VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 101189

Last change on this file since 101189 was 100000, checked in by vboxsync, 19 months ago

VMM: Take the vTimer expiration into account when halting due to a WFI/WFE instruction so the guest gets woken up if no other event is pending, bugref:10389

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 183.2 KB
Line 
1/* $Id: TM.cpp 100000 2023-05-30 06:09:42Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_tm TM - The Time Manager
29 *
30 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
31 * device and drivers.
32 *
33 * @see grp_tm
34 *
35 *
36 * @section sec_tm_clocks Clocks
37 *
38 * There are currently 4 clocks:
39 * - Virtual (guest).
40 * - Synchronous virtual (guest).
41 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
42 * function of the virtual clock.
43 * - Real (host). This is only used for display updates atm.
44 *
45 * The most important clocks are the three first ones and of these the second is
46 * the most interesting.
47 *
48 *
49 * The synchronous virtual clock is tied to the virtual clock except that it
50 * will take into account timer delivery lag caused by host scheduling. It will
51 * normally never advance beyond the head timer, and when lagging too far behind
52 * it will gradually speed up to catch up with the virtual clock. All devices
53 * implementing time sources accessible to and used by the guest is using this
54 * clock (for timers and other things). This ensures consistency between the
55 * time sources.
56 *
57 * The virtual clock is implemented as an offset to a monotonic, high
58 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
59 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
60 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
61 * a fairly high res clock that works in all contexts and on all hosts. The
62 * virtual clock is paused when the VM isn't in the running state.
63 *
64 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
65 * virtual clock, where the frequency defaults to the host cpu frequency (as we
66 * measure it). In this mode it is possible to configure the frequency. Another
67 * (non-default) option is to use the raw unmodified host TSC values. And yet
68 * another, to tie it to time spent executing guest code. All these things are
69 * configurable should non-default behavior be desirable.
70 *
71 * The real clock is a monotonic clock (when available) with relatively low
72 * resolution, though this a bit host specific. Note that we're currently not
73 * servicing timers using the real clock when the VM is not running, this is
74 * simply because it has not been needed yet therefore not implemented.
75 *
76 *
77 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
78 *
79 * Guest time syncing is primarily taken care of by the VMM device. The
80 * principle is very simple, the guest additions periodically asks the VMM
81 * device what the current UTC time is and makes adjustments accordingly.
82 *
83 * A complicating factor is that the synchronous virtual clock might be doing
84 * catchups and the guest perception is currently a little bit behind the world
85 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
86 * at a slightly higher rate. Adjusting the guest clock to the current wall
87 * time in the real world would be a bad idea then because the guest will be
88 * advancing too fast and run ahead of world time (if the catchup works out).
89 * To solve this problem TM provides the VMM device with an UTC time source that
90 * gets adjusted with the current lag, so that when the guest eventually catches
91 * up the lag it will be showing correct real world time.
92 *
93 *
94 * @section sec_tm_timers Timers
95 *
96 * The timers can use any of the TM clocks described in the previous section.
97 * Each clock has its own scheduling facility, or timer queue if you like.
98 * There are a few factors which makes it a bit complex. First, there is the
99 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
100 * is the timer thread that periodically checks whether any timers has expired
101 * without EMT noticing. On the API level, all but the create and save APIs
102 * must be multithreaded. EMT will always run the timers.
103 *
104 * The design is using a doubly linked list of active timers which is ordered
105 * by expire date. This list is only modified by the EMT thread. Updates to
106 * the list are batched in a singly linked list, which is then processed by the
107 * EMT thread at the first opportunity (immediately, next time EMT modifies a
108 * timer on that clock, or next timer timeout). Both lists are offset based and
109 * all the elements are therefore allocated from the hyper heap.
110 *
111 * For figuring out when there is need to schedule and run timers TM will:
112 * - Poll whenever somebody queries the virtual clock.
113 * - Poll the virtual clocks from the EM and REM loops.
114 * - Poll the virtual clocks from trap exit path.
115 * - Poll the virtual clocks and calculate first timeout from the halt loop.
116 * - Employ a thread which periodically (100Hz) polls all the timer queues.
117 *
118 *
119 * @image html TMTIMER-Statechart-Diagram.gif
120 *
121 * @section sec_tm_timer Logging
122 *
123 * Level 2: Logs a most of the timer state transitions and queue servicing.
124 * Level 3: Logs a few oddments.
125 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
126 *
127 */
128
129
130/*********************************************************************************************************************************
131* Header Files *
132*********************************************************************************************************************************/
133#define LOG_GROUP LOG_GROUP_TM
134#ifdef DEBUG_bird
135# define DBGFTRACE_DISABLED /* annoying */
136#endif
137#include <VBox/vmm/tm.h>
138#include <VBox/vmm/vmm.h>
139#include <VBox/vmm/mm.h>
140#include <VBox/vmm/hm.h>
141#include <VBox/vmm/nem.h>
142#include <VBox/vmm/gim.h>
143#include <VBox/vmm/ssm.h>
144#include <VBox/vmm/dbgf.h>
145#include <VBox/vmm/dbgftrace.h>
146#include <VBox/vmm/pdmapi.h>
147#include <VBox/vmm/iom.h>
148#include "TMInternal.h"
149#include <VBox/vmm/vm.h>
150#include <VBox/vmm/uvm.h>
151
152#include <VBox/vmm/pdmdev.h>
153#include <VBox/log.h>
154#include <VBox/param.h>
155#include <VBox/err.h>
156
157#include <iprt/asm.h>
158#include <iprt/asm-math.h>
159#include <iprt/assert.h>
160#include <iprt/env.h>
161#include <iprt/file.h>
162#include <iprt/getopt.h>
163#include <iprt/mem.h>
164#include <iprt/rand.h>
165#include <iprt/semaphore.h>
166#include <iprt/string.h>
167#include <iprt/thread.h>
168#include <iprt/time.h>
169#include <iprt/timer.h>
170
171#include "TMInline.h"
172
173
174/*********************************************************************************************************************************
175* Defined Constants And Macros *
176*********************************************************************************************************************************/
177/** The current saved state version.*/
178#define TM_SAVED_STATE_VERSION 3
179
180
181/*********************************************************************************************************************************
182* Internal Functions *
183*********************************************************************************************************************************/
184static bool tmR3HasFixedTSC(PVM pVM);
185static uint64_t tmR3CalibrateTSC(void);
186static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
187static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
188#ifdef VBOX_WITH_STATISTICS
189static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers);
190#endif
191static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
192static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
193#ifndef VBOX_WITHOUT_NS_ACCOUNTING
194static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
195#endif
196static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
197static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
198static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
199static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
200static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
201static const char *tmR3GetTSCModeName(PVM pVM);
202static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
203static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers);
204
205
206/**
207 * Initializes the TM.
208 *
209 * @returns VBox status code.
210 * @param pVM The cross context VM structure.
211 */
212VMM_INT_DECL(int) TMR3Init(PVM pVM)
213{
214 LogFlow(("TMR3Init:\n"));
215
216 /*
217 * Assert alignment and sizes.
218 */
219 AssertCompileMemberAlignment(VM, tm.s, 32);
220 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
221 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
222
223 /*
224 * Init the structure.
225 */
226 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
227
228 int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
229 AssertLogRelRCReturn(rc, rc);
230
231 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual");
232 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */
233 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real");
234 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc");
235
236 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
237 {
238 Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0');
239 pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i;
240 pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX;
241 pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX;
242 pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX;
243 pVM->tm.s.aTimerQueues[i].idxFreeHint = 1;
244 pVM->tm.s.aTimerQueues[i].fBeingProcessed = false;
245 pVM->tm.s.aTimerQueues[i].fCannotGrow = false;
246 pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD;
247 pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT;
248
249 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS,
250 "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName);
251 AssertLogRelRCReturn(rc, rc);
252
253 rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS,
254 "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName);
255 AssertLogRelRCReturn(rc, rc);
256 }
257
258 /*
259 * We directly use the GIP to calculate the virtual time. We map the
260 * the GIP into the guest context so we can do this calculation there
261 * as well and save costly world switches.
262 */
263 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
264 if (pGip || !SUPR3IsDriverless())
265 {
266 pVM->tm.s.pvGIPR3 = (void *)pGip;
267 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
268 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
269 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
270 VERR_TM_GIP_VERSION);
271
272 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
273 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
274 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
275 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
276 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
277 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
278
279 /* Log GIP info that may come in handy. */
280 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
281 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
282 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
283 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
284 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
285 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
286 {
287 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
288 if (iGipCpu != UINT16_MAX)
289 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
290 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
291 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
292 }
293 }
294
295 /*
296 * Setup the VirtualGetRaw backend.
297 */
298 pVM->tm.s.pfnVirtualGetRaw = tmVirtualNanoTSRediscover;
299 pVM->tm.s.VirtualGetRawData.pfnRediscover = tmVirtualNanoTSRediscover;
300 pVM->tm.s.VirtualGetRawData.pfnBad = tmVirtualNanoTSBad;
301 pVM->tm.s.VirtualGetRawData.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
302 pVM->tm.s.VirtualGetRawData.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
303
304 /*
305 * Get our CFGM node, create it if necessary.
306 */
307 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
308 if (!pCfgHandle)
309 {
310 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
311 AssertRCReturn(rc, rc);
312 }
313
314 /*
315 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
316 */
317 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
318 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
319 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
320 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
321 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
322 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
323
324 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
325 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
326 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
327
328 /*
329 * Validate the rest of the TM settings.
330 */
331 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
332 "TSCMode|"
333 "TSCModeSwitchAllowed|"
334 "TSCTicksPerSecond|"
335 "TSCTiedToExecution|"
336 "TSCNotTiedToHalt|"
337 "ScheduleSlack|"
338 "CatchUpStopThreshold|"
339 "CatchUpGiveUpThreshold|"
340 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
341 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
342 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
343 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
344 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
345 "CatchUpPrecentage8|CatchUpPrecentage9|"
346 "UTCOffset|"
347 "UTCTouchFileOnJump|"
348 "WarpDrivePercentage|"
349 "HostHzMax|"
350 "HostHzFudgeFactorTimerCpu|"
351 "HostHzFudgeFactorOtherCpu|"
352 "HostHzFudgeFactorCatchUp100|"
353 "HostHzFudgeFactorCatchUp200|"
354 "HostHzFudgeFactorCatchUp400|"
355 "TimerMillies"
356 ,
357 "",
358 "TM", 0);
359 if (RT_FAILURE(rc))
360 return rc;
361
362 /*
363 * Determine the TSC configuration and frequency.
364 */
365 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
366 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
367 * The default depends on the VM configuration and the capabilities of the
368 * host CPU. Other config options or runtime changes may override the TSC
369 * mode specified here.
370 */
371 char szTSCMode[32];
372 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
373 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
374 {
375 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
376 * fall back on the more expensive emulated mode. With the current TSC handling
377 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
378 * without any kind of coordination) will lead to inconsistent TSC behavior with
379 * guest SMP, including TSC going backwards. */
380 pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
381 : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
382 }
383 else if (RT_FAILURE(rc))
384 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
385 else
386 {
387 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
388 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
389 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
390 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
391 else if (!RTStrCmp(szTSCMode, "Dynamic"))
392 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
393 else
394 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
395 if (NEMR3NeedSpecialTscMode(pVM))
396 {
397 LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
398 pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
399 }
400 }
401
402 /**
403 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
404 * at runtime}
405 * When using paravirtualized guests, we dynamically switch TSC modes to a more
406 * optimal one for performance. This setting allows overriding this behaviour.
407 */
408 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
409 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
410 {
411 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
412 pVM->tm.s.fTSCModeSwitchAllowed = true;
413 }
414 else if (RT_FAILURE(rc))
415 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
416 if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
417 {
418 LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
419 pVM->tm.s.fTSCModeSwitchAllowed = false;
420 }
421
422 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
423 * The number of TSC ticks per second (i.e. the TSC frequency). This will
424 * override enmTSCMode.
425 */
426 pVM->tm.s.cTSCTicksPerSecondHost = tmR3CalibrateTSC();
427 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
428 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
429 {
430 pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
431 if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
432 || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
433 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
434 {
435 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
436 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
437 }
438 }
439 else if (RT_FAILURE(rc))
440 return VMSetError(pVM, rc, RT_SRC_POS,
441 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
442 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
443 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
444 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
445 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
446 pVM->tm.s.cTSCTicksPerSecond);
447 else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
448 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
449 else
450 {
451 LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
452 pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
453 }
454
455 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
456 * Whether the TSC should be tied to execution. This will exclude most of the
457 * virtualization overhead, but will by default include the time spent in the
458 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
459 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
460 * be used avoided or used with great care. Note that this will only work right
461 * together with VT-x or AMD-V, and with a single virtual CPU. */
462 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
463 if (RT_FAILURE(rc))
464 return VMSetError(pVM, rc, RT_SRC_POS,
465 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
466 if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
467 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
468 if (pVM->tm.s.fTSCTiedToExecution)
469 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
470
471
472 /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
473 * This is used with /TM/TSCTiedToExecution to control how TSC operates
474 * accross HLT instructions. When true HLT is considered execution time and
475 * TSC continues to run, while when false (default) TSC stops during halt. */
476 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
477 if (RT_FAILURE(rc))
478 return VMSetError(pVM, rc, RT_SRC_POS,
479 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
480
481 /*
482 * Configure the timer synchronous virtual time.
483 */
484 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
485 * Scheduling slack when processing timers. */
486 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
487 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
488 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
489 else if (RT_FAILURE(rc))
490 return VMSetError(pVM, rc, RT_SRC_POS,
491 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
492
493 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
494 * When to stop a catch-up, considering it successful. */
495 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
496 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
497 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
498 else if (RT_FAILURE(rc))
499 return VMSetError(pVM, rc, RT_SRC_POS,
500 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
501
502 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
503 * When to give up a catch-up attempt. */
504 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
505 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
506 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
507 else if (RT_FAILURE(rc))
508 return VMSetError(pVM, rc, RT_SRC_POS,
509 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
510
511
512 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
513 * The catch-up percent for a given period. */
514 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
515 * The catch-up period threshold, or if you like, when a period starts. */
516#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
517 do \
518 { \
519 uint64_t u64; \
520 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
521 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
522 u64 = UINT64_C(DefStart); \
523 else if (RT_FAILURE(rc)) \
524 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
525 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
526 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
527 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
528 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
529 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
530 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
531 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
532 else if (RT_FAILURE(rc)) \
533 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
534 } while (0)
535 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
536 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
537 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
538 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
539 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
540 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
541 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
542 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
543 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
544 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
545 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
546 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
547#undef TM_CFG_PERIOD
548
549 /*
550 * Configure real world time (UTC).
551 */
552 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
553 * The UTC offset. This is used to put the guest back or forwards in time. */
554 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
555 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
556 pVM->tm.s.offUTC = 0; /* ns */
557 else if (RT_FAILURE(rc))
558 return VMSetError(pVM, rc, RT_SRC_POS,
559 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
560
561 /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
562 * File to be written to everytime the host time jumps. */
563 rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
564 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
565 pVM->tm.s.pszUtcTouchFileOnJump = NULL;
566 else if (RT_FAILURE(rc))
567 return VMSetError(pVM, rc, RT_SRC_POS,
568 N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
569
570 /*
571 * Setup the warp drive.
572 */
573 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
574 * The warp drive percentage, 100% is normal speed. This is used to speed up
575 * or slow down the virtual clock, which can be useful for fast forwarding
576 * borring periods during tests. */
577 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
578 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
579 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
580 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
581 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
582 else if (RT_FAILURE(rc))
583 return VMSetError(pVM, rc, RT_SRC_POS,
584 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
585 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
586 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
587 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
588 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
589 pVM->tm.s.u32VirtualWarpDrivePercentage);
590 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
591 if (pVM->tm.s.fVirtualWarpDrive)
592 {
593 if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
594 LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
595 pVM->tm.s.u32VirtualWarpDrivePercentage));
596 else
597 {
598 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
599 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
600 }
601 }
602
603 /*
604 * Gather the Host Hz configuration values.
605 */
606 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
607 if (RT_FAILURE(rc))
608 return VMSetError(pVM, rc, RT_SRC_POS,
609 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
610
611 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
612 if (RT_FAILURE(rc))
613 return VMSetError(pVM, rc, RT_SRC_POS,
614 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
615
616 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
617 if (RT_FAILURE(rc))
618 return VMSetError(pVM, rc, RT_SRC_POS,
619 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
620
621 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
622 if (RT_FAILURE(rc))
623 return VMSetError(pVM, rc, RT_SRC_POS,
624 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
625
626 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
627 if (RT_FAILURE(rc))
628 return VMSetError(pVM, rc, RT_SRC_POS,
629 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
630
631 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
632 if (RT_FAILURE(rc))
633 return VMSetError(pVM, rc, RT_SRC_POS,
634 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
635
636 /*
637 * Finally, setup and report.
638 */
639 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
640#if !defined(VBOX_VMM_TARGET_ARMV8)
641 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
642#endif
643 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
644 "TM: cTSCTicksPerSecondHost=%'RU64 (%#RX64)\n"
645 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
646 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
647 pVM->tm.s.cTSCTicksPerSecondHost, pVM->tm.s.cTSCTicksPerSecondHost,
648 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
649
650 /*
651 * Start the timer (guard against REM not yielding).
652 */
653 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
654 * The watchdog timer interval. */
655 uint32_t u32Millies;
656 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
657 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
658 u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
659 else if (RT_FAILURE(rc))
660 return VMSetError(pVM, rc, RT_SRC_POS,
661 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
662 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
663 if (RT_FAILURE(rc))
664 {
665 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
666 return rc;
667 }
668 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
669 pVM->tm.s.u32TimerMillies = u32Millies;
670
671 /*
672 * Register saved state.
673 */
674 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
675 NULL, NULL, NULL,
676 NULL, tmR3Save, NULL,
677 NULL, tmR3Load, NULL);
678 if (RT_FAILURE(rc))
679 return rc;
680
681 /*
682 * Register statistics.
683 */
684 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
685 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
686#if 0 /** @todo retreive from ring-0 */
687 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
688 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
689#endif
690 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
691 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
692 STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
693 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
694 {
695 rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ,
696 "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName);
697 AssertRC(rc);
698 }
699
700#ifdef VBOX_WITH_STATISTICS
701 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
702 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
703# if 0 /** @todo retreive from ring-0 */
704 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
705 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
706# endif
707 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
708 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
709 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
710 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
711
712 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
713 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
714 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
715 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
716 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
717 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
718 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
719 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
720
721 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
722 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
723
724 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
725 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
726 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
727
728 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
729 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
730 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
731 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
732 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
733 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
734 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
735 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
736 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
737 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
738 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
739 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
740
741 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
742 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
743 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
744 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
745 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
746 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
747
748 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
749 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
750 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
751 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
752 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
753 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
754 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
755 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
756 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
757 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
758 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
759 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
760
761 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
762 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
763 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
764 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
765 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
766 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
767
768 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
769 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
770
771 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
772 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
773 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
774 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
775 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
776 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
777 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
778 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
779 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
780 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
781 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
782
783 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
784 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
785
786 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
787 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
788 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
789 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
790 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
791 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
792 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
793 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
794 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
795 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
796 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
797 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
798#endif /* VBOX_WITH_STATISTICS */
799
800 for (VMCPUID i = 0; i < pVM->cCpus; i++)
801 {
802 PVMCPU pVCpu = pVM->apCpusR3[i];
803 STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
804#ifndef VBOX_WITHOUT_NS_ACCOUNTING
805# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
806 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
807 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
808 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
809 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
810 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
811 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
812 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
813# endif
814 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
815 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
816 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
817 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
818 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
819 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
820 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
821 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
822 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
823#endif
824 }
825#ifndef VBOX_WITHOUT_NS_ACCOUNTING
826 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
827 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
828 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
829#endif
830
831#ifdef VBOX_WITH_STATISTICS
832 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
833 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
834 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
835 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
836 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
837 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
838 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
839 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
840 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
841 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
842 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
843 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
844 {
845 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
846 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
847 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
848 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
849 }
850#endif /* VBOX_WITH_STATISTICS */
851
852 /*
853 * Register info handlers.
854 */
855 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
856 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
857 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
858 DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
859
860 return VINF_SUCCESS;
861}
862
863
864/**
865 * Checks if the host CPU has a fixed TSC frequency.
866 *
867 * @returns true if it has, false if it hasn't.
868 *
869 * @remarks This test doesn't bother with very old CPUs that don't do power
870 * management or any other stuff that might influence the TSC rate.
871 * This isn't currently relevant.
872 */
873static bool tmR3HasFixedTSC(PVM pVM)
874{
875 /*
876 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
877 * actually has invariant TSC.
878 *
879 * In driverless mode we just assume sync TSC for now regardless of what
880 * the case actually is.
881 */
882 PSUPGLOBALINFOPAGE const pGip = g_pSUPGlobalInfoPage;
883 SUPGIPMODE const enmGipMode = pGip ? (SUPGIPMODE)pGip->u32Mode : SUPGIPMODE_INVARIANT_TSC;
884 if (enmGipMode == SUPGIPMODE_INVARIANT_TSC)
885 return true;
886
887#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
888 /*
889 * Go by features and model info from the CPUID instruction.
890 */
891 if (ASMHasCpuId())
892 {
893 uint32_t uEAX, uEBX, uECX, uEDX;
894
895 /*
896 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
897 */
898 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
899 if (uEAX >= 0x80000007 && RTX86IsValidExtRange(uEAX))
900 {
901 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
902 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
903 && enmGipMode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
904 return true;
905 }
906
907 /*
908 * By model.
909 */
910 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
911 {
912 /*
913 * AuthenticAMD - Check for APM support and that TscInvariant is set.
914 *
915 * This test isn't correct with respect to fixed/non-fixed TSC and
916 * older models, but this isn't relevant since the result is currently
917 * only used for making a decision on AMD-V models.
918 */
919# if 0 /* Promoted to generic */
920 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
921 if (uEAX >= 0x80000007)
922 {
923 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
924 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
925 && ( enmGipMode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
926 || enmGipMode == SUPGIPMODE_INVARIANT_TSC))
927 return true;
928 }
929# endif
930 }
931 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
932 {
933 /*
934 * GenuineIntel - Check the model number.
935 *
936 * This test is lacking in the same way and for the same reasons
937 * as the AMD test above.
938 */
939 /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
940 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
941 unsigned uModel = (uEAX >> 4) & 0x0f;
942 unsigned uFamily = (uEAX >> 8) & 0x0f;
943 if (uFamily == 0x0f)
944 uFamily += (uEAX >> 20) & 0xff;
945 if (uFamily >= 0x06)
946 uModel += ((uEAX >> 16) & 0x0f) << 4;
947 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
948 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
949 return true;
950 }
951 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
952 {
953 /*
954 * CentaurHauls - Check the model, family and stepping.
955 *
956 * This only checks for VIA CPU models Nano X2, Nano X3,
957 * Eden X2 and QuadCore.
958 */
959 /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
960 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
961 unsigned uStepping = (uEAX & 0x0f);
962 unsigned uModel = (uEAX >> 4) & 0x0f;
963 unsigned uFamily = (uEAX >> 8) & 0x0f;
964 if ( uFamily == 0x06
965 && uModel == 0x0f
966 && uStepping >= 0x0c
967 && uStepping <= 0x0f)
968 return true;
969 }
970 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
971 {
972 /*
973 * Shanghai - Check the model, family and stepping.
974 */
975 /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
976 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
977 unsigned uFamily = (uEAX >> 8) & 0x0f;
978 if ( uFamily == 0x06
979 || uFamily == 0x07)
980 {
981 return true;
982 }
983 }
984 }
985
986# else /* !X86 && !AMD64 */
987 RT_NOREF_PV(pVM);
988# endif /* !X86 && !AMD64 */
989 return false;
990}
991
992
993/**
994 * Calibrate the CPU tick.
995 *
996 * @returns Number of ticks per second.
997 */
998static uint64_t tmR3CalibrateTSC(void)
999{
1000 uint64_t u64Hz;
1001
1002 /*
1003 * Use GIP when available. Prefere the nominal one, no need to wait for it.
1004 */
1005 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
1006 if (pGip)
1007 {
1008 u64Hz = pGip->u64CpuHz;
1009 if (u64Hz < _1T && u64Hz > _1M)
1010 return u64Hz;
1011 AssertFailed(); /* This shouldn't happen. */
1012
1013 u64Hz = SUPGetCpuHzFromGip(pGip);
1014 if (u64Hz < _1T && u64Hz > _1M)
1015 return u64Hz;
1016
1017 AssertFailed(); /* This shouldn't happen. */
1018 }
1019 else
1020 Assert(SUPR3IsDriverless());
1021
1022 /* Call this once first to make sure it's initialized. */
1023 RTTimeNanoTS();
1024
1025 /*
1026 * Yield the CPU to increase our chances of getting a correct value.
1027 */
1028 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
1029 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
1030 uint64_t au64Samples[5];
1031 unsigned i;
1032 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
1033 {
1034 RTMSINTERVAL cMillies;
1035 int cTries = 5;
1036 uint64_t u64Start = ASMReadTSC();
1037 uint64_t u64End;
1038 uint64_t StartTS = RTTimeNanoTS();
1039 uint64_t EndTS;
1040 do
1041 {
1042 RTThreadSleep(s_auSleep[i]);
1043 u64End = ASMReadTSC();
1044 EndTS = RTTimeNanoTS();
1045 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
1046 } while ( cMillies == 0 /* the sleep may be interrupted... */
1047 || (cMillies < 20 && --cTries > 0));
1048 uint64_t u64Diff = u64End - u64Start;
1049
1050 au64Samples[i] = (u64Diff * 1000) / cMillies;
1051 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
1052 }
1053
1054 /*
1055 * Discard the highest and lowest results and calculate the average.
1056 */
1057 unsigned iHigh = 0;
1058 unsigned iLow = 0;
1059 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1060 {
1061 if (au64Samples[i] < au64Samples[iLow])
1062 iLow = i;
1063 if (au64Samples[i] > au64Samples[iHigh])
1064 iHigh = i;
1065 }
1066 au64Samples[iLow] = 0;
1067 au64Samples[iHigh] = 0;
1068
1069 u64Hz = au64Samples[0];
1070 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1071 u64Hz += au64Samples[i];
1072 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1073
1074 return u64Hz;
1075}
1076
1077
1078/**
1079 * Finalizes the TM initialization.
1080 *
1081 * @returns VBox status code.
1082 * @param pVM The cross context VM structure.
1083 */
1084VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1085{
1086 int rc;
1087
1088#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1089 /*
1090 * Create a timer for refreshing the CPU load stats.
1091 */
1092 TMTIMERHANDLE hTimer;
1093 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer);
1094 if (RT_SUCCESS(rc))
1095 rc = TMTimerSetMillies(pVM, hTimer, 1000);
1096#endif
1097
1098 /*
1099 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1100 */
1101 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM);
1102 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1103
1104 /*
1105 * Grow the virtual & real timer tables so we've got sufficient
1106 * space for dynamically created timers. We cannot allocate more
1107 * after ring-0 init completes.
1108 */
1109 static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} };
1110 for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++)
1111 {
1112 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue];
1113 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1114 if (s_aExtra[i].cExtra > pQueue->cTimersFree)
1115 {
1116 uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree;
1117 rc = tmR3TimerQueueGrow(pVM, pQueue, cTimersAlloc);
1118 AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc);
1119 }
1120 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1121 }
1122
1123#ifdef VBOX_WITH_STATISTICS
1124 /*
1125 * Register timer statistics now that we've fixed the timer table sizes.
1126 */
1127 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1128 {
1129 pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true;
1130 tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX);
1131 }
1132#endif
1133
1134 return rc;
1135}
1136
1137
1138/**
1139 * Applies relocations to data and code managed by this
1140 * component. This function will be called at init and
1141 * whenever the VMM need to relocate it self inside the GC.
1142 *
1143 * @param pVM The cross context VM structure.
1144 * @param offDelta Relocation delta relative to old location.
1145 */
1146VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1147{
1148 LogFlow(("TMR3Relocate\n"));
1149 RT_NOREF(pVM, offDelta);
1150}
1151
1152
1153/**
1154 * Terminates the TM.
1155 *
1156 * Termination means cleaning up and freeing all resources,
1157 * the VM it self is at this point powered off or suspended.
1158 *
1159 * @returns VBox status code.
1160 * @param pVM The cross context VM structure.
1161 */
1162VMM_INT_DECL(int) TMR3Term(PVM pVM)
1163{
1164 if (pVM->tm.s.pTimer)
1165 {
1166 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1167 AssertRC(rc);
1168 pVM->tm.s.pTimer = NULL;
1169 }
1170
1171 return VINF_SUCCESS;
1172}
1173
1174
1175/**
1176 * The VM is being reset.
1177 *
1178 * For the TM component this means that a rescheduling is preformed,
1179 * the FF is cleared and but without running the queues. We'll have to
1180 * check if this makes sense or not, but it seems like a good idea now....
1181 *
1182 * @param pVM The cross context VM structure.
1183 */
1184VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1185{
1186 LogFlow(("TMR3Reset:\n"));
1187 VM_ASSERT_EMT(pVM);
1188
1189 /*
1190 * Abort any pending catch up.
1191 * This isn't perfect...
1192 */
1193 if (pVM->tm.s.fVirtualSyncCatchUp)
1194 {
1195 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1196 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1197 if (pVM->tm.s.fVirtualSyncCatchUp)
1198 {
1199 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1200
1201 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1202 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1203 Assert(offOld <= offNew);
1204 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1205 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1206 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1207 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1208 }
1209 }
1210
1211 /*
1212 * Process the queues.
1213 */
1214 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1215 {
1216 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
1217 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1218 tmTimerQueueSchedule(pVM, pQueue, pQueue);
1219 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1220 }
1221#ifdef VBOX_STRICT
1222 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1223#endif
1224
1225 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1226 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1227
1228 /*
1229 * Switch TM TSC mode back to the original mode after a reset for
1230 * paravirtualized guests that alter the TM TSC mode during operation.
1231 * We're already in an EMT rendezvous at this point.
1232 */
1233 if ( pVM->tm.s.fTSCModeSwitchAllowed
1234 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1235 {
1236 VM_ASSERT_EMT0(pVM);
1237 tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
1238 }
1239 Assert(!GIMIsParavirtTscEnabled(pVM));
1240 pVM->tm.s.fParavirtTscEnabled = false;
1241
1242 /*
1243 * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
1244 * sees TSC value beyond 0x40000000000 at startup, it will reset the
1245 * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
1246 */
1247 VM_ASSERT_EMT0(pVM);
1248 uint64_t offTscRawSrc;
1249 switch (pVM->tm.s.enmTSCMode)
1250 {
1251 case TMTSCMODE_REAL_TSC_OFFSET:
1252 offTscRawSrc = SUPReadTsc();
1253 break;
1254 case TMTSCMODE_DYNAMIC:
1255 case TMTSCMODE_VIRT_TSC_EMULATED:
1256 offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
1257 offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
1258 break;
1259 case TMTSCMODE_NATIVE_API:
1260 /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
1261 offTscRawSrc = 0;
1262 break;
1263 default:
1264 AssertFailedBreakStmt(offTscRawSrc = 0);
1265 }
1266 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1267 {
1268 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1269 pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
1270 pVCpu->tm.s.u64TSC = 0;
1271 pVCpu->tm.s.u64TSCLastSeen = 0;
1272#if defined(VBOX_VMM_TARGET_ARMV8)
1273 pVCpu->cNsVTimerActivate = UINT64_MAX;
1274#endif
1275 }
1276}
1277
1278
1279/**
1280 * Execute state save operation.
1281 *
1282 * @returns VBox status code.
1283 * @param pVM The cross context VM structure.
1284 * @param pSSM SSM operation handle.
1285 */
1286static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1287{
1288 LogFlow(("tmR3Save:\n"));
1289#ifdef VBOX_STRICT
1290 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1291 {
1292 PVMCPU pVCpu = pVM->apCpusR3[i];
1293 Assert(!pVCpu->tm.s.fTSCTicking);
1294 }
1295 Assert(!pVM->tm.s.cVirtualTicking);
1296 Assert(!pVM->tm.s.fVirtualSyncTicking);
1297 Assert(!pVM->tm.s.cTSCsTicking);
1298#endif
1299
1300 /*
1301 * Save the virtual clocks.
1302 */
1303 /* the virtual clock. */
1304 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1305 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1306
1307 /* the virtual timer synchronous clock. */
1308 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1309 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1310 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1311 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1312 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1313
1314 /* real time clock */
1315 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1316
1317 /* the cpu tick clock. */
1318 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1319 {
1320 PVMCPU pVCpu = pVM->apCpusR3[i];
1321 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1322 }
1323 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1324}
1325
1326
1327/**
1328 * Execute state load operation.
1329 *
1330 * @returns VBox status code.
1331 * @param pVM The cross context VM structure.
1332 * @param pSSM SSM operation handle.
1333 * @param uVersion Data layout version.
1334 * @param uPass The data pass.
1335 */
1336static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1337{
1338 LogFlow(("tmR3Load:\n"));
1339
1340 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1341#ifdef VBOX_STRICT
1342 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1343 {
1344 PVMCPU pVCpu = pVM->apCpusR3[i];
1345 Assert(!pVCpu->tm.s.fTSCTicking);
1346 }
1347 Assert(!pVM->tm.s.cVirtualTicking);
1348 Assert(!pVM->tm.s.fVirtualSyncTicking);
1349 Assert(!pVM->tm.s.cTSCsTicking);
1350#endif
1351
1352 /*
1353 * Validate version.
1354 */
1355 if (uVersion != TM_SAVED_STATE_VERSION)
1356 {
1357 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1358 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1359 }
1360
1361 /*
1362 * Load the virtual clock.
1363 */
1364 pVM->tm.s.cVirtualTicking = 0;
1365 /* the virtual clock. */
1366 uint64_t u64Hz;
1367 int rc = SSMR3GetU64(pSSM, &u64Hz);
1368 if (RT_FAILURE(rc))
1369 return rc;
1370 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1371 {
1372 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1373 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1374 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1375 }
1376 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1377 pVM->tm.s.u64VirtualOffset = 0;
1378
1379 /* the virtual timer synchronous clock. */
1380 pVM->tm.s.fVirtualSyncTicking = false;
1381 uint64_t u64;
1382 SSMR3GetU64(pSSM, &u64);
1383 pVM->tm.s.u64VirtualSync = u64;
1384 SSMR3GetU64(pSSM, &u64);
1385 pVM->tm.s.offVirtualSync = u64;
1386 SSMR3GetU64(pSSM, &u64);
1387 pVM->tm.s.offVirtualSyncGivenUp = u64;
1388 SSMR3GetU64(pSSM, &u64);
1389 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1390 bool f;
1391 SSMR3GetBool(pSSM, &f);
1392 pVM->tm.s.fVirtualSyncCatchUp = f;
1393
1394 /* the real clock */
1395 rc = SSMR3GetU64(pSSM, &u64Hz);
1396 if (RT_FAILURE(rc))
1397 return rc;
1398 if (u64Hz != TMCLOCK_FREQ_REAL)
1399 {
1400 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1401 u64Hz, TMCLOCK_FREQ_REAL));
1402 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1403 }
1404
1405 /* the cpu tick clock. */
1406 pVM->tm.s.cTSCsTicking = 0;
1407 pVM->tm.s.offTSCPause = 0;
1408 pVM->tm.s.u64LastPausedTSC = 0;
1409 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1410 {
1411 PVMCPU pVCpu = pVM->apCpusR3[i];
1412
1413 pVCpu->tm.s.fTSCTicking = false;
1414 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1415 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1416 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1417
1418 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1419 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1420 }
1421
1422 rc = SSMR3GetU64(pSSM, &u64Hz);
1423 if (RT_FAILURE(rc))
1424 return rc;
1425 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1426 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1427
1428 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1429 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1430
1431 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1432#if 0
1433 /*
1434 * If the current host TSC frequency is incompatible with what is in the
1435 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1436 * switches during VM runtime (e.g. by GIM).
1437 */
1438 if ( GIMIsEnabled(pVM)
1439 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1440 {
1441 uint64_t uGipCpuHz;
1442 bool fRelax = RTSystemIsInsideVM();
1443 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1444 if (!fCompat)
1445 {
1446 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1447 pVM->tm.s.fTSCModeSwitchAllowed = false;
1448 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1449 {
1450 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1451 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1452 }
1453 else
1454 {
1455 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1456 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1457 }
1458 }
1459 }
1460#endif
1461
1462 /*
1463 * Make sure timers get rescheduled immediately.
1464 */
1465 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1466 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1467
1468 return VINF_SUCCESS;
1469}
1470
1471#ifdef VBOX_WITH_STATISTICS
1472
1473/**
1474 * Register statistics for a timer.
1475 *
1476 * @param pVM The cross context VM structure.
1477 * @param pQueue The queue the timer belongs to.
1478 * @param pTimer The timer to register statistics for.
1479 */
1480static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1481{
1482 STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1483 pQueue->szName, "/TM/Timers/%s", pTimer->szName);
1484 STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1485 "", "/TM/Timers/%s/CritSectEnter", pTimer->szName);
1486 STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1487 "", "/TM/Timers/%s/Get", pTimer->szName);
1488 STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1489 "", "/TM/Timers/%s/SetAbsolute", pTimer->szName);
1490 STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1491 "", "/TM/Timers/%s/SetRelative", pTimer->szName);
1492 STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1493 "", "/TM/Timers/%s/Stop", pTimer->szName);
1494}
1495
1496
1497/**
1498 * Deregister the statistics for a timer.
1499 */
1500static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer)
1501{
1502 char szPrefix[128];
1503 size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName);
1504 STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
1505 szPrefix[cchPrefix - 1] = '\0';
1506 STAMR3Deregister(pVM->pUVM, szPrefix);
1507}
1508
1509
1510/**
1511 * Register statistics for all allocated timers in a queue.
1512 *
1513 * @param pVM The cross context VM structure.
1514 * @param pQueue The queue to register statistics for.
1515 * @param cTimers Number of timers to consider (in growth scenario).
1516 */
1517static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers)
1518{
1519 uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc);
1520 while (idxTimer-- > 0)
1521 {
1522 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
1523 TMTIMERSTATE enmState = pTimer->enmState;
1524 if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY)
1525 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1526 }
1527}
1528
1529#endif /* VBOX_WITH_STATISTICS */
1530
1531
1532/**
1533 * Grows a timer queue.
1534 *
1535 * @returns VBox status code (errors are LogRel'ed already).
1536 * @param pVM The cross context VM structure.
1537 * @param pQueue The timer queue to grow.
1538 * @param cNewTimers The minimum number of timers after growing.
1539 * @note Caller owns the queue's allocation lock.
1540 */
1541static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers)
1542{
1543 /*
1544 * Validate input and state.
1545 */
1546 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1547 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo must do better than this! */
1548 AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW);
1549
1550 uint32_t const cOldEntries = pQueue->cTimersAlloc;
1551 AssertReturn(cNewTimers > cOldEntries, VERR_TM_IPE_1);
1552 AssertReturn(cNewTimers < _32K, VERR_TM_IPE_1);
1553
1554 /*
1555 * Do the growing.
1556 */
1557 int rc;
1558 if (!SUPR3IsDriverless())
1559 {
1560 rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
1561 RT_MAKE_U64(cNewTimers, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL);
1562 AssertLogRelRCReturn(rc, rc);
1563 AssertReturn(pQueue->cTimersAlloc >= cNewTimers, VERR_TM_IPE_3);
1564 }
1565 else
1566 {
1567 AssertReturn(cNewTimers <= _32K && cOldEntries <= _32K, VERR_TM_TOO_MANY_TIMERS);
1568 ASMCompilerBarrier();
1569
1570 /*
1571 * Round up the request to the nearest page and do the allocation.
1572 */
1573 size_t cbNew = sizeof(TMTIMER) * cNewTimers;
1574 cbNew = RT_ALIGN_Z(cbNew, HOST_PAGE_SIZE);
1575 cNewTimers = (uint32_t)(cbNew / sizeof(TMTIMER));
1576
1577 PTMTIMER paTimers = (PTMTIMER)RTMemPageAllocZ(cbNew);
1578 if (paTimers)
1579 {
1580 /*
1581 * Copy over the old timer, init the new free ones, then switch over
1582 * and free the old ones.
1583 */
1584 PTMTIMER const paOldTimers = pQueue->paTimers;
1585 tmHCTimerQueueGrowInit(paTimers, paOldTimers, cNewTimers, cOldEntries);
1586
1587 pQueue->paTimers = paTimers;
1588 pQueue->cTimersAlloc = cNewTimers;
1589 pQueue->cTimersFree += cNewTimers - (cOldEntries ? cOldEntries : 1);
1590
1591 RTMemPageFree(paOldTimers, RT_ALIGN_Z(sizeof(TMTIMER) * cOldEntries, HOST_PAGE_SIZE));
1592 rc = VINF_SUCCESS;
1593 }
1594 else
1595 rc = VERR_NO_PAGE_MEMORY;
1596 }
1597 return rc;
1598}
1599
1600
1601/**
1602 * Internal TMR3TimerCreate worker.
1603 *
1604 * @returns VBox status code.
1605 * @param pVM The cross context VM structure.
1606 * @param enmClock The timer clock.
1607 * @param fFlags TMTIMER_FLAGS_XXX.
1608 * @param pszName The timer name.
1609 * @param ppTimer Where to store the timer pointer on success.
1610 */
1611static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer)
1612{
1613 PTMTIMER pTimer;
1614
1615 /*
1616 * Validate input.
1617 */
1618 VM_ASSERT_EMT(pVM);
1619
1620 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1621 VERR_INVALID_FLAGS);
1622
1623 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
1624 size_t const cchName = strlen(pszName);
1625 AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME);
1626 AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME);
1627
1628 AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX,
1629 ("%d\n", enmClock), VERR_INVALID_PARAMETER);
1630 AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED);
1631 if (enmClock == TMCLOCK_VIRTUAL_SYNC)
1632 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER);
1633
1634 /*
1635 * Exclusively lock the queue.
1636 *
1637 * Note! This means that it is not possible to allocate timers from a timer callback.
1638 */
1639 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock];
1640 int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1641 AssertRCReturn(rc, rc);
1642
1643 /*
1644 * Allocate the timer.
1645 */
1646 if (!pQueue->cTimersFree)
1647 {
1648 rc = tmR3TimerQueueGrow(pVM, pQueue, pQueue->cTimersAlloc + 64);
1649 AssertRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc);
1650 }
1651
1652 /* Scan the array for free timers. */
1653 pTimer = NULL;
1654 PTMTIMER const paTimers = pQueue->paTimers;
1655 uint32_t const cTimersAlloc = pQueue->cTimersAlloc;
1656 uint32_t idxTimer = pQueue->idxFreeHint;
1657 for (uint32_t iScan = 0; iScan < 2; iScan++)
1658 {
1659 while (idxTimer < cTimersAlloc)
1660 {
1661 if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE)
1662 {
1663 pTimer = &paTimers[idxTimer];
1664 pQueue->idxFreeHint = idxTimer + 1;
1665 break;
1666 }
1667 idxTimer++;
1668 }
1669 if (pTimer != NULL)
1670 break;
1671 idxTimer = 1;
1672 }
1673 AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree,
1674 pQueue->cTimersAlloc, pQueue->szName),
1675 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3);
1676 pQueue->cTimersFree -= 1;
1677
1678 /*
1679 * Initialize it.
1680 */
1681 Assert(idxTimer != 0);
1682 Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK);
1683 pTimer->hSelf = idxTimer
1684 | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT);
1685 Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK));
1686 pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK);
1687
1688 pTimer->u64Expire = 0;
1689 pTimer->enmState = TMTIMERSTATE_STOPPED;
1690 pTimer->idxScheduleNext = UINT32_MAX;
1691 pTimer->idxNext = UINT32_MAX;
1692 pTimer->idxPrev = UINT32_MAX;
1693 pTimer->fFlags = fFlags;
1694 pTimer->uHzHint = 0;
1695 pTimer->pvUser = NULL;
1696 pTimer->pCritSect = NULL;
1697 memcpy(pTimer->szName, pszName, cchName);
1698 pTimer->szName[cchName] = '\0';
1699
1700#ifdef VBOX_STRICT
1701 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1702#endif
1703
1704 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1705
1706#ifdef VBOX_WITH_STATISTICS
1707 /*
1708 * Only register statistics if we're passed the no-realloc point.
1709 */
1710 if (pQueue->fCannotGrow)
1711 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1712#endif
1713
1714 *ppTimer = pTimer;
1715 return VINF_SUCCESS;
1716}
1717
1718
1719/**
1720 * Creates a device timer.
1721 *
1722 * @returns VBox status code.
1723 * @param pVM The cross context VM structure.
1724 * @param pDevIns Device instance.
1725 * @param enmClock The clock to use on this timer.
1726 * @param pfnCallback Callback function.
1727 * @param pvUser The user argument to the callback.
1728 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1729 * @param pszName Timer name (will be copied). Max 31 chars.
1730 * @param phTimer Where to store the timer handle on success.
1731 */
1732VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1733 PFNTMTIMERDEV pfnCallback, void *pvUser,
1734 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1735{
1736 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1737 VERR_INVALID_FLAGS);
1738
1739 /*
1740 * Allocate and init stuff.
1741 */
1742 PTMTIMER pTimer;
1743 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1744 if (RT_SUCCESS(rc))
1745 {
1746 pTimer->enmType = TMTIMERTYPE_DEV;
1747 pTimer->u.Dev.pfnTimer = pfnCallback;
1748 pTimer->u.Dev.pDevIns = pDevIns;
1749 pTimer->pvUser = pvUser;
1750 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1751 pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1752 *phTimer = pTimer->hSelf;
1753 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName));
1754 }
1755
1756 return rc;
1757}
1758
1759
1760
1761
1762/**
1763 * Creates a USB device timer.
1764 *
1765 * @returns VBox status code.
1766 * @param pVM The cross context VM structure.
1767 * @param pUsbIns The USB device instance.
1768 * @param enmClock The clock to use on this timer.
1769 * @param pfnCallback Callback function.
1770 * @param pvUser The user argument to the callback.
1771 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1772 * @param pszName Timer name (will be copied). Max 31 chars.
1773 * @param phTimer Where to store the timer handle on success.
1774 */
1775VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1776 PFNTMTIMERUSB pfnCallback, void *pvUser,
1777 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1778{
1779 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER);
1780
1781 /*
1782 * Allocate and init stuff.
1783 */
1784 PTMTIMER pTimer;
1785 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1786 if (RT_SUCCESS(rc))
1787 {
1788 pTimer->enmType = TMTIMERTYPE_USB;
1789 pTimer->u.Usb.pfnTimer = pfnCallback;
1790 pTimer->u.Usb.pUsbIns = pUsbIns;
1791 pTimer->pvUser = pvUser;
1792 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1793 //{
1794 // if (pDevIns->pCritSectR3)
1795 // pTimer->pCritSect = pUsbIns->pCritSectR3;
1796 // else
1797 // pTimer->pCritSect = IOMR3GetCritSect(pVM);
1798 //}
1799 *phTimer = pTimer->hSelf;
1800 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1801 }
1802
1803 return rc;
1804}
1805
1806
1807/**
1808 * Creates a driver timer.
1809 *
1810 * @returns VBox status code.
1811 * @param pVM The cross context VM structure.
1812 * @param pDrvIns Driver instance.
1813 * @param enmClock The clock to use on this timer.
1814 * @param pfnCallback Callback function.
1815 * @param pvUser The user argument to the callback.
1816 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1817 * @param pszName Timer name (will be copied). Max 31 chars.
1818 * @param phTimer Where to store the timer handle on success.
1819 */
1820VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1821 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1822{
1823 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1824 VERR_INVALID_FLAGS);
1825
1826 /*
1827 * Allocate and init stuff.
1828 */
1829 PTMTIMER pTimer;
1830 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1831 if (RT_SUCCESS(rc))
1832 {
1833 pTimer->enmType = TMTIMERTYPE_DRV;
1834 pTimer->u.Drv.pfnTimer = pfnCallback;
1835 pTimer->u.Drv.pDrvIns = pDrvIns;
1836 pTimer->pvUser = pvUser;
1837 *phTimer = pTimer->hSelf;
1838 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1839 }
1840
1841 return rc;
1842}
1843
1844
1845/**
1846 * Creates an internal timer.
1847 *
1848 * @returns VBox status code.
1849 * @param pVM The cross context VM structure.
1850 * @param enmClock The clock to use on this timer.
1851 * @param pfnCallback Callback function.
1852 * @param pvUser User argument to be passed to the callback.
1853 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1854 * @param pszName Timer name (will be copied). Max 31 chars.
1855 * @param phTimer Where to store the timer handle on success.
1856 */
1857VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser,
1858 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1859{
1860 AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS);
1861 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1862 VERR_INVALID_FLAGS);
1863
1864 /*
1865 * Allocate and init stuff.
1866 */
1867 PTMTIMER pTimer;
1868 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1869 if (RT_SUCCESS(rc))
1870 {
1871 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1872 pTimer->u.Internal.pfnTimer = pfnCallback;
1873 pTimer->pvUser = pvUser;
1874 *phTimer = pTimer->hSelf;
1875 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName));
1876 }
1877
1878 return rc;
1879}
1880
1881
1882/**
1883 * Destroy a timer
1884 *
1885 * @returns VBox status code.
1886 * @param pVM The cross context VM structure.
1887 * @param pQueue The queue the timer is on.
1888 * @param pTimer Timer handle as returned by one of the create functions.
1889 */
1890static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1891{
1892 bool fActive = false;
1893 bool fPending = false;
1894
1895 AssertMsg( !pTimer->pCritSect
1896 || VMR3GetState(pVM) != VMSTATE_RUNNING
1897 || PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName));
1898
1899 /*
1900 * The rest of the game happens behind the lock, just
1901 * like create does. All the work is done here.
1902 */
1903 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1904 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1905
1906 for (int cRetries = 1000;; cRetries--)
1907 {
1908 /*
1909 * Change to the DESTROY state.
1910 */
1911 TMTIMERSTATE const enmState = pTimer->enmState;
1912 Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n",
1913 pTimer, tmTimerState(enmState), pTimer->szName, cRetries));
1914 switch (enmState)
1915 {
1916 case TMTIMERSTATE_STOPPED:
1917 case TMTIMERSTATE_EXPIRED_DELIVER:
1918 break;
1919
1920 case TMTIMERSTATE_ACTIVE:
1921 fActive = true;
1922 break;
1923
1924 case TMTIMERSTATE_PENDING_STOP:
1925 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1926 case TMTIMERSTATE_PENDING_RESCHEDULE:
1927 fActive = true;
1928 fPending = true;
1929 break;
1930
1931 case TMTIMERSTATE_PENDING_SCHEDULE:
1932 fPending = true;
1933 break;
1934
1935 /*
1936 * This shouldn't happen as the caller should make sure there are no races.
1937 */
1938 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1939 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1940 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1941 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1942 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1943 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1944
1945 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1946 VERR_TM_UNSTABLE_STATE);
1947 if (!RTThreadYield())
1948 RTThreadSleep(1);
1949
1950 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1951 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1952 continue;
1953
1954 /*
1955 * Invalid states.
1956 */
1957 case TMTIMERSTATE_FREE:
1958 case TMTIMERSTATE_DESTROY:
1959 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1960 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1961 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1962
1963 default:
1964 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName));
1965 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1966 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1967 return VERR_TM_UNKNOWN_STATE;
1968 }
1969
1970 /*
1971 * Try switch to the destroy state.
1972 * This should always succeed as the caller should make sure there are no race.
1973 */
1974 bool fRc;
1975 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1976 if (fRc)
1977 break;
1978 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1979 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1980 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1981
1982 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1983 VERR_TM_UNSTABLE_STATE);
1984
1985 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1986 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1987 }
1988
1989 /*
1990 * Unlink from the active list.
1991 */
1992 if (fActive)
1993 {
1994 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
1995 const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer);
1996 if (pPrev)
1997 tmTimerSetNext(pQueue, pPrev, pNext);
1998 else
1999 {
2000 tmTimerQueueSetHead(pQueue, pQueue, pNext);
2001 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2002 }
2003 if (pNext)
2004 tmTimerSetPrev(pQueue, pNext, pPrev);
2005 pTimer->idxNext = UINT32_MAX;
2006 pTimer->idxPrev = UINT32_MAX;
2007 }
2008
2009 /*
2010 * Unlink from the schedule list by running it.
2011 */
2012 if (fPending)
2013 {
2014 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
2015 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2016 Assert(pQueue->idxSchedule < pQueue->cTimersAlloc);
2017 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2018 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2019 }
2020
2021#ifdef VBOX_WITH_STATISTICS
2022 /*
2023 * Deregister statistics.
2024 */
2025 tmR3TimerDeregisterStats(pVM, pTimer);
2026#endif
2027
2028 /*
2029 * Change it to free state and update the queue accordingly.
2030 */
2031 Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX);
2032
2033 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
2034
2035 pQueue->cTimersFree += 1;
2036 uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers);
2037 if (idxTimer < pQueue->idxFreeHint)
2038 pQueue->idxFreeHint = idxTimer;
2039
2040#ifdef VBOX_STRICT
2041 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
2042#endif
2043 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2044 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
2045 return VINF_SUCCESS;
2046}
2047
2048
2049/**
2050 * Destroy a timer
2051 *
2052 * @returns VBox status code.
2053 * @param pVM The cross context VM structure.
2054 * @param hTimer Timer handle as returned by one of the create functions.
2055 */
2056VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer)
2057{
2058 /* We ignore NILs here. */
2059 if (hTimer == NIL_TMTIMERHANDLE)
2060 return VINF_SUCCESS;
2061 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2062 return tmR3TimerDestroy(pVM, pQueue, pTimer);
2063}
2064
2065
2066/**
2067 * Destroy all timers owned by a device.
2068 *
2069 * @returns VBox status code.
2070 * @param pVM The cross context VM structure.
2071 * @param pDevIns Device which timers should be destroyed.
2072 */
2073VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
2074{
2075 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
2076 if (!pDevIns)
2077 return VERR_INVALID_PARAMETER;
2078
2079 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2080 {
2081 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2082 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2083 uint32_t idxTimer = pQueue->cTimersAlloc;
2084 while (idxTimer-- > 0)
2085 {
2086 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2087 if ( pTimer->enmType == TMTIMERTYPE_DEV
2088 && pTimer->u.Dev.pDevIns == pDevIns
2089 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2090 {
2091 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2092
2093 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2094 AssertRC(rc);
2095
2096 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2097 }
2098 }
2099 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2100 }
2101
2102 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
2103 return VINF_SUCCESS;
2104}
2105
2106
2107/**
2108 * Destroy all timers owned by a USB device.
2109 *
2110 * @returns VBox status code.
2111 * @param pVM The cross context VM structure.
2112 * @param pUsbIns USB device which timers should be destroyed.
2113 */
2114VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
2115{
2116 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
2117 if (!pUsbIns)
2118 return VERR_INVALID_PARAMETER;
2119
2120 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2121 {
2122 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2123 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2124 uint32_t idxTimer = pQueue->cTimersAlloc;
2125 while (idxTimer-- > 0)
2126 {
2127 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2128 if ( pTimer->enmType == TMTIMERTYPE_USB
2129 && pTimer->u.Usb.pUsbIns == pUsbIns
2130 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2131 {
2132 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2133
2134 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2135 AssertRC(rc);
2136
2137 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2138 }
2139 }
2140 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2141 }
2142
2143 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
2144 return VINF_SUCCESS;
2145}
2146
2147
2148/**
2149 * Destroy all timers owned by a driver.
2150 *
2151 * @returns VBox status code.
2152 * @param pVM The cross context VM structure.
2153 * @param pDrvIns Driver which timers should be destroyed.
2154 */
2155VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
2156{
2157 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
2158 if (!pDrvIns)
2159 return VERR_INVALID_PARAMETER;
2160
2161 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2162 {
2163 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2164 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2165 uint32_t idxTimer = pQueue->cTimersAlloc;
2166 while (idxTimer-- > 0)
2167 {
2168 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2169 if ( pTimer->enmType == TMTIMERTYPE_DRV
2170 && pTimer->u.Drv.pDrvIns == pDrvIns
2171 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2172 {
2173 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2174
2175 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2176 AssertRC(rc);
2177
2178 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2179 }
2180 }
2181 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2182 }
2183
2184 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
2185 return VINF_SUCCESS;
2186}
2187
2188
2189/**
2190 * Internal function for getting the clock time.
2191 *
2192 * @returns clock time.
2193 * @param pVM The cross context VM structure.
2194 * @param enmClock The clock.
2195 */
2196DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
2197{
2198 switch (enmClock)
2199 {
2200 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
2201 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
2202 case TMCLOCK_REAL: return TMRealGet(pVM);
2203 case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
2204 default:
2205 AssertMsgFailed(("enmClock=%d\n", enmClock));
2206 return ~(uint64_t)0;
2207 }
2208}
2209
2210
2211/**
2212 * Checks if the sync queue has one or more expired timers.
2213 *
2214 * @returns true / false.
2215 *
2216 * @param pVM The cross context VM structure.
2217 * @param enmClock The queue.
2218 */
2219DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
2220{
2221 const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire;
2222 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
2223}
2224
2225
2226/**
2227 * Checks for expired timers in all the queues.
2228 *
2229 * @returns true / false.
2230 * @param pVM The cross context VM structure.
2231 */
2232DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
2233{
2234 /*
2235 * Combine the time calculation for the first two since we're not on EMT
2236 * TMVirtualSyncGet only permits EMT.
2237 */
2238 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
2239 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
2240 return true;
2241 u64Now = pVM->tm.s.fVirtualSyncTicking
2242 ? u64Now - pVM->tm.s.offVirtualSync
2243 : pVM->tm.s.u64VirtualSync;
2244 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
2245 return true;
2246
2247 /*
2248 * The remaining timers.
2249 */
2250 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
2251 return true;
2252 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
2253 return true;
2254 return false;
2255}
2256
2257
2258/**
2259 * Schedule timer callback.
2260 *
2261 * @param pTimer Timer handle.
2262 * @param pvUser Pointer to the VM.
2263 * @thread Timer thread.
2264 *
2265 * @remark We cannot do the scheduling and queues running from a timer handler
2266 * since it's not executing in EMT, and even if it was it would be async
2267 * and we wouldn't know the state of the affairs.
2268 * So, we'll just raise the timer FF and force any REM execution to exit.
2269 */
2270static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
2271{
2272 PVM pVM = (PVM)pvUser;
2273 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2274 NOREF(pTimer);
2275
2276 AssertCompile(TMCLOCK_MAX == 4);
2277 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
2278
2279#ifdef DEBUG_Sander /* very annoying, keep it private. */
2280 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2281 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2282#endif
2283 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2284 && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2285 || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX
2286 || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX
2287 || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX
2288 || tmR3AnyExpiredTimers(pVM)
2289 )
2290 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2291 && !pVM->tm.s.fRunningQueues
2292 )
2293 {
2294 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2295 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2296 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2297 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2298 }
2299}
2300
2301
2302/**
2303 * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified
2304 * non-empty timer queue.
2305 *
2306 * @param pVM The cross context VM structure.
2307 * @param pQueue The queue to run.
2308 * @param pTimer The head timer. Caller already check that this is
2309 * not NULL.
2310 */
2311static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
2312{
2313 VM_ASSERT_EMT(pVM); /** @todo relax this */
2314
2315 /*
2316 * Run timers.
2317 *
2318 * We check the clock once and run all timers which are ACTIVE
2319 * and have an expire time less or equal to the time we read.
2320 *
2321 * N.B. A generic unlink must be applied since other threads
2322 * are allowed to mess with any active timer at any time.
2323 *
2324 * However, we only allow EMT to handle EXPIRED_PENDING
2325 * timers, thus enabling the timer handler function to
2326 * arm the timer again.
2327 */
2328/** @todo the above 'however' is outdated. */
2329 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2330 while (pTimer->u64Expire <= u64Now)
2331 {
2332 PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer);
2333 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2334 if (pCritSect)
2335 {
2336 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2337 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2338 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2339 }
2340 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2341 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2342 bool fRc;
2343 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2344 if (fRc)
2345 {
2346 Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */
2347
2348 /* unlink */
2349 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
2350 if (pPrev)
2351 tmTimerSetNext(pQueue, pPrev, pNext);
2352 else
2353 {
2354 tmTimerQueueSetHead(pQueue, pQueue, pNext);
2355 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2356 }
2357 if (pNext)
2358 tmTimerSetPrev(pQueue, pNext, pPrev);
2359 pTimer->idxNext = UINT32_MAX;
2360 pTimer->idxPrev = UINT32_MAX;
2361
2362 /* fire */
2363 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2364 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2365 switch (pTimer->enmType)
2366 {
2367 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2368 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2369 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2370 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2371 default:
2372 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2373 break;
2374 }
2375 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2376
2377 /* change the state if it wasn't changed already in the handler. */
2378 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2379 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2380 }
2381 if (pCritSect)
2382 PDMCritSectLeave(pVM, pCritSect);
2383
2384 /* Advance? */
2385 pTimer = pNext;
2386 if (!pTimer)
2387 break;
2388 } /* run loop */
2389}
2390
2391
2392/**
2393 * Service one regular timer queue.
2394 *
2395 * @param pVM The cross context VM structure.
2396 * @param pQueue The queue.
2397 */
2398static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue)
2399{
2400 Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC);
2401
2402 /*
2403 * Only one thread should be "doing" the queue.
2404 */
2405 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2406 {
2407 STAM_PROFILE_START(&pQueue->StatDo, s);
2408 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
2409
2410 if (pQueue->idxSchedule != UINT32_MAX)
2411 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2412
2413 PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue);
2414 if (pHead)
2415 tmR3TimerQueueRun(pVM, pQueue, pHead);
2416
2417 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2418 STAM_PROFILE_STOP(&pQueue->StatDo, s);
2419 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2420 }
2421}
2422
2423
2424/**
2425 * Schedules and runs any pending times in the timer queue for the
2426 * synchronous virtual clock.
2427 *
2428 * This scheduling is a bit different from the other queues as it need
2429 * to implement the special requirements of the timer synchronous virtual
2430 * clock, thus this 2nd queue run function.
2431 *
2432 * @param pVM The cross context VM structure.
2433 *
2434 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2435 * longer important.
2436 */
2437static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2438{
2439 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2440 VM_ASSERT_EMT(pVM);
2441 Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock));
2442
2443 /*
2444 * Any timers?
2445 */
2446 PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue);
2447 if (RT_UNLIKELY(!pNext))
2448 {
2449 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2450 return;
2451 }
2452 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2453
2454 /*
2455 * Calculate the time frame for which we will dispatch timers.
2456 *
2457 * We use a time frame ranging from the current sync time (which is most likely the
2458 * same as the head timer) and some configurable period (100000ns) up towards the
2459 * current virtual time. This period might also need to be restricted by the catch-up
2460 * rate so frequent calls to this function won't accelerate the time too much, however
2461 * this will be implemented at a later point if necessary.
2462 *
2463 * Without this frame we would 1) having to run timers much more frequently
2464 * and 2) lag behind at a steady rate.
2465 */
2466 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2467 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2468 uint64_t u64Now;
2469 if (!pVM->tm.s.fVirtualSyncTicking)
2470 {
2471 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2472 u64Now = pVM->tm.s.u64VirtualSync;
2473 Assert(u64Now <= pNext->u64Expire);
2474 }
2475 else
2476 {
2477 /* Calc 'now'. */
2478 bool fStopCatchup = false;
2479 bool fUpdateStuff = false;
2480 uint64_t off = pVM->tm.s.offVirtualSync;
2481 if (pVM->tm.s.fVirtualSyncCatchUp)
2482 {
2483 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2484 if (RT_LIKELY(!(u64Delta >> 32)))
2485 {
2486 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2487 if (off > u64Sub + offSyncGivenUp)
2488 {
2489 off -= u64Sub;
2490 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2491 }
2492 else
2493 {
2494 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2495 fStopCatchup = true;
2496 off = offSyncGivenUp;
2497 }
2498 fUpdateStuff = true;
2499 }
2500 }
2501 u64Now = u64VirtualNow - off;
2502
2503 /* Adjust against last returned time. */
2504 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2505 if (u64Last > u64Now)
2506 {
2507 u64Now = u64Last + 1;
2508 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2509 }
2510
2511 /* Check if stopped by expired timer. */
2512 uint64_t const u64Expire = pNext->u64Expire;
2513 if (u64Now >= u64Expire)
2514 {
2515 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2516 u64Now = u64Expire;
2517 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2518 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2519 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2520 }
2521 else
2522 {
2523 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2524 if (fUpdateStuff)
2525 {
2526 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2527 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2528 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2529 if (fStopCatchup)
2530 {
2531 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2532 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2533 }
2534 }
2535 }
2536 }
2537
2538 /* calc end of frame. */
2539 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2540 if (u64Max > u64VirtualNow - offSyncGivenUp)
2541 u64Max = u64VirtualNow - offSyncGivenUp;
2542
2543 /* assert sanity */
2544 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2545 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2546 Assert(u64Now <= u64Max);
2547 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2548
2549 /*
2550 * Process the expired timers moving the clock along as we progress.
2551 */
2552#ifdef VBOX_STRICT
2553 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2554#endif
2555 while (pNext && pNext->u64Expire <= u64Max)
2556 {
2557 /* Advance */
2558 PTMTIMER pTimer = pNext;
2559 pNext = tmTimerGetNext(pQueue, pTimer);
2560
2561 /* Take the associated lock. */
2562 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2563 if (pCritSect)
2564 {
2565 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2566 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2567 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2568 }
2569
2570 Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2571 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2572
2573 /* Advance the clock - don't permit timers to be out of order or armed
2574 in the 'past'. */
2575#ifdef VBOX_STRICT
2576 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName));
2577 u64Prev = pTimer->u64Expire;
2578#endif
2579 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2580 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2581
2582 /* Unlink it, change the state and do the callout. */
2583 tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer);
2584 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2585 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2586 switch (pTimer->enmType)
2587 {
2588 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2589 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2590 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2591 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2592 default:
2593 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2594 break;
2595 }
2596 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2597
2598 /* Change the state if it wasn't changed already in the handler.
2599 Reset the Hz hint too since this is the same as TMTimerStop. */
2600 bool fRc;
2601 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2602 if (fRc && pTimer->uHzHint)
2603 {
2604 if (pTimer->uHzHint >= pQueue->uMaxHzHint)
2605 ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16));
2606 pTimer->uHzHint = 0;
2607 }
2608 Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState)));
2609
2610 /* Leave the associated lock. */
2611 if (pCritSect)
2612 PDMCritSectLeave(pVM, pCritSect);
2613 } /* run loop */
2614
2615
2616 /*
2617 * Restart the clock if it was stopped to serve any timers,
2618 * and start/adjust catch-up if necessary.
2619 */
2620 if ( !pVM->tm.s.fVirtualSyncTicking
2621 && pVM->tm.s.cVirtualTicking)
2622 {
2623 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2624
2625 /* calc the slack we've handed out. */
2626 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2627 Assert(u64VirtualNow2 >= u64VirtualNow);
2628 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2629 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2630 STAM_STATS({
2631 if (offSlack)
2632 {
2633 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2634 p->cPeriods++;
2635 p->cTicks += offSlack;
2636 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2637 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2638 }
2639 });
2640
2641 /* Let the time run a little bit while we were busy running timers(?). */
2642 uint64_t u64Elapsed;
2643#define MAX_ELAPSED 30000U /* ns */
2644 if (offSlack > MAX_ELAPSED)
2645 u64Elapsed = 0;
2646 else
2647 {
2648 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2649 if (u64Elapsed > MAX_ELAPSED)
2650 u64Elapsed = MAX_ELAPSED;
2651 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2652 }
2653#undef MAX_ELAPSED
2654
2655 /* Calc the current offset. */
2656 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2657 Assert(!(offNew & RT_BIT_64(63)));
2658 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2659 Assert(!(offLag & RT_BIT_64(63)));
2660
2661 /*
2662 * Deal with starting, adjusting and stopping catchup.
2663 */
2664 if (pVM->tm.s.fVirtualSyncCatchUp)
2665 {
2666 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2667 {
2668 /* stop */
2669 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2670 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2671 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2672 }
2673 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2674 {
2675 /* adjust */
2676 unsigned i = 0;
2677 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2678 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2679 i++;
2680 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2681 {
2682 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2683 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2684 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2685 }
2686 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2687 }
2688 else
2689 {
2690 /* give up */
2691 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2692 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2693 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2694 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2695 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2696 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2697 }
2698 }
2699 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2700 {
2701 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2702 {
2703 /* start */
2704 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2705 unsigned i = 0;
2706 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2707 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2708 i++;
2709 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2710 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2711 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2712 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2713 }
2714 else
2715 {
2716 /* don't bother */
2717 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2718 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2719 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2720 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2721 }
2722 }
2723
2724 /*
2725 * Update the offset and restart the clock.
2726 */
2727 Assert(!(offNew & RT_BIT_64(63)));
2728 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2729 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2730 }
2731}
2732
2733
2734/**
2735 * Deals with stopped Virtual Sync clock.
2736 *
2737 * This is called by the forced action flag handling code in EM when it
2738 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2739 * will block on the VirtualSyncLock until the pending timers has been executed
2740 * and the clock restarted.
2741 *
2742 * @param pVM The cross context VM structure.
2743 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2744 *
2745 * @thread EMTs
2746 */
2747VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2748{
2749 Log2(("TMR3VirtualSyncFF:\n"));
2750
2751 /*
2752 * The EMT doing the timers is diverted to them.
2753 */
2754 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2755 TMR3TimerQueuesDo(pVM);
2756 /*
2757 * The other EMTs will block on the virtual sync lock and the first owner
2758 * will run the queue and thus restarting the clock.
2759 *
2760 * Note! This is very suboptimal code wrt to resuming execution when there
2761 * are more than two Virtual CPUs, since they will all have to enter
2762 * the critical section one by one. But it's a very simple solution
2763 * which will have to do the job for now.
2764 */
2765 else
2766 {
2767/** @todo Optimize for SMP */
2768 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2769 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2770 if (pVM->tm.s.fVirtualSyncTicking)
2771 {
2772 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2773 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2774 Log2(("TMR3VirtualSyncFF: ticking\n"));
2775 }
2776 else
2777 {
2778 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2779
2780 /* try run it. */
2781 PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED);
2782 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2783 if (pVM->tm.s.fVirtualSyncTicking)
2784 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2785 else
2786 {
2787 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2788 Log2(("TMR3VirtualSyncFF: running queue\n"));
2789
2790 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX);
2791 tmR3TimerQueueRunVirtualSync(pVM);
2792 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2793 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2794
2795 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2796 }
2797 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2798 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2799 PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock);
2800 }
2801 }
2802}
2803
2804
2805/**
2806 * Service the special virtual sync timer queue.
2807 *
2808 * @param pVM The cross context VM structure.
2809 * @param pVCpuDst The destination VCpu.
2810 */
2811static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst)
2812{
2813 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2814 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2815 {
2816 STAM_PROFILE_START(&pQueue->StatDo, s1);
2817 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
2818 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2819 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2820 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2821
2822 Assert(pQueue->idxSchedule == UINT32_MAX);
2823 tmR3TimerQueueRunVirtualSync(pVM);
2824 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2825 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2826
2827 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2828 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2829 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2830 STAM_PROFILE_STOP(&pQueue->StatDo, s1);
2831 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2832 }
2833}
2834
2835
2836/**
2837 * Schedules and runs any pending timers.
2838 *
2839 * This is normally called from a forced action handler in EMT.
2840 *
2841 * @param pVM The cross context VM structure.
2842 *
2843 * @thread EMT (actually EMT0, but we fend off the others)
2844 */
2845VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2846{
2847 /*
2848 * Only the dedicated timer EMT should do stuff here.
2849 * (fRunningQueues is only used as an indicator.)
2850 */
2851 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2852 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2853 if (VMMGetCpu(pVM) != pVCpuDst)
2854 {
2855 Assert(pVM->cCpus > 1);
2856 return;
2857 }
2858 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2859 Log2(("TMR3TimerQueuesDo:\n"));
2860 Assert(!pVM->tm.s.fRunningQueues);
2861 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2862
2863 /*
2864 * Process the queues.
2865 */
2866 AssertCompile(TMCLOCK_MAX == 4);
2867
2868 /*
2869 * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF)
2870 */
2871 tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst);
2872
2873 /*
2874 * TMCLOCK_VIRTUAL
2875 */
2876 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]);
2877
2878 /*
2879 * TMCLOCK_TSC
2880 */
2881 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */
2882
2883 /*
2884 * TMCLOCK_REAL
2885 */
2886 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]);
2887
2888#ifdef VBOX_STRICT
2889 /* check that we didn't screw up. */
2890 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2891#endif
2892
2893 /* done */
2894 Log2(("TMR3TimerQueuesDo: returns void\n"));
2895 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2896 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2897}
2898
2899
2900
2901/** @name Saved state values
2902 * @{ */
2903#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2904#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2905/** @} */
2906
2907
2908/**
2909 * Saves the state of a timer to a saved state.
2910 *
2911 * @returns VBox status code.
2912 * @param pVM The cross context VM structure.
2913 * @param hTimer Timer to save.
2914 * @param pSSM Save State Manager handle.
2915 */
2916VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2917{
2918 VM_ASSERT_EMT(pVM);
2919 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2920 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2921
2922 switch (pTimer->enmState)
2923 {
2924 case TMTIMERSTATE_STOPPED:
2925 case TMTIMERSTATE_PENDING_STOP:
2926 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2927 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2928
2929 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2930 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2931 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName));
2932 if (!RTThreadYield())
2933 RTThreadSleep(1);
2934 RT_FALL_THRU();
2935 case TMTIMERSTATE_ACTIVE:
2936 case TMTIMERSTATE_PENDING_SCHEDULE:
2937 case TMTIMERSTATE_PENDING_RESCHEDULE:
2938 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2939 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2940
2941 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2942 case TMTIMERSTATE_EXPIRED_DELIVER:
2943 case TMTIMERSTATE_DESTROY:
2944 case TMTIMERSTATE_FREE:
2945 case TMTIMERSTATE_INVALID:
2946 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName));
2947 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2948 }
2949
2950 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName));
2951 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2952}
2953
2954
2955/**
2956 * Loads the state of a timer from a saved state.
2957 *
2958 * @returns VBox status code.
2959 * @param pVM The cross context VM structure.
2960 * @param hTimer Handle of Timer to restore.
2961 * @param pSSM Save State Manager handle.
2962 */
2963VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2964{
2965 VM_ASSERT_EMT(pVM);
2966 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2967 Assert(pSSM);
2968 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2969
2970 /*
2971 * Load the state and validate it.
2972 */
2973 uint8_t u8State;
2974 int rc = SSMR3GetU8(pSSM, &u8State);
2975 if (RT_FAILURE(rc))
2976 return rc;
2977
2978 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2979 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2980 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2981 u8State--;
2982
2983 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2984 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2985 {
2986 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2987 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2988 }
2989
2990 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2991 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
2992 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2993 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2994 if (pCritSect)
2995 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2996
2997 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2998 {
2999 /*
3000 * Load the expire time.
3001 */
3002 uint64_t u64Expire;
3003 rc = SSMR3GetU64(pSSM, &u64Expire);
3004 if (RT_FAILURE(rc))
3005 return rc;
3006
3007 /*
3008 * Set it.
3009 */
3010 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
3011 rc = TMTimerSet(pVM, hTimer, u64Expire);
3012 }
3013 else
3014 {
3015 /*
3016 * Stop it.
3017 */
3018 Log(("u8State=%d\n", u8State));
3019 rc = TMTimerStop(pVM, hTimer);
3020 }
3021
3022 if (pCritSect)
3023 PDMCritSectLeave(pVM, pCritSect);
3024 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
3025 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3026
3027 /*
3028 * On failure set SSM status.
3029 */
3030 if (RT_FAILURE(rc))
3031 rc = SSMR3HandleSetStatus(pSSM, rc);
3032 return rc;
3033}
3034
3035
3036/**
3037 * Skips the state of a timer in a given saved state.
3038 *
3039 * @returns VBox status.
3040 * @param pSSM Save State Manager handle.
3041 * @param pfActive Where to store whether the timer was active
3042 * when the state was saved.
3043 */
3044VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
3045{
3046 Assert(pSSM); AssertPtr(pfActive);
3047 LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
3048
3049 /*
3050 * Load the state and validate it.
3051 */
3052 uint8_t u8State;
3053 int rc = SSMR3GetU8(pSSM, &u8State);
3054 if (RT_FAILURE(rc))
3055 return rc;
3056
3057 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
3058 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
3059 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
3060 u8State--;
3061
3062 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
3063 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
3064 {
3065 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
3066 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
3067 }
3068
3069 *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
3070 if (*pfActive)
3071 {
3072 /*
3073 * Load the expire time.
3074 */
3075 uint64_t u64Expire;
3076 rc = SSMR3GetU64(pSSM, &u64Expire);
3077 }
3078
3079 return rc;
3080}
3081
3082
3083/**
3084 * Associates a critical section with a timer.
3085 *
3086 * The critical section will be entered prior to doing the timer call back, thus
3087 * avoiding potential races between the timer thread and other threads trying to
3088 * stop or adjust the timer expiration while it's being delivered. The timer
3089 * thread will leave the critical section when the timer callback returns.
3090 *
3091 * In strict builds, ownership of the critical section will be asserted by
3092 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
3093 * runtime).
3094 *
3095 * @retval VINF_SUCCESS on success.
3096 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
3097 * (asserted).
3098 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
3099 * (asserted).
3100 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
3101 * with the timer (asserted).
3102 * @retval VERR_INVALID_STATE if the timer isn't stopped.
3103 *
3104 * @param pVM The cross context VM structure.
3105 * @param hTimer The timer handle.
3106 * @param pCritSect The critical section. The caller must make sure this
3107 * is around for the life time of the timer.
3108 *
3109 * @thread Any, but the caller is responsible for making sure the timer is not
3110 * active.
3111 */
3112VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect)
3113{
3114 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
3115 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
3116 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
3117 AssertReturn(pszName, VERR_INVALID_PARAMETER);
3118 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
3119 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
3120 AssertReturn( pTimer->enmType == TMTIMERTYPE_DEV
3121 || pTimer->enmType == TMTIMERTYPE_DRV
3122 || pTimer->enmType == TMTIMERTYPE_USB,
3123 VERR_NOT_SUPPORTED); /* Not supported on internal timers, see tmRZTimerGetCritSect. */
3124 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName));
3125
3126 pTimer->pCritSect = pCritSect;
3127 return VINF_SUCCESS;
3128}
3129
3130
3131/**
3132 * Get the real world UTC time adjusted for VM lag.
3133 *
3134 * @returns pTime.
3135 * @param pVM The cross context VM structure.
3136 * @param pTime Where to store the time.
3137 */
3138VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
3139{
3140 /*
3141 * Get a stable set of VirtualSync parameters and calc the lag.
3142 */
3143 uint64_t offVirtualSync;
3144 uint64_t offVirtualSyncGivenUp;
3145 do
3146 {
3147 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
3148 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
3149 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
3150
3151 Assert(offVirtualSync >= offVirtualSyncGivenUp);
3152 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
3153
3154 /*
3155 * Get current time and adjust for virtual sync lag and do time displacement.
3156 */
3157 RTTimeNow(pTime);
3158 RTTimeSpecSubNano(pTime, offLag);
3159 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
3160
3161 /*
3162 * Log details if the time changed radically (also triggers on first call).
3163 */
3164 int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
3165 int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
3166 if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
3167 {
3168 RTTIMESPEC NowAgain;
3169 RTTimeNow(&NowAgain);
3170 LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3171 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
3172 if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
3173 {
3174 RTFILE hFile;
3175 int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
3176 RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
3177 if (RT_SUCCESS(rc))
3178 {
3179 char szMsg[256];
3180 size_t cch;
3181 cch = RTStrPrintf(szMsg, sizeof(szMsg),
3182 "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3183 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
3184 RTFileWrite(hFile, szMsg, cch, NULL);
3185 RTFileClose(hFile);
3186 }
3187 }
3188 }
3189
3190 return pTime;
3191}
3192
3193
3194/**
3195 * Pauses all clocks except TMCLOCK_REAL.
3196 *
3197 * @returns VBox status code, all errors are asserted.
3198 * @param pVM The cross context VM structure.
3199 * @param pVCpu The cross context virtual CPU structure.
3200 * @thread EMT corresponding to Pointer to the VMCPU.
3201 */
3202VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
3203{
3204 VMCPU_ASSERT_EMT(pVCpu);
3205 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3206
3207 /*
3208 * The shared virtual clock (includes virtual sync which is tied to it).
3209 */
3210 int rc = tmVirtualPauseLocked(pVM);
3211 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3212
3213 /*
3214 * Pause the TSC last since it is normally linked to the virtual
3215 * sync clock, so the above code may actually stop both clocks.
3216 */
3217 if (!pVM->tm.s.fTSCTiedToExecution)
3218 {
3219 rc = tmCpuTickPauseLocked(pVM, pVCpu);
3220 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3221 }
3222
3223#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3224 /*
3225 * Update cNsTotal and stats.
3226 */
3227 Assert(!pVCpu->tm.s.fSuspended);
3228 uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3229 uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
3230
3231# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
3232 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat);
3233 int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat;
3234 if (cNsOtherNewDelta > 0)
3235 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta);
3236# endif
3237
3238 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3239 pVCpu->tm.s.nsStartTotal = cNsTotalNew;
3240 pVCpu->tm.s.fSuspended = true;
3241 pVCpu->tm.s.cNsTotalStat = cNsTotalNew;
3242 pVCpu->tm.s.cNsOtherStat = cNsOtherNew;
3243 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3244#endif
3245
3246 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3247 return VINF_SUCCESS;
3248}
3249
3250
3251/**
3252 * Resumes all clocks except TMCLOCK_REAL.
3253 *
3254 * @returns VBox status code, all errors are asserted.
3255 * @param pVM The cross context VM structure.
3256 * @param pVCpu The cross context virtual CPU structure.
3257 * @thread EMT corresponding to Pointer to the VMCPU.
3258 */
3259VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
3260{
3261 VMCPU_ASSERT_EMT(pVCpu);
3262 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3263
3264#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3265 /*
3266 * Set u64NsTsStartTotal. There is no need to back this out if either of
3267 * the two calls below fail.
3268 */
3269 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3270 pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3271 pVCpu->tm.s.fSuspended = false;
3272 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3273#endif
3274
3275 /*
3276 * Resume the TSC first since it is normally linked to the virtual sync
3277 * clock, so it may actually not be resumed until we've executed the code
3278 * below.
3279 */
3280 if (!pVM->tm.s.fTSCTiedToExecution)
3281 {
3282 int rc = tmCpuTickResumeLocked(pVM, pVCpu);
3283 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3284 }
3285
3286 /*
3287 * The shared virtual clock (includes virtual sync which is tied to it).
3288 */
3289 int rc = tmVirtualResumeLocked(pVM);
3290
3291 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3292 return rc;
3293}
3294
3295
3296/**
3297 * Sets the warp drive percent of the virtual time.
3298 *
3299 * @returns VBox status code.
3300 * @param pUVM The user mode VM structure.
3301 * @param u32Percent The new percentage. 100 means normal operation.
3302 */
3303VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3304{
3305 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
3306}
3307
3308
3309/**
3310 * EMT worker for TMR3SetWarpDrive.
3311 *
3312 * @returns VBox status code.
3313 * @param pUVM The user mode VM handle.
3314 * @param u32Percent See TMR3SetWarpDrive().
3315 * @internal
3316 */
3317static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3318{
3319 PVM pVM = pUVM->pVM;
3320 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3321 PVMCPU pVCpu = VMMGetCpu(pVM);
3322
3323 /*
3324 * Validate it.
3325 */
3326 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
3327 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
3328 VERR_INVALID_PARAMETER);
3329
3330/** @todo This isn't a feature specific to virtual time, move the variables to
3331 * TM level and make it affect TMR3UTCNow as well! */
3332
3333 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3334
3335 /*
3336 * If the time is running we'll have to pause it before we can change
3337 * the warp drive settings.
3338 */
3339 bool fPaused = !!pVM->tm.s.cVirtualTicking;
3340 if (fPaused) /** @todo this isn't really working, but wtf. */
3341 TMR3NotifySuspend(pVM, pVCpu);
3342
3343 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
3344 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
3345 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
3346 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
3347 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
3348
3349 if (fPaused)
3350 TMR3NotifyResume(pVM, pVCpu);
3351
3352 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3353 return VINF_SUCCESS;
3354}
3355
3356
3357/**
3358 * Gets the current TMCLOCK_VIRTUAL time without checking
3359 * timers or anything.
3360 *
3361 * @returns The timestamp.
3362 * @param pUVM The user mode VM structure.
3363 *
3364 * @remarks See TMVirtualGetNoCheck.
3365 */
3366VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
3367{
3368 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3369 PVM pVM = pUVM->pVM;
3370 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3371 return TMVirtualGetNoCheck(pVM);
3372}
3373
3374
3375/**
3376 * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
3377 * timers or anything.
3378 *
3379 * @returns The timestamp in milliseconds.
3380 * @param pUVM The user mode VM structure.
3381 *
3382 * @remarks See TMVirtualGetNoCheck.
3383 */
3384VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
3385{
3386 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3387 PVM pVM = pUVM->pVM;
3388 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3389 return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
3390}
3391
3392
3393/**
3394 * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
3395 * timers or anything.
3396 *
3397 * @returns The timestamp in microseconds.
3398 * @param pUVM The user mode VM structure.
3399 *
3400 * @remarks See TMVirtualGetNoCheck.
3401 */
3402VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
3403{
3404 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3405 PVM pVM = pUVM->pVM;
3406 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3407 return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
3408}
3409
3410
3411/**
3412 * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
3413 * timers or anything.
3414 *
3415 * @returns The timestamp in nanoseconds.
3416 * @param pUVM The user mode VM structure.
3417 *
3418 * @remarks See TMVirtualGetNoCheck.
3419 */
3420VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
3421{
3422 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3423 PVM pVM = pUVM->pVM;
3424 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3425 return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
3426}
3427
3428
3429/**
3430 * Gets the current warp drive percent.
3431 *
3432 * @returns The warp drive percent.
3433 * @param pUVM The user mode VM structure.
3434 */
3435VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
3436{
3437 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
3438 PVM pVM = pUVM->pVM;
3439 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
3440 return pVM->tm.s.u32VirtualWarpDrivePercentage;
3441}
3442
3443
3444#if 0 /* unused - needs a little updating after @bugref{9941}*/
3445/**
3446 * Gets the performance information for one virtual CPU as seen by the VMM.
3447 *
3448 * The returned times covers the period where the VM is running and will be
3449 * reset when restoring a previous VM state (at least for the time being).
3450 *
3451 * @retval VINF_SUCCESS on success.
3452 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3453 * @retval VERR_INVALID_STATE if the VM handle is bad.
3454 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3455 *
3456 * @param pVM The cross context VM structure.
3457 * @param idCpu The ID of the virtual CPU which times to get.
3458 * @param pcNsTotal Where to store the total run time (nano seconds) of
3459 * the CPU, i.e. the sum of the three other returns.
3460 * Optional.
3461 * @param pcNsExecuting Where to store the time (nano seconds) spent
3462 * executing guest code. Optional.
3463 * @param pcNsHalted Where to store the time (nano seconds) spent
3464 * halted. Optional
3465 * @param pcNsOther Where to store the time (nano seconds) spent
3466 * preempted by the host scheduler, on virtualization
3467 * overhead and on other tasks.
3468 */
3469VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
3470 uint64_t *pcNsHalted, uint64_t *pcNsOther)
3471{
3472 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
3473 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3474
3475#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3476 /*
3477 * Get a stable result set.
3478 * This should be way quicker than an EMT request.
3479 */
3480 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3481 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3482 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3483 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3484 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3485 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
3486 while ( (uTimesGen & 1) /* update in progress */
3487 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
3488 {
3489 RTThreadYield();
3490 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3491 cNsTotal = pVCpu->tm.s.cNsTotal;
3492 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3493 cNsHalted = pVCpu->tm.s.cNsHalted;
3494 cNsOther = pVCpu->tm.s.cNsOther;
3495 }
3496
3497 /*
3498 * Fill in the return values.
3499 */
3500 if (pcNsTotal)
3501 *pcNsTotal = cNsTotal;
3502 if (pcNsExecuting)
3503 *pcNsExecuting = cNsExecuting;
3504 if (pcNsHalted)
3505 *pcNsHalted = cNsHalted;
3506 if (pcNsOther)
3507 *pcNsOther = cNsOther;
3508
3509 return VINF_SUCCESS;
3510
3511#else
3512 return VERR_NOT_IMPLEMENTED;
3513#endif
3514}
3515#endif /* unused */
3516
3517
3518/**
3519 * Gets the performance information for one virtual CPU as seen by the VMM in
3520 * percents.
3521 *
3522 * The returned times covers the period where the VM is running and will be
3523 * reset when restoring a previous VM state (at least for the time being).
3524 *
3525 * @retval VINF_SUCCESS on success.
3526 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3527 * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
3528 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3529 *
3530 * @param pUVM The usermode VM structure.
3531 * @param idCpu The ID of the virtual CPU which times to get.
3532 * @param pcMsInterval Where to store the interval of the percentages in
3533 * milliseconds. Optional.
3534 * @param pcPctExecuting Where to return the percentage of time spent
3535 * executing guest code. Optional.
3536 * @param pcPctHalted Where to return the percentage of time spent halted.
3537 * Optional
3538 * @param pcPctOther Where to return the percentage of time spent
3539 * preempted by the host scheduler, on virtualization
3540 * overhead and on other tasks.
3541 */
3542VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
3543 uint8_t *pcPctHalted, uint8_t *pcPctOther)
3544{
3545 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
3546 PVM pVM = pUVM->pVM;
3547 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3548 AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3549
3550#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3551 TMCPULOADSTATE volatile *pState;
3552 if (idCpu == VMCPUID_ALL)
3553 pState = &pVM->tm.s.CpuLoad;
3554 else
3555 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
3556
3557 if (pcMsInterval)
3558 *pcMsInterval = RT_MS_1SEC;
3559 if (pcPctExecuting)
3560 *pcPctExecuting = pState->cPctExecuting;
3561 if (pcPctHalted)
3562 *pcPctHalted = pState->cPctHalted;
3563 if (pcPctOther)
3564 *pcPctOther = pState->cPctOther;
3565
3566 return VINF_SUCCESS;
3567
3568#else
3569 RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
3570 return VERR_NOT_IMPLEMENTED;
3571#endif
3572}
3573
3574#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3575
3576/**
3577 * Helper for tmR3CpuLoadTimer.
3578 *
3579 * @param pState The state to update.
3580 * @param cNsTotal Total time.
3581 * @param cNsExecuting Time executing.
3582 * @param cNsHalted Time halted.
3583 */
3584DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3585{
3586 /* Calc & update deltas */
3587 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3588 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3589 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3590
3591 if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta)
3592 { /* likely */ }
3593 else
3594 {
3595 /* Just adjust the executing and halted values down to match the total delta. */
3596 uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta;
3597 uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64;
3598 cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3599 cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3600 /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */
3601 }
3602
3603 pState->cNsPrevExecuting = cNsExecuting;
3604 pState->cNsPrevHalted = cNsHalted;
3605 pState->cNsPrevTotal = cNsTotal;
3606
3607 /* Calc pcts. */
3608 uint8_t cPctExecuting, cPctHalted, cPctOther;
3609 if (!cNsTotalDelta)
3610 {
3611 cPctExecuting = 0;
3612 cPctHalted = 100;
3613 cPctOther = 0;
3614 }
3615 else if (cNsTotalDelta < UINT64_MAX / 4)
3616 {
3617 cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3618 cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3619 cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3620 }
3621 else
3622 {
3623 cPctExecuting = 0;
3624 cPctHalted = 100;
3625 cPctOther = 0;
3626 }
3627
3628 /* Update percentages: */
3629 size_t idxHistory = pState->idxHistory + 1;
3630 if (idxHistory >= RT_ELEMENTS(pState->aHistory))
3631 idxHistory = 0;
3632
3633 pState->cPctExecuting = cPctExecuting;
3634 pState->cPctHalted = cPctHalted;
3635 pState->cPctOther = cPctOther;
3636
3637 pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
3638 pState->aHistory[idxHistory].cPctHalted = cPctHalted;
3639 pState->aHistory[idxHistory].cPctOther = cPctOther;
3640
3641 pState->idxHistory = (uint16_t)idxHistory;
3642 if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
3643 pState->cHistoryEntries++;
3644}
3645
3646
3647/**
3648 * @callback_method_impl{FNTMTIMERINT,
3649 * Timer callback that calculates the CPU load since the last
3650 * time it was called.}
3651 */
3652static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
3653{
3654 /*
3655 * Re-arm the timer first.
3656 */
3657 int rc = TMTimerSetMillies(pVM, hTimer, 1000);
3658 AssertLogRelRC(rc);
3659 NOREF(pvUser);
3660
3661 /*
3662 * Update the values for each CPU.
3663 */
3664 uint64_t cNsTotalAll = 0;
3665 uint64_t cNsExecutingAll = 0;
3666 uint64_t cNsHaltedAll = 0;
3667 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3668 {
3669 PVMCPU pVCpu = pVM->apCpusR3[iCpu];
3670
3671 /* Try get a stable data set. */
3672 uint32_t cTries = 3;
3673 uint64_t nsNow = RTTimeNanoTS();
3674 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3675 bool fSuspended = pVCpu->tm.s.fSuspended;
3676 uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal;
3677 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3678 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3679 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3680 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3681 {
3682 if (!--cTries)
3683 break;
3684 ASMNopPause();
3685 nsNow = RTTimeNanoTS();
3686 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3687 fSuspended = pVCpu->tm.s.fSuspended;
3688 nsStartTotal = pVCpu->tm.s.nsStartTotal;
3689 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3690 cNsHalted = pVCpu->tm.s.cNsHalted;
3691 }
3692
3693 /* Totals */
3694 uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal;
3695 cNsTotalAll += cNsTotal;
3696 cNsExecutingAll += cNsExecuting;
3697 cNsHaltedAll += cNsHalted;
3698
3699 /* Calc the PCTs and update the state. */
3700 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3701
3702 /* Tell the VCpu to update the other and total stat members. */
3703 ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true);
3704 }
3705
3706 /*
3707 * Update the value for all the CPUs.
3708 */
3709 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3710
3711}
3712
3713#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3714
3715
3716/**
3717 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3718 * Worker for TMR3CpuTickParavirtEnable}
3719 */
3720static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3721{
3722 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3723 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
3724 Assert(tmR3HasFixedTSC(pVM));
3725
3726 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3727 {
3728 /*
3729 * The return value of TMCpuTickGet() and the guest's TSC value for each
3730 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3731 * the following equation (new/old signifies the new/old tsc modes):
3732 * uNewTsc = uOldTsc
3733 *
3734 * Where (see tmCpuTickGetInternal):
3735 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3736 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3737 *
3738 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3739 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3740 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3741 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3742 */
3743 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3744 uint64_t uRawNewTsc = SUPReadTsc();
3745 uint32_t cCpus = pVM->cCpus;
3746 for (uint32_t i = 0; i < cCpus; i++)
3747 {
3748 PVMCPU pVCpu = pVM->apCpusR3[i];
3749 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3750 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3751 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3752 }
3753
3754 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3755 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3756 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3757 }
3758 return VINF_SUCCESS;
3759}
3760
3761
3762/**
3763 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3764 *
3765 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3766 *
3767 * @returns VBox status code.
3768 * @param pVM The cross context VM structure.
3769 */
3770VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3771{
3772 int rc = VINF_SUCCESS;
3773 if (pVM->tm.s.fTSCModeSwitchAllowed)
3774 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3775 else
3776 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3777 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3778 pVM->tm.s.fParavirtTscEnabled = true;
3779 return rc;
3780}
3781
3782
3783/**
3784 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3785 * Worker for TMR3CpuTickParavirtDisable}
3786 */
3787static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3788{
3789 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3790 RT_NOREF1(pvData);
3791
3792 if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3793 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3794 {
3795 /*
3796 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3797 */
3798 uint64_t uRawOldTsc = SUPReadTsc();
3799 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3800 uint32_t cCpus = pVM->cCpus;
3801 for (uint32_t i = 0; i < cCpus; i++)
3802 {
3803 PVMCPU pVCpu = pVM->apCpusR3[i];
3804 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3805 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3806 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3807
3808 /* Update the last-seen tick here as we havent't been updating it (as we don't
3809 need it) while in pure TSC-offsetting mode. */
3810 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3811 }
3812
3813 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3814 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3815 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3816 }
3817 return VINF_SUCCESS;
3818}
3819
3820
3821/**
3822 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3823 *
3824 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3825 * perform an EMT rendezvous to revert those changes.
3826 *
3827 * @returns VBox status code.
3828 * @param pVM The cross context VM structure.
3829 */
3830VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3831{
3832 int rc = VINF_SUCCESS;
3833 if (pVM->tm.s.fTSCModeSwitchAllowed)
3834 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3835 pVM->tm.s.fParavirtTscEnabled = false;
3836 return rc;
3837}
3838
3839
3840/**
3841 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3842 *
3843 * @returns true if TSC is stable, false otherwise.
3844 * @param pVM The cross context VM structure.
3845 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3846 * paravirt. TSC is enabled or not.
3847 *
3848 * @remarks Must be called only after TMR3InitFinalize().
3849 */
3850VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3851{
3852 /** @todo figure out what exactly we want here later. */
3853 NOREF(fWithParavirtEnabled);
3854 PSUPGLOBALINFOPAGE pGip;
3855 return tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3856 && ( (pGip = g_pSUPGlobalInfoPage) == NULL /* Can be NULL in driverless mode. */
3857 || (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)); /* GIP thinks it's monotonic. */
3858}
3859
3860
3861/**
3862 * Gets the 5 char clock name for the info tables.
3863 *
3864 * @returns The name.
3865 * @param enmClock The clock.
3866 */
3867DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3868{
3869 switch (enmClock)
3870 {
3871 case TMCLOCK_REAL: return "Real ";
3872 case TMCLOCK_VIRTUAL: return "Virt ";
3873 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3874 case TMCLOCK_TSC: return "TSC ";
3875 default: return "Bad ";
3876 }
3877}
3878
3879
3880/**
3881 * Display all timers.
3882 *
3883 * @param pVM The cross context VM structure.
3884 * @param pHlp The info helpers.
3885 * @param pszArgs Arguments, ignored.
3886 */
3887static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3888{
3889 NOREF(pszArgs);
3890 pHlp->pfnPrintf(pHlp,
3891 "Timers (pVM=%p)\n"
3892 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3893 pVM,
3894 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3895 sizeof(int32_t) * 2, "offNext ",
3896 sizeof(int32_t) * 2, "offPrev ",
3897 sizeof(int32_t) * 2, "offSched ",
3898 "Time",
3899 "Expire",
3900 "HzHint",
3901 "State");
3902 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3903 {
3904 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3905 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3906 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
3907 for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++)
3908 {
3909 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
3910 TMTIMERSTATE enmState = pTimer->enmState;
3911 if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID)
3912 pHlp->pfnPrintf(pHlp,
3913 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3914 pTimer,
3915 pTimer->idxNext,
3916 pTimer->idxPrev,
3917 pTimer->idxScheduleNext,
3918 pszClock,
3919 TMTimerGet(pVM, pTimer->hSelf),
3920 pTimer->u64Expire,
3921 pTimer->uHzHint,
3922 tmTimerState(enmState),
3923 pTimer->szName);
3924 }
3925 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
3926 }
3927}
3928
3929
3930/**
3931 * Display all active timers.
3932 *
3933 * @param pVM The cross context VM structure.
3934 * @param pHlp The info helpers.
3935 * @param pszArgs Arguments, ignored.
3936 */
3937static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3938{
3939 NOREF(pszArgs);
3940 pHlp->pfnPrintf(pHlp,
3941 "Active Timers (pVM=%p)\n"
3942 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3943 pVM,
3944 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3945 sizeof(int32_t) * 2, "offNext ",
3946 sizeof(int32_t) * 2, "offPrev ",
3947 sizeof(int32_t) * 2, "offSched ",
3948 "Time",
3949 "Expire",
3950 "HzHint",
3951 "State");
3952 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3953 {
3954 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3955 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3956 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
3957 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
3958
3959 for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue);
3960 pTimer;
3961 pTimer = tmTimerGetNext(pQueue, pTimer))
3962 {
3963 pHlp->pfnPrintf(pHlp,
3964 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3965 pTimer,
3966 pTimer->idxNext,
3967 pTimer->idxPrev,
3968 pTimer->idxScheduleNext,
3969 pszClock,
3970 TMTimerGet(pVM, pTimer->hSelf),
3971 pTimer->u64Expire,
3972 pTimer->uHzHint,
3973 tmTimerState(pTimer->enmState),
3974 pTimer->szName);
3975 }
3976
3977 PDMCritSectLeave(pVM, &pQueue->TimerLock);
3978 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
3979 }
3980}
3981
3982
3983/**
3984 * Display all clocks.
3985 *
3986 * @param pVM The cross context VM structure.
3987 * @param pHlp The info helpers.
3988 * @param pszArgs Arguments, ignored.
3989 */
3990static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3991{
3992 NOREF(pszArgs);
3993
3994 /*
3995 * Read the times first to avoid more than necessary time variation.
3996 */
3997 const uint64_t u64Virtual = TMVirtualGet(pVM);
3998 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3999 const uint64_t u64Real = TMRealGet(pVM);
4000
4001 for (VMCPUID i = 0; i < pVM->cCpus; i++)
4002 {
4003 PVMCPU pVCpu = pVM->apCpusR3[i];
4004 uint64_t u64TSC = TMCpuTickGet(pVCpu);
4005
4006 /*
4007 * TSC
4008 */
4009 pHlp->pfnPrintf(pHlp,
4010 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
4011 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
4012 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
4013 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
4014 {
4015 pHlp->pfnPrintf(pHlp, " - real tsc offset");
4016 if (pVCpu->tm.s.offTSCRawSrc)
4017 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
4018 }
4019 else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
4020 pHlp->pfnPrintf(pHlp, " - native api");
4021 else
4022 pHlp->pfnPrintf(pHlp, " - virtual clock");
4023 pHlp->pfnPrintf(pHlp, "\n");
4024 }
4025
4026 /*
4027 * virtual
4028 */
4029 pHlp->pfnPrintf(pHlp,
4030 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
4031 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
4032 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
4033 if (pVM->tm.s.fVirtualWarpDrive)
4034 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
4035 pHlp->pfnPrintf(pHlp, "\n");
4036
4037 /*
4038 * virtual sync
4039 */
4040 pHlp->pfnPrintf(pHlp,
4041 "VirtSync: %18RU64 (%#016RX64) %s%s",
4042 u64VirtualSync, u64VirtualSync,
4043 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
4044 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
4045 if (pVM->tm.s.offVirtualSync)
4046 {
4047 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
4048 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
4049 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
4050 }
4051 pHlp->pfnPrintf(pHlp, "\n");
4052
4053 /*
4054 * real
4055 */
4056 pHlp->pfnPrintf(pHlp,
4057 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
4058 u64Real, u64Real, TMRealGetFreq(pVM));
4059}
4060
4061
4062/**
4063 * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
4064 */
4065DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
4066{
4067 if (cchWidth != 100)
4068 uPct = (size_t)(((double)uPct + 0.5) * ((double)cchWidth / 100.0));
4069 return uPct;
4070}
4071
4072
4073/**
4074 * @callback_method_impl{FNDBGFINFOARGVINT}
4075 */
4076static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
4077{
4078 char szTmp[1024];
4079
4080 /*
4081 * Parse arguments.
4082 */
4083 PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
4084 VMCPUID idCpu = 0;
4085 bool fAllCpus = true;
4086 bool fExpGraph = true;
4087 uint32_t cchWidth = 80;
4088 uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
4089 uint32_t cRows = 60;
4090
4091 static const RTGETOPTDEF s_aOptions[] =
4092 {
4093 { "all", 'a', RTGETOPT_REQ_NOTHING },
4094 { "cpu", 'c', RTGETOPT_REQ_UINT32 },
4095 { "periods", 'p', RTGETOPT_REQ_UINT32 },
4096 { "rows", 'r', RTGETOPT_REQ_UINT32 },
4097 { "uni", 'u', RTGETOPT_REQ_NOTHING },
4098 { "uniform", 'u', RTGETOPT_REQ_NOTHING },
4099 { "width", 'w', RTGETOPT_REQ_UINT32 },
4100 { "exp", 'x', RTGETOPT_REQ_NOTHING },
4101 { "exponential", 'x', RTGETOPT_REQ_NOTHING },
4102 };
4103
4104 RTGETOPTSTATE State;
4105 int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
4106 AssertRC(rc);
4107
4108 RTGETOPTUNION ValueUnion;
4109 while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
4110 {
4111 switch (rc)
4112 {
4113 case 'a':
4114 pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
4115 idCpu = 0;
4116 fAllCpus = true;
4117 break;
4118 case 'c':
4119 if (ValueUnion.u32 < pVM->cCpus)
4120 {
4121 pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
4122 idCpu = ValueUnion.u32;
4123 }
4124 else
4125 {
4126 pState = &pVM->tm.s.CpuLoad;
4127 idCpu = VMCPUID_ALL;
4128 }
4129 fAllCpus = false;
4130 break;
4131 case 'p':
4132 cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
4133 break;
4134 case 'r':
4135 cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
4136 break;
4137 case 'w':
4138 cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
4139 break;
4140 case 'x':
4141 fExpGraph = true;
4142 break;
4143 case 'u':
4144 fExpGraph = false;
4145 break;
4146 case 'h':
4147 pHlp->pfnPrintf(pHlp,
4148 "Usage: cpuload [parameters]\n"
4149 " all, -a\n"
4150 " Show statistics for all CPUs. (default)\n"
4151 " cpu=id, -c id\n"
4152 " Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
4153 " periods=count, -p count\n"
4154 " Number of periods to show. Default: all\n"
4155 " rows=count, -r count\n"
4156 " Number of rows in the graphs. Default: 60\n"
4157 " width=count, -w count\n"
4158 " Core graph width in characters. Default: 80\n"
4159 " exp, exponential, -e\n"
4160 " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
4161 " rest into increasinly larger chunks. Default.\n"
4162 " uniform, uni, -u\n"
4163 " Combine periods into rows in a uniform manner for the whole graph.\n");
4164 return;
4165 default:
4166 pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
4167 return;
4168 }
4169 }
4170
4171 /*
4172 * Do the job.
4173 */
4174 for (;;)
4175 {
4176 uint32_t const cMaxPeriods = pState->cHistoryEntries;
4177 if (cPeriods > cMaxPeriods)
4178 cPeriods = cMaxPeriods;
4179 if (cPeriods > 0)
4180 {
4181 if (fAllCpus)
4182 {
4183 if (idCpu > 0)
4184 pHlp->pfnPrintf(pHlp, "\n");
4185 pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
4186 " -------------------------------\n", idCpu);
4187 }
4188
4189 /*
4190 * Figure number of periods per chunk. We can either do this in a linear
4191 * fashion or a exponential fashion that compresses old history more.
4192 */
4193 size_t cPerRowDecrement = 0;
4194 size_t cPeriodsPerRow = 1;
4195 if (cRows < cPeriods)
4196 {
4197 if (!fExpGraph)
4198 cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
4199 else
4200 {
4201 /* The last 30 seconds or half of the rows are 1:1, the other part
4202 is in increasing period counts. Code is a little simple but seems
4203 to do the job most of the time, which is all I have time now. */
4204 size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
4205 size_t cRestRows = cRows - cPeriodsOneToOne;
4206 size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
4207
4208 size_t cPeriodsInWindow = 0;
4209 for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
4210 cPeriodsInWindow += cPeriodsPerRow + 1;
4211
4212 size_t iLower = 1;
4213 while (cPeriodsInWindow < cRestPeriods)
4214 {
4215 cPeriodsPerRow++;
4216 cPeriodsInWindow += cPeriodsPerRow;
4217 cPeriodsInWindow -= iLower;
4218 iLower++;
4219 }
4220
4221 cPerRowDecrement = 1;
4222 }
4223 }
4224
4225 /*
4226 * Do the work.
4227 */
4228 size_t cPctExecuting = 0;
4229 size_t cPctOther = 0;
4230 size_t cPeriodsAccumulated = 0;
4231
4232 size_t cRowsLeft = cRows;
4233 size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
4234 while (cPeriods-- > 0)
4235 {
4236 iHistory++;
4237 if (iHistory >= RT_ELEMENTS(pState->aHistory))
4238 iHistory = 0;
4239
4240 cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
4241 cPctOther += pState->aHistory[iHistory].cPctOther;
4242 cPeriodsAccumulated += 1;
4243 if ( cPeriodsAccumulated >= cPeriodsPerRow
4244 || cPeriods < cRowsLeft)
4245 {
4246 /*
4247 * Format and output the line.
4248 */
4249 size_t offTmp = 0;
4250 size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
4251 while (i-- > 0)
4252 szTmp[offTmp++] = '#';
4253 i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
4254 while (i-- > 0)
4255 szTmp[offTmp++] = 'O';
4256 szTmp[offTmp] = '\0';
4257
4258 cRowsLeft--;
4259 pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
4260
4261 /* Reset the state: */
4262 cPctExecuting = 0;
4263 cPctOther = 0;
4264 cPeriodsAccumulated = 0;
4265 if (cPeriodsPerRow > cPerRowDecrement)
4266 cPeriodsPerRow -= cPerRowDecrement;
4267 }
4268 }
4269 pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
4270
4271 }
4272 else
4273 pHlp->pfnPrintf(pHlp, "No load data.\n");
4274
4275 /*
4276 * Next CPU if we're display all.
4277 */
4278 if (!fAllCpus)
4279 break;
4280 idCpu++;
4281 if (idCpu >= pVM->cCpus)
4282 break;
4283 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
4284 }
4285
4286}
4287
4288
4289/**
4290 * Gets the descriptive TM TSC mode name given the enum value.
4291 *
4292 * @returns The name.
4293 * @param enmMode The mode to name.
4294 */
4295static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
4296{
4297 switch (enmMode)
4298 {
4299 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset";
4300 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated";
4301 case TMTSCMODE_DYNAMIC: return "Dynamic";
4302 case TMTSCMODE_NATIVE_API: return "NativeApi";
4303 default: return "???";
4304 }
4305}
4306
4307
4308/**
4309 * Gets the descriptive TM TSC mode name.
4310 *
4311 * @returns The name.
4312 * @param pVM The cross context VM structure.
4313 */
4314static const char *tmR3GetTSCModeName(PVM pVM)
4315{
4316 Assert(pVM);
4317 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
4318}
4319
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette