VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 73092

Last change on this file since 73092 was 72685, checked in by vboxsync, 7 years ago

TM: Disable annoying trace for /me. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 158.4 KB
Line 
1/* $Id: TM.cpp 72685 2018-06-26 01:49:48Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119
120/*********************************************************************************************************************************
121* Header Files *
122*********************************************************************************************************************************/
123#define LOG_GROUP LOG_GROUP_TM
124#ifdef DEBUG_bird
125# define DBGFTRACE_DISABLED /* annoying */
126#endif
127#include <VBox/vmm/tm.h>
128#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGip from sup.h */
129#include <VBox/vmm/vmm.h>
130#include <VBox/vmm/mm.h>
131#include <VBox/vmm/hm.h>
132#include <VBox/vmm/nem.h>
133#include <VBox/vmm/gim.h>
134#include <VBox/vmm/ssm.h>
135#include <VBox/vmm/dbgf.h>
136#include <VBox/vmm/dbgftrace.h>
137#ifdef VBOX_WITH_REM
138# include <VBox/vmm/rem.h>
139#endif
140#include <VBox/vmm/pdmapi.h>
141#include <VBox/vmm/iom.h>
142#include "TMInternal.h"
143#include <VBox/vmm/vm.h>
144#include <VBox/vmm/uvm.h>
145
146#include <VBox/vmm/pdmdev.h>
147#include <VBox/param.h>
148#include <VBox/err.h>
149
150#include <VBox/log.h>
151#include <iprt/asm.h>
152#include <iprt/asm-math.h>
153#include <iprt/assert.h>
154#include <iprt/file.h>
155#include <iprt/thread.h>
156#include <iprt/time.h>
157#include <iprt/timer.h>
158#include <iprt/semaphore.h>
159#include <iprt/string.h>
160#include <iprt/env.h>
161
162#include "TMInline.h"
163
164
165/*********************************************************************************************************************************
166* Defined Constants And Macros *
167*********************************************************************************************************************************/
168/** The current saved state version.*/
169#define TM_SAVED_STATE_VERSION 3
170
171
172/*********************************************************************************************************************************
173* Internal Functions *
174*********************************************************************************************************************************/
175static bool tmR3HasFixedTSC(PVM pVM);
176static uint64_t tmR3CalibrateTSC(void);
177static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
178static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
179static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
180static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
181static void tmR3TimerQueueRunVirtualSync(PVM pVM);
182static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
183#ifndef VBOX_WITHOUT_NS_ACCOUNTING
184static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
185#endif
186static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
187static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
188static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
189static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
190static const char * tmR3GetTSCModeName(PVM pVM);
191static const char * tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
192
193
194/**
195 * Initializes the TM.
196 *
197 * @returns VBox status code.
198 * @param pVM The cross context VM structure.
199 */
200VMM_INT_DECL(int) TMR3Init(PVM pVM)
201{
202 LogFlow(("TMR3Init:\n"));
203
204 /*
205 * Assert alignment and sizes.
206 */
207 AssertCompileMemberAlignment(VM, tm.s, 32);
208 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
209 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
210 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
211
212 /*
213 * Init the structure.
214 */
215 void *pv;
216 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
217 AssertRCReturn(rc, rc);
218 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
219 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
220 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
221
222 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
223 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
224 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
225 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
226 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
227 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
228 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
229 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
230 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
231 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
232
233
234 /*
235 * We directly use the GIP to calculate the virtual time. We map the
236 * the GIP into the guest context so we can do this calculation there
237 * as well and save costly world switches.
238 */
239 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
240 pVM->tm.s.pvGIPR3 = (void *)pGip;
241 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
242 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
243 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
244 VERR_TM_GIP_VERSION);
245
246 RTHCPHYS HCPhysGIP;
247 rc = SUPR3GipGetPhys(&HCPhysGIP);
248 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
249
250 RTGCPTR GCPtr;
251#ifdef SUP_WITH_LOTS_OF_CPUS
252 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
253 "GIP", &GCPtr);
254#else
255 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
256#endif
257 if (RT_FAILURE(rc))
258 {
259 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
260 return rc;
261 }
262 pVM->tm.s.pvGIPRC = GCPtr;
263 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
264 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
265
266 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
267 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
268 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
269 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
270 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
271 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
272
273 /* Log GIP info that may come in handy. */
274 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
275 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
276 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
277 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
278 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
279 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
280 {
281 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
282 if (iGipCpu != UINT16_MAX)
283 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
284 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
285 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
286 }
287
288 /*
289 * Setup the VirtualGetRaw backend.
290 */
291 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
292 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
293 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
294 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
295 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
296 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
297 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
298 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
299 /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
300
301 /*
302 * Init the locks.
303 */
304 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
305 if (RT_FAILURE(rc))
306 return rc;
307 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
308 if (RT_FAILURE(rc))
309 return rc;
310
311 /*
312 * Get our CFGM node, create it if necessary.
313 */
314 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
315 if (!pCfgHandle)
316 {
317 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
318 AssertRCReturn(rc, rc);
319 }
320
321 /*
322 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
323 */
324 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
325 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
326 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
327 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
328 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
329 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
330
331 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
332 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
333 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
334
335 /*
336 * Validate the rest of the TM settings.
337 */
338 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
339 "TSCMode|"
340 "TSCModeSwitchAllowed|"
341 "TSCTicksPerSecond|"
342 "TSCTiedToExecution|"
343 "TSCNotTiedToHalt|"
344 "ScheduleSlack|"
345 "CatchUpStopThreshold|"
346 "CatchUpGiveUpThreshold|"
347 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
348 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
349 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
350 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
351 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
352 "CatchUpPrecentage8|CatchUpPrecentage9|"
353 "UTCOffset|"
354 "UTCTouchFileOnJump|"
355 "WarpDrivePercentage|"
356 "HostHzMax|"
357 "HostHzFudgeFactorTimerCpu|"
358 "HostHzFudgeFactorOtherCpu|"
359 "HostHzFudgeFactorCatchUp100|"
360 "HostHzFudgeFactorCatchUp200|"
361 "HostHzFudgeFactorCatchUp400|"
362 "TimerMillies"
363 ,
364 "",
365 "TM", 0);
366 if (RT_FAILURE(rc))
367 return rc;
368
369 /*
370 * Determine the TSC configuration and frequency.
371 */
372 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
373 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
374 * The default depends on the VM configuration and the capabilities of the
375 * host CPU. Other config options or runtime changes may override the TSC
376 * mode specified here.
377 */
378 char szTSCMode[32];
379 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
380 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
381 {
382 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
383 * fall back on the more expensive emulated mode. With the current TSC handling
384 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
385 * without any kind of coordination) will lead to inconsistent TSC behavior with
386 * guest SMP, including TSC going backwards. */
387 pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
388 : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
389 }
390 else if (RT_FAILURE(rc))
391 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
392 else
393 {
394 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
395 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
396 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
397 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
398 else if (!RTStrCmp(szTSCMode, "Dynamic"))
399 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
400 else
401 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
402 if (NEMR3NeedSpecialTscMode(pVM))
403 {
404 LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
405 pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
406 }
407 }
408
409 /**
410 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
411 * at runtime}
412 * When using paravirtualized guests, we dynamically switch TSC modes to a more
413 * optimal one for performance. This setting allows overriding this behaviour.
414 */
415 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
416 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
417 {
418 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
419 pVM->tm.s.fTSCModeSwitchAllowed = true;
420 }
421 else if (RT_FAILURE(rc))
422 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
423 if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
424 {
425 LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
426 pVM->tm.s.fTSCModeSwitchAllowed = false;
427 }
428
429 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
430 * The number of TSC ticks per second (i.e. the TSC frequency). This will
431 * override enmTSCMode.
432 */
433 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
434 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
435 {
436 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
437 if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
438 || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
439 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
440 {
441 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
442 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
443 }
444 }
445 else if (RT_FAILURE(rc))
446 return VMSetError(pVM, rc, RT_SRC_POS,
447 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
448 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
449 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
450 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
451 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
452 pVM->tm.s.cTSCTicksPerSecond);
453 else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
454 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
455 else
456 {
457 LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
458 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
459 }
460
461 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
462 * Whether the TSC should be tied to execution. This will exclude most of the
463 * virtualization overhead, but will by default include the time spent in the
464 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
465 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
466 * be used avoided or used with great care. Note that this will only work right
467 * together with VT-x or AMD-V, and with a single virtual CPU. */
468 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
469 if (RT_FAILURE(rc))
470 return VMSetError(pVM, rc, RT_SRC_POS,
471 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
472 if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
473 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
474 if (pVM->tm.s.fTSCTiedToExecution)
475 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
476
477
478 /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
479 * This is used with /TM/TSCTiedToExecution to control how TSC operates
480 * accross HLT instructions. When true HLT is considered execution time and
481 * TSC continues to run, while when false (default) TSC stops during halt. */
482 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
483 if (RT_FAILURE(rc))
484 return VMSetError(pVM, rc, RT_SRC_POS,
485 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
486
487 /*
488 * Configure the timer synchronous virtual time.
489 */
490 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
491 * Scheduling slack when processing timers. */
492 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
493 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
494 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
495 else if (RT_FAILURE(rc))
496 return VMSetError(pVM, rc, RT_SRC_POS,
497 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
498
499 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
500 * When to stop a catch-up, considering it successful. */
501 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
502 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
503 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
504 else if (RT_FAILURE(rc))
505 return VMSetError(pVM, rc, RT_SRC_POS,
506 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
507
508 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
509 * When to give up a catch-up attempt. */
510 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
511 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
512 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
513 else if (RT_FAILURE(rc))
514 return VMSetError(pVM, rc, RT_SRC_POS,
515 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
516
517
518 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
519 * The catch-up percent for a given period. */
520 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
521 * The catch-up period threshold, or if you like, when a period starts. */
522#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
523 do \
524 { \
525 uint64_t u64; \
526 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
527 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
528 u64 = UINT64_C(DefStart); \
529 else if (RT_FAILURE(rc)) \
530 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
531 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
532 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
533 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
534 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
535 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
536 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
537 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
538 else if (RT_FAILURE(rc)) \
539 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
540 } while (0)
541 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
542 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
543 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
544 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
545 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
546 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
547 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
548 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
549 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
550 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
551 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
552 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
553#undef TM_CFG_PERIOD
554
555 /*
556 * Configure real world time (UTC).
557 */
558 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
559 * The UTC offset. This is used to put the guest back or forwards in time. */
560 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
561 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
562 pVM->tm.s.offUTC = 0; /* ns */
563 else if (RT_FAILURE(rc))
564 return VMSetError(pVM, rc, RT_SRC_POS,
565 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
566
567 /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
568 * File to be written to everytime the host time jumps. */
569 rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
570 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
571 pVM->tm.s.pszUtcTouchFileOnJump = NULL;
572 else if (RT_FAILURE(rc))
573 return VMSetError(pVM, rc, RT_SRC_POS,
574 N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
575
576 /*
577 * Setup the warp drive.
578 */
579 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
580 * The warp drive percentage, 100% is normal speed. This is used to speed up
581 * or slow down the virtual clock, which can be useful for fast forwarding
582 * borring periods during tests. */
583 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
584 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
585 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
586 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
587 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
588 else if (RT_FAILURE(rc))
589 return VMSetError(pVM, rc, RT_SRC_POS,
590 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
591 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
592 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
593 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
594 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
595 pVM->tm.s.u32VirtualWarpDrivePercentage);
596 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
597 if (pVM->tm.s.fVirtualWarpDrive)
598 {
599 if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
600 LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
601 pVM->tm.s.u32VirtualWarpDrivePercentage));
602 else
603 {
604 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
605 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
606 }
607 }
608
609 /*
610 * Gather the Host Hz configuration values.
611 */
612 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
613 if (RT_FAILURE(rc))
614 return VMSetError(pVM, rc, RT_SRC_POS,
615 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
616
617 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
618 if (RT_FAILURE(rc))
619 return VMSetError(pVM, rc, RT_SRC_POS,
620 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
621
622 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
623 if (RT_FAILURE(rc))
624 return VMSetError(pVM, rc, RT_SRC_POS,
625 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
626
627 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
628 if (RT_FAILURE(rc))
629 return VMSetError(pVM, rc, RT_SRC_POS,
630 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
631
632 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
633 if (RT_FAILURE(rc))
634 return VMSetError(pVM, rc, RT_SRC_POS,
635 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
636
637 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
638 if (RT_FAILURE(rc))
639 return VMSetError(pVM, rc, RT_SRC_POS,
640 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
641
642 /*
643 * Finally, setup and report.
644 */
645 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
646 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
647 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
648 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
649 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
650 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
651
652 /*
653 * Start the timer (guard against REM not yielding).
654 */
655 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
656 * The watchdog timer interval. */
657 uint32_t u32Millies;
658 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
659 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
660 u32Millies = 10;
661 else if (RT_FAILURE(rc))
662 return VMSetError(pVM, rc, RT_SRC_POS,
663 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
664 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
665 if (RT_FAILURE(rc))
666 {
667 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
668 return rc;
669 }
670 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
671 pVM->tm.s.u32TimerMillies = u32Millies;
672
673 /*
674 * Register saved state.
675 */
676 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
677 NULL, NULL, NULL,
678 NULL, tmR3Save, NULL,
679 NULL, tmR3Load, NULL);
680 if (RT_FAILURE(rc))
681 return rc;
682
683 /*
684 * Register statistics.
685 */
686 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
687 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
688 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
689 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
690 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
691 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
692 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
693 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
694 STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
695
696#ifdef VBOX_WITH_STATISTICS
697 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
698 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
699 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
700 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
701 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
702 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
703 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
704 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
705 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
706 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
707
708 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
709 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
710 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
711 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
712 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
713 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
714 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
715 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
716
717 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
718 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
719
720 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
721 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
722 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
723
724 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
725 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
726 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
727 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
728 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
729 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
730 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
731 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
732 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
733 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
734 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
735 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
736
737 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
738 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
739 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
740 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
741 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
742 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
743
744 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
745 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
746 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
747 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
748 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
749 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
750 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
751 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
752 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
753 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
754 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
755 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
756
757 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
758 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
759 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
760 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
761 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
762 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
763
764 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
765 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
766
767 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
768 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
769 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
770 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
771 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
772 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
773 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
774 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
775 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
776 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
777 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
778
779 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
780 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
781
782 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
783 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
784 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
785 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
786 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
787 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
788 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
789 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
790 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
791 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
792 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
793 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
794#endif /* VBOX_WITH_STATISTICS */
795
796 for (VMCPUID i = 0; i < pVM->cCpus; i++)
797 {
798 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
799#ifndef VBOX_WITHOUT_NS_ACCOUNTING
800# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
801 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
802 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
803 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
804 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
805 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
806 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
807 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
808# endif
809 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
810 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
811 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
812 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
813 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
814 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
815 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
816 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
817 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
818#endif
819 }
820#ifndef VBOX_WITHOUT_NS_ACCOUNTING
821 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
822 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
823 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
824#endif
825
826#ifdef VBOX_WITH_STATISTICS
827 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
828 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
829 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
830 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
831 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
832 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
833 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
834 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
835 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
836 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
837 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
838 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
839 {
840 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
841 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
842 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
843 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
844 }
845#endif /* VBOX_WITH_STATISTICS */
846
847 /*
848 * Register info handlers.
849 */
850 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
851 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
852 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
853
854 return VINF_SUCCESS;
855}
856
857
858/**
859 * Checks if the host CPU has a fixed TSC frequency.
860 *
861 * @returns true if it has, false if it hasn't.
862 *
863 * @remarks This test doesn't bother with very old CPUs that don't do power
864 * management or any other stuff that might influence the TSC rate.
865 * This isn't currently relevant.
866 */
867static bool tmR3HasFixedTSC(PVM pVM)
868{
869 /*
870 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
871 * actually has invariant TSC.
872 */
873 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
874 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
875 return true;
876
877 /*
878 * Go by features and model info from the CPUID instruction.
879 */
880 if (ASMHasCpuId())
881 {
882 uint32_t uEAX, uEBX, uECX, uEDX;
883
884 /*
885 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
886 */
887 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
888 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
889 {
890 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
891 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
892 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
893 return true;
894 }
895
896 /*
897 * By model.
898 */
899 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
900 {
901 /*
902 * AuthenticAMD - Check for APM support and that TscInvariant is set.
903 *
904 * This test isn't correct with respect to fixed/non-fixed TSC and
905 * older models, but this isn't relevant since the result is currently
906 * only used for making a decision on AMD-V models.
907 */
908#if 0 /* Promoted to generic */
909 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
910 if (uEAX >= 0x80000007)
911 {
912 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
913 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
914 && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
915 || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
916 return true;
917 }
918#endif
919 }
920 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
921 {
922 /*
923 * GenuineIntel - Check the model number.
924 *
925 * This test is lacking in the same way and for the same reasons
926 * as the AMD test above.
927 */
928 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
929 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
930 unsigned uModel = (uEAX >> 4) & 0x0f;
931 unsigned uFamily = (uEAX >> 8) & 0x0f;
932 if (uFamily == 0x0f)
933 uFamily += (uEAX >> 20) & 0xff;
934 if (uFamily >= 0x06)
935 uModel += ((uEAX >> 16) & 0x0f) << 4;
936 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
937 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
938 return true;
939 }
940 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
941 {
942 /*
943 * CentaurHauls - Check the model, family and stepping.
944 *
945 * This only checks for VIA CPU models Nano X2, Nano X3,
946 * Eden X2 and QuadCore.
947 */
948 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
949 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
950 unsigned uStepping = (uEAX & 0x0f);
951 unsigned uModel = (uEAX >> 4) & 0x0f;
952 unsigned uFamily = (uEAX >> 8) & 0x0f;
953 if ( uFamily == 0x06
954 && uModel == 0x0f
955 && uStepping >= 0x0c
956 && uStepping <= 0x0f)
957 return true;
958 }
959 }
960 return false;
961}
962
963
964/**
965 * Calibrate the CPU tick.
966 *
967 * @returns Number of ticks per second.
968 */
969static uint64_t tmR3CalibrateTSC(void)
970{
971 uint64_t u64Hz;
972
973 /*
974 * Use GIP when available. Prefere the nominal one, no need to wait for it.
975 */
976 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
977 if (pGip)
978 {
979 u64Hz = pGip->u64CpuHz;
980 if (u64Hz < _1T && u64Hz > _1M)
981 return u64Hz;
982 AssertFailed(); /* This shouldn't happen. */
983
984 u64Hz = SUPGetCpuHzFromGip(pGip);
985 if (u64Hz < _1T && u64Hz > _1M)
986 return u64Hz;
987
988 AssertFailed(); /* This shouldn't happen. */
989 }
990 /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
991
992 /* Call this once first to make sure it's initialized. */
993 RTTimeNanoTS();
994
995 /*
996 * Yield the CPU to increase our chances of getting
997 * a correct value.
998 */
999 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
1000 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
1001 uint64_t au64Samples[5];
1002 unsigned i;
1003 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
1004 {
1005 RTMSINTERVAL cMillies;
1006 int cTries = 5;
1007 uint64_t u64Start = ASMReadTSC();
1008 uint64_t u64End;
1009 uint64_t StartTS = RTTimeNanoTS();
1010 uint64_t EndTS;
1011 do
1012 {
1013 RTThreadSleep(s_auSleep[i]);
1014 u64End = ASMReadTSC();
1015 EndTS = RTTimeNanoTS();
1016 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
1017 } while ( cMillies == 0 /* the sleep may be interrupted... */
1018 || (cMillies < 20 && --cTries > 0));
1019 uint64_t u64Diff = u64End - u64Start;
1020
1021 au64Samples[i] = (u64Diff * 1000) / cMillies;
1022 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
1023 }
1024
1025 /*
1026 * Discard the highest and lowest results and calculate the average.
1027 */
1028 unsigned iHigh = 0;
1029 unsigned iLow = 0;
1030 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1031 {
1032 if (au64Samples[i] < au64Samples[iLow])
1033 iLow = i;
1034 if (au64Samples[i] > au64Samples[iHigh])
1035 iHigh = i;
1036 }
1037 au64Samples[iLow] = 0;
1038 au64Samples[iHigh] = 0;
1039
1040 u64Hz = au64Samples[0];
1041 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1042 u64Hz += au64Samples[i];
1043 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1044
1045 return u64Hz;
1046}
1047
1048
1049/**
1050 * Finalizes the TM initialization.
1051 *
1052 * @returns VBox status code.
1053 * @param pVM The cross context VM structure.
1054 */
1055VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1056{
1057 int rc;
1058
1059 /*
1060 * Resolve symbols.
1061 */
1062 if (VM_IS_RAW_MODE_ENABLED(pVM))
1063 {
1064 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
1065 AssertRCReturn(rc, rc);
1066 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
1067 AssertRCReturn(rc, rc);
1068 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
1069 AssertRCReturn(rc, rc);
1070 pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
1071 }
1072
1073 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1074 AssertRCReturn(rc, rc);
1075 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1076 AssertRCReturn(rc, rc);
1077 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1078 AssertRCReturn(rc, rc);
1079 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1080
1081#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1082 /*
1083 * Create a timer for refreshing the CPU load stats.
1084 */
1085 PTMTIMER pTimer;
1086 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
1087 if (RT_SUCCESS(rc))
1088 rc = TMTimerSetMillies(pTimer, 1000);
1089#endif
1090
1091 /*
1092 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1093 */
1094 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && !VM_IS_RAW_MODE_ENABLED(pVM);
1095 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1096 return rc;
1097}
1098
1099
1100/**
1101 * Applies relocations to data and code managed by this
1102 * component. This function will be called at init and
1103 * whenever the VMM need to relocate it self inside the GC.
1104 *
1105 * @param pVM The cross context VM structure.
1106 * @param offDelta Relocation delta relative to old location.
1107 */
1108VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1109{
1110 LogFlow(("TMR3Relocate\n"));
1111
1112 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
1113
1114 if (VM_IS_RAW_MODE_ENABLED(pVM))
1115 {
1116 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
1117 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
1118 pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
1119 pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
1120 pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
1121 pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
1122 pVM->tm.s.pfnVirtualGetRawRC += offDelta;
1123 }
1124
1125 /*
1126 * Iterate the timers updating the pVMRC pointers.
1127 */
1128 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1129 {
1130 pTimer->pVMRC = pVM->pVMRC;
1131 pTimer->pVMR0 = pVM->pVMR0;
1132 }
1133}
1134
1135
1136/**
1137 * Terminates the TM.
1138 *
1139 * Termination means cleaning up and freeing all resources,
1140 * the VM it self is at this point powered off or suspended.
1141 *
1142 * @returns VBox status code.
1143 * @param pVM The cross context VM structure.
1144 */
1145VMM_INT_DECL(int) TMR3Term(PVM pVM)
1146{
1147 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
1148 if (pVM->tm.s.pTimer)
1149 {
1150 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1151 AssertRC(rc);
1152 pVM->tm.s.pTimer = NULL;
1153 }
1154
1155 return VINF_SUCCESS;
1156}
1157
1158
1159/**
1160 * The VM is being reset.
1161 *
1162 * For the TM component this means that a rescheduling is preformed,
1163 * the FF is cleared and but without running the queues. We'll have to
1164 * check if this makes sense or not, but it seems like a good idea now....
1165 *
1166 * @param pVM The cross context VM structure.
1167 */
1168VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1169{
1170 LogFlow(("TMR3Reset:\n"));
1171 VM_ASSERT_EMT(pVM);
1172 TM_LOCK_TIMERS(pVM);
1173
1174 /*
1175 * Abort any pending catch up.
1176 * This isn't perfect...
1177 */
1178 if (pVM->tm.s.fVirtualSyncCatchUp)
1179 {
1180 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1181 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1182 if (pVM->tm.s.fVirtualSyncCatchUp)
1183 {
1184 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1185
1186 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1187 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1188 Assert(offOld <= offNew);
1189 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1190 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1191 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1192 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1193 }
1194 }
1195
1196 /*
1197 * Process the queues.
1198 */
1199 for (int i = 0; i < TMCLOCK_MAX; i++)
1200 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1201#ifdef VBOX_STRICT
1202 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1203#endif
1204
1205 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1206 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1207
1208 /*
1209 * Switch TM TSC mode back to the original mode after a reset for
1210 * paravirtualized guests that alter the TM TSC mode during operation.
1211 */
1212 if ( pVM->tm.s.fTSCModeSwitchAllowed
1213 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1214 {
1215 VM_ASSERT_EMT0(pVM);
1216 tmR3CpuTickParavirtDisable(pVM, &pVM->aCpus[0], NULL /* pvData */);
1217 }
1218 Assert(!GIMIsParavirtTscEnabled(pVM));
1219 pVM->tm.s.fParavirtTscEnabled = false;
1220
1221 /*
1222 * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
1223 * sees TSC value beyond 0x40000000000 at startup, it will reset the
1224 * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
1225 */
1226 VM_ASSERT_EMT0(pVM);
1227 uint64_t offTscRawSrc;
1228 switch (pVM->tm.s.enmTSCMode)
1229 {
1230 case TMTSCMODE_REAL_TSC_OFFSET:
1231 offTscRawSrc = SUPReadTsc();
1232 break;
1233 case TMTSCMODE_DYNAMIC:
1234 case TMTSCMODE_VIRT_TSC_EMULATED:
1235 offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
1236 offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
1237 break;
1238 case TMTSCMODE_NATIVE_API:
1239 /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
1240 offTscRawSrc = 0;
1241 break;
1242 default:
1243 AssertFailedBreakStmt(offTscRawSrc = 0);
1244 }
1245 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1246 {
1247 pVM->aCpus[iCpu].tm.s.offTSCRawSrc = offTscRawSrc;
1248 pVM->aCpus[iCpu].tm.s.u64TSC = 0;
1249 pVM->aCpus[iCpu].tm.s.u64TSCLastSeen = 0;
1250 }
1251
1252 TM_UNLOCK_TIMERS(pVM);
1253}
1254
1255
1256/**
1257 * Resolve a builtin RC symbol.
1258 * Called by PDM when loading or relocating GC modules.
1259 *
1260 * @returns VBox status
1261 * @param pVM The cross context VM structure.
1262 * @param pszSymbol Symbol to resolve.
1263 * @param pRCPtrValue Where to store the symbol value.
1264 * @remark This has to work before TMR3Relocate() is called.
1265 */
1266VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1267{
1268 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1269 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1270 //else if (..)
1271 else
1272 return VERR_SYMBOL_NOT_FOUND;
1273 return VINF_SUCCESS;
1274}
1275
1276
1277/**
1278 * Execute state save operation.
1279 *
1280 * @returns VBox status code.
1281 * @param pVM The cross context VM structure.
1282 * @param pSSM SSM operation handle.
1283 */
1284static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1285{
1286 LogFlow(("tmR3Save:\n"));
1287#ifdef VBOX_STRICT
1288 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1289 {
1290 PVMCPU pVCpu = &pVM->aCpus[i];
1291 Assert(!pVCpu->tm.s.fTSCTicking);
1292 }
1293 Assert(!pVM->tm.s.cVirtualTicking);
1294 Assert(!pVM->tm.s.fVirtualSyncTicking);
1295 Assert(!pVM->tm.s.cTSCsTicking);
1296#endif
1297
1298 /*
1299 * Save the virtual clocks.
1300 */
1301 /* the virtual clock. */
1302 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1303 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1304
1305 /* the virtual timer synchronous clock. */
1306 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1307 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1308 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1309 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1310 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1311
1312 /* real time clock */
1313 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1314
1315 /* the cpu tick clock. */
1316 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1317 {
1318 PVMCPU pVCpu = &pVM->aCpus[i];
1319 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1320 }
1321 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1322}
1323
1324
1325/**
1326 * Execute state load operation.
1327 *
1328 * @returns VBox status code.
1329 * @param pVM The cross context VM structure.
1330 * @param pSSM SSM operation handle.
1331 * @param uVersion Data layout version.
1332 * @param uPass The data pass.
1333 */
1334static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1335{
1336 LogFlow(("tmR3Load:\n"));
1337
1338 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1339#ifdef VBOX_STRICT
1340 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1341 {
1342 PVMCPU pVCpu = &pVM->aCpus[i];
1343 Assert(!pVCpu->tm.s.fTSCTicking);
1344 }
1345 Assert(!pVM->tm.s.cVirtualTicking);
1346 Assert(!pVM->tm.s.fVirtualSyncTicking);
1347 Assert(!pVM->tm.s.cTSCsTicking);
1348#endif
1349
1350 /*
1351 * Validate version.
1352 */
1353 if (uVersion != TM_SAVED_STATE_VERSION)
1354 {
1355 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1356 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1357 }
1358
1359 /*
1360 * Load the virtual clock.
1361 */
1362 pVM->tm.s.cVirtualTicking = 0;
1363 /* the virtual clock. */
1364 uint64_t u64Hz;
1365 int rc = SSMR3GetU64(pSSM, &u64Hz);
1366 if (RT_FAILURE(rc))
1367 return rc;
1368 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1369 {
1370 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1371 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1372 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1373 }
1374 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1375 pVM->tm.s.u64VirtualOffset = 0;
1376
1377 /* the virtual timer synchronous clock. */
1378 pVM->tm.s.fVirtualSyncTicking = false;
1379 uint64_t u64;
1380 SSMR3GetU64(pSSM, &u64);
1381 pVM->tm.s.u64VirtualSync = u64;
1382 SSMR3GetU64(pSSM, &u64);
1383 pVM->tm.s.offVirtualSync = u64;
1384 SSMR3GetU64(pSSM, &u64);
1385 pVM->tm.s.offVirtualSyncGivenUp = u64;
1386 SSMR3GetU64(pSSM, &u64);
1387 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1388 bool f;
1389 SSMR3GetBool(pSSM, &f);
1390 pVM->tm.s.fVirtualSyncCatchUp = f;
1391
1392 /* the real clock */
1393 rc = SSMR3GetU64(pSSM, &u64Hz);
1394 if (RT_FAILURE(rc))
1395 return rc;
1396 if (u64Hz != TMCLOCK_FREQ_REAL)
1397 {
1398 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1399 u64Hz, TMCLOCK_FREQ_REAL));
1400 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1401 }
1402
1403 /* the cpu tick clock. */
1404 pVM->tm.s.cTSCsTicking = 0;
1405 pVM->tm.s.offTSCPause = 0;
1406 pVM->tm.s.u64LastPausedTSC = 0;
1407 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1408 {
1409 PVMCPU pVCpu = &pVM->aCpus[i];
1410
1411 pVCpu->tm.s.fTSCTicking = false;
1412 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1413 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1414 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1415
1416 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1417 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1418 }
1419
1420 rc = SSMR3GetU64(pSSM, &u64Hz);
1421 if (RT_FAILURE(rc))
1422 return rc;
1423 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1424 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1425
1426 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1427 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1428
1429 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1430#if 0
1431 /*
1432 * If the current host TSC frequency is incompatible with what is in the
1433 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1434 * switches during VM runtime (e.g. by GIM).
1435 */
1436 if ( GIMIsEnabled(pVM)
1437 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1438 {
1439 uint64_t uGipCpuHz;
1440 bool fRelax = RTSystemIsInsideVM();
1441 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1442 if (!fCompat)
1443 {
1444 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1445 pVM->tm.s.fTSCModeSwitchAllowed = false;
1446 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1447 {
1448 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1449 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1450 }
1451 else
1452 {
1453 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1454 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1455 }
1456 }
1457 }
1458#endif
1459
1460 /*
1461 * Make sure timers get rescheduled immediately.
1462 */
1463 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1464 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1465
1466 return VINF_SUCCESS;
1467}
1468
1469
1470/**
1471 * Internal TMR3TimerCreate worker.
1472 *
1473 * @returns VBox status code.
1474 * @param pVM The cross context VM structure.
1475 * @param enmClock The timer clock.
1476 * @param pszDesc The timer description.
1477 * @param ppTimer Where to store the timer pointer on success.
1478 */
1479static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1480{
1481 VM_ASSERT_EMT(pVM);
1482
1483 /*
1484 * Allocate the timer.
1485 */
1486 PTMTIMERR3 pTimer = NULL;
1487 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1488 {
1489 pTimer = pVM->tm.s.pFree;
1490 pVM->tm.s.pFree = pTimer->pBigNext;
1491 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1492 }
1493
1494 if (!pTimer)
1495 {
1496 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1497 if (RT_FAILURE(rc))
1498 return rc;
1499 Log3(("TM: Allocated new timer %p\n", pTimer));
1500 }
1501
1502 /*
1503 * Initialize it.
1504 */
1505 pTimer->u64Expire = 0;
1506 pTimer->enmClock = enmClock;
1507 pTimer->pVMR3 = pVM;
1508 pTimer->pVMR0 = pVM->pVMR0;
1509 pTimer->pVMRC = pVM->pVMRC;
1510 pTimer->enmState = TMTIMERSTATE_STOPPED;
1511 pTimer->offScheduleNext = 0;
1512 pTimer->offNext = 0;
1513 pTimer->offPrev = 0;
1514 pTimer->pvUser = NULL;
1515 pTimer->pCritSect = NULL;
1516 pTimer->pszDesc = pszDesc;
1517
1518 /* insert into the list of created timers. */
1519 TM_LOCK_TIMERS(pVM);
1520 pTimer->pBigPrev = NULL;
1521 pTimer->pBigNext = pVM->tm.s.pCreated;
1522 pVM->tm.s.pCreated = pTimer;
1523 if (pTimer->pBigNext)
1524 pTimer->pBigNext->pBigPrev = pTimer;
1525#ifdef VBOX_STRICT
1526 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1527#endif
1528 TM_UNLOCK_TIMERS(pVM);
1529
1530 *ppTimer = pTimer;
1531 return VINF_SUCCESS;
1532}
1533
1534
1535/**
1536 * Creates a device timer.
1537 *
1538 * @returns VBox status code.
1539 * @param pVM The cross context VM structure.
1540 * @param pDevIns Device instance.
1541 * @param enmClock The clock to use on this timer.
1542 * @param pfnCallback Callback function.
1543 * @param pvUser The user argument to the callback.
1544 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1545 * @param pszDesc Pointer to description string which must stay around
1546 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1547 * @param ppTimer Where to store the timer on success.
1548 */
1549VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1550 PFNTMTIMERDEV pfnCallback, void *pvUser,
1551 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1552{
1553 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1554
1555 /*
1556 * Allocate and init stuff.
1557 */
1558 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1559 if (RT_SUCCESS(rc))
1560 {
1561 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1562 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1563 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1564 (*ppTimer)->pvUser = pvUser;
1565 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1566 (*ppTimer)->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1567 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1568 }
1569
1570 return rc;
1571}
1572
1573
1574
1575
1576/**
1577 * Creates a USB device timer.
1578 *
1579 * @returns VBox status code.
1580 * @param pVM The cross context VM structure.
1581 * @param pUsbIns The USB device instance.
1582 * @param enmClock The clock to use on this timer.
1583 * @param pfnCallback Callback function.
1584 * @param pvUser The user argument to the callback.
1585 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1586 * @param pszDesc Pointer to description string which must stay around
1587 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1588 * @param ppTimer Where to store the timer on success.
1589 */
1590VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1591 PFNTMTIMERUSB pfnCallback, void *pvUser,
1592 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1593{
1594 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1595
1596 /*
1597 * Allocate and init stuff.
1598 */
1599 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1600 if (RT_SUCCESS(rc))
1601 {
1602 (*ppTimer)->enmType = TMTIMERTYPE_USB;
1603 (*ppTimer)->u.Usb.pfnTimer = pfnCallback;
1604 (*ppTimer)->u.Usb.pUsbIns = pUsbIns;
1605 (*ppTimer)->pvUser = pvUser;
1606 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1607 //{
1608 // if (pDevIns->pCritSectR3)
1609 // (*ppTimer)->pCritSect = pUsbIns->pCritSectR3;
1610 // else
1611 // (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1612 //}
1613 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1614 }
1615
1616 return rc;
1617}
1618
1619
1620/**
1621 * Creates a driver timer.
1622 *
1623 * @returns VBox status code.
1624 * @param pVM The cross context VM structure.
1625 * @param pDrvIns Driver instance.
1626 * @param enmClock The clock to use on this timer.
1627 * @param pfnCallback Callback function.
1628 * @param pvUser The user argument to the callback.
1629 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1630 * @param pszDesc Pointer to description string which must stay around
1631 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1632 * @param ppTimer Where to store the timer on success.
1633 */
1634VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1635 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1636{
1637 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1638
1639 /*
1640 * Allocate and init stuff.
1641 */
1642 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1643 if (RT_SUCCESS(rc))
1644 {
1645 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1646 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1647 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1648 (*ppTimer)->pvUser = pvUser;
1649 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1650 }
1651
1652 return rc;
1653}
1654
1655
1656/**
1657 * Creates an internal timer.
1658 *
1659 * @returns VBox status code.
1660 * @param pVM The cross context VM structure.
1661 * @param enmClock The clock to use on this timer.
1662 * @param pfnCallback Callback function.
1663 * @param pvUser User argument to be passed to the callback.
1664 * @param pszDesc Pointer to description string which must stay around
1665 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1666 * @param ppTimer Where to store the timer on success.
1667 */
1668VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1669{
1670 /*
1671 * Allocate and init stuff.
1672 */
1673 PTMTIMER pTimer;
1674 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1675 if (RT_SUCCESS(rc))
1676 {
1677 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1678 pTimer->u.Internal.pfnTimer = pfnCallback;
1679 pTimer->pvUser = pvUser;
1680 *ppTimer = pTimer;
1681 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1682 }
1683
1684 return rc;
1685}
1686
1687/**
1688 * Creates an external timer.
1689 *
1690 * @returns Timer handle on success.
1691 * @returns NULL on failure.
1692 * @param pVM The cross context VM structure.
1693 * @param enmClock The clock to use on this timer.
1694 * @param pfnCallback Callback function.
1695 * @param pvUser User argument.
1696 * @param pszDesc Pointer to description string which must stay around
1697 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1698 */
1699VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1700{
1701 /*
1702 * Allocate and init stuff.
1703 */
1704 PTMTIMERR3 pTimer;
1705 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1706 if (RT_SUCCESS(rc))
1707 {
1708 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1709 pTimer->u.External.pfnTimer = pfnCallback;
1710 pTimer->pvUser = pvUser;
1711 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1712 return pTimer;
1713 }
1714
1715 return NULL;
1716}
1717
1718
1719/**
1720 * Destroy a timer
1721 *
1722 * @returns VBox status code.
1723 * @param pTimer Timer handle as returned by one of the create functions.
1724 */
1725VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1726{
1727 /*
1728 * Be extra careful here.
1729 */
1730 if (!pTimer)
1731 return VINF_SUCCESS;
1732 AssertPtr(pTimer);
1733 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1734
1735 PVM pVM = pTimer->CTX_SUFF(pVM);
1736 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1737 bool fActive = false;
1738 bool fPending = false;
1739
1740 AssertMsg( !pTimer->pCritSect
1741 || VMR3GetState(pVM) != VMSTATE_RUNNING
1742 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1743
1744 /*
1745 * The rest of the game happens behind the lock, just
1746 * like create does. All the work is done here.
1747 */
1748 TM_LOCK_TIMERS(pVM);
1749 for (int cRetries = 1000;; cRetries--)
1750 {
1751 /*
1752 * Change to the DESTROY state.
1753 */
1754 TMTIMERSTATE const enmState = pTimer->enmState;
1755 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1756 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1757 switch (enmState)
1758 {
1759 case TMTIMERSTATE_STOPPED:
1760 case TMTIMERSTATE_EXPIRED_DELIVER:
1761 break;
1762
1763 case TMTIMERSTATE_ACTIVE:
1764 fActive = true;
1765 break;
1766
1767 case TMTIMERSTATE_PENDING_STOP:
1768 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1769 case TMTIMERSTATE_PENDING_RESCHEDULE:
1770 fActive = true;
1771 fPending = true;
1772 break;
1773
1774 case TMTIMERSTATE_PENDING_SCHEDULE:
1775 fPending = true;
1776 break;
1777
1778 /*
1779 * This shouldn't happen as the caller should make sure there are no races.
1780 */
1781 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1782 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1783 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1784 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1785 TM_UNLOCK_TIMERS(pVM);
1786 if (!RTThreadYield())
1787 RTThreadSleep(1);
1788 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1789 VERR_TM_UNSTABLE_STATE);
1790 TM_LOCK_TIMERS(pVM);
1791 continue;
1792
1793 /*
1794 * Invalid states.
1795 */
1796 case TMTIMERSTATE_FREE:
1797 case TMTIMERSTATE_DESTROY:
1798 TM_UNLOCK_TIMERS(pVM);
1799 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1800
1801 default:
1802 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1803 TM_UNLOCK_TIMERS(pVM);
1804 return VERR_TM_UNKNOWN_STATE;
1805 }
1806
1807 /*
1808 * Try switch to the destroy state.
1809 * This should always succeed as the caller should make sure there are no race.
1810 */
1811 bool fRc;
1812 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1813 if (fRc)
1814 break;
1815 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1816 TM_UNLOCK_TIMERS(pVM);
1817 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1818 VERR_TM_UNSTABLE_STATE);
1819 TM_LOCK_TIMERS(pVM);
1820 }
1821
1822 /*
1823 * Unlink from the active list.
1824 */
1825 if (fActive)
1826 {
1827 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1828 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1829 if (pPrev)
1830 TMTIMER_SET_NEXT(pPrev, pNext);
1831 else
1832 {
1833 TMTIMER_SET_HEAD(pQueue, pNext);
1834 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1835 }
1836 if (pNext)
1837 TMTIMER_SET_PREV(pNext, pPrev);
1838 pTimer->offNext = 0;
1839 pTimer->offPrev = 0;
1840 }
1841
1842 /*
1843 * Unlink from the schedule list by running it.
1844 */
1845 if (fPending)
1846 {
1847 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1848 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1849 Assert(pQueue->offSchedule);
1850 tmTimerQueueSchedule(pVM, pQueue);
1851 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1852 }
1853
1854 /*
1855 * Read to move the timer from the created list and onto the free list.
1856 */
1857 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1858
1859 /* unlink from created list */
1860 if (pTimer->pBigPrev)
1861 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1862 else
1863 pVM->tm.s.pCreated = pTimer->pBigNext;
1864 if (pTimer->pBigNext)
1865 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1866 pTimer->pBigNext = 0;
1867 pTimer->pBigPrev = 0;
1868
1869 /* free */
1870 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1871 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1872 pTimer->pBigNext = pVM->tm.s.pFree;
1873 pVM->tm.s.pFree = pTimer;
1874
1875#ifdef VBOX_STRICT
1876 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1877#endif
1878 TM_UNLOCK_TIMERS(pVM);
1879 return VINF_SUCCESS;
1880}
1881
1882
1883/**
1884 * Destroy all timers owned by a device.
1885 *
1886 * @returns VBox status code.
1887 * @param pVM The cross context VM structure.
1888 * @param pDevIns Device which timers should be destroyed.
1889 */
1890VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1891{
1892 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1893 if (!pDevIns)
1894 return VERR_INVALID_PARAMETER;
1895
1896 TM_LOCK_TIMERS(pVM);
1897 PTMTIMER pCur = pVM->tm.s.pCreated;
1898 while (pCur)
1899 {
1900 PTMTIMER pDestroy = pCur;
1901 pCur = pDestroy->pBigNext;
1902 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1903 && pDestroy->u.Dev.pDevIns == pDevIns)
1904 {
1905 int rc = TMR3TimerDestroy(pDestroy);
1906 AssertRC(rc);
1907 }
1908 }
1909 TM_UNLOCK_TIMERS(pVM);
1910
1911 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1912 return VINF_SUCCESS;
1913}
1914
1915
1916/**
1917 * Destroy all timers owned by a USB device.
1918 *
1919 * @returns VBox status code.
1920 * @param pVM The cross context VM structure.
1921 * @param pUsbIns USB device which timers should be destroyed.
1922 */
1923VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
1924{
1925 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
1926 if (!pUsbIns)
1927 return VERR_INVALID_PARAMETER;
1928
1929 TM_LOCK_TIMERS(pVM);
1930 PTMTIMER pCur = pVM->tm.s.pCreated;
1931 while (pCur)
1932 {
1933 PTMTIMER pDestroy = pCur;
1934 pCur = pDestroy->pBigNext;
1935 if ( pDestroy->enmType == TMTIMERTYPE_USB
1936 && pDestroy->u.Usb.pUsbIns == pUsbIns)
1937 {
1938 int rc = TMR3TimerDestroy(pDestroy);
1939 AssertRC(rc);
1940 }
1941 }
1942 TM_UNLOCK_TIMERS(pVM);
1943
1944 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
1945 return VINF_SUCCESS;
1946}
1947
1948
1949/**
1950 * Destroy all timers owned by a driver.
1951 *
1952 * @returns VBox status code.
1953 * @param pVM The cross context VM structure.
1954 * @param pDrvIns Driver which timers should be destroyed.
1955 */
1956VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1957{
1958 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1959 if (!pDrvIns)
1960 return VERR_INVALID_PARAMETER;
1961
1962 TM_LOCK_TIMERS(pVM);
1963 PTMTIMER pCur = pVM->tm.s.pCreated;
1964 while (pCur)
1965 {
1966 PTMTIMER pDestroy = pCur;
1967 pCur = pDestroy->pBigNext;
1968 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1969 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1970 {
1971 int rc = TMR3TimerDestroy(pDestroy);
1972 AssertRC(rc);
1973 }
1974 }
1975 TM_UNLOCK_TIMERS(pVM);
1976
1977 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1978 return VINF_SUCCESS;
1979}
1980
1981
1982/**
1983 * Internal function for getting the clock time.
1984 *
1985 * @returns clock time.
1986 * @param pVM The cross context VM structure.
1987 * @param enmClock The clock.
1988 */
1989DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1990{
1991 switch (enmClock)
1992 {
1993 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1994 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1995 case TMCLOCK_REAL: return TMRealGet(pVM);
1996 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1997 default:
1998 AssertMsgFailed(("enmClock=%d\n", enmClock));
1999 return ~(uint64_t)0;
2000 }
2001}
2002
2003
2004/**
2005 * Checks if the sync queue has one or more expired timers.
2006 *
2007 * @returns true / false.
2008 *
2009 * @param pVM The cross context VM structure.
2010 * @param enmClock The queue.
2011 */
2012DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
2013{
2014 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
2015 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
2016}
2017
2018
2019/**
2020 * Checks for expired timers in all the queues.
2021 *
2022 * @returns true / false.
2023 * @param pVM The cross context VM structure.
2024 */
2025DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
2026{
2027 /*
2028 * Combine the time calculation for the first two since we're not on EMT
2029 * TMVirtualSyncGet only permits EMT.
2030 */
2031 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
2032 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
2033 return true;
2034 u64Now = pVM->tm.s.fVirtualSyncTicking
2035 ? u64Now - pVM->tm.s.offVirtualSync
2036 : pVM->tm.s.u64VirtualSync;
2037 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
2038 return true;
2039
2040 /*
2041 * The remaining timers.
2042 */
2043 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
2044 return true;
2045 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
2046 return true;
2047 return false;
2048}
2049
2050
2051/**
2052 * Schedule timer callback.
2053 *
2054 * @param pTimer Timer handle.
2055 * @param pvUser Pointer to the VM.
2056 * @thread Timer thread.
2057 *
2058 * @remark We cannot do the scheduling and queues running from a timer handler
2059 * since it's not executing in EMT, and even if it was it would be async
2060 * and we wouldn't know the state of the affairs.
2061 * So, we'll just raise the timer FF and force any REM execution to exit.
2062 */
2063static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
2064{
2065 PVM pVM = (PVM)pvUser;
2066 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
2067 NOREF(pTimer);
2068
2069 AssertCompile(TMCLOCK_MAX == 4);
2070 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
2071
2072#ifdef DEBUG_Sander /* very annoying, keep it private. */
2073 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2074 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2075#endif
2076 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2077 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2078 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
2079 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
2080 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
2081 || tmR3AnyExpiredTimers(pVM)
2082 )
2083 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2084 && !pVM->tm.s.fRunningQueues
2085 )
2086 {
2087 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2088 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2089#ifdef VBOX_WITH_REM
2090 REMR3NotifyTimerPending(pVM, pVCpuDst);
2091#endif
2092 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2093 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2094 }
2095}
2096
2097
2098/**
2099 * Schedules and runs any pending timers.
2100 *
2101 * This is normally called from a forced action handler in EMT.
2102 *
2103 * @param pVM The cross context VM structure.
2104 *
2105 * @thread EMT (actually EMT0, but we fend off the others)
2106 */
2107VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2108{
2109 /*
2110 * Only the dedicated timer EMT should do stuff here.
2111 * (fRunningQueues is only used as an indicator.)
2112 */
2113 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2114 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
2115 if (VMMGetCpu(pVM) != pVCpuDst)
2116 {
2117 Assert(pVM->cCpus > 1);
2118 return;
2119 }
2120 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2121 Log2(("TMR3TimerQueuesDo:\n"));
2122 Assert(!pVM->tm.s.fRunningQueues);
2123 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2124 TM_LOCK_TIMERS(pVM);
2125
2126 /*
2127 * Process the queues.
2128 */
2129 AssertCompile(TMCLOCK_MAX == 4);
2130
2131 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
2132 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2133 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2134 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2135 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2136
2137 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2138 tmR3TimerQueueRunVirtualSync(pVM);
2139 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2140 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2141
2142 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2143 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2144 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2145
2146 /* TMCLOCK_VIRTUAL */
2147 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2148 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
2149 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2150 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2151 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2152
2153 /* TMCLOCK_TSC */
2154 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
2155
2156 /* TMCLOCK_REAL */
2157 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2158 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
2159 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2160 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2161 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2162
2163#ifdef VBOX_STRICT
2164 /* check that we didn't screw up. */
2165 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2166#endif
2167
2168 /* done */
2169 Log2(("TMR3TimerQueuesDo: returns void\n"));
2170 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2171 TM_UNLOCK_TIMERS(pVM);
2172 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2173}
2174
2175//RT_C_DECLS_BEGIN
2176//int iomLock(PVM pVM);
2177//void iomUnlock(PVM pVM);
2178//RT_C_DECLS_END
2179
2180
2181/**
2182 * Schedules and runs any pending times in the specified queue.
2183 *
2184 * This is normally called from a forced action handler in EMT.
2185 *
2186 * @param pVM The cross context VM structure.
2187 * @param pQueue The queue to run.
2188 */
2189static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
2190{
2191 VM_ASSERT_EMT(pVM);
2192
2193 /*
2194 * Run timers.
2195 *
2196 * We check the clock once and run all timers which are ACTIVE
2197 * and have an expire time less or equal to the time we read.
2198 *
2199 * N.B. A generic unlink must be applied since other threads
2200 * are allowed to mess with any active timer at any time.
2201 * However, we only allow EMT to handle EXPIRED_PENDING
2202 * timers, thus enabling the timer handler function to
2203 * arm the timer again.
2204 */
2205 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2206 if (!pNext)
2207 return;
2208 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2209 while (pNext && pNext->u64Expire <= u64Now)
2210 {
2211 PTMTIMER pTimer = pNext;
2212 pNext = TMTIMER_GET_NEXT(pTimer);
2213 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2214 if (pCritSect)
2215 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2216 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2217 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2218 bool fRc;
2219 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2220 if (fRc)
2221 {
2222 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
2223
2224 /* unlink */
2225 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2226 if (pPrev)
2227 TMTIMER_SET_NEXT(pPrev, pNext);
2228 else
2229 {
2230 TMTIMER_SET_HEAD(pQueue, pNext);
2231 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2232 }
2233 if (pNext)
2234 TMTIMER_SET_PREV(pNext, pPrev);
2235 pTimer->offNext = 0;
2236 pTimer->offPrev = 0;
2237
2238 /* fire */
2239 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2240 switch (pTimer->enmType)
2241 {
2242 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2243 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2244 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2245 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2246 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2247 default:
2248 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2249 break;
2250 }
2251
2252 /* change the state if it wasn't changed already in the handler. */
2253 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2254 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2255 }
2256 if (pCritSect)
2257 PDMCritSectLeave(pCritSect);
2258 } /* run loop */
2259}
2260
2261
2262/**
2263 * Schedules and runs any pending times in the timer queue for the
2264 * synchronous virtual clock.
2265 *
2266 * This scheduling is a bit different from the other queues as it need
2267 * to implement the special requirements of the timer synchronous virtual
2268 * clock, thus this 2nd queue run function.
2269 *
2270 * @param pVM The cross context VM structure.
2271 *
2272 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2273 * longer important.
2274 */
2275static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2276{
2277 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
2278 VM_ASSERT_EMT(pVM);
2279 Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
2280
2281 /*
2282 * Any timers?
2283 */
2284 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2285 if (RT_UNLIKELY(!pNext))
2286 {
2287 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2288 return;
2289 }
2290 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2291
2292 /*
2293 * Calculate the time frame for which we will dispatch timers.
2294 *
2295 * We use a time frame ranging from the current sync time (which is most likely the
2296 * same as the head timer) and some configurable period (100000ns) up towards the
2297 * current virtual time. This period might also need to be restricted by the catch-up
2298 * rate so frequent calls to this function won't accelerate the time too much, however
2299 * this will be implemented at a later point if necessary.
2300 *
2301 * Without this frame we would 1) having to run timers much more frequently
2302 * and 2) lag behind at a steady rate.
2303 */
2304 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2305 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2306 uint64_t u64Now;
2307 if (!pVM->tm.s.fVirtualSyncTicking)
2308 {
2309 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2310 u64Now = pVM->tm.s.u64VirtualSync;
2311 Assert(u64Now <= pNext->u64Expire);
2312 }
2313 else
2314 {
2315 /* Calc 'now'. */
2316 bool fStopCatchup = false;
2317 bool fUpdateStuff = false;
2318 uint64_t off = pVM->tm.s.offVirtualSync;
2319 if (pVM->tm.s.fVirtualSyncCatchUp)
2320 {
2321 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2322 if (RT_LIKELY(!(u64Delta >> 32)))
2323 {
2324 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2325 if (off > u64Sub + offSyncGivenUp)
2326 {
2327 off -= u64Sub;
2328 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2329 }
2330 else
2331 {
2332 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2333 fStopCatchup = true;
2334 off = offSyncGivenUp;
2335 }
2336 fUpdateStuff = true;
2337 }
2338 }
2339 u64Now = u64VirtualNow - off;
2340
2341 /* Adjust against last returned time. */
2342 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2343 if (u64Last > u64Now)
2344 {
2345 u64Now = u64Last + 1;
2346 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2347 }
2348
2349 /* Check if stopped by expired timer. */
2350 uint64_t const u64Expire = pNext->u64Expire;
2351 if (u64Now >= u64Expire)
2352 {
2353 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2354 u64Now = u64Expire;
2355 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2356 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2357 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2358 }
2359 else
2360 {
2361 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2362 if (fUpdateStuff)
2363 {
2364 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2365 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2366 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2367 if (fStopCatchup)
2368 {
2369 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2370 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2371 }
2372 }
2373 }
2374 }
2375
2376 /* calc end of frame. */
2377 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2378 if (u64Max > u64VirtualNow - offSyncGivenUp)
2379 u64Max = u64VirtualNow - offSyncGivenUp;
2380
2381 /* assert sanity */
2382 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2383 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2384 Assert(u64Now <= u64Max);
2385 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2386
2387 /*
2388 * Process the expired timers moving the clock along as we progress.
2389 */
2390#ifdef VBOX_STRICT
2391 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2392#endif
2393 while (pNext && pNext->u64Expire <= u64Max)
2394 {
2395 /* Advance */
2396 PTMTIMER pTimer = pNext;
2397 pNext = TMTIMER_GET_NEXT(pTimer);
2398
2399 /* Take the associated lock. */
2400 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2401 if (pCritSect)
2402 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2403
2404 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2405 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2406
2407 /* Advance the clock - don't permit timers to be out of order or armed
2408 in the 'past'. */
2409#ifdef VBOX_STRICT
2410 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2411 u64Prev = pTimer->u64Expire;
2412#endif
2413 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2414 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2415
2416 /* Unlink it, change the state and do the callout. */
2417 tmTimerQueueUnlinkActive(pQueue, pTimer);
2418 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2419 switch (pTimer->enmType)
2420 {
2421 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2422 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2423 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2424 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2425 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2426 default:
2427 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2428 break;
2429 }
2430
2431 /* Change the state if it wasn't changed already in the handler.
2432 Reset the Hz hint too since this is the same as TMTimerStop. */
2433 bool fRc;
2434 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2435 if (fRc && pTimer->uHzHint)
2436 {
2437 if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
2438 ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
2439 pTimer->uHzHint = 0;
2440 }
2441 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2442
2443 /* Leave the associated lock. */
2444 if (pCritSect)
2445 PDMCritSectLeave(pCritSect);
2446 } /* run loop */
2447
2448
2449 /*
2450 * Restart the clock if it was stopped to serve any timers,
2451 * and start/adjust catch-up if necessary.
2452 */
2453 if ( !pVM->tm.s.fVirtualSyncTicking
2454 && pVM->tm.s.cVirtualTicking)
2455 {
2456 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2457
2458 /* calc the slack we've handed out. */
2459 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2460 Assert(u64VirtualNow2 >= u64VirtualNow);
2461 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2462 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2463 STAM_STATS({
2464 if (offSlack)
2465 {
2466 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2467 p->cPeriods++;
2468 p->cTicks += offSlack;
2469 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2470 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2471 }
2472 });
2473
2474 /* Let the time run a little bit while we were busy running timers(?). */
2475 uint64_t u64Elapsed;
2476#define MAX_ELAPSED 30000U /* ns */
2477 if (offSlack > MAX_ELAPSED)
2478 u64Elapsed = 0;
2479 else
2480 {
2481 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2482 if (u64Elapsed > MAX_ELAPSED)
2483 u64Elapsed = MAX_ELAPSED;
2484 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2485 }
2486#undef MAX_ELAPSED
2487
2488 /* Calc the current offset. */
2489 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2490 Assert(!(offNew & RT_BIT_64(63)));
2491 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2492 Assert(!(offLag & RT_BIT_64(63)));
2493
2494 /*
2495 * Deal with starting, adjusting and stopping catchup.
2496 */
2497 if (pVM->tm.s.fVirtualSyncCatchUp)
2498 {
2499 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2500 {
2501 /* stop */
2502 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2503 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2504 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2505 }
2506 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2507 {
2508 /* adjust */
2509 unsigned i = 0;
2510 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2511 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2512 i++;
2513 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2514 {
2515 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2516 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2517 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2518 }
2519 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2520 }
2521 else
2522 {
2523 /* give up */
2524 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2525 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2526 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2527 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2528 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2529 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2530 }
2531 }
2532 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2533 {
2534 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2535 {
2536 /* start */
2537 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2538 unsigned i = 0;
2539 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2540 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2541 i++;
2542 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2543 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2544 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2545 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2546 }
2547 else
2548 {
2549 /* don't bother */
2550 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2551 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2552 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2553 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2554 }
2555 }
2556
2557 /*
2558 * Update the offset and restart the clock.
2559 */
2560 Assert(!(offNew & RT_BIT_64(63)));
2561 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2562 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2563 }
2564}
2565
2566
2567/**
2568 * Deals with stopped Virtual Sync clock.
2569 *
2570 * This is called by the forced action flag handling code in EM when it
2571 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2572 * will block on the VirtualSyncLock until the pending timers has been executed
2573 * and the clock restarted.
2574 *
2575 * @param pVM The cross context VM structure.
2576 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2577 *
2578 * @thread EMTs
2579 */
2580VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2581{
2582 Log2(("TMR3VirtualSyncFF:\n"));
2583
2584 /*
2585 * The EMT doing the timers is diverted to them.
2586 */
2587 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2588 TMR3TimerQueuesDo(pVM);
2589 /*
2590 * The other EMTs will block on the virtual sync lock and the first owner
2591 * will run the queue and thus restarting the clock.
2592 *
2593 * Note! This is very suboptimal code wrt to resuming execution when there
2594 * are more than two Virtual CPUs, since they will all have to enter
2595 * the critical section one by one. But it's a very simple solution
2596 * which will have to do the job for now.
2597 */
2598 else
2599 {
2600 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2601 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2602 if (pVM->tm.s.fVirtualSyncTicking)
2603 {
2604 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2605 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2606 Log2(("TMR3VirtualSyncFF: ticking\n"));
2607 }
2608 else
2609 {
2610 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2611
2612 /* try run it. */
2613 TM_LOCK_TIMERS(pVM);
2614 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2615 if (pVM->tm.s.fVirtualSyncTicking)
2616 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2617 else
2618 {
2619 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2620 Log2(("TMR3VirtualSyncFF: running queue\n"));
2621
2622 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2623 tmR3TimerQueueRunVirtualSync(pVM);
2624 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2625 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2626
2627 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2628 }
2629 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2630 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2631 TM_UNLOCK_TIMERS(pVM);
2632 }
2633 }
2634}
2635
2636
2637/** @name Saved state values
2638 * @{ */
2639#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2640#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2641/** @} */
2642
2643
2644/**
2645 * Saves the state of a timer to a saved state.
2646 *
2647 * @returns VBox status code.
2648 * @param pTimer Timer to save.
2649 * @param pSSM Save State Manager handle.
2650 */
2651VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2652{
2653 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2654 switch (pTimer->enmState)
2655 {
2656 case TMTIMERSTATE_STOPPED:
2657 case TMTIMERSTATE_PENDING_STOP:
2658 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2659 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2660
2661 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2662 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2663 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2664 if (!RTThreadYield())
2665 RTThreadSleep(1);
2666 RT_FALL_THRU();
2667 case TMTIMERSTATE_ACTIVE:
2668 case TMTIMERSTATE_PENDING_SCHEDULE:
2669 case TMTIMERSTATE_PENDING_RESCHEDULE:
2670 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2671 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2672
2673 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2674 case TMTIMERSTATE_EXPIRED_DELIVER:
2675 case TMTIMERSTATE_DESTROY:
2676 case TMTIMERSTATE_FREE:
2677 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2678 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2679 }
2680
2681 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2682 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2683}
2684
2685
2686/**
2687 * Loads the state of a timer from a saved state.
2688 *
2689 * @returns VBox status code.
2690 * @param pTimer Timer to restore.
2691 * @param pSSM Save State Manager handle.
2692 */
2693VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2694{
2695 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2696 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2697
2698 /*
2699 * Load the state and validate it.
2700 */
2701 uint8_t u8State;
2702 int rc = SSMR3GetU8(pSSM, &u8State);
2703 if (RT_FAILURE(rc))
2704 return rc;
2705
2706 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2707 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2708 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2709 u8State--;
2710
2711 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2712 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2713 {
2714 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2715 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2716 }
2717
2718 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2719 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2720 PDMCritSectEnter(&pTimer->pVMR3->tm.s.VirtualSyncLock, VERR_IGNORED);
2721 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2722 if (pCritSect)
2723 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2724
2725 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2726 {
2727 /*
2728 * Load the expire time.
2729 */
2730 uint64_t u64Expire;
2731 rc = SSMR3GetU64(pSSM, &u64Expire);
2732 if (RT_FAILURE(rc))
2733 return rc;
2734
2735 /*
2736 * Set it.
2737 */
2738 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2739 rc = TMTimerSet(pTimer, u64Expire);
2740 }
2741 else
2742 {
2743 /*
2744 * Stop it.
2745 */
2746 Log(("u8State=%d\n", u8State));
2747 rc = TMTimerStop(pTimer);
2748 }
2749
2750 if (pCritSect)
2751 PDMCritSectLeave(pCritSect);
2752 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2753 PDMCritSectLeave(&pTimer->pVMR3->tm.s.VirtualSyncLock);
2754
2755 /*
2756 * On failure set SSM status.
2757 */
2758 if (RT_FAILURE(rc))
2759 rc = SSMR3HandleSetStatus(pSSM, rc);
2760 return rc;
2761}
2762
2763
2764/**
2765 * Skips the state of a timer in a given saved state.
2766 *
2767 * @returns VBox status.
2768 * @param pSSM Save State Manager handle.
2769 * @param pfActive Where to store whether the timer was active
2770 * when the state was saved.
2771 */
2772VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
2773{
2774 Assert(pSSM); AssertPtr(pfActive);
2775 LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
2776
2777 /*
2778 * Load the state and validate it.
2779 */
2780 uint8_t u8State;
2781 int rc = SSMR3GetU8(pSSM, &u8State);
2782 if (RT_FAILURE(rc))
2783 return rc;
2784
2785 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2786 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2787 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2788 u8State--;
2789
2790 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2791 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2792 {
2793 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2794 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2795 }
2796
2797 *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2798 if (*pfActive)
2799 {
2800 /*
2801 * Load the expire time.
2802 */
2803 uint64_t u64Expire;
2804 rc = SSMR3GetU64(pSSM, &u64Expire);
2805 }
2806
2807 return rc;
2808}
2809
2810
2811/**
2812 * Associates a critical section with a timer.
2813 *
2814 * The critical section will be entered prior to doing the timer call back, thus
2815 * avoiding potential races between the timer thread and other threads trying to
2816 * stop or adjust the timer expiration while it's being delivered. The timer
2817 * thread will leave the critical section when the timer callback returns.
2818 *
2819 * In strict builds, ownership of the critical section will be asserted by
2820 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2821 * runtime).
2822 *
2823 * @retval VINF_SUCCESS on success.
2824 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2825 * (asserted).
2826 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2827 * (asserted).
2828 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2829 * with the timer (asserted).
2830 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2831 *
2832 * @param pTimer The timer handle.
2833 * @param pCritSect The critical section. The caller must make sure this
2834 * is around for the life time of the timer.
2835 *
2836 * @thread Any, but the caller is responsible for making sure the timer is not
2837 * active.
2838 */
2839VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2840{
2841 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2842 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2843 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2844 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2845 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2846 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2847 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2848
2849 pTimer->pCritSect = pCritSect;
2850 return VINF_SUCCESS;
2851}
2852
2853
2854/**
2855 * Get the real world UTC time adjusted for VM lag.
2856 *
2857 * @returns pTime.
2858 * @param pVM The cross context VM structure.
2859 * @param pTime Where to store the time.
2860 */
2861VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2862{
2863 /*
2864 * Get a stable set of VirtualSync parameters and calc the lag.
2865 */
2866 uint64_t offVirtualSync;
2867 uint64_t offVirtualSyncGivenUp;
2868 do
2869 {
2870 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
2871 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
2872 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
2873
2874 Assert(offVirtualSync >= offVirtualSyncGivenUp);
2875 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
2876
2877 /*
2878 * Get current time and adjust for virtual sync lag and do time displacement.
2879 */
2880 RTTimeNow(pTime);
2881 RTTimeSpecSubNano(pTime, offLag);
2882 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2883
2884 /*
2885 * Log details if the time changed radically (also triggers on first call).
2886 */
2887 int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
2888 int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
2889 if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
2890 {
2891 RTTIMESPEC NowAgain;
2892 RTTimeNow(&NowAgain);
2893 LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
2894 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
2895 if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
2896 {
2897 RTFILE hFile;
2898 int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
2899 RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
2900 if (RT_SUCCESS(rc))
2901 {
2902 char szMsg[256];
2903 size_t cch;
2904 cch = RTStrPrintf(szMsg, sizeof(szMsg),
2905 "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
2906 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
2907 RTFileWrite(hFile, szMsg, cch, NULL);
2908 RTFileClose(hFile);
2909 }
2910 }
2911 }
2912
2913 return pTime;
2914}
2915
2916
2917/**
2918 * Pauses all clocks except TMCLOCK_REAL.
2919 *
2920 * @returns VBox status code, all errors are asserted.
2921 * @param pVM The cross context VM structure.
2922 * @param pVCpu The cross context virtual CPU structure.
2923 * @thread EMT corresponding to Pointer to the VMCPU.
2924 */
2925VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2926{
2927 VMCPU_ASSERT_EMT(pVCpu);
2928
2929 /*
2930 * The shared virtual clock (includes virtual sync which is tied to it).
2931 */
2932 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2933 int rc = tmVirtualPauseLocked(pVM);
2934 TM_UNLOCK_TIMERS(pVM);
2935 if (RT_FAILURE(rc))
2936 return rc;
2937
2938 /*
2939 * Pause the TSC last since it is normally linked to the virtual
2940 * sync clock, so the above code may actually stop both clocks.
2941 */
2942 if (!pVM->tm.s.fTSCTiedToExecution)
2943 {
2944 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2945 rc = tmCpuTickPauseLocked(pVM, pVCpu);
2946 TM_UNLOCK_TIMERS(pVM);
2947 if (RT_FAILURE(rc))
2948 return rc;
2949 }
2950
2951#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2952 /*
2953 * Update cNsTotal.
2954 */
2955 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
2956 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
2957 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
2958 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
2959#endif
2960
2961 return VINF_SUCCESS;
2962}
2963
2964
2965/**
2966 * Resumes all clocks except TMCLOCK_REAL.
2967 *
2968 * @returns VBox status code, all errors are asserted.
2969 * @param pVM The cross context VM structure.
2970 * @param pVCpu The cross context virtual CPU structure.
2971 * @thread EMT corresponding to Pointer to the VMCPU.
2972 */
2973VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2974{
2975 VMCPU_ASSERT_EMT(pVCpu);
2976 int rc;
2977
2978#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2979 /*
2980 * Set u64NsTsStartTotal. There is no need to back this out if either of
2981 * the two calls below fail.
2982 */
2983 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
2984#endif
2985
2986 /*
2987 * Resume the TSC first since it is normally linked to the virtual sync
2988 * clock, so it may actually not be resumed until we've executed the code
2989 * below.
2990 */
2991 if (!pVM->tm.s.fTSCTiedToExecution)
2992 {
2993 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2994 rc = tmCpuTickResumeLocked(pVM, pVCpu);
2995 TM_UNLOCK_TIMERS(pVM);
2996 if (RT_FAILURE(rc))
2997 return rc;
2998 }
2999
3000 /*
3001 * The shared virtual clock (includes virtual sync which is tied to it).
3002 */
3003 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
3004 rc = tmVirtualResumeLocked(pVM);
3005 TM_UNLOCK_TIMERS(pVM);
3006
3007 return rc;
3008}
3009
3010
3011/**
3012 * Sets the warp drive percent of the virtual time.
3013 *
3014 * @returns VBox status code.
3015 * @param pUVM The user mode VM structure.
3016 * @param u32Percent The new percentage. 100 means normal operation.
3017 */
3018VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3019{
3020 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
3021}
3022
3023
3024/**
3025 * EMT worker for TMR3SetWarpDrive.
3026 *
3027 * @returns VBox status code.
3028 * @param pUVM The user mode VM handle.
3029 * @param u32Percent See TMR3SetWarpDrive().
3030 * @internal
3031 */
3032static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3033{
3034 PVM pVM = pUVM->pVM;
3035 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3036 PVMCPU pVCpu = VMMGetCpu(pVM);
3037
3038 /*
3039 * Validate it.
3040 */
3041 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
3042 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
3043 VERR_INVALID_PARAMETER);
3044
3045/** @todo This isn't a feature specific to virtual time, move the variables to
3046 * TM level and make it affect TMR3UTCNow as well! */
3047
3048 /*
3049 * If the time is running we'll have to pause it before we can change
3050 * the warp drive settings.
3051 */
3052 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
3053 bool fPaused = !!pVM->tm.s.cVirtualTicking;
3054 if (fPaused) /** @todo this isn't really working, but wtf. */
3055 TMR3NotifySuspend(pVM, pVCpu);
3056
3057 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
3058 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
3059 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
3060 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
3061 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
3062
3063 if (fPaused)
3064 TMR3NotifyResume(pVM, pVCpu);
3065 TM_UNLOCK_TIMERS(pVM);
3066 return VINF_SUCCESS;
3067}
3068
3069
3070/**
3071 * Gets the current TMCLOCK_VIRTUAL time without checking
3072 * timers or anything.
3073 *
3074 * @returns The timestamp.
3075 * @param pUVM The user mode VM structure.
3076 *
3077 * @remarks See TMVirtualGetNoCheck.
3078 */
3079VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
3080{
3081 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3082 PVM pVM = pUVM->pVM;
3083 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3084 return TMVirtualGetNoCheck(pVM);
3085}
3086
3087
3088/**
3089 * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
3090 * timers or anything.
3091 *
3092 * @returns The timestamp in milliseconds.
3093 * @param pUVM The user mode VM structure.
3094 *
3095 * @remarks See TMVirtualGetNoCheck.
3096 */
3097VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
3098{
3099 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3100 PVM pVM = pUVM->pVM;
3101 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3102 return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
3103}
3104
3105
3106/**
3107 * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
3108 * timers or anything.
3109 *
3110 * @returns The timestamp in microseconds.
3111 * @param pUVM The user mode VM structure.
3112 *
3113 * @remarks See TMVirtualGetNoCheck.
3114 */
3115VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
3116{
3117 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3118 PVM pVM = pUVM->pVM;
3119 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3120 return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
3121}
3122
3123
3124/**
3125 * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
3126 * timers or anything.
3127 *
3128 * @returns The timestamp in nanoseconds.
3129 * @param pUVM The user mode VM structure.
3130 *
3131 * @remarks See TMVirtualGetNoCheck.
3132 */
3133VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
3134{
3135 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3136 PVM pVM = pUVM->pVM;
3137 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3138 return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
3139}
3140
3141
3142/**
3143 * Gets the current warp drive percent.
3144 *
3145 * @returns The warp drive percent.
3146 * @param pUVM The user mode VM structure.
3147 */
3148VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
3149{
3150 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
3151 PVM pVM = pUVM->pVM;
3152 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
3153 return pVM->tm.s.u32VirtualWarpDrivePercentage;
3154}
3155
3156
3157/**
3158 * Gets the performance information for one virtual CPU as seen by the VMM.
3159 *
3160 * The returned times covers the period where the VM is running and will be
3161 * reset when restoring a previous VM state (at least for the time being).
3162 *
3163 * @retval VINF_SUCCESS on success.
3164 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3165 * @retval VERR_INVALID_STATE if the VM handle is bad.
3166 * @retval VERR_INVALID_PARAMETER if idCpu is out of range.
3167 *
3168 * @param pVM The cross context VM structure.
3169 * @param idCpu The ID of the virtual CPU which times to get.
3170 * @param pcNsTotal Where to store the total run time (nano seconds) of
3171 * the CPU, i.e. the sum of the three other returns.
3172 * Optional.
3173 * @param pcNsExecuting Where to store the time (nano seconds) spent
3174 * executing guest code. Optional.
3175 * @param pcNsHalted Where to store the time (nano seconds) spent
3176 * halted. Optional
3177 * @param pcNsOther Where to store the time (nano seconds) spent
3178 * preempted by the host scheduler, on virtualization
3179 * overhead and on other tasks.
3180 */
3181VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
3182 uint64_t *pcNsHalted, uint64_t *pcNsOther)
3183{
3184 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
3185 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
3186
3187#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3188 /*
3189 * Get a stable result set.
3190 * This should be way quicker than an EMT request.
3191 */
3192 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3193 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3194 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3195 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3196 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3197 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
3198 while ( (uTimesGen & 1) /* update in progress */
3199 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
3200 {
3201 RTThreadYield();
3202 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3203 cNsTotal = pVCpu->tm.s.cNsTotal;
3204 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3205 cNsHalted = pVCpu->tm.s.cNsHalted;
3206 cNsOther = pVCpu->tm.s.cNsOther;
3207 }
3208
3209 /*
3210 * Fill in the return values.
3211 */
3212 if (pcNsTotal)
3213 *pcNsTotal = cNsTotal;
3214 if (pcNsExecuting)
3215 *pcNsExecuting = cNsExecuting;
3216 if (pcNsHalted)
3217 *pcNsHalted = cNsHalted;
3218 if (pcNsOther)
3219 *pcNsOther = cNsOther;
3220
3221 return VINF_SUCCESS;
3222
3223#else
3224 return VERR_NOT_IMPLEMENTED;
3225#endif
3226}
3227
3228#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3229
3230/**
3231 * Helper for tmR3CpuLoadTimer.
3232 * @returns
3233 * @param pState The state to update.
3234 * @param cNsTotal Total time.
3235 * @param cNsExecuting Time executing.
3236 * @param cNsHalted Time halted.
3237 */
3238DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3239{
3240 /* Calc deltas */
3241 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3242 pState->cNsPrevTotal = cNsTotal;
3243
3244 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3245 pState->cNsPrevExecuting = cNsExecuting;
3246
3247 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3248 pState->cNsPrevHalted = cNsHalted;
3249
3250 /* Calc pcts. */
3251 if (!cNsTotalDelta)
3252 {
3253 pState->cPctExecuting = 0;
3254 pState->cPctHalted = 100;
3255 pState->cPctOther = 0;
3256 }
3257 else if (cNsTotalDelta < UINT64_MAX / 4)
3258 {
3259 pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3260 pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3261 pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3262 }
3263 else
3264 {
3265 pState->cPctExecuting = 0;
3266 pState->cPctHalted = 100;
3267 pState->cPctOther = 0;
3268 }
3269}
3270
3271
3272/**
3273 * Timer callback that calculates the CPU load since the last time it was
3274 * called.
3275 *
3276 * @param pVM The cross context VM structure.
3277 * @param pTimer The timer.
3278 * @param pvUser NULL, unused.
3279 */
3280static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
3281{
3282 /*
3283 * Re-arm the timer first.
3284 */
3285 int rc = TMTimerSetMillies(pTimer, 1000);
3286 AssertLogRelRC(rc);
3287 NOREF(pvUser);
3288
3289 /*
3290 * Update the values for each CPU.
3291 */
3292 uint64_t cNsTotalAll = 0;
3293 uint64_t cNsExecutingAll = 0;
3294 uint64_t cNsHaltedAll = 0;
3295 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3296 {
3297 PVMCPU pVCpu = &pVM->aCpus[iCpu];
3298
3299 /* Try get a stable data set. */
3300 uint32_t cTries = 3;
3301 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3302 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3303 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3304 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3305 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3306 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3307 {
3308 if (!--cTries)
3309 break;
3310 ASMNopPause();
3311 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3312 cNsTotal = pVCpu->tm.s.cNsTotal;
3313 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3314 cNsHalted = pVCpu->tm.s.cNsHalted;
3315 }
3316
3317 /* Totals */
3318 cNsTotalAll += cNsTotal;
3319 cNsExecutingAll += cNsExecuting;
3320 cNsHaltedAll += cNsHalted;
3321
3322 /* Calc the PCTs and update the state. */
3323 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3324 }
3325
3326 /*
3327 * Update the value for all the CPUs.
3328 */
3329 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3330
3331 /** @todo Try add 1, 5 and 15 min load stats. */
3332
3333}
3334
3335#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3336
3337
3338/**
3339 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3340 * Worker for TMR3CpuTickParavirtEnable}
3341 */
3342static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3343{
3344 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3345 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
3346 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
3347 Assert(tmR3HasFixedTSC(pVM));
3348
3349 /*
3350 * The return value of TMCpuTickGet() and the guest's TSC value for each
3351 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3352 * the following equation (new/old signifies the new/old tsc modes):
3353 * uNewTsc = uOldTsc
3354 *
3355 * Where (see tmCpuTickGetInternal):
3356 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3357 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3358 *
3359 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3360 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3361 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3362 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3363 */
3364 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3365 uint64_t uRawNewTsc = SUPReadTsc();
3366 uint32_t cCpus = pVM->cCpus;
3367 for (uint32_t i = 0; i < cCpus; i++)
3368 {
3369 PVMCPU pVCpu = &pVM->aCpus[i];
3370 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3371 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3372 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3373 }
3374
3375 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3376 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3377 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3378 return VINF_SUCCESS;
3379}
3380
3381
3382/**
3383 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3384 *
3385 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3386 *
3387 * @returns VBox status code.
3388 * @param pVM The cross context VM structure.
3389 */
3390VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3391{
3392 int rc = VINF_SUCCESS;
3393 if (pVM->tm.s.fTSCModeSwitchAllowed)
3394 {
3395 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3396 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3397 }
3398 else
3399 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3400 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3401 pVM->tm.s.fParavirtTscEnabled = true;
3402 return rc;
3403}
3404
3405
3406/**
3407 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3408 * Worker for TMR3CpuTickParavirtDisable}
3409 */
3410static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3411{
3412 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3413 Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3414 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
3415 RT_NOREF1(pvData);
3416
3417 /*
3418 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3419 */
3420 uint64_t uRawOldTsc = SUPReadTsc();
3421 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3422 uint32_t cCpus = pVM->cCpus;
3423 for (uint32_t i = 0; i < cCpus; i++)
3424 {
3425 PVMCPU pVCpu = &pVM->aCpus[i];
3426 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3427 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3428 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3429
3430 /* Update the last-seen tick here as we havent't been updating it (as we don't
3431 need it) while in pure TSC-offsetting mode. */
3432 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3433 }
3434
3435 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3436 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3437 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3438 return VINF_SUCCESS;
3439}
3440
3441
3442/**
3443 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3444 *
3445 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3446 * perform an EMT rendezvous to revert those changes.
3447 *
3448 * @returns VBox status code.
3449 * @param pVM The cross context VM structure.
3450 */
3451VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3452{
3453 int rc = VINF_SUCCESS;
3454 if ( pVM->tm.s.fTSCModeSwitchAllowed
3455 && pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3456 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3457 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3458 pVM->tm.s.fParavirtTscEnabled = false;
3459 return rc;
3460}
3461
3462
3463/**
3464 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3465 *
3466 * @returns true if TSC is stable, false otherwise.
3467 * @param pVM The cross context VM structure.
3468 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3469 * paravirt. TSC is enabled or not.
3470 *
3471 * @remarks Must be called only after TMR3InitFinalize().
3472 */
3473VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3474{
3475 /** @todo figure out what exactly we want here later. */
3476 NOREF(fWithParavirtEnabled);
3477 return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3478 && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
3479}
3480
3481
3482/**
3483 * Gets the 5 char clock name for the info tables.
3484 *
3485 * @returns The name.
3486 * @param enmClock The clock.
3487 */
3488DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3489{
3490 switch (enmClock)
3491 {
3492 case TMCLOCK_REAL: return "Real ";
3493 case TMCLOCK_VIRTUAL: return "Virt ";
3494 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3495 case TMCLOCK_TSC: return "TSC ";
3496 default: return "Bad ";
3497 }
3498}
3499
3500
3501/**
3502 * Display all timers.
3503 *
3504 * @param pVM The cross context VM structure.
3505 * @param pHlp The info helpers.
3506 * @param pszArgs Arguments, ignored.
3507 */
3508static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3509{
3510 NOREF(pszArgs);
3511 pHlp->pfnPrintf(pHlp,
3512 "Timers (pVM=%p)\n"
3513 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3514 pVM,
3515 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3516 sizeof(int32_t) * 2, "offNext ",
3517 sizeof(int32_t) * 2, "offPrev ",
3518 sizeof(int32_t) * 2, "offSched ",
3519 "Time",
3520 "Expire",
3521 "HzHint",
3522 "State");
3523 TM_LOCK_TIMERS(pVM);
3524 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
3525 {
3526 pHlp->pfnPrintf(pHlp,
3527 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3528 pTimer,
3529 pTimer->offNext,
3530 pTimer->offPrev,
3531 pTimer->offScheduleNext,
3532 tmR3Get5CharClockName(pTimer->enmClock),
3533 TMTimerGet(pTimer),
3534 pTimer->u64Expire,
3535 pTimer->uHzHint,
3536 tmTimerState(pTimer->enmState),
3537 pTimer->pszDesc);
3538 }
3539 TM_UNLOCK_TIMERS(pVM);
3540}
3541
3542
3543/**
3544 * Display all active timers.
3545 *
3546 * @param pVM The cross context VM structure.
3547 * @param pHlp The info helpers.
3548 * @param pszArgs Arguments, ignored.
3549 */
3550static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3551{
3552 NOREF(pszArgs);
3553 pHlp->pfnPrintf(pHlp,
3554 "Active Timers (pVM=%p)\n"
3555 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3556 pVM,
3557 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3558 sizeof(int32_t) * 2, "offNext ",
3559 sizeof(int32_t) * 2, "offPrev ",
3560 sizeof(int32_t) * 2, "offSched ",
3561 "Time",
3562 "Expire",
3563 "HzHint",
3564 "State");
3565 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
3566 {
3567 TM_LOCK_TIMERS(pVM);
3568 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
3569 pTimer;
3570 pTimer = TMTIMER_GET_NEXT(pTimer))
3571 {
3572 pHlp->pfnPrintf(pHlp,
3573 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3574 pTimer,
3575 pTimer->offNext,
3576 pTimer->offPrev,
3577 pTimer->offScheduleNext,
3578 tmR3Get5CharClockName(pTimer->enmClock),
3579 TMTimerGet(pTimer),
3580 pTimer->u64Expire,
3581 pTimer->uHzHint,
3582 tmTimerState(pTimer->enmState),
3583 pTimer->pszDesc);
3584 }
3585 TM_UNLOCK_TIMERS(pVM);
3586 }
3587}
3588
3589
3590/**
3591 * Display all clocks.
3592 *
3593 * @param pVM The cross context VM structure.
3594 * @param pHlp The info helpers.
3595 * @param pszArgs Arguments, ignored.
3596 */
3597static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3598{
3599 NOREF(pszArgs);
3600
3601 /*
3602 * Read the times first to avoid more than necessary time variation.
3603 */
3604 const uint64_t u64Virtual = TMVirtualGet(pVM);
3605 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3606 const uint64_t u64Real = TMRealGet(pVM);
3607
3608 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3609 {
3610 PVMCPU pVCpu = &pVM->aCpus[i];
3611 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3612
3613 /*
3614 * TSC
3615 */
3616 pHlp->pfnPrintf(pHlp,
3617 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
3618 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
3619 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
3620 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
3621 {
3622 pHlp->pfnPrintf(pHlp, " - real tsc offset");
3623 if (pVCpu->tm.s.offTSCRawSrc)
3624 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
3625 }
3626 else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
3627 pHlp->pfnPrintf(pHlp, " - native api");
3628 else
3629 pHlp->pfnPrintf(pHlp, " - virtual clock");
3630 pHlp->pfnPrintf(pHlp, "\n");
3631 }
3632
3633 /*
3634 * virtual
3635 */
3636 pHlp->pfnPrintf(pHlp,
3637 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
3638 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
3639 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
3640 if (pVM->tm.s.fVirtualWarpDrive)
3641 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
3642 pHlp->pfnPrintf(pHlp, "\n");
3643
3644 /*
3645 * virtual sync
3646 */
3647 pHlp->pfnPrintf(pHlp,
3648 "VirtSync: %18RU64 (%#016RX64) %s%s",
3649 u64VirtualSync, u64VirtualSync,
3650 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
3651 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
3652 if (pVM->tm.s.offVirtualSync)
3653 {
3654 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
3655 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
3656 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
3657 }
3658 pHlp->pfnPrintf(pHlp, "\n");
3659
3660 /*
3661 * real
3662 */
3663 pHlp->pfnPrintf(pHlp,
3664 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
3665 u64Real, u64Real, TMRealGetFreq(pVM));
3666}
3667
3668
3669/**
3670 * Gets the descriptive TM TSC mode name given the enum value.
3671 *
3672 * @returns The name.
3673 * @param enmMode The mode to name.
3674 */
3675static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
3676{
3677 switch (enmMode)
3678 {
3679 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTscOffset";
3680 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTscEmulated";
3681 case TMTSCMODE_DYNAMIC: return "Dynamic";
3682 case TMTSCMODE_NATIVE_API: return "NativeApi";
3683 default: return "???";
3684 }
3685}
3686
3687
3688/**
3689 * Gets the descriptive TM TSC mode name.
3690 *
3691 * @returns The name.
3692 * @param pVM The cross context VM structure.
3693 */
3694static const char *tmR3GetTSCModeName(PVM pVM)
3695{
3696 Assert(pVM);
3697 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
3698}
3699
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette