VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 37507

Last change on this file since 37507 was 37452, checked in by vboxsync, 14 years ago

IOM,PDMCritSect: Extended PDMCritSectEnter to handle rcBusy=VINF_SUCCESS as a request to call ring-3 to acquire a busy lock. Implemented device level locking in the MMIO code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 85.8 KB
Line 
1/* $Id: VMM.cpp 37452 2011-06-14 18:13:48Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 1023 VMs. Imposed by GVMM's handle allocation
55 * (GVMM_MAX_HANDLES), can be increased up to 64K.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmapi.h>
84#include <VBox/vmm/cpum.h>
85#include <VBox/vmm/mm.h>
86#include <VBox/vmm/iom.h>
87#include <VBox/vmm/trpm.h>
88#include <VBox/vmm/selm.h>
89#include <VBox/vmm/em.h>
90#include <VBox/sup.h>
91#include <VBox/vmm/dbgf.h>
92#include <VBox/vmm/csam.h>
93#include <VBox/vmm/patm.h>
94#include <VBox/vmm/rem.h>
95#include <VBox/vmm/ssm.h>
96#include <VBox/vmm/tm.h>
97#include "VMMInternal.h"
98#include "VMMSwitcher.h"
99#include <VBox/vmm/vm.h>
100#include <VBox/vmm/ftm.h>
101
102#include <VBox/err.h>
103#include <VBox/param.h>
104#include <VBox/version.h>
105#include <VBox/x86.h>
106#include <VBox/vmm/hwaccm.h>
107#include <iprt/assert.h>
108#include <iprt/alloc.h>
109#include <iprt/asm.h>
110#include <iprt/time.h>
111#include <iprt/semaphore.h>
112#include <iprt/stream.h>
113#include <iprt/string.h>
114#include <iprt/stdarg.h>
115#include <iprt/ctype.h>
116
117
118
119/*******************************************************************************
120* Defined Constants And Macros *
121*******************************************************************************/
122/** The saved state version. */
123#define VMM_SAVED_STATE_VERSION 4
124/** The saved state version used by v3.0 and earlier. (Teleportation) */
125#define VMM_SAVED_STATE_VERSION_3_0 3
126
127
128/*******************************************************************************
129* Internal Functions *
130*******************************************************************************/
131static int vmmR3InitStacks(PVM pVM);
132static int vmmR3InitLoggers(PVM pVM);
133static void vmmR3InitRegisterStats(PVM pVM);
134static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
135static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
136static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
137static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
138static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
139
140
141/**
142 * Initializes the VMM.
143 *
144 * @returns VBox status code.
145 * @param pVM The VM to operate on.
146 */
147VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
148{
149 LogFlow(("VMMR3Init\n"));
150
151 /*
152 * Assert alignment, sizes and order.
153 */
154 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
155 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
156 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
157
158 /*
159 * Init basic VM VMM members.
160 */
161 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
162 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
163 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
164 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
165 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
166 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
167
168 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
169 * The EMT yield interval. The EMT yielding is a hack we employ to play a
170 * bit nicer with the rest of the system (like for instance the GUI).
171 */
172 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
173 23 /* Value arrived at after experimenting with the grub boot prompt. */);
174 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
175
176
177 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
178 * Controls whether we employ per-cpu preemption timers to limit the time
179 * spent executing guest code. This option is not available on all
180 * platforms and we will silently ignore this setting then. If we are
181 * running in VT-x mode, we will use the VMX-preemption timer instead of
182 * this one when possible.
183 */
184 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
185 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
186 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
187
188 /*
189 * Initialize the VMM sync critical section and semaphores.
190 */
191 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
192 AssertRCReturn(rc, rc);
193 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
194 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
195 return VERR_NO_MEMORY;
196 for (VMCPUID i = 0; i < pVM->cCpus; i++)
197 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
198 for (VMCPUID i = 0; i < pVM->cCpus; i++)
199 {
200 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
201 AssertRCReturn(rc, rc);
202 }
203 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
204 AssertRCReturn(rc, rc);
205 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
206 AssertRCReturn(rc, rc);
207 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
208 AssertRCReturn(rc, rc);
209 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
210 AssertRCReturn(rc, rc);
211
212 /* GC switchers are enabled by default. Turned off by HWACCM. */
213 pVM->vmm.s.fSwitcherDisabled = false;
214
215 /*
216 * Register the saved state data unit.
217 */
218 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
219 NULL, NULL, NULL,
220 NULL, vmmR3Save, NULL,
221 NULL, vmmR3Load, NULL);
222 if (RT_FAILURE(rc))
223 return rc;
224
225 /*
226 * Register the Ring-0 VM handle with the session for fast ioctl calls.
227 */
228 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
229 if (RT_FAILURE(rc))
230 return rc;
231
232 /*
233 * Init various sub-components.
234 */
235 rc = vmmR3SwitcherInit(pVM);
236 if (RT_SUCCESS(rc))
237 {
238 rc = vmmR3InitStacks(pVM);
239 if (RT_SUCCESS(rc))
240 {
241 rc = vmmR3InitLoggers(pVM);
242
243#ifdef VBOX_WITH_NMI
244 /*
245 * Allocate mapping for the host APIC.
246 */
247 if (RT_SUCCESS(rc))
248 {
249 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
250 AssertRC(rc);
251 }
252#endif
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Debug info and statistics.
257 */
258 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
259 vmmR3InitRegisterStats(pVM);
260
261 return VINF_SUCCESS;
262 }
263 }
264 /** @todo: Need failure cleanup. */
265
266 //more todo in here?
267 //if (RT_SUCCESS(rc))
268 //{
269 //}
270 //int rc2 = vmmR3TermCoreCode(pVM);
271 //AssertRC(rc2));
272 }
273
274 return rc;
275}
276
277
278/**
279 * Allocate & setup the VMM RC stack(s) (for EMTs).
280 *
281 * The stacks are also used for long jumps in Ring-0.
282 *
283 * @returns VBox status code.
284 * @param pVM Pointer to the shared VM structure.
285 *
286 * @remarks The optional guard page gets it protection setup up during R3 init
287 * completion because of init order issues.
288 */
289static int vmmR3InitStacks(PVM pVM)
290{
291 int rc = VINF_SUCCESS;
292#ifdef VMM_R0_SWITCH_STACK
293 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
294#else
295 uint32_t fFlags = 0;
296#endif
297
298 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
299 {
300 PVMCPU pVCpu = &pVM->aCpus[idCpu];
301
302#ifdef VBOX_STRICT_VMM_STACK
303 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
304#else
305 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
306#endif
307 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
308 if (RT_SUCCESS(rc))
309 {
310#ifdef VBOX_STRICT_VMM_STACK
311 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
312#endif
313#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
314 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
315 if (!VMMIsHwVirtExtForced(pVM))
316 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
317 else
318#endif
319 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
320 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
321 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
322 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
323
324 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
325 }
326 }
327
328 return rc;
329}
330
331
332/**
333 * Initialize the loggers.
334 *
335 * @returns VBox status code.
336 * @param pVM Pointer to the shared VM structure.
337 */
338static int vmmR3InitLoggers(PVM pVM)
339{
340 int rc;
341
342 /*
343 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
344 */
345#ifdef LOG_ENABLED
346 PRTLOGGER pLogger = RTLogDefaultInstance();
347 if (pLogger)
348 {
349 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
350 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
351 if (RT_FAILURE(rc))
352 return rc;
353 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
354
355# ifdef VBOX_WITH_R0_LOGGING
356 for (VMCPUID i = 0; i < pVM->cCpus; i++)
357 {
358 PVMCPU pVCpu = &pVM->aCpus[i];
359
360 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
361 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
362 (void **)&pVCpu->vmm.s.pR0LoggerR3);
363 if (RT_FAILURE(rc))
364 return rc;
365 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
366 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
367 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
368 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
369 }
370# endif
371 }
372#endif /* LOG_ENABLED */
373
374#ifdef VBOX_WITH_RC_RELEASE_LOGGING
375 /*
376 * Allocate RC release logger instances (finalized in the relocator).
377 */
378 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
379 if (pRelLogger)
380 {
381 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
382 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
383 if (RT_FAILURE(rc))
384 return rc;
385 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
386 }
387#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
388 return VINF_SUCCESS;
389}
390
391
392/**
393 * VMMR3Init worker that register the statistics with STAM.
394 *
395 * @param pVM The shared VM structure.
396 */
397static void vmmR3InitRegisterStats(PVM pVM)
398{
399 /*
400 * Statistics.
401 */
402 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
461
462#ifdef VBOX_WITH_STATISTICS
463 for (VMCPUID i = 0; i < pVM->cCpus; i++)
464 {
465 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
466 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
467 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
468 }
469#endif
470}
471
472
473/**
474 * Initializes the R0 VMM.
475 *
476 * @returns VBox status code.
477 * @param pVM The VM to operate on.
478 */
479VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
480{
481 int rc;
482 PVMCPU pVCpu = VMMGetCpu(pVM);
483 Assert(pVCpu && pVCpu->idCpu == 0);
484
485#ifdef LOG_ENABLED
486 /*
487 * Initialize the ring-0 logger if we haven't done so yet.
488 */
489 if ( pVCpu->vmm.s.pR0LoggerR3
490 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
491 {
492 rc = VMMR3UpdateLoggers(pVM);
493 if (RT_FAILURE(rc))
494 return rc;
495 }
496#endif
497
498 /*
499 * Call Ring-0 entry with init code.
500 */
501 for (;;)
502 {
503#ifdef NO_SUPCALLR0VMM
504 //rc = VERR_GENERAL_FAILURE;
505 rc = VINF_SUCCESS;
506#else
507 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
508#endif
509 /*
510 * Flush the logs.
511 */
512#ifdef LOG_ENABLED
513 if ( pVCpu->vmm.s.pR0LoggerR3
514 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
515 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
516#endif
517 if (rc != VINF_VMM_CALL_HOST)
518 break;
519 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
520 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
521 break;
522 /* Resume R0 */
523 }
524
525 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
526 {
527 LogRel(("R0 init failed, rc=%Rra\n", rc));
528 if (RT_SUCCESS(rc))
529 rc = VERR_INTERNAL_ERROR;
530 }
531 return rc;
532}
533
534
535/**
536 * Initializes the RC VMM.
537 *
538 * @returns VBox status code.
539 * @param pVM The VM to operate on.
540 */
541VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
542{
543 PVMCPU pVCpu = VMMGetCpu(pVM);
544 Assert(pVCpu && pVCpu->idCpu == 0);
545
546 /* In VMX mode, there's no need to init RC. */
547 if (pVM->vmm.s.fSwitcherDisabled)
548 return VINF_SUCCESS;
549
550 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
551
552 /*
553 * Call VMMGCInit():
554 * -# resolve the address.
555 * -# setup stackframe and EIP to use the trampoline.
556 * -# do a generic hypervisor call.
557 */
558 RTRCPTR RCPtrEP;
559 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
560 if (RT_SUCCESS(rc))
561 {
562 CPUMHyperSetCtxCore(pVCpu, NULL);
563 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
564 uint64_t u64TS = RTTimeProgramStartNanoTS();
565 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
566 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
567 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
568 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
569 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
570 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
571 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
572 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
573 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
574
575 for (;;)
576 {
577#ifdef NO_SUPCALLR0VMM
578 //rc = VERR_GENERAL_FAILURE;
579 rc = VINF_SUCCESS;
580#else
581 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
582#endif
583#ifdef LOG_ENABLED
584 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
585 if ( pLogger
586 && pLogger->offScratch > 0)
587 RTLogFlushRC(NULL, pLogger);
588#endif
589#ifdef VBOX_WITH_RC_RELEASE_LOGGING
590 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
591 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
592 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
593#endif
594 if (rc != VINF_VMM_CALL_HOST)
595 break;
596 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
597 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
598 break;
599 }
600
601 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
602 {
603 VMMR3FatalDump(pVM, pVCpu, rc);
604 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
605 rc = VERR_INTERNAL_ERROR;
606 }
607 AssertRC(rc);
608 }
609 return rc;
610}
611
612
613/**
614 * Called when an init phase completes.
615 *
616 * @returns VBox status code.
617 * @param pVM The VM handle.
618 * @param enmWhat Which init phase.
619 */
620VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
621{
622 int rc = VINF_SUCCESS;
623
624 switch (enmWhat)
625 {
626 case VMINITCOMPLETED_RING3:
627 {
628 /*
629 * Set page attributes to r/w for stack pages.
630 */
631 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
632 {
633 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
634 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
635 AssertRCReturn(rc, rc);
636 }
637
638 /*
639 * Create the EMT yield timer.
640 */
641 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
642 AssertRCReturn(rc, rc);
643
644 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
645 AssertRCReturn(rc, rc);
646
647#ifdef VBOX_WITH_NMI
648 /*
649 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
650 */
651 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
652 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
653 AssertRCReturn(rc, rc);
654#endif
655
656#ifdef VBOX_STRICT_VMM_STACK
657 /*
658 * Setup the stack guard pages: Two inaccessible pages at each sides of the
659 * stack to catch over/under-flows.
660 */
661 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
662 {
663 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
664
665 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
666 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
667
668 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
669 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
670 }
671 pVM->vmm.s.fStackGuardsStationed = true;
672#endif
673 break;
674 }
675
676 case VMINITCOMPLETED_RING0:
677 {
678 /*
679 * Disable the periodic preemption timers if we can use the
680 * VMX-preemption timer instead.
681 */
682 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
683 && HWACCMR3IsVmxPreemptionTimerUsed(pVM))
684 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
685 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
686 break;
687 }
688
689 default: /* shuts up gcc */
690 break;
691 }
692
693 return rc;
694}
695
696
697/**
698 * Terminate the VMM bits.
699 *
700 * @returns VINF_SUCCESS.
701 * @param pVM The VM handle.
702 */
703VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
704{
705 PVMCPU pVCpu = VMMGetCpu(pVM);
706 Assert(pVCpu && pVCpu->idCpu == 0);
707
708 /*
709 * Call Ring-0 entry with termination code.
710 */
711 int rc;
712 for (;;)
713 {
714#ifdef NO_SUPCALLR0VMM
715 //rc = VERR_GENERAL_FAILURE;
716 rc = VINF_SUCCESS;
717#else
718 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
719#endif
720 /*
721 * Flush the logs.
722 */
723#ifdef LOG_ENABLED
724 if ( pVCpu->vmm.s.pR0LoggerR3
725 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
726 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
727#endif
728 if (rc != VINF_VMM_CALL_HOST)
729 break;
730 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
731 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
732 break;
733 /* Resume R0 */
734 }
735 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
736 {
737 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
738 if (RT_SUCCESS(rc))
739 rc = VERR_INTERNAL_ERROR;
740 }
741
742 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
743 for (VMCPUID i = 0; i < pVM->cCpus; i++)
744 {
745 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
746 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
747 }
748 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
749 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
750 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
751 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
752 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
753 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
754 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
755 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
756
757#ifdef VBOX_STRICT_VMM_STACK
758 /*
759 * Make the two stack guard pages present again.
760 */
761 if (pVM->vmm.s.fStackGuardsStationed)
762 {
763 for (VMCPUID i = 0; i < pVM->cCpus; i++)
764 {
765 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
766 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
767 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
768 }
769 pVM->vmm.s.fStackGuardsStationed = false;
770 }
771#endif
772 return rc;
773}
774
775
776/**
777 * Applies relocations to data and code managed by this
778 * component. This function will be called at init and
779 * whenever the VMM need to relocate it self inside the GC.
780 *
781 * The VMM will need to apply relocations to the core code.
782 *
783 * @param pVM The VM handle.
784 * @param offDelta The relocation delta.
785 */
786VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
787{
788 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
789
790 /*
791 * Recalc the RC address.
792 */
793#ifdef VBOX_WITH_RAW_MODE
794 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
795#endif
796
797 /*
798 * The stack.
799 */
800 for (VMCPUID i = 0; i < pVM->cCpus; i++)
801 {
802 PVMCPU pVCpu = &pVM->aCpus[i];
803
804 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
805
806 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
807 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
808 }
809
810 /*
811 * All the switchers.
812 */
813 vmmR3SwitcherRelocate(pVM, offDelta);
814
815 /*
816 * Get other RC entry points.
817 */
818 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
819 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
820
821 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
822 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
823
824 /*
825 * Update the logger.
826 */
827 VMMR3UpdateLoggers(pVM);
828}
829
830
831/**
832 * Updates the settings for the RC and R0 loggers.
833 *
834 * @returns VBox status code.
835 * @param pVM The VM handle.
836 */
837VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
838{
839 /*
840 * Simply clone the logger instance (for RC).
841 */
842 int rc = VINF_SUCCESS;
843 RTRCPTR RCPtrLoggerFlush = 0;
844
845 if (pVM->vmm.s.pRCLoggerR3
846#ifdef VBOX_WITH_RC_RELEASE_LOGGING
847 || pVM->vmm.s.pRCRelLoggerR3
848#endif
849 )
850 {
851 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
852 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
853 }
854
855 if (pVM->vmm.s.pRCLoggerR3)
856 {
857 RTRCPTR RCPtrLoggerWrapper = 0;
858 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
859 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
860
861 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
862 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
863 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
864 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
865 }
866
867#ifdef VBOX_WITH_RC_RELEASE_LOGGING
868 if (pVM->vmm.s.pRCRelLoggerR3)
869 {
870 RTRCPTR RCPtrLoggerWrapper = 0;
871 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
872 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
873
874 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
875 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
876 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
877 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
878 }
879#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
880
881#ifdef LOG_ENABLED
882 /*
883 * For the ring-0 EMT logger, we use a per-thread logger instance
884 * in ring-0. Only initialize it once.
885 */
886 for (VMCPUID i = 0; i < pVM->cCpus; i++)
887 {
888 PVMCPU pVCpu = &pVM->aCpus[i];
889 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
890 if (pR0LoggerR3)
891 {
892 if (!pR0LoggerR3->fCreated)
893 {
894 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
895 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
896 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
897
898 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
899 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
900 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
901
902 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
903 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
904 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
905 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
906
907 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
908 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
909 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
910 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
911 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
912
913 pR0LoggerR3->idCpu = i;
914 pR0LoggerR3->fCreated = true;
915 pR0LoggerR3->fFlushingDisabled = false;
916
917 }
918
919 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
920 AssertRC(rc);
921 }
922 }
923#endif
924 return rc;
925}
926
927
928/**
929 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
930 *
931 * @returns Pointer to the buffer.
932 * @param pVM The VM handle.
933 */
934VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
935{
936 if (HWACCMIsEnabled(pVM))
937 return pVM->vmm.s.szRing0AssertMsg1;
938
939 RTRCPTR RCPtr;
940 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
941 if (RT_SUCCESS(rc))
942 return (const char *)MMHyperRCToR3(pVM, RCPtr);
943
944 return NULL;
945}
946
947
948/**
949 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
950 *
951 * @returns Pointer to the buffer.
952 * @param pVM The VM handle.
953 */
954VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
955{
956 if (HWACCMIsEnabled(pVM))
957 return pVM->vmm.s.szRing0AssertMsg2;
958
959 RTRCPTR RCPtr;
960 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
961 if (RT_SUCCESS(rc))
962 return (const char *)MMHyperRCToR3(pVM, RCPtr);
963
964 return NULL;
965}
966
967
968/**
969 * Execute state save operation.
970 *
971 * @returns VBox status code.
972 * @param pVM VM Handle.
973 * @param pSSM SSM operation handle.
974 */
975static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
976{
977 LogFlow(("vmmR3Save:\n"));
978
979 /*
980 * Save the started/stopped state of all CPUs except 0 as it will always
981 * be running. This avoids breaking the saved state version. :-)
982 */
983 for (VMCPUID i = 1; i < pVM->cCpus; i++)
984 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
985
986 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
987}
988
989
990/**
991 * Execute state load operation.
992 *
993 * @returns VBox status code.
994 * @param pVM VM Handle.
995 * @param pSSM SSM operation handle.
996 * @param uVersion Data layout version.
997 * @param uPass The data pass.
998 */
999static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1000{
1001 LogFlow(("vmmR3Load:\n"));
1002 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1003
1004 /*
1005 * Validate version.
1006 */
1007 if ( uVersion != VMM_SAVED_STATE_VERSION
1008 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1009 {
1010 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1011 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1012 }
1013
1014 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1015 {
1016 /* Ignore the stack bottom, stack pointer and stack bits. */
1017 RTRCPTR RCPtrIgnored;
1018 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1019 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1020#ifdef RT_OS_DARWIN
1021 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1022 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1023 && SSMR3HandleRevision(pSSM) >= 48858
1024 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1025 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1026 )
1027 SSMR3Skip(pSSM, 16384);
1028 else
1029 SSMR3Skip(pSSM, 8192);
1030#else
1031 SSMR3Skip(pSSM, 8192);
1032#endif
1033 }
1034
1035 /*
1036 * Restore the VMCPU states. VCPU 0 is always started.
1037 */
1038 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1039 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1040 {
1041 bool fStarted;
1042 int rc = SSMR3GetBool(pSSM, &fStarted);
1043 if (RT_FAILURE(rc))
1044 return rc;
1045 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1046 }
1047
1048 /* terminator */
1049 uint32_t u32;
1050 int rc = SSMR3GetU32(pSSM, &u32);
1051 if (RT_FAILURE(rc))
1052 return rc;
1053 if (u32 != UINT32_MAX)
1054 {
1055 AssertMsgFailed(("u32=%#x\n", u32));
1056 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1057 }
1058 return VINF_SUCCESS;
1059}
1060
1061
1062/**
1063 * Resolve a builtin RC symbol.
1064 *
1065 * Called by PDM when loading or relocating RC modules.
1066 *
1067 * @returns VBox status
1068 * @param pVM VM Handle.
1069 * @param pszSymbol Symbol to resolv
1070 * @param pRCPtrValue Where to store the symbol value.
1071 *
1072 * @remark This has to work before VMMR3Relocate() is called.
1073 */
1074VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1075{
1076 if (!strcmp(pszSymbol, "g_Logger"))
1077 {
1078 if (pVM->vmm.s.pRCLoggerR3)
1079 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1080 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1081 }
1082 else if (!strcmp(pszSymbol, "g_RelLogger"))
1083 {
1084#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1085 if (pVM->vmm.s.pRCRelLoggerR3)
1086 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1087 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1088#else
1089 *pRCPtrValue = NIL_RTRCPTR;
1090#endif
1091 }
1092 else
1093 return VERR_SYMBOL_NOT_FOUND;
1094 return VINF_SUCCESS;
1095}
1096
1097
1098/**
1099 * Suspends the CPU yielder.
1100 *
1101 * @param pVM The VM handle.
1102 */
1103VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1104{
1105 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1106 if (!pVM->vmm.s.cYieldResumeMillies)
1107 {
1108 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1109 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1110 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1111 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1112 else
1113 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1114 TMTimerStop(pVM->vmm.s.pYieldTimer);
1115 }
1116 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1117}
1118
1119
1120/**
1121 * Stops the CPU yielder.
1122 *
1123 * @param pVM The VM handle.
1124 */
1125VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1126{
1127 if (!pVM->vmm.s.cYieldResumeMillies)
1128 TMTimerStop(pVM->vmm.s.pYieldTimer);
1129 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1130 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1131}
1132
1133
1134/**
1135 * Resumes the CPU yielder when it has been a suspended or stopped.
1136 *
1137 * @param pVM The VM handle.
1138 */
1139VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1140{
1141 if (pVM->vmm.s.cYieldResumeMillies)
1142 {
1143 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1144 pVM->vmm.s.cYieldResumeMillies = 0;
1145 }
1146}
1147
1148
1149/**
1150 * Internal timer callback function.
1151 *
1152 * @param pVM The VM.
1153 * @param pTimer The timer handle.
1154 * @param pvUser User argument specified upon timer creation.
1155 */
1156static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1157{
1158 /*
1159 * This really needs some careful tuning. While we shouldn't be too greedy since
1160 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1161 * because that'll cause us to stop up.
1162 *
1163 * The current logic is to use the default interval when there is no lag worth
1164 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1165 *
1166 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1167 * so the lag is up to date.)
1168 */
1169 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1170 if ( u64Lag < 50000000 /* 50ms */
1171 || ( u64Lag < 1000000000 /* 1s */
1172 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1173 )
1174 {
1175 uint64_t u64Elapsed = RTTimeNanoTS();
1176 pVM->vmm.s.u64LastYield = u64Elapsed;
1177
1178 RTThreadYield();
1179
1180#ifdef LOG_ENABLED
1181 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1182 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1183#endif
1184 }
1185 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1186}
1187
1188
1189/**
1190 * Executes guest code in the raw-mode context.
1191 *
1192 * @param pVM VM handle.
1193 * @param pVCpu The VMCPU to operate on.
1194 */
1195VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1196{
1197 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1198
1199 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1200
1201 /*
1202 * Set the EIP and ESP.
1203 */
1204 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1205 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1206 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1207 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1208
1209 /*
1210 * We hide log flushes (outer) and hypervisor interrupts (inner).
1211 */
1212 for (;;)
1213 {
1214#ifdef VBOX_STRICT
1215 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1216 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1217 PGMMapCheck(pVM);
1218#endif
1219 int rc;
1220 do
1221 {
1222#ifdef NO_SUPCALLR0VMM
1223 rc = VERR_GENERAL_FAILURE;
1224#else
1225 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1226 if (RT_LIKELY(rc == VINF_SUCCESS))
1227 rc = pVCpu->vmm.s.iLastGZRc;
1228#endif
1229 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1230
1231 /*
1232 * Flush the logs.
1233 */
1234#ifdef LOG_ENABLED
1235 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1236 if ( pLogger
1237 && pLogger->offScratch > 0)
1238 RTLogFlushRC(NULL, pLogger);
1239#endif
1240#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1241 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1242 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1243 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1244#endif
1245 if (rc != VINF_VMM_CALL_HOST)
1246 {
1247 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1248 return rc;
1249 }
1250 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1251 if (RT_FAILURE(rc))
1252 return rc;
1253 /* Resume GC */
1254 }
1255}
1256
1257
1258/**
1259 * Executes guest code (Intel VT-x and AMD-V).
1260 *
1261 * @param pVM VM handle.
1262 * @param pVCpu The VMCPU to operate on.
1263 */
1264VMMR3_INT_DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1265{
1266 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1267
1268 for (;;)
1269 {
1270 int rc;
1271 do
1272 {
1273#ifdef NO_SUPCALLR0VMM
1274 rc = VERR_GENERAL_FAILURE;
1275#else
1276 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1277 if (RT_LIKELY(rc == VINF_SUCCESS))
1278 rc = pVCpu->vmm.s.iLastGZRc;
1279#endif
1280 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1281
1282#if 0 /* todo triggers too often */
1283 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3));
1284#endif
1285
1286#ifdef LOG_ENABLED
1287 /*
1288 * Flush the log
1289 */
1290 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1291 if ( pR0LoggerR3
1292 && pR0LoggerR3->Logger.offScratch > 0)
1293 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1294#endif /* !LOG_ENABLED */
1295 if (rc != VINF_VMM_CALL_HOST)
1296 {
1297 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1298 return rc;
1299 }
1300 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1301 if (RT_FAILURE(rc))
1302 return rc;
1303 /* Resume R0 */
1304 }
1305}
1306
1307/**
1308 * VCPU worker for VMMSendSipi.
1309 *
1310 * @param pVM The VM to operate on.
1311 * @param idCpu Virtual CPU to perform SIPI on
1312 * @param uVector SIPI vector
1313 */
1314DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1315{
1316 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1317 VMCPU_ASSERT_EMT(pVCpu);
1318
1319 /** @todo what are we supposed to do if the processor is already running? */
1320 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1321 return VERR_ACCESS_DENIED;
1322
1323
1324 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1325
1326 pCtx->cs = uVector << 8;
1327 pCtx->csHid.u64Base = uVector << 12;
1328 pCtx->csHid.u32Limit = 0x0000ffff;
1329 pCtx->rip = 0;
1330
1331 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1332
1333# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1334 EMSetState(pVCpu, EMSTATE_HALTED);
1335 return VINF_EM_RESCHEDULE;
1336# else /* And if we go the VMCPU::enmState way it can stay here. */
1337 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1338 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1339 return VINF_SUCCESS;
1340# endif
1341}
1342
1343DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1344{
1345 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1346 VMCPU_ASSERT_EMT(pVCpu);
1347
1348 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1349 CPUMR3ResetCpu(pVCpu);
1350 return VINF_EM_WAIT_SIPI;
1351}
1352
1353/**
1354 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1355 * and unhalting processor
1356 *
1357 * @param pVM The VM to operate on.
1358 * @param idCpu Virtual CPU to perform SIPI on
1359 * @param uVector SIPI vector
1360 */
1361VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1362{
1363 AssertReturnVoid(idCpu < pVM->cCpus);
1364
1365 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1366 AssertRC(rc);
1367}
1368
1369/**
1370 * Sends init IPI to the virtual CPU.
1371 *
1372 * @param pVM The VM to operate on.
1373 * @param idCpu Virtual CPU to perform int IPI on
1374 */
1375VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1376{
1377 AssertReturnVoid(idCpu < pVM->cCpus);
1378
1379 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1380 AssertRC(rc);
1381}
1382
1383/**
1384 * Registers the guest memory range that can be used for patching
1385 *
1386 * @returns VBox status code.
1387 * @param pVM The VM to operate on.
1388 * @param pPatchMem Patch memory range
1389 * @param cbPatchMem Size of the memory range
1390 */
1391VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1392{
1393 if (HWACCMIsEnabled(pVM))
1394 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1395
1396 return VERR_NOT_SUPPORTED;
1397}
1398
1399/**
1400 * Deregisters the guest memory range that can be used for patching
1401 *
1402 * @returns VBox status code.
1403 * @param pVM The VM to operate on.
1404 * @param pPatchMem Patch memory range
1405 * @param cbPatchMem Size of the memory range
1406 */
1407VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1408{
1409 if (HWACCMIsEnabled(pVM))
1410 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1411
1412 return VINF_SUCCESS;
1413}
1414
1415
1416/**
1417 * VCPU worker for VMMR3SynchronizeAllVCpus.
1418 *
1419 * @param pVM The VM to operate on.
1420 * @param idCpu Virtual CPU to perform SIPI on
1421 * @param uVector SIPI vector
1422 */
1423DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1424{
1425 /* Block until the job in the caller has finished. */
1426 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1427 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1428 return VINF_SUCCESS;
1429}
1430
1431
1432/**
1433 * Atomically execute a callback handler
1434 * Note: This is very expensive; avoid using it frequently!
1435 *
1436 * @param pVM The VM to operate on.
1437 * @param pfnHandler Callback handler
1438 * @param pvUser User specified parameter
1439 *
1440 * @thread EMT
1441 * @todo Remove this if not used again soon.
1442 */
1443VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1444{
1445 int rc;
1446 PVMCPU pVCpu = VMMGetCpu(pVM);
1447 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1448
1449 /* Shortcut for the uniprocessor case. */
1450 if (pVM->cCpus == 1)
1451 return pfnHandler(pVM, pvUser);
1452
1453 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1454 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1455 {
1456 if (idCpu != pVCpu->idCpu)
1457 {
1458 rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SyncVCpu, 1, pVM);
1459 AssertRC(rc);
1460 }
1461 }
1462 /* Wait until all other VCPUs are waiting for us. */
1463 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCpus - 1))
1464 RTThreadSleep(1);
1465
1466 rc = pfnHandler(pVM, pvUser);
1467 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1468 return rc;
1469}
1470
1471
1472/**
1473 * Count returns and have the last non-caller EMT wake up the caller.
1474 *
1475 * @returns VBox strict informational status code for EM scheduling. No failures
1476 * will be returned here, those are for the caller only.
1477 *
1478 * @param pVM The VM handle.
1479 */
1480DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1481{
1482 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1483 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1484 if (cReturned == pVM->cCpus - 1U)
1485 {
1486 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1487 AssertLogRelRC(rc);
1488 }
1489
1490 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1491 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1492 ("%Rrc\n", rcRet),
1493 VERR_IPE_UNEXPECTED_INFO_STATUS);
1494 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1495}
1496
1497
1498/**
1499 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1500 *
1501 * @returns VBox strict informational status code for EM scheduling. No failures
1502 * will be returned here, those are for the caller only. When
1503 * fIsCaller is set, VINF_SUCCESS is always returned.
1504 *
1505 * @param pVM The VM handle.
1506 * @param pVCpu The VMCPU structure for the calling EMT.
1507 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1508 * not.
1509 * @param fFlags The flags.
1510 * @param pfnRendezvous The callback.
1511 * @param pvUser The user argument for the callback.
1512 */
1513static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1514 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1515{
1516 int rc;
1517
1518 /*
1519 * Enter, the last EMT triggers the next callback phase.
1520 */
1521 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1522 if (cEntered != pVM->cCpus)
1523 {
1524 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1525 {
1526 /* Wait for our turn. */
1527 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1528 AssertLogRelRC(rc);
1529 }
1530 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1531 {
1532 /* Wait for the last EMT to arrive and wake everyone up. */
1533 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1534 AssertLogRelRC(rc);
1535 }
1536 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1537 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1538 {
1539 /* Wait for our turn. */
1540 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1541 AssertLogRelRC(rc);
1542 }
1543 else
1544 {
1545 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1546
1547 /*
1548 * The execute once is handled specially to optimize the code flow.
1549 *
1550 * The last EMT to arrive will perform the callback and the other
1551 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1552 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1553 * returns, that EMT will initiate the normal return sequence.
1554 */
1555 if (!fIsCaller)
1556 {
1557 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1558 AssertLogRelRC(rc);
1559
1560 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1561 }
1562 return VINF_SUCCESS;
1563 }
1564 }
1565 else
1566 {
1567 /*
1568 * All EMTs are waiting, clear the FF and take action according to the
1569 * execution method.
1570 */
1571 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1572
1573 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1574 {
1575 /* Wake up everyone. */
1576 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1577 AssertLogRelRC(rc);
1578 }
1579 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1580 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1581 {
1582 /* Figure out who to wake up and wake it up. If it's ourself, then
1583 it's easy otherwise wait for our turn. */
1584 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1585 ? 0
1586 : pVM->cCpus - 1U;
1587 if (pVCpu->idCpu != iFirst)
1588 {
1589 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1590 AssertLogRelRC(rc);
1591 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1592 AssertLogRelRC(rc);
1593 }
1594 }
1595 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1596 }
1597
1598
1599 /*
1600 * Do the callback and update the status if necessary.
1601 */
1602 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1603 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1604 {
1605 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1606 if (rcStrict != VINF_SUCCESS)
1607 {
1608 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1609 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1610 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1611 int32_t i32RendezvousStatus;
1612 do
1613 {
1614 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1615 if ( rcStrict == i32RendezvousStatus
1616 || RT_FAILURE(i32RendezvousStatus)
1617 || ( i32RendezvousStatus != VINF_SUCCESS
1618 && rcStrict > i32RendezvousStatus))
1619 break;
1620 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1621 }
1622 }
1623
1624 /*
1625 * Increment the done counter and take action depending on whether we're
1626 * the last to finish callback execution.
1627 */
1628 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1629 if ( cDone != pVM->cCpus
1630 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1631 {
1632 /* Signal the next EMT? */
1633 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1634 {
1635 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1636 AssertLogRelRC(rc);
1637 }
1638 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1639 {
1640 Assert(cDone == pVCpu->idCpu + 1U);
1641 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1642 AssertLogRelRC(rc);
1643 }
1644 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1645 {
1646 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1647 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1648 AssertLogRelRC(rc);
1649 }
1650
1651 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1652 if (!fIsCaller)
1653 {
1654 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1655 AssertLogRelRC(rc);
1656 }
1657 }
1658 else
1659 {
1660 /* Callback execution is all done, tell the rest to return. */
1661 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1662 AssertLogRelRC(rc);
1663 }
1664
1665 if (!fIsCaller)
1666 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1667 return VINF_SUCCESS;
1668}
1669
1670
1671/**
1672 * Called in response to VM_FF_EMT_RENDEZVOUS.
1673 *
1674 * @returns VBox strict status code - EM scheduling. No errors will be returned
1675 * here, nor will any non-EM scheduling status codes be returned.
1676 *
1677 * @param pVM The VM handle
1678 * @param pVCpu The handle of the calling EMT.
1679 *
1680 * @thread EMT
1681 */
1682VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1683{
1684 return vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1685 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1686}
1687
1688
1689/**
1690 * EMT rendezvous.
1691 *
1692 * Gathers all the EMTs and execute some code on each of them, either in a one
1693 * by one fashion or all at once.
1694 *
1695 * @returns VBox strict status code. This will be the the first error,
1696 * VINF_SUCCESS, or an EM scheduling status code.
1697 *
1698 * @param pVM The VM handle.
1699 * @param fFlags Flags indicating execution methods. See
1700 * grp_VMMR3EmtRendezvous_fFlags.
1701 * @param pfnRendezvous The callback.
1702 * @param pvUser User argument for the callback.
1703 *
1704 * @thread Any.
1705 */
1706VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1707{
1708 /*
1709 * Validate input.
1710 */
1711 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1712 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1713 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1714 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1715 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1716 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1717 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1718
1719 VBOXSTRICTRC rcStrict;
1720 PVMCPU pVCpu = VMMGetCpu(pVM);
1721 if (!pVCpu)
1722 /*
1723 * Forward the request to an EMT thread.
1724 */
1725 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1726 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1727 else if (pVM->cCpus == 1)
1728 /*
1729 * Shortcut for the single EMT case.
1730 */
1731 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1732 else
1733 {
1734 /*
1735 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1736 * lookout of the RENDEZVOUS FF.
1737 */
1738 int rc;
1739 rcStrict = VINF_SUCCESS;
1740 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1741 {
1742 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1743 {
1744 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1745 {
1746 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1747 if ( rc != VINF_SUCCESS
1748 && ( rcStrict == VINF_SUCCESS
1749 || rcStrict > rc))
1750 rcStrict = rc;
1751 /** @todo Perhaps deal with termination here? */
1752 }
1753 ASMNopPause();
1754 }
1755 }
1756 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1757
1758 /*
1759 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1760 */
1761 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1762 {
1763 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1764 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1765 }
1766 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1767 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1768 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1769 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1770 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1771 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1772 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1773 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1774 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1775 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1776 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1777
1778 /*
1779 * Set the FF and poke the other EMTs.
1780 */
1781 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1782 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1783
1784 /*
1785 * Do the same ourselves.
1786 */
1787 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1788
1789 /*
1790 * The caller waits for the other EMTs to be done and return before doing
1791 * the cleanup. This makes away with wakeup / reset races we would otherwise
1792 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1793 */
1794 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1795 AssertLogRelRC(rc);
1796
1797 /*
1798 * Get the return code and clean up a little bit.
1799 */
1800 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1801 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1802
1803 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1804
1805 /*
1806 * Merge rcStrict and rcMy.
1807 */
1808 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1809 if ( rcMy != VINF_SUCCESS
1810 && ( rcStrict == VINF_SUCCESS
1811 || rcStrict > rcMy))
1812 rcStrict = rcMy;
1813 }
1814
1815 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1816 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1817 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1818 VERR_IPE_UNEXPECTED_INFO_STATUS);
1819 return VBOXSTRICTRC_VAL(rcStrict);
1820}
1821
1822
1823/**
1824 * Read from the ring 0 jump buffer stack
1825 *
1826 * @returns VBox status code.
1827 *
1828 * @param pVM Pointer to the shared VM structure.
1829 * @param idCpu The ID of the source CPU context (for the address).
1830 * @param R0Addr Where to start reading.
1831 * @param pvBuf Where to store the data we've read.
1832 * @param cbRead The number of bytes to read.
1833 */
1834VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1835{
1836 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1837 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1838
1839#ifdef VMM_R0_SWITCH_STACK
1840 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1841#else
1842 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1843#endif
1844 if ( off > VMM_STACK_SIZE
1845 || off + cbRead >= VMM_STACK_SIZE)
1846 return VERR_INVALID_POINTER;
1847
1848 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1849 return VINF_SUCCESS;
1850}
1851
1852
1853/**
1854 * Calls a RC function.
1855 *
1856 * @param pVM The VM handle.
1857 * @param RCPtrEntry The address of the RC function.
1858 * @param cArgs The number of arguments in the ....
1859 * @param ... Arguments to the function.
1860 */
1861VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1862{
1863 va_list args;
1864 va_start(args, cArgs);
1865 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1866 va_end(args);
1867 return rc;
1868}
1869
1870
1871/**
1872 * Calls a RC function.
1873 *
1874 * @param pVM The VM handle.
1875 * @param RCPtrEntry The address of the RC function.
1876 * @param cArgs The number of arguments in the ....
1877 * @param args Arguments to the function.
1878 */
1879VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1880{
1881 /* Raw mode implies 1 VCPU. */
1882 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1883 PVMCPU pVCpu = &pVM->aCpus[0];
1884
1885 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1886
1887 /*
1888 * Setup the call frame using the trampoline.
1889 */
1890 CPUMHyperSetCtxCore(pVCpu, NULL);
1891 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1892 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1893 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1894 int i = cArgs;
1895 while (i-- > 0)
1896 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1897
1898 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1899 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1900 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1901
1902 /*
1903 * We hide log flushes (outer) and hypervisor interrupts (inner).
1904 */
1905 for (;;)
1906 {
1907 int rc;
1908 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1909 do
1910 {
1911#ifdef NO_SUPCALLR0VMM
1912 rc = VERR_GENERAL_FAILURE;
1913#else
1914 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1915 if (RT_LIKELY(rc == VINF_SUCCESS))
1916 rc = pVCpu->vmm.s.iLastGZRc;
1917#endif
1918 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1919
1920 /*
1921 * Flush the logs.
1922 */
1923#ifdef LOG_ENABLED
1924 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1925 if ( pLogger
1926 && pLogger->offScratch > 0)
1927 RTLogFlushRC(NULL, pLogger);
1928#endif
1929#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1930 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1931 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1932 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1933#endif
1934 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1935 VMMR3FatalDump(pVM, pVCpu, rc);
1936 if (rc != VINF_VMM_CALL_HOST)
1937 {
1938 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1939 return rc;
1940 }
1941 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1942 if (RT_FAILURE(rc))
1943 return rc;
1944 }
1945}
1946
1947
1948/**
1949 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1950 *
1951 * @returns VBox status code.
1952 * @param pVM The VM to operate on.
1953 * @param uOperation Operation to execute.
1954 * @param u64Arg Constant argument.
1955 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1956 * details.
1957 */
1958VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1959{
1960 PVMCPU pVCpu = VMMGetCpu(pVM);
1961 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1962
1963 /*
1964 * Call Ring-0 entry with init code.
1965 */
1966 int rc;
1967 for (;;)
1968 {
1969#ifdef NO_SUPCALLR0VMM
1970 rc = VERR_GENERAL_FAILURE;
1971#else
1972 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1973#endif
1974 /*
1975 * Flush the logs.
1976 */
1977#ifdef LOG_ENABLED
1978 if ( pVCpu->vmm.s.pR0LoggerR3
1979 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1980 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1981#endif
1982 if (rc != VINF_VMM_CALL_HOST)
1983 break;
1984 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1985 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1986 break;
1987 /* Resume R0 */
1988 }
1989
1990 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
1991 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1992 VERR_INTERNAL_ERROR);
1993 return rc;
1994}
1995
1996
1997/**
1998 * Resumes executing hypervisor code when interrupted by a queue flush or a
1999 * debug event.
2000 *
2001 * @returns VBox status code.
2002 * @param pVM VM handle.
2003 * @param pVCpu VMCPU handle.
2004 */
2005VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2006{
2007 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2008 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2009
2010 /*
2011 * We hide log flushes (outer) and hypervisor interrupts (inner).
2012 */
2013 for (;;)
2014 {
2015 int rc;
2016 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2017 do
2018 {
2019#ifdef NO_SUPCALLR0VMM
2020 rc = VERR_GENERAL_FAILURE;
2021#else
2022 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2023 if (RT_LIKELY(rc == VINF_SUCCESS))
2024 rc = pVCpu->vmm.s.iLastGZRc;
2025#endif
2026 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2027
2028 /*
2029 * Flush the loggers,
2030 */
2031#ifdef LOG_ENABLED
2032 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2033 if ( pLogger
2034 && pLogger->offScratch > 0)
2035 RTLogFlushRC(NULL, pLogger);
2036#endif
2037#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2038 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2039 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2040 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2041#endif
2042 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2043 VMMR3FatalDump(pVM, pVCpu, rc);
2044 if (rc != VINF_VMM_CALL_HOST)
2045 {
2046 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2047 return rc;
2048 }
2049 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2050 if (RT_FAILURE(rc))
2051 return rc;
2052 }
2053}
2054
2055
2056/**
2057 * Service a call to the ring-3 host code.
2058 *
2059 * @returns VBox status code.
2060 * @param pVM VM handle.
2061 * @param pVCpu VMCPU handle
2062 * @remark Careful with critsects.
2063 */
2064static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2065{
2066 /*
2067 * We must also check for pending critsect exits or else we can deadlock
2068 * when entering other critsects here.
2069 */
2070 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2071 PDMCritSectFF(pVCpu);
2072
2073 switch (pVCpu->vmm.s.enmCallRing3Operation)
2074 {
2075 /*
2076 * Acquire a critical section.
2077 */
2078 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2079 {
2080 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2081 true /*fCallRing3*/);
2082 break;
2083 }
2084
2085 /*
2086 * Acquire the PDM lock.
2087 */
2088 case VMMCALLRING3_PDM_LOCK:
2089 {
2090 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2091 break;
2092 }
2093
2094 /*
2095 * Grow the PGM pool.
2096 */
2097 case VMMCALLRING3_PGM_POOL_GROW:
2098 {
2099 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2100 break;
2101 }
2102
2103 /*
2104 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2105 */
2106 case VMMCALLRING3_PGM_MAP_CHUNK:
2107 {
2108 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2109 break;
2110 }
2111
2112 /*
2113 * Allocates more handy pages.
2114 */
2115 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2116 {
2117 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2118 break;
2119 }
2120
2121 /*
2122 * Allocates a large page.
2123 */
2124 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2125 {
2126 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2127 break;
2128 }
2129
2130 /*
2131 * Acquire the PGM lock.
2132 */
2133 case VMMCALLRING3_PGM_LOCK:
2134 {
2135 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2136 break;
2137 }
2138
2139 /*
2140 * Acquire the MM hypervisor heap lock.
2141 */
2142 case VMMCALLRING3_MMHYPER_LOCK:
2143 {
2144 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2145 break;
2146 }
2147
2148 /*
2149 * Flush REM handler notifications.
2150 */
2151 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2152 {
2153 REMR3ReplayHandlerNotifications(pVM);
2154 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2155 break;
2156 }
2157
2158 /*
2159 * This is a noop. We just take this route to avoid unnecessary
2160 * tests in the loops.
2161 */
2162 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2163 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2164 LogAlways(("*FLUSH*\n"));
2165 break;
2166
2167 /*
2168 * Set the VM error message.
2169 */
2170 case VMMCALLRING3_VM_SET_ERROR:
2171 VMR3SetErrorWorker(pVM);
2172 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2173 break;
2174
2175 /*
2176 * Set the VM runtime error message.
2177 */
2178 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2179 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2180 break;
2181
2182 /*
2183 * Signal a ring 0 hypervisor assertion.
2184 * Cancel the longjmp operation that's in progress.
2185 */
2186 case VMMCALLRING3_VM_R0_ASSERTION:
2187 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2188 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2189#ifdef RT_ARCH_X86
2190 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2191#else
2192 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2193#endif
2194#ifdef VMM_R0_SWITCH_STACK
2195 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2196#endif
2197 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2198 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2199 return VERR_VMM_RING0_ASSERTION;
2200
2201 /*
2202 * A forced switch to ring 0 for preemption purposes.
2203 */
2204 case VMMCALLRING3_VM_R0_PREEMPT:
2205 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2206 break;
2207
2208 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2209 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2210 break;
2211
2212 default:
2213 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2214 return VERR_INTERNAL_ERROR;
2215 }
2216
2217 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2218 return VINF_SUCCESS;
2219}
2220
2221
2222/**
2223 * Displays the Force action Flags.
2224 *
2225 * @param pVM The VM handle.
2226 * @param pHlp The output helpers.
2227 * @param pszArgs The additional arguments (ignored).
2228 */
2229static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2230{
2231 int c;
2232 uint32_t f;
2233#define PRINT_FLAG(prf,flag) do { \
2234 if (f & (prf##flag)) \
2235 { \
2236 static const char *s_psz = #flag; \
2237 if (!(c % 6)) \
2238 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2239 else \
2240 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2241 c++; \
2242 f &= ~(prf##flag); \
2243 } \
2244 } while (0)
2245
2246#define PRINT_GROUP(prf,grp,sfx) do { \
2247 if (f & (prf##grp##sfx)) \
2248 { \
2249 static const char *s_psz = #grp; \
2250 if (!(c % 5)) \
2251 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2252 else \
2253 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2254 c++; \
2255 } \
2256 } while (0)
2257
2258 /*
2259 * The global flags.
2260 */
2261 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2262 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2263
2264 /* show the flag mnemonics */
2265 c = 0;
2266 f = fGlobalForcedActions;
2267 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2268 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2269 PRINT_FLAG(VM_FF_,PDM_DMA);
2270 PRINT_FLAG(VM_FF_,DBGF);
2271 PRINT_FLAG(VM_FF_,REQUEST);
2272 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2273 PRINT_FLAG(VM_FF_,RESET);
2274 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2275 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2276 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2277 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2278 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2279 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2280 if (f)
2281 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2282 else
2283 pHlp->pfnPrintf(pHlp, "\n");
2284
2285 /* the groups */
2286 c = 0;
2287 f = fGlobalForcedActions;
2288 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2289 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2290 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2291 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2292 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2293 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2294 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2295 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2296 if (c)
2297 pHlp->pfnPrintf(pHlp, "\n");
2298
2299 /*
2300 * Per CPU flags.
2301 */
2302 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2303 {
2304 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2305 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2306
2307 /* show the flag mnemonics */
2308 c = 0;
2309 f = fLocalForcedActions;
2310 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2311 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2312 PRINT_FLAG(VMCPU_FF_,TIMER);
2313 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2314 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2315 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2316 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2317 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2318 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2319 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2320 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2321 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2322 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2323 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2324 PRINT_FLAG(VMCPU_FF_,TO_R3);
2325 if (f)
2326 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2327 else
2328 pHlp->pfnPrintf(pHlp, "\n");
2329
2330 /* the groups */
2331 c = 0;
2332 f = fLocalForcedActions;
2333 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2334 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2335 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2336 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2337 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2338 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2339 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2340 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2341 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2342 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2343 if (c)
2344 pHlp->pfnPrintf(pHlp, "\n");
2345 }
2346
2347#undef PRINT_FLAG
2348#undef PRINT_GROUP
2349}
2350
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette