VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 89283

Last change on this file since 89283 was 89283, checked in by vboxsync, 4 years ago

VMM/TM: Fix typo in LogRel for outputting the TM mode.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 183.5 KB
Line 
1/* $Id: TM.cpp 89283 2021-05-26 06:48:28Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119
120/*********************************************************************************************************************************
121* Header Files *
122*********************************************************************************************************************************/
123#define LOG_GROUP LOG_GROUP_TM
124#ifdef DEBUG_bird
125# define DBGFTRACE_DISABLED /* annoying */
126#endif
127#include <VBox/vmm/tm.h>
128#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGip from sup.h */
129#include <VBox/vmm/vmm.h>
130#include <VBox/vmm/mm.h>
131#include <VBox/vmm/hm.h>
132#include <VBox/vmm/nem.h>
133#include <VBox/vmm/gim.h>
134#include <VBox/vmm/ssm.h>
135#include <VBox/vmm/dbgf.h>
136#include <VBox/vmm/dbgftrace.h>
137#include <VBox/vmm/pdmapi.h>
138#include <VBox/vmm/iom.h>
139#include "TMInternal.h"
140#include <VBox/vmm/vm.h>
141#include <VBox/vmm/uvm.h>
142
143#include <VBox/vmm/pdmdev.h>
144#include <VBox/log.h>
145#include <VBox/param.h>
146#include <VBox/err.h>
147
148#include <iprt/asm.h>
149#include <iprt/asm-math.h>
150#include <iprt/assert.h>
151#include <iprt/env.h>
152#include <iprt/file.h>
153#include <iprt/getopt.h>
154#include <iprt/rand.h>
155#include <iprt/semaphore.h>
156#include <iprt/string.h>
157#include <iprt/thread.h>
158#include <iprt/time.h>
159#include <iprt/timer.h>
160
161#include "TMInline.h"
162
163
164/*********************************************************************************************************************************
165* Defined Constants And Macros *
166*********************************************************************************************************************************/
167/** The current saved state version.*/
168#define TM_SAVED_STATE_VERSION 3
169
170
171/*********************************************************************************************************************************
172* Internal Functions *
173*********************************************************************************************************************************/
174static bool tmR3HasFixedTSC(PVM pVM);
175static uint64_t tmR3CalibrateTSC(void);
176static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
177static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
178#ifdef VBOX_WITH_STATISTICS
179static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers);
180#endif
181static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
182static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
183#ifndef VBOX_WITHOUT_NS_ACCOUNTING
184static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
185#endif
186static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
187static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
188static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
189static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
190static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
191static const char *tmR3GetTSCModeName(PVM pVM);
192static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
193
194
195/**
196 * Initializes the TM.
197 *
198 * @returns VBox status code.
199 * @param pVM The cross context VM structure.
200 */
201VMM_INT_DECL(int) TMR3Init(PVM pVM)
202{
203 LogFlow(("TMR3Init:\n"));
204
205 /*
206 * Assert alignment and sizes.
207 */
208 AssertCompileMemberAlignment(VM, tm.s, 32);
209 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
210 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
211
212 /*
213 * Init the structure.
214 */
215 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
216
217 int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
218 AssertLogRelRCReturn(rc, rc);
219
220 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual");
221 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */
222 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real");
223 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc");
224
225 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
226 {
227 Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0');
228 pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i;
229 pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX;
230 pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX;
231 pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX;
232 pVM->tm.s.aTimerQueues[i].idxFreeHint = 1;
233 pVM->tm.s.aTimerQueues[i].fBeingProcessed = false;
234 pVM->tm.s.aTimerQueues[i].fCannotGrow = false;
235 pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD;
236 pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT;
237
238 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS,
239 "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName);
240 AssertLogRelRCReturn(rc, rc);
241
242 rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS,
243 "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName);
244 AssertLogRelRCReturn(rc, rc);
245 }
246
247 /*
248 * We directly use the GIP to calculate the virtual time. We map the
249 * the GIP into the guest context so we can do this calculation there
250 * as well and save costly world switches.
251 */
252 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
253 pVM->tm.s.pvGIPR3 = (void *)pGip;
254 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
255 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
256 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
257 VERR_TM_GIP_VERSION);
258
259 RTHCPHYS HCPhysGIP;
260 rc = SUPR3GipGetPhys(&HCPhysGIP);
261 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
262
263#ifndef PGM_WITHOUT_MAPPINGS
264 RTGCPTR GCPtr;
265# ifdef SUP_WITH_LOTS_OF_CPUS
266 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
267 "GIP", &GCPtr);
268# else
269 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
270# endif
271 if (RT_FAILURE(rc))
272 {
273 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
274 return rc;
275 }
276 pVM->tm.s.pvGIPRC = GCPtr;
277 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
278 MMR3HyperReserveFence(pVM);
279#endif
280
281
282 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
283 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
284 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
285 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
286 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
287 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
288
289 /* Log GIP info that may come in handy. */
290 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
291 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
292 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
293 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
294 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
295 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
296 {
297 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
298 if (iGipCpu != UINT16_MAX)
299 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
300 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
301 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
302 }
303
304 /*
305 * Setup the VirtualGetRaw backend.
306 */
307 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
308 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
309 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
310 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
311 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
312 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
313 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
314 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
315 /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
316
317 /*
318 * Get our CFGM node, create it if necessary.
319 */
320 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
321 if (!pCfgHandle)
322 {
323 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
324 AssertRCReturn(rc, rc);
325 }
326
327 /*
328 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
329 */
330 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
331 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
332 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
333 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
334 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
335 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
336
337 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
338 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
339 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
340
341 /*
342 * Validate the rest of the TM settings.
343 */
344 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
345 "TSCMode|"
346 "TSCModeSwitchAllowed|"
347 "TSCTicksPerSecond|"
348 "TSCTiedToExecution|"
349 "TSCNotTiedToHalt|"
350 "ScheduleSlack|"
351 "CatchUpStopThreshold|"
352 "CatchUpGiveUpThreshold|"
353 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
354 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
355 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
356 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
357 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
358 "CatchUpPrecentage8|CatchUpPrecentage9|"
359 "UTCOffset|"
360 "UTCTouchFileOnJump|"
361 "WarpDrivePercentage|"
362 "HostHzMax|"
363 "HostHzFudgeFactorTimerCpu|"
364 "HostHzFudgeFactorOtherCpu|"
365 "HostHzFudgeFactorCatchUp100|"
366 "HostHzFudgeFactorCatchUp200|"
367 "HostHzFudgeFactorCatchUp400|"
368 "TimerMillies"
369 ,
370 "",
371 "TM", 0);
372 if (RT_FAILURE(rc))
373 return rc;
374
375 /*
376 * Determine the TSC configuration and frequency.
377 */
378 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
379 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
380 * The default depends on the VM configuration and the capabilities of the
381 * host CPU. Other config options or runtime changes may override the TSC
382 * mode specified here.
383 */
384 char szTSCMode[32];
385 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
386 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
387 {
388 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
389 * fall back on the more expensive emulated mode. With the current TSC handling
390 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
391 * without any kind of coordination) will lead to inconsistent TSC behavior with
392 * guest SMP, including TSC going backwards. */
393 pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
394 : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
395 }
396 else if (RT_FAILURE(rc))
397 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
398 else
399 {
400 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
401 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
402 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
403 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
404 else if (!RTStrCmp(szTSCMode, "Dynamic"))
405 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
406 else
407 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
408 if (NEMR3NeedSpecialTscMode(pVM))
409 {
410 LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
411 pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
412 }
413 }
414
415 /**
416 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
417 * at runtime}
418 * When using paravirtualized guests, we dynamically switch TSC modes to a more
419 * optimal one for performance. This setting allows overriding this behaviour.
420 */
421 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
422 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
423 {
424 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
425 pVM->tm.s.fTSCModeSwitchAllowed = true;
426 }
427 else if (RT_FAILURE(rc))
428 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
429 if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
430 {
431 LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
432 pVM->tm.s.fTSCModeSwitchAllowed = false;
433 }
434
435 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
436 * The number of TSC ticks per second (i.e. the TSC frequency). This will
437 * override enmTSCMode.
438 */
439 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
440 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
441 {
442 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
443 if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
444 || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
445 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
446 {
447 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
448 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
449 }
450 }
451 else if (RT_FAILURE(rc))
452 return VMSetError(pVM, rc, RT_SRC_POS,
453 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
454 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
455 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
456 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
457 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
458 pVM->tm.s.cTSCTicksPerSecond);
459 else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
460 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
461 else
462 {
463 LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
464 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
465 }
466
467 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
468 * Whether the TSC should be tied to execution. This will exclude most of the
469 * virtualization overhead, but will by default include the time spent in the
470 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
471 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
472 * be used avoided or used with great care. Note that this will only work right
473 * together with VT-x or AMD-V, and with a single virtual CPU. */
474 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
475 if (RT_FAILURE(rc))
476 return VMSetError(pVM, rc, RT_SRC_POS,
477 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
478 if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
479 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
480 if (pVM->tm.s.fTSCTiedToExecution)
481 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
482
483
484 /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
485 * This is used with /TM/TSCTiedToExecution to control how TSC operates
486 * accross HLT instructions. When true HLT is considered execution time and
487 * TSC continues to run, while when false (default) TSC stops during halt. */
488 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
489 if (RT_FAILURE(rc))
490 return VMSetError(pVM, rc, RT_SRC_POS,
491 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
492
493 /*
494 * Configure the timer synchronous virtual time.
495 */
496 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
497 * Scheduling slack when processing timers. */
498 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
499 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
500 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
501 else if (RT_FAILURE(rc))
502 return VMSetError(pVM, rc, RT_SRC_POS,
503 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
504
505 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
506 * When to stop a catch-up, considering it successful. */
507 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
508 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
509 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
510 else if (RT_FAILURE(rc))
511 return VMSetError(pVM, rc, RT_SRC_POS,
512 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
513
514 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
515 * When to give up a catch-up attempt. */
516 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
517 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
518 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
519 else if (RT_FAILURE(rc))
520 return VMSetError(pVM, rc, RT_SRC_POS,
521 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
522
523
524 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
525 * The catch-up percent for a given period. */
526 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
527 * The catch-up period threshold, or if you like, when a period starts. */
528#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
529 do \
530 { \
531 uint64_t u64; \
532 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
533 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
534 u64 = UINT64_C(DefStart); \
535 else if (RT_FAILURE(rc)) \
536 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
537 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
538 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
539 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
540 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
541 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
542 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
543 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
544 else if (RT_FAILURE(rc)) \
545 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
546 } while (0)
547 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
548 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
549 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
550 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
551 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
552 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
553 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
554 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
555 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
556 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
557 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
558 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
559#undef TM_CFG_PERIOD
560
561 /*
562 * Configure real world time (UTC).
563 */
564 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
565 * The UTC offset. This is used to put the guest back or forwards in time. */
566 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
567 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
568 pVM->tm.s.offUTC = 0; /* ns */
569 else if (RT_FAILURE(rc))
570 return VMSetError(pVM, rc, RT_SRC_POS,
571 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
572
573 /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
574 * File to be written to everytime the host time jumps. */
575 rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
576 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
577 pVM->tm.s.pszUtcTouchFileOnJump = NULL;
578 else if (RT_FAILURE(rc))
579 return VMSetError(pVM, rc, RT_SRC_POS,
580 N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
581
582 /*
583 * Setup the warp drive.
584 */
585 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
586 * The warp drive percentage, 100% is normal speed. This is used to speed up
587 * or slow down the virtual clock, which can be useful for fast forwarding
588 * borring periods during tests. */
589 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
590 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
591 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
592 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
593 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
594 else if (RT_FAILURE(rc))
595 return VMSetError(pVM, rc, RT_SRC_POS,
596 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
597 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
598 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
599 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
600 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
601 pVM->tm.s.u32VirtualWarpDrivePercentage);
602 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
603 if (pVM->tm.s.fVirtualWarpDrive)
604 {
605 if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
606 LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
607 pVM->tm.s.u32VirtualWarpDrivePercentage));
608 else
609 {
610 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
611 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
612 }
613 }
614
615 /*
616 * Gather the Host Hz configuration values.
617 */
618 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
619 if (RT_FAILURE(rc))
620 return VMSetError(pVM, rc, RT_SRC_POS,
621 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
622
623 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
624 if (RT_FAILURE(rc))
625 return VMSetError(pVM, rc, RT_SRC_POS,
626 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
627
628 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
629 if (RT_FAILURE(rc))
630 return VMSetError(pVM, rc, RT_SRC_POS,
631 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
632
633 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
634 if (RT_FAILURE(rc))
635 return VMSetError(pVM, rc, RT_SRC_POS,
636 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
637
638 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
639 if (RT_FAILURE(rc))
640 return VMSetError(pVM, rc, RT_SRC_POS,
641 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
642
643 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
644 if (RT_FAILURE(rc))
645 return VMSetError(pVM, rc, RT_SRC_POS,
646 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
647
648 /*
649 * Finally, setup and report.
650 */
651 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
652 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
653 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
654 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
655 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
656 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
657
658 /*
659 * Start the timer (guard against REM not yielding).
660 */
661 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
662 * The watchdog timer interval. */
663 uint32_t u32Millies;
664 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
665 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
666 u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
667 else if (RT_FAILURE(rc))
668 return VMSetError(pVM, rc, RT_SRC_POS,
669 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
670 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
671 if (RT_FAILURE(rc))
672 {
673 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
674 return rc;
675 }
676 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
677 pVM->tm.s.u32TimerMillies = u32Millies;
678
679 /*
680 * Register saved state.
681 */
682 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
683 NULL, NULL, NULL,
684 NULL, tmR3Save, NULL,
685 NULL, tmR3Load, NULL);
686 if (RT_FAILURE(rc))
687 return rc;
688
689 /*
690 * Register statistics.
691 */
692 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
693 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
694 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
695 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
696 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
697 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
698 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
699 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
700 STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
701 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
702 {
703 rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ,
704 "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName);
705 AssertRC(rc);
706 }
707
708#ifdef VBOX_WITH_STATISTICS
709 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
710 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
711 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
712 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
713 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
714 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
715 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
716 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
717 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
718 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
719
720 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
721 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
722 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
723 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
724 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
725 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
726 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
727 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
728
729 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
730 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
731
732 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
733 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
734 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
735
736 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
737 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
738 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
739 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
740 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
741 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
742 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
743 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
744 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
745 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
746 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
747 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
748
749 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
750 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
751 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
752 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
753 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
754 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
755
756 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
757 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
758 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
759 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
760 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
761 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
762 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
763 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
764 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
765 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
766 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
767 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
768
769 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
770 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
771 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
772 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
773 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
774 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
775
776 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
777 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
778
779 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
780 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
781 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
782 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
783 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
784 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
785 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
786 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
787 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
788 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
789 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
790
791 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
792 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
793
794 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
795 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
796 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
797 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
798 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
799 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
800 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
801 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
802 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
803 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
804 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
805 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
806#endif /* VBOX_WITH_STATISTICS */
807
808 for (VMCPUID i = 0; i < pVM->cCpus; i++)
809 {
810 PVMCPU pVCpu = pVM->apCpusR3[i];
811 STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
812#ifndef VBOX_WITHOUT_NS_ACCOUNTING
813# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
814 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
815 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
816 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
817 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
818 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
819 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
820 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
821# endif
822 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
823 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
824 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
825 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
826 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
827 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
828 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
829 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
830 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
831#endif
832 }
833#ifndef VBOX_WITHOUT_NS_ACCOUNTING
834 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
835 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
836 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
837#endif
838
839#ifdef VBOX_WITH_STATISTICS
840 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
841 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
842 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
843 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
844 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
845 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
846 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
847 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
848 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
849 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
850 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
851 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
852 {
853 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
854 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
855 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
856 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
857 }
858#endif /* VBOX_WITH_STATISTICS */
859
860 /*
861 * Register info handlers.
862 */
863 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
864 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
865 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
866 DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
867
868 return VINF_SUCCESS;
869}
870
871
872/**
873 * Checks if the host CPU has a fixed TSC frequency.
874 *
875 * @returns true if it has, false if it hasn't.
876 *
877 * @remarks This test doesn't bother with very old CPUs that don't do power
878 * management or any other stuff that might influence the TSC rate.
879 * This isn't currently relevant.
880 */
881static bool tmR3HasFixedTSC(PVM pVM)
882{
883 /*
884 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
885 * actually has invariant TSC.
886 */
887 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
888 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
889 return true;
890
891 /*
892 * Go by features and model info from the CPUID instruction.
893 */
894 if (ASMHasCpuId())
895 {
896 uint32_t uEAX, uEBX, uECX, uEDX;
897
898 /*
899 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
900 */
901 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
902 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
903 {
904 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
905 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
906 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
907 return true;
908 }
909
910 /*
911 * By model.
912 */
913 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
914 {
915 /*
916 * AuthenticAMD - Check for APM support and that TscInvariant is set.
917 *
918 * This test isn't correct with respect to fixed/non-fixed TSC and
919 * older models, but this isn't relevant since the result is currently
920 * only used for making a decision on AMD-V models.
921 */
922#if 0 /* Promoted to generic */
923 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
924 if (uEAX >= 0x80000007)
925 {
926 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
927 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
928 && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
929 || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
930 return true;
931 }
932#endif
933 }
934 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
935 {
936 /*
937 * GenuineIntel - Check the model number.
938 *
939 * This test is lacking in the same way and for the same reasons
940 * as the AMD test above.
941 */
942 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
943 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
944 unsigned uModel = (uEAX >> 4) & 0x0f;
945 unsigned uFamily = (uEAX >> 8) & 0x0f;
946 if (uFamily == 0x0f)
947 uFamily += (uEAX >> 20) & 0xff;
948 if (uFamily >= 0x06)
949 uModel += ((uEAX >> 16) & 0x0f) << 4;
950 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
951 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
952 return true;
953 }
954 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
955 {
956 /*
957 * CentaurHauls - Check the model, family and stepping.
958 *
959 * This only checks for VIA CPU models Nano X2, Nano X3,
960 * Eden X2 and QuadCore.
961 */
962 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
963 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
964 unsigned uStepping = (uEAX & 0x0f);
965 unsigned uModel = (uEAX >> 4) & 0x0f;
966 unsigned uFamily = (uEAX >> 8) & 0x0f;
967 if ( uFamily == 0x06
968 && uModel == 0x0f
969 && uStepping >= 0x0c
970 && uStepping <= 0x0f)
971 return true;
972 }
973 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
974 {
975 /*
976 * Shanghai - Check the model, family and stepping.
977 */
978 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
979 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
980 unsigned uFamily = (uEAX >> 8) & 0x0f;
981 if ( uFamily == 0x06
982 || uFamily == 0x07)
983 {
984 return true;
985 }
986 }
987 }
988 return false;
989}
990
991
992/**
993 * Calibrate the CPU tick.
994 *
995 * @returns Number of ticks per second.
996 */
997static uint64_t tmR3CalibrateTSC(void)
998{
999 uint64_t u64Hz;
1000
1001 /*
1002 * Use GIP when available. Prefere the nominal one, no need to wait for it.
1003 */
1004 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
1005 if (pGip)
1006 {
1007 u64Hz = pGip->u64CpuHz;
1008 if (u64Hz < _1T && u64Hz > _1M)
1009 return u64Hz;
1010 AssertFailed(); /* This shouldn't happen. */
1011
1012 u64Hz = SUPGetCpuHzFromGip(pGip);
1013 if (u64Hz < _1T && u64Hz > _1M)
1014 return u64Hz;
1015
1016 AssertFailed(); /* This shouldn't happen. */
1017 }
1018 /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
1019
1020 /* Call this once first to make sure it's initialized. */
1021 RTTimeNanoTS();
1022
1023 /*
1024 * Yield the CPU to increase our chances of getting
1025 * a correct value.
1026 */
1027 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
1028 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
1029 uint64_t au64Samples[5];
1030 unsigned i;
1031 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
1032 {
1033 RTMSINTERVAL cMillies;
1034 int cTries = 5;
1035 uint64_t u64Start = ASMReadTSC();
1036 uint64_t u64End;
1037 uint64_t StartTS = RTTimeNanoTS();
1038 uint64_t EndTS;
1039 do
1040 {
1041 RTThreadSleep(s_auSleep[i]);
1042 u64End = ASMReadTSC();
1043 EndTS = RTTimeNanoTS();
1044 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
1045 } while ( cMillies == 0 /* the sleep may be interrupted... */
1046 || (cMillies < 20 && --cTries > 0));
1047 uint64_t u64Diff = u64End - u64Start;
1048
1049 au64Samples[i] = (u64Diff * 1000) / cMillies;
1050 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
1051 }
1052
1053 /*
1054 * Discard the highest and lowest results and calculate the average.
1055 */
1056 unsigned iHigh = 0;
1057 unsigned iLow = 0;
1058 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1059 {
1060 if (au64Samples[i] < au64Samples[iLow])
1061 iLow = i;
1062 if (au64Samples[i] > au64Samples[iHigh])
1063 iHigh = i;
1064 }
1065 au64Samples[iLow] = 0;
1066 au64Samples[iHigh] = 0;
1067
1068 u64Hz = au64Samples[0];
1069 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1070 u64Hz += au64Samples[i];
1071 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1072
1073 return u64Hz;
1074}
1075
1076
1077/**
1078 * Finalizes the TM initialization.
1079 *
1080 * @returns VBox status code.
1081 * @param pVM The cross context VM structure.
1082 */
1083VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1084{
1085 int rc;
1086
1087 /*
1088 * Resolve symbols.
1089 */
1090 if (VM_IS_RAW_MODE_ENABLED(pVM))
1091 {
1092 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
1093 AssertRCReturn(rc, rc);
1094 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
1095 AssertRCReturn(rc, rc);
1096 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
1097 AssertRCReturn(rc, rc);
1098 pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
1099 }
1100
1101 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1102 AssertRCReturn(rc, rc);
1103 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1104 AssertRCReturn(rc, rc);
1105 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1106 AssertRCReturn(rc, rc);
1107 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1108
1109#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1110 /*
1111 * Create a timer for refreshing the CPU load stats.
1112 */
1113 TMTIMERHANDLE hTimer;
1114 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer);
1115 if (RT_SUCCESS(rc))
1116 rc = TMTimerSetMillies(pVM, hTimer, 1000);
1117#endif
1118
1119 /*
1120 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1121 */
1122 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && !VM_IS_RAW_MODE_ENABLED(pVM);
1123 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1124
1125 /*
1126 * Grow the virtual & real timer tables so we've got sufficient
1127 * space for dynamically created timers. We cannot allocate more
1128 * after ring-0 init completes.
1129 */
1130 static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} };
1131 for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++)
1132 {
1133 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue];
1134 if (s_aExtra[i].cExtra > pQueue->cTimersFree)
1135 {
1136 PDMCritSectRwEnterExcl(&pQueue->AllocLock, VERR_IGNORED);
1137 uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree;
1138 rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
1139 RT_MAKE_U64(cTimersAlloc, s_aExtra[i].idxQueue), NULL);
1140 AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc);
1141 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
1142 }
1143 }
1144
1145#ifdef VBOX_WITH_STATISTICS
1146 /*
1147 * Register timer statistics now that we've fixed the timer table sizes.
1148 */
1149 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1150 {
1151 pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true;
1152 tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX);
1153 }
1154#endif
1155
1156 return rc;
1157}
1158
1159
1160/**
1161 * Applies relocations to data and code managed by this
1162 * component. This function will be called at init and
1163 * whenever the VMM need to relocate it self inside the GC.
1164 *
1165 * @param pVM The cross context VM structure.
1166 * @param offDelta Relocation delta relative to old location.
1167 */
1168VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1169{
1170 LogFlow(("TMR3Relocate\n"));
1171
1172 if (VM_IS_RAW_MODE_ENABLED(pVM))
1173 {
1174 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
1175 pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
1176 pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
1177 pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
1178 pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
1179 pVM->tm.s.pfnVirtualGetRawRC += offDelta;
1180 }
1181}
1182
1183
1184/**
1185 * Terminates the TM.
1186 *
1187 * Termination means cleaning up and freeing all resources,
1188 * the VM it self is at this point powered off or suspended.
1189 *
1190 * @returns VBox status code.
1191 * @param pVM The cross context VM structure.
1192 */
1193VMM_INT_DECL(int) TMR3Term(PVM pVM)
1194{
1195 if (pVM->tm.s.pTimer)
1196 {
1197 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1198 AssertRC(rc);
1199 pVM->tm.s.pTimer = NULL;
1200 }
1201
1202 return VINF_SUCCESS;
1203}
1204
1205
1206/**
1207 * The VM is being reset.
1208 *
1209 * For the TM component this means that a rescheduling is preformed,
1210 * the FF is cleared and but without running the queues. We'll have to
1211 * check if this makes sense or not, but it seems like a good idea now....
1212 *
1213 * @param pVM The cross context VM structure.
1214 */
1215VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1216{
1217 LogFlow(("TMR3Reset:\n"));
1218 VM_ASSERT_EMT(pVM);
1219
1220 /*
1221 * Abort any pending catch up.
1222 * This isn't perfect...
1223 */
1224 if (pVM->tm.s.fVirtualSyncCatchUp)
1225 {
1226 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1227 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1228 if (pVM->tm.s.fVirtualSyncCatchUp)
1229 {
1230 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1231
1232 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1233 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1234 Assert(offOld <= offNew);
1235 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1236 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1237 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1238 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1239 }
1240 }
1241
1242 /*
1243 * Process the queues.
1244 */
1245 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1246 {
1247 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
1248 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
1249 tmTimerQueueSchedule(pVM, pQueue, pQueue);
1250 PDMCritSectLeave(&pQueue->TimerLock);
1251 }
1252#ifdef VBOX_STRICT
1253 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1254#endif
1255
1256 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1257 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1258
1259 /*
1260 * Switch TM TSC mode back to the original mode after a reset for
1261 * paravirtualized guests that alter the TM TSC mode during operation.
1262 */
1263 if ( pVM->tm.s.fTSCModeSwitchAllowed
1264 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1265 {
1266 VM_ASSERT_EMT0(pVM);
1267 tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
1268 }
1269 Assert(!GIMIsParavirtTscEnabled(pVM));
1270 pVM->tm.s.fParavirtTscEnabled = false;
1271
1272 /*
1273 * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
1274 * sees TSC value beyond 0x40000000000 at startup, it will reset the
1275 * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
1276 */
1277 VM_ASSERT_EMT0(pVM);
1278 uint64_t offTscRawSrc;
1279 switch (pVM->tm.s.enmTSCMode)
1280 {
1281 case TMTSCMODE_REAL_TSC_OFFSET:
1282 offTscRawSrc = SUPReadTsc();
1283 break;
1284 case TMTSCMODE_DYNAMIC:
1285 case TMTSCMODE_VIRT_TSC_EMULATED:
1286 offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
1287 offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
1288 break;
1289 case TMTSCMODE_NATIVE_API:
1290 /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
1291 offTscRawSrc = 0;
1292 break;
1293 default:
1294 AssertFailedBreakStmt(offTscRawSrc = 0);
1295 }
1296 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1297 {
1298 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1299 pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
1300 pVCpu->tm.s.u64TSC = 0;
1301 pVCpu->tm.s.u64TSCLastSeen = 0;
1302 }
1303}
1304
1305
1306/**
1307 * Resolve a builtin RC symbol.
1308 * Called by PDM when loading or relocating GC modules.
1309 *
1310 * @returns VBox status
1311 * @param pVM The cross context VM structure.
1312 * @param pszSymbol Symbol to resolve.
1313 * @param pRCPtrValue Where to store the symbol value.
1314 * @remark This has to work before TMR3Relocate() is called.
1315 */
1316VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1317{
1318 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1319 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1320 //else if (..)
1321 else
1322 return VERR_SYMBOL_NOT_FOUND;
1323 return VINF_SUCCESS;
1324}
1325
1326
1327/**
1328 * Execute state save operation.
1329 *
1330 * @returns VBox status code.
1331 * @param pVM The cross context VM structure.
1332 * @param pSSM SSM operation handle.
1333 */
1334static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1335{
1336 LogFlow(("tmR3Save:\n"));
1337#ifdef VBOX_STRICT
1338 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1339 {
1340 PVMCPU pVCpu = pVM->apCpusR3[i];
1341 Assert(!pVCpu->tm.s.fTSCTicking);
1342 }
1343 Assert(!pVM->tm.s.cVirtualTicking);
1344 Assert(!pVM->tm.s.fVirtualSyncTicking);
1345 Assert(!pVM->tm.s.cTSCsTicking);
1346#endif
1347
1348 /*
1349 * Save the virtual clocks.
1350 */
1351 /* the virtual clock. */
1352 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1353 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1354
1355 /* the virtual timer synchronous clock. */
1356 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1357 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1358 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1359 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1360 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1361
1362 /* real time clock */
1363 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1364
1365 /* the cpu tick clock. */
1366 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1367 {
1368 PVMCPU pVCpu = pVM->apCpusR3[i];
1369 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1370 }
1371 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1372}
1373
1374
1375/**
1376 * Execute state load operation.
1377 *
1378 * @returns VBox status code.
1379 * @param pVM The cross context VM structure.
1380 * @param pSSM SSM operation handle.
1381 * @param uVersion Data layout version.
1382 * @param uPass The data pass.
1383 */
1384static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1385{
1386 LogFlow(("tmR3Load:\n"));
1387
1388 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1389#ifdef VBOX_STRICT
1390 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1391 {
1392 PVMCPU pVCpu = pVM->apCpusR3[i];
1393 Assert(!pVCpu->tm.s.fTSCTicking);
1394 }
1395 Assert(!pVM->tm.s.cVirtualTicking);
1396 Assert(!pVM->tm.s.fVirtualSyncTicking);
1397 Assert(!pVM->tm.s.cTSCsTicking);
1398#endif
1399
1400 /*
1401 * Validate version.
1402 */
1403 if (uVersion != TM_SAVED_STATE_VERSION)
1404 {
1405 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1406 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1407 }
1408
1409 /*
1410 * Load the virtual clock.
1411 */
1412 pVM->tm.s.cVirtualTicking = 0;
1413 /* the virtual clock. */
1414 uint64_t u64Hz;
1415 int rc = SSMR3GetU64(pSSM, &u64Hz);
1416 if (RT_FAILURE(rc))
1417 return rc;
1418 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1419 {
1420 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1421 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1422 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1423 }
1424 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1425 pVM->tm.s.u64VirtualOffset = 0;
1426
1427 /* the virtual timer synchronous clock. */
1428 pVM->tm.s.fVirtualSyncTicking = false;
1429 uint64_t u64;
1430 SSMR3GetU64(pSSM, &u64);
1431 pVM->tm.s.u64VirtualSync = u64;
1432 SSMR3GetU64(pSSM, &u64);
1433 pVM->tm.s.offVirtualSync = u64;
1434 SSMR3GetU64(pSSM, &u64);
1435 pVM->tm.s.offVirtualSyncGivenUp = u64;
1436 SSMR3GetU64(pSSM, &u64);
1437 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1438 bool f;
1439 SSMR3GetBool(pSSM, &f);
1440 pVM->tm.s.fVirtualSyncCatchUp = f;
1441
1442 /* the real clock */
1443 rc = SSMR3GetU64(pSSM, &u64Hz);
1444 if (RT_FAILURE(rc))
1445 return rc;
1446 if (u64Hz != TMCLOCK_FREQ_REAL)
1447 {
1448 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1449 u64Hz, TMCLOCK_FREQ_REAL));
1450 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1451 }
1452
1453 /* the cpu tick clock. */
1454 pVM->tm.s.cTSCsTicking = 0;
1455 pVM->tm.s.offTSCPause = 0;
1456 pVM->tm.s.u64LastPausedTSC = 0;
1457 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1458 {
1459 PVMCPU pVCpu = pVM->apCpusR3[i];
1460
1461 pVCpu->tm.s.fTSCTicking = false;
1462 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1463 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1464 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1465
1466 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1467 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1468 }
1469
1470 rc = SSMR3GetU64(pSSM, &u64Hz);
1471 if (RT_FAILURE(rc))
1472 return rc;
1473 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1474 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1475
1476 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1477 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1478
1479 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1480#if 0
1481 /*
1482 * If the current host TSC frequency is incompatible with what is in the
1483 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1484 * switches during VM runtime (e.g. by GIM).
1485 */
1486 if ( GIMIsEnabled(pVM)
1487 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1488 {
1489 uint64_t uGipCpuHz;
1490 bool fRelax = RTSystemIsInsideVM();
1491 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1492 if (!fCompat)
1493 {
1494 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1495 pVM->tm.s.fTSCModeSwitchAllowed = false;
1496 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1497 {
1498 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1499 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1500 }
1501 else
1502 {
1503 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1504 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1505 }
1506 }
1507 }
1508#endif
1509
1510 /*
1511 * Make sure timers get rescheduled immediately.
1512 */
1513 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1514 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1515
1516 return VINF_SUCCESS;
1517}
1518
1519#ifdef VBOX_WITH_STATISTICS
1520
1521/**
1522 * Register statistics for a timer.
1523 *
1524 * @param pVM The cross context VM structure.
1525 * @param pQueue The queue the timer belongs to.
1526 * @param pTimer The timer to register statistics for.
1527 */
1528static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1529{
1530 STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1531 pQueue->szName, "/TM/Timers/%s", pTimer->szName);
1532 STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1533 "", "/TM/Timers/%s/CritSectEnter", pTimer->szName);
1534 STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1535 "", "/TM/Timers/%s/Get", pTimer->szName);
1536 STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1537 "", "/TM/Timers/%s/SetAbsolute", pTimer->szName);
1538 STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1539 "", "/TM/Timers/%s/SetRelative", pTimer->szName);
1540 STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1541 "", "/TM/Timers/%s/Stop", pTimer->szName);
1542}
1543
1544
1545/**
1546 * Deregister the statistics for a timer.
1547 */
1548static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer)
1549{
1550 char szPrefix[128];
1551 size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName);
1552 STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
1553 szPrefix[cchPrefix - 1] = '\0';
1554 STAMR3Deregister(pVM->pUVM, szPrefix);
1555}
1556
1557
1558/**
1559 * Register statistics for all allocated timers in a queue.
1560 *
1561 * @param pVM The cross context VM structure.
1562 * @param pQueue The queue to register statistics for.
1563 * @param cTimers Number of timers to consider (in growth scenario).
1564 */
1565static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers)
1566{
1567 uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc);
1568 while (idxTimer-- > 0)
1569 {
1570 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
1571 TMTIMERSTATE enmState = pTimer->enmState;
1572 if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY)
1573 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1574 }
1575}
1576
1577#endif /* VBOX_WITH_STATISTICS */
1578
1579
1580/**
1581 * Internal TMR3TimerCreate worker.
1582 *
1583 * @returns VBox status code.
1584 * @param pVM The cross context VM structure.
1585 * @param enmClock The timer clock.
1586 * @param fFlags TMTIMER_FLAGS_XXX.
1587 * @param pszName The timer name.
1588 * @param ppTimer Where to store the timer pointer on success.
1589 */
1590static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer)
1591{
1592 PTMTIMER pTimer;
1593
1594 /*
1595 * Validate input.
1596 */
1597 VM_ASSERT_EMT(pVM);
1598
1599 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1600 VERR_INVALID_FLAGS);
1601
1602 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
1603 size_t const cchName = strlen(pszName);
1604 AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME);
1605 AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME);
1606
1607 AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX,
1608 ("%d\n", enmClock), VERR_INVALID_PARAMETER);
1609 AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED);
1610 if (enmClock == TMCLOCK_VIRTUAL_SYNC)
1611 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER);
1612
1613 /*
1614 * Exclusively lock the queue.
1615 *
1616 * Note! This means that it is not possible to allocate timers from a timer callback.
1617 */
1618 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock];
1619 int rc = PDMCritSectRwEnterExcl(&pQueue->AllocLock, VERR_IGNORED);
1620 AssertRCReturn(rc, rc);
1621
1622 /*
1623 * Allocate the timer.
1624 */
1625 if (!pQueue->cTimersFree)
1626 {
1627 AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW);
1628 uint32_t cTimersAlloc = pQueue->cTimersAlloc + 64;
1629 Assert(cTimersAlloc < _32K);
1630 rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
1631 RT_MAKE_U64(cTimersAlloc, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL);
1632 AssertLogRelRCReturnStmt(rc, PDMCritSectRwLeaveExcl(&pQueue->AllocLock), rc);
1633 AssertReturnStmt(pQueue->cTimersAlloc >= cTimersAlloc, PDMCritSectRwLeaveExcl(&pQueue->AllocLock), VERR_TM_IPE_3);
1634 }
1635
1636 /* Scan the array for free timers. */
1637 pTimer = NULL;
1638 PTMTIMER const paTimers = pQueue->paTimers;
1639 uint32_t const cTimersAlloc = pQueue->cTimersAlloc;
1640 uint32_t idxTimer = pQueue->idxFreeHint;
1641 for (uint32_t iScan = 0; iScan < 2; iScan++)
1642 {
1643 while (idxTimer < cTimersAlloc)
1644 {
1645 if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE)
1646 {
1647 pTimer = &paTimers[idxTimer];
1648 pQueue->idxFreeHint = idxTimer + 1;
1649 break;
1650 }
1651 idxTimer++;
1652 }
1653 if (pTimer != NULL)
1654 break;
1655 idxTimer = 1;
1656 }
1657 AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree,
1658 pQueue->cTimersAlloc, pQueue->szName),
1659 PDMCritSectRwLeaveExcl(&pQueue->AllocLock), VERR_INTERNAL_ERROR_3);
1660 pQueue->cTimersFree -= 1;
1661
1662 /*
1663 * Initialize it.
1664 */
1665 Assert(idxTimer != 0);
1666 Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK);
1667 pTimer->hSelf = idxTimer
1668 | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT);
1669 Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK));
1670 pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK);
1671
1672 pTimer->u64Expire = 0;
1673 pTimer->enmState = TMTIMERSTATE_STOPPED;
1674 pTimer->idxScheduleNext = UINT32_MAX;
1675 pTimer->idxNext = UINT32_MAX;
1676 pTimer->idxPrev = UINT32_MAX;
1677 pTimer->fFlags = fFlags;
1678 pTimer->uHzHint = 0;
1679 pTimer->pvUser = NULL;
1680 pTimer->pCritSect = NULL;
1681 memcpy(pTimer->szName, pszName, cchName);
1682 pTimer->szName[cchName] = '\0';
1683
1684#ifdef VBOX_STRICT
1685 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1686#endif
1687
1688 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
1689
1690#ifdef VBOX_WITH_STATISTICS
1691 /*
1692 * Only register statistics if we're passed the no-realloc point.
1693 */
1694 if (pQueue->fCannotGrow)
1695 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1696#endif
1697
1698 *ppTimer = pTimer;
1699 return VINF_SUCCESS;
1700}
1701
1702
1703/**
1704 * Creates a device timer.
1705 *
1706 * @returns VBox status code.
1707 * @param pVM The cross context VM structure.
1708 * @param pDevIns Device instance.
1709 * @param enmClock The clock to use on this timer.
1710 * @param pfnCallback Callback function.
1711 * @param pvUser The user argument to the callback.
1712 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1713 * @param pszName Timer name (will be copied). Max 31 chars.
1714 * @param phTimer Where to store the timer handle on success.
1715 */
1716VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1717 PFNTMTIMERDEV pfnCallback, void *pvUser,
1718 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1719{
1720 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1721 VERR_INVALID_FLAGS);
1722
1723 /*
1724 * Allocate and init stuff.
1725 */
1726 PTMTIMER pTimer;
1727 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1728 if (RT_SUCCESS(rc))
1729 {
1730 pTimer->enmType = TMTIMERTYPE_DEV;
1731 pTimer->u.Dev.pfnTimer = pfnCallback;
1732 pTimer->u.Dev.pDevIns = pDevIns;
1733 pTimer->pvUser = pvUser;
1734 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1735 pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1736 *phTimer = pTimer->hSelf;
1737 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName));
1738 }
1739
1740 return rc;
1741}
1742
1743
1744
1745
1746/**
1747 * Creates a USB device timer.
1748 *
1749 * @returns VBox status code.
1750 * @param pVM The cross context VM structure.
1751 * @param pUsbIns The USB device instance.
1752 * @param enmClock The clock to use on this timer.
1753 * @param pfnCallback Callback function.
1754 * @param pvUser The user argument to the callback.
1755 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1756 * @param pszName Timer name (will be copied). Max 31 chars.
1757 * @param phTimer Where to store the timer handle on success.
1758 */
1759VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1760 PFNTMTIMERUSB pfnCallback, void *pvUser,
1761 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1762{
1763 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER);
1764
1765 /*
1766 * Allocate and init stuff.
1767 */
1768 PTMTIMER pTimer;
1769 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1770 if (RT_SUCCESS(rc))
1771 {
1772 pTimer->enmType = TMTIMERTYPE_USB;
1773 pTimer->u.Usb.pfnTimer = pfnCallback;
1774 pTimer->u.Usb.pUsbIns = pUsbIns;
1775 pTimer->pvUser = pvUser;
1776 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1777 //{
1778 // if (pDevIns->pCritSectR3)
1779 // pTimer->pCritSect = pUsbIns->pCritSectR3;
1780 // else
1781 // pTimer->pCritSect = IOMR3GetCritSect(pVM);
1782 //}
1783 *phTimer = pTimer->hSelf;
1784 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1785 }
1786
1787 return rc;
1788}
1789
1790
1791/**
1792 * Creates a driver timer.
1793 *
1794 * @returns VBox status code.
1795 * @param pVM The cross context VM structure.
1796 * @param pDrvIns Driver instance.
1797 * @param enmClock The clock to use on this timer.
1798 * @param pfnCallback Callback function.
1799 * @param pvUser The user argument to the callback.
1800 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1801 * @param pszName Timer name (will be copied). Max 31 chars.
1802 * @param phTimer Where to store the timer handle on success.
1803 */
1804VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1805 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1806{
1807 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1808 VERR_INVALID_FLAGS);
1809
1810 /*
1811 * Allocate and init stuff.
1812 */
1813 PTMTIMER pTimer;
1814 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1815 if (RT_SUCCESS(rc))
1816 {
1817 pTimer->enmType = TMTIMERTYPE_DRV;
1818 pTimer->u.Drv.pfnTimer = pfnCallback;
1819 pTimer->u.Drv.pDrvIns = pDrvIns;
1820 pTimer->pvUser = pvUser;
1821 *phTimer = pTimer->hSelf;
1822 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1823 }
1824
1825 return rc;
1826}
1827
1828
1829/**
1830 * Creates an internal timer.
1831 *
1832 * @returns VBox status code.
1833 * @param pVM The cross context VM structure.
1834 * @param enmClock The clock to use on this timer.
1835 * @param pfnCallback Callback function.
1836 * @param pvUser User argument to be passed to the callback.
1837 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1838 * @param pszName Timer name (will be copied). Max 31 chars.
1839 * @param phTimer Where to store the timer handle on success.
1840 */
1841VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser,
1842 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1843{
1844 AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS);
1845 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1846 VERR_INVALID_FLAGS);
1847
1848 /*
1849 * Allocate and init stuff.
1850 */
1851 PTMTIMER pTimer;
1852 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1853 if (RT_SUCCESS(rc))
1854 {
1855 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1856 pTimer->u.Internal.pfnTimer = pfnCallback;
1857 pTimer->pvUser = pvUser;
1858 *phTimer = pTimer->hSelf;
1859 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName));
1860 }
1861
1862 return rc;
1863}
1864
1865
1866/**
1867 * Destroy a timer
1868 *
1869 * @returns VBox status code.
1870 * @param pVM The cross context VM structure.
1871 * @param pQueue The queue the timer is on.
1872 * @param pTimer Timer handle as returned by one of the create functions.
1873 */
1874static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1875{
1876 bool fActive = false;
1877 bool fPending = false;
1878
1879 AssertMsg( !pTimer->pCritSect
1880 || VMR3GetState(pVM) != VMSTATE_RUNNING
1881 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->szName));
1882
1883 /*
1884 * The rest of the game happens behind the lock, just
1885 * like create does. All the work is done here.
1886 */
1887 PDMCritSectRwEnterExcl(&pQueue->AllocLock, VERR_IGNORED);
1888 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
1889
1890 for (int cRetries = 1000;; cRetries--)
1891 {
1892 /*
1893 * Change to the DESTROY state.
1894 */
1895 TMTIMERSTATE const enmState = pTimer->enmState;
1896 Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n",
1897 pTimer, tmTimerState(enmState), pTimer->szName, cRetries));
1898 switch (enmState)
1899 {
1900 case TMTIMERSTATE_STOPPED:
1901 case TMTIMERSTATE_EXPIRED_DELIVER:
1902 break;
1903
1904 case TMTIMERSTATE_ACTIVE:
1905 fActive = true;
1906 break;
1907
1908 case TMTIMERSTATE_PENDING_STOP:
1909 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1910 case TMTIMERSTATE_PENDING_RESCHEDULE:
1911 fActive = true;
1912 fPending = true;
1913 break;
1914
1915 case TMTIMERSTATE_PENDING_SCHEDULE:
1916 fPending = true;
1917 break;
1918
1919 /*
1920 * This shouldn't happen as the caller should make sure there are no races.
1921 */
1922 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1923 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1924 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1925 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1926 PDMCritSectLeave(&pQueue->TimerLock);
1927 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
1928
1929 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1930 VERR_TM_UNSTABLE_STATE);
1931 if (!RTThreadYield())
1932 RTThreadSleep(1);
1933
1934 PDMCritSectRwEnterExcl(&pQueue->AllocLock, VERR_IGNORED);
1935 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
1936 continue;
1937
1938 /*
1939 * Invalid states.
1940 */
1941 case TMTIMERSTATE_FREE:
1942 case TMTIMERSTATE_DESTROY:
1943 PDMCritSectLeave(&pQueue->TimerLock);
1944 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
1945 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1946
1947 default:
1948 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName));
1949 PDMCritSectLeave(&pQueue->TimerLock);
1950 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
1951 return VERR_TM_UNKNOWN_STATE;
1952 }
1953
1954 /*
1955 * Try switch to the destroy state.
1956 * This should always succeed as the caller should make sure there are no race.
1957 */
1958 bool fRc;
1959 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1960 if (fRc)
1961 break;
1962 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1963 PDMCritSectLeave(&pQueue->TimerLock);
1964 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
1965
1966 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1967 VERR_TM_UNSTABLE_STATE);
1968
1969 PDMCritSectRwEnterExcl(&pQueue->AllocLock, VERR_IGNORED);
1970 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
1971 }
1972
1973 /*
1974 * Unlink from the active list.
1975 */
1976 if (fActive)
1977 {
1978 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
1979 const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer);
1980 if (pPrev)
1981 tmTimerSetNext(pQueue, pPrev, pNext);
1982 else
1983 {
1984 tmTimerQueueSetHead(pQueue, pQueue, pNext);
1985 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1986 }
1987 if (pNext)
1988 tmTimerSetPrev(pQueue, pNext, pPrev);
1989 pTimer->idxNext = UINT32_MAX;
1990 pTimer->idxPrev = UINT32_MAX;
1991 }
1992
1993 /*
1994 * Unlink from the schedule list by running it.
1995 */
1996 if (fPending)
1997 {
1998 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1999 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2000 Assert(pQueue->idxSchedule < pQueue->cTimersAlloc);
2001 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2002 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2003 }
2004
2005#ifdef VBOX_WITH_STATISTICS
2006 /*
2007 * Deregister statistics.
2008 */
2009 tmR3TimerDeregisterStats(pVM, pTimer);
2010#endif
2011
2012 /*
2013 * Change it to free state and update the queue accordingly.
2014 */
2015 Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX);
2016
2017 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
2018
2019 pQueue->cTimersFree += 1;
2020 uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers);
2021 if (idxTimer < pQueue->idxFreeHint)
2022 pQueue->idxFreeHint = idxTimer;
2023
2024#ifdef VBOX_STRICT
2025 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
2026#endif
2027 PDMCritSectLeave(&pQueue->TimerLock);
2028 PDMCritSectRwLeaveExcl(&pQueue->AllocLock);
2029 return VINF_SUCCESS;
2030}
2031
2032
2033/**
2034 * Destroy a timer
2035 *
2036 * @returns VBox status code.
2037 * @param pVM The cross context VM structure.
2038 * @param hTimer Timer handle as returned by one of the create functions.
2039 */
2040VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer)
2041{
2042 /* We ignore NILs here. */
2043 if (hTimer == NIL_TMTIMERHANDLE)
2044 return VINF_SUCCESS;
2045 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2046 return tmR3TimerDestroy(pVM, pQueue, pTimer);
2047}
2048
2049
2050/**
2051 * Destroy all timers owned by a device.
2052 *
2053 * @returns VBox status code.
2054 * @param pVM The cross context VM structure.
2055 * @param pDevIns Device which timers should be destroyed.
2056 */
2057VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
2058{
2059 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
2060 if (!pDevIns)
2061 return VERR_INVALID_PARAMETER;
2062
2063 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2064 {
2065 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2066 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
2067 uint32_t idxTimer = pQueue->cTimersAlloc;
2068 while (idxTimer-- > 0)
2069 {
2070 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2071 if ( pTimer->enmType == TMTIMERTYPE_DEV
2072 && pTimer->u.Dev.pDevIns == pDevIns
2073 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2074 {
2075 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
2076
2077 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2078 AssertRC(rc);
2079
2080 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
2081 }
2082 }
2083 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
2084 }
2085
2086 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
2087 return VINF_SUCCESS;
2088}
2089
2090
2091/**
2092 * Destroy all timers owned by a USB device.
2093 *
2094 * @returns VBox status code.
2095 * @param pVM The cross context VM structure.
2096 * @param pUsbIns USB device which timers should be destroyed.
2097 */
2098VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
2099{
2100 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
2101 if (!pUsbIns)
2102 return VERR_INVALID_PARAMETER;
2103
2104 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2105 {
2106 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2107 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
2108 uint32_t idxTimer = pQueue->cTimersAlloc;
2109 while (idxTimer-- > 0)
2110 {
2111 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2112 if ( pTimer->enmType == TMTIMERTYPE_USB
2113 && pTimer->u.Usb.pUsbIns == pUsbIns
2114 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2115 {
2116 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
2117
2118 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2119 AssertRC(rc);
2120
2121 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
2122 }
2123 }
2124 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
2125 }
2126
2127 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
2128 return VINF_SUCCESS;
2129}
2130
2131
2132/**
2133 * Destroy all timers owned by a driver.
2134 *
2135 * @returns VBox status code.
2136 * @param pVM The cross context VM structure.
2137 * @param pDrvIns Driver which timers should be destroyed.
2138 */
2139VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
2140{
2141 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
2142 if (!pDrvIns)
2143 return VERR_INVALID_PARAMETER;
2144
2145 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2146 {
2147 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2148 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
2149 uint32_t idxTimer = pQueue->cTimersAlloc;
2150 while (idxTimer-- > 0)
2151 {
2152 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2153 if ( pTimer->enmType == TMTIMERTYPE_DRV
2154 && pTimer->u.Drv.pDrvIns == pDrvIns
2155 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2156 {
2157 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
2158
2159 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2160 AssertRC(rc);
2161
2162 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
2163 }
2164 }
2165 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
2166 }
2167
2168 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
2169 return VINF_SUCCESS;
2170}
2171
2172
2173/**
2174 * Internal function for getting the clock time.
2175 *
2176 * @returns clock time.
2177 * @param pVM The cross context VM structure.
2178 * @param enmClock The clock.
2179 */
2180DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
2181{
2182 switch (enmClock)
2183 {
2184 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
2185 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
2186 case TMCLOCK_REAL: return TMRealGet(pVM);
2187 case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
2188 default:
2189 AssertMsgFailed(("enmClock=%d\n", enmClock));
2190 return ~(uint64_t)0;
2191 }
2192}
2193
2194
2195/**
2196 * Checks if the sync queue has one or more expired timers.
2197 *
2198 * @returns true / false.
2199 *
2200 * @param pVM The cross context VM structure.
2201 * @param enmClock The queue.
2202 */
2203DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
2204{
2205 const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire;
2206 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
2207}
2208
2209
2210/**
2211 * Checks for expired timers in all the queues.
2212 *
2213 * @returns true / false.
2214 * @param pVM The cross context VM structure.
2215 */
2216DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
2217{
2218 /*
2219 * Combine the time calculation for the first two since we're not on EMT
2220 * TMVirtualSyncGet only permits EMT.
2221 */
2222 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
2223 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
2224 return true;
2225 u64Now = pVM->tm.s.fVirtualSyncTicking
2226 ? u64Now - pVM->tm.s.offVirtualSync
2227 : pVM->tm.s.u64VirtualSync;
2228 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
2229 return true;
2230
2231 /*
2232 * The remaining timers.
2233 */
2234 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
2235 return true;
2236 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
2237 return true;
2238 return false;
2239}
2240
2241
2242/**
2243 * Schedule timer callback.
2244 *
2245 * @param pTimer Timer handle.
2246 * @param pvUser Pointer to the VM.
2247 * @thread Timer thread.
2248 *
2249 * @remark We cannot do the scheduling and queues running from a timer handler
2250 * since it's not executing in EMT, and even if it was it would be async
2251 * and we wouldn't know the state of the affairs.
2252 * So, we'll just raise the timer FF and force any REM execution to exit.
2253 */
2254static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
2255{
2256 PVM pVM = (PVM)pvUser;
2257 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2258 NOREF(pTimer);
2259
2260 AssertCompile(TMCLOCK_MAX == 4);
2261 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
2262
2263#ifdef DEBUG_Sander /* very annoying, keep it private. */
2264 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2265 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2266#endif
2267 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2268 && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2269 || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX
2270 || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX
2271 || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX
2272 || tmR3AnyExpiredTimers(pVM)
2273 )
2274 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2275 && !pVM->tm.s.fRunningQueues
2276 )
2277 {
2278 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2279 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2280 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2281 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2282 }
2283}
2284
2285
2286/**
2287 * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified
2288 * non-empty timer queue.
2289 *
2290 * @param pVM The cross context VM structure.
2291 * @param pQueue The queue to run.
2292 * @param pTimer The head timer. Caller already check that this is
2293 * not NULL.
2294 */
2295static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
2296{
2297 VM_ASSERT_EMT(pVM); /** @todo relax this */
2298
2299 /*
2300 * Run timers.
2301 *
2302 * We check the clock once and run all timers which are ACTIVE
2303 * and have an expire time less or equal to the time we read.
2304 *
2305 * N.B. A generic unlink must be applied since other threads
2306 * are allowed to mess with any active timer at any time.
2307 *
2308 * However, we only allow EMT to handle EXPIRED_PENDING
2309 * timers, thus enabling the timer handler function to
2310 * arm the timer again.
2311 */
2312/** @todo the above 'however' is outdated. */
2313 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2314 while (pTimer->u64Expire <= u64Now)
2315 {
2316 PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer);
2317 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2318 if (pCritSect)
2319 {
2320 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2321 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2322 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2323 }
2324 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2325 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2326 bool fRc;
2327 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2328 if (fRc)
2329 {
2330 Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */
2331
2332 /* unlink */
2333 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
2334 if (pPrev)
2335 tmTimerSetNext(pQueue, pPrev, pNext);
2336 else
2337 {
2338 tmTimerQueueSetHead(pQueue, pQueue, pNext);
2339 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2340 }
2341 if (pNext)
2342 tmTimerSetPrev(pQueue, pNext, pPrev);
2343 pTimer->idxNext = UINT32_MAX;
2344 pTimer->idxPrev = UINT32_MAX;
2345
2346 /* fire */
2347 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2348 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2349 switch (pTimer->enmType)
2350 {
2351 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2352 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2353 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2354 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2355 default:
2356 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2357 break;
2358 }
2359 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2360
2361 /* change the state if it wasn't changed already in the handler. */
2362 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2363 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2364 }
2365 if (pCritSect)
2366 PDMCritSectLeave(pCritSect);
2367
2368 /* Advance? */
2369 pTimer = pNext;
2370 if (!pTimer)
2371 break;
2372 } /* run loop */
2373}
2374
2375
2376/**
2377 * Service one regular timer queue.
2378 *
2379 * @param pVM The cross context VM structure.
2380 * @param pQueue The queue.
2381 */
2382static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue)
2383{
2384 Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC);
2385
2386 /*
2387 * Only one thread should be "doing" the queue.
2388 */
2389 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2390 {
2391 STAM_PROFILE_START(&pQueue->StatDo, s);
2392 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
2393
2394 if (pQueue->idxSchedule != UINT32_MAX)
2395 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2396
2397 PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue);
2398 if (pHead)
2399 tmR3TimerQueueRun(pVM, pQueue, pHead);
2400
2401 PDMCritSectLeave(&pQueue->TimerLock);
2402 STAM_PROFILE_STOP(&pQueue->StatDo, s);
2403 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2404 }
2405}
2406
2407
2408/**
2409 * Schedules and runs any pending times in the timer queue for the
2410 * synchronous virtual clock.
2411 *
2412 * This scheduling is a bit different from the other queues as it need
2413 * to implement the special requirements of the timer synchronous virtual
2414 * clock, thus this 2nd queue run function.
2415 *
2416 * @param pVM The cross context VM structure.
2417 *
2418 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2419 * longer important.
2420 */
2421static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2422{
2423 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2424 VM_ASSERT_EMT(pVM);
2425 Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
2426
2427 /*
2428 * Any timers?
2429 */
2430 PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue);
2431 if (RT_UNLIKELY(!pNext))
2432 {
2433 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2434 return;
2435 }
2436 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2437
2438 /*
2439 * Calculate the time frame for which we will dispatch timers.
2440 *
2441 * We use a time frame ranging from the current sync time (which is most likely the
2442 * same as the head timer) and some configurable period (100000ns) up towards the
2443 * current virtual time. This period might also need to be restricted by the catch-up
2444 * rate so frequent calls to this function won't accelerate the time too much, however
2445 * this will be implemented at a later point if necessary.
2446 *
2447 * Without this frame we would 1) having to run timers much more frequently
2448 * and 2) lag behind at a steady rate.
2449 */
2450 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2451 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2452 uint64_t u64Now;
2453 if (!pVM->tm.s.fVirtualSyncTicking)
2454 {
2455 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2456 u64Now = pVM->tm.s.u64VirtualSync;
2457 Assert(u64Now <= pNext->u64Expire);
2458 }
2459 else
2460 {
2461 /* Calc 'now'. */
2462 bool fStopCatchup = false;
2463 bool fUpdateStuff = false;
2464 uint64_t off = pVM->tm.s.offVirtualSync;
2465 if (pVM->tm.s.fVirtualSyncCatchUp)
2466 {
2467 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2468 if (RT_LIKELY(!(u64Delta >> 32)))
2469 {
2470 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2471 if (off > u64Sub + offSyncGivenUp)
2472 {
2473 off -= u64Sub;
2474 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2475 }
2476 else
2477 {
2478 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2479 fStopCatchup = true;
2480 off = offSyncGivenUp;
2481 }
2482 fUpdateStuff = true;
2483 }
2484 }
2485 u64Now = u64VirtualNow - off;
2486
2487 /* Adjust against last returned time. */
2488 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2489 if (u64Last > u64Now)
2490 {
2491 u64Now = u64Last + 1;
2492 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2493 }
2494
2495 /* Check if stopped by expired timer. */
2496 uint64_t const u64Expire = pNext->u64Expire;
2497 if (u64Now >= u64Expire)
2498 {
2499 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2500 u64Now = u64Expire;
2501 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2502 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2503 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2504 }
2505 else
2506 {
2507 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2508 if (fUpdateStuff)
2509 {
2510 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2511 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2512 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2513 if (fStopCatchup)
2514 {
2515 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2516 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2517 }
2518 }
2519 }
2520 }
2521
2522 /* calc end of frame. */
2523 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2524 if (u64Max > u64VirtualNow - offSyncGivenUp)
2525 u64Max = u64VirtualNow - offSyncGivenUp;
2526
2527 /* assert sanity */
2528 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2529 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2530 Assert(u64Now <= u64Max);
2531 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2532
2533 /*
2534 * Process the expired timers moving the clock along as we progress.
2535 */
2536#ifdef VBOX_STRICT
2537 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2538#endif
2539 while (pNext && pNext->u64Expire <= u64Max)
2540 {
2541 /* Advance */
2542 PTMTIMER pTimer = pNext;
2543 pNext = tmTimerGetNext(pQueue, pTimer);
2544
2545 /* Take the associated lock. */
2546 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2547 if (pCritSect)
2548 {
2549 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2550 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2551 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2552 }
2553
2554 Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2555 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2556
2557 /* Advance the clock - don't permit timers to be out of order or armed
2558 in the 'past'. */
2559#ifdef VBOX_STRICT
2560 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName));
2561 u64Prev = pTimer->u64Expire;
2562#endif
2563 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2564 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2565
2566 /* Unlink it, change the state and do the callout. */
2567 tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer);
2568 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2569 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2570 switch (pTimer->enmType)
2571 {
2572 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2573 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2574 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2575 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2576 default:
2577 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2578 break;
2579 }
2580 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2581
2582 /* Change the state if it wasn't changed already in the handler.
2583 Reset the Hz hint too since this is the same as TMTimerStop. */
2584 bool fRc;
2585 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2586 if (fRc && pTimer->uHzHint)
2587 {
2588 if (pTimer->uHzHint >= pQueue->uMaxHzHint)
2589 ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16));
2590 pTimer->uHzHint = 0;
2591 }
2592 Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState)));
2593
2594 /* Leave the associated lock. */
2595 if (pCritSect)
2596 PDMCritSectLeave(pCritSect);
2597 } /* run loop */
2598
2599
2600 /*
2601 * Restart the clock if it was stopped to serve any timers,
2602 * and start/adjust catch-up if necessary.
2603 */
2604 if ( !pVM->tm.s.fVirtualSyncTicking
2605 && pVM->tm.s.cVirtualTicking)
2606 {
2607 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2608
2609 /* calc the slack we've handed out. */
2610 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2611 Assert(u64VirtualNow2 >= u64VirtualNow);
2612 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2613 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2614 STAM_STATS({
2615 if (offSlack)
2616 {
2617 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2618 p->cPeriods++;
2619 p->cTicks += offSlack;
2620 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2621 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2622 }
2623 });
2624
2625 /* Let the time run a little bit while we were busy running timers(?). */
2626 uint64_t u64Elapsed;
2627#define MAX_ELAPSED 30000U /* ns */
2628 if (offSlack > MAX_ELAPSED)
2629 u64Elapsed = 0;
2630 else
2631 {
2632 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2633 if (u64Elapsed > MAX_ELAPSED)
2634 u64Elapsed = MAX_ELAPSED;
2635 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2636 }
2637#undef MAX_ELAPSED
2638
2639 /* Calc the current offset. */
2640 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2641 Assert(!(offNew & RT_BIT_64(63)));
2642 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2643 Assert(!(offLag & RT_BIT_64(63)));
2644
2645 /*
2646 * Deal with starting, adjusting and stopping catchup.
2647 */
2648 if (pVM->tm.s.fVirtualSyncCatchUp)
2649 {
2650 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2651 {
2652 /* stop */
2653 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2654 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2655 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2656 }
2657 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2658 {
2659 /* adjust */
2660 unsigned i = 0;
2661 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2662 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2663 i++;
2664 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2665 {
2666 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2667 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2668 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2669 }
2670 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2671 }
2672 else
2673 {
2674 /* give up */
2675 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2676 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2677 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2678 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2679 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2680 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2681 }
2682 }
2683 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2684 {
2685 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2686 {
2687 /* start */
2688 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2689 unsigned i = 0;
2690 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2691 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2692 i++;
2693 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2694 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2695 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2696 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2697 }
2698 else
2699 {
2700 /* don't bother */
2701 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2702 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2703 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2704 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2705 }
2706 }
2707
2708 /*
2709 * Update the offset and restart the clock.
2710 */
2711 Assert(!(offNew & RT_BIT_64(63)));
2712 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2713 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2714 }
2715}
2716
2717
2718/**
2719 * Deals with stopped Virtual Sync clock.
2720 *
2721 * This is called by the forced action flag handling code in EM when it
2722 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2723 * will block on the VirtualSyncLock until the pending timers has been executed
2724 * and the clock restarted.
2725 *
2726 * @param pVM The cross context VM structure.
2727 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2728 *
2729 * @thread EMTs
2730 */
2731VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2732{
2733 Log2(("TMR3VirtualSyncFF:\n"));
2734
2735 /*
2736 * The EMT doing the timers is diverted to them.
2737 */
2738 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2739 TMR3TimerQueuesDo(pVM);
2740 /*
2741 * The other EMTs will block on the virtual sync lock and the first owner
2742 * will run the queue and thus restarting the clock.
2743 *
2744 * Note! This is very suboptimal code wrt to resuming execution when there
2745 * are more than two Virtual CPUs, since they will all have to enter
2746 * the critical section one by one. But it's a very simple solution
2747 * which will have to do the job for now.
2748 */
2749 else
2750 {
2751/** @todo Optimize for SMP */
2752 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2753 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2754 if (pVM->tm.s.fVirtualSyncTicking)
2755 {
2756 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2757 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2758 Log2(("TMR3VirtualSyncFF: ticking\n"));
2759 }
2760 else
2761 {
2762 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2763
2764 /* try run it. */
2765 PDMCritSectEnter(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED);
2766 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2767 if (pVM->tm.s.fVirtualSyncTicking)
2768 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2769 else
2770 {
2771 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2772 Log2(("TMR3VirtualSyncFF: running queue\n"));
2773
2774 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX);
2775 tmR3TimerQueueRunVirtualSync(pVM);
2776 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2777 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2778
2779 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2780 }
2781 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2782 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2783 PDMCritSectLeave(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock);
2784 }
2785 }
2786}
2787
2788
2789/**
2790 * Service the special virtual sync timer queue.
2791 *
2792 * @param pVM The cross context VM structure.
2793 * @param pVCpuDst The destination VCpu.
2794 */
2795static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst)
2796{
2797 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2798 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2799 {
2800 STAM_PROFILE_START(&pQueue->StatDo, s1);
2801 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
2802 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2803 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2804 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2805
2806 Assert(pQueue->idxSchedule == UINT32_MAX);
2807 tmR3TimerQueueRunVirtualSync(pVM);
2808 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2809 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2810
2811 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2812 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2813 PDMCritSectLeave(&pQueue->TimerLock);
2814 STAM_PROFILE_STOP(&pQueue->StatDo, s1);
2815 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2816 }
2817}
2818
2819
2820/**
2821 * Schedules and runs any pending timers.
2822 *
2823 * This is normally called from a forced action handler in EMT.
2824 *
2825 * @param pVM The cross context VM structure.
2826 *
2827 * @thread EMT (actually EMT0, but we fend off the others)
2828 */
2829VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2830{
2831 /*
2832 * Only the dedicated timer EMT should do stuff here.
2833 * (fRunningQueues is only used as an indicator.)
2834 */
2835 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2836 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2837 if (VMMGetCpu(pVM) != pVCpuDst)
2838 {
2839 Assert(pVM->cCpus > 1);
2840 return;
2841 }
2842 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2843 Log2(("TMR3TimerQueuesDo:\n"));
2844 Assert(!pVM->tm.s.fRunningQueues);
2845 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2846
2847 /*
2848 * Process the queues.
2849 */
2850 AssertCompile(TMCLOCK_MAX == 4);
2851
2852 /*
2853 * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF)
2854 */
2855 tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst);
2856
2857 /*
2858 * TMCLOCK_VIRTUAL
2859 */
2860 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]);
2861
2862 /*
2863 * TMCLOCK_TSC
2864 */
2865 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */
2866
2867 /*
2868 * TMCLOCK_REAL
2869 */
2870 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]);
2871
2872#ifdef VBOX_STRICT
2873 /* check that we didn't screw up. */
2874 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2875#endif
2876
2877 /* done */
2878 Log2(("TMR3TimerQueuesDo: returns void\n"));
2879 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2880 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2881}
2882
2883
2884
2885/** @name Saved state values
2886 * @{ */
2887#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2888#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2889/** @} */
2890
2891
2892/**
2893 * Saves the state of a timer to a saved state.
2894 *
2895 * @returns VBox status code.
2896 * @param pVM The cross context VM structure.
2897 * @param hTimer Timer to save.
2898 * @param pSSM Save State Manager handle.
2899 */
2900VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2901{
2902 VM_ASSERT_EMT(pVM);
2903 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2904 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2905
2906 switch (pTimer->enmState)
2907 {
2908 case TMTIMERSTATE_STOPPED:
2909 case TMTIMERSTATE_PENDING_STOP:
2910 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2911 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2912
2913 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2914 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2915 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName));
2916 if (!RTThreadYield())
2917 RTThreadSleep(1);
2918 RT_FALL_THRU();
2919 case TMTIMERSTATE_ACTIVE:
2920 case TMTIMERSTATE_PENDING_SCHEDULE:
2921 case TMTIMERSTATE_PENDING_RESCHEDULE:
2922 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2923 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2924
2925 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2926 case TMTIMERSTATE_EXPIRED_DELIVER:
2927 case TMTIMERSTATE_DESTROY:
2928 case TMTIMERSTATE_FREE:
2929 case TMTIMERSTATE_INVALID:
2930 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName));
2931 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2932 }
2933
2934 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName));
2935 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2936}
2937
2938
2939/**
2940 * Loads the state of a timer from a saved state.
2941 *
2942 * @returns VBox status code.
2943 * @param pVM The cross context VM structure.
2944 * @param hTimer Handle of Timer to restore.
2945 * @param pSSM Save State Manager handle.
2946 */
2947VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2948{
2949 VM_ASSERT_EMT(pVM);
2950 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2951 Assert(pSSM);
2952 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2953
2954 /*
2955 * Load the state and validate it.
2956 */
2957 uint8_t u8State;
2958 int rc = SSMR3GetU8(pSSM, &u8State);
2959 if (RT_FAILURE(rc))
2960 return rc;
2961
2962 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2963 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2964 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2965 u8State--;
2966
2967 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2968 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2969 {
2970 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2971 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2972 }
2973
2974 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2975 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
2976 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2977 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2978 if (pCritSect)
2979 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2980
2981 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2982 {
2983 /*
2984 * Load the expire time.
2985 */
2986 uint64_t u64Expire;
2987 rc = SSMR3GetU64(pSSM, &u64Expire);
2988 if (RT_FAILURE(rc))
2989 return rc;
2990
2991 /*
2992 * Set it.
2993 */
2994 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2995 rc = TMTimerSet(pVM, hTimer, u64Expire);
2996 }
2997 else
2998 {
2999 /*
3000 * Stop it.
3001 */
3002 Log(("u8State=%d\n", u8State));
3003 rc = TMTimerStop(pVM, hTimer);
3004 }
3005
3006 if (pCritSect)
3007 PDMCritSectLeave(pCritSect);
3008 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
3009 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
3010
3011 /*
3012 * On failure set SSM status.
3013 */
3014 if (RT_FAILURE(rc))
3015 rc = SSMR3HandleSetStatus(pSSM, rc);
3016 return rc;
3017}
3018
3019
3020/**
3021 * Skips the state of a timer in a given saved state.
3022 *
3023 * @returns VBox status.
3024 * @param pSSM Save State Manager handle.
3025 * @param pfActive Where to store whether the timer was active
3026 * when the state was saved.
3027 */
3028VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
3029{
3030 Assert(pSSM); AssertPtr(pfActive);
3031 LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
3032
3033 /*
3034 * Load the state and validate it.
3035 */
3036 uint8_t u8State;
3037 int rc = SSMR3GetU8(pSSM, &u8State);
3038 if (RT_FAILURE(rc))
3039 return rc;
3040
3041 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
3042 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
3043 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
3044 u8State--;
3045
3046 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
3047 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
3048 {
3049 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
3050 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
3051 }
3052
3053 *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
3054 if (*pfActive)
3055 {
3056 /*
3057 * Load the expire time.
3058 */
3059 uint64_t u64Expire;
3060 rc = SSMR3GetU64(pSSM, &u64Expire);
3061 }
3062
3063 return rc;
3064}
3065
3066
3067/**
3068 * Associates a critical section with a timer.
3069 *
3070 * The critical section will be entered prior to doing the timer call back, thus
3071 * avoiding potential races between the timer thread and other threads trying to
3072 * stop or adjust the timer expiration while it's being delivered. The timer
3073 * thread will leave the critical section when the timer callback returns.
3074 *
3075 * In strict builds, ownership of the critical section will be asserted by
3076 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
3077 * runtime).
3078 *
3079 * @retval VINF_SUCCESS on success.
3080 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
3081 * (asserted).
3082 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
3083 * (asserted).
3084 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
3085 * with the timer (asserted).
3086 * @retval VERR_INVALID_STATE if the timer isn't stopped.
3087 *
3088 * @param pVM The cross context VM structure.
3089 * @param hTimer The timer handle.
3090 * @param pCritSect The critical section. The caller must make sure this
3091 * is around for the life time of the timer.
3092 *
3093 * @thread Any, but the caller is responsible for making sure the timer is not
3094 * active.
3095 */
3096VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect)
3097{
3098 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
3099 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
3100 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
3101 AssertReturn(pszName, VERR_INVALID_PARAMETER);
3102 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
3103 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
3104 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName));
3105
3106 pTimer->pCritSect = pCritSect;
3107 return VINF_SUCCESS;
3108}
3109
3110
3111/**
3112 * Get the real world UTC time adjusted for VM lag.
3113 *
3114 * @returns pTime.
3115 * @param pVM The cross context VM structure.
3116 * @param pTime Where to store the time.
3117 */
3118VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
3119{
3120 /*
3121 * Get a stable set of VirtualSync parameters and calc the lag.
3122 */
3123 uint64_t offVirtualSync;
3124 uint64_t offVirtualSyncGivenUp;
3125 do
3126 {
3127 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
3128 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
3129 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
3130
3131 Assert(offVirtualSync >= offVirtualSyncGivenUp);
3132 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
3133
3134 /*
3135 * Get current time and adjust for virtual sync lag and do time displacement.
3136 */
3137 RTTimeNow(pTime);
3138 RTTimeSpecSubNano(pTime, offLag);
3139 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
3140
3141 /*
3142 * Log details if the time changed radically (also triggers on first call).
3143 */
3144 int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
3145 int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
3146 if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
3147 {
3148 RTTIMESPEC NowAgain;
3149 RTTimeNow(&NowAgain);
3150 LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3151 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
3152 if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
3153 {
3154 RTFILE hFile;
3155 int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
3156 RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
3157 if (RT_SUCCESS(rc))
3158 {
3159 char szMsg[256];
3160 size_t cch;
3161 cch = RTStrPrintf(szMsg, sizeof(szMsg),
3162 "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3163 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
3164 RTFileWrite(hFile, szMsg, cch, NULL);
3165 RTFileClose(hFile);
3166 }
3167 }
3168 }
3169
3170 return pTime;
3171}
3172
3173
3174/**
3175 * Pauses all clocks except TMCLOCK_REAL.
3176 *
3177 * @returns VBox status code, all errors are asserted.
3178 * @param pVM The cross context VM structure.
3179 * @param pVCpu The cross context virtual CPU structure.
3180 * @thread EMT corresponding to Pointer to the VMCPU.
3181 */
3182VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
3183{
3184 VMCPU_ASSERT_EMT(pVCpu);
3185 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3186
3187 /*
3188 * The shared virtual clock (includes virtual sync which is tied to it).
3189 */
3190 int rc = tmVirtualPauseLocked(pVM);
3191 AssertRCReturnStmt(rc, PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock), rc);
3192
3193 /*
3194 * Pause the TSC last since it is normally linked to the virtual
3195 * sync clock, so the above code may actually stop both clocks.
3196 */
3197 if (!pVM->tm.s.fTSCTiedToExecution)
3198 {
3199 rc = tmCpuTickPauseLocked(pVM, pVCpu);
3200 AssertRCReturnStmt(rc, PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock), rc);
3201 }
3202
3203#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3204 /*
3205 * Update cNsTotal and stats.
3206 */
3207 Assert(!pVCpu->tm.s.fSuspended);
3208 uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3209 uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
3210
3211# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
3212 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat);
3213 int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat;
3214 if (cNsOtherNewDelta > 0)
3215 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta);
3216# endif
3217
3218 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3219 pVCpu->tm.s.nsStartTotal = cNsTotalNew;
3220 pVCpu->tm.s.fSuspended = true;
3221 pVCpu->tm.s.cNsTotalStat = cNsTotalNew;
3222 pVCpu->tm.s.cNsOtherStat = cNsOtherNew;
3223 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3224#endif
3225
3226 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
3227 return VINF_SUCCESS;
3228}
3229
3230
3231/**
3232 * Resumes all clocks except TMCLOCK_REAL.
3233 *
3234 * @returns VBox status code, all errors are asserted.
3235 * @param pVM The cross context VM structure.
3236 * @param pVCpu The cross context virtual CPU structure.
3237 * @thread EMT corresponding to Pointer to the VMCPU.
3238 */
3239VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
3240{
3241 VMCPU_ASSERT_EMT(pVCpu);
3242 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3243
3244#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3245 /*
3246 * Set u64NsTsStartTotal. There is no need to back this out if either of
3247 * the two calls below fail.
3248 */
3249 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3250 pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3251 pVCpu->tm.s.fSuspended = false;
3252 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3253#endif
3254
3255 /*
3256 * Resume the TSC first since it is normally linked to the virtual sync
3257 * clock, so it may actually not be resumed until we've executed the code
3258 * below.
3259 */
3260 if (!pVM->tm.s.fTSCTiedToExecution)
3261 {
3262 int rc = tmCpuTickResumeLocked(pVM, pVCpu);
3263 AssertRCReturnStmt(rc, PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock), rc);
3264 }
3265
3266 /*
3267 * The shared virtual clock (includes virtual sync which is tied to it).
3268 */
3269 int rc = tmVirtualResumeLocked(pVM);
3270
3271 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
3272 return rc;
3273}
3274
3275
3276/**
3277 * Sets the warp drive percent of the virtual time.
3278 *
3279 * @returns VBox status code.
3280 * @param pUVM The user mode VM structure.
3281 * @param u32Percent The new percentage. 100 means normal operation.
3282 */
3283VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3284{
3285 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
3286}
3287
3288
3289/**
3290 * EMT worker for TMR3SetWarpDrive.
3291 *
3292 * @returns VBox status code.
3293 * @param pUVM The user mode VM handle.
3294 * @param u32Percent See TMR3SetWarpDrive().
3295 * @internal
3296 */
3297static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3298{
3299 PVM pVM = pUVM->pVM;
3300 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3301 PVMCPU pVCpu = VMMGetCpu(pVM);
3302
3303 /*
3304 * Validate it.
3305 */
3306 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
3307 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
3308 VERR_INVALID_PARAMETER);
3309
3310/** @todo This isn't a feature specific to virtual time, move the variables to
3311 * TM level and make it affect TMR3UTCNow as well! */
3312
3313 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3314
3315 /*
3316 * If the time is running we'll have to pause it before we can change
3317 * the warp drive settings.
3318 */
3319 bool fPaused = !!pVM->tm.s.cVirtualTicking;
3320 if (fPaused) /** @todo this isn't really working, but wtf. */
3321 TMR3NotifySuspend(pVM, pVCpu);
3322
3323 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
3324 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
3325 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
3326 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
3327 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
3328
3329 if (fPaused)
3330 TMR3NotifyResume(pVM, pVCpu);
3331
3332 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
3333 return VINF_SUCCESS;
3334}
3335
3336
3337/**
3338 * Gets the current TMCLOCK_VIRTUAL time without checking
3339 * timers or anything.
3340 *
3341 * @returns The timestamp.
3342 * @param pUVM The user mode VM structure.
3343 *
3344 * @remarks See TMVirtualGetNoCheck.
3345 */
3346VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
3347{
3348 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3349 PVM pVM = pUVM->pVM;
3350 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3351 return TMVirtualGetNoCheck(pVM);
3352}
3353
3354
3355/**
3356 * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
3357 * timers or anything.
3358 *
3359 * @returns The timestamp in milliseconds.
3360 * @param pUVM The user mode VM structure.
3361 *
3362 * @remarks See TMVirtualGetNoCheck.
3363 */
3364VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
3365{
3366 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3367 PVM pVM = pUVM->pVM;
3368 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3369 return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
3370}
3371
3372
3373/**
3374 * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
3375 * timers or anything.
3376 *
3377 * @returns The timestamp in microseconds.
3378 * @param pUVM The user mode VM structure.
3379 *
3380 * @remarks See TMVirtualGetNoCheck.
3381 */
3382VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
3383{
3384 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3385 PVM pVM = pUVM->pVM;
3386 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3387 return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
3388}
3389
3390
3391/**
3392 * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
3393 * timers or anything.
3394 *
3395 * @returns The timestamp in nanoseconds.
3396 * @param pUVM The user mode VM structure.
3397 *
3398 * @remarks See TMVirtualGetNoCheck.
3399 */
3400VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
3401{
3402 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3403 PVM pVM = pUVM->pVM;
3404 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3405 return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
3406}
3407
3408
3409/**
3410 * Gets the current warp drive percent.
3411 *
3412 * @returns The warp drive percent.
3413 * @param pUVM The user mode VM structure.
3414 */
3415VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
3416{
3417 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
3418 PVM pVM = pUVM->pVM;
3419 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
3420 return pVM->tm.s.u32VirtualWarpDrivePercentage;
3421}
3422
3423
3424#if 0 /* unused - needs a little updating after @bugref{9941}*/
3425/**
3426 * Gets the performance information for one virtual CPU as seen by the VMM.
3427 *
3428 * The returned times covers the period where the VM is running and will be
3429 * reset when restoring a previous VM state (at least for the time being).
3430 *
3431 * @retval VINF_SUCCESS on success.
3432 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3433 * @retval VERR_INVALID_STATE if the VM handle is bad.
3434 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3435 *
3436 * @param pVM The cross context VM structure.
3437 * @param idCpu The ID of the virtual CPU which times to get.
3438 * @param pcNsTotal Where to store the total run time (nano seconds) of
3439 * the CPU, i.e. the sum of the three other returns.
3440 * Optional.
3441 * @param pcNsExecuting Where to store the time (nano seconds) spent
3442 * executing guest code. Optional.
3443 * @param pcNsHalted Where to store the time (nano seconds) spent
3444 * halted. Optional
3445 * @param pcNsOther Where to store the time (nano seconds) spent
3446 * preempted by the host scheduler, on virtualization
3447 * overhead and on other tasks.
3448 */
3449VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
3450 uint64_t *pcNsHalted, uint64_t *pcNsOther)
3451{
3452 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
3453 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3454
3455#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3456 /*
3457 * Get a stable result set.
3458 * This should be way quicker than an EMT request.
3459 */
3460 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3461 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3462 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3463 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3464 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3465 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
3466 while ( (uTimesGen & 1) /* update in progress */
3467 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
3468 {
3469 RTThreadYield();
3470 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3471 cNsTotal = pVCpu->tm.s.cNsTotal;
3472 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3473 cNsHalted = pVCpu->tm.s.cNsHalted;
3474 cNsOther = pVCpu->tm.s.cNsOther;
3475 }
3476
3477 /*
3478 * Fill in the return values.
3479 */
3480 if (pcNsTotal)
3481 *pcNsTotal = cNsTotal;
3482 if (pcNsExecuting)
3483 *pcNsExecuting = cNsExecuting;
3484 if (pcNsHalted)
3485 *pcNsHalted = cNsHalted;
3486 if (pcNsOther)
3487 *pcNsOther = cNsOther;
3488
3489 return VINF_SUCCESS;
3490
3491#else
3492 return VERR_NOT_IMPLEMENTED;
3493#endif
3494}
3495#endif /* unused */
3496
3497
3498/**
3499 * Gets the performance information for one virtual CPU as seen by the VMM in
3500 * percents.
3501 *
3502 * The returned times covers the period where the VM is running and will be
3503 * reset when restoring a previous VM state (at least for the time being).
3504 *
3505 * @retval VINF_SUCCESS on success.
3506 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3507 * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
3508 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3509 *
3510 * @param pUVM The usermode VM structure.
3511 * @param idCpu The ID of the virtual CPU which times to get.
3512 * @param pcMsInterval Where to store the interval of the percentages in
3513 * milliseconds. Optional.
3514 * @param pcPctExecuting Where to return the percentage of time spent
3515 * executing guest code. Optional.
3516 * @param pcPctHalted Where to return the percentage of time spent halted.
3517 * Optional
3518 * @param pcPctOther Where to return the percentage of time spent
3519 * preempted by the host scheduler, on virtualization
3520 * overhead and on other tasks.
3521 */
3522VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
3523 uint8_t *pcPctHalted, uint8_t *pcPctOther)
3524{
3525 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
3526 PVM pVM = pUVM->pVM;
3527 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3528 AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3529
3530#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3531 TMCPULOADSTATE volatile *pState;
3532 if (idCpu == VMCPUID_ALL)
3533 pState = &pVM->tm.s.CpuLoad;
3534 else
3535 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
3536
3537 if (pcMsInterval)
3538 *pcMsInterval = RT_MS_1SEC;
3539 if (pcPctExecuting)
3540 *pcPctExecuting = pState->cPctExecuting;
3541 if (pcPctHalted)
3542 *pcPctHalted = pState->cPctHalted;
3543 if (pcPctOther)
3544 *pcPctOther = pState->cPctOther;
3545
3546 return VINF_SUCCESS;
3547
3548#else
3549 RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
3550 return VERR_NOT_IMPLEMENTED;
3551#endif
3552}
3553
3554#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3555
3556/**
3557 * Helper for tmR3CpuLoadTimer.
3558 * @returns
3559 * @param pState The state to update.
3560 * @param cNsTotal Total time.
3561 * @param cNsExecuting Time executing.
3562 * @param cNsHalted Time halted.
3563 */
3564DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3565{
3566 /* Calc & update deltas */
3567 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3568 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3569 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3570
3571 if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta)
3572 { /* likely */ }
3573 else
3574 {
3575 /* Just adjust the executing and halted values down to match the total delta. */
3576 uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta;
3577 uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64;
3578 cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3579 cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3580 /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */
3581 }
3582
3583 pState->cNsPrevExecuting = cNsExecuting;
3584 pState->cNsPrevHalted = cNsHalted;
3585 pState->cNsPrevTotal = cNsTotal;
3586
3587 /* Calc pcts. */
3588 uint8_t cPctExecuting, cPctHalted, cPctOther;
3589 if (!cNsTotalDelta)
3590 {
3591 cPctExecuting = 0;
3592 cPctHalted = 100;
3593 cPctOther = 0;
3594 }
3595 else if (cNsTotalDelta < UINT64_MAX / 4)
3596 {
3597 cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3598 cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3599 cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3600 }
3601 else
3602 {
3603 cPctExecuting = 0;
3604 cPctHalted = 100;
3605 cPctOther = 0;
3606 }
3607
3608 /* Update percentages: */
3609 size_t idxHistory = pState->idxHistory + 1;
3610 if (idxHistory >= RT_ELEMENTS(pState->aHistory))
3611 idxHistory = 0;
3612
3613 pState->cPctExecuting = cPctExecuting;
3614 pState->cPctHalted = cPctHalted;
3615 pState->cPctOther = cPctOther;
3616
3617 pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
3618 pState->aHistory[idxHistory].cPctHalted = cPctHalted;
3619 pState->aHistory[idxHistory].cPctOther = cPctOther;
3620
3621 pState->idxHistory = (uint16_t)idxHistory;
3622 if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
3623 pState->cHistoryEntries++;
3624}
3625
3626
3627/**
3628 * @callback_method_impl{FNTMTIMERINT,
3629 * Timer callback that calculates the CPU load since the last
3630 * time it was called.}
3631 */
3632static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
3633{
3634 /*
3635 * Re-arm the timer first.
3636 */
3637 int rc = TMTimerSetMillies(pVM, hTimer, 1000);
3638 AssertLogRelRC(rc);
3639 NOREF(pvUser);
3640
3641 /*
3642 * Update the values for each CPU.
3643 */
3644 uint64_t cNsTotalAll = 0;
3645 uint64_t cNsExecutingAll = 0;
3646 uint64_t cNsHaltedAll = 0;
3647 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3648 {
3649 PVMCPU pVCpu = pVM->apCpusR3[iCpu];
3650
3651 /* Try get a stable data set. */
3652 uint32_t cTries = 3;
3653 uint64_t nsNow = RTTimeNanoTS();
3654 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3655 bool fSuspended = pVCpu->tm.s.fSuspended;
3656 uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal;
3657 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3658 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3659 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3660 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3661 {
3662 if (!--cTries)
3663 break;
3664 ASMNopPause();
3665 nsNow = RTTimeNanoTS();
3666 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3667 fSuspended = pVCpu->tm.s.fSuspended;
3668 nsStartTotal = pVCpu->tm.s.nsStartTotal;
3669 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3670 cNsHalted = pVCpu->tm.s.cNsHalted;
3671 }
3672
3673 /* Totals */
3674 uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal;
3675 cNsTotalAll += cNsTotal;
3676 cNsExecutingAll += cNsExecuting;
3677 cNsHaltedAll += cNsHalted;
3678
3679 /* Calc the PCTs and update the state. */
3680 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3681
3682 /* Tell the VCpu to update the other and total stat members. */
3683 ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true);
3684 }
3685
3686 /*
3687 * Update the value for all the CPUs.
3688 */
3689 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3690
3691}
3692
3693#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3694
3695
3696/**
3697 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3698 * Worker for TMR3CpuTickParavirtEnable}
3699 */
3700static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3701{
3702 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3703 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
3704 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
3705 Assert(tmR3HasFixedTSC(pVM));
3706
3707 /*
3708 * The return value of TMCpuTickGet() and the guest's TSC value for each
3709 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3710 * the following equation (new/old signifies the new/old tsc modes):
3711 * uNewTsc = uOldTsc
3712 *
3713 * Where (see tmCpuTickGetInternal):
3714 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3715 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3716 *
3717 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3718 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3719 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3720 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3721 */
3722 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3723 uint64_t uRawNewTsc = SUPReadTsc();
3724 uint32_t cCpus = pVM->cCpus;
3725 for (uint32_t i = 0; i < cCpus; i++)
3726 {
3727 PVMCPU pVCpu = pVM->apCpusR3[i];
3728 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3729 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3730 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3731 }
3732
3733 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3734 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3735 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3736 return VINF_SUCCESS;
3737}
3738
3739
3740/**
3741 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3742 *
3743 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3744 *
3745 * @returns VBox status code.
3746 * @param pVM The cross context VM structure.
3747 */
3748VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3749{
3750 int rc = VINF_SUCCESS;
3751 if (pVM->tm.s.fTSCModeSwitchAllowed)
3752 {
3753 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3754 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3755 }
3756 else
3757 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3758 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3759 pVM->tm.s.fParavirtTscEnabled = true;
3760 return rc;
3761}
3762
3763
3764/**
3765 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3766 * Worker for TMR3CpuTickParavirtDisable}
3767 */
3768static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3769{
3770 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3771 Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3772 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
3773 RT_NOREF1(pvData);
3774
3775 /*
3776 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3777 */
3778 uint64_t uRawOldTsc = SUPReadTsc();
3779 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3780 uint32_t cCpus = pVM->cCpus;
3781 for (uint32_t i = 0; i < cCpus; i++)
3782 {
3783 PVMCPU pVCpu = pVM->apCpusR3[i];
3784 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3785 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3786 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3787
3788 /* Update the last-seen tick here as we havent't been updating it (as we don't
3789 need it) while in pure TSC-offsetting mode. */
3790 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3791 }
3792
3793 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3794 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3795 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3796 return VINF_SUCCESS;
3797}
3798
3799
3800/**
3801 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3802 *
3803 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3804 * perform an EMT rendezvous to revert those changes.
3805 *
3806 * @returns VBox status code.
3807 * @param pVM The cross context VM structure.
3808 */
3809VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3810{
3811 int rc = VINF_SUCCESS;
3812 if ( pVM->tm.s.fTSCModeSwitchAllowed
3813 && pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3814 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3815 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3816 pVM->tm.s.fParavirtTscEnabled = false;
3817 return rc;
3818}
3819
3820
3821/**
3822 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3823 *
3824 * @returns true if TSC is stable, false otherwise.
3825 * @param pVM The cross context VM structure.
3826 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3827 * paravirt. TSC is enabled or not.
3828 *
3829 * @remarks Must be called only after TMR3InitFinalize().
3830 */
3831VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3832{
3833 /** @todo figure out what exactly we want here later. */
3834 NOREF(fWithParavirtEnabled);
3835 return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3836 && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
3837}
3838
3839
3840/**
3841 * Gets the 5 char clock name for the info tables.
3842 *
3843 * @returns The name.
3844 * @param enmClock The clock.
3845 */
3846DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3847{
3848 switch (enmClock)
3849 {
3850 case TMCLOCK_REAL: return "Real ";
3851 case TMCLOCK_VIRTUAL: return "Virt ";
3852 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3853 case TMCLOCK_TSC: return "TSC ";
3854 default: return "Bad ";
3855 }
3856}
3857
3858
3859/**
3860 * Display all timers.
3861 *
3862 * @param pVM The cross context VM structure.
3863 * @param pHlp The info helpers.
3864 * @param pszArgs Arguments, ignored.
3865 */
3866static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3867{
3868 NOREF(pszArgs);
3869 pHlp->pfnPrintf(pHlp,
3870 "Timers (pVM=%p)\n"
3871 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3872 pVM,
3873 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3874 sizeof(int32_t) * 2, "offNext ",
3875 sizeof(int32_t) * 2, "offPrev ",
3876 sizeof(int32_t) * 2, "offSched ",
3877 "Time",
3878 "Expire",
3879 "HzHint",
3880 "State");
3881 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3882 {
3883 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3884 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3885 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
3886 for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++)
3887 {
3888 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
3889 TMTIMERSTATE enmState = pTimer->enmState;
3890 if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID)
3891 pHlp->pfnPrintf(pHlp,
3892 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3893 pTimer,
3894 pTimer->idxNext,
3895 pTimer->idxPrev,
3896 pTimer->idxScheduleNext,
3897 pszClock,
3898 TMTimerGet(pVM, pTimer->hSelf),
3899 pTimer->u64Expire,
3900 pTimer->uHzHint,
3901 tmTimerState(enmState),
3902 pTimer->szName);
3903 }
3904 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
3905 }
3906}
3907
3908
3909/**
3910 * Display all active timers.
3911 *
3912 * @param pVM The cross context VM structure.
3913 * @param pHlp The info helpers.
3914 * @param pszArgs Arguments, ignored.
3915 */
3916static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3917{
3918 NOREF(pszArgs);
3919 pHlp->pfnPrintf(pHlp,
3920 "Active Timers (pVM=%p)\n"
3921 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3922 pVM,
3923 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3924 sizeof(int32_t) * 2, "offNext ",
3925 sizeof(int32_t) * 2, "offPrev ",
3926 sizeof(int32_t) * 2, "offSched ",
3927 "Time",
3928 "Expire",
3929 "HzHint",
3930 "State");
3931 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3932 {
3933 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3934 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3935 PDMCritSectRwEnterShared(&pQueue->AllocLock, VERR_IGNORED);
3936 PDMCritSectEnter(&pQueue->TimerLock, VERR_IGNORED);
3937
3938 for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue);
3939 pTimer;
3940 pTimer = tmTimerGetNext(pQueue, pTimer))
3941 {
3942 pHlp->pfnPrintf(pHlp,
3943 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3944 pTimer,
3945 pTimer->idxNext,
3946 pTimer->idxPrev,
3947 pTimer->idxScheduleNext,
3948 pszClock,
3949 TMTimerGet(pVM, pTimer->hSelf),
3950 pTimer->u64Expire,
3951 pTimer->uHzHint,
3952 tmTimerState(pTimer->enmState),
3953 pTimer->szName);
3954 }
3955
3956 PDMCritSectLeave(&pQueue->TimerLock);
3957 PDMCritSectRwLeaveShared(&pQueue->AllocLock);
3958 }
3959}
3960
3961
3962/**
3963 * Display all clocks.
3964 *
3965 * @param pVM The cross context VM structure.
3966 * @param pHlp The info helpers.
3967 * @param pszArgs Arguments, ignored.
3968 */
3969static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3970{
3971 NOREF(pszArgs);
3972
3973 /*
3974 * Read the times first to avoid more than necessary time variation.
3975 */
3976 const uint64_t u64Virtual = TMVirtualGet(pVM);
3977 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3978 const uint64_t u64Real = TMRealGet(pVM);
3979
3980 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3981 {
3982 PVMCPU pVCpu = pVM->apCpusR3[i];
3983 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3984
3985 /*
3986 * TSC
3987 */
3988 pHlp->pfnPrintf(pHlp,
3989 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
3990 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
3991 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
3992 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
3993 {
3994 pHlp->pfnPrintf(pHlp, " - real tsc offset");
3995 if (pVCpu->tm.s.offTSCRawSrc)
3996 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
3997 }
3998 else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
3999 pHlp->pfnPrintf(pHlp, " - native api");
4000 else
4001 pHlp->pfnPrintf(pHlp, " - virtual clock");
4002 pHlp->pfnPrintf(pHlp, "\n");
4003 }
4004
4005 /*
4006 * virtual
4007 */
4008 pHlp->pfnPrintf(pHlp,
4009 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
4010 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
4011 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
4012 if (pVM->tm.s.fVirtualWarpDrive)
4013 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
4014 pHlp->pfnPrintf(pHlp, "\n");
4015
4016 /*
4017 * virtual sync
4018 */
4019 pHlp->pfnPrintf(pHlp,
4020 "VirtSync: %18RU64 (%#016RX64) %s%s",
4021 u64VirtualSync, u64VirtualSync,
4022 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
4023 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
4024 if (pVM->tm.s.offVirtualSync)
4025 {
4026 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
4027 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
4028 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
4029 }
4030 pHlp->pfnPrintf(pHlp, "\n");
4031
4032 /*
4033 * real
4034 */
4035 pHlp->pfnPrintf(pHlp,
4036 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
4037 u64Real, u64Real, TMRealGetFreq(pVM));
4038}
4039
4040
4041/**
4042 * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
4043 */
4044DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
4045{
4046 if (cchWidth != 100)
4047 uPct = (uPct + 0.5) * (cchWidth / 100.0);
4048 return uPct;
4049}
4050
4051
4052/**
4053 * @callback_method_impl{FNDBGFINFOARGVINT}
4054 */
4055static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
4056{
4057 char szTmp[1024];
4058
4059 /*
4060 * Parse arguments.
4061 */
4062 PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
4063 VMCPUID idCpu = 0;
4064 bool fAllCpus = true;
4065 bool fExpGraph = true;
4066 uint32_t cchWidth = 80;
4067 uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
4068 uint32_t cRows = 60;
4069
4070 static const RTGETOPTDEF s_aOptions[] =
4071 {
4072 { "all", 'a', RTGETOPT_REQ_NOTHING },
4073 { "cpu", 'c', RTGETOPT_REQ_UINT32 },
4074 { "periods", 'p', RTGETOPT_REQ_UINT32 },
4075 { "rows", 'r', RTGETOPT_REQ_UINT32 },
4076 { "uni", 'u', RTGETOPT_REQ_NOTHING },
4077 { "uniform", 'u', RTGETOPT_REQ_NOTHING },
4078 { "width", 'w', RTGETOPT_REQ_UINT32 },
4079 { "exp", 'x', RTGETOPT_REQ_NOTHING },
4080 { "exponential", 'x', RTGETOPT_REQ_NOTHING },
4081 };
4082
4083 RTGETOPTSTATE State;
4084 int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
4085 AssertRC(rc);
4086
4087 RTGETOPTUNION ValueUnion;
4088 while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
4089 {
4090 switch (rc)
4091 {
4092 case 'a':
4093 pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
4094 idCpu = 0;
4095 fAllCpus = true;
4096 break;
4097 case 'c':
4098 if (ValueUnion.u32 < pVM->cCpus)
4099 {
4100 pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
4101 idCpu = ValueUnion.u32;
4102 }
4103 else
4104 {
4105 pState = &pVM->tm.s.CpuLoad;
4106 idCpu = VMCPUID_ALL;
4107 }
4108 fAllCpus = false;
4109 break;
4110 case 'p':
4111 cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
4112 break;
4113 case 'r':
4114 cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
4115 break;
4116 case 'w':
4117 cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
4118 break;
4119 case 'x':
4120 fExpGraph = true;
4121 break;
4122 case 'u':
4123 fExpGraph = false;
4124 break;
4125 case 'h':
4126 pHlp->pfnPrintf(pHlp,
4127 "Usage: cpuload [parameters]\n"
4128 " all, -a\n"
4129 " Show statistics for all CPUs. (default)\n"
4130 " cpu=id, -c id\n"
4131 " Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
4132 " periods=count, -p count\n"
4133 " Number of periods to show. Default: all\n"
4134 " rows=count, -r count\n"
4135 " Number of rows in the graphs. Default: 60\n"
4136 " width=count, -w count\n"
4137 " Core graph width in characters. Default: 80\n"
4138 " exp, exponential, -e\n"
4139 " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
4140 " rest into increasinly larger chunks. Default.\n"
4141 " uniform, uni, -u\n"
4142 " Combine periods into rows in a uniform manner for the whole graph.\n");
4143 return;
4144 default:
4145 pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
4146 return;
4147 }
4148 }
4149
4150 /*
4151 * Do the job.
4152 */
4153 for (;;)
4154 {
4155 uint32_t const cMaxPeriods = pState->cHistoryEntries;
4156 if (cPeriods > cMaxPeriods)
4157 cPeriods = cMaxPeriods;
4158 if (cPeriods > 0)
4159 {
4160 if (fAllCpus)
4161 {
4162 if (idCpu > 0)
4163 pHlp->pfnPrintf(pHlp, "\n");
4164 pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
4165 " -------------------------------\n", idCpu);
4166 }
4167
4168 /*
4169 * Figure number of periods per chunk. We can either do this in a linear
4170 * fashion or a exponential fashion that compresses old history more.
4171 */
4172 size_t cPerRowDecrement = 0;
4173 size_t cPeriodsPerRow = 1;
4174 if (cRows < cPeriods)
4175 {
4176 if (!fExpGraph)
4177 cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
4178 else
4179 {
4180 /* The last 30 seconds or half of the rows are 1:1, the other part
4181 is in increasing period counts. Code is a little simple but seems
4182 to do the job most of the time, which is all I have time now. */
4183 size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
4184 size_t cRestRows = cRows - cPeriodsOneToOne;
4185 size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
4186
4187 size_t cPeriodsInWindow = 0;
4188 for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
4189 cPeriodsInWindow += cPeriodsPerRow + 1;
4190
4191 size_t iLower = 1;
4192 while (cPeriodsInWindow < cRestPeriods)
4193 {
4194 cPeriodsPerRow++;
4195 cPeriodsInWindow += cPeriodsPerRow;
4196 cPeriodsInWindow -= iLower;
4197 iLower++;
4198 }
4199
4200 cPerRowDecrement = 1;
4201 }
4202 }
4203
4204 /*
4205 * Do the work.
4206 */
4207 size_t cPctExecuting = 0;
4208 size_t cPctOther = 0;
4209 size_t cPeriodsAccumulated = 0;
4210
4211 size_t cRowsLeft = cRows;
4212 size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
4213 while (cPeriods-- > 0)
4214 {
4215 iHistory++;
4216 if (iHistory >= RT_ELEMENTS(pState->aHistory))
4217 iHistory = 0;
4218
4219 cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
4220 cPctOther += pState->aHistory[iHistory].cPctOther;
4221 cPeriodsAccumulated += 1;
4222 if ( cPeriodsAccumulated >= cPeriodsPerRow
4223 || cPeriods < cRowsLeft)
4224 {
4225 /*
4226 * Format and output the line.
4227 */
4228 size_t offTmp = 0;
4229 size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
4230 while (i-- > 0)
4231 szTmp[offTmp++] = '#';
4232 i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
4233 while (i-- > 0)
4234 szTmp[offTmp++] = 'O';
4235 szTmp[offTmp] = '\0';
4236
4237 cRowsLeft--;
4238 pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
4239
4240 /* Reset the state: */
4241 cPctExecuting = 0;
4242 cPctOther = 0;
4243 cPeriodsAccumulated = 0;
4244 if (cPeriodsPerRow > cPerRowDecrement)
4245 cPeriodsPerRow -= cPerRowDecrement;
4246 }
4247 }
4248 pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
4249
4250 }
4251 else
4252 pHlp->pfnPrintf(pHlp, "No load data.\n");
4253
4254 /*
4255 * Next CPU if we're display all.
4256 */
4257 if (!fAllCpus)
4258 break;
4259 idCpu++;
4260 if (idCpu >= pVM->cCpus)
4261 break;
4262 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
4263 }
4264
4265}
4266
4267
4268/**
4269 * Gets the descriptive TM TSC mode name given the enum value.
4270 *
4271 * @returns The name.
4272 * @param enmMode The mode to name.
4273 */
4274static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
4275{
4276 switch (enmMode)
4277 {
4278 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset";
4279 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated";
4280 case TMTSCMODE_DYNAMIC: return "Dynamic";
4281 case TMTSCMODE_NATIVE_API: return "NativeApi";
4282 default: return "???";
4283 }
4284}
4285
4286
4287/**
4288 * Gets the descriptive TM TSC mode name.
4289 *
4290 * @returns The name.
4291 * @param pVM The cross context VM structure.
4292 */
4293static const char *tmR3GetTSCModeName(PVM pVM)
4294{
4295 Assert(pVM);
4296 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
4297}
4298
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette