VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 72451

Last change on this file since 72451 was 72426, checked in by vboxsync, 7 years ago

IPRT,VMM: Added custom thread name for ring-0 logging (VMM).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 114.7 KB
Line 
1/* $Id: VMM.cpp 72426 2018-06-04 11:38:23Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_csam
32 * - @subpage pg_dbgf
33 * - @subpage pg_em
34 * - @subpage pg_gim
35 * - @subpage pg_gmm
36 * - @subpage pg_gvmm
37 * - @subpage pg_hm
38 * - @subpage pg_iem
39 * - @subpage pg_iom
40 * - @subpage pg_mm
41 * - @subpage pg_patm
42 * - @subpage pg_pdm
43 * - @subpage pg_pgm
44 * - @subpage pg_rem
45 * - @subpage pg_selm
46 * - @subpage pg_ssm
47 * - @subpage pg_stam
48 * - @subpage pg_tm
49 * - @subpage pg_trpm
50 * - @subpage pg_vm
51 *
52 *
53 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
54 *
55 *
56 * @section sec_vmmstate VMM State
57 *
58 * @image html VM_Statechart_Diagram.gif
59 *
60 * To be written.
61 *
62 *
63 * @subsection subsec_vmm_init VMM Initialization
64 *
65 * To be written.
66 *
67 *
68 * @subsection subsec_vmm_term VMM Termination
69 *
70 * To be written.
71 *
72 *
73 * @section sec_vmm_limits VMM Limits
74 *
75 * There are various resource limits imposed by the VMM and it's
76 * sub-components. We'll list some of them here.
77 *
78 * On 64-bit hosts:
79 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
80 * can be increased up to 64K - 1.
81 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
82 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
83 * - A VM can be assigned all the memory we can use (16TB), however, the
84 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
85 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
86 *
87 * On 32-bit hosts:
88 * - Max 127 VMs. Imposed by GMM's per page structure.
89 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
90 * ROM pages. The limit is imposed by the 28-bit page ID used
91 * internally in GMM. It is also limited by PAE.
92 * - A VM can be assigned all the memory GMM can allocate, however, the
93 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
94 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
95 *
96 */
97
98
99/*********************************************************************************************************************************
100* Header Files *
101*********************************************************************************************************************************/
102#define LOG_GROUP LOG_GROUP_VMM
103#include <VBox/vmm/vmm.h>
104#include <VBox/vmm/vmapi.h>
105#include <VBox/vmm/pgm.h>
106#include <VBox/vmm/cfgm.h>
107#include <VBox/vmm/pdmqueue.h>
108#include <VBox/vmm/pdmcritsect.h>
109#include <VBox/vmm/pdmcritsectrw.h>
110#include <VBox/vmm/pdmapi.h>
111#include <VBox/vmm/cpum.h>
112#include <VBox/vmm/gim.h>
113#include <VBox/vmm/mm.h>
114#include <VBox/vmm/nem.h>
115#include <VBox/vmm/iom.h>
116#include <VBox/vmm/trpm.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/em.h>
119#include <VBox/sup.h>
120#include <VBox/vmm/dbgf.h>
121#include <VBox/vmm/csam.h>
122#include <VBox/vmm/patm.h>
123#include <VBox/vmm/apic.h>
124#ifdef VBOX_WITH_REM
125# include <VBox/vmm/rem.h>
126#endif
127#include <VBox/vmm/ssm.h>
128#include <VBox/vmm/ftm.h>
129#include <VBox/vmm/tm.h>
130#include "VMMInternal.h"
131#include "VMMSwitcher.h"
132#include <VBox/vmm/vm.h>
133#include <VBox/vmm/uvm.h>
134
135#include <VBox/err.h>
136#include <VBox/param.h>
137#include <VBox/version.h>
138#include <VBox/vmm/hm.h>
139#include <iprt/assert.h>
140#include <iprt/alloc.h>
141#include <iprt/asm.h>
142#include <iprt/time.h>
143#include <iprt/semaphore.h>
144#include <iprt/stream.h>
145#include <iprt/string.h>
146#include <iprt/stdarg.h>
147#include <iprt/ctype.h>
148#include <iprt/x86.h>
149
150
151/*********************************************************************************************************************************
152* Defined Constants And Macros *
153*********************************************************************************************************************************/
154/** The saved state version. */
155#define VMM_SAVED_STATE_VERSION 4
156/** The saved state version used by v3.0 and earlier. (Teleportation) */
157#define VMM_SAVED_STATE_VERSION_3_0 3
158
159
160/*********************************************************************************************************************************
161* Internal Functions *
162*********************************************************************************************************************************/
163static int vmmR3InitStacks(PVM pVM);
164static int vmmR3InitLoggers(PVM pVM);
165static void vmmR3InitRegisterStats(PVM pVM);
166static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
167static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
168static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
169static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
170 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
171static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
172static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
173
174
175/**
176 * Initializes the VMM.
177 *
178 * @returns VBox status code.
179 * @param pVM The cross context VM structure.
180 */
181VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
182{
183 LogFlow(("VMMR3Init\n"));
184
185 /*
186 * Assert alignment, sizes and order.
187 */
188 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
189 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
190 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
191
192 /*
193 * Init basic VM VMM members.
194 */
195 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
196 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
197 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
198 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
199 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
200 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
201 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
202 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
203 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
204 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
205
206 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
207 * The EMT yield interval. The EMT yielding is a hack we employ to play a
208 * bit nicer with the rest of the system (like for instance the GUI).
209 */
210 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
211 23 /* Value arrived at after experimenting with the grub boot prompt. */);
212 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
213
214
215 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
216 * Controls whether we employ per-cpu preemption timers to limit the time
217 * spent executing guest code. This option is not available on all
218 * platforms and we will silently ignore this setting then. If we are
219 * running in VT-x mode, we will use the VMX-preemption timer instead of
220 * this one when possible.
221 */
222 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
223 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
224 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
225
226 /*
227 * Initialize the VMM rendezvous semaphores.
228 */
229 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
230 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
231 return VERR_NO_MEMORY;
232 for (VMCPUID i = 0; i < pVM->cCpus; i++)
233 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
234 for (VMCPUID i = 0; i < pVM->cCpus; i++)
235 {
236 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
237 AssertRCReturn(rc, rc);
238 }
239 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
240 AssertRCReturn(rc, rc);
241 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
242 AssertRCReturn(rc, rc);
243 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
244 AssertRCReturn(rc, rc);
245 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
246 AssertRCReturn(rc, rc);
247 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
254 AssertRCReturn(rc, rc);
255
256 /*
257 * Register the saved state data unit.
258 */
259 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
260 NULL, NULL, NULL,
261 NULL, vmmR3Save, NULL,
262 NULL, vmmR3Load, NULL);
263 if (RT_FAILURE(rc))
264 return rc;
265
266 /*
267 * Register the Ring-0 VM handle with the session for fast ioctl calls.
268 */
269 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
270 if (RT_FAILURE(rc))
271 return rc;
272
273 /*
274 * Init various sub-components.
275 */
276 rc = vmmR3SwitcherInit(pVM);
277 if (RT_SUCCESS(rc))
278 {
279 rc = vmmR3InitStacks(pVM);
280 if (RT_SUCCESS(rc))
281 {
282 rc = vmmR3InitLoggers(pVM);
283
284#ifdef VBOX_WITH_NMI
285 /*
286 * Allocate mapping for the host APIC.
287 */
288 if (RT_SUCCESS(rc))
289 {
290 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
291 AssertRC(rc);
292 }
293#endif
294 if (RT_SUCCESS(rc))
295 {
296 /*
297 * Debug info and statistics.
298 */
299 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
300 vmmR3InitRegisterStats(pVM);
301 vmmInitFormatTypes();
302
303 return VINF_SUCCESS;
304 }
305 }
306 /** @todo Need failure cleanup. */
307
308 //more todo in here?
309 //if (RT_SUCCESS(rc))
310 //{
311 //}
312 //int rc2 = vmmR3TermCoreCode(pVM);
313 //AssertRC(rc2));
314 }
315
316 return rc;
317}
318
319
320/**
321 * Allocate & setup the VMM RC stack(s) (for EMTs).
322 *
323 * The stacks are also used for long jumps in Ring-0.
324 *
325 * @returns VBox status code.
326 * @param pVM The cross context VM structure.
327 *
328 * @remarks The optional guard page gets it protection setup up during R3 init
329 * completion because of init order issues.
330 */
331static int vmmR3InitStacks(PVM pVM)
332{
333 int rc = VINF_SUCCESS;
334#ifdef VMM_R0_SWITCH_STACK
335 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
336#else
337 uint32_t fFlags = 0;
338#endif
339
340 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
341 {
342 PVMCPU pVCpu = &pVM->aCpus[idCpu];
343
344#ifdef VBOX_STRICT_VMM_STACK
345 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
346#else
347 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
348#endif
349 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
350 if (RT_SUCCESS(rc))
351 {
352#ifdef VBOX_STRICT_VMM_STACK
353 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
354#endif
355#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
356 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
357 if (VM_IS_RAW_MODE_ENABLED(pVM))
358 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
359 else
360#endif
361 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
362 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
363 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
364 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
365
366 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
367 }
368 }
369
370 return rc;
371}
372
373
374/**
375 * Initialize the loggers.
376 *
377 * @returns VBox status code.
378 * @param pVM The cross context VM structure.
379 */
380static int vmmR3InitLoggers(PVM pVM)
381{
382 int rc;
383#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
384
385 /*
386 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
387 */
388#ifdef LOG_ENABLED
389 PRTLOGGER pLogger = RTLogDefaultInstance();
390 if (pLogger)
391 {
392 if (VM_IS_RAW_MODE_ENABLED(pVM))
393 {
394 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
395 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
396 if (RT_FAILURE(rc))
397 return rc;
398 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
399 }
400
401# ifdef VBOX_WITH_R0_LOGGING
402 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
403 for (VMCPUID i = 0; i < pVM->cCpus; i++)
404 {
405 PVMCPU pVCpu = &pVM->aCpus[i];
406 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
407 (void **)&pVCpu->vmm.s.pR0LoggerR3);
408 if (RT_FAILURE(rc))
409 return rc;
410 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
411 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
412 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
413 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
414 }
415# endif
416 }
417#endif /* LOG_ENABLED */
418
419#ifdef VBOX_WITH_RC_RELEASE_LOGGING
420 /*
421 * Allocate RC release logger instances (finalized in the relocator).
422 */
423 if (VM_IS_RAW_MODE_ENABLED(pVM))
424 {
425 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
426 if (pRelLogger)
427 {
428 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
429 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
430 if (RT_FAILURE(rc))
431 return rc;
432 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
433 }
434 }
435#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
436 return VINF_SUCCESS;
437}
438
439
440/**
441 * VMMR3Init worker that register the statistics with STAM.
442 *
443 * @param pVM The cross context VM structure.
444 */
445static void vmmR3InitRegisterStats(PVM pVM)
446{
447 RT_NOREF_PV(pVM);
448
449 /*
450 * Statistics.
451 */
452 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
517
518#ifdef VBOX_WITH_STATISTICS
519 for (VMCPUID i = 0; i < pVM->cCpus; i++)
520 {
521 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
522 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
523 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
524 }
525#endif
526}
527
528
529/**
530 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
531 *
532 * @returns VBox status code.
533 * @param pVM The cross context VM structure.
534 * @param pVCpu The cross context per CPU structure.
535 * @thread EMT(pVCpu)
536 */
537static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
538{
539 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
540}
541
542
543/**
544 * Initializes the R0 VMM.
545 *
546 * @returns VBox status code.
547 * @param pVM The cross context VM structure.
548 */
549VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
550{
551 int rc;
552 PVMCPU pVCpu = VMMGetCpu(pVM);
553 Assert(pVCpu && pVCpu->idCpu == 0);
554
555#ifdef LOG_ENABLED
556 /*
557 * Initialize the ring-0 logger if we haven't done so yet.
558 */
559 if ( pVCpu->vmm.s.pR0LoggerR3
560 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
561 {
562 rc = VMMR3UpdateLoggers(pVM);
563 if (RT_FAILURE(rc))
564 return rc;
565 }
566#endif
567
568 /*
569 * Call Ring-0 entry with init code.
570 */
571 for (;;)
572 {
573#ifdef NO_SUPCALLR0VMM
574 //rc = VERR_GENERAL_FAILURE;
575 rc = VINF_SUCCESS;
576#else
577 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
578#endif
579 /*
580 * Flush the logs.
581 */
582#ifdef LOG_ENABLED
583 if ( pVCpu->vmm.s.pR0LoggerR3
584 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
585 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
586#endif
587 if (rc != VINF_VMM_CALL_HOST)
588 break;
589 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
590 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
591 break;
592 /* Resume R0 */
593 }
594
595 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
596 {
597 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
598 if (RT_SUCCESS(rc))
599 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
600 }
601
602 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
603 if (pVM->aCpus[0].vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
604 LogRel(("VMM: Enabled thread-context hooks\n"));
605 else
606 LogRel(("VMM: Thread-context hooks unavailable\n"));
607
608 /*
609 * Send all EMTs to ring-0 to get their logger initialized.
610 */
611 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
612 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, &pVM->aCpus[idCpu]);
613
614 return rc;
615}
616
617
618#ifdef VBOX_WITH_RAW_MODE
619/**
620 * Initializes the RC VMM.
621 *
622 * @returns VBox status code.
623 * @param pVM The cross context VM structure.
624 */
625VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
626{
627 PVMCPU pVCpu = VMMGetCpu(pVM);
628 Assert(pVCpu && pVCpu->idCpu == 0);
629
630 /* In VMX mode, there's no need to init RC. */
631 if (!VM_IS_RAW_MODE_ENABLED(pVM))
632 return VINF_SUCCESS;
633
634 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
635
636 /*
637 * Call VMMRCInit():
638 * -# resolve the address.
639 * -# setup stackframe and EIP to use the trampoline.
640 * -# do a generic hypervisor call.
641 */
642 RTRCPTR RCPtrEP;
643 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP);
644 if (RT_SUCCESS(rc))
645 {
646 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
647 uint64_t u64TS = RTTimeProgramStartNanoTS();
648 CPUMPushHyper(pVCpu, RT_HI_U32(u64TS)); /* Param 4: The program startup TS - Hi. */
649 CPUMPushHyper(pVCpu, RT_LO_U32(u64TS)); /* Param 4: The program startup TS - Lo. */
650 CPUMPushHyper(pVCpu, vmmGetBuildType()); /* Param 3: Version argument. */
651 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
652 CPUMPushHyper(pVCpu, VMMRC_DO_VMMRC_INIT); /* Param 1: Operation. */
653 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
654 CPUMPushHyper(pVCpu, 6 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
655 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
656 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
657 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
658
659 for (;;)
660 {
661#ifdef NO_SUPCALLR0VMM
662 //rc = VERR_GENERAL_FAILURE;
663 rc = VINF_SUCCESS;
664#else
665 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
666#endif
667#ifdef LOG_ENABLED
668 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
669 if ( pLogger
670 && pLogger->offScratch > 0)
671 RTLogFlushRC(NULL, pLogger);
672#endif
673#ifdef VBOX_WITH_RC_RELEASE_LOGGING
674 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
675 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
676 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
677#endif
678 if (rc != VINF_VMM_CALL_HOST)
679 break;
680 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
681 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
682 break;
683 }
684
685 /* Don't trigger assertions or guru if raw-mode is unavailable. */
686 if (rc != VERR_SUPDRV_NO_RAW_MODE_HYPER_V_ROOT)
687 {
688 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
689 {
690 VMMR3FatalDump(pVM, pVCpu, rc);
691 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
692 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
693 }
694 AssertRC(rc);
695 }
696 }
697 return rc;
698}
699#endif /* VBOX_WITH_RAW_MODE */
700
701
702/**
703 * Called when an init phase completes.
704 *
705 * @returns VBox status code.
706 * @param pVM The cross context VM structure.
707 * @param enmWhat Which init phase.
708 */
709VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
710{
711 int rc = VINF_SUCCESS;
712
713 switch (enmWhat)
714 {
715 case VMINITCOMPLETED_RING3:
716 {
717 /*
718 * Set page attributes to r/w for stack pages.
719 */
720 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
721 {
722 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
723 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
724 AssertRCReturn(rc, rc);
725 }
726
727 /*
728 * Create the EMT yield timer.
729 */
730 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
731 AssertRCReturn(rc, rc);
732
733 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
734 AssertRCReturn(rc, rc);
735
736#ifdef VBOX_WITH_NMI
737 /*
738 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
739 */
740 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
741 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
742 AssertRCReturn(rc, rc);
743#endif
744
745#ifdef VBOX_STRICT_VMM_STACK
746 /*
747 * Setup the stack guard pages: Two inaccessible pages at each sides of the
748 * stack to catch over/under-flows.
749 */
750 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
751 {
752 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
753
754 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
755 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
756
757 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
758 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
759 }
760 pVM->vmm.s.fStackGuardsStationed = true;
761#endif
762 break;
763 }
764
765 case VMINITCOMPLETED_HM:
766 {
767 /*
768 * Disable the periodic preemption timers if we can use the
769 * VMX-preemption timer instead.
770 */
771 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
772 && HMR3IsVmxPreemptionTimerUsed(pVM))
773 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
774 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
775
776 /*
777 * Last chance for GIM to update its CPUID leaves if it requires
778 * knowledge/information from HM initialization.
779 */
780 rc = GIMR3InitCompleted(pVM);
781 AssertRCReturn(rc, rc);
782
783 /*
784 * CPUM's post-initialization (print CPUIDs).
785 */
786 CPUMR3LogCpuIds(pVM);
787 break;
788 }
789
790 default: /* shuts up gcc */
791 break;
792 }
793
794 return rc;
795}
796
797
798/**
799 * Terminate the VMM bits.
800 *
801 * @returns VBox status code.
802 * @param pVM The cross context VM structure.
803 */
804VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
805{
806 PVMCPU pVCpu = VMMGetCpu(pVM);
807 Assert(pVCpu && pVCpu->idCpu == 0);
808
809 /*
810 * Call Ring-0 entry with termination code.
811 */
812 int rc;
813 for (;;)
814 {
815#ifdef NO_SUPCALLR0VMM
816 //rc = VERR_GENERAL_FAILURE;
817 rc = VINF_SUCCESS;
818#else
819 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
820#endif
821 /*
822 * Flush the logs.
823 */
824#ifdef LOG_ENABLED
825 if ( pVCpu->vmm.s.pR0LoggerR3
826 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
827 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
828#endif
829 if (rc != VINF_VMM_CALL_HOST)
830 break;
831 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
832 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
833 break;
834 /* Resume R0 */
835 }
836 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
837 {
838 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
839 if (RT_SUCCESS(rc))
840 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
841 }
842
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
846 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
847 }
848 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
849 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
850 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
851 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
852 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
853 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
854 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
855 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
856 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
857 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
858 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
859 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
860 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
861 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
862 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
863 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
864
865#ifdef VBOX_STRICT_VMM_STACK
866 /*
867 * Make the two stack guard pages present again.
868 */
869 if (pVM->vmm.s.fStackGuardsStationed)
870 {
871 for (VMCPUID i = 0; i < pVM->cCpus; i++)
872 {
873 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
874 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
875 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
876 }
877 pVM->vmm.s.fStackGuardsStationed = false;
878 }
879#endif
880
881 vmmTermFormatTypes();
882 return rc;
883}
884
885
886/**
887 * Applies relocations to data and code managed by this
888 * component. This function will be called at init and
889 * whenever the VMM need to relocate it self inside the GC.
890 *
891 * The VMM will need to apply relocations to the core code.
892 *
893 * @param pVM The cross context VM structure.
894 * @param offDelta The relocation delta.
895 */
896VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
897{
898 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
899
900 /*
901 * Recalc the RC address.
902 */
903#ifdef VBOX_WITH_RAW_MODE
904 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
905#endif
906
907 /*
908 * The stack.
909 */
910 for (VMCPUID i = 0; i < pVM->cCpus; i++)
911 {
912 PVMCPU pVCpu = &pVM->aCpus[i];
913
914 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
915
916 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
917 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
918 }
919
920 /*
921 * All the switchers.
922 */
923 vmmR3SwitcherRelocate(pVM, offDelta);
924
925 /*
926 * Get other RC entry points.
927 */
928 if (VM_IS_RAW_MODE_ENABLED(pVM))
929 {
930 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
931 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
932
933 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
934 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
935 }
936
937 /*
938 * Update the logger.
939 */
940 VMMR3UpdateLoggers(pVM);
941}
942
943
944/**
945 * Updates the settings for the RC and R0 loggers.
946 *
947 * @returns VBox status code.
948 * @param pVM The cross context VM structure.
949 */
950VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
951{
952 /*
953 * Simply clone the logger instance (for RC).
954 */
955 int rc = VINF_SUCCESS;
956 RTRCPTR RCPtrLoggerFlush = 0;
957
958 if ( pVM->vmm.s.pRCLoggerR3
959#ifdef VBOX_WITH_RC_RELEASE_LOGGING
960 || pVM->vmm.s.pRCRelLoggerR3
961#endif
962 )
963 {
964 Assert(VM_IS_RAW_MODE_ENABLED(pVM));
965 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
966 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
967 }
968
969 if (pVM->vmm.s.pRCLoggerR3)
970 {
971 Assert(VM_IS_RAW_MODE_ENABLED(pVM));
972 RTRCPTR RCPtrLoggerWrapper = 0;
973 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
974 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
975
976 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
977 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
978 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
979 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
980 }
981
982#ifdef VBOX_WITH_RC_RELEASE_LOGGING
983 if (pVM->vmm.s.pRCRelLoggerR3)
984 {
985 Assert(VM_IS_RAW_MODE_ENABLED(pVM));
986 RTRCPTR RCPtrLoggerWrapper = 0;
987 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
988 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
989
990 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
991 rc = RTLogCloneRC(RTLogRelGetDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
992 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
993 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
994 }
995#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
996
997#ifdef LOG_ENABLED
998 /*
999 * For the ring-0 EMT logger, we use a per-thread logger instance
1000 * in ring-0. Only initialize it once.
1001 */
1002 PRTLOGGER const pDefault = RTLogDefaultInstance();
1003 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1004 {
1005 PVMCPU pVCpu = &pVM->aCpus[i];
1006 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1007 if (pR0LoggerR3)
1008 {
1009 if (!pR0LoggerR3->fCreated)
1010 {
1011 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
1012 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
1013 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
1014
1015 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
1016 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
1017 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
1018
1019 char szR0ThreadName[16];
1020 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
1021 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
1022 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
1023 pfnLoggerWrapper, pfnLoggerFlush,
1024 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
1025 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
1026
1027 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
1028 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
1029 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
1030 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger,
1031 pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
1032 pfnLoggerPrefix, NIL_RTR0PTR);
1033 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
1034
1035 pR0LoggerR3->idCpu = i;
1036 pR0LoggerR3->fCreated = true;
1037 pR0LoggerR3->fFlushingDisabled = false;
1038
1039 }
1040
1041 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
1042 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
1043 AssertRC(rc);
1044 }
1045 }
1046#endif
1047 return rc;
1048}
1049
1050
1051/**
1052 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
1053 *
1054 * @returns Pointer to the buffer.
1055 * @param pVM The cross context VM structure.
1056 */
1057VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
1058{
1059 if (!VM_IS_RAW_MODE_ENABLED(pVM))
1060 return pVM->vmm.s.szRing0AssertMsg1;
1061
1062 RTRCPTR RCPtr;
1063 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
1064 if (RT_SUCCESS(rc))
1065 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1066
1067 return NULL;
1068}
1069
1070
1071/**
1072 * Returns the VMCPU of the specified virtual CPU.
1073 *
1074 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1075 *
1076 * @param pUVM The user mode VM handle.
1077 * @param idCpu The ID of the virtual CPU.
1078 */
1079VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1080{
1081 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1082 AssertReturn(idCpu < pUVM->cCpus, NULL);
1083 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1084 return &pUVM->pVM->aCpus[idCpu];
1085}
1086
1087
1088/**
1089 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1090 *
1091 * @returns Pointer to the buffer.
1092 * @param pVM The cross context VM structure.
1093 */
1094VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1095{
1096 if (!VM_IS_RAW_MODE_ENABLED(pVM))
1097 return pVM->vmm.s.szRing0AssertMsg2;
1098
1099 RTRCPTR RCPtr;
1100 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
1101 if (RT_SUCCESS(rc))
1102 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1103
1104 return NULL;
1105}
1106
1107
1108/**
1109 * Execute state save operation.
1110 *
1111 * @returns VBox status code.
1112 * @param pVM The cross context VM structure.
1113 * @param pSSM SSM operation handle.
1114 */
1115static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1116{
1117 LogFlow(("vmmR3Save:\n"));
1118
1119 /*
1120 * Save the started/stopped state of all CPUs except 0 as it will always
1121 * be running. This avoids breaking the saved state version. :-)
1122 */
1123 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1124 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1125
1126 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1127}
1128
1129
1130/**
1131 * Execute state load operation.
1132 *
1133 * @returns VBox status code.
1134 * @param pVM The cross context VM structure.
1135 * @param pSSM SSM operation handle.
1136 * @param uVersion Data layout version.
1137 * @param uPass The data pass.
1138 */
1139static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1140{
1141 LogFlow(("vmmR3Load:\n"));
1142 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1143
1144 /*
1145 * Validate version.
1146 */
1147 if ( uVersion != VMM_SAVED_STATE_VERSION
1148 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1149 {
1150 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1151 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1152 }
1153
1154 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1155 {
1156 /* Ignore the stack bottom, stack pointer and stack bits. */
1157 RTRCPTR RCPtrIgnored;
1158 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1159 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1160#ifdef RT_OS_DARWIN
1161 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1162 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1163 && SSMR3HandleRevision(pSSM) >= 48858
1164 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1165 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1166 )
1167 SSMR3Skip(pSSM, 16384);
1168 else
1169 SSMR3Skip(pSSM, 8192);
1170#else
1171 SSMR3Skip(pSSM, 8192);
1172#endif
1173 }
1174
1175 /*
1176 * Restore the VMCPU states. VCPU 0 is always started.
1177 */
1178 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1179 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1180 {
1181 bool fStarted;
1182 int rc = SSMR3GetBool(pSSM, &fStarted);
1183 if (RT_FAILURE(rc))
1184 return rc;
1185 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1186 }
1187
1188 /* terminator */
1189 uint32_t u32;
1190 int rc = SSMR3GetU32(pSSM, &u32);
1191 if (RT_FAILURE(rc))
1192 return rc;
1193 if (u32 != UINT32_MAX)
1194 {
1195 AssertMsgFailed(("u32=%#x\n", u32));
1196 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1197 }
1198 return VINF_SUCCESS;
1199}
1200
1201
1202#ifdef VBOX_WITH_RAW_MODE
1203/**
1204 * Resolve a builtin RC symbol.
1205 *
1206 * Called by PDM when loading or relocating RC modules.
1207 *
1208 * @returns VBox status
1209 * @param pVM The cross context VM structure.
1210 * @param pszSymbol Symbol to resolve.
1211 * @param pRCPtrValue Where to store the symbol value.
1212 *
1213 * @remark This has to work before VMMR3Relocate() is called.
1214 */
1215VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1216{
1217 if (!strcmp(pszSymbol, "g_Logger"))
1218 {
1219 if (pVM->vmm.s.pRCLoggerR3)
1220 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1221 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1222 }
1223 else if (!strcmp(pszSymbol, "g_RelLogger"))
1224 {
1225# ifdef VBOX_WITH_RC_RELEASE_LOGGING
1226 if (pVM->vmm.s.pRCRelLoggerR3)
1227 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1228 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1229# else
1230 *pRCPtrValue = NIL_RTRCPTR;
1231# endif
1232 }
1233 else
1234 return VERR_SYMBOL_NOT_FOUND;
1235 return VINF_SUCCESS;
1236}
1237#endif /* VBOX_WITH_RAW_MODE */
1238
1239
1240/**
1241 * Suspends the CPU yielder.
1242 *
1243 * @param pVM The cross context VM structure.
1244 */
1245VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1246{
1247 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1248 if (!pVM->vmm.s.cYieldResumeMillies)
1249 {
1250 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1251 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1252 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1253 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1254 else
1255 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1256 TMTimerStop(pVM->vmm.s.pYieldTimer);
1257 }
1258 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1259}
1260
1261
1262/**
1263 * Stops the CPU yielder.
1264 *
1265 * @param pVM The cross context VM structure.
1266 */
1267VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1268{
1269 if (!pVM->vmm.s.cYieldResumeMillies)
1270 TMTimerStop(pVM->vmm.s.pYieldTimer);
1271 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1272 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1273}
1274
1275
1276/**
1277 * Resumes the CPU yielder when it has been a suspended or stopped.
1278 *
1279 * @param pVM The cross context VM structure.
1280 */
1281VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1282{
1283 if (pVM->vmm.s.cYieldResumeMillies)
1284 {
1285 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1286 pVM->vmm.s.cYieldResumeMillies = 0;
1287 }
1288}
1289
1290
1291/**
1292 * Internal timer callback function.
1293 *
1294 * @param pVM The cross context VM structure.
1295 * @param pTimer The timer handle.
1296 * @param pvUser User argument specified upon timer creation.
1297 */
1298static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1299{
1300 NOREF(pvUser);
1301
1302 /*
1303 * This really needs some careful tuning. While we shouldn't be too greedy since
1304 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1305 * because that'll cause us to stop up.
1306 *
1307 * The current logic is to use the default interval when there is no lag worth
1308 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1309 *
1310 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1311 * so the lag is up to date.)
1312 */
1313 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1314 if ( u64Lag < 50000000 /* 50ms */
1315 || ( u64Lag < 1000000000 /* 1s */
1316 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1317 )
1318 {
1319 uint64_t u64Elapsed = RTTimeNanoTS();
1320 pVM->vmm.s.u64LastYield = u64Elapsed;
1321
1322 RTThreadYield();
1323
1324#ifdef LOG_ENABLED
1325 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1326 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1327#endif
1328 }
1329 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1330}
1331
1332
1333#ifdef VBOX_WITH_RAW_MODE
1334/**
1335 * Executes guest code in the raw-mode context.
1336 *
1337 * @param pVM The cross context VM structure.
1338 * @param pVCpu The cross context virtual CPU structure.
1339 */
1340VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1341{
1342 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1343
1344 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1345
1346 /*
1347 * Set the hypervisor to resume executing a CPUM resume function
1348 * in CPUMRCA.asm.
1349 */
1350 CPUMSetHyperState(pVCpu,
1351 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1352 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1353 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1354 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1355 0, /* eax */
1356 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1357
1358 /*
1359 * We hide log flushes (outer) and hypervisor interrupts (inner).
1360 */
1361 for (;;)
1362 {
1363#ifdef VBOX_STRICT
1364 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1365 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1366 PGMMapCheck(pVM);
1367# ifdef VBOX_WITH_SAFE_STR
1368 SELMR3CheckShadowTR(pVM);
1369# endif
1370#endif
1371 int rc;
1372 do
1373 {
1374#ifdef NO_SUPCALLR0VMM
1375 rc = VERR_GENERAL_FAILURE;
1376#else
1377 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1378 if (RT_LIKELY(rc == VINF_SUCCESS))
1379 rc = pVCpu->vmm.s.iLastGZRc;
1380#endif
1381 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1382
1383 /*
1384 * Flush the logs.
1385 */
1386#ifdef LOG_ENABLED
1387 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1388 if ( pLogger
1389 && pLogger->offScratch > 0)
1390 RTLogFlushRC(NULL, pLogger);
1391#endif
1392#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1393 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1394 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1395 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
1396#endif
1397 if (rc != VINF_VMM_CALL_HOST)
1398 {
1399 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1400 return rc;
1401 }
1402 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1403 if (RT_FAILURE(rc))
1404 return rc;
1405 /* Resume GC */
1406 }
1407}
1408#endif /* VBOX_WITH_RAW_MODE */
1409
1410
1411/**
1412 * Executes guest code (Intel VT-x and AMD-V).
1413 *
1414 * @param pVM The cross context VM structure.
1415 * @param pVCpu The cross context virtual CPU structure.
1416 */
1417VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1418{
1419 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1420
1421 for (;;)
1422 {
1423 int rc;
1424 do
1425 {
1426#ifdef NO_SUPCALLR0VMM
1427 rc = VERR_GENERAL_FAILURE;
1428#else
1429 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1430 if (RT_LIKELY(rc == VINF_SUCCESS))
1431 rc = pVCpu->vmm.s.iLastGZRc;
1432#endif
1433 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1434
1435#if 0 /** @todo triggers too often */
1436 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1437#endif
1438
1439#ifdef LOG_ENABLED
1440 /*
1441 * Flush the log
1442 */
1443 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1444 if ( pR0LoggerR3
1445 && pR0LoggerR3->Logger.offScratch > 0)
1446 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1447#endif /* !LOG_ENABLED */
1448 if (rc != VINF_VMM_CALL_HOST)
1449 {
1450 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1451 return rc;
1452 }
1453 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1454 if (RT_FAILURE(rc))
1455 return rc;
1456 /* Resume R0 */
1457 }
1458}
1459
1460
1461/**
1462 * Perform one of the fast I/O control VMMR0 operation.
1463 *
1464 * @returns VBox strict status code.
1465 * @param pVM The cross context VM structure.
1466 * @param pVCpu The cross context virtual CPU structure.
1467 * @param enmOperation The operation to perform.
1468 */
1469VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1470{
1471 for (;;)
1472 {
1473 VBOXSTRICTRC rcStrict;
1474 do
1475 {
1476#ifdef NO_SUPCALLR0VMM
1477 rcStrict = VERR_GENERAL_FAILURE;
1478#else
1479 rcStrict = SUPR3CallVMMR0Fast(pVM->pVMR0, enmOperation, pVCpu->idCpu);
1480 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1481 rcStrict = pVCpu->vmm.s.iLastGZRc;
1482#endif
1483 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1484
1485#ifdef LOG_ENABLED
1486 /*
1487 * Flush the log
1488 */
1489 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1490 if ( pR0LoggerR3
1491 && pR0LoggerR3->Logger.offScratch > 0)
1492 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1493#endif /* !LOG_ENABLED */
1494 if (rcStrict != VINF_VMM_CALL_HOST)
1495 return rcStrict;
1496 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1497 if (RT_FAILURE(rc))
1498 return rc;
1499 /* Resume R0 */
1500 }
1501}
1502
1503
1504/**
1505 * VCPU worker for VMMSendStartupIpi.
1506 *
1507 * @param pVM The cross context VM structure.
1508 * @param idCpu Virtual CPU to perform SIPI on.
1509 * @param uVector The SIPI vector.
1510 */
1511static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1512{
1513 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1514 VMCPU_ASSERT_EMT(pVCpu);
1515
1516 /*
1517 * Active, halt and shutdown states of the processor all block SIPIs.
1518 * So we can safely discard the SIPI. See Intel spec. 26.6.2 "Activity State".
1519 */
1520 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1521 return VERR_ACCESS_DENIED;
1522
1523
1524 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1525
1526 pCtx->cs.Sel = uVector << 8;
1527 pCtx->cs.ValidSel = uVector << 8;
1528 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1529 pCtx->cs.u64Base = uVector << 12;
1530 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1531 pCtx->rip = 0;
1532
1533 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1534
1535# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1536 EMSetState(pVCpu, EMSTATE_HALTED);
1537 return VINF_EM_RESCHEDULE;
1538# else /* And if we go the VMCPU::enmState way it can stay here. */
1539 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1540 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1541 return VINF_SUCCESS;
1542# endif
1543}
1544
1545
1546static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1547{
1548 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1549 VMCPU_ASSERT_EMT(pVCpu);
1550
1551 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1552
1553 /** @todo Figure out how to handle a nested-guest intercepts here for INIT
1554 * IPI (e.g. SVM_EXIT_INIT). */
1555
1556 PGMR3ResetCpu(pVM, pVCpu);
1557 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1558 APICR3InitIpi(pVCpu);
1559 TRPMR3ResetCpu(pVCpu);
1560 CPUMR3ResetCpu(pVM, pVCpu);
1561 EMR3ResetCpu(pVCpu);
1562 HMR3ResetCpu(pVCpu);
1563 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1564
1565 /* This will trickle up on the target EMT. */
1566 return VINF_EM_WAIT_SIPI;
1567}
1568
1569
1570/**
1571 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1572 * vector-dependent state and unhalting processor.
1573 *
1574 * @param pVM The cross context VM structure.
1575 * @param idCpu Virtual CPU to perform SIPI on.
1576 * @param uVector SIPI vector.
1577 */
1578VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1579{
1580 AssertReturnVoid(idCpu < pVM->cCpus);
1581
1582 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1583 AssertRC(rc);
1584}
1585
1586
1587/**
1588 * Sends init IPI to the virtual CPU.
1589 *
1590 * @param pVM The cross context VM structure.
1591 * @param idCpu Virtual CPU to perform int IPI on.
1592 */
1593VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1594{
1595 AssertReturnVoid(idCpu < pVM->cCpus);
1596
1597 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1598 AssertRC(rc);
1599}
1600
1601
1602/**
1603 * Registers the guest memory range that can be used for patching.
1604 *
1605 * @returns VBox status code.
1606 * @param pVM The cross context VM structure.
1607 * @param pPatchMem Patch memory range.
1608 * @param cbPatchMem Size of the memory range.
1609 */
1610VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1611{
1612 VM_ASSERT_EMT(pVM);
1613 if (HMIsEnabled(pVM))
1614 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1615
1616 return VERR_NOT_SUPPORTED;
1617}
1618
1619
1620/**
1621 * Deregisters the guest memory range that can be used for patching.
1622 *
1623 * @returns VBox status code.
1624 * @param pVM The cross context VM structure.
1625 * @param pPatchMem Patch memory range.
1626 * @param cbPatchMem Size of the memory range.
1627 */
1628VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1629{
1630 if (HMIsEnabled(pVM))
1631 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1632
1633 return VINF_SUCCESS;
1634}
1635
1636
1637/**
1638 * Common recursion handler for the other EMTs.
1639 *
1640 * @returns Strict VBox status code.
1641 * @param pVM The cross context VM structure.
1642 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1643 * @param rcStrict Current status code to be combined with the one
1644 * from this recursion and returned.
1645 */
1646static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1647{
1648 int rc2;
1649
1650 /*
1651 * We wait here while the initiator of this recursion reconfigures
1652 * everything. The last EMT to get in signals the initiator.
1653 */
1654 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1655 {
1656 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1657 AssertLogRelRC(rc2);
1658 }
1659
1660 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1661 AssertLogRelRC(rc2);
1662
1663 /*
1664 * Do the normal rendezvous processing.
1665 */
1666 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1667 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1668
1669 /*
1670 * Wait for the initiator to restore everything.
1671 */
1672 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1673 AssertLogRelRC(rc2);
1674
1675 /*
1676 * Last thread out of here signals the initiator.
1677 */
1678 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1679 {
1680 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1681 AssertLogRelRC(rc2);
1682 }
1683
1684 /*
1685 * Merge status codes and return.
1686 */
1687 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1688 if ( rcStrict2 != VINF_SUCCESS
1689 && ( rcStrict == VINF_SUCCESS
1690 || rcStrict > rcStrict2))
1691 rcStrict = rcStrict2;
1692 return rcStrict;
1693}
1694
1695
1696/**
1697 * Count returns and have the last non-caller EMT wake up the caller.
1698 *
1699 * @returns VBox strict informational status code for EM scheduling. No failures
1700 * will be returned here, those are for the caller only.
1701 *
1702 * @param pVM The cross context VM structure.
1703 * @param rcStrict The current accumulated recursive status code,
1704 * to be merged with i32RendezvousStatus and
1705 * returned.
1706 */
1707DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1708{
1709 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1710
1711 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1712 if (cReturned == pVM->cCpus - 1U)
1713 {
1714 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1715 AssertLogRelRC(rc);
1716 }
1717
1718 /*
1719 * Merge the status codes, ignoring error statuses in this code path.
1720 */
1721 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1722 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1723 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1724 VERR_IPE_UNEXPECTED_INFO_STATUS);
1725
1726 if (RT_SUCCESS(rcStrict2))
1727 {
1728 if ( rcStrict2 != VINF_SUCCESS
1729 && ( rcStrict == VINF_SUCCESS
1730 || rcStrict > rcStrict2))
1731 rcStrict = rcStrict2;
1732 }
1733 return rcStrict;
1734}
1735
1736
1737/**
1738 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1739 *
1740 * @returns VBox strict informational status code for EM scheduling. No failures
1741 * will be returned here, those are for the caller only. When
1742 * fIsCaller is set, VINF_SUCCESS is always returned.
1743 *
1744 * @param pVM The cross context VM structure.
1745 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1746 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1747 * not.
1748 * @param fFlags The flags.
1749 * @param pfnRendezvous The callback.
1750 * @param pvUser The user argument for the callback.
1751 */
1752static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1753 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1754{
1755 int rc;
1756 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1757
1758 /*
1759 * Enter, the last EMT triggers the next callback phase.
1760 */
1761 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1762 if (cEntered != pVM->cCpus)
1763 {
1764 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1765 {
1766 /* Wait for our turn. */
1767 for (;;)
1768 {
1769 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1770 AssertLogRelRC(rc);
1771 if (!pVM->vmm.s.fRendezvousRecursion)
1772 break;
1773 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1774 }
1775 }
1776 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1777 {
1778 /* Wait for the last EMT to arrive and wake everyone up. */
1779 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1780 AssertLogRelRC(rc);
1781 Assert(!pVM->vmm.s.fRendezvousRecursion);
1782 }
1783 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1784 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1785 {
1786 /* Wait for our turn. */
1787 for (;;)
1788 {
1789 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1790 AssertLogRelRC(rc);
1791 if (!pVM->vmm.s.fRendezvousRecursion)
1792 break;
1793 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1794 }
1795 }
1796 else
1797 {
1798 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1799
1800 /*
1801 * The execute once is handled specially to optimize the code flow.
1802 *
1803 * The last EMT to arrive will perform the callback and the other
1804 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1805 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1806 * returns, that EMT will initiate the normal return sequence.
1807 */
1808 if (!fIsCaller)
1809 {
1810 for (;;)
1811 {
1812 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1813 AssertLogRelRC(rc);
1814 if (!pVM->vmm.s.fRendezvousRecursion)
1815 break;
1816 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1817 }
1818
1819 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1820 }
1821 return VINF_SUCCESS;
1822 }
1823 }
1824 else
1825 {
1826 /*
1827 * All EMTs are waiting, clear the FF and take action according to the
1828 * execution method.
1829 */
1830 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1831
1832 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1833 {
1834 /* Wake up everyone. */
1835 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1836 AssertLogRelRC(rc);
1837 }
1838 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1839 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1840 {
1841 /* Figure out who to wake up and wake it up. If it's ourself, then
1842 it's easy otherwise wait for our turn. */
1843 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1844 ? 0
1845 : pVM->cCpus - 1U;
1846 if (pVCpu->idCpu != iFirst)
1847 {
1848 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1849 AssertLogRelRC(rc);
1850 for (;;)
1851 {
1852 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1853 AssertLogRelRC(rc);
1854 if (!pVM->vmm.s.fRendezvousRecursion)
1855 break;
1856 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1857 }
1858 }
1859 }
1860 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1861 }
1862
1863
1864 /*
1865 * Do the callback and update the status if necessary.
1866 */
1867 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1868 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1869 {
1870 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1871 if (rcStrict2 != VINF_SUCCESS)
1872 {
1873 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1874 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1875 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1876 int32_t i32RendezvousStatus;
1877 do
1878 {
1879 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1880 if ( rcStrict2 == i32RendezvousStatus
1881 || RT_FAILURE(i32RendezvousStatus)
1882 || ( i32RendezvousStatus != VINF_SUCCESS
1883 && rcStrict2 > i32RendezvousStatus))
1884 break;
1885 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1886 }
1887 }
1888
1889 /*
1890 * Increment the done counter and take action depending on whether we're
1891 * the last to finish callback execution.
1892 */
1893 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1894 if ( cDone != pVM->cCpus
1895 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1896 {
1897 /* Signal the next EMT? */
1898 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1899 {
1900 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1901 AssertLogRelRC(rc);
1902 }
1903 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1904 {
1905 Assert(cDone == pVCpu->idCpu + 1U);
1906 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1907 AssertLogRelRC(rc);
1908 }
1909 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1910 {
1911 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1912 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1913 AssertLogRelRC(rc);
1914 }
1915
1916 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1917 if (!fIsCaller)
1918 {
1919 for (;;)
1920 {
1921 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1922 AssertLogRelRC(rc);
1923 if (!pVM->vmm.s.fRendezvousRecursion)
1924 break;
1925 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1926 }
1927 }
1928 }
1929 else
1930 {
1931 /* Callback execution is all done, tell the rest to return. */
1932 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1933 AssertLogRelRC(rc);
1934 }
1935
1936 if (!fIsCaller)
1937 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1938 return rcStrictRecursion;
1939}
1940
1941
1942/**
1943 * Called in response to VM_FF_EMT_RENDEZVOUS.
1944 *
1945 * @returns VBox strict status code - EM scheduling. No errors will be returned
1946 * here, nor will any non-EM scheduling status codes be returned.
1947 *
1948 * @param pVM The cross context VM structure.
1949 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1950 *
1951 * @thread EMT
1952 */
1953VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1954{
1955 Assert(!pVCpu->vmm.s.fInRendezvous);
1956 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1957 pVCpu->vmm.s.fInRendezvous = true;
1958 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1959 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1960 pVCpu->vmm.s.fInRendezvous = false;
1961 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1962 return VBOXSTRICTRC_TODO(rcStrict);
1963}
1964
1965
1966/**
1967 * Helper for resetting an single wakeup event sempahore.
1968 *
1969 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1970 * @param hEvt The event semaphore to reset.
1971 */
1972static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1973{
1974 for (uint32_t cLoops = 0; ; cLoops++)
1975 {
1976 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1977 if (rc != VINF_SUCCESS || cLoops > _4K)
1978 return rc;
1979 }
1980}
1981
1982
1983/**
1984 * Worker for VMMR3EmtRendezvous that handles recursion.
1985 *
1986 * @returns VBox strict status code. This will be the first error,
1987 * VINF_SUCCESS, or an EM scheduling status code.
1988 *
1989 * @param pVM The cross context VM structure.
1990 * @param pVCpu The cross context virtual CPU structure of the
1991 * calling EMT.
1992 * @param fFlags Flags indicating execution methods. See
1993 * grp_VMMR3EmtRendezvous_fFlags.
1994 * @param pfnRendezvous The callback.
1995 * @param pvUser User argument for the callback.
1996 *
1997 * @thread EMT(pVCpu)
1998 */
1999static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
2000 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2001{
2002 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
2003 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2004 Assert(pVCpu->vmm.s.fInRendezvous);
2005
2006 /*
2007 * Save the current state.
2008 */
2009 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2010 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
2011 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
2012 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
2013 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
2014
2015 /*
2016 * Check preconditions and save the current state.
2017 */
2018 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2019 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2020 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2021 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
2022 VERR_INTERNAL_ERROR);
2023 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
2024 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
2025
2026 /*
2027 * Reset the recursion prep and pop semaphores.
2028 */
2029 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
2030 AssertLogRelRCReturn(rc, rc);
2031 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2032 AssertLogRelRCReturn(rc, rc);
2033 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
2034 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2035 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
2036 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2037
2038 /*
2039 * Usher the other thread into the recursion routine.
2040 */
2041 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
2042 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
2043
2044 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
2045 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
2046 while (cLeft-- > 0)
2047 {
2048 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
2049 AssertLogRelRC(rc);
2050 }
2051 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
2052 {
2053 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
2054 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
2055 {
2056 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
2057 AssertLogRelRC(rc);
2058 }
2059 }
2060 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
2061 {
2062 Assert(cLeft == pVCpu->idCpu);
2063 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
2064 {
2065 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
2066 AssertLogRelRC(rc);
2067 }
2068 }
2069 else
2070 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
2071 VERR_INTERNAL_ERROR_4);
2072
2073 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
2074 AssertLogRelRC(rc);
2075 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
2076 AssertLogRelRC(rc);
2077
2078
2079 /*
2080 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
2081 */
2082 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
2083 {
2084 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
2085 AssertLogRelRC(rc);
2086 }
2087
2088 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
2089
2090 /*
2091 * Clear the slate and setup the new rendezvous.
2092 */
2093 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2094 {
2095 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
2096 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2097 }
2098 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2099 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2100 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2101 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2102
2103 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2104 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2105 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2106 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2107 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2108 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2109 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2110 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
2111
2112 /*
2113 * We're ready to go now, do normal rendezvous processing.
2114 */
2115 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
2116 AssertLogRelRC(rc);
2117
2118 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
2119
2120 /*
2121 * The caller waits for the other EMTs to be done, return and waiting on the
2122 * pop semaphore.
2123 */
2124 for (;;)
2125 {
2126 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2127 AssertLogRelRC(rc);
2128 if (!pVM->vmm.s.fRendezvousRecursion)
2129 break;
2130 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
2131 }
2132
2133 /*
2134 * Get the return code and merge it with the above recursion status.
2135 */
2136 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
2137 if ( rcStrict2 != VINF_SUCCESS
2138 && ( rcStrict == VINF_SUCCESS
2139 || rcStrict > rcStrict2))
2140 rcStrict = rcStrict2;
2141
2142 /*
2143 * Restore the parent rendezvous state.
2144 */
2145 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2146 {
2147 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
2148 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2149 }
2150 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2151 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2152 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2153 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2154
2155 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
2156 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2157 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
2158 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
2159 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
2160 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
2161 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
2162
2163 /*
2164 * Usher the other EMTs back to their parent recursion routine, waiting
2165 * for them to all get there before we return (makes sure they've been
2166 * scheduled and are past the pop event sem, see below).
2167 */
2168 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
2169 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2170 AssertLogRelRC(rc);
2171
2172 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
2173 {
2174 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2175 AssertLogRelRC(rc);
2176 }
2177
2178 /*
2179 * We must reset the pop semaphore on the way out (doing the pop caller too,
2180 * just in case). The parent may be another recursion.
2181 */
2182 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2183 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2184
2185 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2186
2187 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2188 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2189 return rcStrict;
2190}
2191
2192
2193/**
2194 * EMT rendezvous.
2195 *
2196 * Gathers all the EMTs and execute some code on each of them, either in a one
2197 * by one fashion or all at once.
2198 *
2199 * @returns VBox strict status code. This will be the first error,
2200 * VINF_SUCCESS, or an EM scheduling status code.
2201 *
2202 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2203 * doesn't support it or if the recursion is too deep.
2204 *
2205 * @param pVM The cross context VM structure.
2206 * @param fFlags Flags indicating execution methods. See
2207 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2208 * descending and ascending rendezvous types support
2209 * recursion from inside @a pfnRendezvous.
2210 * @param pfnRendezvous The callback.
2211 * @param pvUser User argument for the callback.
2212 *
2213 * @thread Any.
2214 */
2215VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2216{
2217 /*
2218 * Validate input.
2219 */
2220 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2221 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2222 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2223 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2224 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2225 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2226 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2227 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2228
2229 VBOXSTRICTRC rcStrict;
2230 PVMCPU pVCpu = VMMGetCpu(pVM);
2231 if (!pVCpu)
2232 {
2233 /*
2234 * Forward the request to an EMT thread.
2235 */
2236 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2237 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2238 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2239 else
2240 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2241 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2242 }
2243 else if ( pVM->cCpus == 1
2244 || ( pVM->enmVMState == VMSTATE_DESTROYING
2245 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2246 {
2247 /*
2248 * Shortcut for the single EMT case.
2249 *
2250 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2251 * during vmR3Destroy after other emulation threads have started terminating.
2252 */
2253 if (!pVCpu->vmm.s.fInRendezvous)
2254 {
2255 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2256 pVCpu->vmm.s.fInRendezvous = true;
2257 pVM->vmm.s.fRendezvousFlags = fFlags;
2258 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2259 pVCpu->vmm.s.fInRendezvous = false;
2260 }
2261 else
2262 {
2263 /* Recursion. Do the same checks as in the SMP case. */
2264 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2265 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2266 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2267 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2268 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2269 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2270 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2271 , VERR_DEADLOCK);
2272
2273 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2274 pVM->vmm.s.cRendezvousRecursions++;
2275 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2276 pVM->vmm.s.fRendezvousFlags = fFlags;
2277
2278 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2279
2280 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2281 pVM->vmm.s.cRendezvousRecursions--;
2282 }
2283 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2284 }
2285 else
2286 {
2287 /*
2288 * Spin lock. If busy, check for recursion, if not recursing wait for
2289 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2290 */
2291 int rc;
2292 rcStrict = VINF_SUCCESS;
2293 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2294 {
2295 /* Allow recursion in some cases. */
2296 if ( pVCpu->vmm.s.fInRendezvous
2297 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2298 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2299 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2300 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2301 ))
2302 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2303
2304 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2305 VERR_DEADLOCK);
2306
2307 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2308 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2309 {
2310 if (VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS))
2311 {
2312 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2313 if ( rc != VINF_SUCCESS
2314 && ( rcStrict == VINF_SUCCESS
2315 || rcStrict > rc))
2316 rcStrict = rc;
2317 /** @todo Perhaps deal with termination here? */
2318 }
2319 ASMNopPause();
2320 }
2321 }
2322
2323 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2324 Assert(!VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS));
2325 Assert(!pVCpu->vmm.s.fInRendezvous);
2326 pVCpu->vmm.s.fInRendezvous = true;
2327
2328 /*
2329 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2330 */
2331 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2332 {
2333 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2334 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2335 }
2336 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2337 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2338 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2339 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2340 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2341 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2342 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2343 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2344 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2345 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2346 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2347
2348 /*
2349 * Set the FF and poke the other EMTs.
2350 */
2351 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2352 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2353
2354 /*
2355 * Do the same ourselves.
2356 */
2357 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2358
2359 /*
2360 * The caller waits for the other EMTs to be done and return before doing
2361 * the cleanup. This makes away with wakeup / reset races we would otherwise
2362 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2363 */
2364 for (;;)
2365 {
2366 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2367 AssertLogRelRC(rc);
2368 if (!pVM->vmm.s.fRendezvousRecursion)
2369 break;
2370 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2371 }
2372
2373 /*
2374 * Get the return code and clean up a little bit.
2375 */
2376 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2377 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2378
2379 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2380 pVCpu->vmm.s.fInRendezvous = false;
2381
2382 /*
2383 * Merge rcStrict, rcStrict2 and rcStrict3.
2384 */
2385 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2386 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2387 if ( rcStrict2 != VINF_SUCCESS
2388 && ( rcStrict == VINF_SUCCESS
2389 || rcStrict > rcStrict2))
2390 rcStrict = rcStrict2;
2391 if ( rcStrict3 != VINF_SUCCESS
2392 && ( rcStrict == VINF_SUCCESS
2393 || rcStrict > rcStrict3))
2394 rcStrict = rcStrict3;
2395 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2396 }
2397
2398 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2399 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2400 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2401 VERR_IPE_UNEXPECTED_INFO_STATUS);
2402 return VBOXSTRICTRC_VAL(rcStrict);
2403}
2404
2405
2406/**
2407 * Read from the ring 0 jump buffer stack.
2408 *
2409 * @returns VBox status code.
2410 *
2411 * @param pVM The cross context VM structure.
2412 * @param idCpu The ID of the source CPU context (for the address).
2413 * @param R0Addr Where to start reading.
2414 * @param pvBuf Where to store the data we've read.
2415 * @param cbRead The number of bytes to read.
2416 */
2417VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2418{
2419 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2420 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2421
2422#ifdef VMM_R0_SWITCH_STACK
2423 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2424#else
2425 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2426#endif
2427 if ( off > VMM_STACK_SIZE
2428 || off + cbRead >= VMM_STACK_SIZE)
2429 return VERR_INVALID_POINTER;
2430
2431 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2432 return VINF_SUCCESS;
2433}
2434
2435#ifdef VBOX_WITH_RAW_MODE
2436
2437/**
2438 * Calls a RC function.
2439 *
2440 * @param pVM The cross context VM structure.
2441 * @param RCPtrEntry The address of the RC function.
2442 * @param cArgs The number of arguments in the ....
2443 * @param ... Arguments to the function.
2444 */
2445VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
2446{
2447 va_list args;
2448 va_start(args, cArgs);
2449 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
2450 va_end(args);
2451 return rc;
2452}
2453
2454
2455/**
2456 * Calls a RC function.
2457 *
2458 * @param pVM The cross context VM structure.
2459 * @param RCPtrEntry The address of the RC function.
2460 * @param cArgs The number of arguments in the ....
2461 * @param args Arguments to the function.
2462 */
2463VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
2464{
2465 /* Raw mode implies 1 VCPU. */
2466 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2467 PVMCPU pVCpu = &pVM->aCpus[0];
2468
2469 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
2470
2471 /*
2472 * Setup the call frame using the trampoline.
2473 */
2474 CPUMSetHyperState(pVCpu,
2475 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
2476 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
2477 RCPtrEntry, /* eax */
2478 cArgs /* edx */
2479 );
2480
2481#if 0
2482 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2483#endif
2484 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
2485 int i = cArgs;
2486 while (i-- > 0)
2487 *pFrame++ = va_arg(args, RTGCUINTPTR32);
2488
2489 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
2490 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
2491
2492 /*
2493 * We hide log flushes (outer) and hypervisor interrupts (inner).
2494 */
2495 for (;;)
2496 {
2497 int rc;
2498 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2499 do
2500 {
2501#ifdef NO_SUPCALLR0VMM
2502 rc = VERR_GENERAL_FAILURE;
2503#else
2504 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2505 if (RT_LIKELY(rc == VINF_SUCCESS))
2506 rc = pVCpu->vmm.s.iLastGZRc;
2507#endif
2508 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2509
2510 /*
2511 * Flush the loggers.
2512 */
2513#ifdef LOG_ENABLED
2514 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2515 if ( pLogger
2516 && pLogger->offScratch > 0)
2517 RTLogFlushRC(NULL, pLogger);
2518#endif
2519#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2520 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2521 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2522 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2523#endif
2524 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2525 VMMR3FatalDump(pVM, pVCpu, rc);
2526 if (rc != VINF_VMM_CALL_HOST)
2527 {
2528 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
2529 return rc;
2530 }
2531 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2532 if (RT_FAILURE(rc))
2533 return rc;
2534 }
2535}
2536
2537#endif /* VBOX_WITH_RAW_MODE */
2538
2539/**
2540 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2541 *
2542 * @returns VBox status code.
2543 * @param pVM The cross context VM structure.
2544 * @param uOperation Operation to execute.
2545 * @param u64Arg Constant argument.
2546 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2547 * details.
2548 */
2549VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2550{
2551 PVMCPU pVCpu = VMMGetCpu(pVM);
2552 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2553 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2554}
2555
2556
2557/**
2558 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2559 *
2560 * @returns VBox status code.
2561 * @param pVM The cross context VM structure.
2562 * @param pVCpu The cross context VM structure.
2563 * @param enmOperation Operation to execute.
2564 * @param u64Arg Constant argument.
2565 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2566 * details.
2567 */
2568VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2569{
2570 int rc;
2571 for (;;)
2572 {
2573#ifdef NO_SUPCALLR0VMM
2574 rc = VERR_GENERAL_FAILURE;
2575#else
2576 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2577#endif
2578 /*
2579 * Flush the logs.
2580 */
2581#ifdef LOG_ENABLED
2582 if ( pVCpu->vmm.s.pR0LoggerR3
2583 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
2584 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
2585#endif
2586 if (rc != VINF_VMM_CALL_HOST)
2587 break;
2588 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2589 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2590 break;
2591 /* Resume R0 */
2592 }
2593
2594 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2595 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2596 VERR_IPE_UNEXPECTED_INFO_STATUS);
2597 return rc;
2598}
2599
2600
2601#ifdef VBOX_WITH_RAW_MODE
2602/**
2603 * Resumes executing hypervisor code when interrupted by a queue flush or a
2604 * debug event.
2605 *
2606 * @returns VBox status code.
2607 * @param pVM The cross context VM structure.
2608 * @param pVCpu The cross context virtual CPU structure.
2609 */
2610VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2611{
2612 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2613 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2614
2615 /*
2616 * We hide log flushes (outer) and hypervisor interrupts (inner).
2617 */
2618 for (;;)
2619 {
2620 int rc;
2621 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2622 do
2623 {
2624# ifdef NO_SUPCALLR0VMM
2625 rc = VERR_GENERAL_FAILURE;
2626# else
2627 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2628 if (RT_LIKELY(rc == VINF_SUCCESS))
2629 rc = pVCpu->vmm.s.iLastGZRc;
2630# endif
2631 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2632
2633 /*
2634 * Flush the loggers.
2635 */
2636# ifdef LOG_ENABLED
2637 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2638 if ( pLogger
2639 && pLogger->offScratch > 0)
2640 RTLogFlushRC(NULL, pLogger);
2641# endif
2642# ifdef VBOX_WITH_RC_RELEASE_LOGGING
2643 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2644 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2645 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2646# endif
2647 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2648 VMMR3FatalDump(pVM, pVCpu, rc);
2649 if (rc != VINF_VMM_CALL_HOST)
2650 {
2651 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2652 return rc;
2653 }
2654 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2655 if (RT_FAILURE(rc))
2656 return rc;
2657 }
2658}
2659#endif /* VBOX_WITH_RAW_MODE */
2660
2661
2662/**
2663 * Service a call to the ring-3 host code.
2664 *
2665 * @returns VBox status code.
2666 * @param pVM The cross context VM structure.
2667 * @param pVCpu The cross context virtual CPU structure.
2668 * @remarks Careful with critsects.
2669 */
2670static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2671{
2672 /*
2673 * We must also check for pending critsect exits or else we can deadlock
2674 * when entering other critsects here.
2675 */
2676 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2677 PDMCritSectBothFF(pVCpu);
2678
2679 switch (pVCpu->vmm.s.enmCallRing3Operation)
2680 {
2681 /*
2682 * Acquire a critical section.
2683 */
2684 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2685 {
2686 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2687 true /*fCallRing3*/);
2688 break;
2689 }
2690
2691 /*
2692 * Enter a r/w critical section exclusively.
2693 */
2694 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2695 {
2696 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2697 true /*fCallRing3*/);
2698 break;
2699 }
2700
2701 /*
2702 * Enter a r/w critical section shared.
2703 */
2704 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2705 {
2706 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2707 true /*fCallRing3*/);
2708 break;
2709 }
2710
2711 /*
2712 * Acquire the PDM lock.
2713 */
2714 case VMMCALLRING3_PDM_LOCK:
2715 {
2716 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2717 break;
2718 }
2719
2720 /*
2721 * Grow the PGM pool.
2722 */
2723 case VMMCALLRING3_PGM_POOL_GROW:
2724 {
2725 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2726 break;
2727 }
2728
2729 /*
2730 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2731 */
2732 case VMMCALLRING3_PGM_MAP_CHUNK:
2733 {
2734 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2735 break;
2736 }
2737
2738 /*
2739 * Allocates more handy pages.
2740 */
2741 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2742 {
2743 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2744 break;
2745 }
2746
2747 /*
2748 * Allocates a large page.
2749 */
2750 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2751 {
2752 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2753 break;
2754 }
2755
2756 /*
2757 * Acquire the PGM lock.
2758 */
2759 case VMMCALLRING3_PGM_LOCK:
2760 {
2761 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2762 break;
2763 }
2764
2765 /*
2766 * Acquire the MM hypervisor heap lock.
2767 */
2768 case VMMCALLRING3_MMHYPER_LOCK:
2769 {
2770 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2771 break;
2772 }
2773
2774#ifdef VBOX_WITH_REM
2775 /*
2776 * Flush REM handler notifications.
2777 */
2778 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2779 {
2780 REMR3ReplayHandlerNotifications(pVM);
2781 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2782 break;
2783 }
2784#endif
2785
2786 /*
2787 * This is a noop. We just take this route to avoid unnecessary
2788 * tests in the loops.
2789 */
2790 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2791 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2792 LogAlways(("*FLUSH*\n"));
2793 break;
2794
2795 /*
2796 * Set the VM error message.
2797 */
2798 case VMMCALLRING3_VM_SET_ERROR:
2799 VMR3SetErrorWorker(pVM);
2800 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2801 break;
2802
2803 /*
2804 * Set the VM runtime error message.
2805 */
2806 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2807 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2808 break;
2809
2810 /*
2811 * Signal a ring 0 hypervisor assertion.
2812 * Cancel the longjmp operation that's in progress.
2813 */
2814 case VMMCALLRING3_VM_R0_ASSERTION:
2815 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2816 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2817#ifdef RT_ARCH_X86
2818 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2819#else
2820 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2821#endif
2822#ifdef VMM_R0_SWITCH_STACK
2823 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2824#endif
2825 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2826 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2827 return VERR_VMM_RING0_ASSERTION;
2828
2829 /*
2830 * A forced switch to ring 0 for preemption purposes.
2831 */
2832 case VMMCALLRING3_VM_R0_PREEMPT:
2833 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2834 break;
2835
2836 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2837 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2838 break;
2839
2840 default:
2841 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2842 return VERR_VMM_UNKNOWN_RING3_CALL;
2843 }
2844
2845 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2846 return VINF_SUCCESS;
2847}
2848
2849
2850/**
2851 * Displays the Force action Flags.
2852 *
2853 * @param pVM The cross context VM structure.
2854 * @param pHlp The output helpers.
2855 * @param pszArgs The additional arguments (ignored).
2856 */
2857static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2858{
2859 int c;
2860 uint32_t f;
2861 NOREF(pszArgs);
2862
2863#define PRINT_FLAG(prf,flag) do { \
2864 if (f & (prf##flag)) \
2865 { \
2866 static const char *s_psz = #flag; \
2867 if (!(c % 6)) \
2868 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2869 else \
2870 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2871 c++; \
2872 f &= ~(prf##flag); \
2873 } \
2874 } while (0)
2875
2876#define PRINT_GROUP(prf,grp,sfx) do { \
2877 if (f & (prf##grp##sfx)) \
2878 { \
2879 static const char *s_psz = #grp; \
2880 if (!(c % 5)) \
2881 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2882 else \
2883 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2884 c++; \
2885 } \
2886 } while (0)
2887
2888 /*
2889 * The global flags.
2890 */
2891 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2892 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2893
2894 /* show the flag mnemonics */
2895 c = 0;
2896 f = fGlobalForcedActions;
2897 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2898 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2899 PRINT_FLAG(VM_FF_,PDM_DMA);
2900 PRINT_FLAG(VM_FF_,DBGF);
2901 PRINT_FLAG(VM_FF_,REQUEST);
2902 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2903 PRINT_FLAG(VM_FF_,RESET);
2904 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2905 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2906 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2907 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2908 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2909 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2910 if (f)
2911 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2912 else
2913 pHlp->pfnPrintf(pHlp, "\n");
2914
2915 /* the groups */
2916 c = 0;
2917 f = fGlobalForcedActions;
2918 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2919 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2920 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2921 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2922 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2923 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2924 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2925 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2926 if (c)
2927 pHlp->pfnPrintf(pHlp, "\n");
2928
2929 /*
2930 * Per CPU flags.
2931 */
2932 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2933 {
2934 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2935 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2936
2937 /* show the flag mnemonics */
2938 c = 0;
2939 f = fLocalForcedActions;
2940 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2941 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2942 PRINT_FLAG(VMCPU_FF_,TIMER);
2943 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2944 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2945 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2946 PRINT_FLAG(VMCPU_FF_,UNHALT);
2947 PRINT_FLAG(VMCPU_FF_,IEM);
2948 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2949 PRINT_FLAG(VMCPU_FF_,DBGF);
2950 PRINT_FLAG(VMCPU_FF_,REQUEST);
2951 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2952 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2953 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2954 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2955 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2956 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2957 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2958 PRINT_FLAG(VMCPU_FF_,TO_R3);
2959 PRINT_FLAG(VMCPU_FF_,IOM);
2960#ifdef VBOX_WITH_RAW_MODE
2961 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2962 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2963 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2964 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2965 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2966 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2967 PRINT_FLAG(VMCPU_FF_,CPUM);
2968#endif
2969 if (f)
2970 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2971 else
2972 pHlp->pfnPrintf(pHlp, "\n");
2973
2974 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2975 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2976
2977 /* the groups */
2978 c = 0;
2979 f = fLocalForcedActions;
2980 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2981 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2982 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2983 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2984 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2985 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2986 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2987 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2988 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2989 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2990 if (c)
2991 pHlp->pfnPrintf(pHlp, "\n");
2992 }
2993
2994#undef PRINT_FLAG
2995#undef PRINT_GROUP
2996}
2997
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette