VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 55628

Last change on this file since 55628 was 55568, checked in by vboxsync, 10 years ago

VMM: Reset more when sending INIT IPI.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 90.2 KB
Line 
1/* $Id: VMM.cpp 55568 2015-04-30 16:09:29Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2014 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
55 * can be increased up to 64K - 1.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmcritsectrw.h>
84#include <VBox/vmm/pdmapi.h>
85#include <VBox/vmm/cpum.h>
86#include <VBox/vmm/gim.h>
87#include <VBox/vmm/mm.h>
88#include <VBox/vmm/iom.h>
89#include <VBox/vmm/trpm.h>
90#include <VBox/vmm/selm.h>
91#include <VBox/vmm/em.h>
92#include <VBox/sup.h>
93#include <VBox/vmm/dbgf.h>
94#include <VBox/vmm/csam.h>
95#include <VBox/vmm/patm.h>
96#ifdef VBOX_WITH_REM
97# include <VBox/vmm/rem.h>
98#endif
99#include <VBox/vmm/ssm.h>
100#include <VBox/vmm/ftm.h>
101#include <VBox/vmm/tm.h>
102#include "VMMInternal.h"
103#include "VMMSwitcher.h"
104#include <VBox/vmm/vm.h>
105#include <VBox/vmm/uvm.h>
106
107#include <VBox/err.h>
108#include <VBox/param.h>
109#include <VBox/version.h>
110#include <VBox/vmm/hm.h>
111#include <iprt/assert.h>
112#include <iprt/alloc.h>
113#include <iprt/asm.h>
114#include <iprt/time.h>
115#include <iprt/semaphore.h>
116#include <iprt/stream.h>
117#include <iprt/string.h>
118#include <iprt/stdarg.h>
119#include <iprt/ctype.h>
120#include <iprt/x86.h>
121
122
123
124/*******************************************************************************
125* Defined Constants And Macros *
126*******************************************************************************/
127/** The saved state version. */
128#define VMM_SAVED_STATE_VERSION 4
129/** The saved state version used by v3.0 and earlier. (Teleportation) */
130#define VMM_SAVED_STATE_VERSION_3_0 3
131
132
133/*******************************************************************************
134* Internal Functions *
135*******************************************************************************/
136static int vmmR3InitStacks(PVM pVM);
137static int vmmR3InitLoggers(PVM pVM);
138static void vmmR3InitRegisterStats(PVM pVM);
139static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
140static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
141static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
142static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
143static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144
145
146/**
147 * Initializes the VMM.
148 *
149 * @returns VBox status code.
150 * @param pVM Pointer to the VM.
151 */
152VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
153{
154 LogFlow(("VMMR3Init\n"));
155
156 /*
157 * Assert alignment, sizes and order.
158 */
159 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
160 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
161 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
162
163 /*
164 * Init basic VM VMM members.
165 */
166 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
167 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
168 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
169 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
170 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
171 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
172
173 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
174 * The EMT yield interval. The EMT yielding is a hack we employ to play a
175 * bit nicer with the rest of the system (like for instance the GUI).
176 */
177 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
178 23 /* Value arrived at after experimenting with the grub boot prompt. */);
179 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
180
181
182 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
183 * Controls whether we employ per-cpu preemption timers to limit the time
184 * spent executing guest code. This option is not available on all
185 * platforms and we will silently ignore this setting then. If we are
186 * running in VT-x mode, we will use the VMX-preemption timer instead of
187 * this one when possible.
188 */
189 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
190 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
191 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
192
193 /*
194 * Initialize the VMM rendezvous semaphores.
195 */
196 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
197 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
198 return VERR_NO_MEMORY;
199 for (VMCPUID i = 0; i < pVM->cCpus; i++)
200 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
201 for (VMCPUID i = 0; i < pVM->cCpus; i++)
202 {
203 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
204 AssertRCReturn(rc, rc);
205 }
206 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
207 AssertRCReturn(rc, rc);
208 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
209 AssertRCReturn(rc, rc);
210 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
211 AssertRCReturn(rc, rc);
212 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
213 AssertRCReturn(rc, rc);
214
215 /*
216 * Register the saved state data unit.
217 */
218 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
219 NULL, NULL, NULL,
220 NULL, vmmR3Save, NULL,
221 NULL, vmmR3Load, NULL);
222 if (RT_FAILURE(rc))
223 return rc;
224
225 /*
226 * Register the Ring-0 VM handle with the session for fast ioctl calls.
227 */
228 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
229 if (RT_FAILURE(rc))
230 return rc;
231
232 /*
233 * Init various sub-components.
234 */
235 rc = vmmR3SwitcherInit(pVM);
236 if (RT_SUCCESS(rc))
237 {
238 rc = vmmR3InitStacks(pVM);
239 if (RT_SUCCESS(rc))
240 {
241 rc = vmmR3InitLoggers(pVM);
242
243#ifdef VBOX_WITH_NMI
244 /*
245 * Allocate mapping for the host APIC.
246 */
247 if (RT_SUCCESS(rc))
248 {
249 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
250 AssertRC(rc);
251 }
252#endif
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Debug info and statistics.
257 */
258 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
259 vmmR3InitRegisterStats(pVM);
260 vmmInitFormatTypes();
261
262 return VINF_SUCCESS;
263 }
264 }
265 /** @todo: Need failure cleanup. */
266
267 //more todo in here?
268 //if (RT_SUCCESS(rc))
269 //{
270 //}
271 //int rc2 = vmmR3TermCoreCode(pVM);
272 //AssertRC(rc2));
273 }
274
275 return rc;
276}
277
278
279/**
280 * Allocate & setup the VMM RC stack(s) (for EMTs).
281 *
282 * The stacks are also used for long jumps in Ring-0.
283 *
284 * @returns VBox status code.
285 * @param pVM Pointer to the VM.
286 *
287 * @remarks The optional guard page gets it protection setup up during R3 init
288 * completion because of init order issues.
289 */
290static int vmmR3InitStacks(PVM pVM)
291{
292 int rc = VINF_SUCCESS;
293#ifdef VMM_R0_SWITCH_STACK
294 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
295#else
296 uint32_t fFlags = 0;
297#endif
298
299 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
300 {
301 PVMCPU pVCpu = &pVM->aCpus[idCpu];
302
303#ifdef VBOX_STRICT_VMM_STACK
304 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
305#else
306 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
307#endif
308 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
309 if (RT_SUCCESS(rc))
310 {
311#ifdef VBOX_STRICT_VMM_STACK
312 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
313#endif
314#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
315 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
316 if (!HMIsEnabled(pVM))
317 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
318 else
319#endif
320 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
321 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
322 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
323 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
324
325 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
326 }
327 }
328
329 return rc;
330}
331
332
333/**
334 * Initialize the loggers.
335 *
336 * @returns VBox status code.
337 * @param pVM Pointer to the VM.
338 */
339static int vmmR3InitLoggers(PVM pVM)
340{
341 int rc;
342#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
343
344 /*
345 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
346 */
347#ifdef LOG_ENABLED
348 PRTLOGGER pLogger = RTLogDefaultInstance();
349 if (pLogger)
350 {
351 if (!HMIsEnabled(pVM))
352 {
353 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
354 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
355 if (RT_FAILURE(rc))
356 return rc;
357 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
358 }
359
360# ifdef VBOX_WITH_R0_LOGGING
361 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
362 for (VMCPUID i = 0; i < pVM->cCpus; i++)
363 {
364 PVMCPU pVCpu = &pVM->aCpus[i];
365 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
366 (void **)&pVCpu->vmm.s.pR0LoggerR3);
367 if (RT_FAILURE(rc))
368 return rc;
369 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
370 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
371 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
372 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
373 }
374# endif
375 }
376#endif /* LOG_ENABLED */
377
378#ifdef VBOX_WITH_RC_RELEASE_LOGGING
379 /*
380 * Allocate RC release logger instances (finalized in the relocator).
381 */
382 if (!HMIsEnabled(pVM))
383 {
384 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
385 if (pRelLogger)
386 {
387 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
388 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
389 if (RT_FAILURE(rc))
390 return rc;
391 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
392 }
393 }
394#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
395 return VINF_SUCCESS;
396}
397
398
399/**
400 * VMMR3Init worker that register the statistics with STAM.
401 *
402 * @param pVM The shared VM structure.
403 */
404static void vmmR3InitRegisterStats(PVM pVM)
405{
406 /*
407 * Statistics.
408 */
409 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
470
471#ifdef VBOX_WITH_STATISTICS
472 for (VMCPUID i = 0; i < pVM->cCpus; i++)
473 {
474 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
475 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
476 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
477 }
478#endif
479}
480
481
482/**
483 * Initializes the R0 VMM.
484 *
485 * @returns VBox status code.
486 * @param pVM Pointer to the VM.
487 */
488VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
489{
490 int rc;
491 PVMCPU pVCpu = VMMGetCpu(pVM);
492 Assert(pVCpu && pVCpu->idCpu == 0);
493
494#ifdef LOG_ENABLED
495 /*
496 * Initialize the ring-0 logger if we haven't done so yet.
497 */
498 if ( pVCpu->vmm.s.pR0LoggerR3
499 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
500 {
501 rc = VMMR3UpdateLoggers(pVM);
502 if (RT_FAILURE(rc))
503 return rc;
504 }
505#endif
506
507 /*
508 * Call Ring-0 entry with init code.
509 */
510 for (;;)
511 {
512#ifdef NO_SUPCALLR0VMM
513 //rc = VERR_GENERAL_FAILURE;
514 rc = VINF_SUCCESS;
515#else
516 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT,
517 RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
518#endif
519 /*
520 * Flush the logs.
521 */
522#ifdef LOG_ENABLED
523 if ( pVCpu->vmm.s.pR0LoggerR3
524 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
525 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
526#endif
527 if (rc != VINF_VMM_CALL_HOST)
528 break;
529 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
530 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
531 break;
532 /* Resume R0 */
533 }
534
535 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
536 {
537 LogRel(("R0 init failed, rc=%Rra\n", rc));
538 if (RT_SUCCESS(rc))
539 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
540 }
541
542 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
543 if (pVM->aCpus[0].vmm.s.hR0ThreadCtx != NIL_RTTHREADCTX)
544 LogRel(("VMM: Thread-context hooks enabled!\n"));
545 else
546 LogRel(("VMM: Thread-context hooks unavailable\n"));
547
548 return rc;
549}
550
551
552#ifdef VBOX_WITH_RAW_MODE
553/**
554 * Initializes the RC VMM.
555 *
556 * @returns VBox status code.
557 * @param pVM Pointer to the VM.
558 */
559VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
560{
561 PVMCPU pVCpu = VMMGetCpu(pVM);
562 Assert(pVCpu && pVCpu->idCpu == 0);
563
564 /* In VMX mode, there's no need to init RC. */
565 if (HMIsEnabled(pVM))
566 return VINF_SUCCESS;
567
568 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
569
570 /*
571 * Call VMMGCInit():
572 * -# resolve the address.
573 * -# setup stackframe and EIP to use the trampoline.
574 * -# do a generic hypervisor call.
575 */
576 RTRCPTR RCPtrEP;
577 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
578 if (RT_SUCCESS(rc))
579 {
580 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
581 uint64_t u64TS = RTTimeProgramStartNanoTS();
582 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 4: The program startup TS - Hi. */
583 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 4: The program startup TS - Lo. */
584 CPUMPushHyper(pVCpu, vmmGetBuildType()); /* Param 3: Version argument. */
585 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
586 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
587 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
588 CPUMPushHyper(pVCpu, 6 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
589 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
590 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
591 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
592
593 for (;;)
594 {
595#ifdef NO_SUPCALLR0VMM
596 //rc = VERR_GENERAL_FAILURE;
597 rc = VINF_SUCCESS;
598#else
599 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
600#endif
601#ifdef LOG_ENABLED
602 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
603 if ( pLogger
604 && pLogger->offScratch > 0)
605 RTLogFlushRC(NULL, pLogger);
606#endif
607#ifdef VBOX_WITH_RC_RELEASE_LOGGING
608 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
609 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
610 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
611#endif
612 if (rc != VINF_VMM_CALL_HOST)
613 break;
614 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
615 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
616 break;
617 }
618
619 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
620 {
621 VMMR3FatalDump(pVM, pVCpu, rc);
622 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
623 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
624 }
625 AssertRC(rc);
626 }
627 return rc;
628}
629#endif /* VBOX_WITH_RAW_MODE */
630
631
632/**
633 * Called when an init phase completes.
634 *
635 * @returns VBox status code.
636 * @param pVM Pointer to the VM.
637 * @param enmWhat Which init phase.
638 */
639VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
640{
641 int rc = VINF_SUCCESS;
642
643 switch (enmWhat)
644 {
645 case VMINITCOMPLETED_RING3:
646 {
647 /*
648 * CPUM's post-initialization (APIC base MSR caching).
649 */
650 rc = CPUMR3InitCompleted(pVM);
651 AssertRCReturn(rc, rc);
652
653 /*
654 * Set page attributes to r/w for stack pages.
655 */
656 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
657 {
658 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
659 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
660 AssertRCReturn(rc, rc);
661 }
662
663 /*
664 * Create the EMT yield timer.
665 */
666 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
667 AssertRCReturn(rc, rc);
668
669 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
670 AssertRCReturn(rc, rc);
671
672#ifdef VBOX_WITH_NMI
673 /*
674 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
675 */
676 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
677 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
678 AssertRCReturn(rc, rc);
679#endif
680
681#ifdef VBOX_STRICT_VMM_STACK
682 /*
683 * Setup the stack guard pages: Two inaccessible pages at each sides of the
684 * stack to catch over/under-flows.
685 */
686 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
687 {
688 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
689
690 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
691 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
692
693 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
694 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
695 }
696 pVM->vmm.s.fStackGuardsStationed = true;
697#endif
698 break;
699 }
700
701 case VMINITCOMPLETED_HM:
702 {
703 /*
704 * Disable the periodic preemption timers if we can use the
705 * VMX-preemption timer instead.
706 */
707 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
708 && HMR3IsVmxPreemptionTimerUsed(pVM))
709 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
710 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
711
712 /*
713 * Last chance for GIM to update its CPUID leaves if it requires
714 * knowledge/information from HM initialization.
715 */
716 rc = GIMR3InitCompleted(pVM);
717 AssertRCReturn(rc, rc);
718
719 /*
720 * CPUM's post-initialization (print CPUIDs).
721 */
722 CPUMR3LogCpuIds(pVM);
723 break;
724 }
725
726 default: /* shuts up gcc */
727 break;
728 }
729
730 return rc;
731}
732
733
734/**
735 * Terminate the VMM bits.
736 *
737 * @returns VINF_SUCCESS.
738 * @param pVM Pointer to the VM.
739 */
740VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
741{
742 PVMCPU pVCpu = VMMGetCpu(pVM);
743 Assert(pVCpu && pVCpu->idCpu == 0);
744
745 /*
746 * Call Ring-0 entry with termination code.
747 */
748 int rc;
749 for (;;)
750 {
751#ifdef NO_SUPCALLR0VMM
752 //rc = VERR_GENERAL_FAILURE;
753 rc = VINF_SUCCESS;
754#else
755 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
756#endif
757 /*
758 * Flush the logs.
759 */
760#ifdef LOG_ENABLED
761 if ( pVCpu->vmm.s.pR0LoggerR3
762 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
763 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
764#endif
765 if (rc != VINF_VMM_CALL_HOST)
766 break;
767 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
768 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
769 break;
770 /* Resume R0 */
771 }
772 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
773 {
774 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
775 if (RT_SUCCESS(rc))
776 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
777 }
778
779 for (VMCPUID i = 0; i < pVM->cCpus; i++)
780 {
781 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
782 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
783 }
784 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
785 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
786 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
787 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
788 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
789 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
790 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
791 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
792
793#ifdef VBOX_STRICT_VMM_STACK
794 /*
795 * Make the two stack guard pages present again.
796 */
797 if (pVM->vmm.s.fStackGuardsStationed)
798 {
799 for (VMCPUID i = 0; i < pVM->cCpus; i++)
800 {
801 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
802 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
803 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
804 }
805 pVM->vmm.s.fStackGuardsStationed = false;
806 }
807#endif
808
809 vmmTermFormatTypes();
810 return rc;
811}
812
813
814/**
815 * Applies relocations to data and code managed by this
816 * component. This function will be called at init and
817 * whenever the VMM need to relocate it self inside the GC.
818 *
819 * The VMM will need to apply relocations to the core code.
820 *
821 * @param pVM Pointer to the VM.
822 * @param offDelta The relocation delta.
823 */
824VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
825{
826 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
827
828 /*
829 * Recalc the RC address.
830 */
831#ifdef VBOX_WITH_RAW_MODE
832 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
833#endif
834
835 /*
836 * The stack.
837 */
838 for (VMCPUID i = 0; i < pVM->cCpus; i++)
839 {
840 PVMCPU pVCpu = &pVM->aCpus[i];
841
842 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
843
844 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
845 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
846 }
847
848 /*
849 * All the switchers.
850 */
851 vmmR3SwitcherRelocate(pVM, offDelta);
852
853 /*
854 * Get other RC entry points.
855 */
856 if (!HMIsEnabled(pVM))
857 {
858 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
859 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
860
861 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
862 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
863 }
864
865 /*
866 * Update the logger.
867 */
868 VMMR3UpdateLoggers(pVM);
869}
870
871
872/**
873 * Updates the settings for the RC and R0 loggers.
874 *
875 * @returns VBox status code.
876 * @param pVM Pointer to the VM.
877 */
878VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
879{
880 /*
881 * Simply clone the logger instance (for RC).
882 */
883 int rc = VINF_SUCCESS;
884 RTRCPTR RCPtrLoggerFlush = 0;
885
886 if ( pVM->vmm.s.pRCLoggerR3
887#ifdef VBOX_WITH_RC_RELEASE_LOGGING
888 || pVM->vmm.s.pRCRelLoggerR3
889#endif
890 )
891 {
892 Assert(!HMIsEnabled(pVM));
893 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
894 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
895 }
896
897 if (pVM->vmm.s.pRCLoggerR3)
898 {
899 Assert(!HMIsEnabled(pVM));
900 RTRCPTR RCPtrLoggerWrapper = 0;
901 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
902 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
903
904 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
905 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
906 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
907 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
908 }
909
910#ifdef VBOX_WITH_RC_RELEASE_LOGGING
911 if (pVM->vmm.s.pRCRelLoggerR3)
912 {
913 Assert(!HMIsEnabled(pVM));
914 RTRCPTR RCPtrLoggerWrapper = 0;
915 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
916 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
917
918 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
919 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
920 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
921 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
922 }
923#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
924
925#ifdef LOG_ENABLED
926 /*
927 * For the ring-0 EMT logger, we use a per-thread logger instance
928 * in ring-0. Only initialize it once.
929 */
930 PRTLOGGER const pDefault = RTLogDefaultInstance();
931 for (VMCPUID i = 0; i < pVM->cCpus; i++)
932 {
933 PVMCPU pVCpu = &pVM->aCpus[i];
934 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
935 if (pR0LoggerR3)
936 {
937 if (!pR0LoggerR3->fCreated)
938 {
939 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
940 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
941 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
942
943 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
944 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
945 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
946
947 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
948 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
949 pfnLoggerWrapper, pfnLoggerFlush,
950 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
951 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
952
953 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
954 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
955 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
956 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger,
957 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
958 pfnLoggerPrefix, NIL_RTR0PTR);
959 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
960
961 pR0LoggerR3->idCpu = i;
962 pR0LoggerR3->fCreated = true;
963 pR0LoggerR3->fFlushingDisabled = false;
964
965 }
966
967 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
968 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
969 AssertRC(rc);
970 }
971 }
972#endif
973 return rc;
974}
975
976
977/**
978 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
979 *
980 * @returns Pointer to the buffer.
981 * @param pVM Pointer to the VM.
982 */
983VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
984{
985 if (HMIsEnabled(pVM))
986 return pVM->vmm.s.szRing0AssertMsg1;
987
988 RTRCPTR RCPtr;
989 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
990 if (RT_SUCCESS(rc))
991 return (const char *)MMHyperRCToR3(pVM, RCPtr);
992
993 return NULL;
994}
995
996
997/**
998 * Returns the VMCPU of the specified virtual CPU.
999 *
1000 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1001 *
1002 * @param pUVM The user mode VM handle.
1003 * @param idCpu The ID of the virtual CPU.
1004 */
1005VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1006{
1007 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1008 AssertReturn(idCpu < pUVM->cCpus, NULL);
1009 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1010 return &pUVM->pVM->aCpus[idCpu];
1011}
1012
1013
1014/**
1015 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1016 *
1017 * @returns Pointer to the buffer.
1018 * @param pVM Pointer to the VM.
1019 */
1020VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1021{
1022 if (HMIsEnabled(pVM))
1023 return pVM->vmm.s.szRing0AssertMsg2;
1024
1025 RTRCPTR RCPtr;
1026 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
1027 if (RT_SUCCESS(rc))
1028 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1029
1030 return NULL;
1031}
1032
1033
1034/**
1035 * Execute state save operation.
1036 *
1037 * @returns VBox status code.
1038 * @param pVM Pointer to the VM.
1039 * @param pSSM SSM operation handle.
1040 */
1041static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1042{
1043 LogFlow(("vmmR3Save:\n"));
1044
1045 /*
1046 * Save the started/stopped state of all CPUs except 0 as it will always
1047 * be running. This avoids breaking the saved state version. :-)
1048 */
1049 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1050 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1051
1052 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1053}
1054
1055
1056/**
1057 * Execute state load operation.
1058 *
1059 * @returns VBox status code.
1060 * @param pVM Pointer to the VM.
1061 * @param pSSM SSM operation handle.
1062 * @param uVersion Data layout version.
1063 * @param uPass The data pass.
1064 */
1065static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1066{
1067 LogFlow(("vmmR3Load:\n"));
1068 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1069
1070 /*
1071 * Validate version.
1072 */
1073 if ( uVersion != VMM_SAVED_STATE_VERSION
1074 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1075 {
1076 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1077 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1078 }
1079
1080 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1081 {
1082 /* Ignore the stack bottom, stack pointer and stack bits. */
1083 RTRCPTR RCPtrIgnored;
1084 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1085 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1086#ifdef RT_OS_DARWIN
1087 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1088 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1089 && SSMR3HandleRevision(pSSM) >= 48858
1090 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1091 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1092 )
1093 SSMR3Skip(pSSM, 16384);
1094 else
1095 SSMR3Skip(pSSM, 8192);
1096#else
1097 SSMR3Skip(pSSM, 8192);
1098#endif
1099 }
1100
1101 /*
1102 * Restore the VMCPU states. VCPU 0 is always started.
1103 */
1104 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1105 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1106 {
1107 bool fStarted;
1108 int rc = SSMR3GetBool(pSSM, &fStarted);
1109 if (RT_FAILURE(rc))
1110 return rc;
1111 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1112 }
1113
1114 /* terminator */
1115 uint32_t u32;
1116 int rc = SSMR3GetU32(pSSM, &u32);
1117 if (RT_FAILURE(rc))
1118 return rc;
1119 if (u32 != UINT32_MAX)
1120 {
1121 AssertMsgFailed(("u32=%#x\n", u32));
1122 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1123 }
1124 return VINF_SUCCESS;
1125}
1126
1127
1128#ifdef VBOX_WITH_RAW_MODE
1129/**
1130 * Resolve a builtin RC symbol.
1131 *
1132 * Called by PDM when loading or relocating RC modules.
1133 *
1134 * @returns VBox status
1135 * @param pVM Pointer to the VM.
1136 * @param pszSymbol Symbol to resolv
1137 * @param pRCPtrValue Where to store the symbol value.
1138 *
1139 * @remark This has to work before VMMR3Relocate() is called.
1140 */
1141VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1142{
1143 if (!strcmp(pszSymbol, "g_Logger"))
1144 {
1145 if (pVM->vmm.s.pRCLoggerR3)
1146 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1147 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1148 }
1149 else if (!strcmp(pszSymbol, "g_RelLogger"))
1150 {
1151# ifdef VBOX_WITH_RC_RELEASE_LOGGING
1152 if (pVM->vmm.s.pRCRelLoggerR3)
1153 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1154 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1155# else
1156 *pRCPtrValue = NIL_RTRCPTR;
1157# endif
1158 }
1159 else
1160 return VERR_SYMBOL_NOT_FOUND;
1161 return VINF_SUCCESS;
1162}
1163#endif /* VBOX_WITH_RAW_MODE */
1164
1165
1166/**
1167 * Suspends the CPU yielder.
1168 *
1169 * @param pVM Pointer to the VM.
1170 */
1171VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1172{
1173 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1174 if (!pVM->vmm.s.cYieldResumeMillies)
1175 {
1176 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1177 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1178 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1179 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1180 else
1181 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1182 TMTimerStop(pVM->vmm.s.pYieldTimer);
1183 }
1184 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1185}
1186
1187
1188/**
1189 * Stops the CPU yielder.
1190 *
1191 * @param pVM Pointer to the VM.
1192 */
1193VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1194{
1195 if (!pVM->vmm.s.cYieldResumeMillies)
1196 TMTimerStop(pVM->vmm.s.pYieldTimer);
1197 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1198 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1199}
1200
1201
1202/**
1203 * Resumes the CPU yielder when it has been a suspended or stopped.
1204 *
1205 * @param pVM Pointer to the VM.
1206 */
1207VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1208{
1209 if (pVM->vmm.s.cYieldResumeMillies)
1210 {
1211 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1212 pVM->vmm.s.cYieldResumeMillies = 0;
1213 }
1214}
1215
1216
1217/**
1218 * Internal timer callback function.
1219 *
1220 * @param pVM The VM.
1221 * @param pTimer The timer handle.
1222 * @param pvUser User argument specified upon timer creation.
1223 */
1224static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1225{
1226 NOREF(pvUser);
1227
1228 /*
1229 * This really needs some careful tuning. While we shouldn't be too greedy since
1230 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1231 * because that'll cause us to stop up.
1232 *
1233 * The current logic is to use the default interval when there is no lag worth
1234 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1235 *
1236 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1237 * so the lag is up to date.)
1238 */
1239 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1240 if ( u64Lag < 50000000 /* 50ms */
1241 || ( u64Lag < 1000000000 /* 1s */
1242 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1243 )
1244 {
1245 uint64_t u64Elapsed = RTTimeNanoTS();
1246 pVM->vmm.s.u64LastYield = u64Elapsed;
1247
1248 RTThreadYield();
1249
1250#ifdef LOG_ENABLED
1251 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1252 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1253#endif
1254 }
1255 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1256}
1257
1258
1259#ifdef VBOX_WITH_RAW_MODE
1260/**
1261 * Executes guest code in the raw-mode context.
1262 *
1263 * @param pVM Pointer to the VM.
1264 * @param pVCpu Pointer to the VMCPU.
1265 */
1266VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1267{
1268 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1269
1270 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1271
1272 /*
1273 * Set the hypervisor to resume executing a CPUM resume function
1274 * in CPUMRCA.asm.
1275 */
1276 CPUMSetHyperState(pVCpu,
1277 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1278 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1279 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1280 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1281 0, /* eax */
1282 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1283
1284 /*
1285 * We hide log flushes (outer) and hypervisor interrupts (inner).
1286 */
1287 for (;;)
1288 {
1289#ifdef VBOX_STRICT
1290 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1291 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1292 PGMMapCheck(pVM);
1293# ifdef VBOX_WITH_SAFE_STR
1294 SELMR3CheckShadowTR(pVM);
1295# endif
1296#endif
1297 int rc;
1298 do
1299 {
1300#ifdef NO_SUPCALLR0VMM
1301 rc = VERR_GENERAL_FAILURE;
1302#else
1303 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1304 if (RT_LIKELY(rc == VINF_SUCCESS))
1305 rc = pVCpu->vmm.s.iLastGZRc;
1306#endif
1307 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1308
1309 /*
1310 * Flush the logs.
1311 */
1312#ifdef LOG_ENABLED
1313 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1314 if ( pLogger
1315 && pLogger->offScratch > 0)
1316 RTLogFlushRC(NULL, pLogger);
1317#endif
1318#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1319 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1320 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1321 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1322#endif
1323 if (rc != VINF_VMM_CALL_HOST)
1324 {
1325 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1326 return rc;
1327 }
1328 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1329 if (RT_FAILURE(rc))
1330 return rc;
1331 /* Resume GC */
1332 }
1333}
1334#endif /* VBOX_WITH_RAW_MODE */
1335
1336
1337/**
1338 * Executes guest code (Intel VT-x and AMD-V).
1339 *
1340 * @param pVM Pointer to the VM.
1341 * @param pVCpu Pointer to the VMCPU.
1342 */
1343VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1344{
1345 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1346
1347 for (;;)
1348 {
1349 int rc;
1350 do
1351 {
1352#ifdef NO_SUPCALLR0VMM
1353 rc = VERR_GENERAL_FAILURE;
1354#else
1355 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1356 if (RT_LIKELY(rc == VINF_SUCCESS))
1357 rc = pVCpu->vmm.s.iLastGZRc;
1358#endif
1359 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1360
1361#if 0 /* todo triggers too often */
1362 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1363#endif
1364
1365#ifdef LOG_ENABLED
1366 /*
1367 * Flush the log
1368 */
1369 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1370 if ( pR0LoggerR3
1371 && pR0LoggerR3->Logger.offScratch > 0)
1372 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1373#endif /* !LOG_ENABLED */
1374 if (rc != VINF_VMM_CALL_HOST)
1375 {
1376 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1377 return rc;
1378 }
1379 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1380 if (RT_FAILURE(rc))
1381 return rc;
1382 /* Resume R0 */
1383 }
1384}
1385
1386/**
1387 * VCPU worker for VMMSendSipi.
1388 *
1389 * @param pVM Pointer to the VM.
1390 * @param idCpu Virtual CPU to perform SIPI on
1391 * @param uVector SIPI vector
1392 */
1393DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1394{
1395 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1396 VMCPU_ASSERT_EMT(pVCpu);
1397
1398 /** @todo what are we supposed to do if the processor is already running? */
1399 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1400 return VERR_ACCESS_DENIED;
1401
1402
1403 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1404
1405 pCtx->cs.Sel = uVector << 8;
1406 pCtx->cs.ValidSel = uVector << 8;
1407 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1408 pCtx->cs.u64Base = uVector << 12;
1409 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1410 pCtx->rip = 0;
1411
1412 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1413
1414# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1415 EMSetState(pVCpu, EMSTATE_HALTED);
1416 return VINF_EM_RESCHEDULE;
1417# else /* And if we go the VMCPU::enmState way it can stay here. */
1418 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1419 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1420 return VINF_SUCCESS;
1421# endif
1422}
1423
1424DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1425{
1426 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1427 VMCPU_ASSERT_EMT(pVCpu);
1428
1429 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1430
1431 PGMR3ResetCpu(pVM, pVCpu);
1432 PDMR3ResetCpu(pVCpu); /* Clear any pending interrupts */
1433 TRPMR3ResetCpu(pVCpu);
1434 CPUMR3ResetCpu(pVM, pVCpu);
1435 EMR3ResetCpu(pVCpu);
1436 HMR3ResetCpu(pVCpu);
1437
1438 /* This will trickle up on the target EMT. */
1439 return VINF_EM_WAIT_SIPI;
1440}
1441
1442/**
1443 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1444 * and unhalting processor
1445 *
1446 * @param pVM Pointer to the VM.
1447 * @param idCpu Virtual CPU to perform SIPI on
1448 * @param uVector SIPI vector
1449 */
1450VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1451{
1452 AssertReturnVoid(idCpu < pVM->cCpus);
1453
1454 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1455 AssertRC(rc);
1456}
1457
1458/**
1459 * Sends init IPI to the virtual CPU.
1460 *
1461 * @param pVM Pointer to the VM.
1462 * @param idCpu Virtual CPU to perform int IPI on
1463 */
1464VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1465{
1466 AssertReturnVoid(idCpu < pVM->cCpus);
1467
1468 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1469 AssertRC(rc);
1470}
1471
1472/**
1473 * Registers the guest memory range that can be used for patching
1474 *
1475 * @returns VBox status code.
1476 * @param pVM Pointer to the VM.
1477 * @param pPatchMem Patch memory range
1478 * @param cbPatchMem Size of the memory range
1479 */
1480VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1481{
1482 VM_ASSERT_EMT(pVM);
1483 if (HMIsEnabled(pVM))
1484 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1485
1486 return VERR_NOT_SUPPORTED;
1487}
1488
1489/**
1490 * Deregisters the guest memory range that can be used for patching
1491 *
1492 * @returns VBox status code.
1493 * @param pVM Pointer to the VM.
1494 * @param pPatchMem Patch memory range
1495 * @param cbPatchMem Size of the memory range
1496 */
1497VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1498{
1499 if (HMIsEnabled(pVM))
1500 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1501
1502 return VINF_SUCCESS;
1503}
1504
1505
1506/**
1507 * Count returns and have the last non-caller EMT wake up the caller.
1508 *
1509 * @returns VBox strict informational status code for EM scheduling. No failures
1510 * will be returned here, those are for the caller only.
1511 *
1512 * @param pVM Pointer to the VM.
1513 */
1514DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1515{
1516 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1517 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1518 if (cReturned == pVM->cCpus - 1U)
1519 {
1520 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1521 AssertLogRelRC(rc);
1522 }
1523
1524 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1525 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1526 ("%Rrc\n", rcRet),
1527 VERR_IPE_UNEXPECTED_INFO_STATUS);
1528 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1529}
1530
1531
1532/**
1533 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1534 *
1535 * @returns VBox strict informational status code for EM scheduling. No failures
1536 * will be returned here, those are for the caller only. When
1537 * fIsCaller is set, VINF_SUCCESS is always returned.
1538 *
1539 * @param pVM Pointer to the VM.
1540 * @param pVCpu The VMCPU structure for the calling EMT.
1541 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1542 * not.
1543 * @param fFlags The flags.
1544 * @param pfnRendezvous The callback.
1545 * @param pvUser The user argument for the callback.
1546 */
1547static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1548 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1549{
1550 int rc;
1551
1552 /*
1553 * Enter, the last EMT triggers the next callback phase.
1554 */
1555 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1556 if (cEntered != pVM->cCpus)
1557 {
1558 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1559 {
1560 /* Wait for our turn. */
1561 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1562 AssertLogRelRC(rc);
1563 }
1564 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1565 {
1566 /* Wait for the last EMT to arrive and wake everyone up. */
1567 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1568 AssertLogRelRC(rc);
1569 }
1570 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1571 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1572 {
1573 /* Wait for our turn. */
1574 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1575 AssertLogRelRC(rc);
1576 }
1577 else
1578 {
1579 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1580
1581 /*
1582 * The execute once is handled specially to optimize the code flow.
1583 *
1584 * The last EMT to arrive will perform the callback and the other
1585 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1586 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1587 * returns, that EMT will initiate the normal return sequence.
1588 */
1589 if (!fIsCaller)
1590 {
1591 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1592 AssertLogRelRC(rc);
1593
1594 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1595 }
1596 return VINF_SUCCESS;
1597 }
1598 }
1599 else
1600 {
1601 /*
1602 * All EMTs are waiting, clear the FF and take action according to the
1603 * execution method.
1604 */
1605 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1606
1607 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1608 {
1609 /* Wake up everyone. */
1610 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1611 AssertLogRelRC(rc);
1612 }
1613 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1614 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1615 {
1616 /* Figure out who to wake up and wake it up. If it's ourself, then
1617 it's easy otherwise wait for our turn. */
1618 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1619 ? 0
1620 : pVM->cCpus - 1U;
1621 if (pVCpu->idCpu != iFirst)
1622 {
1623 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1624 AssertLogRelRC(rc);
1625 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1626 AssertLogRelRC(rc);
1627 }
1628 }
1629 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1630 }
1631
1632
1633 /*
1634 * Do the callback and update the status if necessary.
1635 */
1636 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1637 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1638 {
1639 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1640 if (rcStrict != VINF_SUCCESS)
1641 {
1642 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1643 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1644 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1645 int32_t i32RendezvousStatus;
1646 do
1647 {
1648 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1649 if ( rcStrict == i32RendezvousStatus
1650 || RT_FAILURE(i32RendezvousStatus)
1651 || ( i32RendezvousStatus != VINF_SUCCESS
1652 && rcStrict > i32RendezvousStatus))
1653 break;
1654 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1655 }
1656 }
1657
1658 /*
1659 * Increment the done counter and take action depending on whether we're
1660 * the last to finish callback execution.
1661 */
1662 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1663 if ( cDone != pVM->cCpus
1664 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1665 {
1666 /* Signal the next EMT? */
1667 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1668 {
1669 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1670 AssertLogRelRC(rc);
1671 }
1672 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1673 {
1674 Assert(cDone == pVCpu->idCpu + 1U);
1675 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1676 AssertLogRelRC(rc);
1677 }
1678 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1679 {
1680 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1681 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1682 AssertLogRelRC(rc);
1683 }
1684
1685 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1686 if (!fIsCaller)
1687 {
1688 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1689 AssertLogRelRC(rc);
1690 }
1691 }
1692 else
1693 {
1694 /* Callback execution is all done, tell the rest to return. */
1695 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1696 AssertLogRelRC(rc);
1697 }
1698
1699 if (!fIsCaller)
1700 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1701 return VINF_SUCCESS;
1702}
1703
1704
1705/**
1706 * Called in response to VM_FF_EMT_RENDEZVOUS.
1707 *
1708 * @returns VBox strict status code - EM scheduling. No errors will be returned
1709 * here, nor will any non-EM scheduling status codes be returned.
1710 *
1711 * @param pVM Pointer to the VM.
1712 * @param pVCpu The handle of the calling EMT.
1713 *
1714 * @thread EMT
1715 */
1716VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1717{
1718 Assert(!pVCpu->vmm.s.fInRendezvous);
1719 pVCpu->vmm.s.fInRendezvous = true;
1720 int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1721 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1722 pVCpu->vmm.s.fInRendezvous = false;
1723 return rc;
1724}
1725
1726
1727/**
1728 * EMT rendezvous.
1729 *
1730 * Gathers all the EMTs and execute some code on each of them, either in a one
1731 * by one fashion or all at once.
1732 *
1733 * @returns VBox strict status code. This will be the first error,
1734 * VINF_SUCCESS, or an EM scheduling status code.
1735 *
1736 * @param pVM Pointer to the VM.
1737 * @param fFlags Flags indicating execution methods. See
1738 * grp_VMMR3EmtRendezvous_fFlags.
1739 * @param pfnRendezvous The callback.
1740 * @param pvUser User argument for the callback.
1741 *
1742 * @thread Any.
1743 */
1744VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1745{
1746 /*
1747 * Validate input.
1748 */
1749 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1750 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1751 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1752 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1753 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1754 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1755 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1756 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1757
1758 VBOXSTRICTRC rcStrict;
1759 PVMCPU pVCpu = VMMGetCpu(pVM);
1760 if (!pVCpu)
1761 /*
1762 * Forward the request to an EMT thread.
1763 */
1764 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1765 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1766 else if (pVM->cCpus == 1)
1767 {
1768 /*
1769 * Shortcut for the single EMT case.
1770 */
1771 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1772 pVCpu->vmm.s.fInRendezvous = true;
1773 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1774 pVCpu->vmm.s.fInRendezvous = false;
1775 }
1776 else
1777 {
1778 /*
1779 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1780 * lookout of the RENDEZVOUS FF.
1781 */
1782 int rc;
1783 rcStrict = VINF_SUCCESS;
1784 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1785 {
1786 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1787
1788 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1789 {
1790 if (VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1791 {
1792 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1793 if ( rc != VINF_SUCCESS
1794 && ( rcStrict == VINF_SUCCESS
1795 || rcStrict > rc))
1796 rcStrict = rc;
1797 /** @todo Perhaps deal with termination here? */
1798 }
1799 ASMNopPause();
1800 }
1801 }
1802 Assert(!VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1803 Assert(!pVCpu->vmm.s.fInRendezvous);
1804 pVCpu->vmm.s.fInRendezvous = true;
1805
1806 /*
1807 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1808 */
1809 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1810 {
1811 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1812 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1813 }
1814 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1815 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1816 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1817 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1818 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1819 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1820 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1821 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1822 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1823 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1824 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1825
1826 /*
1827 * Set the FF and poke the other EMTs.
1828 */
1829 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1830 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1831
1832 /*
1833 * Do the same ourselves.
1834 */
1835 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1836
1837 /*
1838 * The caller waits for the other EMTs to be done and return before doing
1839 * the cleanup. This makes away with wakeup / reset races we would otherwise
1840 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1841 */
1842 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1843 AssertLogRelRC(rc);
1844
1845 /*
1846 * Get the return code and clean up a little bit.
1847 */
1848 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1849 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1850
1851 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1852 pVCpu->vmm.s.fInRendezvous = false;
1853
1854 /*
1855 * Merge rcStrict and rcMy.
1856 */
1857 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1858 if ( rcMy != VINF_SUCCESS
1859 && ( rcStrict == VINF_SUCCESS
1860 || rcStrict > rcMy))
1861 rcStrict = rcMy;
1862 }
1863
1864 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1865 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1866 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1867 VERR_IPE_UNEXPECTED_INFO_STATUS);
1868 return VBOXSTRICTRC_VAL(rcStrict);
1869}
1870
1871
1872/**
1873 * Disables/enables EMT rendezvous.
1874 *
1875 * This is used to make sure EMT rendezvous does not take place while
1876 * processing a priority request.
1877 *
1878 * @returns Old rendezvous-disabled state.
1879 * @param pVCpu The handle of the calling EMT.
1880 * @param fDisabled True if disabled, false if enabled.
1881 */
1882VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled)
1883{
1884 VMCPU_ASSERT_EMT(pVCpu);
1885 bool fOld = pVCpu->vmm.s.fInRendezvous;
1886 pVCpu->vmm.s.fInRendezvous = fDisabled;
1887 return fOld;
1888}
1889
1890
1891/**
1892 * Read from the ring 0 jump buffer stack
1893 *
1894 * @returns VBox status code.
1895 *
1896 * @param pVM Pointer to the VM.
1897 * @param idCpu The ID of the source CPU context (for the address).
1898 * @param R0Addr Where to start reading.
1899 * @param pvBuf Where to store the data we've read.
1900 * @param cbRead The number of bytes to read.
1901 */
1902VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1903{
1904 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1905 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1906
1907#ifdef VMM_R0_SWITCH_STACK
1908 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1909#else
1910 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1911#endif
1912 if ( off > VMM_STACK_SIZE
1913 || off + cbRead >= VMM_STACK_SIZE)
1914 return VERR_INVALID_POINTER;
1915
1916 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1917 return VINF_SUCCESS;
1918}
1919
1920#ifdef VBOX_WITH_RAW_MODE
1921
1922/**
1923 * Calls a RC function.
1924 *
1925 * @param pVM Pointer to the VM.
1926 * @param RCPtrEntry The address of the RC function.
1927 * @param cArgs The number of arguments in the ....
1928 * @param ... Arguments to the function.
1929 */
1930VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1931{
1932 va_list args;
1933 va_start(args, cArgs);
1934 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1935 va_end(args);
1936 return rc;
1937}
1938
1939
1940/**
1941 * Calls a RC function.
1942 *
1943 * @param pVM Pointer to the VM.
1944 * @param RCPtrEntry The address of the RC function.
1945 * @param cArgs The number of arguments in the ....
1946 * @param args Arguments to the function.
1947 */
1948VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1949{
1950 /* Raw mode implies 1 VCPU. */
1951 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1952 PVMCPU pVCpu = &pVM->aCpus[0];
1953
1954 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1955
1956 /*
1957 * Setup the call frame using the trampoline.
1958 */
1959 CPUMSetHyperState(pVCpu,
1960 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
1961 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
1962 RCPtrEntry, /* eax */
1963 cArgs /* edx */
1964 );
1965
1966#if 0
1967 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1968#endif
1969 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1970 int i = cArgs;
1971 while (i-- > 0)
1972 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1973
1974 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1975 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1976
1977 /*
1978 * We hide log flushes (outer) and hypervisor interrupts (inner).
1979 */
1980 for (;;)
1981 {
1982 int rc;
1983 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1984 do
1985 {
1986#ifdef NO_SUPCALLR0VMM
1987 rc = VERR_GENERAL_FAILURE;
1988#else
1989 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1990 if (RT_LIKELY(rc == VINF_SUCCESS))
1991 rc = pVCpu->vmm.s.iLastGZRc;
1992#endif
1993 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1994
1995 /*
1996 * Flush the loggers.
1997 */
1998#ifdef LOG_ENABLED
1999 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2000 if ( pLogger
2001 && pLogger->offScratch > 0)
2002 RTLogFlushRC(NULL, pLogger);
2003#endif
2004#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2005 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2006 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2007 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2008#endif
2009 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2010 VMMR3FatalDump(pVM, pVCpu, rc);
2011 if (rc != VINF_VMM_CALL_HOST)
2012 {
2013 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
2014 return rc;
2015 }
2016 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2017 if (RT_FAILURE(rc))
2018 return rc;
2019 }
2020}
2021
2022#endif /* VBOX_WITH_RAW_MODE */
2023
2024/**
2025 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2026 *
2027 * @returns VBox status code.
2028 * @param pVM Pointer to the VM.
2029 * @param uOperation Operation to execute.
2030 * @param u64Arg Constant argument.
2031 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2032 * details.
2033 */
2034VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2035{
2036 PVMCPU pVCpu = VMMGetCpu(pVM);
2037 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2038
2039 /*
2040 * Call Ring-0 entry with init code.
2041 */
2042 int rc;
2043 for (;;)
2044 {
2045#ifdef NO_SUPCALLR0VMM
2046 rc = VERR_GENERAL_FAILURE;
2047#else
2048 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
2049#endif
2050 /*
2051 * Flush the logs.
2052 */
2053#ifdef LOG_ENABLED
2054 if ( pVCpu->vmm.s.pR0LoggerR3
2055 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
2056 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
2057#endif
2058 if (rc != VINF_VMM_CALL_HOST)
2059 break;
2060 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2061 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2062 break;
2063 /* Resume R0 */
2064 }
2065
2066 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2067 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
2068 VERR_IPE_UNEXPECTED_INFO_STATUS);
2069 return rc;
2070}
2071
2072
2073#ifdef VBOX_WITH_RAW_MODE
2074/**
2075 * Resumes executing hypervisor code when interrupted by a queue flush or a
2076 * debug event.
2077 *
2078 * @returns VBox status code.
2079 * @param pVM Pointer to the VM.
2080 * @param pVCpu Pointer to the VMCPU.
2081 */
2082VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2083{
2084 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2085 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2086
2087 /*
2088 * We hide log flushes (outer) and hypervisor interrupts (inner).
2089 */
2090 for (;;)
2091 {
2092 int rc;
2093 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2094 do
2095 {
2096# ifdef NO_SUPCALLR0VMM
2097 rc = VERR_GENERAL_FAILURE;
2098# else
2099 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2100 if (RT_LIKELY(rc == VINF_SUCCESS))
2101 rc = pVCpu->vmm.s.iLastGZRc;
2102# endif
2103 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2104
2105 /*
2106 * Flush the loggers.
2107 */
2108# ifdef LOG_ENABLED
2109 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2110 if ( pLogger
2111 && pLogger->offScratch > 0)
2112 RTLogFlushRC(NULL, pLogger);
2113# endif
2114# ifdef VBOX_WITH_RC_RELEASE_LOGGING
2115 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2116 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2117 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2118# endif
2119 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2120 VMMR3FatalDump(pVM, pVCpu, rc);
2121 if (rc != VINF_VMM_CALL_HOST)
2122 {
2123 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2124 return rc;
2125 }
2126 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2127 if (RT_FAILURE(rc))
2128 return rc;
2129 }
2130}
2131#endif /* VBOX_WITH_RAW_MODE */
2132
2133
2134/**
2135 * Service a call to the ring-3 host code.
2136 *
2137 * @returns VBox status code.
2138 * @param pVM Pointer to the VM.
2139 * @param pVCpu Pointer to the VMCPU.
2140 * @remark Careful with critsects.
2141 */
2142static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2143{
2144 /*
2145 * We must also check for pending critsect exits or else we can deadlock
2146 * when entering other critsects here.
2147 */
2148 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2149 PDMCritSectBothFF(pVCpu);
2150
2151 switch (pVCpu->vmm.s.enmCallRing3Operation)
2152 {
2153 /*
2154 * Acquire a critical section.
2155 */
2156 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2157 {
2158 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2159 true /*fCallRing3*/);
2160 break;
2161 }
2162
2163 /*
2164 * Enter a r/w critical section exclusively.
2165 */
2166 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2167 {
2168 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2169 true /*fCallRing3*/);
2170 break;
2171 }
2172
2173 /*
2174 * Enter a r/w critical section shared.
2175 */
2176 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2177 {
2178 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2179 true /*fCallRing3*/);
2180 break;
2181 }
2182
2183 /*
2184 * Acquire the PDM lock.
2185 */
2186 case VMMCALLRING3_PDM_LOCK:
2187 {
2188 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2189 break;
2190 }
2191
2192 /*
2193 * Grow the PGM pool.
2194 */
2195 case VMMCALLRING3_PGM_POOL_GROW:
2196 {
2197 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2198 break;
2199 }
2200
2201 /*
2202 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2203 */
2204 case VMMCALLRING3_PGM_MAP_CHUNK:
2205 {
2206 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2207 break;
2208 }
2209
2210 /*
2211 * Allocates more handy pages.
2212 */
2213 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2214 {
2215 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2216 break;
2217 }
2218
2219 /*
2220 * Allocates a large page.
2221 */
2222 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2223 {
2224 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2225 break;
2226 }
2227
2228 /*
2229 * Acquire the PGM lock.
2230 */
2231 case VMMCALLRING3_PGM_LOCK:
2232 {
2233 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2234 break;
2235 }
2236
2237 /*
2238 * Acquire the MM hypervisor heap lock.
2239 */
2240 case VMMCALLRING3_MMHYPER_LOCK:
2241 {
2242 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2243 break;
2244 }
2245
2246#ifdef VBOX_WITH_REM
2247 /*
2248 * Flush REM handler notifications.
2249 */
2250 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2251 {
2252 REMR3ReplayHandlerNotifications(pVM);
2253 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2254 break;
2255 }
2256#endif
2257
2258 /*
2259 * This is a noop. We just take this route to avoid unnecessary
2260 * tests in the loops.
2261 */
2262 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2263 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2264 LogAlways(("*FLUSH*\n"));
2265 break;
2266
2267 /*
2268 * Set the VM error message.
2269 */
2270 case VMMCALLRING3_VM_SET_ERROR:
2271 VMR3SetErrorWorker(pVM);
2272 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2273 break;
2274
2275 /*
2276 * Set the VM runtime error message.
2277 */
2278 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2279 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2280 break;
2281
2282 /*
2283 * Signal a ring 0 hypervisor assertion.
2284 * Cancel the longjmp operation that's in progress.
2285 */
2286 case VMMCALLRING3_VM_R0_ASSERTION:
2287 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2288 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2289#ifdef RT_ARCH_X86
2290 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2291#else
2292 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2293#endif
2294#ifdef VMM_R0_SWITCH_STACK
2295 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2296#endif
2297 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2298 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2299 return VERR_VMM_RING0_ASSERTION;
2300
2301 /*
2302 * A forced switch to ring 0 for preemption purposes.
2303 */
2304 case VMMCALLRING3_VM_R0_PREEMPT:
2305 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2306 break;
2307
2308 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2309 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2310 break;
2311
2312 default:
2313 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2314 return VERR_VMM_UNKNOWN_RING3_CALL;
2315 }
2316
2317 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2318 return VINF_SUCCESS;
2319}
2320
2321
2322/**
2323 * Displays the Force action Flags.
2324 *
2325 * @param pVM Pointer to the VM.
2326 * @param pHlp The output helpers.
2327 * @param pszArgs The additional arguments (ignored).
2328 */
2329static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2330{
2331 int c;
2332 uint32_t f;
2333 NOREF(pszArgs);
2334
2335#define PRINT_FLAG(prf,flag) do { \
2336 if (f & (prf##flag)) \
2337 { \
2338 static const char *s_psz = #flag; \
2339 if (!(c % 6)) \
2340 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2341 else \
2342 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2343 c++; \
2344 f &= ~(prf##flag); \
2345 } \
2346 } while (0)
2347
2348#define PRINT_GROUP(prf,grp,sfx) do { \
2349 if (f & (prf##grp##sfx)) \
2350 { \
2351 static const char *s_psz = #grp; \
2352 if (!(c % 5)) \
2353 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2354 else \
2355 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2356 c++; \
2357 } \
2358 } while (0)
2359
2360 /*
2361 * The global flags.
2362 */
2363 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2364 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2365
2366 /* show the flag mnemonics */
2367 c = 0;
2368 f = fGlobalForcedActions;
2369 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2370 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2371 PRINT_FLAG(VM_FF_,PDM_DMA);
2372 PRINT_FLAG(VM_FF_,DBGF);
2373 PRINT_FLAG(VM_FF_,REQUEST);
2374 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2375 PRINT_FLAG(VM_FF_,RESET);
2376 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2377 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2378 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2379 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2380 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2381 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2382 if (f)
2383 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2384 else
2385 pHlp->pfnPrintf(pHlp, "\n");
2386
2387 /* the groups */
2388 c = 0;
2389 f = fGlobalForcedActions;
2390 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2391 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2392 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2393 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2394 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2395 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2396 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2397 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2398 if (c)
2399 pHlp->pfnPrintf(pHlp, "\n");
2400
2401 /*
2402 * Per CPU flags.
2403 */
2404 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2405 {
2406 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2407 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2408
2409 /* show the flag mnemonics */
2410 c = 0;
2411 f = fLocalForcedActions;
2412 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2413 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2414 PRINT_FLAG(VMCPU_FF_,TIMER);
2415 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2416 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2417 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2418 PRINT_FLAG(VMCPU_FF_,UNHALT);
2419 PRINT_FLAG(VMCPU_FF_,REQUEST);
2420 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2421 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2422 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2423 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2424 PRINT_FLAG(VMCPU_FF_,TLB_SHOOTDOWN);
2425 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2426 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2427 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2428 PRINT_FLAG(VMCPU_FF_,TO_R3);
2429#ifdef VBOX_WITH_RAW_MODE
2430 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2431 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2432 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2433 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2434 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2435 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2436#endif
2437 if (f)
2438 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2439 else
2440 pHlp->pfnPrintf(pHlp, "\n");
2441
2442 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2443 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2444
2445 /* the groups */
2446 c = 0;
2447 f = fLocalForcedActions;
2448 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2449 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2450 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2451 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2452 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2453 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2454 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2455 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2456 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2457 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2458 if (c)
2459 pHlp->pfnPrintf(pHlp, "\n");
2460 }
2461
2462#undef PRINT_FLAG
2463#undef PRINT_GROUP
2464}
2465
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette