VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 80005

Last change on this file since 80005 was 80005, checked in by vboxsync, 6 years ago

VMM: Kicking out raw-mode (work in progress). bugref:9517

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 118.6 KB
Line 
1/* $Id: VMM.cpp 80005 2019-07-26 13:51:44Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_csam
32 * - @subpage pg_dbgf
33 * - @subpage pg_em
34 * - @subpage pg_gim
35 * - @subpage pg_gmm
36 * - @subpage pg_gvmm
37 * - @subpage pg_hm
38 * - @subpage pg_iem
39 * - @subpage pg_iom
40 * - @subpage pg_mm
41 * - @subpage pg_patm
42 * - @subpage pg_pdm
43 * - @subpage pg_pgm
44 * - @subpage pg_rem
45 * - @subpage pg_selm
46 * - @subpage pg_ssm
47 * - @subpage pg_stam
48 * - @subpage pg_tm
49 * - @subpage pg_trpm
50 * - @subpage pg_vm
51 *
52 *
53 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
54 *
55 *
56 * @section sec_vmmstate VMM State
57 *
58 * @image html VM_Statechart_Diagram.gif
59 *
60 * To be written.
61 *
62 *
63 * @subsection subsec_vmm_init VMM Initialization
64 *
65 * To be written.
66 *
67 *
68 * @subsection subsec_vmm_term VMM Termination
69 *
70 * To be written.
71 *
72 *
73 * @section sec_vmm_limits VMM Limits
74 *
75 * There are various resource limits imposed by the VMM and it's
76 * sub-components. We'll list some of them here.
77 *
78 * On 64-bit hosts:
79 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
80 * can be increased up to 64K - 1.
81 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
82 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
83 * - A VM can be assigned all the memory we can use (16TB), however, the
84 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
85 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
86 *
87 * On 32-bit hosts:
88 * - Max 127 VMs. Imposed by GMM's per page structure.
89 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
90 * ROM pages. The limit is imposed by the 28-bit page ID used
91 * internally in GMM. It is also limited by PAE.
92 * - A VM can be assigned all the memory GMM can allocate, however, the
93 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
94 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
95 *
96 */
97
98
99/*********************************************************************************************************************************
100* Header Files *
101*********************************************************************************************************************************/
102#define LOG_GROUP LOG_GROUP_VMM
103#include <VBox/vmm/vmm.h>
104#include <VBox/vmm/vmapi.h>
105#include <VBox/vmm/pgm.h>
106#include <VBox/vmm/cfgm.h>
107#include <VBox/vmm/pdmqueue.h>
108#include <VBox/vmm/pdmcritsect.h>
109#include <VBox/vmm/pdmcritsectrw.h>
110#include <VBox/vmm/pdmapi.h>
111#include <VBox/vmm/cpum.h>
112#include <VBox/vmm/gim.h>
113#include <VBox/vmm/mm.h>
114#include <VBox/vmm/nem.h>
115#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
116# include <VBox/vmm/iem.h>
117#endif
118#include <VBox/vmm/iom.h>
119#include <VBox/vmm/trpm.h>
120#include <VBox/vmm/selm.h>
121#include <VBox/vmm/em.h>
122#include <VBox/sup.h>
123#include <VBox/vmm/dbgf.h>
124#include <VBox/vmm/apic.h>
125#ifdef VBOX_WITH_REM
126# include <VBox/vmm/rem.h>
127#endif
128#include <VBox/vmm/ssm.h>
129#include <VBox/vmm/ftm.h>
130#include <VBox/vmm/tm.h>
131#include "VMMInternal.h"
132#include <VBox/vmm/vm.h>
133#include <VBox/vmm/uvm.h>
134
135#include <VBox/err.h>
136#include <VBox/param.h>
137#include <VBox/version.h>
138#include <VBox/vmm/hm.h>
139#include <iprt/assert.h>
140#include <iprt/alloc.h>
141#include <iprt/asm.h>
142#include <iprt/time.h>
143#include <iprt/semaphore.h>
144#include <iprt/stream.h>
145#include <iprt/string.h>
146#include <iprt/stdarg.h>
147#include <iprt/ctype.h>
148#include <iprt/x86.h>
149
150
151/*********************************************************************************************************************************
152* Defined Constants And Macros *
153*********************************************************************************************************************************/
154/** The saved state version. */
155#define VMM_SAVED_STATE_VERSION 4
156/** The saved state version used by v3.0 and earlier. (Teleportation) */
157#define VMM_SAVED_STATE_VERSION_3_0 3
158
159/** Macro for flushing the ring-0 logging. */
160#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
161 do { \
162 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
163 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
164 { /* likely? */ } \
165 else \
166 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
167 } while (0)
168
169
170/*********************************************************************************************************************************
171* Internal Functions *
172*********************************************************************************************************************************/
173static int vmmR3InitStacks(PVM pVM);
174static int vmmR3InitLoggers(PVM pVM);
175static void vmmR3InitRegisterStats(PVM pVM);
176static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
177static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
178static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
179static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
180 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
181static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
182static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
183
184
185/**
186 * Initializes the VMM.
187 *
188 * @returns VBox status code.
189 * @param pVM The cross context VM structure.
190 */
191VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
192{
193 LogFlow(("VMMR3Init\n"));
194
195 /*
196 * Assert alignment, sizes and order.
197 */
198 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
199 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
200
201 /*
202 * Init basic VM VMM members.
203 */
204 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
205 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
206 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
207 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
208 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
209 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
210 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
211 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
212 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
213
214 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
215 * The EMT yield interval. The EMT yielding is a hack we employ to play a
216 * bit nicer with the rest of the system (like for instance the GUI).
217 */
218 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
219 23 /* Value arrived at after experimenting with the grub boot prompt. */);
220 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
221
222
223 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
224 * Controls whether we employ per-cpu preemption timers to limit the time
225 * spent executing guest code. This option is not available on all
226 * platforms and we will silently ignore this setting then. If we are
227 * running in VT-x mode, we will use the VMX-preemption timer instead of
228 * this one when possible.
229 */
230 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
231 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
232 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
233
234 /*
235 * Initialize the VMM rendezvous semaphores.
236 */
237 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
238 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
239 return VERR_NO_MEMORY;
240 for (VMCPUID i = 0; i < pVM->cCpus; i++)
241 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
242 for (VMCPUID i = 0; i < pVM->cCpus; i++)
243 {
244 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
245 AssertRCReturn(rc, rc);
246 }
247 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
256 AssertRCReturn(rc, rc);
257 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
258 AssertRCReturn(rc, rc);
259 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
260 AssertRCReturn(rc, rc);
261 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
262 AssertRCReturn(rc, rc);
263
264 /*
265 * Register the saved state data unit.
266 */
267 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
268 NULL, NULL, NULL,
269 NULL, vmmR3Save, NULL,
270 NULL, vmmR3Load, NULL);
271 if (RT_FAILURE(rc))
272 return rc;
273
274 /*
275 * Register the Ring-0 VM handle with the session for fast ioctl calls.
276 */
277 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
278 if (RT_FAILURE(rc))
279 return rc;
280
281 /*
282 * Init various sub-components.
283 */
284 rc = vmmR3InitStacks(pVM);
285 if (RT_SUCCESS(rc))
286 {
287 rc = vmmR3InitLoggers(pVM);
288
289#ifdef VBOX_WITH_NMI
290 /*
291 * Allocate mapping for the host APIC.
292 */
293 if (RT_SUCCESS(rc))
294 {
295 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
296 AssertRC(rc);
297 }
298#endif
299 if (RT_SUCCESS(rc))
300 {
301 /*
302 * Debug info and statistics.
303 */
304 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
305 vmmR3InitRegisterStats(pVM);
306 vmmInitFormatTypes();
307
308 return VINF_SUCCESS;
309 }
310 }
311 /** @todo Need failure cleanup? */
312
313 return rc;
314}
315
316
317/**
318 * Allocate & setup the VMM RC stack(s) (for EMTs).
319 *
320 * The stacks are also used for long jumps in Ring-0.
321 *
322 * @returns VBox status code.
323 * @param pVM The cross context VM structure.
324 *
325 * @remarks The optional guard page gets it protection setup up during R3 init
326 * completion because of init order issues.
327 */
328static int vmmR3InitStacks(PVM pVM)
329{
330 int rc = VINF_SUCCESS;
331#ifdef VMM_R0_SWITCH_STACK
332 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
333#else
334 uint32_t fFlags = 0;
335#endif
336
337 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
338 {
339 PVMCPU pVCpu = &pVM->aCpus[idCpu];
340
341#ifdef VBOX_STRICT_VMM_STACK
342 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
343#else
344 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
345#endif
346 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
347 if (RT_SUCCESS(rc))
348 {
349#ifdef VBOX_STRICT_VMM_STACK
350 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
351#endif
352#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
353 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
354 if (VM_IS_RAW_MODE_ENABLED(pVM))
355 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
356 else
357#endif
358 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
359
360 }
361 }
362
363 return rc;
364}
365
366
367/**
368 * Initialize the loggers.
369 *
370 * @returns VBox status code.
371 * @param pVM The cross context VM structure.
372 */
373static int vmmR3InitLoggers(PVM pVM)
374{
375 int rc;
376#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
377
378 /*
379 * Allocate R0 Logger instance (finalized in the relocator).
380 */
381#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
382 PRTLOGGER pLogger = RTLogDefaultInstance();
383 if (pLogger)
384 {
385 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
386 for (VMCPUID i = 0; i < pVM->cCpus; i++)
387 {
388 PVMCPU pVCpu = &pVM->aCpus[i];
389 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
390 (void **)&pVCpu->vmm.s.pR0LoggerR3);
391 if (RT_FAILURE(rc))
392 return rc;
393 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
394 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
395 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
396 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
397 }
398 }
399#endif /* LOG_ENABLED && VBOX_WITH_R0_LOGGING */
400
401 /*
402 * Release logging.
403 */
404 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
405 if (pRelLogger)
406 {
407 /*
408 * Ring-0 release logger.
409 */
410 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
411 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
412 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
413
414 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
415 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
416 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
417
418 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
419
420 for (VMCPUID i = 0; i < pVM->cCpus; i++)
421 {
422 PVMCPU pVCpu = &pVM->aCpus[i];
423 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
424 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
425 if (RT_FAILURE(rc))
426 return rc;
427 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
428 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
429 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
430 pVmmLogger->pVM = pVM->pVMR0;
431 pVmmLogger->cbLogger = (uint32_t)cbLogger;
432 pVmmLogger->fCreated = false;
433 pVmmLogger->fFlushingDisabled = false;
434 pVmmLogger->fRegistered = false;
435 pVmmLogger->idCpu = i;
436
437 char szR0ThreadName[16];
438 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
439 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
440 pfnLoggerWrapper, pfnLoggerFlush,
441 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
442 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
443
444 /* We only update the release log instance here. */
445 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
446 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
447 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
448
449 pVmmLogger->fCreated = true;
450 }
451 }
452
453 return VINF_SUCCESS;
454}
455
456
457/**
458 * VMMR3Init worker that register the statistics with STAM.
459 *
460 * @param pVM The cross context VM structure.
461 */
462static void vmmR3InitRegisterStats(PVM pVM)
463{
464 RT_NOREF_PV(pVM);
465
466 /*
467 * Statistics.
468 */
469 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
523 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
524 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
525 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
526 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
527 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
528 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
529 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
530 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
531 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
532 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
533
534#ifdef VBOX_WITH_STATISTICS
535 for (VMCPUID i = 0; i < pVM->cCpus; i++)
536 {
537 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
538 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
539 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
540 }
541#endif
542 for (VMCPUID i = 0; i < pVM->cCpus; i++)
543 {
544 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
545 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
546 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
547 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
548 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
549 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
550 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
551 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
552 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
553 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
554 }
555}
556
557
558/**
559 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
560 *
561 * @returns VBox status code.
562 * @param pVM The cross context VM structure.
563 * @param pVCpu The cross context per CPU structure.
564 * @thread EMT(pVCpu)
565 */
566static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
567{
568 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
569}
570
571
572/**
573 * Initializes the R0 VMM.
574 *
575 * @returns VBox status code.
576 * @param pVM The cross context VM structure.
577 */
578VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
579{
580 int rc;
581 PVMCPU pVCpu = VMMGetCpu(pVM);
582 Assert(pVCpu && pVCpu->idCpu == 0);
583
584#ifdef LOG_ENABLED
585 /*
586 * Initialize the ring-0 logger if we haven't done so yet.
587 */
588 if ( pVCpu->vmm.s.pR0LoggerR3
589 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
590 {
591 rc = VMMR3UpdateLoggers(pVM);
592 if (RT_FAILURE(rc))
593 return rc;
594 }
595#endif
596
597 /*
598 * Call Ring-0 entry with init code.
599 */
600 for (;;)
601 {
602#ifdef NO_SUPCALLR0VMM
603 //rc = VERR_GENERAL_FAILURE;
604 rc = VINF_SUCCESS;
605#else
606 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
607#endif
608 /*
609 * Flush the logs.
610 */
611#ifdef LOG_ENABLED
612 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
613#endif
614 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
615 if (rc != VINF_VMM_CALL_HOST)
616 break;
617 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
618 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
619 break;
620 /* Resume R0 */
621 }
622
623 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
624 {
625 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
626 if (RT_SUCCESS(rc))
627 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
628 }
629
630 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
631 if (pVM->aCpus[0].vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
632 LogRel(("VMM: Enabled thread-context hooks\n"));
633 else
634 LogRel(("VMM: Thread-context hooks unavailable\n"));
635
636 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
637 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
638 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
639 else
640 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
641 if (pVM->vmm.s.fIsPreemptPossible)
642 LogRel(("VMM: Kernel preemption is possible\n"));
643 else
644 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
645
646 /*
647 * Send all EMTs to ring-0 to get their logger initialized.
648 */
649 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
650 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, &pVM->aCpus[idCpu]);
651
652 return rc;
653}
654
655
656#ifdef VBOX_WITH_RAW_MODE
657/**
658 * Initializes the RC VMM.
659 *
660 * @returns VBox status code.
661 * @param pVM The cross context VM structure.
662 */
663VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
664{
665 PVMCPU pVCpu = VMMGetCpu(pVM);
666 Assert(pVCpu && pVCpu->idCpu == 0);
667
668 /* In VMX mode, there's no need to init RC. */
669 if (!VM_IS_RAW_MODE_ENABLED(pVM))
670 return VINF_SUCCESS;
671
672 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
673
674 /*
675 * Call VMMRCInit():
676 * -# resolve the address.
677 * -# setup stackframe and EIP to use the trampoline.
678 * -# do a generic hypervisor call.
679 */
680 RTRCPTR RCPtrEP;
681 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP);
682 if (RT_SUCCESS(rc))
683 {
684 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
685 uint64_t u64TS = RTTimeProgramStartNanoTS();
686 CPUMPushHyper(pVCpu, RT_HI_U32(u64TS)); /* Param 4: The program startup TS - Hi. */
687 CPUMPushHyper(pVCpu, RT_LO_U32(u64TS)); /* Param 4: The program startup TS - Lo. */
688 CPUMPushHyper(pVCpu, vmmGetBuildType()); /* Param 3: Version argument. */
689 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
690 CPUMPushHyper(pVCpu, VMMRC_DO_VMMRC_INIT); /* Param 1: Operation. */
691 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
692 CPUMPushHyper(pVCpu, 6 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
693 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
694 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
695 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
696
697 for (;;)
698 {
699#ifdef NO_SUPCALLR0VMM
700 //rc = VERR_GENERAL_FAILURE;
701 rc = VINF_SUCCESS;
702#else
703 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
704#endif
705#ifdef LOG_ENABLED
706 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
707 if ( pLogger
708 && pLogger->offScratch > 0)
709 RTLogFlushRC(NULL, pLogger);
710#endif
711#ifdef VBOX_WITH_RC_RELEASE_LOGGING
712 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
713 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
714 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
715#endif
716 if (rc != VINF_VMM_CALL_HOST)
717 break;
718 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
719 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
720 break;
721 }
722
723 /* Don't trigger assertions or guru if raw-mode is unavailable. */
724 if (rc != VERR_SUPDRV_NO_RAW_MODE_HYPER_V_ROOT)
725 {
726 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
727 {
728 VMMR3FatalDump(pVM, pVCpu, rc);
729 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
730 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
731 }
732 AssertRC(rc);
733 }
734 }
735 return rc;
736}
737#endif /* VBOX_WITH_RAW_MODE */
738
739
740/**
741 * Called when an init phase completes.
742 *
743 * @returns VBox status code.
744 * @param pVM The cross context VM structure.
745 * @param enmWhat Which init phase.
746 */
747VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
748{
749 int rc = VINF_SUCCESS;
750
751 switch (enmWhat)
752 {
753 case VMINITCOMPLETED_RING3:
754 {
755 /*
756 * Create the EMT yield timer.
757 */
758 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
759 AssertRCReturn(rc, rc);
760
761 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
762 AssertRCReturn(rc, rc);
763 break;
764 }
765
766 case VMINITCOMPLETED_HM:
767 {
768 /*
769 * Disable the periodic preemption timers if we can use the
770 * VMX-preemption timer instead.
771 */
772 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
773 && HMR3IsVmxPreemptionTimerUsed(pVM))
774 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
775 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
776
777 /*
778 * Last chance for GIM to update its CPUID leaves if it requires
779 * knowledge/information from HM initialization.
780 */
781 rc = GIMR3InitCompleted(pVM);
782 AssertRCReturn(rc, rc);
783
784 /*
785 * CPUM's post-initialization (print CPUIDs).
786 */
787 CPUMR3LogCpuIdAndMsrFeatures(pVM);
788 break;
789 }
790
791 default: /* shuts up gcc */
792 break;
793 }
794
795 return rc;
796}
797
798
799/**
800 * Terminate the VMM bits.
801 *
802 * @returns VBox status code.
803 * @param pVM The cross context VM structure.
804 */
805VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
806{
807 PVMCPU pVCpu = VMMGetCpu(pVM);
808 Assert(pVCpu && pVCpu->idCpu == 0);
809
810 /*
811 * Call Ring-0 entry with termination code.
812 */
813 int rc;
814 for (;;)
815 {
816#ifdef NO_SUPCALLR0VMM
817 //rc = VERR_GENERAL_FAILURE;
818 rc = VINF_SUCCESS;
819#else
820 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
821#endif
822 /*
823 * Flush the logs.
824 */
825#ifdef LOG_ENABLED
826 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
827#endif
828 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
829 if (rc != VINF_VMM_CALL_HOST)
830 break;
831 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
832 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
833 break;
834 /* Resume R0 */
835 }
836 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
837 {
838 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
839 if (RT_SUCCESS(rc))
840 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
841 }
842
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
846 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
847 }
848 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
849 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
850 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
851 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
852 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
853 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
854 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
855 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
856 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
857 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
858 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
859 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
860 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
861 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
862 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
863 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
864
865 vmmTermFormatTypes();
866 return rc;
867}
868
869
870/**
871 * Applies relocations to data and code managed by this
872 * component. This function will be called at init and
873 * whenever the VMM need to relocate it self inside the GC.
874 *
875 * The VMM will need to apply relocations to the core code.
876 *
877 * @param pVM The cross context VM structure.
878 * @param offDelta The relocation delta.
879 */
880VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
881{
882 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
883 RT_NOREF(offDelta);
884
885 /*
886 * Update the logger.
887 */
888 VMMR3UpdateLoggers(pVM);
889}
890
891
892/**
893 * Updates the settings for the RC and R0 loggers.
894 *
895 * @returns VBox status code.
896 * @param pVM The cross context VM structure.
897 */
898VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
899{
900 int rc = VINF_SUCCESS;
901
902#ifdef LOG_ENABLED
903 /*
904 * For the ring-0 EMT logger, we use a per-thread logger instance
905 * in ring-0. Only initialize it once.
906 */
907 PRTLOGGER const pDefault = RTLogDefaultInstance();
908 for (VMCPUID i = 0; i < pVM->cCpus; i++)
909 {
910 PVMCPU pVCpu = &pVM->aCpus[i];
911 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
912 if (pR0LoggerR3)
913 {
914 if (!pR0LoggerR3->fCreated)
915 {
916 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
917 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
918 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
919
920 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
921 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
922 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
923
924 char szR0ThreadName[16];
925 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
926 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
927 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
928 pfnLoggerWrapper, pfnLoggerFlush,
929 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
930 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
931
932 pR0LoggerR3->idCpu = i;
933 pR0LoggerR3->fCreated = true;
934 pR0LoggerR3->fFlushingDisabled = false;
935 }
936
937 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
938 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
939 AssertRC(rc);
940 }
941 }
942#else
943 RT_NOREF(pVM);
944#endif
945
946 return rc;
947}
948
949
950/**
951 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
952 *
953 * @returns Pointer to the buffer.
954 * @param pVM The cross context VM structure.
955 */
956VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
957{
958 if (!VM_IS_RAW_MODE_ENABLED(pVM))
959 return pVM->vmm.s.szRing0AssertMsg1;
960
961 RTRCPTR RCPtr;
962 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
963 if (RT_SUCCESS(rc))
964 return (const char *)MMHyperRCToR3(pVM, RCPtr);
965
966 return NULL;
967}
968
969
970/**
971 * Returns the VMCPU of the specified virtual CPU.
972 *
973 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
974 *
975 * @param pUVM The user mode VM handle.
976 * @param idCpu The ID of the virtual CPU.
977 */
978VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
979{
980 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
981 AssertReturn(idCpu < pUVM->cCpus, NULL);
982 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
983 return &pUVM->pVM->aCpus[idCpu];
984}
985
986
987/**
988 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
989 *
990 * @returns Pointer to the buffer.
991 * @param pVM The cross context VM structure.
992 */
993VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
994{
995 if (!VM_IS_RAW_MODE_ENABLED(pVM))
996 return pVM->vmm.s.szRing0AssertMsg2;
997
998 RTRCPTR RCPtr;
999 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
1000 if (RT_SUCCESS(rc))
1001 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1002
1003 return NULL;
1004}
1005
1006
1007/**
1008 * Execute state save operation.
1009 *
1010 * @returns VBox status code.
1011 * @param pVM The cross context VM structure.
1012 * @param pSSM SSM operation handle.
1013 */
1014static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1015{
1016 LogFlow(("vmmR3Save:\n"));
1017
1018 /*
1019 * Save the started/stopped state of all CPUs except 0 as it will always
1020 * be running. This avoids breaking the saved state version. :-)
1021 */
1022 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1023 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1024
1025 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1026}
1027
1028
1029/**
1030 * Execute state load operation.
1031 *
1032 * @returns VBox status code.
1033 * @param pVM The cross context VM structure.
1034 * @param pSSM SSM operation handle.
1035 * @param uVersion Data layout version.
1036 * @param uPass The data pass.
1037 */
1038static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1039{
1040 LogFlow(("vmmR3Load:\n"));
1041 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1042
1043 /*
1044 * Validate version.
1045 */
1046 if ( uVersion != VMM_SAVED_STATE_VERSION
1047 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1048 {
1049 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1050 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1051 }
1052
1053 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1054 {
1055 /* Ignore the stack bottom, stack pointer and stack bits. */
1056 RTRCPTR RCPtrIgnored;
1057 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1058 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1059#ifdef RT_OS_DARWIN
1060 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1061 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1062 && SSMR3HandleRevision(pSSM) >= 48858
1063 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1064 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1065 )
1066 SSMR3Skip(pSSM, 16384);
1067 else
1068 SSMR3Skip(pSSM, 8192);
1069#else
1070 SSMR3Skip(pSSM, 8192);
1071#endif
1072 }
1073
1074 /*
1075 * Restore the VMCPU states. VCPU 0 is always started.
1076 */
1077 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1078 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1079 {
1080 bool fStarted;
1081 int rc = SSMR3GetBool(pSSM, &fStarted);
1082 if (RT_FAILURE(rc))
1083 return rc;
1084 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1085 }
1086
1087 /* terminator */
1088 uint32_t u32;
1089 int rc = SSMR3GetU32(pSSM, &u32);
1090 if (RT_FAILURE(rc))
1091 return rc;
1092 if (u32 != UINT32_MAX)
1093 {
1094 AssertMsgFailed(("u32=%#x\n", u32));
1095 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1096 }
1097 return VINF_SUCCESS;
1098}
1099
1100
1101#ifdef VBOX_WITH_RAW_MODE
1102/**
1103 * Resolve a builtin RC symbol.
1104 *
1105 * Called by PDM when loading or relocating RC modules.
1106 *
1107 * @returns VBox status
1108 * @param pVM The cross context VM structure.
1109 * @param pszSymbol Symbol to resolve.
1110 * @param pRCPtrValue Where to store the symbol value.
1111 *
1112 * @remark This has to work before VMMR3Relocate() is called.
1113 */
1114VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1115{
1116 if (!strcmp(pszSymbol, "g_Logger"))
1117 {
1118 if (pVM->vmm.s.pRCLoggerR3)
1119 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1120 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1121 }
1122 else if (!strcmp(pszSymbol, "g_RelLogger"))
1123 {
1124# ifdef VBOX_WITH_RC_RELEASE_LOGGING
1125 if (pVM->vmm.s.pRCRelLoggerR3)
1126 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1127 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1128# else
1129 *pRCPtrValue = NIL_RTRCPTR;
1130# endif
1131 }
1132 else
1133 return VERR_SYMBOL_NOT_FOUND;
1134 return VINF_SUCCESS;
1135}
1136#endif /* VBOX_WITH_RAW_MODE */
1137
1138
1139/**
1140 * Suspends the CPU yielder.
1141 *
1142 * @param pVM The cross context VM structure.
1143 */
1144VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1145{
1146 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1147 if (!pVM->vmm.s.cYieldResumeMillies)
1148 {
1149 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1150 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1151 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1152 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1153 else
1154 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1155 TMTimerStop(pVM->vmm.s.pYieldTimer);
1156 }
1157 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1158}
1159
1160
1161/**
1162 * Stops the CPU yielder.
1163 *
1164 * @param pVM The cross context VM structure.
1165 */
1166VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1167{
1168 if (!pVM->vmm.s.cYieldResumeMillies)
1169 TMTimerStop(pVM->vmm.s.pYieldTimer);
1170 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1171 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1172}
1173
1174
1175/**
1176 * Resumes the CPU yielder when it has been a suspended or stopped.
1177 *
1178 * @param pVM The cross context VM structure.
1179 */
1180VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1181{
1182 if (pVM->vmm.s.cYieldResumeMillies)
1183 {
1184 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1185 pVM->vmm.s.cYieldResumeMillies = 0;
1186 }
1187}
1188
1189
1190/**
1191 * Internal timer callback function.
1192 *
1193 * @param pVM The cross context VM structure.
1194 * @param pTimer The timer handle.
1195 * @param pvUser User argument specified upon timer creation.
1196 */
1197static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1198{
1199 NOREF(pvUser);
1200
1201 /*
1202 * This really needs some careful tuning. While we shouldn't be too greedy since
1203 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1204 * because that'll cause us to stop up.
1205 *
1206 * The current logic is to use the default interval when there is no lag worth
1207 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1208 *
1209 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1210 * so the lag is up to date.)
1211 */
1212 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1213 if ( u64Lag < 50000000 /* 50ms */
1214 || ( u64Lag < 1000000000 /* 1s */
1215 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1216 )
1217 {
1218 uint64_t u64Elapsed = RTTimeNanoTS();
1219 pVM->vmm.s.u64LastYield = u64Elapsed;
1220
1221 RTThreadYield();
1222
1223#ifdef LOG_ENABLED
1224 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1225 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1226#endif
1227 }
1228 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1229}
1230
1231
1232#ifdef VBOX_WITH_RAW_MODE
1233/**
1234 * Executes guest code in the raw-mode context.
1235 *
1236 * @param pVM The cross context VM structure.
1237 * @param pVCpu The cross context virtual CPU structure.
1238 */
1239VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1240{
1241 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1242
1243 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1244
1245 /*
1246 * Set the hypervisor to resume executing a CPUM resume function
1247 * in CPUMRCA.asm.
1248 */
1249 CPUMSetHyperState(pVCpu,
1250 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1251 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1252 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1253 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1254 0, /* eax */
1255 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1256
1257 /*
1258 * We hide log flushes (outer) and hypervisor interrupts (inner).
1259 */
1260 for (;;)
1261 {
1262#ifdef VBOX_STRICT
1263 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1264 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1265 PGMMapCheck(pVM);
1266# ifdef VBOX_WITH_SAFE_STR
1267 SELMR3CheckShadowTR(pVM);
1268# endif
1269#endif
1270 int rc;
1271 do
1272 {
1273#ifdef NO_SUPCALLR0VMM
1274 rc = VERR_GENERAL_FAILURE;
1275#else
1276 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1277 if (RT_LIKELY(rc == VINF_SUCCESS))
1278 rc = pVCpu->vmm.s.iLastGZRc;
1279#endif
1280 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1281
1282 /*
1283 * Flush the logs.
1284 */
1285#ifdef LOG_ENABLED
1286 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1287 if ( pLogger
1288 && pLogger->offScratch > 0)
1289 RTLogFlushRC(NULL, pLogger);
1290#endif
1291#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1292 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1293 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1294 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
1295#endif
1296 if (rc != VINF_VMM_CALL_HOST)
1297 {
1298 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1299 return rc;
1300 }
1301 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1302 if (RT_FAILURE(rc))
1303 return rc;
1304 /* Resume GC */
1305 }
1306}
1307#endif /* VBOX_WITH_RAW_MODE */
1308
1309
1310/**
1311 * Executes guest code (Intel VT-x and AMD-V).
1312 *
1313 * @param pVM The cross context VM structure.
1314 * @param pVCpu The cross context virtual CPU structure.
1315 */
1316VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1317{
1318 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1319
1320 for (;;)
1321 {
1322 int rc;
1323 do
1324 {
1325#ifdef NO_SUPCALLR0VMM
1326 rc = VERR_GENERAL_FAILURE;
1327#else
1328 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1329 if (RT_LIKELY(rc == VINF_SUCCESS))
1330 rc = pVCpu->vmm.s.iLastGZRc;
1331#endif
1332 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1333
1334#if 0 /** @todo triggers too often */
1335 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1336#endif
1337
1338 /*
1339 * Flush the logs
1340 */
1341#ifdef LOG_ENABLED
1342 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1343#endif
1344 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1345 if (rc != VINF_VMM_CALL_HOST)
1346 {
1347 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1348 return rc;
1349 }
1350 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1351 if (RT_FAILURE(rc))
1352 return rc;
1353 /* Resume R0 */
1354 }
1355}
1356
1357
1358/**
1359 * Perform one of the fast I/O control VMMR0 operation.
1360 *
1361 * @returns VBox strict status code.
1362 * @param pVM The cross context VM structure.
1363 * @param pVCpu The cross context virtual CPU structure.
1364 * @param enmOperation The operation to perform.
1365 */
1366VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1367{
1368 for (;;)
1369 {
1370 VBOXSTRICTRC rcStrict;
1371 do
1372 {
1373#ifdef NO_SUPCALLR0VMM
1374 rcStrict = VERR_GENERAL_FAILURE;
1375#else
1376 rcStrict = SUPR3CallVMMR0Fast(pVM->pVMR0, enmOperation, pVCpu->idCpu);
1377 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1378 rcStrict = pVCpu->vmm.s.iLastGZRc;
1379#endif
1380 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1381
1382 /*
1383 * Flush the logs
1384 */
1385#ifdef LOG_ENABLED
1386 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1387#endif
1388 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1389 if (rcStrict != VINF_VMM_CALL_HOST)
1390 return rcStrict;
1391 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1392 if (RT_FAILURE(rc))
1393 return rc;
1394 /* Resume R0 */
1395 }
1396}
1397
1398
1399/**
1400 * VCPU worker for VMMR3SendStartupIpi.
1401 *
1402 * @param pVM The cross context VM structure.
1403 * @param idCpu Virtual CPU to perform SIPI on.
1404 * @param uVector The SIPI vector.
1405 */
1406static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1407{
1408 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1409 VMCPU_ASSERT_EMT(pVCpu);
1410
1411 /*
1412 * In the INIT state, the target CPU is only responsive to an SIPI.
1413 * This is also true for when when the CPU is in VMX non-root mode.
1414 *
1415 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1416 * See Intel spec. 26.6.2 "Activity State".
1417 */
1418 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1419 return VINF_SUCCESS;
1420
1421 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1422#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1423 if (CPUMIsGuestInVmxRootMode(pCtx))
1424 {
1425 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1426 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1427 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1428
1429 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1430 return VINF_SUCCESS;
1431 }
1432#endif
1433
1434 pCtx->cs.Sel = uVector << 8;
1435 pCtx->cs.ValidSel = uVector << 8;
1436 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1437 pCtx->cs.u64Base = uVector << 12;
1438 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1439 pCtx->rip = 0;
1440
1441 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1442
1443# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1444 EMSetState(pVCpu, EMSTATE_HALTED);
1445 return VINF_EM_RESCHEDULE;
1446# else /* And if we go the VMCPU::enmState way it can stay here. */
1447 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1448 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1449 return VINF_SUCCESS;
1450# endif
1451}
1452
1453
1454/**
1455 * VCPU worker for VMMR3SendInitIpi.
1456 *
1457 * @returns VBox status code.
1458 * @param pVM The cross context VM structure.
1459 * @param idCpu Virtual CPU to perform SIPI on.
1460 */
1461static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1462{
1463 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1464 VMCPU_ASSERT_EMT(pVCpu);
1465
1466 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1467
1468 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1469 * wait-for-SIPI state. Verify. */
1470
1471 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1472#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1473 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1474 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1475 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1476#endif
1477
1478 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1479 * IPI (e.g. SVM_EXIT_INIT). */
1480
1481 PGMR3ResetCpu(pVM, pVCpu);
1482 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1483 APICR3InitIpi(pVCpu);
1484 TRPMR3ResetCpu(pVCpu);
1485 CPUMR3ResetCpu(pVM, pVCpu);
1486 EMR3ResetCpu(pVCpu);
1487 HMR3ResetCpu(pVCpu);
1488 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1489
1490 /* This will trickle up on the target EMT. */
1491 return VINF_EM_WAIT_SIPI;
1492}
1493
1494
1495/**
1496 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1497 * vector-dependent state and unhalting processor.
1498 *
1499 * @param pVM The cross context VM structure.
1500 * @param idCpu Virtual CPU to perform SIPI on.
1501 * @param uVector SIPI vector.
1502 */
1503VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1504{
1505 AssertReturnVoid(idCpu < pVM->cCpus);
1506
1507 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1508 AssertRC(rc);
1509}
1510
1511
1512/**
1513 * Sends init IPI to the virtual CPU.
1514 *
1515 * @param pVM The cross context VM structure.
1516 * @param idCpu Virtual CPU to perform int IPI on.
1517 */
1518VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1519{
1520 AssertReturnVoid(idCpu < pVM->cCpus);
1521
1522 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1523 AssertRC(rc);
1524}
1525
1526
1527/**
1528 * Registers the guest memory range that can be used for patching.
1529 *
1530 * @returns VBox status code.
1531 * @param pVM The cross context VM structure.
1532 * @param pPatchMem Patch memory range.
1533 * @param cbPatchMem Size of the memory range.
1534 */
1535VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1536{
1537 VM_ASSERT_EMT(pVM);
1538 if (HMIsEnabled(pVM))
1539 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1540
1541 return VERR_NOT_SUPPORTED;
1542}
1543
1544
1545/**
1546 * Deregisters the guest memory range that can be used for patching.
1547 *
1548 * @returns VBox status code.
1549 * @param pVM The cross context VM structure.
1550 * @param pPatchMem Patch memory range.
1551 * @param cbPatchMem Size of the memory range.
1552 */
1553VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1554{
1555 if (HMIsEnabled(pVM))
1556 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1557
1558 return VINF_SUCCESS;
1559}
1560
1561
1562/**
1563 * Common recursion handler for the other EMTs.
1564 *
1565 * @returns Strict VBox status code.
1566 * @param pVM The cross context VM structure.
1567 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1568 * @param rcStrict Current status code to be combined with the one
1569 * from this recursion and returned.
1570 */
1571static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1572{
1573 int rc2;
1574
1575 /*
1576 * We wait here while the initiator of this recursion reconfigures
1577 * everything. The last EMT to get in signals the initiator.
1578 */
1579 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1580 {
1581 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1582 AssertLogRelRC(rc2);
1583 }
1584
1585 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1586 AssertLogRelRC(rc2);
1587
1588 /*
1589 * Do the normal rendezvous processing.
1590 */
1591 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1592 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1593
1594 /*
1595 * Wait for the initiator to restore everything.
1596 */
1597 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1598 AssertLogRelRC(rc2);
1599
1600 /*
1601 * Last thread out of here signals the initiator.
1602 */
1603 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1604 {
1605 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1606 AssertLogRelRC(rc2);
1607 }
1608
1609 /*
1610 * Merge status codes and return.
1611 */
1612 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1613 if ( rcStrict2 != VINF_SUCCESS
1614 && ( rcStrict == VINF_SUCCESS
1615 || rcStrict > rcStrict2))
1616 rcStrict = rcStrict2;
1617 return rcStrict;
1618}
1619
1620
1621/**
1622 * Count returns and have the last non-caller EMT wake up the caller.
1623 *
1624 * @returns VBox strict informational status code for EM scheduling. No failures
1625 * will be returned here, those are for the caller only.
1626 *
1627 * @param pVM The cross context VM structure.
1628 * @param rcStrict The current accumulated recursive status code,
1629 * to be merged with i32RendezvousStatus and
1630 * returned.
1631 */
1632DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1633{
1634 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1635
1636 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1637 if (cReturned == pVM->cCpus - 1U)
1638 {
1639 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1640 AssertLogRelRC(rc);
1641 }
1642
1643 /*
1644 * Merge the status codes, ignoring error statuses in this code path.
1645 */
1646 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1647 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1648 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1649 VERR_IPE_UNEXPECTED_INFO_STATUS);
1650
1651 if (RT_SUCCESS(rcStrict2))
1652 {
1653 if ( rcStrict2 != VINF_SUCCESS
1654 && ( rcStrict == VINF_SUCCESS
1655 || rcStrict > rcStrict2))
1656 rcStrict = rcStrict2;
1657 }
1658 return rcStrict;
1659}
1660
1661
1662/**
1663 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1664 *
1665 * @returns VBox strict informational status code for EM scheduling. No failures
1666 * will be returned here, those are for the caller only. When
1667 * fIsCaller is set, VINF_SUCCESS is always returned.
1668 *
1669 * @param pVM The cross context VM structure.
1670 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1671 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1672 * not.
1673 * @param fFlags The flags.
1674 * @param pfnRendezvous The callback.
1675 * @param pvUser The user argument for the callback.
1676 */
1677static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1678 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1679{
1680 int rc;
1681 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1682
1683 /*
1684 * Enter, the last EMT triggers the next callback phase.
1685 */
1686 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1687 if (cEntered != pVM->cCpus)
1688 {
1689 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1690 {
1691 /* Wait for our turn. */
1692 for (;;)
1693 {
1694 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1695 AssertLogRelRC(rc);
1696 if (!pVM->vmm.s.fRendezvousRecursion)
1697 break;
1698 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1699 }
1700 }
1701 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1702 {
1703 /* Wait for the last EMT to arrive and wake everyone up. */
1704 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1705 AssertLogRelRC(rc);
1706 Assert(!pVM->vmm.s.fRendezvousRecursion);
1707 }
1708 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1709 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1710 {
1711 /* Wait for our turn. */
1712 for (;;)
1713 {
1714 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1715 AssertLogRelRC(rc);
1716 if (!pVM->vmm.s.fRendezvousRecursion)
1717 break;
1718 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1719 }
1720 }
1721 else
1722 {
1723 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1724
1725 /*
1726 * The execute once is handled specially to optimize the code flow.
1727 *
1728 * The last EMT to arrive will perform the callback and the other
1729 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1730 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1731 * returns, that EMT will initiate the normal return sequence.
1732 */
1733 if (!fIsCaller)
1734 {
1735 for (;;)
1736 {
1737 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1738 AssertLogRelRC(rc);
1739 if (!pVM->vmm.s.fRendezvousRecursion)
1740 break;
1741 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1742 }
1743
1744 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1745 }
1746 return VINF_SUCCESS;
1747 }
1748 }
1749 else
1750 {
1751 /*
1752 * All EMTs are waiting, clear the FF and take action according to the
1753 * execution method.
1754 */
1755 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1756
1757 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1758 {
1759 /* Wake up everyone. */
1760 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1761 AssertLogRelRC(rc);
1762 }
1763 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1764 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1765 {
1766 /* Figure out who to wake up and wake it up. If it's ourself, then
1767 it's easy otherwise wait for our turn. */
1768 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1769 ? 0
1770 : pVM->cCpus - 1U;
1771 if (pVCpu->idCpu != iFirst)
1772 {
1773 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1774 AssertLogRelRC(rc);
1775 for (;;)
1776 {
1777 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1778 AssertLogRelRC(rc);
1779 if (!pVM->vmm.s.fRendezvousRecursion)
1780 break;
1781 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1782 }
1783 }
1784 }
1785 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1786 }
1787
1788
1789 /*
1790 * Do the callback and update the status if necessary.
1791 */
1792 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1793 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1794 {
1795 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1796 if (rcStrict2 != VINF_SUCCESS)
1797 {
1798 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1799 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1800 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1801 int32_t i32RendezvousStatus;
1802 do
1803 {
1804 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1805 if ( rcStrict2 == i32RendezvousStatus
1806 || RT_FAILURE(i32RendezvousStatus)
1807 || ( i32RendezvousStatus != VINF_SUCCESS
1808 && rcStrict2 > i32RendezvousStatus))
1809 break;
1810 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1811 }
1812 }
1813
1814 /*
1815 * Increment the done counter and take action depending on whether we're
1816 * the last to finish callback execution.
1817 */
1818 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1819 if ( cDone != pVM->cCpus
1820 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1821 {
1822 /* Signal the next EMT? */
1823 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1824 {
1825 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1826 AssertLogRelRC(rc);
1827 }
1828 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1829 {
1830 Assert(cDone == pVCpu->idCpu + 1U);
1831 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1832 AssertLogRelRC(rc);
1833 }
1834 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1835 {
1836 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1837 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1838 AssertLogRelRC(rc);
1839 }
1840
1841 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1842 if (!fIsCaller)
1843 {
1844 for (;;)
1845 {
1846 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1847 AssertLogRelRC(rc);
1848 if (!pVM->vmm.s.fRendezvousRecursion)
1849 break;
1850 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1851 }
1852 }
1853 }
1854 else
1855 {
1856 /* Callback execution is all done, tell the rest to return. */
1857 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1858 AssertLogRelRC(rc);
1859 }
1860
1861 if (!fIsCaller)
1862 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1863 return rcStrictRecursion;
1864}
1865
1866
1867/**
1868 * Called in response to VM_FF_EMT_RENDEZVOUS.
1869 *
1870 * @returns VBox strict status code - EM scheduling. No errors will be returned
1871 * here, nor will any non-EM scheduling status codes be returned.
1872 *
1873 * @param pVM The cross context VM structure.
1874 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1875 *
1876 * @thread EMT
1877 */
1878VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1879{
1880 Assert(!pVCpu->vmm.s.fInRendezvous);
1881 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1882 pVCpu->vmm.s.fInRendezvous = true;
1883 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1884 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1885 pVCpu->vmm.s.fInRendezvous = false;
1886 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1887 return VBOXSTRICTRC_TODO(rcStrict);
1888}
1889
1890
1891/**
1892 * Helper for resetting an single wakeup event sempahore.
1893 *
1894 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1895 * @param hEvt The event semaphore to reset.
1896 */
1897static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1898{
1899 for (uint32_t cLoops = 0; ; cLoops++)
1900 {
1901 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1902 if (rc != VINF_SUCCESS || cLoops > _4K)
1903 return rc;
1904 }
1905}
1906
1907
1908/**
1909 * Worker for VMMR3EmtRendezvous that handles recursion.
1910 *
1911 * @returns VBox strict status code. This will be the first error,
1912 * VINF_SUCCESS, or an EM scheduling status code.
1913 *
1914 * @param pVM The cross context VM structure.
1915 * @param pVCpu The cross context virtual CPU structure of the
1916 * calling EMT.
1917 * @param fFlags Flags indicating execution methods. See
1918 * grp_VMMR3EmtRendezvous_fFlags.
1919 * @param pfnRendezvous The callback.
1920 * @param pvUser User argument for the callback.
1921 *
1922 * @thread EMT(pVCpu)
1923 */
1924static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1925 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1926{
1927 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1928 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1929 Assert(pVCpu->vmm.s.fInRendezvous);
1930
1931 /*
1932 * Save the current state.
1933 */
1934 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1935 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1936 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1937 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1938 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1939
1940 /*
1941 * Check preconditions and save the current state.
1942 */
1943 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1944 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1945 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1946 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1947 VERR_INTERNAL_ERROR);
1948 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1949 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1950
1951 /*
1952 * Reset the recursion prep and pop semaphores.
1953 */
1954 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1955 AssertLogRelRCReturn(rc, rc);
1956 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1957 AssertLogRelRCReturn(rc, rc);
1958 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1959 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1960 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1961 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1962
1963 /*
1964 * Usher the other thread into the recursion routine.
1965 */
1966 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1967 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1968
1969 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1970 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1971 while (cLeft-- > 0)
1972 {
1973 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1974 AssertLogRelRC(rc);
1975 }
1976 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1977 {
1978 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1979 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1980 {
1981 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1982 AssertLogRelRC(rc);
1983 }
1984 }
1985 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1986 {
1987 Assert(cLeft == pVCpu->idCpu);
1988 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1989 {
1990 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1991 AssertLogRelRC(rc);
1992 }
1993 }
1994 else
1995 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1996 VERR_INTERNAL_ERROR_4);
1997
1998 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1999 AssertLogRelRC(rc);
2000 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
2001 AssertLogRelRC(rc);
2002
2003
2004 /*
2005 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
2006 */
2007 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
2008 {
2009 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
2010 AssertLogRelRC(rc);
2011 }
2012
2013 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
2014
2015 /*
2016 * Clear the slate and setup the new rendezvous.
2017 */
2018 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2019 {
2020 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
2021 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2022 }
2023 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2024 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2025 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2026 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2027
2028 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2029 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2030 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2031 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2032 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2033 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2034 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2035 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
2036
2037 /*
2038 * We're ready to go now, do normal rendezvous processing.
2039 */
2040 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
2041 AssertLogRelRC(rc);
2042
2043 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
2044
2045 /*
2046 * The caller waits for the other EMTs to be done, return and waiting on the
2047 * pop semaphore.
2048 */
2049 for (;;)
2050 {
2051 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2052 AssertLogRelRC(rc);
2053 if (!pVM->vmm.s.fRendezvousRecursion)
2054 break;
2055 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
2056 }
2057
2058 /*
2059 * Get the return code and merge it with the above recursion status.
2060 */
2061 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
2062 if ( rcStrict2 != VINF_SUCCESS
2063 && ( rcStrict == VINF_SUCCESS
2064 || rcStrict > rcStrict2))
2065 rcStrict = rcStrict2;
2066
2067 /*
2068 * Restore the parent rendezvous state.
2069 */
2070 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2071 {
2072 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
2073 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2074 }
2075 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2076 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2077 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2078 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2079
2080 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
2081 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2082 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
2083 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
2084 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
2085 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
2086 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
2087
2088 /*
2089 * Usher the other EMTs back to their parent recursion routine, waiting
2090 * for them to all get there before we return (makes sure they've been
2091 * scheduled and are past the pop event sem, see below).
2092 */
2093 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
2094 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2095 AssertLogRelRC(rc);
2096
2097 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
2098 {
2099 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2100 AssertLogRelRC(rc);
2101 }
2102
2103 /*
2104 * We must reset the pop semaphore on the way out (doing the pop caller too,
2105 * just in case). The parent may be another recursion.
2106 */
2107 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2108 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2109
2110 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2111
2112 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2113 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2114 return rcStrict;
2115}
2116
2117
2118/**
2119 * EMT rendezvous.
2120 *
2121 * Gathers all the EMTs and execute some code on each of them, either in a one
2122 * by one fashion or all at once.
2123 *
2124 * @returns VBox strict status code. This will be the first error,
2125 * VINF_SUCCESS, or an EM scheduling status code.
2126 *
2127 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2128 * doesn't support it or if the recursion is too deep.
2129 *
2130 * @param pVM The cross context VM structure.
2131 * @param fFlags Flags indicating execution methods. See
2132 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2133 * descending and ascending rendezvous types support
2134 * recursion from inside @a pfnRendezvous.
2135 * @param pfnRendezvous The callback.
2136 * @param pvUser User argument for the callback.
2137 *
2138 * @thread Any.
2139 */
2140VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2141{
2142 /*
2143 * Validate input.
2144 */
2145 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2146 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2147 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2148 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2149 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2150 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2151 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2152 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2153
2154 VBOXSTRICTRC rcStrict;
2155 PVMCPU pVCpu = VMMGetCpu(pVM);
2156 if (!pVCpu)
2157 {
2158 /*
2159 * Forward the request to an EMT thread.
2160 */
2161 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2162 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2163 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2164 else
2165 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2166 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2167 }
2168 else if ( pVM->cCpus == 1
2169 || ( pVM->enmVMState == VMSTATE_DESTROYING
2170 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2171 {
2172 /*
2173 * Shortcut for the single EMT case.
2174 *
2175 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2176 * during vmR3Destroy after other emulation threads have started terminating.
2177 */
2178 if (!pVCpu->vmm.s.fInRendezvous)
2179 {
2180 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2181 pVCpu->vmm.s.fInRendezvous = true;
2182 pVM->vmm.s.fRendezvousFlags = fFlags;
2183 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2184 pVCpu->vmm.s.fInRendezvous = false;
2185 }
2186 else
2187 {
2188 /* Recursion. Do the same checks as in the SMP case. */
2189 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2190 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2191 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2192 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2193 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2194 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2195 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2196 , VERR_DEADLOCK);
2197
2198 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2199 pVM->vmm.s.cRendezvousRecursions++;
2200 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2201 pVM->vmm.s.fRendezvousFlags = fFlags;
2202
2203 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2204
2205 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2206 pVM->vmm.s.cRendezvousRecursions--;
2207 }
2208 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2209 }
2210 else
2211 {
2212 /*
2213 * Spin lock. If busy, check for recursion, if not recursing wait for
2214 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2215 */
2216 int rc;
2217 rcStrict = VINF_SUCCESS;
2218 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2219 {
2220 /* Allow recursion in some cases. */
2221 if ( pVCpu->vmm.s.fInRendezvous
2222 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2223 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2224 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2225 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2226 ))
2227 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2228
2229 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2230 VERR_DEADLOCK);
2231
2232 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2233 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2234 {
2235 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2236 {
2237 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2238 if ( rc != VINF_SUCCESS
2239 && ( rcStrict == VINF_SUCCESS
2240 || rcStrict > rc))
2241 rcStrict = rc;
2242 /** @todo Perhaps deal with termination here? */
2243 }
2244 ASMNopPause();
2245 }
2246 }
2247
2248 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2249 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2250 Assert(!pVCpu->vmm.s.fInRendezvous);
2251 pVCpu->vmm.s.fInRendezvous = true;
2252
2253 /*
2254 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2255 */
2256 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2257 {
2258 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2259 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2260 }
2261 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2262 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2263 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2264 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2265 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2266 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2267 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2268 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2269 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2270 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2271 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2272
2273 /*
2274 * Set the FF and poke the other EMTs.
2275 */
2276 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2277 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2278
2279 /*
2280 * Do the same ourselves.
2281 */
2282 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2283
2284 /*
2285 * The caller waits for the other EMTs to be done and return before doing
2286 * the cleanup. This makes away with wakeup / reset races we would otherwise
2287 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2288 */
2289 for (;;)
2290 {
2291 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2292 AssertLogRelRC(rc);
2293 if (!pVM->vmm.s.fRendezvousRecursion)
2294 break;
2295 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2296 }
2297
2298 /*
2299 * Get the return code and clean up a little bit.
2300 */
2301 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2302 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2303
2304 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2305 pVCpu->vmm.s.fInRendezvous = false;
2306
2307 /*
2308 * Merge rcStrict, rcStrict2 and rcStrict3.
2309 */
2310 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2311 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2312 if ( rcStrict2 != VINF_SUCCESS
2313 && ( rcStrict == VINF_SUCCESS
2314 || rcStrict > rcStrict2))
2315 rcStrict = rcStrict2;
2316 if ( rcStrict3 != VINF_SUCCESS
2317 && ( rcStrict == VINF_SUCCESS
2318 || rcStrict > rcStrict3))
2319 rcStrict = rcStrict3;
2320 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2321 }
2322
2323 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2324 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2325 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2326 VERR_IPE_UNEXPECTED_INFO_STATUS);
2327 return VBOXSTRICTRC_VAL(rcStrict);
2328}
2329
2330
2331/**
2332 * Interface for vmR3SetHaltMethodU.
2333 *
2334 * @param pVCpu The cross context virtual CPU structure of the
2335 * calling EMT.
2336 * @param fMayHaltInRing0 The new state.
2337 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2338 * @thread EMT(pVCpu)
2339 *
2340 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2341 * component.
2342 */
2343VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2344{
2345 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2346 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2347}
2348
2349
2350/**
2351 * Read from the ring 0 jump buffer stack.
2352 *
2353 * @returns VBox status code.
2354 *
2355 * @param pVM The cross context VM structure.
2356 * @param idCpu The ID of the source CPU context (for the address).
2357 * @param R0Addr Where to start reading.
2358 * @param pvBuf Where to store the data we've read.
2359 * @param cbRead The number of bytes to read.
2360 */
2361VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2362{
2363 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2364 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2365 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2366
2367 int rc;
2368#ifdef VMM_R0_SWITCH_STACK
2369 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2370#else
2371 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2372#endif
2373 if ( off < VMM_STACK_SIZE
2374 && off + cbRead <= VMM_STACK_SIZE)
2375 {
2376 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2377 rc = VINF_SUCCESS;
2378 }
2379 else
2380 rc = VERR_INVALID_POINTER;
2381
2382 /* Supply the setjmp return RIP/EIP. */
2383 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2384 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2385 {
2386 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2387 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2388 size_t offDst = 0;
2389 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2390 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2391 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2392 {
2393 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2394 Assert(offSrc < cbSrc);
2395 pbSrc -= offSrc;
2396 cbSrc -= offSrc;
2397 }
2398 if (cbSrc > cbRead - offDst)
2399 cbSrc = cbRead - offDst;
2400 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2401
2402 if (cbSrc == cbRead)
2403 rc = VINF_SUCCESS;
2404 }
2405
2406 return rc;
2407}
2408
2409
2410/**
2411 * Used by the DBGF stack unwinder to initialize the register state.
2412 *
2413 * @param pUVM The user mode VM handle.
2414 * @param idCpu The ID of the CPU being unwound.
2415 * @param pState The unwind state to initialize.
2416 */
2417VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2418{
2419 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2420 AssertReturnVoid(pVCpu);
2421
2422 /*
2423 * Locate the resume point on the stack.
2424 */
2425#ifdef VMM_R0_SWITCH_STACK
2426 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2427 AssertReturnVoid(off < VMM_STACK_SIZE);
2428#else
2429 uintptr_t off = 0;
2430#endif
2431
2432#ifdef RT_ARCH_AMD64
2433 /*
2434 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2435 */
2436# ifdef VBOX_STRICT
2437 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2438 off += 8; /* RESUME_MAGIC */
2439# endif
2440# ifdef RT_OS_WINDOWS
2441 off += 0xa0; /* XMM6 thru XMM15 */
2442# endif
2443 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2444 off += 8;
2445 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2446 off += 8;
2447# ifdef RT_OS_WINDOWS
2448 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2449 off += 8;
2450 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2451 off += 8;
2452# endif
2453 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2454 off += 8;
2455 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2456 off += 8;
2457 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2458 off += 8;
2459 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2460 off += 8;
2461 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2462 off += 8;
2463 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2464 off += 8;
2465
2466#elif defined(RT_ARCH_X86)
2467 /*
2468 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2469 */
2470# ifdef VBOX_STRICT
2471 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2472 off += 4; /* RESUME_MAGIC */
2473# endif
2474 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2475 off += 4;
2476 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2477 off += 4;
2478 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2479 off += 4;
2480 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2481 off += 4;
2482 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2483 off += 4;
2484 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2485 off += 4;
2486#else
2487# error "Port me"
2488#endif
2489
2490 /*
2491 * This is all we really need here, though the above helps if the assembly
2492 * doesn't contain unwind info (currently only on win/64, so that is useful).
2493 */
2494 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2495 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2496}
2497
2498#ifdef VBOX_WITH_RAW_MODE
2499
2500/**
2501 * Calls a RC function.
2502 *
2503 * @param pVM The cross context VM structure.
2504 * @param RCPtrEntry The address of the RC function.
2505 * @param cArgs The number of arguments in the ....
2506 * @param ... Arguments to the function.
2507 */
2508VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
2509{
2510 va_list args;
2511 va_start(args, cArgs);
2512 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
2513 va_end(args);
2514 return rc;
2515}
2516
2517
2518/**
2519 * Calls a RC function.
2520 *
2521 * @param pVM The cross context VM structure.
2522 * @param RCPtrEntry The address of the RC function.
2523 * @param cArgs The number of arguments in the ....
2524 * @param args Arguments to the function.
2525 */
2526VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
2527{
2528 /* Raw mode implies 1 VCPU. */
2529 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2530 PVMCPU pVCpu = &pVM->aCpus[0];
2531
2532 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
2533
2534 /*
2535 * Setup the call frame using the trampoline.
2536 */
2537 CPUMSetHyperState(pVCpu,
2538 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
2539 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
2540 RCPtrEntry, /* eax */
2541 cArgs /* edx */
2542 );
2543
2544#if 0
2545 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2546#endif
2547 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
2548 int i = cArgs;
2549 while (i-- > 0)
2550 *pFrame++ = va_arg(args, RTGCUINTPTR32);
2551
2552 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
2553 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
2554
2555 /*
2556 * We hide log flushes (outer) and hypervisor interrupts (inner).
2557 */
2558 for (;;)
2559 {
2560 int rc;
2561 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2562 do
2563 {
2564#ifdef NO_SUPCALLR0VMM
2565 rc = VERR_GENERAL_FAILURE;
2566#else
2567 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2568 if (RT_LIKELY(rc == VINF_SUCCESS))
2569 rc = pVCpu->vmm.s.iLastGZRc;
2570#endif
2571 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2572
2573 /*
2574 * Flush the loggers.
2575 */
2576#ifdef LOG_ENABLED
2577 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2578 if ( pLogger
2579 && pLogger->offScratch > 0)
2580 RTLogFlushRC(NULL, pLogger);
2581#endif
2582#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2583 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2584 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2585 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2586#endif
2587 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2588 VMMR3FatalDump(pVM, pVCpu, rc);
2589 if (rc != VINF_VMM_CALL_HOST)
2590 {
2591 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
2592 return rc;
2593 }
2594 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2595 if (RT_FAILURE(rc))
2596 return rc;
2597 }
2598}
2599
2600#endif /* VBOX_WITH_RAW_MODE */
2601
2602/**
2603 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2604 *
2605 * @returns VBox status code.
2606 * @param pVM The cross context VM structure.
2607 * @param uOperation Operation to execute.
2608 * @param u64Arg Constant argument.
2609 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2610 * details.
2611 */
2612VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2613{
2614 PVMCPU pVCpu = VMMGetCpu(pVM);
2615 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2616 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2617}
2618
2619
2620/**
2621 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2622 *
2623 * @returns VBox status code.
2624 * @param pVM The cross context VM structure.
2625 * @param pVCpu The cross context VM structure.
2626 * @param enmOperation Operation to execute.
2627 * @param u64Arg Constant argument.
2628 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2629 * details.
2630 */
2631VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2632{
2633 int rc;
2634 for (;;)
2635 {
2636#ifdef NO_SUPCALLR0VMM
2637 rc = VERR_GENERAL_FAILURE;
2638#else
2639 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2640#endif
2641 /*
2642 * Flush the logs.
2643 */
2644#ifdef LOG_ENABLED
2645 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2646#endif
2647 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2648 if (rc != VINF_VMM_CALL_HOST)
2649 break;
2650 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2651 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2652 break;
2653 /* Resume R0 */
2654 }
2655
2656 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2657 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2658 VERR_IPE_UNEXPECTED_INFO_STATUS);
2659 return rc;
2660}
2661
2662
2663#ifdef VBOX_WITH_RAW_MODE
2664/**
2665 * Resumes executing hypervisor code when interrupted by a queue flush or a
2666 * debug event.
2667 *
2668 * @returns VBox status code.
2669 * @param pVM The cross context VM structure.
2670 * @param pVCpu The cross context virtual CPU structure.
2671 */
2672VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2673{
2674 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2675 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2676
2677 /*
2678 * We hide log flushes (outer) and hypervisor interrupts (inner).
2679 */
2680 for (;;)
2681 {
2682 int rc;
2683 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2684 do
2685 {
2686# ifdef NO_SUPCALLR0VMM
2687 rc = VERR_GENERAL_FAILURE;
2688# else
2689 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2690 if (RT_LIKELY(rc == VINF_SUCCESS))
2691 rc = pVCpu->vmm.s.iLastGZRc;
2692# endif
2693 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2694
2695 /*
2696 * Flush the loggers.
2697 */
2698# ifdef LOG_ENABLED
2699 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2700 if ( pLogger
2701 && pLogger->offScratch > 0)
2702 RTLogFlushRC(NULL, pLogger);
2703# endif
2704# ifdef VBOX_WITH_RC_RELEASE_LOGGING
2705 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2706 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2707 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2708# endif
2709 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2710 VMMR3FatalDump(pVM, pVCpu, rc);
2711 if (rc != VINF_VMM_CALL_HOST)
2712 {
2713 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2714 return rc;
2715 }
2716 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2717 if (RT_FAILURE(rc))
2718 return rc;
2719 }
2720}
2721#endif /* VBOX_WITH_RAW_MODE */
2722
2723
2724/**
2725 * Service a call to the ring-3 host code.
2726 *
2727 * @returns VBox status code.
2728 * @param pVM The cross context VM structure.
2729 * @param pVCpu The cross context virtual CPU structure.
2730 * @remarks Careful with critsects.
2731 */
2732static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2733{
2734 /*
2735 * We must also check for pending critsect exits or else we can deadlock
2736 * when entering other critsects here.
2737 */
2738 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2739 PDMCritSectBothFF(pVCpu);
2740
2741 switch (pVCpu->vmm.s.enmCallRing3Operation)
2742 {
2743 /*
2744 * Acquire a critical section.
2745 */
2746 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2747 {
2748 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2749 true /*fCallRing3*/);
2750 break;
2751 }
2752
2753 /*
2754 * Enter a r/w critical section exclusively.
2755 */
2756 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2757 {
2758 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2759 true /*fCallRing3*/);
2760 break;
2761 }
2762
2763 /*
2764 * Enter a r/w critical section shared.
2765 */
2766 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2767 {
2768 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2769 true /*fCallRing3*/);
2770 break;
2771 }
2772
2773 /*
2774 * Acquire the PDM lock.
2775 */
2776 case VMMCALLRING3_PDM_LOCK:
2777 {
2778 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2779 break;
2780 }
2781
2782 /*
2783 * Grow the PGM pool.
2784 */
2785 case VMMCALLRING3_PGM_POOL_GROW:
2786 {
2787 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2788 break;
2789 }
2790
2791 /*
2792 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2793 */
2794 case VMMCALLRING3_PGM_MAP_CHUNK:
2795 {
2796 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2797 break;
2798 }
2799
2800 /*
2801 * Allocates more handy pages.
2802 */
2803 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2804 {
2805 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2806 break;
2807 }
2808
2809 /*
2810 * Allocates a large page.
2811 */
2812 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2813 {
2814 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2815 break;
2816 }
2817
2818 /*
2819 * Acquire the PGM lock.
2820 */
2821 case VMMCALLRING3_PGM_LOCK:
2822 {
2823 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2824 break;
2825 }
2826
2827 /*
2828 * Acquire the MM hypervisor heap lock.
2829 */
2830 case VMMCALLRING3_MMHYPER_LOCK:
2831 {
2832 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2833 break;
2834 }
2835
2836#ifdef VBOX_WITH_REM
2837 /*
2838 * Flush REM handler notifications.
2839 */
2840 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2841 {
2842 REMR3ReplayHandlerNotifications(pVM);
2843 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2844 break;
2845 }
2846#endif
2847
2848 /*
2849 * This is a noop. We just take this route to avoid unnecessary
2850 * tests in the loops.
2851 */
2852 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2853 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2854 LogAlways(("*FLUSH*\n"));
2855 break;
2856
2857 /*
2858 * Set the VM error message.
2859 */
2860 case VMMCALLRING3_VM_SET_ERROR:
2861 VMR3SetErrorWorker(pVM);
2862 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2863 break;
2864
2865 /*
2866 * Set the VM runtime error message.
2867 */
2868 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2869 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2870 break;
2871
2872 /*
2873 * Signal a ring 0 hypervisor assertion.
2874 * Cancel the longjmp operation that's in progress.
2875 */
2876 case VMMCALLRING3_VM_R0_ASSERTION:
2877 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2878 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2879#ifdef RT_ARCH_X86
2880 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2881#else
2882 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2883#endif
2884#ifdef VMM_R0_SWITCH_STACK
2885 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2886#endif
2887 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2888 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2889 return VERR_VMM_RING0_ASSERTION;
2890
2891 /*
2892 * A forced switch to ring 0 for preemption purposes.
2893 */
2894 case VMMCALLRING3_VM_R0_PREEMPT:
2895 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2896 break;
2897
2898 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2899 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2900 break;
2901
2902 default:
2903 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2904 return VERR_VMM_UNKNOWN_RING3_CALL;
2905 }
2906
2907 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2908 return VINF_SUCCESS;
2909}
2910
2911
2912/**
2913 * Displays the Force action Flags.
2914 *
2915 * @param pVM The cross context VM structure.
2916 * @param pHlp The output helpers.
2917 * @param pszArgs The additional arguments (ignored).
2918 */
2919static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2920{
2921 int c;
2922 uint32_t f;
2923 NOREF(pszArgs);
2924
2925#define PRINT_FLAG(prf,flag) do { \
2926 if (f & (prf##flag)) \
2927 { \
2928 static const char *s_psz = #flag; \
2929 if (!(c % 6)) \
2930 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2931 else \
2932 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2933 c++; \
2934 f &= ~(prf##flag); \
2935 } \
2936 } while (0)
2937
2938#define PRINT_GROUP(prf,grp,sfx) do { \
2939 if (f & (prf##grp##sfx)) \
2940 { \
2941 static const char *s_psz = #grp; \
2942 if (!(c % 5)) \
2943 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2944 else \
2945 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2946 c++; \
2947 } \
2948 } while (0)
2949
2950 /*
2951 * The global flags.
2952 */
2953 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2954 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2955
2956 /* show the flag mnemonics */
2957 c = 0;
2958 f = fGlobalForcedActions;
2959 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2960 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2961 PRINT_FLAG(VM_FF_,PDM_DMA);
2962 PRINT_FLAG(VM_FF_,DBGF);
2963 PRINT_FLAG(VM_FF_,REQUEST);
2964 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2965 PRINT_FLAG(VM_FF_,RESET);
2966 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2967 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2968 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2969 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2970 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2971 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2972 if (f)
2973 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2974 else
2975 pHlp->pfnPrintf(pHlp, "\n");
2976
2977 /* the groups */
2978 c = 0;
2979 f = fGlobalForcedActions;
2980 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2981 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2982 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2983 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2984 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2985 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2986 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2987 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2988 if (c)
2989 pHlp->pfnPrintf(pHlp, "\n");
2990
2991 /*
2992 * Per CPU flags.
2993 */
2994 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2995 {
2996 const uint64_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2997 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2998
2999 /* show the flag mnemonics */
3000 c = 0;
3001 f = fLocalForcedActions;
3002 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
3003 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
3004 PRINT_FLAG(VMCPU_FF_,TIMER);
3005 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
3006 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
3007 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
3008 PRINT_FLAG(VMCPU_FF_,UNHALT);
3009 PRINT_FLAG(VMCPU_FF_,IEM);
3010 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
3011 PRINT_FLAG(VMCPU_FF_,DBGF);
3012 PRINT_FLAG(VMCPU_FF_,REQUEST);
3013 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
3014 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
3015 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
3016 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
3017 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
3018 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
3019 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
3020 PRINT_FLAG(VMCPU_FF_,TO_R3);
3021 PRINT_FLAG(VMCPU_FF_,IOM);
3022#ifdef VBOX_WITH_RAW_MODE
3023 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
3024 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
3025 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
3026 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
3027 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
3028 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
3029 PRINT_FLAG(VMCPU_FF_,CPUM);
3030#endif
3031 if (f)
3032 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
3033 else
3034 pHlp->pfnPrintf(pHlp, "\n");
3035
3036 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
3037 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
3038
3039 /* the groups */
3040 c = 0;
3041 f = fLocalForcedActions;
3042 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
3043 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
3044 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
3045 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
3046 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
3047 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
3048 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
3049 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
3050 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
3051 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
3052 if (c)
3053 pHlp->pfnPrintf(pHlp, "\n");
3054 }
3055
3056#undef PRINT_FLAG
3057#undef PRINT_GROUP
3058}
3059
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette