VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 57334

Last change on this file since 57334 was 57212, checked in by vboxsync, 9 years ago

VMM: LogRel nits.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 90.0 KB
Line 
1/* $Id: VMM.cpp 57212 2015-08-06 10:11:21Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
55 * can be increased up to 64K - 1.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmcritsectrw.h>
84#include <VBox/vmm/pdmapi.h>
85#include <VBox/vmm/cpum.h>
86#include <VBox/vmm/gim.h>
87#include <VBox/vmm/mm.h>
88#include <VBox/vmm/iom.h>
89#include <VBox/vmm/trpm.h>
90#include <VBox/vmm/selm.h>
91#include <VBox/vmm/em.h>
92#include <VBox/sup.h>
93#include <VBox/vmm/dbgf.h>
94#include <VBox/vmm/csam.h>
95#include <VBox/vmm/patm.h>
96#ifdef VBOX_WITH_REM
97# include <VBox/vmm/rem.h>
98#endif
99#include <VBox/vmm/ssm.h>
100#include <VBox/vmm/ftm.h>
101#include <VBox/vmm/tm.h>
102#include "VMMInternal.h"
103#include "VMMSwitcher.h"
104#include <VBox/vmm/vm.h>
105#include <VBox/vmm/uvm.h>
106
107#include <VBox/err.h>
108#include <VBox/param.h>
109#include <VBox/version.h>
110#include <VBox/vmm/hm.h>
111#include <iprt/assert.h>
112#include <iprt/alloc.h>
113#include <iprt/asm.h>
114#include <iprt/time.h>
115#include <iprt/semaphore.h>
116#include <iprt/stream.h>
117#include <iprt/string.h>
118#include <iprt/stdarg.h>
119#include <iprt/ctype.h>
120#include <iprt/x86.h>
121
122
123
124/*******************************************************************************
125* Defined Constants And Macros *
126*******************************************************************************/
127/** The saved state version. */
128#define VMM_SAVED_STATE_VERSION 4
129/** The saved state version used by v3.0 and earlier. (Teleportation) */
130#define VMM_SAVED_STATE_VERSION_3_0 3
131
132
133/*******************************************************************************
134* Internal Functions *
135*******************************************************************************/
136static int vmmR3InitStacks(PVM pVM);
137static int vmmR3InitLoggers(PVM pVM);
138static void vmmR3InitRegisterStats(PVM pVM);
139static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
140static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
141static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
142static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
143static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144
145
146/**
147 * Initializes the VMM.
148 *
149 * @returns VBox status code.
150 * @param pVM Pointer to the VM.
151 */
152VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
153{
154 LogFlow(("VMMR3Init\n"));
155
156 /*
157 * Assert alignment, sizes and order.
158 */
159 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
160 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
161 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
162
163 /*
164 * Init basic VM VMM members.
165 */
166 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
167 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
168 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
169 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
170 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
171 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
172
173 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
174 * The EMT yield interval. The EMT yielding is a hack we employ to play a
175 * bit nicer with the rest of the system (like for instance the GUI).
176 */
177 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
178 23 /* Value arrived at after experimenting with the grub boot prompt. */);
179 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
180
181
182 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
183 * Controls whether we employ per-cpu preemption timers to limit the time
184 * spent executing guest code. This option is not available on all
185 * platforms and we will silently ignore this setting then. If we are
186 * running in VT-x mode, we will use the VMX-preemption timer instead of
187 * this one when possible.
188 */
189 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
190 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
191 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
192
193 /*
194 * Initialize the VMM rendezvous semaphores.
195 */
196 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
197 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
198 return VERR_NO_MEMORY;
199 for (VMCPUID i = 0; i < pVM->cCpus; i++)
200 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
201 for (VMCPUID i = 0; i < pVM->cCpus; i++)
202 {
203 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
204 AssertRCReturn(rc, rc);
205 }
206 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
207 AssertRCReturn(rc, rc);
208 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
209 AssertRCReturn(rc, rc);
210 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
211 AssertRCReturn(rc, rc);
212 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
213 AssertRCReturn(rc, rc);
214
215 /*
216 * Register the saved state data unit.
217 */
218 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
219 NULL, NULL, NULL,
220 NULL, vmmR3Save, NULL,
221 NULL, vmmR3Load, NULL);
222 if (RT_FAILURE(rc))
223 return rc;
224
225 /*
226 * Register the Ring-0 VM handle with the session for fast ioctl calls.
227 */
228 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
229 if (RT_FAILURE(rc))
230 return rc;
231
232 /*
233 * Init various sub-components.
234 */
235 rc = vmmR3SwitcherInit(pVM);
236 if (RT_SUCCESS(rc))
237 {
238 rc = vmmR3InitStacks(pVM);
239 if (RT_SUCCESS(rc))
240 {
241 rc = vmmR3InitLoggers(pVM);
242
243#ifdef VBOX_WITH_NMI
244 /*
245 * Allocate mapping for the host APIC.
246 */
247 if (RT_SUCCESS(rc))
248 {
249 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
250 AssertRC(rc);
251 }
252#endif
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Debug info and statistics.
257 */
258 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
259 vmmR3InitRegisterStats(pVM);
260 vmmInitFormatTypes();
261
262 return VINF_SUCCESS;
263 }
264 }
265 /** @todo: Need failure cleanup. */
266
267 //more todo in here?
268 //if (RT_SUCCESS(rc))
269 //{
270 //}
271 //int rc2 = vmmR3TermCoreCode(pVM);
272 //AssertRC(rc2));
273 }
274
275 return rc;
276}
277
278
279/**
280 * Allocate & setup the VMM RC stack(s) (for EMTs).
281 *
282 * The stacks are also used for long jumps in Ring-0.
283 *
284 * @returns VBox status code.
285 * @param pVM Pointer to the VM.
286 *
287 * @remarks The optional guard page gets it protection setup up during R3 init
288 * completion because of init order issues.
289 */
290static int vmmR3InitStacks(PVM pVM)
291{
292 int rc = VINF_SUCCESS;
293#ifdef VMM_R0_SWITCH_STACK
294 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
295#else
296 uint32_t fFlags = 0;
297#endif
298
299 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
300 {
301 PVMCPU pVCpu = &pVM->aCpus[idCpu];
302
303#ifdef VBOX_STRICT_VMM_STACK
304 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
305#else
306 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
307#endif
308 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
309 if (RT_SUCCESS(rc))
310 {
311#ifdef VBOX_STRICT_VMM_STACK
312 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
313#endif
314#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
315 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
316 if (!HMIsEnabled(pVM))
317 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
318 else
319#endif
320 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
321 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
322 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
323 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
324
325 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
326 }
327 }
328
329 return rc;
330}
331
332
333/**
334 * Initialize the loggers.
335 *
336 * @returns VBox status code.
337 * @param pVM Pointer to the VM.
338 */
339static int vmmR3InitLoggers(PVM pVM)
340{
341 int rc;
342#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
343
344 /*
345 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
346 */
347#ifdef LOG_ENABLED
348 PRTLOGGER pLogger = RTLogDefaultInstance();
349 if (pLogger)
350 {
351 if (!HMIsEnabled(pVM))
352 {
353 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
354 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
355 if (RT_FAILURE(rc))
356 return rc;
357 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
358 }
359
360# ifdef VBOX_WITH_R0_LOGGING
361 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
362 for (VMCPUID i = 0; i < pVM->cCpus; i++)
363 {
364 PVMCPU pVCpu = &pVM->aCpus[i];
365 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
366 (void **)&pVCpu->vmm.s.pR0LoggerR3);
367 if (RT_FAILURE(rc))
368 return rc;
369 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
370 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
371 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
372 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
373 }
374# endif
375 }
376#endif /* LOG_ENABLED */
377
378#ifdef VBOX_WITH_RC_RELEASE_LOGGING
379 /*
380 * Allocate RC release logger instances (finalized in the relocator).
381 */
382 if (!HMIsEnabled(pVM))
383 {
384 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
385 if (pRelLogger)
386 {
387 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
388 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
389 if (RT_FAILURE(rc))
390 return rc;
391 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
392 }
393 }
394#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
395 return VINF_SUCCESS;
396}
397
398
399/**
400 * VMMR3Init worker that register the statistics with STAM.
401 *
402 * @param pVM The shared VM structure.
403 */
404static void vmmR3InitRegisterStats(PVM pVM)
405{
406 /*
407 * Statistics.
408 */
409 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
469
470#ifdef VBOX_WITH_STATISTICS
471 for (VMCPUID i = 0; i < pVM->cCpus; i++)
472 {
473 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
474 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
475 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
476 }
477#endif
478}
479
480
481/**
482 * Initializes the R0 VMM.
483 *
484 * @returns VBox status code.
485 * @param pVM Pointer to the VM.
486 */
487VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
488{
489 int rc;
490 PVMCPU pVCpu = VMMGetCpu(pVM);
491 Assert(pVCpu && pVCpu->idCpu == 0);
492
493#ifdef LOG_ENABLED
494 /*
495 * Initialize the ring-0 logger if we haven't done so yet.
496 */
497 if ( pVCpu->vmm.s.pR0LoggerR3
498 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
499 {
500 rc = VMMR3UpdateLoggers(pVM);
501 if (RT_FAILURE(rc))
502 return rc;
503 }
504#endif
505
506 /*
507 * Call Ring-0 entry with init code.
508 */
509 for (;;)
510 {
511#ifdef NO_SUPCALLR0VMM
512 //rc = VERR_GENERAL_FAILURE;
513 rc = VINF_SUCCESS;
514#else
515 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT,
516 RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
517#endif
518 /*
519 * Flush the logs.
520 */
521#ifdef LOG_ENABLED
522 if ( pVCpu->vmm.s.pR0LoggerR3
523 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
524 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
525#endif
526 if (rc != VINF_VMM_CALL_HOST)
527 break;
528 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
529 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
530 break;
531 /* Resume R0 */
532 }
533
534 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
535 {
536 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
537 if (RT_SUCCESS(rc))
538 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
539 }
540
541 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
542 if (pVM->aCpus[0].vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
543 LogRel(("VMM: Thread-context hooks enabled!\n"));
544 else
545 LogRel(("VMM: Thread-context hooks unavailable\n"));
546
547 return rc;
548}
549
550
551#ifdef VBOX_WITH_RAW_MODE
552/**
553 * Initializes the RC VMM.
554 *
555 * @returns VBox status code.
556 * @param pVM Pointer to the VM.
557 */
558VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
559{
560 PVMCPU pVCpu = VMMGetCpu(pVM);
561 Assert(pVCpu && pVCpu->idCpu == 0);
562
563 /* In VMX mode, there's no need to init RC. */
564 if (HMIsEnabled(pVM))
565 return VINF_SUCCESS;
566
567 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
568
569 /*
570 * Call VMMRCInit():
571 * -# resolve the address.
572 * -# setup stackframe and EIP to use the trampoline.
573 * -# do a generic hypervisor call.
574 */
575 RTRCPTR RCPtrEP;
576 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP);
577 if (RT_SUCCESS(rc))
578 {
579 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
580 uint64_t u64TS = RTTimeProgramStartNanoTS();
581 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 4: The program startup TS - Hi. */
582 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 4: The program startup TS - Lo. */
583 CPUMPushHyper(pVCpu, vmmGetBuildType()); /* Param 3: Version argument. */
584 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
585 CPUMPushHyper(pVCpu, VMMRC_DO_VMMRC_INIT); /* Param 1: Operation. */
586 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
587 CPUMPushHyper(pVCpu, 6 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
588 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
589 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
590 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
591
592 for (;;)
593 {
594#ifdef NO_SUPCALLR0VMM
595 //rc = VERR_GENERAL_FAILURE;
596 rc = VINF_SUCCESS;
597#else
598 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
599#endif
600#ifdef LOG_ENABLED
601 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
602 if ( pLogger
603 && pLogger->offScratch > 0)
604 RTLogFlushRC(NULL, pLogger);
605#endif
606#ifdef VBOX_WITH_RC_RELEASE_LOGGING
607 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
608 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
609 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
610#endif
611 if (rc != VINF_VMM_CALL_HOST)
612 break;
613 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
614 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
615 break;
616 }
617
618 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
619 {
620 VMMR3FatalDump(pVM, pVCpu, rc);
621 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
622 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
623 }
624 AssertRC(rc);
625 }
626 return rc;
627}
628#endif /* VBOX_WITH_RAW_MODE */
629
630
631/**
632 * Called when an init phase completes.
633 *
634 * @returns VBox status code.
635 * @param pVM Pointer to the VM.
636 * @param enmWhat Which init phase.
637 */
638VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
639{
640 int rc = VINF_SUCCESS;
641
642 switch (enmWhat)
643 {
644 case VMINITCOMPLETED_RING3:
645 {
646 /*
647 * CPUM's post-initialization (APIC base MSR caching).
648 */
649 rc = CPUMR3InitCompleted(pVM);
650 AssertRCReturn(rc, rc);
651
652 /*
653 * Set page attributes to r/w for stack pages.
654 */
655 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
656 {
657 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
658 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
659 AssertRCReturn(rc, rc);
660 }
661
662 /*
663 * Create the EMT yield timer.
664 */
665 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
666 AssertRCReturn(rc, rc);
667
668 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
669 AssertRCReturn(rc, rc);
670
671#ifdef VBOX_WITH_NMI
672 /*
673 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
674 */
675 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
676 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
677 AssertRCReturn(rc, rc);
678#endif
679
680#ifdef VBOX_STRICT_VMM_STACK
681 /*
682 * Setup the stack guard pages: Two inaccessible pages at each sides of the
683 * stack to catch over/under-flows.
684 */
685 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
686 {
687 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
688
689 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
690 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
691
692 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
693 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
694 }
695 pVM->vmm.s.fStackGuardsStationed = true;
696#endif
697 break;
698 }
699
700 case VMINITCOMPLETED_HM:
701 {
702 /*
703 * Disable the periodic preemption timers if we can use the
704 * VMX-preemption timer instead.
705 */
706 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
707 && HMR3IsVmxPreemptionTimerUsed(pVM))
708 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
709 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
710
711 /*
712 * Last chance for GIM to update its CPUID leaves if it requires
713 * knowledge/information from HM initialization.
714 */
715 rc = GIMR3InitCompleted(pVM);
716 AssertRCReturn(rc, rc);
717
718 /*
719 * CPUM's post-initialization (print CPUIDs).
720 */
721 CPUMR3LogCpuIds(pVM);
722 break;
723 }
724
725 default: /* shuts up gcc */
726 break;
727 }
728
729 return rc;
730}
731
732
733/**
734 * Terminate the VMM bits.
735 *
736 * @returns VINF_SUCCESS.
737 * @param pVM Pointer to the VM.
738 */
739VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
740{
741 PVMCPU pVCpu = VMMGetCpu(pVM);
742 Assert(pVCpu && pVCpu->idCpu == 0);
743
744 /*
745 * Call Ring-0 entry with termination code.
746 */
747 int rc;
748 for (;;)
749 {
750#ifdef NO_SUPCALLR0VMM
751 //rc = VERR_GENERAL_FAILURE;
752 rc = VINF_SUCCESS;
753#else
754 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
755#endif
756 /*
757 * Flush the logs.
758 */
759#ifdef LOG_ENABLED
760 if ( pVCpu->vmm.s.pR0LoggerR3
761 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
762 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
763#endif
764 if (rc != VINF_VMM_CALL_HOST)
765 break;
766 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
767 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
768 break;
769 /* Resume R0 */
770 }
771 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
772 {
773 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
774 if (RT_SUCCESS(rc))
775 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
776 }
777
778 for (VMCPUID i = 0; i < pVM->cCpus; i++)
779 {
780 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
781 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
782 }
783 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
784 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
785 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
786 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
787 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
788 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
789 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
790 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
791
792#ifdef VBOX_STRICT_VMM_STACK
793 /*
794 * Make the two stack guard pages present again.
795 */
796 if (pVM->vmm.s.fStackGuardsStationed)
797 {
798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
799 {
800 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
801 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
802 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
803 }
804 pVM->vmm.s.fStackGuardsStationed = false;
805 }
806#endif
807
808 vmmTermFormatTypes();
809 return rc;
810}
811
812
813/**
814 * Applies relocations to data and code managed by this
815 * component. This function will be called at init and
816 * whenever the VMM need to relocate it self inside the GC.
817 *
818 * The VMM will need to apply relocations to the core code.
819 *
820 * @param pVM Pointer to the VM.
821 * @param offDelta The relocation delta.
822 */
823VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
824{
825 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
826
827 /*
828 * Recalc the RC address.
829 */
830#ifdef VBOX_WITH_RAW_MODE
831 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
832#endif
833
834 /*
835 * The stack.
836 */
837 for (VMCPUID i = 0; i < pVM->cCpus; i++)
838 {
839 PVMCPU pVCpu = &pVM->aCpus[i];
840
841 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
842
843 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
844 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
845 }
846
847 /*
848 * All the switchers.
849 */
850 vmmR3SwitcherRelocate(pVM, offDelta);
851
852 /*
853 * Get other RC entry points.
854 */
855 if (!HMIsEnabled(pVM))
856 {
857 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
858 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
859
860 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
861 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
862 }
863
864 /*
865 * Update the logger.
866 */
867 VMMR3UpdateLoggers(pVM);
868}
869
870
871/**
872 * Updates the settings for the RC and R0 loggers.
873 *
874 * @returns VBox status code.
875 * @param pVM Pointer to the VM.
876 */
877VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
878{
879 /*
880 * Simply clone the logger instance (for RC).
881 */
882 int rc = VINF_SUCCESS;
883 RTRCPTR RCPtrLoggerFlush = 0;
884
885 if ( pVM->vmm.s.pRCLoggerR3
886#ifdef VBOX_WITH_RC_RELEASE_LOGGING
887 || pVM->vmm.s.pRCRelLoggerR3
888#endif
889 )
890 {
891 Assert(!HMIsEnabled(pVM));
892 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
893 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
894 }
895
896 if (pVM->vmm.s.pRCLoggerR3)
897 {
898 Assert(!HMIsEnabled(pVM));
899 RTRCPTR RCPtrLoggerWrapper = 0;
900 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
901 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
902
903 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
904 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
905 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
906 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
907 }
908
909#ifdef VBOX_WITH_RC_RELEASE_LOGGING
910 if (pVM->vmm.s.pRCRelLoggerR3)
911 {
912 Assert(!HMIsEnabled(pVM));
913 RTRCPTR RCPtrLoggerWrapper = 0;
914 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
915 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
916
917 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
918 rc = RTLogCloneRC(RTLogRelGetDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
919 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
920 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
921 }
922#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
923
924#ifdef LOG_ENABLED
925 /*
926 * For the ring-0 EMT logger, we use a per-thread logger instance
927 * in ring-0. Only initialize it once.
928 */
929 PRTLOGGER const pDefault = RTLogDefaultInstance();
930 for (VMCPUID i = 0; i < pVM->cCpus; i++)
931 {
932 PVMCPU pVCpu = &pVM->aCpus[i];
933 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
934 if (pR0LoggerR3)
935 {
936 if (!pR0LoggerR3->fCreated)
937 {
938 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
939 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
940 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
941
942 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
943 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
944 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
945
946 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
947 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
948 pfnLoggerWrapper, pfnLoggerFlush,
949 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
950 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
951
952 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
953 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
954 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
955 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger,
956 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
957 pfnLoggerPrefix, NIL_RTR0PTR);
958 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
959
960 pR0LoggerR3->idCpu = i;
961 pR0LoggerR3->fCreated = true;
962 pR0LoggerR3->fFlushingDisabled = false;
963
964 }
965
966 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
967 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
968 AssertRC(rc);
969 }
970 }
971#endif
972 return rc;
973}
974
975
976/**
977 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
978 *
979 * @returns Pointer to the buffer.
980 * @param pVM Pointer to the VM.
981 */
982VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
983{
984 if (HMIsEnabled(pVM))
985 return pVM->vmm.s.szRing0AssertMsg1;
986
987 RTRCPTR RCPtr;
988 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
989 if (RT_SUCCESS(rc))
990 return (const char *)MMHyperRCToR3(pVM, RCPtr);
991
992 return NULL;
993}
994
995
996/**
997 * Returns the VMCPU of the specified virtual CPU.
998 *
999 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1000 *
1001 * @param pUVM The user mode VM handle.
1002 * @param idCpu The ID of the virtual CPU.
1003 */
1004VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1005{
1006 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1007 AssertReturn(idCpu < pUVM->cCpus, NULL);
1008 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1009 return &pUVM->pVM->aCpus[idCpu];
1010}
1011
1012
1013/**
1014 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1015 *
1016 * @returns Pointer to the buffer.
1017 * @param pVM Pointer to the VM.
1018 */
1019VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1020{
1021 if (HMIsEnabled(pVM))
1022 return pVM->vmm.s.szRing0AssertMsg2;
1023
1024 RTRCPTR RCPtr;
1025 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
1026 if (RT_SUCCESS(rc))
1027 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1028
1029 return NULL;
1030}
1031
1032
1033/**
1034 * Execute state save operation.
1035 *
1036 * @returns VBox status code.
1037 * @param pVM Pointer to the VM.
1038 * @param pSSM SSM operation handle.
1039 */
1040static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1041{
1042 LogFlow(("vmmR3Save:\n"));
1043
1044 /*
1045 * Save the started/stopped state of all CPUs except 0 as it will always
1046 * be running. This avoids breaking the saved state version. :-)
1047 */
1048 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1049 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1050
1051 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1052}
1053
1054
1055/**
1056 * Execute state load operation.
1057 *
1058 * @returns VBox status code.
1059 * @param pVM Pointer to the VM.
1060 * @param pSSM SSM operation handle.
1061 * @param uVersion Data layout version.
1062 * @param uPass The data pass.
1063 */
1064static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1065{
1066 LogFlow(("vmmR3Load:\n"));
1067 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1068
1069 /*
1070 * Validate version.
1071 */
1072 if ( uVersion != VMM_SAVED_STATE_VERSION
1073 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1074 {
1075 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1076 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1077 }
1078
1079 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1080 {
1081 /* Ignore the stack bottom, stack pointer and stack bits. */
1082 RTRCPTR RCPtrIgnored;
1083 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1084 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1085#ifdef RT_OS_DARWIN
1086 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1087 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1088 && SSMR3HandleRevision(pSSM) >= 48858
1089 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1090 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1091 )
1092 SSMR3Skip(pSSM, 16384);
1093 else
1094 SSMR3Skip(pSSM, 8192);
1095#else
1096 SSMR3Skip(pSSM, 8192);
1097#endif
1098 }
1099
1100 /*
1101 * Restore the VMCPU states. VCPU 0 is always started.
1102 */
1103 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1104 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1105 {
1106 bool fStarted;
1107 int rc = SSMR3GetBool(pSSM, &fStarted);
1108 if (RT_FAILURE(rc))
1109 return rc;
1110 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1111 }
1112
1113 /* terminator */
1114 uint32_t u32;
1115 int rc = SSMR3GetU32(pSSM, &u32);
1116 if (RT_FAILURE(rc))
1117 return rc;
1118 if (u32 != UINT32_MAX)
1119 {
1120 AssertMsgFailed(("u32=%#x\n", u32));
1121 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1122 }
1123 return VINF_SUCCESS;
1124}
1125
1126
1127#ifdef VBOX_WITH_RAW_MODE
1128/**
1129 * Resolve a builtin RC symbol.
1130 *
1131 * Called by PDM when loading or relocating RC modules.
1132 *
1133 * @returns VBox status
1134 * @param pVM Pointer to the VM.
1135 * @param pszSymbol Symbol to resolv
1136 * @param pRCPtrValue Where to store the symbol value.
1137 *
1138 * @remark This has to work before VMMR3Relocate() is called.
1139 */
1140VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1141{
1142 if (!strcmp(pszSymbol, "g_Logger"))
1143 {
1144 if (pVM->vmm.s.pRCLoggerR3)
1145 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1146 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1147 }
1148 else if (!strcmp(pszSymbol, "g_RelLogger"))
1149 {
1150# ifdef VBOX_WITH_RC_RELEASE_LOGGING
1151 if (pVM->vmm.s.pRCRelLoggerR3)
1152 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1153 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1154# else
1155 *pRCPtrValue = NIL_RTRCPTR;
1156# endif
1157 }
1158 else
1159 return VERR_SYMBOL_NOT_FOUND;
1160 return VINF_SUCCESS;
1161}
1162#endif /* VBOX_WITH_RAW_MODE */
1163
1164
1165/**
1166 * Suspends the CPU yielder.
1167 *
1168 * @param pVM Pointer to the VM.
1169 */
1170VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1171{
1172 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1173 if (!pVM->vmm.s.cYieldResumeMillies)
1174 {
1175 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1176 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1177 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1178 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1179 else
1180 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1181 TMTimerStop(pVM->vmm.s.pYieldTimer);
1182 }
1183 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1184}
1185
1186
1187/**
1188 * Stops the CPU yielder.
1189 *
1190 * @param pVM Pointer to the VM.
1191 */
1192VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1193{
1194 if (!pVM->vmm.s.cYieldResumeMillies)
1195 TMTimerStop(pVM->vmm.s.pYieldTimer);
1196 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1197 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1198}
1199
1200
1201/**
1202 * Resumes the CPU yielder when it has been a suspended or stopped.
1203 *
1204 * @param pVM Pointer to the VM.
1205 */
1206VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1207{
1208 if (pVM->vmm.s.cYieldResumeMillies)
1209 {
1210 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1211 pVM->vmm.s.cYieldResumeMillies = 0;
1212 }
1213}
1214
1215
1216/**
1217 * Internal timer callback function.
1218 *
1219 * @param pVM The VM.
1220 * @param pTimer The timer handle.
1221 * @param pvUser User argument specified upon timer creation.
1222 */
1223static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1224{
1225 NOREF(pvUser);
1226
1227 /*
1228 * This really needs some careful tuning. While we shouldn't be too greedy since
1229 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1230 * because that'll cause us to stop up.
1231 *
1232 * The current logic is to use the default interval when there is no lag worth
1233 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1234 *
1235 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1236 * so the lag is up to date.)
1237 */
1238 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1239 if ( u64Lag < 50000000 /* 50ms */
1240 || ( u64Lag < 1000000000 /* 1s */
1241 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1242 )
1243 {
1244 uint64_t u64Elapsed = RTTimeNanoTS();
1245 pVM->vmm.s.u64LastYield = u64Elapsed;
1246
1247 RTThreadYield();
1248
1249#ifdef LOG_ENABLED
1250 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1251 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1252#endif
1253 }
1254 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1255}
1256
1257
1258#ifdef VBOX_WITH_RAW_MODE
1259/**
1260 * Executes guest code in the raw-mode context.
1261 *
1262 * @param pVM Pointer to the VM.
1263 * @param pVCpu Pointer to the VMCPU.
1264 */
1265VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1266{
1267 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1268
1269 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1270
1271 /*
1272 * Set the hypervisor to resume executing a CPUM resume function
1273 * in CPUMRCA.asm.
1274 */
1275 CPUMSetHyperState(pVCpu,
1276 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1277 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1278 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1279 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1280 0, /* eax */
1281 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1282
1283 /*
1284 * We hide log flushes (outer) and hypervisor interrupts (inner).
1285 */
1286 for (;;)
1287 {
1288#ifdef VBOX_STRICT
1289 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1290 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1291 PGMMapCheck(pVM);
1292# ifdef VBOX_WITH_SAFE_STR
1293 SELMR3CheckShadowTR(pVM);
1294# endif
1295#endif
1296 int rc;
1297 do
1298 {
1299#ifdef NO_SUPCALLR0VMM
1300 rc = VERR_GENERAL_FAILURE;
1301#else
1302 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1303 if (RT_LIKELY(rc == VINF_SUCCESS))
1304 rc = pVCpu->vmm.s.iLastGZRc;
1305#endif
1306 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1307
1308 /*
1309 * Flush the logs.
1310 */
1311#ifdef LOG_ENABLED
1312 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1313 if ( pLogger
1314 && pLogger->offScratch > 0)
1315 RTLogFlushRC(NULL, pLogger);
1316#endif
1317#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1318 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1319 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1320 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
1321#endif
1322 if (rc != VINF_VMM_CALL_HOST)
1323 {
1324 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1325 return rc;
1326 }
1327 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1328 if (RT_FAILURE(rc))
1329 return rc;
1330 /* Resume GC */
1331 }
1332}
1333#endif /* VBOX_WITH_RAW_MODE */
1334
1335
1336/**
1337 * Executes guest code (Intel VT-x and AMD-V).
1338 *
1339 * @param pVM Pointer to the VM.
1340 * @param pVCpu Pointer to the VMCPU.
1341 */
1342VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1343{
1344 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1345
1346 for (;;)
1347 {
1348 int rc;
1349 do
1350 {
1351#ifdef NO_SUPCALLR0VMM
1352 rc = VERR_GENERAL_FAILURE;
1353#else
1354 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1355 if (RT_LIKELY(rc == VINF_SUCCESS))
1356 rc = pVCpu->vmm.s.iLastGZRc;
1357#endif
1358 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1359
1360#if 0 /* todo triggers too often */
1361 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1362#endif
1363
1364#ifdef LOG_ENABLED
1365 /*
1366 * Flush the log
1367 */
1368 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1369 if ( pR0LoggerR3
1370 && pR0LoggerR3->Logger.offScratch > 0)
1371 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1372#endif /* !LOG_ENABLED */
1373 if (rc != VINF_VMM_CALL_HOST)
1374 {
1375 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1376 return rc;
1377 }
1378 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1379 if (RT_FAILURE(rc))
1380 return rc;
1381 /* Resume R0 */
1382 }
1383}
1384
1385/**
1386 * VCPU worker for VMMSendSipi.
1387 *
1388 * @param pVM Pointer to the VM.
1389 * @param idCpu Virtual CPU to perform SIPI on
1390 * @param uVector SIPI vector
1391 */
1392DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1393{
1394 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1395 VMCPU_ASSERT_EMT(pVCpu);
1396
1397 /** @todo what are we supposed to do if the processor is already running? */
1398 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1399 return VERR_ACCESS_DENIED;
1400
1401
1402 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1403
1404 pCtx->cs.Sel = uVector << 8;
1405 pCtx->cs.ValidSel = uVector << 8;
1406 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1407 pCtx->cs.u64Base = uVector << 12;
1408 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1409 pCtx->rip = 0;
1410
1411 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1412
1413# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1414 EMSetState(pVCpu, EMSTATE_HALTED);
1415 return VINF_EM_RESCHEDULE;
1416# else /* And if we go the VMCPU::enmState way it can stay here. */
1417 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1418 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1419 return VINF_SUCCESS;
1420# endif
1421}
1422
1423DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1424{
1425 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1426 VMCPU_ASSERT_EMT(pVCpu);
1427
1428 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1429
1430 PGMR3ResetCpu(pVM, pVCpu);
1431 PDMR3ResetCpu(pVCpu); /* Clear any pending interrupts */
1432 TRPMR3ResetCpu(pVCpu);
1433 CPUMR3ResetCpu(pVM, pVCpu);
1434 EMR3ResetCpu(pVCpu);
1435 HMR3ResetCpu(pVCpu);
1436
1437 /* This will trickle up on the target EMT. */
1438 return VINF_EM_WAIT_SIPI;
1439}
1440
1441/**
1442 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1443 * and unhalting processor
1444 *
1445 * @param pVM Pointer to the VM.
1446 * @param idCpu Virtual CPU to perform SIPI on
1447 * @param uVector SIPI vector
1448 */
1449VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1450{
1451 AssertReturnVoid(idCpu < pVM->cCpus);
1452
1453 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1454 AssertRC(rc);
1455}
1456
1457/**
1458 * Sends init IPI to the virtual CPU.
1459 *
1460 * @param pVM Pointer to the VM.
1461 * @param idCpu Virtual CPU to perform int IPI on
1462 */
1463VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1464{
1465 AssertReturnVoid(idCpu < pVM->cCpus);
1466
1467 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1468 AssertRC(rc);
1469}
1470
1471/**
1472 * Registers the guest memory range that can be used for patching
1473 *
1474 * @returns VBox status code.
1475 * @param pVM Pointer to the VM.
1476 * @param pPatchMem Patch memory range
1477 * @param cbPatchMem Size of the memory range
1478 */
1479VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1480{
1481 VM_ASSERT_EMT(pVM);
1482 if (HMIsEnabled(pVM))
1483 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1484
1485 return VERR_NOT_SUPPORTED;
1486}
1487
1488/**
1489 * Deregisters the guest memory range that can be used for patching
1490 *
1491 * @returns VBox status code.
1492 * @param pVM Pointer to the VM.
1493 * @param pPatchMem Patch memory range
1494 * @param cbPatchMem Size of the memory range
1495 */
1496VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1497{
1498 if (HMIsEnabled(pVM))
1499 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1500
1501 return VINF_SUCCESS;
1502}
1503
1504
1505/**
1506 * Count returns and have the last non-caller EMT wake up the caller.
1507 *
1508 * @returns VBox strict informational status code for EM scheduling. No failures
1509 * will be returned here, those are for the caller only.
1510 *
1511 * @param pVM Pointer to the VM.
1512 */
1513DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1514{
1515 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1516 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1517 if (cReturned == pVM->cCpus - 1U)
1518 {
1519 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1520 AssertLogRelRC(rc);
1521 }
1522
1523 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1524 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1525 ("%Rrc\n", rcRet),
1526 VERR_IPE_UNEXPECTED_INFO_STATUS);
1527 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1528}
1529
1530
1531/**
1532 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1533 *
1534 * @returns VBox strict informational status code for EM scheduling. No failures
1535 * will be returned here, those are for the caller only. When
1536 * fIsCaller is set, VINF_SUCCESS is always returned.
1537 *
1538 * @param pVM Pointer to the VM.
1539 * @param pVCpu The VMCPU structure for the calling EMT.
1540 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1541 * not.
1542 * @param fFlags The flags.
1543 * @param pfnRendezvous The callback.
1544 * @param pvUser The user argument for the callback.
1545 */
1546static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1547 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1548{
1549 int rc;
1550
1551 /*
1552 * Enter, the last EMT triggers the next callback phase.
1553 */
1554 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1555 if (cEntered != pVM->cCpus)
1556 {
1557 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1558 {
1559 /* Wait for our turn. */
1560 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1561 AssertLogRelRC(rc);
1562 }
1563 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1564 {
1565 /* Wait for the last EMT to arrive and wake everyone up. */
1566 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1567 AssertLogRelRC(rc);
1568 }
1569 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1570 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1571 {
1572 /* Wait for our turn. */
1573 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1574 AssertLogRelRC(rc);
1575 }
1576 else
1577 {
1578 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1579
1580 /*
1581 * The execute once is handled specially to optimize the code flow.
1582 *
1583 * The last EMT to arrive will perform the callback and the other
1584 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1585 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1586 * returns, that EMT will initiate the normal return sequence.
1587 */
1588 if (!fIsCaller)
1589 {
1590 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1591 AssertLogRelRC(rc);
1592
1593 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1594 }
1595 return VINF_SUCCESS;
1596 }
1597 }
1598 else
1599 {
1600 /*
1601 * All EMTs are waiting, clear the FF and take action according to the
1602 * execution method.
1603 */
1604 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1605
1606 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1607 {
1608 /* Wake up everyone. */
1609 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1610 AssertLogRelRC(rc);
1611 }
1612 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1613 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1614 {
1615 /* Figure out who to wake up and wake it up. If it's ourself, then
1616 it's easy otherwise wait for our turn. */
1617 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1618 ? 0
1619 : pVM->cCpus - 1U;
1620 if (pVCpu->idCpu != iFirst)
1621 {
1622 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1623 AssertLogRelRC(rc);
1624 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1625 AssertLogRelRC(rc);
1626 }
1627 }
1628 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1629 }
1630
1631
1632 /*
1633 * Do the callback and update the status if necessary.
1634 */
1635 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1636 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1637 {
1638 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1639 if (rcStrict != VINF_SUCCESS)
1640 {
1641 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1642 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1643 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1644 int32_t i32RendezvousStatus;
1645 do
1646 {
1647 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1648 if ( rcStrict == i32RendezvousStatus
1649 || RT_FAILURE(i32RendezvousStatus)
1650 || ( i32RendezvousStatus != VINF_SUCCESS
1651 && rcStrict > i32RendezvousStatus))
1652 break;
1653 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1654 }
1655 }
1656
1657 /*
1658 * Increment the done counter and take action depending on whether we're
1659 * the last to finish callback execution.
1660 */
1661 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1662 if ( cDone != pVM->cCpus
1663 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1664 {
1665 /* Signal the next EMT? */
1666 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1667 {
1668 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1669 AssertLogRelRC(rc);
1670 }
1671 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1672 {
1673 Assert(cDone == pVCpu->idCpu + 1U);
1674 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1675 AssertLogRelRC(rc);
1676 }
1677 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1678 {
1679 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1680 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1681 AssertLogRelRC(rc);
1682 }
1683
1684 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1685 if (!fIsCaller)
1686 {
1687 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1688 AssertLogRelRC(rc);
1689 }
1690 }
1691 else
1692 {
1693 /* Callback execution is all done, tell the rest to return. */
1694 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1695 AssertLogRelRC(rc);
1696 }
1697
1698 if (!fIsCaller)
1699 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1700 return VINF_SUCCESS;
1701}
1702
1703
1704/**
1705 * Called in response to VM_FF_EMT_RENDEZVOUS.
1706 *
1707 * @returns VBox strict status code - EM scheduling. No errors will be returned
1708 * here, nor will any non-EM scheduling status codes be returned.
1709 *
1710 * @param pVM Pointer to the VM.
1711 * @param pVCpu The handle of the calling EMT.
1712 *
1713 * @thread EMT
1714 */
1715VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1716{
1717 Assert(!pVCpu->vmm.s.fInRendezvous);
1718 pVCpu->vmm.s.fInRendezvous = true;
1719 int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1720 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1721 pVCpu->vmm.s.fInRendezvous = false;
1722 return rc;
1723}
1724
1725
1726/**
1727 * EMT rendezvous.
1728 *
1729 * Gathers all the EMTs and execute some code on each of them, either in a one
1730 * by one fashion or all at once.
1731 *
1732 * @returns VBox strict status code. This will be the first error,
1733 * VINF_SUCCESS, or an EM scheduling status code.
1734 *
1735 * @param pVM Pointer to the VM.
1736 * @param fFlags Flags indicating execution methods. See
1737 * grp_VMMR3EmtRendezvous_fFlags.
1738 * @param pfnRendezvous The callback.
1739 * @param pvUser User argument for the callback.
1740 *
1741 * @thread Any.
1742 */
1743VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1744{
1745 /*
1746 * Validate input.
1747 */
1748 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1749 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1750 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1751 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1752 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1753 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1754 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1755 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1756
1757 VBOXSTRICTRC rcStrict;
1758 PVMCPU pVCpu = VMMGetCpu(pVM);
1759 if (!pVCpu)
1760 /*
1761 * Forward the request to an EMT thread.
1762 */
1763 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1764 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1765 else if (pVM->cCpus == 1)
1766 {
1767 /*
1768 * Shortcut for the single EMT case.
1769 */
1770 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1771 pVCpu->vmm.s.fInRendezvous = true;
1772 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1773 pVCpu->vmm.s.fInRendezvous = false;
1774 }
1775 else
1776 {
1777 /*
1778 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1779 * lookout of the RENDEZVOUS FF.
1780 */
1781 int rc;
1782 rcStrict = VINF_SUCCESS;
1783 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1784 {
1785 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1786
1787 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1788 {
1789 if (VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1790 {
1791 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1792 if ( rc != VINF_SUCCESS
1793 && ( rcStrict == VINF_SUCCESS
1794 || rcStrict > rc))
1795 rcStrict = rc;
1796 /** @todo Perhaps deal with termination here? */
1797 }
1798 ASMNopPause();
1799 }
1800 }
1801 Assert(!VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1802 Assert(!pVCpu->vmm.s.fInRendezvous);
1803 pVCpu->vmm.s.fInRendezvous = true;
1804
1805 /*
1806 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1807 */
1808 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1809 {
1810 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1811 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1812 }
1813 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1814 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1815 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1816 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1817 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1818 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1819 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1820 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1821 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1822 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1823 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1824
1825 /*
1826 * Set the FF and poke the other EMTs.
1827 */
1828 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1829 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1830
1831 /*
1832 * Do the same ourselves.
1833 */
1834 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1835
1836 /*
1837 * The caller waits for the other EMTs to be done and return before doing
1838 * the cleanup. This makes away with wakeup / reset races we would otherwise
1839 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1840 */
1841 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1842 AssertLogRelRC(rc);
1843
1844 /*
1845 * Get the return code and clean up a little bit.
1846 */
1847 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1848 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1849
1850 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1851 pVCpu->vmm.s.fInRendezvous = false;
1852
1853 /*
1854 * Merge rcStrict and rcMy.
1855 */
1856 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1857 if ( rcMy != VINF_SUCCESS
1858 && ( rcStrict == VINF_SUCCESS
1859 || rcStrict > rcMy))
1860 rcStrict = rcMy;
1861 }
1862
1863 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1864 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1865 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1866 VERR_IPE_UNEXPECTED_INFO_STATUS);
1867 return VBOXSTRICTRC_VAL(rcStrict);
1868}
1869
1870
1871/**
1872 * Disables/enables EMT rendezvous.
1873 *
1874 * This is used to make sure EMT rendezvous does not take place while
1875 * processing a priority request.
1876 *
1877 * @returns Old rendezvous-disabled state.
1878 * @param pVCpu The handle of the calling EMT.
1879 * @param fDisabled True if disabled, false if enabled.
1880 */
1881VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled)
1882{
1883 VMCPU_ASSERT_EMT(pVCpu);
1884 bool fOld = pVCpu->vmm.s.fInRendezvous;
1885 pVCpu->vmm.s.fInRendezvous = fDisabled;
1886 return fOld;
1887}
1888
1889
1890/**
1891 * Read from the ring 0 jump buffer stack
1892 *
1893 * @returns VBox status code.
1894 *
1895 * @param pVM Pointer to the VM.
1896 * @param idCpu The ID of the source CPU context (for the address).
1897 * @param R0Addr Where to start reading.
1898 * @param pvBuf Where to store the data we've read.
1899 * @param cbRead The number of bytes to read.
1900 */
1901VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1902{
1903 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1904 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1905
1906#ifdef VMM_R0_SWITCH_STACK
1907 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1908#else
1909 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1910#endif
1911 if ( off > VMM_STACK_SIZE
1912 || off + cbRead >= VMM_STACK_SIZE)
1913 return VERR_INVALID_POINTER;
1914
1915 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1916 return VINF_SUCCESS;
1917}
1918
1919#ifdef VBOX_WITH_RAW_MODE
1920
1921/**
1922 * Calls a RC function.
1923 *
1924 * @param pVM Pointer to the VM.
1925 * @param RCPtrEntry The address of the RC function.
1926 * @param cArgs The number of arguments in the ....
1927 * @param ... Arguments to the function.
1928 */
1929VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1930{
1931 va_list args;
1932 va_start(args, cArgs);
1933 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1934 va_end(args);
1935 return rc;
1936}
1937
1938
1939/**
1940 * Calls a RC function.
1941 *
1942 * @param pVM Pointer to the VM.
1943 * @param RCPtrEntry The address of the RC function.
1944 * @param cArgs The number of arguments in the ....
1945 * @param args Arguments to the function.
1946 */
1947VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1948{
1949 /* Raw mode implies 1 VCPU. */
1950 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1951 PVMCPU pVCpu = &pVM->aCpus[0];
1952
1953 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1954
1955 /*
1956 * Setup the call frame using the trampoline.
1957 */
1958 CPUMSetHyperState(pVCpu,
1959 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
1960 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
1961 RCPtrEntry, /* eax */
1962 cArgs /* edx */
1963 );
1964
1965#if 0
1966 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1967#endif
1968 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1969 int i = cArgs;
1970 while (i-- > 0)
1971 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1972
1973 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1974 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1975
1976 /*
1977 * We hide log flushes (outer) and hypervisor interrupts (inner).
1978 */
1979 for (;;)
1980 {
1981 int rc;
1982 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1983 do
1984 {
1985#ifdef NO_SUPCALLR0VMM
1986 rc = VERR_GENERAL_FAILURE;
1987#else
1988 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1989 if (RT_LIKELY(rc == VINF_SUCCESS))
1990 rc = pVCpu->vmm.s.iLastGZRc;
1991#endif
1992 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1993
1994 /*
1995 * Flush the loggers.
1996 */
1997#ifdef LOG_ENABLED
1998 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1999 if ( pLogger
2000 && pLogger->offScratch > 0)
2001 RTLogFlushRC(NULL, pLogger);
2002#endif
2003#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2004 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2005 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2006 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2007#endif
2008 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2009 VMMR3FatalDump(pVM, pVCpu, rc);
2010 if (rc != VINF_VMM_CALL_HOST)
2011 {
2012 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
2013 return rc;
2014 }
2015 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2016 if (RT_FAILURE(rc))
2017 return rc;
2018 }
2019}
2020
2021#endif /* VBOX_WITH_RAW_MODE */
2022
2023/**
2024 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2025 *
2026 * @returns VBox status code.
2027 * @param pVM Pointer to the VM.
2028 * @param uOperation Operation to execute.
2029 * @param u64Arg Constant argument.
2030 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2031 * details.
2032 */
2033VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2034{
2035 PVMCPU pVCpu = VMMGetCpu(pVM);
2036 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2037
2038 /*
2039 * Call Ring-0 entry with init code.
2040 */
2041 int rc;
2042 for (;;)
2043 {
2044#ifdef NO_SUPCALLR0VMM
2045 rc = VERR_GENERAL_FAILURE;
2046#else
2047 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
2048#endif
2049 /*
2050 * Flush the logs.
2051 */
2052#ifdef LOG_ENABLED
2053 if ( pVCpu->vmm.s.pR0LoggerR3
2054 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
2055 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
2056#endif
2057 if (rc != VINF_VMM_CALL_HOST)
2058 break;
2059 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2060 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2061 break;
2062 /* Resume R0 */
2063 }
2064
2065 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2066 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
2067 VERR_IPE_UNEXPECTED_INFO_STATUS);
2068 return rc;
2069}
2070
2071
2072#ifdef VBOX_WITH_RAW_MODE
2073/**
2074 * Resumes executing hypervisor code when interrupted by a queue flush or a
2075 * debug event.
2076 *
2077 * @returns VBox status code.
2078 * @param pVM Pointer to the VM.
2079 * @param pVCpu Pointer to the VMCPU.
2080 */
2081VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2082{
2083 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2084 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2085
2086 /*
2087 * We hide log flushes (outer) and hypervisor interrupts (inner).
2088 */
2089 for (;;)
2090 {
2091 int rc;
2092 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2093 do
2094 {
2095# ifdef NO_SUPCALLR0VMM
2096 rc = VERR_GENERAL_FAILURE;
2097# else
2098 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2099 if (RT_LIKELY(rc == VINF_SUCCESS))
2100 rc = pVCpu->vmm.s.iLastGZRc;
2101# endif
2102 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2103
2104 /*
2105 * Flush the loggers.
2106 */
2107# ifdef LOG_ENABLED
2108 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2109 if ( pLogger
2110 && pLogger->offScratch > 0)
2111 RTLogFlushRC(NULL, pLogger);
2112# endif
2113# ifdef VBOX_WITH_RC_RELEASE_LOGGING
2114 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2115 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2116 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2117# endif
2118 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2119 VMMR3FatalDump(pVM, pVCpu, rc);
2120 if (rc != VINF_VMM_CALL_HOST)
2121 {
2122 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2123 return rc;
2124 }
2125 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2126 if (RT_FAILURE(rc))
2127 return rc;
2128 }
2129}
2130#endif /* VBOX_WITH_RAW_MODE */
2131
2132
2133/**
2134 * Service a call to the ring-3 host code.
2135 *
2136 * @returns VBox status code.
2137 * @param pVM Pointer to the VM.
2138 * @param pVCpu Pointer to the VMCPU.
2139 * @remark Careful with critsects.
2140 */
2141static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2142{
2143 /*
2144 * We must also check for pending critsect exits or else we can deadlock
2145 * when entering other critsects here.
2146 */
2147 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2148 PDMCritSectBothFF(pVCpu);
2149
2150 switch (pVCpu->vmm.s.enmCallRing3Operation)
2151 {
2152 /*
2153 * Acquire a critical section.
2154 */
2155 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2156 {
2157 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2158 true /*fCallRing3*/);
2159 break;
2160 }
2161
2162 /*
2163 * Enter a r/w critical section exclusively.
2164 */
2165 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2166 {
2167 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2168 true /*fCallRing3*/);
2169 break;
2170 }
2171
2172 /*
2173 * Enter a r/w critical section shared.
2174 */
2175 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2176 {
2177 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2178 true /*fCallRing3*/);
2179 break;
2180 }
2181
2182 /*
2183 * Acquire the PDM lock.
2184 */
2185 case VMMCALLRING3_PDM_LOCK:
2186 {
2187 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2188 break;
2189 }
2190
2191 /*
2192 * Grow the PGM pool.
2193 */
2194 case VMMCALLRING3_PGM_POOL_GROW:
2195 {
2196 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2197 break;
2198 }
2199
2200 /*
2201 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2202 */
2203 case VMMCALLRING3_PGM_MAP_CHUNK:
2204 {
2205 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2206 break;
2207 }
2208
2209 /*
2210 * Allocates more handy pages.
2211 */
2212 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2213 {
2214 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2215 break;
2216 }
2217
2218 /*
2219 * Allocates a large page.
2220 */
2221 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2222 {
2223 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2224 break;
2225 }
2226
2227 /*
2228 * Acquire the PGM lock.
2229 */
2230 case VMMCALLRING3_PGM_LOCK:
2231 {
2232 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2233 break;
2234 }
2235
2236 /*
2237 * Acquire the MM hypervisor heap lock.
2238 */
2239 case VMMCALLRING3_MMHYPER_LOCK:
2240 {
2241 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2242 break;
2243 }
2244
2245#ifdef VBOX_WITH_REM
2246 /*
2247 * Flush REM handler notifications.
2248 */
2249 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2250 {
2251 REMR3ReplayHandlerNotifications(pVM);
2252 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2253 break;
2254 }
2255#endif
2256
2257 /*
2258 * This is a noop. We just take this route to avoid unnecessary
2259 * tests in the loops.
2260 */
2261 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2262 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2263 LogAlways(("*FLUSH*\n"));
2264 break;
2265
2266 /*
2267 * Set the VM error message.
2268 */
2269 case VMMCALLRING3_VM_SET_ERROR:
2270 VMR3SetErrorWorker(pVM);
2271 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2272 break;
2273
2274 /*
2275 * Set the VM runtime error message.
2276 */
2277 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2278 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2279 break;
2280
2281 /*
2282 * Signal a ring 0 hypervisor assertion.
2283 * Cancel the longjmp operation that's in progress.
2284 */
2285 case VMMCALLRING3_VM_R0_ASSERTION:
2286 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2287 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2288#ifdef RT_ARCH_X86
2289 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2290#else
2291 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2292#endif
2293#ifdef VMM_R0_SWITCH_STACK
2294 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2295#endif
2296 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2297 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2298 return VERR_VMM_RING0_ASSERTION;
2299
2300 /*
2301 * A forced switch to ring 0 for preemption purposes.
2302 */
2303 case VMMCALLRING3_VM_R0_PREEMPT:
2304 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2305 break;
2306
2307 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2308 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2309 break;
2310
2311 default:
2312 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2313 return VERR_VMM_UNKNOWN_RING3_CALL;
2314 }
2315
2316 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2317 return VINF_SUCCESS;
2318}
2319
2320
2321/**
2322 * Displays the Force action Flags.
2323 *
2324 * @param pVM Pointer to the VM.
2325 * @param pHlp The output helpers.
2326 * @param pszArgs The additional arguments (ignored).
2327 */
2328static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2329{
2330 int c;
2331 uint32_t f;
2332 NOREF(pszArgs);
2333
2334#define PRINT_FLAG(prf,flag) do { \
2335 if (f & (prf##flag)) \
2336 { \
2337 static const char *s_psz = #flag; \
2338 if (!(c % 6)) \
2339 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2340 else \
2341 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2342 c++; \
2343 f &= ~(prf##flag); \
2344 } \
2345 } while (0)
2346
2347#define PRINT_GROUP(prf,grp,sfx) do { \
2348 if (f & (prf##grp##sfx)) \
2349 { \
2350 static const char *s_psz = #grp; \
2351 if (!(c % 5)) \
2352 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2353 else \
2354 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2355 c++; \
2356 } \
2357 } while (0)
2358
2359 /*
2360 * The global flags.
2361 */
2362 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2363 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2364
2365 /* show the flag mnemonics */
2366 c = 0;
2367 f = fGlobalForcedActions;
2368 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2369 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2370 PRINT_FLAG(VM_FF_,PDM_DMA);
2371 PRINT_FLAG(VM_FF_,DBGF);
2372 PRINT_FLAG(VM_FF_,REQUEST);
2373 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2374 PRINT_FLAG(VM_FF_,RESET);
2375 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2376 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2377 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2378 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2379 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2380 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2381 if (f)
2382 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2383 else
2384 pHlp->pfnPrintf(pHlp, "\n");
2385
2386 /* the groups */
2387 c = 0;
2388 f = fGlobalForcedActions;
2389 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2390 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2391 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2392 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2393 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2394 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2395 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2396 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2397 if (c)
2398 pHlp->pfnPrintf(pHlp, "\n");
2399
2400 /*
2401 * Per CPU flags.
2402 */
2403 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2404 {
2405 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2406 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2407
2408 /* show the flag mnemonics */
2409 c = 0;
2410 f = fLocalForcedActions;
2411 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2412 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2413 PRINT_FLAG(VMCPU_FF_,TIMER);
2414 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2415 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2416 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2417 PRINT_FLAG(VMCPU_FF_,UNHALT);
2418 PRINT_FLAG(VMCPU_FF_,IEM);
2419 PRINT_FLAG(VMCPU_FF_,REQUEST);
2420 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2421 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2422 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2423 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2424 PRINT_FLAG(VMCPU_FF_,TLB_SHOOTDOWN);
2425 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2426 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2427 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2428 PRINT_FLAG(VMCPU_FF_,TO_R3);
2429#ifdef VBOX_WITH_RAW_MODE
2430 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2431 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2432 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2433 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2434 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2435 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2436#endif
2437 if (f)
2438 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2439 else
2440 pHlp->pfnPrintf(pHlp, "\n");
2441
2442 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2443 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2444
2445 /* the groups */
2446 c = 0;
2447 f = fLocalForcedActions;
2448 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2449 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2450 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2451 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2452 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2453 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2454 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2455 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2456 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2457 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2458 if (c)
2459 pHlp->pfnPrintf(pHlp, "\n");
2460 }
2461
2462#undef PRINT_FLAG
2463#undef PRINT_GROUP
2464}
2465
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette