VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 46175

Last change on this file since 46175 was 45808, checked in by vboxsync, 12 years ago

VMM,DevVGA: Don't resolve RC symbols when HM is enabled (part 1).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 88.6 KB
Line 
1/* $Id: VMM.cpp 45808 2013-04-29 12:41:07Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
55 * can be increased up to 64K - 1.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmcritsectrw.h>
84#include <VBox/vmm/pdmapi.h>
85#include <VBox/vmm/cpum.h>
86#include <VBox/vmm/mm.h>
87#include <VBox/vmm/iom.h>
88#include <VBox/vmm/trpm.h>
89#include <VBox/vmm/selm.h>
90#include <VBox/vmm/em.h>
91#include <VBox/sup.h>
92#include <VBox/vmm/dbgf.h>
93#include <VBox/vmm/csam.h>
94#include <VBox/vmm/patm.h>
95#ifdef VBOX_WITH_REM
96# include <VBox/vmm/rem.h>
97#endif
98#include <VBox/vmm/ssm.h>
99#include <VBox/vmm/ftm.h>
100#include <VBox/vmm/tm.h>
101#include "VMMInternal.h"
102#include "VMMSwitcher.h"
103#include <VBox/vmm/vm.h>
104#include <VBox/vmm/uvm.h>
105
106#include <VBox/err.h>
107#include <VBox/param.h>
108#include <VBox/version.h>
109#include <VBox/vmm/hm.h>
110#include <iprt/assert.h>
111#include <iprt/alloc.h>
112#include <iprt/asm.h>
113#include <iprt/time.h>
114#include <iprt/semaphore.h>
115#include <iprt/stream.h>
116#include <iprt/string.h>
117#include <iprt/stdarg.h>
118#include <iprt/ctype.h>
119#include <iprt/x86.h>
120
121
122
123/*******************************************************************************
124* Defined Constants And Macros *
125*******************************************************************************/
126/** The saved state version. */
127#define VMM_SAVED_STATE_VERSION 4
128/** The saved state version used by v3.0 and earlier. (Teleportation) */
129#define VMM_SAVED_STATE_VERSION_3_0 3
130
131
132/*******************************************************************************
133* Internal Functions *
134*******************************************************************************/
135static int vmmR3InitStacks(PVM pVM);
136static int vmmR3InitLoggers(PVM pVM);
137static void vmmR3InitRegisterStats(PVM pVM);
138static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
139static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
140static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
141static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
142static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143
144
145/**
146 * Initializes the VMM.
147 *
148 * @returns VBox status code.
149 * @param pVM Pointer to the VM.
150 */
151VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
152{
153 LogFlow(("VMMR3Init\n"));
154
155 /*
156 * Assert alignment, sizes and order.
157 */
158 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
159 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
160 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
161
162 /*
163 * Init basic VM VMM members.
164 */
165 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
166 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
167 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
168 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
169 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
170 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
171
172 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
173 * The EMT yield interval. The EMT yielding is a hack we employ to play a
174 * bit nicer with the rest of the system (like for instance the GUI).
175 */
176 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
177 23 /* Value arrived at after experimenting with the grub boot prompt. */);
178 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
179
180
181 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
182 * Controls whether we employ per-cpu preemption timers to limit the time
183 * spent executing guest code. This option is not available on all
184 * platforms and we will silently ignore this setting then. If we are
185 * running in VT-x mode, we will use the VMX-preemption timer instead of
186 * this one when possible.
187 */
188 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
189 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
190 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
191
192 /*
193 * Initialize the VMM rendezvous semaphores.
194 */
195 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
196 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
197 return VERR_NO_MEMORY;
198 for (VMCPUID i = 0; i < pVM->cCpus; i++)
199 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
200 for (VMCPUID i = 0; i < pVM->cCpus; i++)
201 {
202 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
203 AssertRCReturn(rc, rc);
204 }
205 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
206 AssertRCReturn(rc, rc);
207 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
208 AssertRCReturn(rc, rc);
209 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
210 AssertRCReturn(rc, rc);
211 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
212 AssertRCReturn(rc, rc);
213
214 /*
215 * Register the saved state data unit.
216 */
217 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
218 NULL, NULL, NULL,
219 NULL, vmmR3Save, NULL,
220 NULL, vmmR3Load, NULL);
221 if (RT_FAILURE(rc))
222 return rc;
223
224 /*
225 * Register the Ring-0 VM handle with the session for fast ioctl calls.
226 */
227 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
228 if (RT_FAILURE(rc))
229 return rc;
230
231 /*
232 * Init various sub-components.
233 */
234 rc = vmmR3SwitcherInit(pVM);
235 if (RT_SUCCESS(rc))
236 {
237 rc = vmmR3InitStacks(pVM);
238 if (RT_SUCCESS(rc))
239 {
240 rc = vmmR3InitLoggers(pVM);
241
242#ifdef VBOX_WITH_NMI
243 /*
244 * Allocate mapping for the host APIC.
245 */
246 if (RT_SUCCESS(rc))
247 {
248 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
249 AssertRC(rc);
250 }
251#endif
252 if (RT_SUCCESS(rc))
253 {
254 /*
255 * Debug info and statistics.
256 */
257 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
258 vmmR3InitRegisterStats(pVM);
259 vmmInitFormatTypes();
260
261 return VINF_SUCCESS;
262 }
263 }
264 /** @todo: Need failure cleanup. */
265
266 //more todo in here?
267 //if (RT_SUCCESS(rc))
268 //{
269 //}
270 //int rc2 = vmmR3TermCoreCode(pVM);
271 //AssertRC(rc2));
272 }
273
274 return rc;
275}
276
277
278/**
279 * Allocate & setup the VMM RC stack(s) (for EMTs).
280 *
281 * The stacks are also used for long jumps in Ring-0.
282 *
283 * @returns VBox status code.
284 * @param pVM Pointer to the VM.
285 *
286 * @remarks The optional guard page gets it protection setup up during R3 init
287 * completion because of init order issues.
288 */
289static int vmmR3InitStacks(PVM pVM)
290{
291 int rc = VINF_SUCCESS;
292#ifdef VMM_R0_SWITCH_STACK
293 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
294#else
295 uint32_t fFlags = 0;
296#endif
297
298 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
299 {
300 PVMCPU pVCpu = &pVM->aCpus[idCpu];
301
302#ifdef VBOX_STRICT_VMM_STACK
303 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
304#else
305 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
306#endif
307 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
308 if (RT_SUCCESS(rc))
309 {
310#ifdef VBOX_STRICT_VMM_STACK
311 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
312#endif
313#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
314 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
315 if (!HMIsEnabled(pVM))
316 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
317 else
318#endif
319 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
320 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
321 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
322 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
323
324 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
325 }
326 }
327
328 return rc;
329}
330
331
332/**
333 * Initialize the loggers.
334 *
335 * @returns VBox status code.
336 * @param pVM Pointer to the VM.
337 */
338static int vmmR3InitLoggers(PVM pVM)
339{
340 int rc;
341#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
342
343 /*
344 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
345 */
346#ifdef LOG_ENABLED
347 PRTLOGGER pLogger = RTLogDefaultInstance();
348 if (pLogger)
349 {
350 if (!HMIsEnabled(pVM))
351 {
352 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
353 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
354 if (RT_FAILURE(rc))
355 return rc;
356 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
357 }
358
359# ifdef VBOX_WITH_R0_LOGGING
360 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
361 for (VMCPUID i = 0; i < pVM->cCpus; i++)
362 {
363 PVMCPU pVCpu = &pVM->aCpus[i];
364 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
365 (void **)&pVCpu->vmm.s.pR0LoggerR3);
366 if (RT_FAILURE(rc))
367 return rc;
368 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
369 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
370 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
371 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
372 }
373# endif
374 }
375#endif /* LOG_ENABLED */
376
377#ifdef VBOX_WITH_RC_RELEASE_LOGGING
378 /*
379 * Allocate RC release logger instances (finalized in the relocator).
380 */
381 if (!HMIsEnabled(pVM))
382 {
383 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
384 if (pRelLogger)
385 {
386 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
387 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
388 if (RT_FAILURE(rc))
389 return rc;
390 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
391 }
392 }
393#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
394 return VINF_SUCCESS;
395}
396
397
398/**
399 * VMMR3Init worker that register the statistics with STAM.
400 *
401 * @param pVM The shared VM structure.
402 */
403static void vmmR3InitRegisterStats(PVM pVM)
404{
405 /*
406 * Statistics.
407 */
408 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
467
468#ifdef VBOX_WITH_STATISTICS
469 for (VMCPUID i = 0; i < pVM->cCpus; i++)
470 {
471 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
472 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
473 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
474 }
475#endif
476}
477
478
479/**
480 * Initializes the R0 VMM.
481 *
482 * @returns VBox status code.
483 * @param pVM Pointer to the VM.
484 */
485VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
486{
487 int rc;
488 PVMCPU pVCpu = VMMGetCpu(pVM);
489 Assert(pVCpu && pVCpu->idCpu == 0);
490
491#ifdef LOG_ENABLED
492 /*
493 * Initialize the ring-0 logger if we haven't done so yet.
494 */
495 if ( pVCpu->vmm.s.pR0LoggerR3
496 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
497 {
498 rc = VMMR3UpdateLoggers(pVM);
499 if (RT_FAILURE(rc))
500 return rc;
501 }
502#endif
503
504 /*
505 * Call Ring-0 entry with init code.
506 */
507 for (;;)
508 {
509#ifdef NO_SUPCALLR0VMM
510 //rc = VERR_GENERAL_FAILURE;
511 rc = VINF_SUCCESS;
512#else
513 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
514#endif
515 /*
516 * Flush the logs.
517 */
518#ifdef LOG_ENABLED
519 if ( pVCpu->vmm.s.pR0LoggerR3
520 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
521 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
522#endif
523 if (rc != VINF_VMM_CALL_HOST)
524 break;
525 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
526 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
527 break;
528 /* Resume R0 */
529 }
530
531 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
532 {
533 LogRel(("R0 init failed, rc=%Rra\n", rc));
534 if (RT_SUCCESS(rc))
535 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
536 }
537 return rc;
538}
539
540
541#ifdef VBOX_WITH_RAW_MODE
542/**
543 * Initializes the RC VMM.
544 *
545 * @returns VBox status code.
546 * @param pVM Pointer to the VM.
547 */
548VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
549{
550 PVMCPU pVCpu = VMMGetCpu(pVM);
551 Assert(pVCpu && pVCpu->idCpu == 0);
552
553 /* In VMX mode, there's no need to init RC. */
554 if (HMIsEnabled(pVM))
555 return VINF_SUCCESS;
556
557 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
558
559 /*
560 * Call VMMGCInit():
561 * -# resolve the address.
562 * -# setup stackframe and EIP to use the trampoline.
563 * -# do a generic hypervisor call.
564 */
565 RTRCPTR RCPtrEP;
566 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
567 if (RT_SUCCESS(rc))
568 {
569 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
570 uint64_t u64TS = RTTimeProgramStartNanoTS();
571 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
572 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
573 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
574 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
575 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
576 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
577 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
578 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
579 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
580
581 for (;;)
582 {
583#ifdef NO_SUPCALLR0VMM
584 //rc = VERR_GENERAL_FAILURE;
585 rc = VINF_SUCCESS;
586#else
587 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
588#endif
589#ifdef LOG_ENABLED
590 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
591 if ( pLogger
592 && pLogger->offScratch > 0)
593 RTLogFlushRC(NULL, pLogger);
594#endif
595#ifdef VBOX_WITH_RC_RELEASE_LOGGING
596 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
597 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
598 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
599#endif
600 if (rc != VINF_VMM_CALL_HOST)
601 break;
602 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
603 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
604 break;
605 }
606
607 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
608 {
609 VMMR3FatalDump(pVM, pVCpu, rc);
610 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
611 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
612 }
613 AssertRC(rc);
614 }
615 return rc;
616}
617#endif /* VBOX_WITH_RAW_MODE */
618
619
620/**
621 * Called when an init phase completes.
622 *
623 * @returns VBox status code.
624 * @param pVM Pointer to the VM.
625 * @param enmWhat Which init phase.
626 */
627VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
628{
629 int rc = VINF_SUCCESS;
630
631 switch (enmWhat)
632 {
633 case VMINITCOMPLETED_RING3:
634 {
635 /*
636 * CPUM's post-initialization (APIC base MSR caching).
637 */
638 rc = CPUMR3InitCompleted(pVM);
639 AssertRCReturn(rc, rc);
640
641 /*
642 * Set page attributes to r/w for stack pages.
643 */
644 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
645 {
646 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
647 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
648 AssertRCReturn(rc, rc);
649 }
650
651 /*
652 * Create the EMT yield timer.
653 */
654 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
655 AssertRCReturn(rc, rc);
656
657 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
658 AssertRCReturn(rc, rc);
659
660#ifdef VBOX_WITH_NMI
661 /*
662 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
663 */
664 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
665 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
666 AssertRCReturn(rc, rc);
667#endif
668
669#ifdef VBOX_STRICT_VMM_STACK
670 /*
671 * Setup the stack guard pages: Two inaccessible pages at each sides of the
672 * stack to catch over/under-flows.
673 */
674 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
675 {
676 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
677
678 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
679 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
680
681 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
682 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
683 }
684 pVM->vmm.s.fStackGuardsStationed = true;
685#endif
686 break;
687 }
688
689 case VMINITCOMPLETED_HM:
690 {
691 /*
692 * Disable the periodic preemption timers if we can use the
693 * VMX-preemption timer instead.
694 */
695 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
696 && HMR3IsVmxPreemptionTimerUsed(pVM))
697 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
698 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
699
700 /*
701 * CPUM's post-initialization (print CPUIDs).
702 */
703 CPUMR3LogCpuIds(pVM);
704 break;
705 }
706
707 default: /* shuts up gcc */
708 break;
709 }
710
711 return rc;
712}
713
714
715/**
716 * Terminate the VMM bits.
717 *
718 * @returns VINF_SUCCESS.
719 * @param pVM Pointer to the VM.
720 */
721VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
722{
723 PVMCPU pVCpu = VMMGetCpu(pVM);
724 Assert(pVCpu && pVCpu->idCpu == 0);
725
726 /*
727 * Call Ring-0 entry with termination code.
728 */
729 int rc;
730 for (;;)
731 {
732#ifdef NO_SUPCALLR0VMM
733 //rc = VERR_GENERAL_FAILURE;
734 rc = VINF_SUCCESS;
735#else
736 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
737#endif
738 /*
739 * Flush the logs.
740 */
741#ifdef LOG_ENABLED
742 if ( pVCpu->vmm.s.pR0LoggerR3
743 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
744 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
745#endif
746 if (rc != VINF_VMM_CALL_HOST)
747 break;
748 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
749 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
750 break;
751 /* Resume R0 */
752 }
753 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
754 {
755 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
756 if (RT_SUCCESS(rc))
757 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
758 }
759
760 for (VMCPUID i = 0; i < pVM->cCpus; i++)
761 {
762 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
763 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
764 }
765 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
766 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
767 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
768 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
769 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
770 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
771 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
772 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
773
774#ifdef VBOX_STRICT_VMM_STACK
775 /*
776 * Make the two stack guard pages present again.
777 */
778 if (pVM->vmm.s.fStackGuardsStationed)
779 {
780 for (VMCPUID i = 0; i < pVM->cCpus; i++)
781 {
782 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
783 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
784 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
785 }
786 pVM->vmm.s.fStackGuardsStationed = false;
787 }
788#endif
789
790 vmmTermFormatTypes();
791 return rc;
792}
793
794
795/**
796 * Applies relocations to data and code managed by this
797 * component. This function will be called at init and
798 * whenever the VMM need to relocate it self inside the GC.
799 *
800 * The VMM will need to apply relocations to the core code.
801 *
802 * @param pVM Pointer to the VM.
803 * @param offDelta The relocation delta.
804 */
805VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
806{
807 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
808
809 /*
810 * Recalc the RC address.
811 */
812#ifdef VBOX_WITH_RAW_MODE
813 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
814#endif
815
816 /*
817 * The stack.
818 */
819 for (VMCPUID i = 0; i < pVM->cCpus; i++)
820 {
821 PVMCPU pVCpu = &pVM->aCpus[i];
822
823 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
824
825 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
826 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
827 }
828
829 /*
830 * All the switchers.
831 */
832 vmmR3SwitcherRelocate(pVM, offDelta);
833
834 /*
835 * Get other RC entry points.
836 */
837 if (!HMIsEnabled(pVM))
838 {
839 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
840 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
841
842 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
843 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
844 }
845
846 /*
847 * Update the logger.
848 */
849 VMMR3UpdateLoggers(pVM);
850}
851
852
853/**
854 * Updates the settings for the RC and R0 loggers.
855 *
856 * @returns VBox status code.
857 * @param pVM Pointer to the VM.
858 */
859VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
860{
861 /*
862 * Simply clone the logger instance (for RC).
863 */
864 int rc = VINF_SUCCESS;
865 RTRCPTR RCPtrLoggerFlush = 0;
866
867 if ( pVM->vmm.s.pRCLoggerR3
868#ifdef VBOX_WITH_RC_RELEASE_LOGGING
869 || pVM->vmm.s.pRCRelLoggerR3
870#endif
871 )
872 {
873 Assert(!HMIsEnabled(pVM));
874 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
875 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
876 }
877
878 if (pVM->vmm.s.pRCLoggerR3)
879 {
880 Assert(!HMIsEnabled(pVM));
881 RTRCPTR RCPtrLoggerWrapper = 0;
882 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
883 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
884
885 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
886 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
887 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
888 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
889 }
890
891#ifdef VBOX_WITH_RC_RELEASE_LOGGING
892 if (pVM->vmm.s.pRCRelLoggerR3)
893 {
894 Assert(!HMIsEnabled(pVM));
895 RTRCPTR RCPtrLoggerWrapper = 0;
896 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
897 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
898
899 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
900 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
901 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
902 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
903 }
904#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
905
906#ifdef LOG_ENABLED
907 /*
908 * For the ring-0 EMT logger, we use a per-thread logger instance
909 * in ring-0. Only initialize it once.
910 */
911 PRTLOGGER const pDefault = RTLogDefaultInstance();
912 for (VMCPUID i = 0; i < pVM->cCpus; i++)
913 {
914 PVMCPU pVCpu = &pVM->aCpus[i];
915 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
916 if (pR0LoggerR3)
917 {
918 if (!pR0LoggerR3->fCreated)
919 {
920 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
921 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
922 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
923
924 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
925 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
926 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
927
928 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
929 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
930 pfnLoggerWrapper, pfnLoggerFlush,
931 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
932 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
933
934 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
935 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
936 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
937 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger,
938 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
939 pfnLoggerPrefix, NIL_RTR0PTR);
940 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
941
942 pR0LoggerR3->idCpu = i;
943 pR0LoggerR3->fCreated = true;
944 pR0LoggerR3->fFlushingDisabled = false;
945
946 }
947
948 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
949 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
950 AssertRC(rc);
951 }
952 }
953#endif
954 return rc;
955}
956
957
958/**
959 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
960 *
961 * @returns Pointer to the buffer.
962 * @param pVM Pointer to the VM.
963 */
964VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
965{
966 if (HMIsEnabled(pVM))
967 return pVM->vmm.s.szRing0AssertMsg1;
968
969 RTRCPTR RCPtr;
970 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
971 if (RT_SUCCESS(rc))
972 return (const char *)MMHyperRCToR3(pVM, RCPtr);
973
974 return NULL;
975}
976
977
978/**
979 * Returns the VMCPU of the specified virtual CPU.
980 *
981 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
982 *
983 * @param pUVM The user mode VM handle.
984 * @param idCpu The ID of the virtual CPU.
985 */
986VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
987{
988 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
989 AssertReturn(idCpu < pUVM->cCpus, NULL);
990 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
991 return &pUVM->pVM->aCpus[idCpu];
992}
993
994
995/**
996 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
997 *
998 * @returns Pointer to the buffer.
999 * @param pVM Pointer to the VM.
1000 */
1001VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1002{
1003 if (HMIsEnabled(pVM))
1004 return pVM->vmm.s.szRing0AssertMsg2;
1005
1006 RTRCPTR RCPtr;
1007 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
1008 if (RT_SUCCESS(rc))
1009 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1010
1011 return NULL;
1012}
1013
1014
1015/**
1016 * Execute state save operation.
1017 *
1018 * @returns VBox status code.
1019 * @param pVM Pointer to the VM.
1020 * @param pSSM SSM operation handle.
1021 */
1022static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1023{
1024 LogFlow(("vmmR3Save:\n"));
1025
1026 /*
1027 * Save the started/stopped state of all CPUs except 0 as it will always
1028 * be running. This avoids breaking the saved state version. :-)
1029 */
1030 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1031 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1032
1033 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1034}
1035
1036
1037/**
1038 * Execute state load operation.
1039 *
1040 * @returns VBox status code.
1041 * @param pVM Pointer to the VM.
1042 * @param pSSM SSM operation handle.
1043 * @param uVersion Data layout version.
1044 * @param uPass The data pass.
1045 */
1046static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1047{
1048 LogFlow(("vmmR3Load:\n"));
1049 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1050
1051 /*
1052 * Validate version.
1053 */
1054 if ( uVersion != VMM_SAVED_STATE_VERSION
1055 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1056 {
1057 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1058 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1059 }
1060
1061 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1062 {
1063 /* Ignore the stack bottom, stack pointer and stack bits. */
1064 RTRCPTR RCPtrIgnored;
1065 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1066 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1067#ifdef RT_OS_DARWIN
1068 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1069 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1070 && SSMR3HandleRevision(pSSM) >= 48858
1071 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1072 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1073 )
1074 SSMR3Skip(pSSM, 16384);
1075 else
1076 SSMR3Skip(pSSM, 8192);
1077#else
1078 SSMR3Skip(pSSM, 8192);
1079#endif
1080 }
1081
1082 /*
1083 * Restore the VMCPU states. VCPU 0 is always started.
1084 */
1085 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1086 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1087 {
1088 bool fStarted;
1089 int rc = SSMR3GetBool(pSSM, &fStarted);
1090 if (RT_FAILURE(rc))
1091 return rc;
1092 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1093 }
1094
1095 /* terminator */
1096 uint32_t u32;
1097 int rc = SSMR3GetU32(pSSM, &u32);
1098 if (RT_FAILURE(rc))
1099 return rc;
1100 if (u32 != UINT32_MAX)
1101 {
1102 AssertMsgFailed(("u32=%#x\n", u32));
1103 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1104 }
1105 return VINF_SUCCESS;
1106}
1107
1108
1109#ifdef VBOX_WITH_RAW_MODE
1110/**
1111 * Resolve a builtin RC symbol.
1112 *
1113 * Called by PDM when loading or relocating RC modules.
1114 *
1115 * @returns VBox status
1116 * @param pVM Pointer to the VM.
1117 * @param pszSymbol Symbol to resolv
1118 * @param pRCPtrValue Where to store the symbol value.
1119 *
1120 * @remark This has to work before VMMR3Relocate() is called.
1121 */
1122VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1123{
1124 if (!strcmp(pszSymbol, "g_Logger"))
1125 {
1126 if (pVM->vmm.s.pRCLoggerR3)
1127 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1128 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1129 }
1130 else if (!strcmp(pszSymbol, "g_RelLogger"))
1131 {
1132# ifdef VBOX_WITH_RC_RELEASE_LOGGING
1133 if (pVM->vmm.s.pRCRelLoggerR3)
1134 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1135 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1136# else
1137 *pRCPtrValue = NIL_RTRCPTR;
1138# endif
1139 }
1140 else
1141 return VERR_SYMBOL_NOT_FOUND;
1142 return VINF_SUCCESS;
1143}
1144#endif /* VBOX_WITH_RAW_MODE */
1145
1146
1147/**
1148 * Suspends the CPU yielder.
1149 *
1150 * @param pVM Pointer to the VM.
1151 */
1152VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1153{
1154 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1155 if (!pVM->vmm.s.cYieldResumeMillies)
1156 {
1157 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1158 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1159 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1160 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1161 else
1162 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1163 TMTimerStop(pVM->vmm.s.pYieldTimer);
1164 }
1165 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1166}
1167
1168
1169/**
1170 * Stops the CPU yielder.
1171 *
1172 * @param pVM Pointer to the VM.
1173 */
1174VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1175{
1176 if (!pVM->vmm.s.cYieldResumeMillies)
1177 TMTimerStop(pVM->vmm.s.pYieldTimer);
1178 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1179 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1180}
1181
1182
1183/**
1184 * Resumes the CPU yielder when it has been a suspended or stopped.
1185 *
1186 * @param pVM Pointer to the VM.
1187 */
1188VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1189{
1190 if (pVM->vmm.s.cYieldResumeMillies)
1191 {
1192 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1193 pVM->vmm.s.cYieldResumeMillies = 0;
1194 }
1195}
1196
1197
1198/**
1199 * Internal timer callback function.
1200 *
1201 * @param pVM The VM.
1202 * @param pTimer The timer handle.
1203 * @param pvUser User argument specified upon timer creation.
1204 */
1205static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1206{
1207 NOREF(pvUser);
1208
1209 /*
1210 * This really needs some careful tuning. While we shouldn't be too greedy since
1211 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1212 * because that'll cause us to stop up.
1213 *
1214 * The current logic is to use the default interval when there is no lag worth
1215 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1216 *
1217 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1218 * so the lag is up to date.)
1219 */
1220 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1221 if ( u64Lag < 50000000 /* 50ms */
1222 || ( u64Lag < 1000000000 /* 1s */
1223 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1224 )
1225 {
1226 uint64_t u64Elapsed = RTTimeNanoTS();
1227 pVM->vmm.s.u64LastYield = u64Elapsed;
1228
1229 RTThreadYield();
1230
1231#ifdef LOG_ENABLED
1232 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1233 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1234#endif
1235 }
1236 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1237}
1238
1239
1240#ifdef VBOX_WITH_RAW_MODE
1241/**
1242 * Executes guest code in the raw-mode context.
1243 *
1244 * @param pVM Pointer to the VM.
1245 * @param pVCpu Pointer to the VMCPU.
1246 */
1247VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1248{
1249 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1250
1251 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1252
1253 /*
1254 * Set the hypervisor to resume executing a CPUM resume function
1255 * in CPUMRCA.asm.
1256 */
1257 CPUMSetHyperState(pVCpu,
1258 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1259 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1260 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1261 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1262 0, /* eax */
1263 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1264
1265 /*
1266 * We hide log flushes (outer) and hypervisor interrupts (inner).
1267 */
1268 for (;;)
1269 {
1270#ifdef VBOX_STRICT
1271 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1272 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1273 PGMMapCheck(pVM);
1274# ifdef VBOX_WITH_SAFE_STR
1275 SELMR3CheckShadowTR(pVM);
1276# endif
1277#endif
1278 int rc;
1279 do
1280 {
1281#ifdef NO_SUPCALLR0VMM
1282 rc = VERR_GENERAL_FAILURE;
1283#else
1284 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1285 if (RT_LIKELY(rc == VINF_SUCCESS))
1286 rc = pVCpu->vmm.s.iLastGZRc;
1287#endif
1288 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1289
1290 /*
1291 * Flush the logs.
1292 */
1293#ifdef LOG_ENABLED
1294 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1295 if ( pLogger
1296 && pLogger->offScratch > 0)
1297 RTLogFlushRC(NULL, pLogger);
1298#endif
1299#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1300 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1301 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1302 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1303#endif
1304 if (rc != VINF_VMM_CALL_HOST)
1305 {
1306 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1307 return rc;
1308 }
1309 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1310 if (RT_FAILURE(rc))
1311 return rc;
1312 /* Resume GC */
1313 }
1314}
1315#endif /* VBOX_WITH_RAW_MODE */
1316
1317
1318/**
1319 * Executes guest code (Intel VT-x and AMD-V).
1320 *
1321 * @param pVM Pointer to the VM.
1322 * @param pVCpu Pointer to the VMCPU.
1323 */
1324VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1325{
1326 Log2(("VMMR3HmRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1327
1328 for (;;)
1329 {
1330 int rc;
1331 do
1332 {
1333#ifdef NO_SUPCALLR0VMM
1334 rc = VERR_GENERAL_FAILURE;
1335#else
1336 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1337 if (RT_LIKELY(rc == VINF_SUCCESS))
1338 rc = pVCpu->vmm.s.iLastGZRc;
1339#endif
1340 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1341
1342#if 0 /* todo triggers too often */
1343 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3));
1344#endif
1345
1346#ifdef LOG_ENABLED
1347 /*
1348 * Flush the log
1349 */
1350 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1351 if ( pR0LoggerR3
1352 && pR0LoggerR3->Logger.offScratch > 0)
1353 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1354#endif /* !LOG_ENABLED */
1355 if (rc != VINF_VMM_CALL_HOST)
1356 {
1357 Log2(("VMMR3HmRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1358 return rc;
1359 }
1360 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1361 if (RT_FAILURE(rc))
1362 return rc;
1363 /* Resume R0 */
1364 }
1365}
1366
1367/**
1368 * VCPU worker for VMMSendSipi.
1369 *
1370 * @param pVM Pointer to the VM.
1371 * @param idCpu Virtual CPU to perform SIPI on
1372 * @param uVector SIPI vector
1373 */
1374DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1375{
1376 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1377 VMCPU_ASSERT_EMT(pVCpu);
1378
1379 /** @todo what are we supposed to do if the processor is already running? */
1380 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1381 return VERR_ACCESS_DENIED;
1382
1383
1384 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1385
1386 pCtx->cs.Sel = uVector << 8;
1387 pCtx->cs.ValidSel = uVector << 8;
1388 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1389 pCtx->cs.u64Base = uVector << 12;
1390 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1391 pCtx->rip = 0;
1392
1393 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1394
1395# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1396 EMSetState(pVCpu, EMSTATE_HALTED);
1397 return VINF_EM_RESCHEDULE;
1398# else /* And if we go the VMCPU::enmState way it can stay here. */
1399 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1400 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1401 return VINF_SUCCESS;
1402# endif
1403}
1404
1405DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1406{
1407 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1408 VMCPU_ASSERT_EMT(pVCpu);
1409
1410 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1411
1412 PGMR3ResetCpu(pVM, pVCpu);
1413 CPUMR3ResetCpu(pVCpu);
1414
1415 return VINF_EM_WAIT_SIPI;
1416}
1417
1418/**
1419 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1420 * and unhalting processor
1421 *
1422 * @param pVM Pointer to the VM.
1423 * @param idCpu Virtual CPU to perform SIPI on
1424 * @param uVector SIPI vector
1425 */
1426VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1427{
1428 AssertReturnVoid(idCpu < pVM->cCpus);
1429
1430 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1431 AssertRC(rc);
1432}
1433
1434/**
1435 * Sends init IPI to the virtual CPU.
1436 *
1437 * @param pVM Pointer to the VM.
1438 * @param idCpu Virtual CPU to perform int IPI on
1439 */
1440VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1441{
1442 AssertReturnVoid(idCpu < pVM->cCpus);
1443
1444 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1445 AssertRC(rc);
1446}
1447
1448/**
1449 * Registers the guest memory range that can be used for patching
1450 *
1451 * @returns VBox status code.
1452 * @param pVM Pointer to the VM.
1453 * @param pPatchMem Patch memory range
1454 * @param cbPatchMem Size of the memory range
1455 */
1456VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1457{
1458 VM_ASSERT_EMT(pVM);
1459 if (HMIsEnabled(pVM))
1460 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1461
1462 return VERR_NOT_SUPPORTED;
1463}
1464
1465/**
1466 * Deregisters the guest memory range that can be used for patching
1467 *
1468 * @returns VBox status code.
1469 * @param pVM Pointer to the VM.
1470 * @param pPatchMem Patch memory range
1471 * @param cbPatchMem Size of the memory range
1472 */
1473VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1474{
1475 if (HMIsEnabled(pVM))
1476 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1477
1478 return VINF_SUCCESS;
1479}
1480
1481
1482/**
1483 * Count returns and have the last non-caller EMT wake up the caller.
1484 *
1485 * @returns VBox strict informational status code for EM scheduling. No failures
1486 * will be returned here, those are for the caller only.
1487 *
1488 * @param pVM Pointer to the VM.
1489 */
1490DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1491{
1492 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1493 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1494 if (cReturned == pVM->cCpus - 1U)
1495 {
1496 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1497 AssertLogRelRC(rc);
1498 }
1499
1500 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1501 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1502 ("%Rrc\n", rcRet),
1503 VERR_IPE_UNEXPECTED_INFO_STATUS);
1504 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1505}
1506
1507
1508/**
1509 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1510 *
1511 * @returns VBox strict informational status code for EM scheduling. No failures
1512 * will be returned here, those are for the caller only. When
1513 * fIsCaller is set, VINF_SUCCESS is always returned.
1514 *
1515 * @param pVM Pointer to the VM.
1516 * @param pVCpu The VMCPU structure for the calling EMT.
1517 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1518 * not.
1519 * @param fFlags The flags.
1520 * @param pfnRendezvous The callback.
1521 * @param pvUser The user argument for the callback.
1522 */
1523static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1524 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1525{
1526 int rc;
1527
1528 /*
1529 * Enter, the last EMT triggers the next callback phase.
1530 */
1531 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1532 if (cEntered != pVM->cCpus)
1533 {
1534 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1535 {
1536 /* Wait for our turn. */
1537 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1538 AssertLogRelRC(rc);
1539 }
1540 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1541 {
1542 /* Wait for the last EMT to arrive and wake everyone up. */
1543 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1544 AssertLogRelRC(rc);
1545 }
1546 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1547 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1548 {
1549 /* Wait for our turn. */
1550 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1551 AssertLogRelRC(rc);
1552 }
1553 else
1554 {
1555 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1556
1557 /*
1558 * The execute once is handled specially to optimize the code flow.
1559 *
1560 * The last EMT to arrive will perform the callback and the other
1561 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1562 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1563 * returns, that EMT will initiate the normal return sequence.
1564 */
1565 if (!fIsCaller)
1566 {
1567 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1568 AssertLogRelRC(rc);
1569
1570 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1571 }
1572 return VINF_SUCCESS;
1573 }
1574 }
1575 else
1576 {
1577 /*
1578 * All EMTs are waiting, clear the FF and take action according to the
1579 * execution method.
1580 */
1581 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1582
1583 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1584 {
1585 /* Wake up everyone. */
1586 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1587 AssertLogRelRC(rc);
1588 }
1589 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1590 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1591 {
1592 /* Figure out who to wake up and wake it up. If it's ourself, then
1593 it's easy otherwise wait for our turn. */
1594 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1595 ? 0
1596 : pVM->cCpus - 1U;
1597 if (pVCpu->idCpu != iFirst)
1598 {
1599 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1600 AssertLogRelRC(rc);
1601 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1602 AssertLogRelRC(rc);
1603 }
1604 }
1605 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1606 }
1607
1608
1609 /*
1610 * Do the callback and update the status if necessary.
1611 */
1612 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1613 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1614 {
1615 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1616 if (rcStrict != VINF_SUCCESS)
1617 {
1618 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1619 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1620 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1621 int32_t i32RendezvousStatus;
1622 do
1623 {
1624 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1625 if ( rcStrict == i32RendezvousStatus
1626 || RT_FAILURE(i32RendezvousStatus)
1627 || ( i32RendezvousStatus != VINF_SUCCESS
1628 && rcStrict > i32RendezvousStatus))
1629 break;
1630 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1631 }
1632 }
1633
1634 /*
1635 * Increment the done counter and take action depending on whether we're
1636 * the last to finish callback execution.
1637 */
1638 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1639 if ( cDone != pVM->cCpus
1640 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1641 {
1642 /* Signal the next EMT? */
1643 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1644 {
1645 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1646 AssertLogRelRC(rc);
1647 }
1648 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1649 {
1650 Assert(cDone == pVCpu->idCpu + 1U);
1651 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1652 AssertLogRelRC(rc);
1653 }
1654 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1655 {
1656 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1657 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1658 AssertLogRelRC(rc);
1659 }
1660
1661 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1662 if (!fIsCaller)
1663 {
1664 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1665 AssertLogRelRC(rc);
1666 }
1667 }
1668 else
1669 {
1670 /* Callback execution is all done, tell the rest to return. */
1671 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1672 AssertLogRelRC(rc);
1673 }
1674
1675 if (!fIsCaller)
1676 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1677 return VINF_SUCCESS;
1678}
1679
1680
1681/**
1682 * Called in response to VM_FF_EMT_RENDEZVOUS.
1683 *
1684 * @returns VBox strict status code - EM scheduling. No errors will be returned
1685 * here, nor will any non-EM scheduling status codes be returned.
1686 *
1687 * @param pVM Pointer to the VM.
1688 * @param pVCpu The handle of the calling EMT.
1689 *
1690 * @thread EMT
1691 */
1692VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1693{
1694 Assert(!pVCpu->vmm.s.fInRendezvous);
1695 pVCpu->vmm.s.fInRendezvous = true;
1696 int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1697 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1698 pVCpu->vmm.s.fInRendezvous = false;
1699 return rc;
1700}
1701
1702
1703/**
1704 * EMT rendezvous.
1705 *
1706 * Gathers all the EMTs and execute some code on each of them, either in a one
1707 * by one fashion or all at once.
1708 *
1709 * @returns VBox strict status code. This will be the first error,
1710 * VINF_SUCCESS, or an EM scheduling status code.
1711 *
1712 * @param pVM Pointer to the VM.
1713 * @param fFlags Flags indicating execution methods. See
1714 * grp_VMMR3EmtRendezvous_fFlags.
1715 * @param pfnRendezvous The callback.
1716 * @param pvUser User argument for the callback.
1717 *
1718 * @thread Any.
1719 */
1720VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1721{
1722 /*
1723 * Validate input.
1724 */
1725 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1726 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1727 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1728 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1729 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1730 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1731 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1732 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1733
1734 VBOXSTRICTRC rcStrict;
1735 PVMCPU pVCpu = VMMGetCpu(pVM);
1736 if (!pVCpu)
1737 /*
1738 * Forward the request to an EMT thread.
1739 */
1740 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1741 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1742 else if (pVM->cCpus == 1)
1743 {
1744 /*
1745 * Shortcut for the single EMT case.
1746 */
1747 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1748 pVCpu->vmm.s.fInRendezvous = true;
1749 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1750 pVCpu->vmm.s.fInRendezvous = false;
1751 }
1752 else
1753 {
1754 /*
1755 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1756 * lookout of the RENDEZVOUS FF.
1757 */
1758 int rc;
1759 rcStrict = VINF_SUCCESS;
1760 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1761 {
1762 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1763
1764 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1765 {
1766 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1767 {
1768 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1769 if ( rc != VINF_SUCCESS
1770 && ( rcStrict == VINF_SUCCESS
1771 || rcStrict > rc))
1772 rcStrict = rc;
1773 /** @todo Perhaps deal with termination here? */
1774 }
1775 ASMNopPause();
1776 }
1777 }
1778 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1779 Assert(!pVCpu->vmm.s.fInRendezvous);
1780 pVCpu->vmm.s.fInRendezvous = true;
1781
1782 /*
1783 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1784 */
1785 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1786 {
1787 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1788 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1789 }
1790 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1791 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1792 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1793 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1794 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1795 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1796 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1797 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1798 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1799 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1800 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1801
1802 /*
1803 * Set the FF and poke the other EMTs.
1804 */
1805 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1806 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1807
1808 /*
1809 * Do the same ourselves.
1810 */
1811 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1812
1813 /*
1814 * The caller waits for the other EMTs to be done and return before doing
1815 * the cleanup. This makes away with wakeup / reset races we would otherwise
1816 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1817 */
1818 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1819 AssertLogRelRC(rc);
1820
1821 /*
1822 * Get the return code and clean up a little bit.
1823 */
1824 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1825 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1826
1827 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1828 pVCpu->vmm.s.fInRendezvous = false;
1829
1830 /*
1831 * Merge rcStrict and rcMy.
1832 */
1833 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1834 if ( rcMy != VINF_SUCCESS
1835 && ( rcStrict == VINF_SUCCESS
1836 || rcStrict > rcMy))
1837 rcStrict = rcMy;
1838 }
1839
1840 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1841 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1842 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1843 VERR_IPE_UNEXPECTED_INFO_STATUS);
1844 return VBOXSTRICTRC_VAL(rcStrict);
1845}
1846
1847
1848/**
1849 * Disables/enables EMT rendezvous.
1850 *
1851 * This is used to make sure EMT rendezvous does not take place while
1852 * processing a priority request.
1853 *
1854 * @returns Old rendezvous-disabled state.
1855 * @param pVCpu The handle of the calling EMT.
1856 * @param fDisabled True if disabled, false if enabled.
1857 */
1858VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled)
1859{
1860 VMCPU_ASSERT_EMT(pVCpu);
1861 bool fOld = pVCpu->vmm.s.fInRendezvous;
1862 pVCpu->vmm.s.fInRendezvous = fDisabled;
1863 return fOld;
1864}
1865
1866
1867/**
1868 * Read from the ring 0 jump buffer stack
1869 *
1870 * @returns VBox status code.
1871 *
1872 * @param pVM Pointer to the VM.
1873 * @param idCpu The ID of the source CPU context (for the address).
1874 * @param R0Addr Where to start reading.
1875 * @param pvBuf Where to store the data we've read.
1876 * @param cbRead The number of bytes to read.
1877 */
1878VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1879{
1880 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1881 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1882
1883#ifdef VMM_R0_SWITCH_STACK
1884 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1885#else
1886 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1887#endif
1888 if ( off > VMM_STACK_SIZE
1889 || off + cbRead >= VMM_STACK_SIZE)
1890 return VERR_INVALID_POINTER;
1891
1892 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1893 return VINF_SUCCESS;
1894}
1895
1896#ifdef VBOX_WITH_RAW_MODE
1897
1898/**
1899 * Calls a RC function.
1900 *
1901 * @param pVM Pointer to the VM.
1902 * @param RCPtrEntry The address of the RC function.
1903 * @param cArgs The number of arguments in the ....
1904 * @param ... Arguments to the function.
1905 */
1906VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1907{
1908 va_list args;
1909 va_start(args, cArgs);
1910 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1911 va_end(args);
1912 return rc;
1913}
1914
1915
1916/**
1917 * Calls a RC function.
1918 *
1919 * @param pVM Pointer to the VM.
1920 * @param RCPtrEntry The address of the RC function.
1921 * @param cArgs The number of arguments in the ....
1922 * @param args Arguments to the function.
1923 */
1924VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1925{
1926 /* Raw mode implies 1 VCPU. */
1927 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1928 PVMCPU pVCpu = &pVM->aCpus[0];
1929
1930 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1931
1932 /*
1933 * Setup the call frame using the trampoline.
1934 */
1935 CPUMSetHyperState(pVCpu,
1936 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
1937 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
1938 RCPtrEntry, /* eax */
1939 cArgs /* edx */
1940 );
1941
1942 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1943 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1944 int i = cArgs;
1945 while (i-- > 0)
1946 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1947
1948 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1949 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1950
1951 /*
1952 * We hide log flushes (outer) and hypervisor interrupts (inner).
1953 */
1954 for (;;)
1955 {
1956 int rc;
1957 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1958 do
1959 {
1960#ifdef NO_SUPCALLR0VMM
1961 rc = VERR_GENERAL_FAILURE;
1962#else
1963 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1964 if (RT_LIKELY(rc == VINF_SUCCESS))
1965 rc = pVCpu->vmm.s.iLastGZRc;
1966#endif
1967 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1968
1969 /*
1970 * Flush the loggers.
1971 */
1972#ifdef LOG_ENABLED
1973 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1974 if ( pLogger
1975 && pLogger->offScratch > 0)
1976 RTLogFlushRC(NULL, pLogger);
1977#endif
1978#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1979 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1980 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1981 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1982#endif
1983 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1984 VMMR3FatalDump(pVM, pVCpu, rc);
1985 if (rc != VINF_VMM_CALL_HOST)
1986 {
1987 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1988 return rc;
1989 }
1990 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1991 if (RT_FAILURE(rc))
1992 return rc;
1993 }
1994}
1995
1996#endif /* VBOX_WITH_RAW_MODE */
1997
1998/**
1999 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2000 *
2001 * @returns VBox status code.
2002 * @param pVM Pointer to the VM.
2003 * @param uOperation Operation to execute.
2004 * @param u64Arg Constant argument.
2005 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2006 * details.
2007 */
2008VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2009{
2010 PVMCPU pVCpu = VMMGetCpu(pVM);
2011 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2012
2013 /*
2014 * Call Ring-0 entry with init code.
2015 */
2016 int rc;
2017 for (;;)
2018 {
2019#ifdef NO_SUPCALLR0VMM
2020 rc = VERR_GENERAL_FAILURE;
2021#else
2022 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
2023#endif
2024 /*
2025 * Flush the logs.
2026 */
2027#ifdef LOG_ENABLED
2028 if ( pVCpu->vmm.s.pR0LoggerR3
2029 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
2030 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
2031#endif
2032 if (rc != VINF_VMM_CALL_HOST)
2033 break;
2034 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2035 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2036 break;
2037 /* Resume R0 */
2038 }
2039
2040 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2041 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
2042 VERR_IPE_UNEXPECTED_INFO_STATUS);
2043 return rc;
2044}
2045
2046
2047#ifdef VBOX_WITH_RAW_MODE
2048/**
2049 * Resumes executing hypervisor code when interrupted by a queue flush or a
2050 * debug event.
2051 *
2052 * @returns VBox status code.
2053 * @param pVM Pointer to the VM.
2054 * @param pVCpu Pointer to the VMCPU.
2055 */
2056VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2057{
2058 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2059 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2060
2061 /*
2062 * We hide log flushes (outer) and hypervisor interrupts (inner).
2063 */
2064 for (;;)
2065 {
2066 int rc;
2067 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2068 do
2069 {
2070# ifdef NO_SUPCALLR0VMM
2071 rc = VERR_GENERAL_FAILURE;
2072# else
2073 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2074 if (RT_LIKELY(rc == VINF_SUCCESS))
2075 rc = pVCpu->vmm.s.iLastGZRc;
2076# endif
2077 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2078
2079 /*
2080 * Flush the loggers.
2081 */
2082# ifdef LOG_ENABLED
2083 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2084 if ( pLogger
2085 && pLogger->offScratch > 0)
2086 RTLogFlushRC(NULL, pLogger);
2087# endif
2088# ifdef VBOX_WITH_RC_RELEASE_LOGGING
2089 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2090 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2091 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2092# endif
2093 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2094 VMMR3FatalDump(pVM, pVCpu, rc);
2095 if (rc != VINF_VMM_CALL_HOST)
2096 {
2097 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2098 return rc;
2099 }
2100 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2101 if (RT_FAILURE(rc))
2102 return rc;
2103 }
2104}
2105#endif /* VBOX_WITH_RAW_MODE */
2106
2107
2108/**
2109 * Service a call to the ring-3 host code.
2110 *
2111 * @returns VBox status code.
2112 * @param pVM Pointer to the VM.
2113 * @param pVCpu Pointer to the VMCPU.
2114 * @remark Careful with critsects.
2115 */
2116static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2117{
2118 /*
2119 * We must also check for pending critsect exits or else we can deadlock
2120 * when entering other critsects here.
2121 */
2122 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2123 PDMCritSectBothFF(pVCpu);
2124
2125 switch (pVCpu->vmm.s.enmCallRing3Operation)
2126 {
2127 /*
2128 * Acquire a critical section.
2129 */
2130 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2131 {
2132 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2133 true /*fCallRing3*/);
2134 break;
2135 }
2136
2137 /*
2138 * Enter a r/w critical section exclusively.
2139 */
2140 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2141 {
2142 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2143 true /*fCallRing3*/);
2144 break;
2145 }
2146
2147 /*
2148 * Enter a r/w critical section shared.
2149 */
2150 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2151 {
2152 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2153 true /*fCallRing3*/);
2154 break;
2155 }
2156
2157 /*
2158 * Acquire the PDM lock.
2159 */
2160 case VMMCALLRING3_PDM_LOCK:
2161 {
2162 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2163 break;
2164 }
2165
2166 /*
2167 * Grow the PGM pool.
2168 */
2169 case VMMCALLRING3_PGM_POOL_GROW:
2170 {
2171 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2172 break;
2173 }
2174
2175 /*
2176 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2177 */
2178 case VMMCALLRING3_PGM_MAP_CHUNK:
2179 {
2180 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2181 break;
2182 }
2183
2184 /*
2185 * Allocates more handy pages.
2186 */
2187 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2188 {
2189 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2190 break;
2191 }
2192
2193 /*
2194 * Allocates a large page.
2195 */
2196 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2197 {
2198 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2199 break;
2200 }
2201
2202 /*
2203 * Acquire the PGM lock.
2204 */
2205 case VMMCALLRING3_PGM_LOCK:
2206 {
2207 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2208 break;
2209 }
2210
2211 /*
2212 * Acquire the MM hypervisor heap lock.
2213 */
2214 case VMMCALLRING3_MMHYPER_LOCK:
2215 {
2216 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2217 break;
2218 }
2219
2220#ifdef VBOX_WITH_REM
2221 /*
2222 * Flush REM handler notifications.
2223 */
2224 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2225 {
2226 REMR3ReplayHandlerNotifications(pVM);
2227 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2228 break;
2229 }
2230#endif
2231
2232 /*
2233 * This is a noop. We just take this route to avoid unnecessary
2234 * tests in the loops.
2235 */
2236 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2237 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2238 LogAlways(("*FLUSH*\n"));
2239 break;
2240
2241 /*
2242 * Set the VM error message.
2243 */
2244 case VMMCALLRING3_VM_SET_ERROR:
2245 VMR3SetErrorWorker(pVM);
2246 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2247 break;
2248
2249 /*
2250 * Set the VM runtime error message.
2251 */
2252 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2253 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2254 break;
2255
2256 /*
2257 * Signal a ring 0 hypervisor assertion.
2258 * Cancel the longjmp operation that's in progress.
2259 */
2260 case VMMCALLRING3_VM_R0_ASSERTION:
2261 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2262 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2263#ifdef RT_ARCH_X86
2264 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2265#else
2266 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2267#endif
2268#ifdef VMM_R0_SWITCH_STACK
2269 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2270#endif
2271 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2272 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2273 return VERR_VMM_RING0_ASSERTION;
2274
2275 /*
2276 * A forced switch to ring 0 for preemption purposes.
2277 */
2278 case VMMCALLRING3_VM_R0_PREEMPT:
2279 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2280 break;
2281
2282 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2283 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2284 break;
2285
2286 default:
2287 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2288 return VERR_VMM_UNKNOWN_RING3_CALL;
2289 }
2290
2291 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2292 return VINF_SUCCESS;
2293}
2294
2295
2296/**
2297 * Displays the Force action Flags.
2298 *
2299 * @param pVM Pointer to the VM.
2300 * @param pHlp The output helpers.
2301 * @param pszArgs The additional arguments (ignored).
2302 */
2303static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2304{
2305 int c;
2306 uint32_t f;
2307 NOREF(pszArgs);
2308
2309#define PRINT_FLAG(prf,flag) do { \
2310 if (f & (prf##flag)) \
2311 { \
2312 static const char *s_psz = #flag; \
2313 if (!(c % 6)) \
2314 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2315 else \
2316 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2317 c++; \
2318 f &= ~(prf##flag); \
2319 } \
2320 } while (0)
2321
2322#define PRINT_GROUP(prf,grp,sfx) do { \
2323 if (f & (prf##grp##sfx)) \
2324 { \
2325 static const char *s_psz = #grp; \
2326 if (!(c % 5)) \
2327 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2328 else \
2329 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2330 c++; \
2331 } \
2332 } while (0)
2333
2334 /*
2335 * The global flags.
2336 */
2337 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2338 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2339
2340 /* show the flag mnemonics */
2341 c = 0;
2342 f = fGlobalForcedActions;
2343 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2344 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2345 PRINT_FLAG(VM_FF_,PDM_DMA);
2346 PRINT_FLAG(VM_FF_,DBGF);
2347 PRINT_FLAG(VM_FF_,REQUEST);
2348 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2349 PRINT_FLAG(VM_FF_,RESET);
2350 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2351 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2352 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2353 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2354 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2355 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2356 if (f)
2357 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2358 else
2359 pHlp->pfnPrintf(pHlp, "\n");
2360
2361 /* the groups */
2362 c = 0;
2363 f = fGlobalForcedActions;
2364 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2365 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2366 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2367 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2368 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2369 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2370 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2371 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2372 if (c)
2373 pHlp->pfnPrintf(pHlp, "\n");
2374
2375 /*
2376 * Per CPU flags.
2377 */
2378 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2379 {
2380 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2381 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2382
2383 /* show the flag mnemonics */
2384 c = 0;
2385 f = fLocalForcedActions;
2386 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2387 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2388 PRINT_FLAG(VMCPU_FF_,TIMER);
2389 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2390 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2391 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2392 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2393 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2394 PRINT_FLAG(VMCPU_FF_,TO_R3);
2395#ifdef VBOX_WITH_RAW_MODE
2396 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2397 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2398 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2399 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2400 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2401 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2402#endif
2403 if (f)
2404 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2405 else
2406 pHlp->pfnPrintf(pHlp, "\n");
2407
2408 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2409 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2410
2411 /* the groups */
2412 c = 0;
2413 f = fLocalForcedActions;
2414 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2415 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2416 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2417 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2418 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2419 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2420 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2421 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2422 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2423 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2424 if (c)
2425 pHlp->pfnPrintf(pHlp, "\n");
2426 }
2427
2428#undef PRINT_FLAG
2429#undef PRINT_GROUP
2430}
2431
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette