expire",
3264 "HzHint",
3265 "State");
3266 TM_LOCK_TIMERS(pVM);
3267 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
3268 {
3269 pHlp->pfnPrintf(pHlp,
3270 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3271 pTimer,
3272 pTimer->offNext,
3273 pTimer->offPrev,
3274 pTimer->offScheduleNext,
3275 tmR3Get5CharClockName(pTimer->enmClock),
3276 TMTimerGet(pTimer),
3277 pTimer->u64Expire,
3278 pTimer->uHzHint,
3279 tmTimerState(pTimer->enmState),
3280 pTimer->pszDesc);
3281 }
3282 TM_UNLOCK_TIMERS(pVM);
3283}
3284
3285
3286/**
3287 * Display all active timers.
3288 *
3289 * @param pVM Pointer to the VM.
3290 * @param pHlp The info helpers.
3291 * @param pszArgs Arguments, ignored.
3292 */
3293static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3294{
3295 NOREF(pszArgs);
3296 pHlp->pfnPrintf(pHlp,
3297 "Active Timers (pVM=%p)\n"
3298 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3299 pVM,
3300 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3301 sizeof(int32_t) * 2, "offNext ",
3302 sizeof(int32_t) * 2, "offPrev ",
3303 sizeof(int32_t) * 2, "offSched ",
3304 "Time",
3305 "Expire",
3306 "HzHint",
3307 "State");
3308 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
3309 {
3310 TM_LOCK_TIMERS(pVM);
3311 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
3312 pTimer;
3313 pTimer = TMTIMER_GET_NEXT(pTimer))
3314 {
3315 pHlp->pfnPrintf(pHlp,
3316 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3317 pTimer,
3318 pTimer->offNext,
3319 pTimer->offPrev,
3320 pTimer->offScheduleNext,
3321 tmR3Get5CharClockName(pTimer->enmClock),
3322 TMTimerGet(pTimer),
3323 pTimer->u64Expire,
3324 pTimer->uHzHint,
3325 tmTimerState(pTimer->enmState),
3326 pTimer->pszDesc);
3327 }
3328 TM_UNLOCK_TIMERS(pVM);
3329 }
3330}
3331
3332
3333/**
3334 * Display all clocks.
3335 *
3336 * @param pVM Pointer to the VM.
3337 * @param pHlp The info helpers.
3338 * @param pszArgs Arguments, ignored.
3339 */
3340static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3341{
3342 NOREF(pszArgs);
3343
3344 /*
3345 * Read the times first to avoid more than necessary time variation.
3346 */
3347 const uint64_t u64Virtual = TMVirtualGet(pVM);
3348 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3349 const uint64_t u64Real = TMRealGet(pVM);
3350
3351 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3352 {
3353 PVMCPU pVCpu = &pVM->aCpus[i];
3354 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3355
3356 /*
3357 * TSC
3358 */
3359 pHlp->pfnPrintf(pHlp,
3360 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
3361 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
3362 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
3363 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
3364 {
3365 pHlp->pfnPrintf(pHlp, " - real tsc offset");
3366 if (pVCpu->tm.s.offTSCRawSrc)
3367 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
3368 }
3369 else
3370 pHlp->pfnPrintf(pHlp, " - virtual clock");
3371 pHlp->pfnPrintf(pHlp, "\n");
3372 }
3373
3374 /*
3375 * virtual
3376 */
3377 pHlp->pfnPrintf(pHlp,
3378 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
3379 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
3380 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
3381 if (pVM->tm.s.fVirtualWarpDrive)
3382 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
3383 pHlp->pfnPrintf(pHlp, "\n");
3384
3385 /*
3386 * virtual sync
3387 */
3388 pHlp->pfnPrintf(pHlp,
3389 "VirtSync: %18RU64 (%#016RX64) %s%s",
3390 u64VirtualSync, u64VirtualSync,
3391 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
3392 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
3393 if (pVM->tm.s.offVirtualSync)
3394 {
3395 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
3396 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
3397 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
3398 }
3399 pHlp->pfnPrintf(pHlp, "\n");
3400
3401 /*
3402 * real
3403 */
3404 pHlp->pfnPrintf(pHlp,
3405 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
3406 u64Real, u64Real, TMRealGetFreq(pVM));
3407}
3408
3409
3410/**
3411 * Gets the descriptive TM TSC mode name given the enum value.
3412 *
3413 * @returns The name.
3414 * @param pVM Pointer to the VM.
3415 */
3416static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
3417{
3418 switch (enmMode)
3419 {
3420 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTscOffset";
3421 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTscEmulated";
3422 case TMTSCMODE_DYNAMIC: return "Dynamic";
3423 default: return "???";
3424 }
3425}
3426
3427
3428/**
3429 * Gets the descriptive TM TSC mode name.
3430 *
3431 * @returns The name.
3432 * @param pVM Pointer to the VM.
3433 */
3434static const char *tmR3GetTSCModeName(PVM pVM)
3435{
3436 Assert(pVM);
3437 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
3438}
3439
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette