VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 40274

Last change on this file since 40274 was 40274, checked in by vboxsync, 13 years ago

Introduced VBOX_WITH_REM in Config.kmk and the VMM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 85.6 KB
Line 
1/* $Id: VMM.cpp 40274 2012-02-28 13:17:35Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
55 * can be increased up to 64K - 1.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmapi.h>
84#include <VBox/vmm/cpum.h>
85#include <VBox/vmm/mm.h>
86#include <VBox/vmm/iom.h>
87#include <VBox/vmm/trpm.h>
88#include <VBox/vmm/selm.h>
89#include <VBox/vmm/em.h>
90#include <VBox/sup.h>
91#include <VBox/vmm/dbgf.h>
92#include <VBox/vmm/csam.h>
93#include <VBox/vmm/patm.h>
94#ifdef VBOX_WITH_REM
95# include <VBox/vmm/rem.h>
96#endif
97#include <VBox/vmm/ssm.h>
98#include <VBox/vmm/tm.h>
99#include "VMMInternal.h"
100#include "VMMSwitcher.h"
101#include <VBox/vmm/vm.h>
102#include <VBox/vmm/ftm.h>
103
104#include <VBox/err.h>
105#include <VBox/param.h>
106#include <VBox/version.h>
107#include <VBox/vmm/hwaccm.h>
108#include <iprt/assert.h>
109#include <iprt/alloc.h>
110#include <iprt/asm.h>
111#include <iprt/time.h>
112#include <iprt/semaphore.h>
113#include <iprt/stream.h>
114#include <iprt/string.h>
115#include <iprt/stdarg.h>
116#include <iprt/ctype.h>
117#include <iprt/x86.h>
118
119
120
121/*******************************************************************************
122* Defined Constants And Macros *
123*******************************************************************************/
124/** The saved state version. */
125#define VMM_SAVED_STATE_VERSION 4
126/** The saved state version used by v3.0 and earlier. (Teleportation) */
127#define VMM_SAVED_STATE_VERSION_3_0 3
128
129
130/*******************************************************************************
131* Internal Functions *
132*******************************************************************************/
133static int vmmR3InitStacks(PVM pVM);
134static int vmmR3InitLoggers(PVM pVM);
135static void vmmR3InitRegisterStats(PVM pVM);
136static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
137static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
138static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
139static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
140static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
141
142
143/**
144 * Initializes the VMM.
145 *
146 * @returns VBox status code.
147 * @param pVM The VM to operate on.
148 */
149VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
150{
151 LogFlow(("VMMR3Init\n"));
152
153 /*
154 * Assert alignment, sizes and order.
155 */
156 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
157 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
158 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
159
160 /*
161 * Init basic VM VMM members.
162 */
163 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
164 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
165 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
166 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
167 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
168 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
169
170 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
171 * The EMT yield interval. The EMT yielding is a hack we employ to play a
172 * bit nicer with the rest of the system (like for instance the GUI).
173 */
174 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
175 23 /* Value arrived at after experimenting with the grub boot prompt. */);
176 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
177
178
179 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
180 * Controls whether we employ per-cpu preemption timers to limit the time
181 * spent executing guest code. This option is not available on all
182 * platforms and we will silently ignore this setting then. If we are
183 * running in VT-x mode, we will use the VMX-preemption timer instead of
184 * this one when possible.
185 */
186 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
187 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
188 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
189
190 /*
191 * Initialize the VMM rendezvous semaphores.
192 */
193 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
194 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
195 return VERR_NO_MEMORY;
196 for (VMCPUID i = 0; i < pVM->cCpus; i++)
197 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
198 for (VMCPUID i = 0; i < pVM->cCpus; i++)
199 {
200 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
201 AssertRCReturn(rc, rc);
202 }
203 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
204 AssertRCReturn(rc, rc);
205 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
206 AssertRCReturn(rc, rc);
207 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
208 AssertRCReturn(rc, rc);
209 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
210 AssertRCReturn(rc, rc);
211
212 /* GC switchers are enabled by default. Turned off by HWACCM. */
213 pVM->vmm.s.fSwitcherDisabled = false;
214
215 /*
216 * Register the saved state data unit.
217 */
218 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
219 NULL, NULL, NULL,
220 NULL, vmmR3Save, NULL,
221 NULL, vmmR3Load, NULL);
222 if (RT_FAILURE(rc))
223 return rc;
224
225 /*
226 * Register the Ring-0 VM handle with the session for fast ioctl calls.
227 */
228 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
229 if (RT_FAILURE(rc))
230 return rc;
231
232 /*
233 * Init various sub-components.
234 */
235 rc = vmmR3SwitcherInit(pVM);
236 if (RT_SUCCESS(rc))
237 {
238 rc = vmmR3InitStacks(pVM);
239 if (RT_SUCCESS(rc))
240 {
241 rc = vmmR3InitLoggers(pVM);
242
243#ifdef VBOX_WITH_NMI
244 /*
245 * Allocate mapping for the host APIC.
246 */
247 if (RT_SUCCESS(rc))
248 {
249 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
250 AssertRC(rc);
251 }
252#endif
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Debug info and statistics.
257 */
258 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
259 vmmR3InitRegisterStats(pVM);
260 vmmInitFormatTypes();
261
262 return VINF_SUCCESS;
263 }
264 }
265 /** @todo: Need failure cleanup. */
266
267 //more todo in here?
268 //if (RT_SUCCESS(rc))
269 //{
270 //}
271 //int rc2 = vmmR3TermCoreCode(pVM);
272 //AssertRC(rc2));
273 }
274
275 return rc;
276}
277
278
279/**
280 * Allocate & setup the VMM RC stack(s) (for EMTs).
281 *
282 * The stacks are also used for long jumps in Ring-0.
283 *
284 * @returns VBox status code.
285 * @param pVM Pointer to the shared VM structure.
286 *
287 * @remarks The optional guard page gets it protection setup up during R3 init
288 * completion because of init order issues.
289 */
290static int vmmR3InitStacks(PVM pVM)
291{
292 int rc = VINF_SUCCESS;
293#ifdef VMM_R0_SWITCH_STACK
294 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
295#else
296 uint32_t fFlags = 0;
297#endif
298
299 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
300 {
301 PVMCPU pVCpu = &pVM->aCpus[idCpu];
302
303#ifdef VBOX_STRICT_VMM_STACK
304 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
305#else
306 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
307#endif
308 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
309 if (RT_SUCCESS(rc))
310 {
311#ifdef VBOX_STRICT_VMM_STACK
312 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
313#endif
314#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
315 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
316 if (!VMMIsHwVirtExtForced(pVM))
317 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
318 else
319#endif
320 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
321 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
322 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
323 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
324
325 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
326 }
327 }
328
329 return rc;
330}
331
332
333/**
334 * Initialize the loggers.
335 *
336 * @returns VBox status code.
337 * @param pVM Pointer to the shared VM structure.
338 */
339static int vmmR3InitLoggers(PVM pVM)
340{
341 int rc;
342#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
343
344 /*
345 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
346 */
347#ifdef LOG_ENABLED
348 PRTLOGGER pLogger = RTLogDefaultInstance();
349 if (pLogger)
350 {
351 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
352 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
353 if (RT_FAILURE(rc))
354 return rc;
355 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
356
357# ifdef VBOX_WITH_R0_LOGGING
358 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
359 for (VMCPUID i = 0; i < pVM->cCpus; i++)
360 {
361 PVMCPU pVCpu = &pVM->aCpus[i];
362 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
363 (void **)&pVCpu->vmm.s.pR0LoggerR3);
364 if (RT_FAILURE(rc))
365 return rc;
366 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
367 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
368 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
369 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
370 }
371# endif
372 }
373#endif /* LOG_ENABLED */
374
375#ifdef VBOX_WITH_RC_RELEASE_LOGGING
376 /*
377 * Allocate RC release logger instances (finalized in the relocator).
378 */
379 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
380 if (pRelLogger)
381 {
382 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
383 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
384 if (RT_FAILURE(rc))
385 return rc;
386 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
387 }
388#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
389 return VINF_SUCCESS;
390}
391
392
393/**
394 * VMMR3Init worker that register the statistics with STAM.
395 *
396 * @param pVM The shared VM structure.
397 */
398static void vmmR3InitRegisterStats(PVM pVM)
399{
400 /*
401 * Statistics.
402 */
403 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
462
463#ifdef VBOX_WITH_STATISTICS
464 for (VMCPUID i = 0; i < pVM->cCpus; i++)
465 {
466 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
467 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
468 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
469 }
470#endif
471}
472
473
474/**
475 * Initializes the R0 VMM.
476 *
477 * @returns VBox status code.
478 * @param pVM The VM to operate on.
479 */
480VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
481{
482 int rc;
483 PVMCPU pVCpu = VMMGetCpu(pVM);
484 Assert(pVCpu && pVCpu->idCpu == 0);
485
486#ifdef LOG_ENABLED
487 /*
488 * Initialize the ring-0 logger if we haven't done so yet.
489 */
490 if ( pVCpu->vmm.s.pR0LoggerR3
491 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
492 {
493 rc = VMMR3UpdateLoggers(pVM);
494 if (RT_FAILURE(rc))
495 return rc;
496 }
497#endif
498
499 /*
500 * Call Ring-0 entry with init code.
501 */
502 for (;;)
503 {
504#ifdef NO_SUPCALLR0VMM
505 //rc = VERR_GENERAL_FAILURE;
506 rc = VINF_SUCCESS;
507#else
508 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
509#endif
510 /*
511 * Flush the logs.
512 */
513#ifdef LOG_ENABLED
514 if ( pVCpu->vmm.s.pR0LoggerR3
515 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
516 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
517#endif
518 if (rc != VINF_VMM_CALL_HOST)
519 break;
520 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
521 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
522 break;
523 /* Resume R0 */
524 }
525
526 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
527 {
528 LogRel(("R0 init failed, rc=%Rra\n", rc));
529 if (RT_SUCCESS(rc))
530 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
531 }
532 return rc;
533}
534
535
536/**
537 * Initializes the RC VMM.
538 *
539 * @returns VBox status code.
540 * @param pVM The VM to operate on.
541 */
542VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
543{
544 PVMCPU pVCpu = VMMGetCpu(pVM);
545 Assert(pVCpu && pVCpu->idCpu == 0);
546
547 /* In VMX mode, there's no need to init RC. */
548 if (pVM->vmm.s.fSwitcherDisabled)
549 return VINF_SUCCESS;
550
551 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
552
553 /*
554 * Call VMMGCInit():
555 * -# resolve the address.
556 * -# setup stackframe and EIP to use the trampoline.
557 * -# do a generic hypervisor call.
558 */
559 RTRCPTR RCPtrEP;
560 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
561 if (RT_SUCCESS(rc))
562 {
563 CPUMHyperSetCtxCore(pVCpu, NULL);
564 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
565 uint64_t u64TS = RTTimeProgramStartNanoTS();
566 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
567 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
568 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
569 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
570 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
571 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
572 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
573 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
574 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
575
576 for (;;)
577 {
578#ifdef NO_SUPCALLR0VMM
579 //rc = VERR_GENERAL_FAILURE;
580 rc = VINF_SUCCESS;
581#else
582 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
583#endif
584#ifdef LOG_ENABLED
585 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
586 if ( pLogger
587 && pLogger->offScratch > 0)
588 RTLogFlushRC(NULL, pLogger);
589#endif
590#ifdef VBOX_WITH_RC_RELEASE_LOGGING
591 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
592 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
593 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
594#endif
595 if (rc != VINF_VMM_CALL_HOST)
596 break;
597 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
598 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
599 break;
600 }
601
602 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
603 {
604 VMMR3FatalDump(pVM, pVCpu, rc);
605 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
606 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
607 }
608 AssertRC(rc);
609 }
610 return rc;
611}
612
613
614/**
615 * Called when an init phase completes.
616 *
617 * @returns VBox status code.
618 * @param pVM The VM handle.
619 * @param enmWhat Which init phase.
620 */
621VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
622{
623 int rc = VINF_SUCCESS;
624
625 switch (enmWhat)
626 {
627 case VMINITCOMPLETED_RING3:
628 {
629 /*
630 * Set page attributes to r/w for stack pages.
631 */
632 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
633 {
634 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
635 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
636 AssertRCReturn(rc, rc);
637 }
638
639 /*
640 * Create the EMT yield timer.
641 */
642 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
643 AssertRCReturn(rc, rc);
644
645 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
646 AssertRCReturn(rc, rc);
647
648#ifdef VBOX_WITH_NMI
649 /*
650 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
651 */
652 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
653 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
654 AssertRCReturn(rc, rc);
655#endif
656
657#ifdef VBOX_STRICT_VMM_STACK
658 /*
659 * Setup the stack guard pages: Two inaccessible pages at each sides of the
660 * stack to catch over/under-flows.
661 */
662 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
663 {
664 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
665
666 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
667 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
668
669 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
670 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
671 }
672 pVM->vmm.s.fStackGuardsStationed = true;
673#endif
674 break;
675 }
676
677 case VMINITCOMPLETED_RING0:
678 {
679 /*
680 * Disable the periodic preemption timers if we can use the
681 * VMX-preemption timer instead.
682 */
683 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
684 && HWACCMR3IsVmxPreemptionTimerUsed(pVM))
685 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
686 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
687 break;
688 }
689
690 default: /* shuts up gcc */
691 break;
692 }
693
694 return rc;
695}
696
697
698/**
699 * Terminate the VMM bits.
700 *
701 * @returns VINF_SUCCESS.
702 * @param pVM The VM handle.
703 */
704VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
705{
706 PVMCPU pVCpu = VMMGetCpu(pVM);
707 Assert(pVCpu && pVCpu->idCpu == 0);
708
709 /*
710 * Call Ring-0 entry with termination code.
711 */
712 int rc;
713 for (;;)
714 {
715#ifdef NO_SUPCALLR0VMM
716 //rc = VERR_GENERAL_FAILURE;
717 rc = VINF_SUCCESS;
718#else
719 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
720#endif
721 /*
722 * Flush the logs.
723 */
724#ifdef LOG_ENABLED
725 if ( pVCpu->vmm.s.pR0LoggerR3
726 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
727 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
728#endif
729 if (rc != VINF_VMM_CALL_HOST)
730 break;
731 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
732 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
733 break;
734 /* Resume R0 */
735 }
736 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
737 {
738 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
739 if (RT_SUCCESS(rc))
740 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
741 }
742
743 for (VMCPUID i = 0; i < pVM->cCpus; i++)
744 {
745 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
746 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
747 }
748 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
749 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
750 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
751 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
752 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
753 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
754 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
755 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
756
757#ifdef VBOX_STRICT_VMM_STACK
758 /*
759 * Make the two stack guard pages present again.
760 */
761 if (pVM->vmm.s.fStackGuardsStationed)
762 {
763 for (VMCPUID i = 0; i < pVM->cCpus; i++)
764 {
765 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
766 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
767 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
768 }
769 pVM->vmm.s.fStackGuardsStationed = false;
770 }
771#endif
772
773 vmmTermFormatTypes();
774 return rc;
775}
776
777
778/**
779 * Applies relocations to data and code managed by this
780 * component. This function will be called at init and
781 * whenever the VMM need to relocate it self inside the GC.
782 *
783 * The VMM will need to apply relocations to the core code.
784 *
785 * @param pVM The VM handle.
786 * @param offDelta The relocation delta.
787 */
788VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
789{
790 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
791
792 /*
793 * Recalc the RC address.
794 */
795#ifdef VBOX_WITH_RAW_MODE
796 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
797#endif
798
799 /*
800 * The stack.
801 */
802 for (VMCPUID i = 0; i < pVM->cCpus; i++)
803 {
804 PVMCPU pVCpu = &pVM->aCpus[i];
805
806 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
807
808 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
809 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
810 }
811
812 /*
813 * All the switchers.
814 */
815 vmmR3SwitcherRelocate(pVM, offDelta);
816
817 /*
818 * Get other RC entry points.
819 */
820 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
821 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
822
823 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
824 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
825
826 /*
827 * Update the logger.
828 */
829 VMMR3UpdateLoggers(pVM);
830}
831
832
833/**
834 * Updates the settings for the RC and R0 loggers.
835 *
836 * @returns VBox status code.
837 * @param pVM The VM handle.
838 */
839VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
840{
841 /*
842 * Simply clone the logger instance (for RC).
843 */
844 int rc = VINF_SUCCESS;
845 RTRCPTR RCPtrLoggerFlush = 0;
846
847 if (pVM->vmm.s.pRCLoggerR3
848#ifdef VBOX_WITH_RC_RELEASE_LOGGING
849 || pVM->vmm.s.pRCRelLoggerR3
850#endif
851 )
852 {
853 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
854 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
855 }
856
857 if (pVM->vmm.s.pRCLoggerR3)
858 {
859 RTRCPTR RCPtrLoggerWrapper = 0;
860 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
861 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
862
863 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
864 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
865 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
866 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
867 }
868
869#ifdef VBOX_WITH_RC_RELEASE_LOGGING
870 if (pVM->vmm.s.pRCRelLoggerR3)
871 {
872 RTRCPTR RCPtrLoggerWrapper = 0;
873 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
874 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
875
876 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
877 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
878 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
879 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
880 }
881#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
882
883#ifdef LOG_ENABLED
884 /*
885 * For the ring-0 EMT logger, we use a per-thread logger instance
886 * in ring-0. Only initialize it once.
887 */
888 PRTLOGGER const pDefault = RTLogDefaultInstance();
889 for (VMCPUID i = 0; i < pVM->cCpus; i++)
890 {
891 PVMCPU pVCpu = &pVM->aCpus[i];
892 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
893 if (pR0LoggerR3)
894 {
895 if (!pR0LoggerR3->fCreated)
896 {
897 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
898 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
899 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
900
901 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
902 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
903 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
904
905 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
906 pfnLoggerWrapper, pfnLoggerFlush,
907 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
908 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
909
910 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
911 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
912 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
913 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pfnLoggerPrefix, NIL_RTR0PTR);
914 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
915
916 pR0LoggerR3->idCpu = i;
917 pR0LoggerR3->fCreated = true;
918 pR0LoggerR3->fFlushingDisabled = false;
919
920 }
921
922 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pDefault,
923 RTLOGFLAGS_BUFFERED, UINT32_MAX);
924 AssertRC(rc);
925 }
926 }
927#endif
928 return rc;
929}
930
931
932/**
933 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
934 *
935 * @returns Pointer to the buffer.
936 * @param pVM The VM handle.
937 */
938VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
939{
940 if (HWACCMIsEnabled(pVM))
941 return pVM->vmm.s.szRing0AssertMsg1;
942
943 RTRCPTR RCPtr;
944 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
945 if (RT_SUCCESS(rc))
946 return (const char *)MMHyperRCToR3(pVM, RCPtr);
947
948 return NULL;
949}
950
951
952/**
953 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
954 *
955 * @returns Pointer to the buffer.
956 * @param pVM The VM handle.
957 */
958VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
959{
960 if (HWACCMIsEnabled(pVM))
961 return pVM->vmm.s.szRing0AssertMsg2;
962
963 RTRCPTR RCPtr;
964 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
965 if (RT_SUCCESS(rc))
966 return (const char *)MMHyperRCToR3(pVM, RCPtr);
967
968 return NULL;
969}
970
971
972/**
973 * Execute state save operation.
974 *
975 * @returns VBox status code.
976 * @param pVM VM Handle.
977 * @param pSSM SSM operation handle.
978 */
979static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
980{
981 LogFlow(("vmmR3Save:\n"));
982
983 /*
984 * Save the started/stopped state of all CPUs except 0 as it will always
985 * be running. This avoids breaking the saved state version. :-)
986 */
987 for (VMCPUID i = 1; i < pVM->cCpus; i++)
988 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
989
990 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
991}
992
993
994/**
995 * Execute state load operation.
996 *
997 * @returns VBox status code.
998 * @param pVM VM Handle.
999 * @param pSSM SSM operation handle.
1000 * @param uVersion Data layout version.
1001 * @param uPass The data pass.
1002 */
1003static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1004{
1005 LogFlow(("vmmR3Load:\n"));
1006 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1007
1008 /*
1009 * Validate version.
1010 */
1011 if ( uVersion != VMM_SAVED_STATE_VERSION
1012 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1013 {
1014 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1015 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1016 }
1017
1018 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1019 {
1020 /* Ignore the stack bottom, stack pointer and stack bits. */
1021 RTRCPTR RCPtrIgnored;
1022 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1023 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1024#ifdef RT_OS_DARWIN
1025 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1026 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1027 && SSMR3HandleRevision(pSSM) >= 48858
1028 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1029 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1030 )
1031 SSMR3Skip(pSSM, 16384);
1032 else
1033 SSMR3Skip(pSSM, 8192);
1034#else
1035 SSMR3Skip(pSSM, 8192);
1036#endif
1037 }
1038
1039 /*
1040 * Restore the VMCPU states. VCPU 0 is always started.
1041 */
1042 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1043 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1044 {
1045 bool fStarted;
1046 int rc = SSMR3GetBool(pSSM, &fStarted);
1047 if (RT_FAILURE(rc))
1048 return rc;
1049 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1050 }
1051
1052 /* terminator */
1053 uint32_t u32;
1054 int rc = SSMR3GetU32(pSSM, &u32);
1055 if (RT_FAILURE(rc))
1056 return rc;
1057 if (u32 != UINT32_MAX)
1058 {
1059 AssertMsgFailed(("u32=%#x\n", u32));
1060 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1061 }
1062 return VINF_SUCCESS;
1063}
1064
1065
1066/**
1067 * Resolve a builtin RC symbol.
1068 *
1069 * Called by PDM when loading or relocating RC modules.
1070 *
1071 * @returns VBox status
1072 * @param pVM VM Handle.
1073 * @param pszSymbol Symbol to resolv
1074 * @param pRCPtrValue Where to store the symbol value.
1075 *
1076 * @remark This has to work before VMMR3Relocate() is called.
1077 */
1078VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1079{
1080 if (!strcmp(pszSymbol, "g_Logger"))
1081 {
1082 if (pVM->vmm.s.pRCLoggerR3)
1083 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1084 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1085 }
1086 else if (!strcmp(pszSymbol, "g_RelLogger"))
1087 {
1088#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1089 if (pVM->vmm.s.pRCRelLoggerR3)
1090 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1091 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1092#else
1093 *pRCPtrValue = NIL_RTRCPTR;
1094#endif
1095 }
1096 else
1097 return VERR_SYMBOL_NOT_FOUND;
1098 return VINF_SUCCESS;
1099}
1100
1101
1102/**
1103 * Suspends the CPU yielder.
1104 *
1105 * @param pVM The VM handle.
1106 */
1107VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1108{
1109 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1110 if (!pVM->vmm.s.cYieldResumeMillies)
1111 {
1112 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1113 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1114 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1115 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1116 else
1117 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1118 TMTimerStop(pVM->vmm.s.pYieldTimer);
1119 }
1120 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1121}
1122
1123
1124/**
1125 * Stops the CPU yielder.
1126 *
1127 * @param pVM The VM handle.
1128 */
1129VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1130{
1131 if (!pVM->vmm.s.cYieldResumeMillies)
1132 TMTimerStop(pVM->vmm.s.pYieldTimer);
1133 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1134 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1135}
1136
1137
1138/**
1139 * Resumes the CPU yielder when it has been a suspended or stopped.
1140 *
1141 * @param pVM The VM handle.
1142 */
1143VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1144{
1145 if (pVM->vmm.s.cYieldResumeMillies)
1146 {
1147 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1148 pVM->vmm.s.cYieldResumeMillies = 0;
1149 }
1150}
1151
1152
1153/**
1154 * Internal timer callback function.
1155 *
1156 * @param pVM The VM.
1157 * @param pTimer The timer handle.
1158 * @param pvUser User argument specified upon timer creation.
1159 */
1160static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1161{
1162 NOREF(pvUser);
1163
1164 /*
1165 * This really needs some careful tuning. While we shouldn't be too greedy since
1166 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1167 * because that'll cause us to stop up.
1168 *
1169 * The current logic is to use the default interval when there is no lag worth
1170 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1171 *
1172 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1173 * so the lag is up to date.)
1174 */
1175 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1176 if ( u64Lag < 50000000 /* 50ms */
1177 || ( u64Lag < 1000000000 /* 1s */
1178 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1179 )
1180 {
1181 uint64_t u64Elapsed = RTTimeNanoTS();
1182 pVM->vmm.s.u64LastYield = u64Elapsed;
1183
1184 RTThreadYield();
1185
1186#ifdef LOG_ENABLED
1187 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1188 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1189#endif
1190 }
1191 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1192}
1193
1194
1195/**
1196 * Executes guest code in the raw-mode context.
1197 *
1198 * @param pVM VM handle.
1199 * @param pVCpu The VMCPU to operate on.
1200 */
1201VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1202{
1203 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1204
1205 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1206
1207 /*
1208 * Set the EIP and ESP.
1209 */
1210 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1211 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1212 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1213 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1214
1215 /*
1216 * We hide log flushes (outer) and hypervisor interrupts (inner).
1217 */
1218 for (;;)
1219 {
1220#ifdef VBOX_STRICT
1221 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1222 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1223 PGMMapCheck(pVM);
1224#endif
1225 int rc;
1226 do
1227 {
1228#ifdef NO_SUPCALLR0VMM
1229 rc = VERR_GENERAL_FAILURE;
1230#else
1231 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1232 if (RT_LIKELY(rc == VINF_SUCCESS))
1233 rc = pVCpu->vmm.s.iLastGZRc;
1234#endif
1235 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1236
1237 /*
1238 * Flush the logs.
1239 */
1240#ifdef LOG_ENABLED
1241 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1242 if ( pLogger
1243 && pLogger->offScratch > 0)
1244 RTLogFlushRC(NULL, pLogger);
1245#endif
1246#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1247 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1248 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1249 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1250#endif
1251 if (rc != VINF_VMM_CALL_HOST)
1252 {
1253 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1254 return rc;
1255 }
1256 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1257 if (RT_FAILURE(rc))
1258 return rc;
1259 /* Resume GC */
1260 }
1261}
1262
1263
1264/**
1265 * Executes guest code (Intel VT-x and AMD-V).
1266 *
1267 * @param pVM VM handle.
1268 * @param pVCpu The VMCPU to operate on.
1269 */
1270VMMR3_INT_DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1271{
1272 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1273
1274 for (;;)
1275 {
1276 int rc;
1277 do
1278 {
1279#ifdef NO_SUPCALLR0VMM
1280 rc = VERR_GENERAL_FAILURE;
1281#else
1282 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1283 if (RT_LIKELY(rc == VINF_SUCCESS))
1284 rc = pVCpu->vmm.s.iLastGZRc;
1285#endif
1286 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1287
1288#if 0 /* todo triggers too often */
1289 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3));
1290#endif
1291
1292#ifdef LOG_ENABLED
1293 /*
1294 * Flush the log
1295 */
1296 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1297 if ( pR0LoggerR3
1298 && pR0LoggerR3->Logger.offScratch > 0)
1299 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1300#endif /* !LOG_ENABLED */
1301 if (rc != VINF_VMM_CALL_HOST)
1302 {
1303 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1304 return rc;
1305 }
1306 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1307 if (RT_FAILURE(rc))
1308 return rc;
1309 /* Resume R0 */
1310 }
1311}
1312
1313/**
1314 * VCPU worker for VMMSendSipi.
1315 *
1316 * @param pVM The VM to operate on.
1317 * @param idCpu Virtual CPU to perform SIPI on
1318 * @param uVector SIPI vector
1319 */
1320DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1321{
1322 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1323 VMCPU_ASSERT_EMT(pVCpu);
1324
1325 /** @todo what are we supposed to do if the processor is already running? */
1326 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1327 return VERR_ACCESS_DENIED;
1328
1329
1330 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1331
1332 pCtx->cs = uVector << 8;
1333 pCtx->csHid.u64Base = uVector << 12;
1334 pCtx->csHid.u32Limit = 0x0000ffff;
1335 pCtx->rip = 0;
1336
1337 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1338
1339# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1340 EMSetState(pVCpu, EMSTATE_HALTED);
1341 return VINF_EM_RESCHEDULE;
1342# else /* And if we go the VMCPU::enmState way it can stay here. */
1343 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1344 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1345 return VINF_SUCCESS;
1346# endif
1347}
1348
1349DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1350{
1351 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1352 VMCPU_ASSERT_EMT(pVCpu);
1353
1354 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1355 CPUMR3ResetCpu(pVCpu);
1356 return VINF_EM_WAIT_SIPI;
1357}
1358
1359/**
1360 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1361 * and unhalting processor
1362 *
1363 * @param pVM The VM to operate on.
1364 * @param idCpu Virtual CPU to perform SIPI on
1365 * @param uVector SIPI vector
1366 */
1367VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1368{
1369 AssertReturnVoid(idCpu < pVM->cCpus);
1370
1371 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1372 AssertRC(rc);
1373}
1374
1375/**
1376 * Sends init IPI to the virtual CPU.
1377 *
1378 * @param pVM The VM to operate on.
1379 * @param idCpu Virtual CPU to perform int IPI on
1380 */
1381VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1382{
1383 AssertReturnVoid(idCpu < pVM->cCpus);
1384
1385 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1386 AssertRC(rc);
1387}
1388
1389/**
1390 * Registers the guest memory range that can be used for patching
1391 *
1392 * @returns VBox status code.
1393 * @param pVM The VM to operate on.
1394 * @param pPatchMem Patch memory range
1395 * @param cbPatchMem Size of the memory range
1396 */
1397VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1398{
1399 VM_ASSERT_EMT(pVM);
1400 if (HWACCMIsEnabled(pVM))
1401 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1402
1403 return VERR_NOT_SUPPORTED;
1404}
1405
1406/**
1407 * Deregisters the guest memory range that can be used for patching
1408 *
1409 * @returns VBox status code.
1410 * @param pVM The VM to operate on.
1411 * @param pPatchMem Patch memory range
1412 * @param cbPatchMem Size of the memory range
1413 */
1414VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1415{
1416 if (HWACCMIsEnabled(pVM))
1417 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1418
1419 return VINF_SUCCESS;
1420}
1421
1422
1423/**
1424 * Count returns and have the last non-caller EMT wake up the caller.
1425 *
1426 * @returns VBox strict informational status code for EM scheduling. No failures
1427 * will be returned here, those are for the caller only.
1428 *
1429 * @param pVM The VM handle.
1430 */
1431DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1432{
1433 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1434 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1435 if (cReturned == pVM->cCpus - 1U)
1436 {
1437 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1438 AssertLogRelRC(rc);
1439 }
1440
1441 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1442 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1443 ("%Rrc\n", rcRet),
1444 VERR_IPE_UNEXPECTED_INFO_STATUS);
1445 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1446}
1447
1448
1449/**
1450 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1451 *
1452 * @returns VBox strict informational status code for EM scheduling. No failures
1453 * will be returned here, those are for the caller only. When
1454 * fIsCaller is set, VINF_SUCCESS is always returned.
1455 *
1456 * @param pVM The VM handle.
1457 * @param pVCpu The VMCPU structure for the calling EMT.
1458 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1459 * not.
1460 * @param fFlags The flags.
1461 * @param pfnRendezvous The callback.
1462 * @param pvUser The user argument for the callback.
1463 */
1464static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1465 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1466{
1467 int rc;
1468
1469 /*
1470 * Enter, the last EMT triggers the next callback phase.
1471 */
1472 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1473 if (cEntered != pVM->cCpus)
1474 {
1475 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1476 {
1477 /* Wait for our turn. */
1478 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1479 AssertLogRelRC(rc);
1480 }
1481 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1482 {
1483 /* Wait for the last EMT to arrive and wake everyone up. */
1484 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1485 AssertLogRelRC(rc);
1486 }
1487 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1488 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1489 {
1490 /* Wait for our turn. */
1491 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1492 AssertLogRelRC(rc);
1493 }
1494 else
1495 {
1496 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1497
1498 /*
1499 * The execute once is handled specially to optimize the code flow.
1500 *
1501 * The last EMT to arrive will perform the callback and the other
1502 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1503 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1504 * returns, that EMT will initiate the normal return sequence.
1505 */
1506 if (!fIsCaller)
1507 {
1508 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1509 AssertLogRelRC(rc);
1510
1511 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1512 }
1513 return VINF_SUCCESS;
1514 }
1515 }
1516 else
1517 {
1518 /*
1519 * All EMTs are waiting, clear the FF and take action according to the
1520 * execution method.
1521 */
1522 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1523
1524 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1525 {
1526 /* Wake up everyone. */
1527 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1528 AssertLogRelRC(rc);
1529 }
1530 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1531 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1532 {
1533 /* Figure out who to wake up and wake it up. If it's ourself, then
1534 it's easy otherwise wait for our turn. */
1535 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1536 ? 0
1537 : pVM->cCpus - 1U;
1538 if (pVCpu->idCpu != iFirst)
1539 {
1540 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1541 AssertLogRelRC(rc);
1542 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1543 AssertLogRelRC(rc);
1544 }
1545 }
1546 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1547 }
1548
1549
1550 /*
1551 * Do the callback and update the status if necessary.
1552 */
1553 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1554 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1555 {
1556 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1557 if (rcStrict != VINF_SUCCESS)
1558 {
1559 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1560 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1561 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1562 int32_t i32RendezvousStatus;
1563 do
1564 {
1565 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1566 if ( rcStrict == i32RendezvousStatus
1567 || RT_FAILURE(i32RendezvousStatus)
1568 || ( i32RendezvousStatus != VINF_SUCCESS
1569 && rcStrict > i32RendezvousStatus))
1570 break;
1571 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1572 }
1573 }
1574
1575 /*
1576 * Increment the done counter and take action depending on whether we're
1577 * the last to finish callback execution.
1578 */
1579 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1580 if ( cDone != pVM->cCpus
1581 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1582 {
1583 /* Signal the next EMT? */
1584 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1585 {
1586 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1587 AssertLogRelRC(rc);
1588 }
1589 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1590 {
1591 Assert(cDone == pVCpu->idCpu + 1U);
1592 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1593 AssertLogRelRC(rc);
1594 }
1595 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1596 {
1597 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1598 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1599 AssertLogRelRC(rc);
1600 }
1601
1602 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1603 if (!fIsCaller)
1604 {
1605 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1606 AssertLogRelRC(rc);
1607 }
1608 }
1609 else
1610 {
1611 /* Callback execution is all done, tell the rest to return. */
1612 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1613 AssertLogRelRC(rc);
1614 }
1615
1616 if (!fIsCaller)
1617 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1618 return VINF_SUCCESS;
1619}
1620
1621
1622/**
1623 * Called in response to VM_FF_EMT_RENDEZVOUS.
1624 *
1625 * @returns VBox strict status code - EM scheduling. No errors will be returned
1626 * here, nor will any non-EM scheduling status codes be returned.
1627 *
1628 * @param pVM The VM handle
1629 * @param pVCpu The handle of the calling EMT.
1630 *
1631 * @thread EMT
1632 */
1633VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1634{
1635 Assert(!pVCpu->vmm.s.fInRendezvous);
1636 pVCpu->vmm.s.fInRendezvous = true;
1637 int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1638 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1639 pVCpu->vmm.s.fInRendezvous = false;
1640 return rc;
1641}
1642
1643
1644/**
1645 * EMT rendezvous.
1646 *
1647 * Gathers all the EMTs and execute some code on each of them, either in a one
1648 * by one fashion or all at once.
1649 *
1650 * @returns VBox strict status code. This will be the the first error,
1651 * VINF_SUCCESS, or an EM scheduling status code.
1652 *
1653 * @param pVM The VM handle.
1654 * @param fFlags Flags indicating execution methods. See
1655 * grp_VMMR3EmtRendezvous_fFlags.
1656 * @param pfnRendezvous The callback.
1657 * @param pvUser User argument for the callback.
1658 *
1659 * @thread Any.
1660 */
1661VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1662{
1663 /*
1664 * Validate input.
1665 */
1666 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1667 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1668 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1669 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1670 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1671 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1672 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1673
1674 VBOXSTRICTRC rcStrict;
1675 PVMCPU pVCpu = VMMGetCpu(pVM);
1676 if (!pVCpu)
1677 /*
1678 * Forward the request to an EMT thread.
1679 */
1680 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1681 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1682 else if (pVM->cCpus == 1)
1683 {
1684 /*
1685 * Shortcut for the single EMT case.
1686 */
1687 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1688 pVCpu->vmm.s.fInRendezvous = true;
1689 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1690 pVCpu->vmm.s.fInRendezvous = false;
1691 }
1692 else
1693 {
1694 /*
1695 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1696 * lookout of the RENDEZVOUS FF.
1697 */
1698 int rc;
1699 rcStrict = VINF_SUCCESS;
1700 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1701 {
1702 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1703
1704 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1705 {
1706 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1707 {
1708 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1709 if ( rc != VINF_SUCCESS
1710 && ( rcStrict == VINF_SUCCESS
1711 || rcStrict > rc))
1712 rcStrict = rc;
1713 /** @todo Perhaps deal with termination here? */
1714 }
1715 ASMNopPause();
1716 }
1717 }
1718 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1719 Assert(!pVCpu->vmm.s.fInRendezvous);
1720 pVCpu->vmm.s.fInRendezvous = true;
1721
1722 /*
1723 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1724 */
1725 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1726 {
1727 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1728 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1729 }
1730 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1731 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1732 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1733 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1734 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1735 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1736 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1737 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1738 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1739 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1740 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1741
1742 /*
1743 * Set the FF and poke the other EMTs.
1744 */
1745 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1746 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1747
1748 /*
1749 * Do the same ourselves.
1750 */
1751 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1752
1753 /*
1754 * The caller waits for the other EMTs to be done and return before doing
1755 * the cleanup. This makes away with wakeup / reset races we would otherwise
1756 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1757 */
1758 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1759 AssertLogRelRC(rc);
1760
1761 /*
1762 * Get the return code and clean up a little bit.
1763 */
1764 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1765 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1766
1767 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1768 pVCpu->vmm.s.fInRendezvous = false;
1769
1770 /*
1771 * Merge rcStrict and rcMy.
1772 */
1773 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1774 if ( rcMy != VINF_SUCCESS
1775 && ( rcStrict == VINF_SUCCESS
1776 || rcStrict > rcMy))
1777 rcStrict = rcMy;
1778 }
1779
1780 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1781 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1782 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1783 VERR_IPE_UNEXPECTED_INFO_STATUS);
1784 return VBOXSTRICTRC_VAL(rcStrict);
1785}
1786
1787
1788/**
1789 * Disables/enables EMT rendezvous.
1790 *
1791 * This is used to make sure EMT rendezvous does not take place while
1792 * processing a priority request.
1793 *
1794 * @returns Old rendezvous-disabled state.
1795 * @param pVCpu The handle of the calling EMT.
1796 * @param fDisabled True if disabled, false if enabled.
1797 */
1798VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled)
1799{
1800 VMCPU_ASSERT_EMT(pVCpu);
1801 bool fOld = pVCpu->vmm.s.fInRendezvous;
1802 pVCpu->vmm.s.fInRendezvous = fDisabled;
1803 return fOld;
1804}
1805
1806
1807/**
1808 * Read from the ring 0 jump buffer stack
1809 *
1810 * @returns VBox status code.
1811 *
1812 * @param pVM Pointer to the shared VM structure.
1813 * @param idCpu The ID of the source CPU context (for the address).
1814 * @param R0Addr Where to start reading.
1815 * @param pvBuf Where to store the data we've read.
1816 * @param cbRead The number of bytes to read.
1817 */
1818VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1819{
1820 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1821 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1822
1823#ifdef VMM_R0_SWITCH_STACK
1824 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1825#else
1826 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1827#endif
1828 if ( off > VMM_STACK_SIZE
1829 || off + cbRead >= VMM_STACK_SIZE)
1830 return VERR_INVALID_POINTER;
1831
1832 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1833 return VINF_SUCCESS;
1834}
1835
1836
1837/**
1838 * Calls a RC function.
1839 *
1840 * @param pVM The VM handle.
1841 * @param RCPtrEntry The address of the RC function.
1842 * @param cArgs The number of arguments in the ....
1843 * @param ... Arguments to the function.
1844 */
1845VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1846{
1847 va_list args;
1848 va_start(args, cArgs);
1849 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1850 va_end(args);
1851 return rc;
1852}
1853
1854
1855/**
1856 * Calls a RC function.
1857 *
1858 * @param pVM The VM handle.
1859 * @param RCPtrEntry The address of the RC function.
1860 * @param cArgs The number of arguments in the ....
1861 * @param args Arguments to the function.
1862 */
1863VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1864{
1865 /* Raw mode implies 1 VCPU. */
1866 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1867 PVMCPU pVCpu = &pVM->aCpus[0];
1868
1869 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1870
1871 /*
1872 * Setup the call frame using the trampoline.
1873 */
1874 CPUMHyperSetCtxCore(pVCpu, NULL);
1875 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1876 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1877 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1878 int i = cArgs;
1879 while (i-- > 0)
1880 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1881
1882 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1883 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1884 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1885
1886 /*
1887 * We hide log flushes (outer) and hypervisor interrupts (inner).
1888 */
1889 for (;;)
1890 {
1891 int rc;
1892 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1893 do
1894 {
1895#ifdef NO_SUPCALLR0VMM
1896 rc = VERR_GENERAL_FAILURE;
1897#else
1898 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1899 if (RT_LIKELY(rc == VINF_SUCCESS))
1900 rc = pVCpu->vmm.s.iLastGZRc;
1901#endif
1902 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1903
1904 /*
1905 * Flush the logs.
1906 */
1907#ifdef LOG_ENABLED
1908 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1909 if ( pLogger
1910 && pLogger->offScratch > 0)
1911 RTLogFlushRC(NULL, pLogger);
1912#endif
1913#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1914 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1915 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1916 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1917#endif
1918 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1919 VMMR3FatalDump(pVM, pVCpu, rc);
1920 if (rc != VINF_VMM_CALL_HOST)
1921 {
1922 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1923 return rc;
1924 }
1925 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1926 if (RT_FAILURE(rc))
1927 return rc;
1928 }
1929}
1930
1931
1932/**
1933 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1934 *
1935 * @returns VBox status code.
1936 * @param pVM The VM to operate on.
1937 * @param uOperation Operation to execute.
1938 * @param u64Arg Constant argument.
1939 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1940 * details.
1941 */
1942VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1943{
1944 PVMCPU pVCpu = VMMGetCpu(pVM);
1945 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1946
1947 /*
1948 * Call Ring-0 entry with init code.
1949 */
1950 int rc;
1951 for (;;)
1952 {
1953#ifdef NO_SUPCALLR0VMM
1954 rc = VERR_GENERAL_FAILURE;
1955#else
1956 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1957#endif
1958 /*
1959 * Flush the logs.
1960 */
1961#ifdef LOG_ENABLED
1962 if ( pVCpu->vmm.s.pR0LoggerR3
1963 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1964 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
1965#endif
1966 if (rc != VINF_VMM_CALL_HOST)
1967 break;
1968 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1969 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1970 break;
1971 /* Resume R0 */
1972 }
1973
1974 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
1975 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1976 VERR_IPE_UNEXPECTED_INFO_STATUS);
1977 return rc;
1978}
1979
1980
1981/**
1982 * Resumes executing hypervisor code when interrupted by a queue flush or a
1983 * debug event.
1984 *
1985 * @returns VBox status code.
1986 * @param pVM VM handle.
1987 * @param pVCpu VMCPU handle.
1988 */
1989VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1990{
1991 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1992 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1993
1994 /*
1995 * We hide log flushes (outer) and hypervisor interrupts (inner).
1996 */
1997 for (;;)
1998 {
1999 int rc;
2000 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2001 do
2002 {
2003#ifdef NO_SUPCALLR0VMM
2004 rc = VERR_GENERAL_FAILURE;
2005#else
2006 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2007 if (RT_LIKELY(rc == VINF_SUCCESS))
2008 rc = pVCpu->vmm.s.iLastGZRc;
2009#endif
2010 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2011
2012 /*
2013 * Flush the loggers,
2014 */
2015#ifdef LOG_ENABLED
2016 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2017 if ( pLogger
2018 && pLogger->offScratch > 0)
2019 RTLogFlushRC(NULL, pLogger);
2020#endif
2021#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2022 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2023 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2024 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2025#endif
2026 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2027 VMMR3FatalDump(pVM, pVCpu, rc);
2028 if (rc != VINF_VMM_CALL_HOST)
2029 {
2030 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2031 return rc;
2032 }
2033 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2034 if (RT_FAILURE(rc))
2035 return rc;
2036 }
2037}
2038
2039
2040/**
2041 * Service a call to the ring-3 host code.
2042 *
2043 * @returns VBox status code.
2044 * @param pVM VM handle.
2045 * @param pVCpu VMCPU handle
2046 * @remark Careful with critsects.
2047 */
2048static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2049{
2050 /*
2051 * We must also check for pending critsect exits or else we can deadlock
2052 * when entering other critsects here.
2053 */
2054 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2055 PDMCritSectFF(pVCpu);
2056
2057 switch (pVCpu->vmm.s.enmCallRing3Operation)
2058 {
2059 /*
2060 * Acquire a critical section.
2061 */
2062 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2063 {
2064 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2065 true /*fCallRing3*/);
2066 break;
2067 }
2068
2069 /*
2070 * Acquire the PDM lock.
2071 */
2072 case VMMCALLRING3_PDM_LOCK:
2073 {
2074 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2075 break;
2076 }
2077
2078 /*
2079 * Grow the PGM pool.
2080 */
2081 case VMMCALLRING3_PGM_POOL_GROW:
2082 {
2083 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2084 break;
2085 }
2086
2087 /*
2088 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2089 */
2090 case VMMCALLRING3_PGM_MAP_CHUNK:
2091 {
2092 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2093 break;
2094 }
2095
2096 /*
2097 * Allocates more handy pages.
2098 */
2099 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2100 {
2101 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2102 break;
2103 }
2104
2105 /*
2106 * Allocates a large page.
2107 */
2108 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2109 {
2110 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2111 break;
2112 }
2113
2114 /*
2115 * Acquire the PGM lock.
2116 */
2117 case VMMCALLRING3_PGM_LOCK:
2118 {
2119 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2120 break;
2121 }
2122
2123 /*
2124 * Acquire the MM hypervisor heap lock.
2125 */
2126 case VMMCALLRING3_MMHYPER_LOCK:
2127 {
2128 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2129 break;
2130 }
2131
2132#ifdef VBOX_WITH_REM
2133 /*
2134 * Flush REM handler notifications.
2135 */
2136 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2137 {
2138 REMR3ReplayHandlerNotifications(pVM);
2139 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2140 break;
2141 }
2142#endif
2143
2144 /*
2145 * This is a noop. We just take this route to avoid unnecessary
2146 * tests in the loops.
2147 */
2148 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2149 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2150 LogAlways(("*FLUSH*\n"));
2151 break;
2152
2153 /*
2154 * Set the VM error message.
2155 */
2156 case VMMCALLRING3_VM_SET_ERROR:
2157 VMR3SetErrorWorker(pVM);
2158 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2159 break;
2160
2161 /*
2162 * Set the VM runtime error message.
2163 */
2164 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2165 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2166 break;
2167
2168 /*
2169 * Signal a ring 0 hypervisor assertion.
2170 * Cancel the longjmp operation that's in progress.
2171 */
2172 case VMMCALLRING3_VM_R0_ASSERTION:
2173 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2174 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2175#ifdef RT_ARCH_X86
2176 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2177#else
2178 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2179#endif
2180#ifdef VMM_R0_SWITCH_STACK
2181 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2182#endif
2183 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2184 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2185 return VERR_VMM_RING0_ASSERTION;
2186
2187 /*
2188 * A forced switch to ring 0 for preemption purposes.
2189 */
2190 case VMMCALLRING3_VM_R0_PREEMPT:
2191 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2192 break;
2193
2194 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2195 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2196 break;
2197
2198 default:
2199 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2200 return VERR_VMM_UNKNOWN_RING3_CALL;
2201 }
2202
2203 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2204 return VINF_SUCCESS;
2205}
2206
2207
2208/**
2209 * Displays the Force action Flags.
2210 *
2211 * @param pVM The VM handle.
2212 * @param pHlp The output helpers.
2213 * @param pszArgs The additional arguments (ignored).
2214 */
2215static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2216{
2217 int c;
2218 uint32_t f;
2219 NOREF(pszArgs);
2220
2221#define PRINT_FLAG(prf,flag) do { \
2222 if (f & (prf##flag)) \
2223 { \
2224 static const char *s_psz = #flag; \
2225 if (!(c % 6)) \
2226 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2227 else \
2228 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2229 c++; \
2230 f &= ~(prf##flag); \
2231 } \
2232 } while (0)
2233
2234#define PRINT_GROUP(prf,grp,sfx) do { \
2235 if (f & (prf##grp##sfx)) \
2236 { \
2237 static const char *s_psz = #grp; \
2238 if (!(c % 5)) \
2239 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2240 else \
2241 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2242 c++; \
2243 } \
2244 } while (0)
2245
2246 /*
2247 * The global flags.
2248 */
2249 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2250 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2251
2252 /* show the flag mnemonics */
2253 c = 0;
2254 f = fGlobalForcedActions;
2255 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2256 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2257 PRINT_FLAG(VM_FF_,PDM_DMA);
2258 PRINT_FLAG(VM_FF_,DBGF);
2259 PRINT_FLAG(VM_FF_,REQUEST);
2260 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2261 PRINT_FLAG(VM_FF_,RESET);
2262 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2263 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2264 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2265 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2266 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2267 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2268 if (f)
2269 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2270 else
2271 pHlp->pfnPrintf(pHlp, "\n");
2272
2273 /* the groups */
2274 c = 0;
2275 f = fGlobalForcedActions;
2276 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2277 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2278 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2279 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2280 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2281 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2282 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2283 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2284 if (c)
2285 pHlp->pfnPrintf(pHlp, "\n");
2286
2287 /*
2288 * Per CPU flags.
2289 */
2290 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2291 {
2292 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2293 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2294
2295 /* show the flag mnemonics */
2296 c = 0;
2297 f = fLocalForcedActions;
2298 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2299 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2300 PRINT_FLAG(VMCPU_FF_,TIMER);
2301 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2302 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2303 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2304 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2305 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2306 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2307 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2308 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2309 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2310 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2311 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2312 PRINT_FLAG(VMCPU_FF_,TO_R3);
2313 if (f)
2314 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2315 else
2316 pHlp->pfnPrintf(pHlp, "\n");
2317
2318 /* the groups */
2319 c = 0;
2320 f = fLocalForcedActions;
2321 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2322 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2323 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2324 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2325 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2326 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2327 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2328 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2329 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2330 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2331 if (c)
2332 pHlp->pfnPrintf(pHlp, "\n");
2333 }
2334
2335#undef PRINT_FLAG
2336#undef PRINT_GROUP
2337}
2338
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette