VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 54914

Last change on this file since 54914 was 54914, checked in by vboxsync, 10 years ago

VMM/TM: assertion not valid while restoring state.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 147.6 KB
Line 
1/* $Id: TM.cpp 54914 2015-03-24 10:20:09Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119/*******************************************************************************
120* Header Files *
121*******************************************************************************/
122#define LOG_GROUP LOG_GROUP_TM
123#include <VBox/vmm/tm.h>
124#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGIP from sup.h */
125#include <VBox/vmm/vmm.h>
126#include <VBox/vmm/mm.h>
127#include <VBox/vmm/hm.h>
128#include <VBox/vmm/gim.h>
129#include <VBox/vmm/ssm.h>
130#include <VBox/vmm/dbgf.h>
131#include <VBox/vmm/dbgftrace.h>
132#ifdef VBOX_WITH_REM
133# include <VBox/vmm/rem.h>
134#endif
135#include <VBox/vmm/pdmapi.h>
136#include <VBox/vmm/iom.h>
137#include "TMInternal.h"
138#include <VBox/vmm/vm.h>
139#include <VBox/vmm/uvm.h>
140
141#include <VBox/vmm/pdmdev.h>
142#include <VBox/param.h>
143#include <VBox/err.h>
144
145#include <VBox/log.h>
146#include <iprt/asm.h>
147#include <iprt/asm-math.h>
148#include <iprt/assert.h>
149#include <iprt/thread.h>
150#include <iprt/time.h>
151#include <iprt/timer.h>
152#include <iprt/semaphore.h>
153#include <iprt/string.h>
154#include <iprt/env.h>
155
156#include "TMInline.h"
157
158
159/*******************************************************************************
160* Defined Constants And Macros *
161*******************************************************************************/
162/** The current saved state version.*/
163#define TM_SAVED_STATE_VERSION 3
164
165
166/*******************************************************************************
167* Internal Functions *
168*******************************************************************************/
169static bool tmR3HasFixedTSC(PVM pVM);
170static const char * tmR3GetTSCModeName(PVM pVM);
171static uint64_t tmR3CalibrateTSC(PVM pVM);
172static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
173static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
174static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
175static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
176static void tmR3TimerQueueRunVirtualSync(PVM pVM);
177static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
178#ifndef VBOX_WITHOUT_NS_ACCOUNTING
179static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
180#endif
181static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
182static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
183static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
184static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
185
186
187/**
188 * Initializes the TM.
189 *
190 * @returns VBox status code.
191 * @param pVM Pointer to the VM.
192 */
193VMM_INT_DECL(int) TMR3Init(PVM pVM)
194{
195 LogFlow(("TMR3Init:\n"));
196
197 /*
198 * Assert alignment and sizes.
199 */
200 AssertCompileMemberAlignment(VM, tm.s, 32);
201 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
202 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
203 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
204
205 /*
206 * Init the structure.
207 */
208 void *pv;
209 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
210 AssertRCReturn(rc, rc);
211 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
212 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
213 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
214
215 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
216 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
217 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
218 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
219 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
220 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
221 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
222 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
223 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
224 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
225
226
227 /*
228 * We directly use the GIP to calculate the virtual time. We map the
229 * the GIP into the guest context so we can do this calculation there
230 * as well and save costly world switches.
231 */
232 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
233 pVM->tm.s.pvGIPR3 = (void *)pGip;
234 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
235 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
236 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
237 VERR_TM_GIP_VERSION);
238
239 RTHCPHYS HCPhysGIP;
240 rc = SUPR3GipGetPhys(&HCPhysGIP);
241 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
242
243 RTGCPTR GCPtr;
244#ifdef SUP_WITH_LOTS_OF_CPUS
245 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
246 "GIP", &GCPtr);
247#else
248 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
249#endif
250 if (RT_FAILURE(rc))
251 {
252 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
253 return rc;
254 }
255 pVM->tm.s.pvGIPRC = GCPtr;
256 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
257 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
258
259 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
260 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
261 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
262 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
263 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
264 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
265
266 /* Log GIP info that may come in handy. */
267 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d fGetGipCpu=%#x cCpus=%d\n",
268 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
269 pGip->enmUseTscDelta, pGip->fGetGipCpu, pGip->cCpus));
270 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
271 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
272 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
273 {
274 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
275 if (iGipCpu != UINT16_MAX)
276 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
277 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
278 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
279 }
280
281 /*
282 * Setup the VirtualGetRaw backend.
283 */
284 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
285 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
286 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBadPrev;
287 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
288 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
289 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
290 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
291 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
292 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
293
294 /*
295 * Init the locks.
296 */
297 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
298 if (RT_FAILURE(rc))
299 return rc;
300 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
301 if (RT_FAILURE(rc))
302 return rc;
303
304 /*
305 * Get our CFGM node, create it if necessary.
306 */
307 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
308 if (!pCfgHandle)
309 {
310 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
311 AssertRCReturn(rc, rc);
312 }
313
314 /*
315 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
316 */
317 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
318 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
319 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"Mode\" setting instead."));
320 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
321 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
322 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"Mode\" setting instead."));
323
324 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
325 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
326 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"Mode\" setting instead."));
327
328 /*
329 * Validate the rest of the TM settings.
330 */
331 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
332 "TSCMode|"
333 "TSCModeSwitchAllowed|"
334 "TSCTicksPerSecond|"
335 "TSCTiedToExecution|"
336 "TSCNotTiedToHalt|"
337 "ScheduleSlack|"
338 "CatchUpStopThreshold|"
339 "CatchUpGiveUpThreshold|"
340 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
341 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
342 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
343 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
344 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
345 "CatchUpPrecentage8|CatchUpPrecentage9|"
346 "UTCOffset|"
347 "WarpDrivePercentage|"
348 "HostHzMax|"
349 "HostHzFudgeFactorTimerCpu|"
350 "HostHzFudgeFactorOtherCpu|"
351 "HostHzFudgeFactorCatchUp100|"
352 "HostHzFudgeFactorCatchUp200|"
353 "HostHzFudgeFactorCatchUp400|"
354 "TimerMillies",
355 "",
356 "TM", 0);
357 if (RT_FAILURE(rc))
358 return rc;
359
360 /*
361 * Determine the TSC configuration and frequency.
362 */
363 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
364 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
365 * The default depends on the VM configuration and the capabilities of the
366 * host CPU. Other config options or runtime changes may override the TSC
367 * mode specified here.
368 */
369 char szTSCMode[32];
370 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
371 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
372 {
373 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
374 * fall back on the more expensive emulated mode. With the current TSC handling
375 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
376 * without any kind of coordination) will lead to inconsistent TSC behavior with
377 * guest SMP, including TSC going backwards. */
378 pVM->tm.s.enmTSCMode = pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
379 }
380 else if (RT_FAILURE(rc))
381 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
382 else
383 {
384 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
385 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
386 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
387 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
388 else if (!RTStrCmp(szTSCMode, "Dynamic"))
389 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
390 else
391 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
392 }
393
394 /**
395 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
396 * at runtime}
397 * When using paravirtualized guests, we dynamically switch TSC modes to a more
398 * optimal one for performance. This setting allows overriding this behaviour.
399 */
400 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
401 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
402 {
403 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
404 pVM->tm.s.fTSCModeSwitchAllowed = true;
405 }
406 else if (RT_FAILURE(rc))
407 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
408
409 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
410 * The number of TSC ticks per second (i.e. the TSC frequency). This will
411 * override enmTSCMode.
412 */
413 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
414 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
415 {
416 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
417 if ( pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET
418 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
419 {
420 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
421 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
422 }
423 }
424 else if (RT_FAILURE(rc))
425 return VMSetError(pVM, rc, RT_SRC_POS,
426 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
427 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
428 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
429 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
430 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
431 pVM->tm.s.cTSCTicksPerSecond);
432 else
433 {
434 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
435 }
436
437 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
438 * Whether the TSC should be tied to execution. This will exclude most of the
439 * virtualization overhead, but will by default include the time spent in the
440 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
441 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
442 * be used avoided or used with great care. Note that this will only work right
443 * together with VT-x or AMD-V, and with a single virtual CPU. */
444 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
445 if (RT_FAILURE(rc))
446 return VMSetError(pVM, rc, RT_SRC_POS,
447 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
448 if (pVM->tm.s.fTSCTiedToExecution)
449 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
450
451 /** @cfgm{/TM/TSCNotTiedToHalt, bool, true}
452 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
453 * to make the TSC freeze during HLT. */
454 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
455 if (RT_FAILURE(rc))
456 return VMSetError(pVM, rc, RT_SRC_POS,
457 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
458
459 /*
460 * Configure the timer synchronous virtual time.
461 */
462 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
463 * Scheduling slack when processing timers. */
464 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
465 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
466 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
467 else if (RT_FAILURE(rc))
468 return VMSetError(pVM, rc, RT_SRC_POS,
469 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
470
471 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
472 * When to stop a catch-up, considering it successful. */
473 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
474 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
475 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
476 else if (RT_FAILURE(rc))
477 return VMSetError(pVM, rc, RT_SRC_POS,
478 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
479
480 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
481 * When to give up a catch-up attempt. */
482 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
483 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
484 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
485 else if (RT_FAILURE(rc))
486 return VMSetError(pVM, rc, RT_SRC_POS,
487 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
488
489
490 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
491 * The catch-up percent for a given period. */
492 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
493 * The catch-up period threshold, or if you like, when a period starts. */
494#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
495 do \
496 { \
497 uint64_t u64; \
498 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
499 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
500 u64 = UINT64_C(DefStart); \
501 else if (RT_FAILURE(rc)) \
502 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
503 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
504 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
505 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
506 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
507 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
508 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
509 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
510 else if (RT_FAILURE(rc)) \
511 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
512 } while (0)
513 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
514 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
515 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
516 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
517 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
518 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
519 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
520 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
521 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
522 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
523 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
524 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
525#undef TM_CFG_PERIOD
526
527 /*
528 * Configure real world time (UTC).
529 */
530 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
531 * The UTC offset. This is used to put the guest back or forwards in time. */
532 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
533 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
534 pVM->tm.s.offUTC = 0; /* ns */
535 else if (RT_FAILURE(rc))
536 return VMSetError(pVM, rc, RT_SRC_POS,
537 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
538
539 /*
540 * Setup the warp drive.
541 */
542 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
543 * The warp drive percentage, 100% is normal speed. This is used to speed up
544 * or slow down the virtual clock, which can be useful for fast forwarding
545 * borring periods during tests. */
546 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
547 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
548 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
549 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
550 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
551 else if (RT_FAILURE(rc))
552 return VMSetError(pVM, rc, RT_SRC_POS,
553 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
554 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
555 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
556 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
557 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
558 pVM->tm.s.u32VirtualWarpDrivePercentage);
559 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
560 if (pVM->tm.s.fVirtualWarpDrive)
561 {
562 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
563 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
564 }
565
566 /*
567 * Gather the Host Hz configuration values.
568 */
569 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
570 if (RT_FAILURE(rc))
571 return VMSetError(pVM, rc, RT_SRC_POS,
572 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
573
574 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
575 if (RT_FAILURE(rc))
576 return VMSetError(pVM, rc, RT_SRC_POS,
577 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
578
579 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
580 if (RT_FAILURE(rc))
581 return VMSetError(pVM, rc, RT_SRC_POS,
582 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
583
584 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
585 if (RT_FAILURE(rc))
586 return VMSetError(pVM, rc, RT_SRC_POS,
587 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
588
589 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
590 if (RT_FAILURE(rc))
591 return VMSetError(pVM, rc, RT_SRC_POS,
592 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
593
594 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
595 if (RT_FAILURE(rc))
596 return VMSetError(pVM, rc, RT_SRC_POS,
597 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
598
599 /*
600 * Finally, setup and report.
601 */
602 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
603 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
604 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s)\n"
605 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
606 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
607 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
608
609 /*
610 * Start the timer (guard against REM not yielding).
611 */
612 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
613 * The watchdog timer interval. */
614 uint32_t u32Millies;
615 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
616 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
617 u32Millies = 10;
618 else if (RT_FAILURE(rc))
619 return VMSetError(pVM, rc, RT_SRC_POS,
620 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
621 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
622 if (RT_FAILURE(rc))
623 {
624 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
625 return rc;
626 }
627 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
628 pVM->tm.s.u32TimerMillies = u32Millies;
629
630 /*
631 * Register saved state.
632 */
633 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
634 NULL, NULL, NULL,
635 NULL, tmR3Save, NULL,
636 NULL, tmR3Load, NULL);
637 if (RT_FAILURE(rc))
638 return rc;
639
640 /*
641 * Register statistics.
642 */
643 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
644 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
645 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
646 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
647 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
648 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
649 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
650 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
651 STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
652
653#ifdef VBOX_WITH_STATISTICS
654 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
655 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
656 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
657 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
658 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
659 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
660 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
661 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
662 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
663 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
664
665 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
666 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
667 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
668 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
669 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
670 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
671 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
672 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
673
674 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
675 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
676
677 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
678 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
679 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
680
681 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
682 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
683 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
684 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
685 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
686 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
687 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
688 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
689 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
690 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
691 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
692 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
693
694 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
695 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
696 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
697 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
698 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
699 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
700
701 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
702 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
703 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
704 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
705 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
706 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
707 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
708 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
709 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
710 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
711 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
712 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
713
714 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
715 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
716 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
717 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
718 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
719 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
720
721 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
722 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
723
724 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
725 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
726 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
727 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
728 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
729 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
730 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
731 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
732 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
733 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
734 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
735
736 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
737 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
738
739 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
740 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
741 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
742 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
743 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
744 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
745 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
746 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
747 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
748 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
749 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
750 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
751#endif /* VBOX_WITH_STATISTICS */
752
753 for (VMCPUID i = 0; i < pVM->cCpus; i++)
754 {
755 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
756#ifndef VBOX_WITHOUT_NS_ACCOUNTING
757# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
758 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
759 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
760 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
761 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
762 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
763 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
764 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
765# endif
766 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
767 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
768 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
769 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
770 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
771 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
772 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
773 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
774 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
775#endif
776 }
777#ifndef VBOX_WITHOUT_NS_ACCOUNTING
778 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
779 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
780 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
781#endif
782
783#ifdef VBOX_WITH_STATISTICS
784 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
785 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
786 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
787 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
788 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
789 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
790 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
791 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
792 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
793 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
794 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
795 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
796 {
797 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
798 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
799 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
800 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
801 }
802#endif /* VBOX_WITH_STATISTICS */
803
804 /*
805 * Register info handlers.
806 */
807 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
808 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
809 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
810
811 return VINF_SUCCESS;
812}
813
814
815/**
816 * Checks if the host CPU has a fixed TSC frequency.
817 *
818 * @returns true if it has, false if it hasn't.
819 *
820 * @remark This test doesn't bother with very old CPUs that don't do power
821 * management or any other stuff that might influence the TSC rate.
822 * This isn't currently relevant.
823 */
824static bool tmR3HasFixedTSC(PVM pVM)
825{
826 /*
827 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
828 * actually has invariant TSC.
829 */
830 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
831 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
832 return true;
833
834 /*
835 * Go by features and model info from the CPUID instruction.
836 */
837 if (ASMHasCpuId())
838 {
839 uint32_t uEAX, uEBX, uECX, uEDX;
840
841 /*
842 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
843 */
844 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
845 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
846 {
847 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
848 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
849 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
850 return true;
851 }
852
853 /*
854 * By model.
855 */
856 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
857 {
858 /*
859 * AuthenticAMD - Check for APM support and that TscInvariant is set.
860 *
861 * This test isn't correct with respect to fixed/non-fixed TSC and
862 * older models, but this isn't relevant since the result is currently
863 * only used for making a decision on AMD-V models.
864 */
865#if 0 /* Promoted to generic */
866 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
867 if (uEAX >= 0x80000007)
868 {
869 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
870 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
871 && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
872 || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
873 return true;
874 }
875#endif
876 }
877 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
878 {
879 /*
880 * GenuineIntel - Check the model number.
881 *
882 * This test is lacking in the same way and for the same reasons
883 * as the AMD test above.
884 */
885 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
886 unsigned uModel = (uEAX >> 4) & 0x0f;
887 unsigned uFamily = (uEAX >> 8) & 0x0f;
888 if (uFamily == 0x0f)
889 uFamily += (uEAX >> 20) & 0xff;
890 if (uFamily >= 0x06)
891 uModel += ((uEAX >> 16) & 0x0f) << 4;
892 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
893 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
894 return true;
895 }
896 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
897 {
898 /*
899 * CentaurHauls - Check the model, family and stepping.
900 *
901 * This only checks for VIA CPU models Nano X2, Nano X3,
902 * Eden X2 and QuadCore.
903 */
904 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
905 unsigned uStepping = (uEAX & 0x0f);
906 unsigned uModel = (uEAX >> 4) & 0x0f;
907 unsigned uFamily = (uEAX >> 8) & 0x0f;
908 if ( uFamily == 0x06
909 && uModel == 0x0f
910 && uStepping >= 0x0c
911 && uStepping <= 0x0f)
912 return true;
913 }
914 }
915 return false;
916}
917
918
919/**
920 * Calibrate the CPU tick.
921 *
922 * @returns Number of ticks per second.
923 */
924static uint64_t tmR3CalibrateTSC(PVM pVM)
925{
926 uint64_t u64Hz;
927
928 /*
929 * Use GIP when available. Prefere the nominal one, no need to wait for it.
930 */
931 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
932 if (pGip)
933 {
934 u64Hz = pGip->u64CpuHz;
935 if (u64Hz < _1T && u64Hz > _1M)
936 return u64Hz;
937 AssertFailed(); /* This shouldn't happen. */
938
939 u64Hz = SUPGetCpuHzFromGip(pGip);
940 if (u64Hz < _1T && u64Hz > _1M)
941 return u64Hz;
942
943 AssertFailed(); /* This shouldn't happen. */
944 }
945 /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
946
947 /* Call this once first to make sure it's initialized. */
948 RTTimeNanoTS();
949
950 /*
951 * Yield the CPU to increase our chances of getting
952 * a correct value.
953 */
954 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
955 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
956 uint64_t au64Samples[5];
957 unsigned i;
958 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
959 {
960 RTMSINTERVAL cMillies;
961 int cTries = 5;
962 uint64_t u64Start = ASMReadTSC();
963 uint64_t u64End;
964 uint64_t StartTS = RTTimeNanoTS();
965 uint64_t EndTS;
966 do
967 {
968 RTThreadSleep(s_auSleep[i]);
969 u64End = ASMReadTSC();
970 EndTS = RTTimeNanoTS();
971 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
972 } while ( cMillies == 0 /* the sleep may be interrupted... */
973 || (cMillies < 20 && --cTries > 0));
974 uint64_t u64Diff = u64End - u64Start;
975
976 au64Samples[i] = (u64Diff * 1000) / cMillies;
977 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
978 }
979
980 /*
981 * Discard the highest and lowest results and calculate the average.
982 */
983 unsigned iHigh = 0;
984 unsigned iLow = 0;
985 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
986 {
987 if (au64Samples[i] < au64Samples[iLow])
988 iLow = i;
989 if (au64Samples[i] > au64Samples[iHigh])
990 iHigh = i;
991 }
992 au64Samples[iLow] = 0;
993 au64Samples[iHigh] = 0;
994
995 u64Hz = au64Samples[0];
996 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
997 u64Hz += au64Samples[i];
998 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
999
1000 return u64Hz;
1001}
1002
1003
1004/**
1005 * Finalizes the TM initialization.
1006 *
1007 * @returns VBox status code.
1008 * @param pVM Pointer to the VM.
1009 */
1010VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1011{
1012 int rc;
1013
1014 /*
1015 * Resolve symbols.
1016 */
1017 if (!HMIsEnabled(pVM))
1018 {
1019 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadPrev", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
1020 AssertRCReturn(rc, rc);
1021 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
1022 AssertRCReturn(rc, rc);
1023 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
1024 AssertRCReturn(rc, rc);
1025 pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
1026 }
1027
1028 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadPrev", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1029 AssertRCReturn(rc, rc);
1030 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1031 AssertRCReturn(rc, rc);
1032 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1033 AssertRCReturn(rc, rc);
1034 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1035
1036#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1037 /*
1038 * Create a timer for refreshing the CPU load stats.
1039 */
1040 PTMTIMER pTimer;
1041 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
1042 if (RT_SUCCESS(rc))
1043 rc = TMTimerSetMillies(pTimer, 1000);
1044#endif
1045
1046 /*
1047 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1048 */
1049 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && HMIsEnabled(pVM);
1050 return rc;
1051}
1052
1053
1054/**
1055 * Applies relocations to data and code managed by this
1056 * component. This function will be called at init and
1057 * whenever the VMM need to relocate it self inside the GC.
1058 *
1059 * @param pVM The VM.
1060 * @param offDelta Relocation delta relative to old location.
1061 */
1062VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1063{
1064 LogFlow(("TMR3Relocate\n"));
1065
1066 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
1067
1068 if (!HMIsEnabled(pVM))
1069 {
1070 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
1071 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
1072 pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
1073 pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
1074 pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
1075 pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
1076 pVM->tm.s.pfnVirtualGetRawRC += offDelta;
1077 }
1078
1079 /*
1080 * Iterate the timers updating the pVMRC pointers.
1081 */
1082 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1083 {
1084 pTimer->pVMRC = pVM->pVMRC;
1085 pTimer->pVMR0 = pVM->pVMR0;
1086 }
1087}
1088
1089
1090/**
1091 * Terminates the TM.
1092 *
1093 * Termination means cleaning up and freeing all resources,
1094 * the VM it self is at this point powered off or suspended.
1095 *
1096 * @returns VBox status code.
1097 * @param pVM Pointer to the VM.
1098 */
1099VMM_INT_DECL(int) TMR3Term(PVM pVM)
1100{
1101 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
1102 if (pVM->tm.s.pTimer)
1103 {
1104 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1105 AssertRC(rc);
1106 pVM->tm.s.pTimer = NULL;
1107 }
1108
1109 return VINF_SUCCESS;
1110}
1111
1112
1113/**
1114 * The VM is being reset.
1115 *
1116 * For the TM component this means that a rescheduling is preformed,
1117 * the FF is cleared and but without running the queues. We'll have to
1118 * check if this makes sense or not, but it seems like a good idea now....
1119 *
1120 * @param pVM Pointer to the VM.
1121 */
1122VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1123{
1124 LogFlow(("TMR3Reset:\n"));
1125 VM_ASSERT_EMT(pVM);
1126 TM_LOCK_TIMERS(pVM);
1127
1128 /*
1129 * Abort any pending catch up.
1130 * This isn't perfect...
1131 */
1132 if (pVM->tm.s.fVirtualSyncCatchUp)
1133 {
1134 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1135 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1136 if (pVM->tm.s.fVirtualSyncCatchUp)
1137 {
1138 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1139
1140 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1141 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1142 Assert(offOld <= offNew);
1143 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1144 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1145 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1146 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1147 }
1148 }
1149
1150 /*
1151 * Process the queues.
1152 */
1153 for (int i = 0; i < TMCLOCK_MAX; i++)
1154 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1155#ifdef VBOX_STRICT
1156 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1157#endif
1158
1159 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1160 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1161
1162 /*
1163 * Switch TM TSC mode back to the original mode after a reset for
1164 * paravirtualized guests that alter the TM TSC mode during operation.
1165 */
1166 if ( pVM->tm.s.fTSCModeSwitchAllowed
1167 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1168 {
1169 VM_ASSERT_EMT0(pVM);
1170 tmR3CpuTickParavirtDisable(pVM, &pVM->aCpus[0], NULL /* pvData */);
1171 }
1172 Assert(!GIMIsParavirtTscEnabled(pVM));
1173 pVM->tm.s.fParavirtTscEnabled = false;
1174
1175 TM_UNLOCK_TIMERS(pVM);
1176}
1177
1178
1179/**
1180 * Resolve a builtin RC symbol.
1181 * Called by PDM when loading or relocating GC modules.
1182 *
1183 * @returns VBox status
1184 * @param pVM Pointer to the VM.
1185 * @param pszSymbol Symbol to resolve.
1186 * @param pRCPtrValue Where to store the symbol value.
1187 * @remark This has to work before TMR3Relocate() is called.
1188 */
1189VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1190{
1191 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1192 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1193 //else if (..)
1194 else
1195 return VERR_SYMBOL_NOT_FOUND;
1196 return VINF_SUCCESS;
1197}
1198
1199
1200/**
1201 * Execute state save operation.
1202 *
1203 * @returns VBox status code.
1204 * @param pVM Pointer to the VM.
1205 * @param pSSM SSM operation handle.
1206 */
1207static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1208{
1209 LogFlow(("tmR3Save:\n"));
1210#ifdef VBOX_STRICT
1211 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1212 {
1213 PVMCPU pVCpu = &pVM->aCpus[i];
1214 Assert(!pVCpu->tm.s.fTSCTicking);
1215 }
1216 Assert(!pVM->tm.s.cVirtualTicking);
1217 Assert(!pVM->tm.s.fVirtualSyncTicking);
1218 Assert(!pVM->tm.s.cTSCsTicking);
1219#endif
1220
1221 /*
1222 * Save the virtual clocks.
1223 */
1224 /* the virtual clock. */
1225 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1226 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1227
1228 /* the virtual timer synchronous clock. */
1229 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1230 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1231 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1232 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1233 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1234
1235 /* real time clock */
1236 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1237
1238 /* the cpu tick clock. */
1239 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1240 {
1241 PVMCPU pVCpu = &pVM->aCpus[i];
1242 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1243 }
1244 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1245}
1246
1247
1248/**
1249 * Execute state load operation.
1250 *
1251 * @returns VBox status code.
1252 * @param pVM Pointer to the VM.
1253 * @param pSSM SSM operation handle.
1254 * @param uVersion Data layout version.
1255 * @param uPass The data pass.
1256 */
1257static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1258{
1259 LogFlow(("tmR3Load:\n"));
1260
1261 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1262#ifdef VBOX_STRICT
1263 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1264 {
1265 PVMCPU pVCpu = &pVM->aCpus[i];
1266 Assert(!pVCpu->tm.s.fTSCTicking);
1267 }
1268 Assert(!pVM->tm.s.cVirtualTicking);
1269 Assert(!pVM->tm.s.fVirtualSyncTicking);
1270 Assert(!pVM->tm.s.cTSCsTicking);
1271#endif
1272
1273 /*
1274 * Validate version.
1275 */
1276 if (uVersion != TM_SAVED_STATE_VERSION)
1277 {
1278 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1279 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1280 }
1281
1282 /*
1283 * Load the virtual clock.
1284 */
1285 pVM->tm.s.cVirtualTicking = 0;
1286 /* the virtual clock. */
1287 uint64_t u64Hz;
1288 int rc = SSMR3GetU64(pSSM, &u64Hz);
1289 if (RT_FAILURE(rc))
1290 return rc;
1291 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1292 {
1293 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1294 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1295 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1296 }
1297 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1298 pVM->tm.s.u64VirtualOffset = 0;
1299
1300 /* the virtual timer synchronous clock. */
1301 pVM->tm.s.fVirtualSyncTicking = false;
1302 uint64_t u64;
1303 SSMR3GetU64(pSSM, &u64);
1304 pVM->tm.s.u64VirtualSync = u64;
1305 SSMR3GetU64(pSSM, &u64);
1306 pVM->tm.s.offVirtualSync = u64;
1307 SSMR3GetU64(pSSM, &u64);
1308 pVM->tm.s.offVirtualSyncGivenUp = u64;
1309 SSMR3GetU64(pSSM, &u64);
1310 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1311 bool f;
1312 SSMR3GetBool(pSSM, &f);
1313 pVM->tm.s.fVirtualSyncCatchUp = f;
1314
1315 /* the real clock */
1316 rc = SSMR3GetU64(pSSM, &u64Hz);
1317 if (RT_FAILURE(rc))
1318 return rc;
1319 if (u64Hz != TMCLOCK_FREQ_REAL)
1320 {
1321 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1322 u64Hz, TMCLOCK_FREQ_REAL));
1323 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1324 }
1325
1326 /* the cpu tick clock. */
1327 pVM->tm.s.cTSCsTicking = 0;
1328 pVM->tm.s.offTSCPause = 0;
1329 pVM->tm.s.u64LastPausedTSC = 0;
1330 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1331 {
1332 PVMCPU pVCpu = &pVM->aCpus[i];
1333
1334 pVCpu->tm.s.fTSCTicking = false;
1335 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1336 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1337 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1338
1339 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1340 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1341 }
1342
1343 rc = SSMR3GetU64(pSSM, &u64Hz);
1344 if (RT_FAILURE(rc))
1345 return rc;
1346 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1347 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1348 /** @todo Compare with real TSC rate even when restoring with real-tsc-offset
1349 * mode. */
1350
1351 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1352 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1353
1354 /*
1355 * Make sure timers get rescheduled immediately.
1356 */
1357 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1358 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1359
1360 return VINF_SUCCESS;
1361}
1362
1363
1364/**
1365 * Internal TMR3TimerCreate worker.
1366 *
1367 * @returns VBox status code.
1368 * @param pVM Pointer to the VM.
1369 * @param enmClock The timer clock.
1370 * @param pszDesc The timer description.
1371 * @param ppTimer Where to store the timer pointer on success.
1372 */
1373static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1374{
1375 VM_ASSERT_EMT(pVM);
1376
1377 /*
1378 * Allocate the timer.
1379 */
1380 PTMTIMERR3 pTimer = NULL;
1381 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1382 {
1383 pTimer = pVM->tm.s.pFree;
1384 pVM->tm.s.pFree = pTimer->pBigNext;
1385 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1386 }
1387
1388 if (!pTimer)
1389 {
1390 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1391 if (RT_FAILURE(rc))
1392 return rc;
1393 Log3(("TM: Allocated new timer %p\n", pTimer));
1394 }
1395
1396 /*
1397 * Initialize it.
1398 */
1399 pTimer->u64Expire = 0;
1400 pTimer->enmClock = enmClock;
1401 pTimer->pVMR3 = pVM;
1402 pTimer->pVMR0 = pVM->pVMR0;
1403 pTimer->pVMRC = pVM->pVMRC;
1404 pTimer->enmState = TMTIMERSTATE_STOPPED;
1405 pTimer->offScheduleNext = 0;
1406 pTimer->offNext = 0;
1407 pTimer->offPrev = 0;
1408 pTimer->pvUser = NULL;
1409 pTimer->pCritSect = NULL;
1410 pTimer->pszDesc = pszDesc;
1411
1412 /* insert into the list of created timers. */
1413 TM_LOCK_TIMERS(pVM);
1414 pTimer->pBigPrev = NULL;
1415 pTimer->pBigNext = pVM->tm.s.pCreated;
1416 pVM->tm.s.pCreated = pTimer;
1417 if (pTimer->pBigNext)
1418 pTimer->pBigNext->pBigPrev = pTimer;
1419#ifdef VBOX_STRICT
1420 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1421#endif
1422 TM_UNLOCK_TIMERS(pVM);
1423
1424 *ppTimer = pTimer;
1425 return VINF_SUCCESS;
1426}
1427
1428
1429/**
1430 * Creates a device timer.
1431 *
1432 * @returns VBox status.
1433 * @param pVM The VM to create the timer in.
1434 * @param pDevIns Device instance.
1435 * @param enmClock The clock to use on this timer.
1436 * @param pfnCallback Callback function.
1437 * @param pvUser The user argument to the callback.
1438 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1439 * @param pszDesc Pointer to description string which must stay around
1440 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1441 * @param ppTimer Where to store the timer on success.
1442 */
1443VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1444 PFNTMTIMERDEV pfnCallback, void *pvUser,
1445 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1446{
1447 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1448
1449 /*
1450 * Allocate and init stuff.
1451 */
1452 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1453 if (RT_SUCCESS(rc))
1454 {
1455 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1456 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1457 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1458 (*ppTimer)->pvUser = pvUser;
1459 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1460 (*ppTimer)->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1461 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1462 }
1463
1464 return rc;
1465}
1466
1467
1468
1469
1470/**
1471 * Creates a USB device timer.
1472 *
1473 * @returns VBox status.
1474 * @param pVM The VM to create the timer in.
1475 * @param pUsbIns The USB device instance.
1476 * @param enmClock The clock to use on this timer.
1477 * @param pfnCallback Callback function.
1478 * @param pvUser The user argument to the callback.
1479 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1480 * @param pszDesc Pointer to description string which must stay around
1481 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1482 * @param ppTimer Where to store the timer on success.
1483 */
1484VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1485 PFNTMTIMERUSB pfnCallback, void *pvUser,
1486 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1487{
1488 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1489
1490 /*
1491 * Allocate and init stuff.
1492 */
1493 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1494 if (RT_SUCCESS(rc))
1495 {
1496 (*ppTimer)->enmType = TMTIMERTYPE_USB;
1497 (*ppTimer)->u.Usb.pfnTimer = pfnCallback;
1498 (*ppTimer)->u.Usb.pUsbIns = pUsbIns;
1499 (*ppTimer)->pvUser = pvUser;
1500 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1501 //{
1502 // if (pDevIns->pCritSectR3)
1503 // (*ppTimer)->pCritSect = pUsbIns->pCritSectR3;
1504 // else
1505 // (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1506 //}
1507 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1508 }
1509
1510 return rc;
1511}
1512
1513
1514/**
1515 * Creates a driver timer.
1516 *
1517 * @returns VBox status.
1518 * @param pVM The VM to create the timer in.
1519 * @param pDrvIns Driver instance.
1520 * @param enmClock The clock to use on this timer.
1521 * @param pfnCallback Callback function.
1522 * @param pvUser The user argument to the callback.
1523 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1524 * @param pszDesc Pointer to description string which must stay around
1525 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1526 * @param ppTimer Where to store the timer on success.
1527 */
1528VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1529 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1530{
1531 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1532
1533 /*
1534 * Allocate and init stuff.
1535 */
1536 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1537 if (RT_SUCCESS(rc))
1538 {
1539 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1540 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1541 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1542 (*ppTimer)->pvUser = pvUser;
1543 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1544 }
1545
1546 return rc;
1547}
1548
1549
1550/**
1551 * Creates an internal timer.
1552 *
1553 * @returns VBox status.
1554 * @param pVM The VM to create the timer in.
1555 * @param enmClock The clock to use on this timer.
1556 * @param pfnCallback Callback function.
1557 * @param pvUser User argument to be passed to the callback.
1558 * @param pszDesc Pointer to description string which must stay around
1559 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1560 * @param ppTimer Where to store the timer on success.
1561 */
1562VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1563{
1564 /*
1565 * Allocate and init stuff.
1566 */
1567 PTMTIMER pTimer;
1568 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1569 if (RT_SUCCESS(rc))
1570 {
1571 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1572 pTimer->u.Internal.pfnTimer = pfnCallback;
1573 pTimer->pvUser = pvUser;
1574 *ppTimer = pTimer;
1575 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1576 }
1577
1578 return rc;
1579}
1580
1581/**
1582 * Creates an external timer.
1583 *
1584 * @returns Timer handle on success.
1585 * @returns NULL on failure.
1586 * @param pVM The VM to create the timer in.
1587 * @param enmClock The clock to use on this timer.
1588 * @param pfnCallback Callback function.
1589 * @param pvUser User argument.
1590 * @param pszDesc Pointer to description string which must stay around
1591 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1592 */
1593VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1594{
1595 /*
1596 * Allocate and init stuff.
1597 */
1598 PTMTIMERR3 pTimer;
1599 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1600 if (RT_SUCCESS(rc))
1601 {
1602 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1603 pTimer->u.External.pfnTimer = pfnCallback;
1604 pTimer->pvUser = pvUser;
1605 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1606 return pTimer;
1607 }
1608
1609 return NULL;
1610}
1611
1612
1613/**
1614 * Destroy a timer
1615 *
1616 * @returns VBox status.
1617 * @param pTimer Timer handle as returned by one of the create functions.
1618 */
1619VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1620{
1621 /*
1622 * Be extra careful here.
1623 */
1624 if (!pTimer)
1625 return VINF_SUCCESS;
1626 AssertPtr(pTimer);
1627 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1628
1629 PVM pVM = pTimer->CTX_SUFF(pVM);
1630 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1631 bool fActive = false;
1632 bool fPending = false;
1633
1634 AssertMsg( !pTimer->pCritSect
1635 || VMR3GetState(pVM) != VMSTATE_RUNNING
1636 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1637
1638 /*
1639 * The rest of the game happens behind the lock, just
1640 * like create does. All the work is done here.
1641 */
1642 TM_LOCK_TIMERS(pVM);
1643 for (int cRetries = 1000;; cRetries--)
1644 {
1645 /*
1646 * Change to the DESTROY state.
1647 */
1648 TMTIMERSTATE const enmState = pTimer->enmState;
1649 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1650 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1651 switch (enmState)
1652 {
1653 case TMTIMERSTATE_STOPPED:
1654 case TMTIMERSTATE_EXPIRED_DELIVER:
1655 break;
1656
1657 case TMTIMERSTATE_ACTIVE:
1658 fActive = true;
1659 break;
1660
1661 case TMTIMERSTATE_PENDING_STOP:
1662 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1663 case TMTIMERSTATE_PENDING_RESCHEDULE:
1664 fActive = true;
1665 fPending = true;
1666 break;
1667
1668 case TMTIMERSTATE_PENDING_SCHEDULE:
1669 fPending = true;
1670 break;
1671
1672 /*
1673 * This shouldn't happen as the caller should make sure there are no races.
1674 */
1675 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1676 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1677 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1678 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1679 TM_UNLOCK_TIMERS(pVM);
1680 if (!RTThreadYield())
1681 RTThreadSleep(1);
1682 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1683 VERR_TM_UNSTABLE_STATE);
1684 TM_LOCK_TIMERS(pVM);
1685 continue;
1686
1687 /*
1688 * Invalid states.
1689 */
1690 case TMTIMERSTATE_FREE:
1691 case TMTIMERSTATE_DESTROY:
1692 TM_UNLOCK_TIMERS(pVM);
1693 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1694
1695 default:
1696 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1697 TM_UNLOCK_TIMERS(pVM);
1698 return VERR_TM_UNKNOWN_STATE;
1699 }
1700
1701 /*
1702 * Try switch to the destroy state.
1703 * This should always succeed as the caller should make sure there are no race.
1704 */
1705 bool fRc;
1706 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1707 if (fRc)
1708 break;
1709 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1710 TM_UNLOCK_TIMERS(pVM);
1711 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1712 VERR_TM_UNSTABLE_STATE);
1713 TM_LOCK_TIMERS(pVM);
1714 }
1715
1716 /*
1717 * Unlink from the active list.
1718 */
1719 if (fActive)
1720 {
1721 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1722 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1723 if (pPrev)
1724 TMTIMER_SET_NEXT(pPrev, pNext);
1725 else
1726 {
1727 TMTIMER_SET_HEAD(pQueue, pNext);
1728 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1729 }
1730 if (pNext)
1731 TMTIMER_SET_PREV(pNext, pPrev);
1732 pTimer->offNext = 0;
1733 pTimer->offPrev = 0;
1734 }
1735
1736 /*
1737 * Unlink from the schedule list by running it.
1738 */
1739 if (fPending)
1740 {
1741 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1742 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1743 Assert(pQueue->offSchedule);
1744 tmTimerQueueSchedule(pVM, pQueue);
1745 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1746 }
1747
1748 /*
1749 * Read to move the timer from the created list and onto the free list.
1750 */
1751 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1752
1753 /* unlink from created list */
1754 if (pTimer->pBigPrev)
1755 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1756 else
1757 pVM->tm.s.pCreated = pTimer->pBigNext;
1758 if (pTimer->pBigNext)
1759 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1760 pTimer->pBigNext = 0;
1761 pTimer->pBigPrev = 0;
1762
1763 /* free */
1764 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1765 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1766 pTimer->pBigNext = pVM->tm.s.pFree;
1767 pVM->tm.s.pFree = pTimer;
1768
1769#ifdef VBOX_STRICT
1770 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1771#endif
1772 TM_UNLOCK_TIMERS(pVM);
1773 return VINF_SUCCESS;
1774}
1775
1776
1777/**
1778 * Destroy all timers owned by a device.
1779 *
1780 * @returns VBox status.
1781 * @param pVM Pointer to the VM.
1782 * @param pDevIns Device which timers should be destroyed.
1783 */
1784VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1785{
1786 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1787 if (!pDevIns)
1788 return VERR_INVALID_PARAMETER;
1789
1790 TM_LOCK_TIMERS(pVM);
1791 PTMTIMER pCur = pVM->tm.s.pCreated;
1792 while (pCur)
1793 {
1794 PTMTIMER pDestroy = pCur;
1795 pCur = pDestroy->pBigNext;
1796 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1797 && pDestroy->u.Dev.pDevIns == pDevIns)
1798 {
1799 int rc = TMR3TimerDestroy(pDestroy);
1800 AssertRC(rc);
1801 }
1802 }
1803 TM_UNLOCK_TIMERS(pVM);
1804
1805 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1806 return VINF_SUCCESS;
1807}
1808
1809
1810/**
1811 * Destroy all timers owned by a USB device.
1812 *
1813 * @returns VBox status.
1814 * @param pVM Pointer to the VM.
1815 * @param pUsbIns USB device which timers should be destroyed.
1816 */
1817VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
1818{
1819 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
1820 if (!pUsbIns)
1821 return VERR_INVALID_PARAMETER;
1822
1823 TM_LOCK_TIMERS(pVM);
1824 PTMTIMER pCur = pVM->tm.s.pCreated;
1825 while (pCur)
1826 {
1827 PTMTIMER pDestroy = pCur;
1828 pCur = pDestroy->pBigNext;
1829 if ( pDestroy->enmType == TMTIMERTYPE_USB
1830 && pDestroy->u.Usb.pUsbIns == pUsbIns)
1831 {
1832 int rc = TMR3TimerDestroy(pDestroy);
1833 AssertRC(rc);
1834 }
1835 }
1836 TM_UNLOCK_TIMERS(pVM);
1837
1838 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
1839 return VINF_SUCCESS;
1840}
1841
1842
1843/**
1844 * Destroy all timers owned by a driver.
1845 *
1846 * @returns VBox status.
1847 * @param pVM Pointer to the VM.
1848 * @param pDrvIns Driver which timers should be destroyed.
1849 */
1850VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1851{
1852 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1853 if (!pDrvIns)
1854 return VERR_INVALID_PARAMETER;
1855
1856 TM_LOCK_TIMERS(pVM);
1857 PTMTIMER pCur = pVM->tm.s.pCreated;
1858 while (pCur)
1859 {
1860 PTMTIMER pDestroy = pCur;
1861 pCur = pDestroy->pBigNext;
1862 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1863 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1864 {
1865 int rc = TMR3TimerDestroy(pDestroy);
1866 AssertRC(rc);
1867 }
1868 }
1869 TM_UNLOCK_TIMERS(pVM);
1870
1871 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1872 return VINF_SUCCESS;
1873}
1874
1875
1876/**
1877 * Internal function for getting the clock time.
1878 *
1879 * @returns clock time.
1880 * @param pVM Pointer to the VM.
1881 * @param enmClock The clock.
1882 */
1883DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1884{
1885 switch (enmClock)
1886 {
1887 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1888 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1889 case TMCLOCK_REAL: return TMRealGet(pVM);
1890 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1891 default:
1892 AssertMsgFailed(("enmClock=%d\n", enmClock));
1893 return ~(uint64_t)0;
1894 }
1895}
1896
1897
1898/**
1899 * Checks if the sync queue has one or more expired timers.
1900 *
1901 * @returns true / false.
1902 *
1903 * @param pVM Pointer to the VM.
1904 * @param enmClock The queue.
1905 */
1906DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1907{
1908 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1909 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1910}
1911
1912
1913/**
1914 * Checks for expired timers in all the queues.
1915 *
1916 * @returns true / false.
1917 * @param pVM Pointer to the VM.
1918 */
1919DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1920{
1921 /*
1922 * Combine the time calculation for the first two since we're not on EMT
1923 * TMVirtualSyncGet only permits EMT.
1924 */
1925 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1926 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1927 return true;
1928 u64Now = pVM->tm.s.fVirtualSyncTicking
1929 ? u64Now - pVM->tm.s.offVirtualSync
1930 : pVM->tm.s.u64VirtualSync;
1931 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1932 return true;
1933
1934 /*
1935 * The remaining timers.
1936 */
1937 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1938 return true;
1939 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1940 return true;
1941 return false;
1942}
1943
1944
1945/**
1946 * Schedule timer callback.
1947 *
1948 * @param pTimer Timer handle.
1949 * @param pvUser Pointer to the VM.
1950 * @thread Timer thread.
1951 *
1952 * @remark We cannot do the scheduling and queues running from a timer handler
1953 * since it's not executing in EMT, and even if it was it would be async
1954 * and we wouldn't know the state of the affairs.
1955 * So, we'll just raise the timer FF and force any REM execution to exit.
1956 */
1957static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1958{
1959 PVM pVM = (PVM)pvUser;
1960 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1961 NOREF(pTimer);
1962
1963 AssertCompile(TMCLOCK_MAX == 4);
1964 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
1965
1966#ifdef DEBUG_Sander /* very annoying, keep it private. */
1967 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
1968 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1969#endif
1970 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
1971 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1972 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1973 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1974 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1975 || tmR3AnyExpiredTimers(pVM)
1976 )
1977 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
1978 && !pVM->tm.s.fRunningQueues
1979 )
1980 {
1981 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1982 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1983#ifdef VBOX_WITH_REM
1984 REMR3NotifyTimerPending(pVM, pVCpuDst);
1985#endif
1986 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
1987 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1988 }
1989}
1990
1991
1992/**
1993 * Schedules and runs any pending timers.
1994 *
1995 * This is normally called from a forced action handler in EMT.
1996 *
1997 * @param pVM The VM to run the timers for.
1998 *
1999 * @thread EMT (actually EMT0, but we fend off the others)
2000 */
2001VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2002{
2003 /*
2004 * Only the dedicated timer EMT should do stuff here.
2005 * (fRunningQueues is only used as an indicator.)
2006 */
2007 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2008 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
2009 if (VMMGetCpu(pVM) != pVCpuDst)
2010 {
2011 Assert(pVM->cCpus > 1);
2012 return;
2013 }
2014 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2015 Log2(("TMR3TimerQueuesDo:\n"));
2016 Assert(!pVM->tm.s.fRunningQueues);
2017 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2018 TM_LOCK_TIMERS(pVM);
2019
2020 /*
2021 * Process the queues.
2022 */
2023 AssertCompile(TMCLOCK_MAX == 4);
2024
2025 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
2026 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2027 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2028 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2029 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2030
2031 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2032 tmR3TimerQueueRunVirtualSync(pVM);
2033 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2034 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2035
2036 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2037 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2038 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2039
2040 /* TMCLOCK_VIRTUAL */
2041 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2042 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
2043 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2044 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2045 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2046
2047 /* TMCLOCK_TSC */
2048 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
2049
2050 /* TMCLOCK_REAL */
2051 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2052 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
2053 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2054 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2055 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2056
2057#ifdef VBOX_STRICT
2058 /* check that we didn't screw up. */
2059 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2060#endif
2061
2062 /* done */
2063 Log2(("TMR3TimerQueuesDo: returns void\n"));
2064 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2065 TM_UNLOCK_TIMERS(pVM);
2066 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2067}
2068
2069//RT_C_DECLS_BEGIN
2070//int iomLock(PVM pVM);
2071//void iomUnlock(PVM pVM);
2072//RT_C_DECLS_END
2073
2074
2075/**
2076 * Schedules and runs any pending times in the specified queue.
2077 *
2078 * This is normally called from a forced action handler in EMT.
2079 *
2080 * @param pVM The VM to run the timers for.
2081 * @param pQueue The queue to run.
2082 */
2083static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
2084{
2085 VM_ASSERT_EMT(pVM);
2086
2087 /*
2088 * Run timers.
2089 *
2090 * We check the clock once and run all timers which are ACTIVE
2091 * and have an expire time less or equal to the time we read.
2092 *
2093 * N.B. A generic unlink must be applied since other threads
2094 * are allowed to mess with any active timer at any time.
2095 * However, we only allow EMT to handle EXPIRED_PENDING
2096 * timers, thus enabling the timer handler function to
2097 * arm the timer again.
2098 */
2099 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2100 if (!pNext)
2101 return;
2102 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2103 while (pNext && pNext->u64Expire <= u64Now)
2104 {
2105 PTMTIMER pTimer = pNext;
2106 pNext = TMTIMER_GET_NEXT(pTimer);
2107 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2108 if (pCritSect)
2109 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2110 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2111 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2112 bool fRc;
2113 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2114 if (fRc)
2115 {
2116 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
2117
2118 /* unlink */
2119 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2120 if (pPrev)
2121 TMTIMER_SET_NEXT(pPrev, pNext);
2122 else
2123 {
2124 TMTIMER_SET_HEAD(pQueue, pNext);
2125 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2126 }
2127 if (pNext)
2128 TMTIMER_SET_PREV(pNext, pPrev);
2129 pTimer->offNext = 0;
2130 pTimer->offPrev = 0;
2131
2132 /* fire */
2133 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2134 switch (pTimer->enmType)
2135 {
2136 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2137 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2138 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2139 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2140 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2141 default:
2142 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2143 break;
2144 }
2145
2146 /* change the state if it wasn't changed already in the handler. */
2147 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2148 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2149 }
2150 if (pCritSect)
2151 PDMCritSectLeave(pCritSect);
2152 } /* run loop */
2153}
2154
2155
2156/**
2157 * Schedules and runs any pending times in the timer queue for the
2158 * synchronous virtual clock.
2159 *
2160 * This scheduling is a bit different from the other queues as it need
2161 * to implement the special requirements of the timer synchronous virtual
2162 * clock, thus this 2nd queue run function.
2163 *
2164 * @param pVM The VM to run the timers for.
2165 *
2166 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2167 * longer important.
2168 */
2169static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2170{
2171 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
2172 VM_ASSERT_EMT(pVM);
2173 Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
2174
2175 /*
2176 * Any timers?
2177 */
2178 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2179 if (RT_UNLIKELY(!pNext))
2180 {
2181 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2182 return;
2183 }
2184 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2185
2186 /*
2187 * Calculate the time frame for which we will dispatch timers.
2188 *
2189 * We use a time frame ranging from the current sync time (which is most likely the
2190 * same as the head timer) and some configurable period (100000ns) up towards the
2191 * current virtual time. This period might also need to be restricted by the catch-up
2192 * rate so frequent calls to this function won't accelerate the time too much, however
2193 * this will be implemented at a later point if necessary.
2194 *
2195 * Without this frame we would 1) having to run timers much more frequently
2196 * and 2) lag behind at a steady rate.
2197 */
2198 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2199 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2200 uint64_t u64Now;
2201 if (!pVM->tm.s.fVirtualSyncTicking)
2202 {
2203 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2204 u64Now = pVM->tm.s.u64VirtualSync;
2205 Assert(u64Now <= pNext->u64Expire);
2206 }
2207 else
2208 {
2209 /* Calc 'now'. */
2210 bool fStopCatchup = false;
2211 bool fUpdateStuff = false;
2212 uint64_t off = pVM->tm.s.offVirtualSync;
2213 if (pVM->tm.s.fVirtualSyncCatchUp)
2214 {
2215 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2216 if (RT_LIKELY(!(u64Delta >> 32)))
2217 {
2218 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2219 if (off > u64Sub + offSyncGivenUp)
2220 {
2221 off -= u64Sub;
2222 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2223 }
2224 else
2225 {
2226 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2227 fStopCatchup = true;
2228 off = offSyncGivenUp;
2229 }
2230 fUpdateStuff = true;
2231 }
2232 }
2233 u64Now = u64VirtualNow - off;
2234
2235 /* Adjust against last returned time. */
2236 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2237 if (u64Last > u64Now)
2238 {
2239 u64Now = u64Last + 1;
2240 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2241 }
2242
2243 /* Check if stopped by expired timer. */
2244 uint64_t const u64Expire = pNext->u64Expire;
2245 if (u64Now >= u64Expire)
2246 {
2247 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2248 u64Now = u64Expire;
2249 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2250 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2251 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2252 }
2253 else
2254 {
2255 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2256 if (fUpdateStuff)
2257 {
2258 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2259 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2260 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2261 if (fStopCatchup)
2262 {
2263 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2264 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2265 }
2266 }
2267 }
2268 }
2269
2270 /* calc end of frame. */
2271 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2272 if (u64Max > u64VirtualNow - offSyncGivenUp)
2273 u64Max = u64VirtualNow - offSyncGivenUp;
2274
2275 /* assert sanity */
2276 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2277 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2278 Assert(u64Now <= u64Max);
2279 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2280
2281 /*
2282 * Process the expired timers moving the clock along as we progress.
2283 */
2284#ifdef VBOX_STRICT
2285 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2286#endif
2287 while (pNext && pNext->u64Expire <= u64Max)
2288 {
2289 /* Advance */
2290 PTMTIMER pTimer = pNext;
2291 pNext = TMTIMER_GET_NEXT(pTimer);
2292
2293 /* Take the associated lock. */
2294 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2295 if (pCritSect)
2296 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2297
2298 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2299 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2300
2301 /* Advance the clock - don't permit timers to be out of order or armed
2302 in the 'past'. */
2303#ifdef VBOX_STRICT
2304 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2305 u64Prev = pTimer->u64Expire;
2306#endif
2307 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2308 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2309
2310 /* Unlink it, change the state and do the callout. */
2311 tmTimerQueueUnlinkActive(pQueue, pTimer);
2312 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2313 switch (pTimer->enmType)
2314 {
2315 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2316 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2317 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2318 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2319 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2320 default:
2321 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2322 break;
2323 }
2324
2325 /* Change the state if it wasn't changed already in the handler.
2326 Reset the Hz hint too since this is the same as TMTimerStop. */
2327 bool fRc;
2328 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2329 if (fRc && pTimer->uHzHint)
2330 {
2331 if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
2332 ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
2333 pTimer->uHzHint = 0;
2334 }
2335 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2336
2337 /* Leave the associated lock. */
2338 if (pCritSect)
2339 PDMCritSectLeave(pCritSect);
2340 } /* run loop */
2341
2342
2343 /*
2344 * Restart the clock if it was stopped to serve any timers,
2345 * and start/adjust catch-up if necessary.
2346 */
2347 if ( !pVM->tm.s.fVirtualSyncTicking
2348 && pVM->tm.s.cVirtualTicking)
2349 {
2350 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2351
2352 /* calc the slack we've handed out. */
2353 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2354 Assert(u64VirtualNow2 >= u64VirtualNow);
2355 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2356 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2357 STAM_STATS({
2358 if (offSlack)
2359 {
2360 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2361 p->cPeriods++;
2362 p->cTicks += offSlack;
2363 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2364 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2365 }
2366 });
2367
2368 /* Let the time run a little bit while we were busy running timers(?). */
2369 uint64_t u64Elapsed;
2370#define MAX_ELAPSED 30000U /* ns */
2371 if (offSlack > MAX_ELAPSED)
2372 u64Elapsed = 0;
2373 else
2374 {
2375 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2376 if (u64Elapsed > MAX_ELAPSED)
2377 u64Elapsed = MAX_ELAPSED;
2378 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2379 }
2380#undef MAX_ELAPSED
2381
2382 /* Calc the current offset. */
2383 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2384 Assert(!(offNew & RT_BIT_64(63)));
2385 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2386 Assert(!(offLag & RT_BIT_64(63)));
2387
2388 /*
2389 * Deal with starting, adjusting and stopping catchup.
2390 */
2391 if (pVM->tm.s.fVirtualSyncCatchUp)
2392 {
2393 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2394 {
2395 /* stop */
2396 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2397 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2398 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2399 }
2400 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2401 {
2402 /* adjust */
2403 unsigned i = 0;
2404 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2405 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2406 i++;
2407 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2408 {
2409 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2410 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2411 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2412 }
2413 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2414 }
2415 else
2416 {
2417 /* give up */
2418 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2419 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2420 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2421 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2422 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2423 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2424 }
2425 }
2426 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2427 {
2428 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2429 {
2430 /* start */
2431 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2432 unsigned i = 0;
2433 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2434 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2435 i++;
2436 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2437 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2438 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2439 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2440 }
2441 else
2442 {
2443 /* don't bother */
2444 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2445 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2446 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2447 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2448 }
2449 }
2450
2451 /*
2452 * Update the offset and restart the clock.
2453 */
2454 Assert(!(offNew & RT_BIT_64(63)));
2455 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2456 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2457 }
2458}
2459
2460
2461/**
2462 * Deals with stopped Virtual Sync clock.
2463 *
2464 * This is called by the forced action flag handling code in EM when it
2465 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2466 * will block on the VirtualSyncLock until the pending timers has been executed
2467 * and the clock restarted.
2468 *
2469 * @param pVM The VM to run the timers for.
2470 * @param pVCpu The virtual CPU we're running at.
2471 *
2472 * @thread EMTs
2473 */
2474VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2475{
2476 Log2(("TMR3VirtualSyncFF:\n"));
2477
2478 /*
2479 * The EMT doing the timers is diverted to them.
2480 */
2481 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2482 TMR3TimerQueuesDo(pVM);
2483 /*
2484 * The other EMTs will block on the virtual sync lock and the first owner
2485 * will run the queue and thus restarting the clock.
2486 *
2487 * Note! This is very suboptimal code wrt to resuming execution when there
2488 * are more than two Virtual CPUs, since they will all have to enter
2489 * the critical section one by one. But it's a very simple solution
2490 * which will have to do the job for now.
2491 */
2492 else
2493 {
2494 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2495 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2496 if (pVM->tm.s.fVirtualSyncTicking)
2497 {
2498 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2499 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2500 Log2(("TMR3VirtualSyncFF: ticking\n"));
2501 }
2502 else
2503 {
2504 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2505
2506 /* try run it. */
2507 TM_LOCK_TIMERS(pVM);
2508 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2509 if (pVM->tm.s.fVirtualSyncTicking)
2510 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2511 else
2512 {
2513 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2514 Log2(("TMR3VirtualSyncFF: running queue\n"));
2515
2516 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2517 tmR3TimerQueueRunVirtualSync(pVM);
2518 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2519 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2520
2521 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2522 }
2523 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2524 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2525 TM_UNLOCK_TIMERS(pVM);
2526 }
2527 }
2528}
2529
2530
2531/** @name Saved state values
2532 * @{ */
2533#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2534#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2535/** @} */
2536
2537
2538/**
2539 * Saves the state of a timer to a saved state.
2540 *
2541 * @returns VBox status.
2542 * @param pTimer Timer to save.
2543 * @param pSSM Save State Manager handle.
2544 */
2545VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2546{
2547 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2548 switch (pTimer->enmState)
2549 {
2550 case TMTIMERSTATE_STOPPED:
2551 case TMTIMERSTATE_PENDING_STOP:
2552 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2553 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2554
2555 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2556 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2557 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2558 if (!RTThreadYield())
2559 RTThreadSleep(1);
2560 /* fall thru */
2561 case TMTIMERSTATE_ACTIVE:
2562 case TMTIMERSTATE_PENDING_SCHEDULE:
2563 case TMTIMERSTATE_PENDING_RESCHEDULE:
2564 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2565 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2566
2567 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2568 case TMTIMERSTATE_EXPIRED_DELIVER:
2569 case TMTIMERSTATE_DESTROY:
2570 case TMTIMERSTATE_FREE:
2571 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2572 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2573 }
2574
2575 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2576 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2577}
2578
2579
2580/**
2581 * Loads the state of a timer from a saved state.
2582 *
2583 * @returns VBox status.
2584 * @param pTimer Timer to restore.
2585 * @param pSSM Save State Manager handle.
2586 */
2587VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2588{
2589 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2590 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2591
2592 /*
2593 * Load the state and validate it.
2594 */
2595 uint8_t u8State;
2596 int rc = SSMR3GetU8(pSSM, &u8State);
2597 if (RT_FAILURE(rc))
2598 return rc;
2599#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2600 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2601 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2602 u8State--;
2603#endif
2604 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2605 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2606 {
2607 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2608 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2609 }
2610
2611 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2612 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2613 PDMCritSectEnter(&pTimer->pVMR3->tm.s.VirtualSyncLock, VERR_IGNORED);
2614 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2615 if (pCritSect)
2616 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2617
2618 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2619 {
2620 /*
2621 * Load the expire time.
2622 */
2623 uint64_t u64Expire;
2624 rc = SSMR3GetU64(pSSM, &u64Expire);
2625 if (RT_FAILURE(rc))
2626 return rc;
2627
2628 /*
2629 * Set it.
2630 */
2631 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2632 rc = TMTimerSet(pTimer, u64Expire);
2633 }
2634 else
2635 {
2636 /*
2637 * Stop it.
2638 */
2639 Log(("u8State=%d\n", u8State));
2640 rc = TMTimerStop(pTimer);
2641 }
2642
2643 if (pCritSect)
2644 PDMCritSectLeave(pCritSect);
2645 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2646 PDMCritSectLeave(&pTimer->pVMR3->tm.s.VirtualSyncLock);
2647
2648 /*
2649 * On failure set SSM status.
2650 */
2651 if (RT_FAILURE(rc))
2652 rc = SSMR3HandleSetStatus(pSSM, rc);
2653 return rc;
2654}
2655
2656
2657/**
2658 * Associates a critical section with a timer.
2659 *
2660 * The critical section will be entered prior to doing the timer call back, thus
2661 * avoiding potential races between the timer thread and other threads trying to
2662 * stop or adjust the timer expiration while it's being delivered. The timer
2663 * thread will leave the critical section when the timer callback returns.
2664 *
2665 * In strict builds, ownership of the critical section will be asserted by
2666 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2667 * runtime).
2668 *
2669 * @retval VINF_SUCCESS on success.
2670 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2671 * (asserted).
2672 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2673 * (asserted).
2674 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2675 * with the timer (asserted).
2676 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2677 *
2678 * @param pTimer The timer handle.
2679 * @param pCritSect The critical section. The caller must make sure this
2680 * is around for the life time of the timer.
2681 *
2682 * @thread Any, but the caller is responsible for making sure the timer is not
2683 * active.
2684 */
2685VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2686{
2687 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2688 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2689 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2690 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2691 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2692 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2693 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2694
2695 pTimer->pCritSect = pCritSect;
2696 return VINF_SUCCESS;
2697}
2698
2699
2700/**
2701 * Get the real world UTC time adjusted for VM lag.
2702 *
2703 * @returns pTime.
2704 * @param pVM The VM instance.
2705 * @param pTime Where to store the time.
2706 */
2707VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2708{
2709 /* Get a stable set of VirtualSync parameters before querying UTC. */
2710 uint64_t offVirtualSync;
2711 uint64_t offVirtualSyncGivenUp;
2712 do
2713 {
2714 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
2715 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
2716 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
2717
2718 Assert(offVirtualSync >= offVirtualSyncGivenUp);
2719 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
2720
2721 RTTimeNow(pTime);
2722 RTTimeSpecSubNano(pTime, offLag);
2723 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2724 return pTime;
2725}
2726
2727
2728/**
2729 * Pauses all clocks except TMCLOCK_REAL.
2730 *
2731 * @returns VBox status code, all errors are asserted.
2732 * @param pVM Pointer to the VM.
2733 * @param pVCpu Pointer to the VMCPU.
2734 * @thread EMT corresponding to Pointer to the VMCPU.
2735 */
2736VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2737{
2738 VMCPU_ASSERT_EMT(pVCpu);
2739
2740 /*
2741 * The shared virtual clock (includes virtual sync which is tied to it).
2742 */
2743 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2744 int rc = tmVirtualPauseLocked(pVM);
2745 TM_UNLOCK_TIMERS(pVM);
2746 if (RT_FAILURE(rc))
2747 return rc;
2748
2749 /*
2750 * Pause the TSC last since it is normally linked to the virtual
2751 * sync clock, so the above code may actually stop both clocks.
2752 */
2753 if (!pVM->tm.s.fTSCTiedToExecution)
2754 {
2755 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2756 rc = tmCpuTickPauseLocked(pVM, pVCpu);
2757 TM_UNLOCK_TIMERS(pVM);
2758 if (RT_FAILURE(rc))
2759 return rc;
2760 }
2761
2762#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2763 /*
2764 * Update cNsTotal.
2765 */
2766 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
2767 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
2768 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
2769 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
2770#endif
2771
2772 return VINF_SUCCESS;
2773}
2774
2775
2776/**
2777 * Resumes all clocks except TMCLOCK_REAL.
2778 *
2779 * @returns VBox status code, all errors are asserted.
2780 * @param pVM Pointer to the VM.
2781 * @param pVCpu Pointer to the VMCPU.
2782 * @thread EMT corresponding to Pointer to the VMCPU.
2783 */
2784VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2785{
2786 VMCPU_ASSERT_EMT(pVCpu);
2787 int rc;
2788
2789#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2790 /*
2791 * Set u64NsTsStartTotal. There is no need to back this out if either of
2792 * the two calls below fail.
2793 */
2794 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
2795#endif
2796
2797 /*
2798 * Resume the TSC first since it is normally linked to the virtual sync
2799 * clock, so it may actually not be resumed until we've executed the code
2800 * below.
2801 */
2802 if (!pVM->tm.s.fTSCTiedToExecution)
2803 {
2804 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2805 rc = tmCpuTickResumeLocked(pVM, pVCpu);
2806 TM_UNLOCK_TIMERS(pVM);
2807 if (RT_FAILURE(rc))
2808 return rc;
2809 }
2810
2811 /*
2812 * The shared virtual clock (includes virtual sync which is tied to it).
2813 */
2814 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2815 rc = tmVirtualResumeLocked(pVM);
2816 TM_UNLOCK_TIMERS(pVM);
2817
2818 return rc;
2819}
2820
2821
2822/**
2823 * Sets the warp drive percent of the virtual time.
2824 *
2825 * @returns VBox status code.
2826 * @param pVM Pointer to the VM.
2827 * @param u32Percent The new percentage. 100 means normal operation.
2828 */
2829VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
2830{
2831 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
2832}
2833
2834
2835/**
2836 * EMT worker for TMR3SetWarpDrive.
2837 *
2838 * @returns VBox status code.
2839 * @param pUVM The user mode VM handle.
2840 * @param u32Percent See TMR3SetWarpDrive().
2841 * @internal
2842 */
2843static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
2844{
2845 PVM pVM = pUVM->pVM;
2846 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2847 PVMCPU pVCpu = VMMGetCpu(pVM);
2848
2849 /*
2850 * Validate it.
2851 */
2852 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2853 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2854 VERR_INVALID_PARAMETER);
2855
2856/** @todo This isn't a feature specific to virtual time, move the variables to
2857 * TM level and make it affect TMR3UTCNow as well! */
2858
2859 /*
2860 * If the time is running we'll have to pause it before we can change
2861 * the warp drive settings.
2862 */
2863 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2864 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2865 if (fPaused) /** @todo this isn't really working, but wtf. */
2866 TMR3NotifySuspend(pVM, pVCpu);
2867
2868 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
2869 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2870 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2871 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2872 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2873
2874 if (fPaused)
2875 TMR3NotifyResume(pVM, pVCpu);
2876 TM_UNLOCK_TIMERS(pVM);
2877 return VINF_SUCCESS;
2878}
2879
2880
2881/**
2882 * Gets the current warp drive percent.
2883 *
2884 * @returns The warp drive percent.
2885 * @param pVM Pointer to the VM.
2886 */
2887VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
2888{
2889 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
2890 PVM pVM = pUVM->pVM;
2891 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
2892 return pVM->tm.s.u32VirtualWarpDrivePercentage;
2893}
2894
2895
2896/**
2897 * Gets the performance information for one virtual CPU as seen by the VMM.
2898 *
2899 * The returned times covers the period where the VM is running and will be
2900 * reset when restoring a previous VM state (at least for the time being).
2901 *
2902 * @retval VINF_SUCCESS on success.
2903 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
2904 * @retval VERR_INVALID_STATE if the VM handle is bad.
2905 * @retval VERR_INVALID_PARAMETER if idCpu is out of range.
2906 *
2907 * @param pVM Pointer to the VM.
2908 * @param idCpu The ID of the virtual CPU which times to get.
2909 * @param pcNsTotal Where to store the total run time (nano seconds) of
2910 * the CPU, i.e. the sum of the three other returns.
2911 * Optional.
2912 * @param pcNsExecuting Where to store the time (nano seconds) spent
2913 * executing guest code. Optional.
2914 * @param pcNsHalted Where to store the time (nano seconds) spent
2915 * halted. Optional
2916 * @param pcNsOther Where to store the time (nano seconds) spent
2917 * preempted by the host scheduler, on virtualization
2918 * overhead and on other tasks.
2919 */
2920VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
2921 uint64_t *pcNsHalted, uint64_t *pcNsOther)
2922{
2923 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
2924 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
2925
2926#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2927 /*
2928 * Get a stable result set.
2929 * This should be way quicker than an EMT request.
2930 */
2931 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2932 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2933 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2934 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2935 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2936 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
2937 while ( (uTimesGen & 1) /* update in progress */
2938 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
2939 {
2940 RTThreadYield();
2941 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2942 cNsTotal = pVCpu->tm.s.cNsTotal;
2943 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2944 cNsHalted = pVCpu->tm.s.cNsHalted;
2945 cNsOther = pVCpu->tm.s.cNsOther;
2946 }
2947
2948 /*
2949 * Fill in the return values.
2950 */
2951 if (pcNsTotal)
2952 *pcNsTotal = cNsTotal;
2953 if (pcNsExecuting)
2954 *pcNsExecuting = cNsExecuting;
2955 if (pcNsHalted)
2956 *pcNsHalted = cNsHalted;
2957 if (pcNsOther)
2958 *pcNsOther = cNsOther;
2959
2960 return VINF_SUCCESS;
2961
2962#else
2963 return VERR_NOT_IMPLEMENTED;
2964#endif
2965}
2966
2967#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2968
2969/**
2970 * Helper for tmR3CpuLoadTimer.
2971 * @returns
2972 * @param pState The state to update.
2973 * @param cNsTotalDelta Total time.
2974 * @param cNsExecutingDelta Time executing.
2975 * @param cNsHaltedDelta Time halted.
2976 */
2977DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState,
2978 uint64_t cNsTotal,
2979 uint64_t cNsExecuting,
2980 uint64_t cNsHalted)
2981{
2982 /* Calc deltas */
2983 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
2984 pState->cNsPrevTotal = cNsTotal;
2985
2986 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
2987 pState->cNsPrevExecuting = cNsExecuting;
2988
2989 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
2990 pState->cNsPrevHalted = cNsHalted;
2991
2992 /* Calc pcts. */
2993 if (!cNsTotalDelta)
2994 {
2995 pState->cPctExecuting = 0;
2996 pState->cPctHalted = 100;
2997 pState->cPctOther = 0;
2998 }
2999 else if (cNsTotalDelta < UINT64_MAX / 4)
3000 {
3001 pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3002 pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3003 pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3004 }
3005 else
3006 {
3007 pState->cPctExecuting = 0;
3008 pState->cPctHalted = 100;
3009 pState->cPctOther = 0;
3010 }
3011}
3012
3013
3014/**
3015 * Timer callback that calculates the CPU load since the last time it was
3016 * called.
3017 *
3018 * @param pVM Pointer to the VM.
3019 * @param pTimer The timer.
3020 * @param pvUser NULL, unused.
3021 */
3022static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
3023{
3024 /*
3025 * Re-arm the timer first.
3026 */
3027 int rc = TMTimerSetMillies(pTimer, 1000);
3028 AssertLogRelRC(rc);
3029 NOREF(pvUser);
3030
3031 /*
3032 * Update the values for each CPU.
3033 */
3034 uint64_t cNsTotalAll = 0;
3035 uint64_t cNsExecutingAll = 0;
3036 uint64_t cNsHaltedAll = 0;
3037 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3038 {
3039 PVMCPU pVCpu = &pVM->aCpus[iCpu];
3040
3041 /* Try get a stable data set. */
3042 uint32_t cTries = 3;
3043 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3044 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3045 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3046 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3047 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3048 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3049 {
3050 if (!--cTries)
3051 break;
3052 ASMNopPause();
3053 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3054 cNsTotal = pVCpu->tm.s.cNsTotal;
3055 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3056 cNsHalted = pVCpu->tm.s.cNsHalted;
3057 }
3058
3059 /* Totals */
3060 cNsTotalAll += cNsTotal;
3061 cNsExecutingAll += cNsExecuting;
3062 cNsHaltedAll += cNsHalted;
3063
3064 /* Calc the PCTs and update the state. */
3065 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3066 }
3067
3068 /*
3069 * Update the value for all the CPUs.
3070 */
3071 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3072
3073 /** @todo Try add 1, 5 and 15 min load stats. */
3074
3075}
3076
3077#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3078
3079
3080/**
3081 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3082 * Worker for TMR3CpuTickParavirtEnable}
3083 */
3084static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3085{
3086 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3087 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
3088 Assert(tmR3HasFixedTSC(pVM));
3089
3090 /*
3091 * The return value of TMCpuTickGet() and the guest's TSC value for each
3092 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3093 * the following equation (new/old signifies the new/old tsc modes):
3094 * uNewTsc = uOldTsc
3095 *
3096 * Where (see tmCpuTickGetInternal):
3097 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3098 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3099 *
3100 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3101 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3102 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3103 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3104 */
3105 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3106 uint64_t uRawNewTsc = SUPReadTsc();
3107 uint32_t cCpus = pVM->cCpus;
3108 for (uint32_t i = 0; i < cCpus; i++)
3109 {
3110 PVMCPU pVCpu = &pVM->aCpus[i];
3111 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3112 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3113 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3114 }
3115
3116 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3117 LogRel(("TM: Switched TSC mode. New enmTSCMode=%d (%s)\n", pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
3118 return VINF_SUCCESS;
3119}
3120
3121
3122/**
3123 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3124 *
3125 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3126 *
3127 * @returns VBox status code.
3128 * @param pVM Pointer to the VM.
3129 */
3130VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3131{
3132 int rc = VINF_SUCCESS;
3133 if (pVM->tm.s.fTSCModeSwitchAllowed)
3134 {
3135 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3136 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3137 }
3138 else
3139 LogRel(("TM: Host is not suitable for using TSC mode (%d - %s). Request to change TSC mode ignored.\n",
3140 TMTSCMODE_REAL_TSC_OFFSET, tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3141 pVM->tm.s.fParavirtTscEnabled = true;
3142 return rc;
3143}
3144
3145
3146/**
3147 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3148 * Worker for TMR3CpuTickParavirtDisable}
3149 */
3150static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3151{
3152 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3153 Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3154 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
3155
3156 /*
3157 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3158 */
3159 uint64_t uRawOldTsc = SUPReadTsc();
3160 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3161 uint32_t cCpus = pVM->cCpus;
3162 for (uint32_t i = 0; i < cCpus; i++)
3163 {
3164 PVMCPU pVCpu = &pVM->aCpus[i];
3165 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3166 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3167 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3168
3169 /* Update the last-seen tick here as we havent't been updating it (as we don't
3170 need it) while in pure TSC-offsetting mode. */
3171 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3172 }
3173 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3174 LogRel(("TM: Switched TSC mode. New enmTSCMode=%d (%s)\n", pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
3175 return VINF_SUCCESS;
3176}
3177
3178
3179/**
3180 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3181 *
3182 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3183 * perform an EMT rendezvous to revert those changes.
3184 *
3185 * @returns VBox status code.
3186 * @param pVM Pointer to the VM.
3187 */
3188VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3189{
3190 int rc = VINF_SUCCESS;
3191 if ( pVM->tm.s.fTSCModeSwitchAllowed
3192 && pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3193 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3194 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3195 pVM->tm.s.fParavirtTscEnabled = false;
3196 return rc;
3197}
3198
3199
3200/**
3201 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3202 *
3203 * @returns true if TSC is stable, false otherwise.
3204 * @param pVM Pointer to the VM.
3205 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3206 * paravirt. TSC is enabled or not.
3207 *
3208 * @remarks Must be called only after TMR3InitFinalize().
3209 */
3210VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3211{
3212 /** @todo figure out what exactly we want here later. */
3213 NOREF(fWithParavirtEnabled);
3214 return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3215 && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
3216}
3217
3218
3219/**
3220 * Gets the 5 char clock name for the info tables.
3221 *
3222 * @returns The name.
3223 * @param enmClock The clock.
3224 */
3225DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3226{
3227 switch (enmClock)
3228 {
3229 case TMCLOCK_REAL: return "Real ";
3230 case TMCLOCK_VIRTUAL: return "Virt ";
3231 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3232 case TMCLOCK_TSC: return "TSC ";
3233 default: return "Bad ";
3234 }
3235}
3236
3237
3238/**
3239 * Display all timers.
3240 *
3241 * @param pVM Pointer to the VM.
3242 * @param pHlp The info helpers.
3243 * @param pszArgs Arguments, ignored.
3244 */
3245static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3246{
3247 NOREF(pszArgs);
3248 pHlp->pfnPrintf(pHlp,
3249 "Timers (pVM=%p)\n"
3250 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3251 pVM,
3252 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3253 sizeof(int32_t) * 2, "offNext ",
3254 sizeof(int32_t) * 2, "offPrev ",
3255 sizeof(int32_t) * 2, "offSched ",
3256 "Time",
3257 "Expire",
3258 "HzHint",
3259 "State");
3260 TM_LOCK_TIMERS(pVM);
3261 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
3262 {
3263 pHlp->pfnPrintf(pHlp,
3264 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3265 pTimer,
3266 pTimer->offNext,
3267 pTimer->offPrev,
3268 pTimer->offScheduleNext,
3269 tmR3Get5CharClockName(pTimer->enmClock),
3270 TMTimerGet(pTimer),
3271 pTimer->u64Expire,
3272 pTimer->uHzHint,
3273 tmTimerState(pTimer->enmState),
3274 pTimer->pszDesc);
3275 }
3276 TM_UNLOCK_TIMERS(pVM);
3277}
3278
3279
3280/**
3281 * Display all active timers.
3282 *
3283 * @param pVM Pointer to the VM.
3284 * @param pHlp The info helpers.
3285 * @param pszArgs Arguments, ignored.
3286 */
3287static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3288{
3289 NOREF(pszArgs);
3290 pHlp->pfnPrintf(pHlp,
3291 "Active Timers (pVM=%p)\n"
3292 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3293 pVM,
3294 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3295 sizeof(int32_t) * 2, "offNext ",
3296 sizeof(int32_t) * 2, "offPrev ",
3297 sizeof(int32_t) * 2, "offSched ",
3298 "Time",
3299 "Expire",
3300 "HzHint",
3301 "State");
3302 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
3303 {
3304 TM_LOCK_TIMERS(pVM);
3305 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
3306 pTimer;
3307 pTimer = TMTIMER_GET_NEXT(pTimer))
3308 {
3309 pHlp->pfnPrintf(pHlp,
3310 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3311 pTimer,
3312 pTimer->offNext,
3313 pTimer->offPrev,
3314 pTimer->offScheduleNext,
3315 tmR3Get5CharClockName(pTimer->enmClock),
3316 TMTimerGet(pTimer),
3317 pTimer->u64Expire,
3318 pTimer->uHzHint,
3319 tmTimerState(pTimer->enmState),
3320 pTimer->pszDesc);
3321 }
3322 TM_UNLOCK_TIMERS(pVM);
3323 }
3324}
3325
3326
3327/**
3328 * Display all clocks.
3329 *
3330 * @param pVM Pointer to the VM.
3331 * @param pHlp The info helpers.
3332 * @param pszArgs Arguments, ignored.
3333 */
3334static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3335{
3336 NOREF(pszArgs);
3337
3338 /*
3339 * Read the times first to avoid more than necessary time variation.
3340 */
3341 const uint64_t u64Virtual = TMVirtualGet(pVM);
3342 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3343 const uint64_t u64Real = TMRealGet(pVM);
3344
3345 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3346 {
3347 PVMCPU pVCpu = &pVM->aCpus[i];
3348 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3349
3350 /*
3351 * TSC
3352 */
3353 pHlp->pfnPrintf(pHlp,
3354 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
3355 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
3356 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
3357 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
3358 {
3359 pHlp->pfnPrintf(pHlp, " - real tsc offset");
3360 if (pVCpu->tm.s.offTSCRawSrc)
3361 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
3362 }
3363 else
3364 pHlp->pfnPrintf(pHlp, " - virtual clock");
3365 pHlp->pfnPrintf(pHlp, "\n");
3366 }
3367
3368 /*
3369 * virtual
3370 */
3371 pHlp->pfnPrintf(pHlp,
3372 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
3373 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
3374 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
3375 if (pVM->tm.s.fVirtualWarpDrive)
3376 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
3377 pHlp->pfnPrintf(pHlp, "\n");
3378
3379 /*
3380 * virtual sync
3381 */
3382 pHlp->pfnPrintf(pHlp,
3383 "VirtSync: %18RU64 (%#016RX64) %s%s",
3384 u64VirtualSync, u64VirtualSync,
3385 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
3386 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
3387 if (pVM->tm.s.offVirtualSync)
3388 {
3389 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
3390 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
3391 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
3392 }
3393 pHlp->pfnPrintf(pHlp, "\n");
3394
3395 /*
3396 * real
3397 */
3398 pHlp->pfnPrintf(pHlp,
3399 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
3400 u64Real, u64Real, TMRealGetFreq(pVM));
3401}
3402
3403
3404/**
3405 * Gets the descriptive TM TSC mode name given the enum value.
3406 *
3407 * @returns The name.
3408 * @param pVM Pointer to the VM.
3409 */
3410static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
3411{
3412 switch (enmMode)
3413 {
3414 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTscOffset";
3415 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTscEmulated";
3416 case TMTSCMODE_DYNAMIC: return "Dynamic";
3417 default: return "???";
3418 }
3419}
3420
3421
3422/**
3423 * Gets the descriptive TM TSC mode name.
3424 *
3425 * @returns The name.
3426 * @param pVM Pointer to the VM.
3427 */
3428static const char *tmR3GetTSCModeName(PVM pVM)
3429{
3430 Assert(pVM);
3431 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
3432}
3433
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette