VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 81150

Last change on this file since 81150 was 81150, checked in by vboxsync, 5 years ago

VMM,/Makefile.kmk: Kicked out more recompiler related code. bugref:9576

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 105.6 KB
Line 
1/* $Id: VMM.cpp 81150 2019-10-08 12:53:47Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_pdm
41 * - @subpage pg_pgm
42 * - @subpage pg_rem
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
154 do { \
155 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
156 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
157 { /* likely? */ } \
158 else \
159 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
160 } while (0)
161
162
163/*********************************************************************************************************************************
164* Internal Functions *
165*********************************************************************************************************************************/
166static int vmmR3InitStacks(PVM pVM);
167static int vmmR3InitLoggers(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
172static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
173 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
174static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
175static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176
177
178/**
179 * Initializes the VMM.
180 *
181 * @returns VBox status code.
182 * @param pVM The cross context VM structure.
183 */
184VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
185{
186 LogFlow(("VMMR3Init\n"));
187
188 /*
189 * Assert alignment, sizes and order.
190 */
191 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
192 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
193
194 /*
195 * Init basic VM VMM members.
196 */
197 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
198 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
199 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
200 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
201 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
202 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
203 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
204 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
205 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
206
207 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
208 * The EMT yield interval. The EMT yielding is a hack we employ to play a
209 * bit nicer with the rest of the system (like for instance the GUI).
210 */
211 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
212 23 /* Value arrived at after experimenting with the grub boot prompt. */);
213 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
214
215
216 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
217 * Controls whether we employ per-cpu preemption timers to limit the time
218 * spent executing guest code. This option is not available on all
219 * platforms and we will silently ignore this setting then. If we are
220 * running in VT-x mode, we will use the VMX-preemption timer instead of
221 * this one when possible.
222 */
223 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
224 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
225 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
226
227 /*
228 * Initialize the VMM rendezvous semaphores.
229 */
230 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
231 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
232 return VERR_NO_MEMORY;
233 for (VMCPUID i = 0; i < pVM->cCpus; i++)
234 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
235 for (VMCPUID i = 0; i < pVM->cCpus; i++)
236 {
237 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
238 AssertRCReturn(rc, rc);
239 }
240 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
241 AssertRCReturn(rc, rc);
242 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
243 AssertRCReturn(rc, rc);
244 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
245 AssertRCReturn(rc, rc);
246 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
247 AssertRCReturn(rc, rc);
248 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
249 AssertRCReturn(rc, rc);
250 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
251 AssertRCReturn(rc, rc);
252 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
253 AssertRCReturn(rc, rc);
254 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
255 AssertRCReturn(rc, rc);
256
257 /*
258 * Register the saved state data unit.
259 */
260 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
261 NULL, NULL, NULL,
262 NULL, vmmR3Save, NULL,
263 NULL, vmmR3Load, NULL);
264 if (RT_FAILURE(rc))
265 return rc;
266
267 /*
268 * Register the Ring-0 VM handle with the session for fast ioctl calls.
269 */
270 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
271 if (RT_FAILURE(rc))
272 return rc;
273
274 /*
275 * Init various sub-components.
276 */
277 rc = vmmR3InitStacks(pVM);
278 if (RT_SUCCESS(rc))
279 {
280 rc = vmmR3InitLoggers(pVM);
281
282#ifdef VBOX_WITH_NMI
283 /*
284 * Allocate mapping for the host APIC.
285 */
286 if (RT_SUCCESS(rc))
287 {
288 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
289 AssertRC(rc);
290 }
291#endif
292 if (RT_SUCCESS(rc))
293 {
294 /*
295 * Debug info and statistics.
296 */
297 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
298 vmmR3InitRegisterStats(pVM);
299 vmmInitFormatTypes();
300
301 return VINF_SUCCESS;
302 }
303 }
304 /** @todo Need failure cleanup? */
305
306 return rc;
307}
308
309
310/**
311 * Allocate & setup the VMM RC stack(s) (for EMTs).
312 *
313 * The stacks are also used for long jumps in Ring-0.
314 *
315 * @returns VBox status code.
316 * @param pVM The cross context VM structure.
317 *
318 * @remarks The optional guard page gets it protection setup up during R3 init
319 * completion because of init order issues.
320 */
321static int vmmR3InitStacks(PVM pVM)
322{
323 int rc = VINF_SUCCESS;
324#ifdef VMM_R0_SWITCH_STACK
325 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
326#else
327 uint32_t fFlags = 0;
328#endif
329
330 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
331 {
332 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
333
334#ifdef VBOX_STRICT_VMM_STACK
335 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
336#else
337 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
338#endif
339 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
340 if (RT_SUCCESS(rc))
341 {
342#ifdef VBOX_STRICT_VMM_STACK
343 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
344#endif
345 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
346
347 }
348 }
349
350 return rc;
351}
352
353
354/**
355 * Initialize the loggers.
356 *
357 * @returns VBox status code.
358 * @param pVM The cross context VM structure.
359 */
360static int vmmR3InitLoggers(PVM pVM)
361{
362 int rc;
363#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
364
365 /*
366 * Allocate R0 Logger instance (finalized in the relocator).
367 */
368#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
369 PRTLOGGER pLogger = RTLogDefaultInstance();
370 if (pLogger)
371 {
372 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
373 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
374 {
375 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
376 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
377 (void **)&pVCpu->vmm.s.pR0LoggerR3);
378 if (RT_FAILURE(rc))
379 return rc;
380 pVCpu->vmm.s.pR0LoggerR3->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
381 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
382 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
383 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
384 }
385 }
386#endif /* LOG_ENABLED && VBOX_WITH_R0_LOGGING */
387
388 /*
389 * Release logging.
390 */
391 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
392 if (pRelLogger)
393 {
394 /*
395 * Ring-0 release logger.
396 */
397 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
398 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
399 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
400
401 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
402 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
403 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
404
405 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
406
407 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
408 {
409 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
410 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
411 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
412 if (RT_FAILURE(rc))
413 return rc;
414 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
415 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
416 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
417 pVmmLogger->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
418 pVmmLogger->cbLogger = (uint32_t)cbLogger;
419 pVmmLogger->fCreated = false;
420 pVmmLogger->fFlushingDisabled = false;
421 pVmmLogger->fRegistered = false;
422 pVmmLogger->idCpu = idCpu;
423
424 char szR0ThreadName[16];
425 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", idCpu);
426 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
427 pfnLoggerWrapper, pfnLoggerFlush,
428 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
429 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
430
431 /* We only update the release log instance here. */
432 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
433 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
434 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
435
436 pVmmLogger->fCreated = true;
437 }
438 }
439
440 return VINF_SUCCESS;
441}
442
443
444/**
445 * VMMR3Init worker that register the statistics with STAM.
446 *
447 * @param pVM The cross context VM structure.
448 */
449static void vmmR3InitRegisterStats(PVM pVM)
450{
451 RT_NOREF_PV(pVM);
452
453 /*
454 * Statistics.
455 */
456 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
520
521#ifdef VBOX_WITH_STATISTICS
522 for (VMCPUID i = 0; i < pVM->cCpus; i++)
523 {
524 PVMCPU pVCpu = pVM->apCpusR3[i];
525 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
526 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
527 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
528 }
529#endif
530 for (VMCPUID i = 0; i < pVM->cCpus; i++)
531 {
532 PVMCPU pVCpu = pVM->apCpusR3[i];
533 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
534 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
535 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
536 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
537 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
538 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
539 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
540 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
541 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
542 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
543 }
544}
545
546
547/**
548 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
549 *
550 * @returns VBox status code.
551 * @param pVM The cross context VM structure.
552 * @param pVCpu The cross context per CPU structure.
553 * @thread EMT(pVCpu)
554 */
555static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
556{
557 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
558}
559
560
561/**
562 * Initializes the R0 VMM.
563 *
564 * @returns VBox status code.
565 * @param pVM The cross context VM structure.
566 */
567VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
568{
569 int rc;
570 PVMCPU pVCpu = VMMGetCpu(pVM);
571 Assert(pVCpu && pVCpu->idCpu == 0);
572
573#ifdef LOG_ENABLED
574 /*
575 * Initialize the ring-0 logger if we haven't done so yet.
576 */
577 if ( pVCpu->vmm.s.pR0LoggerR3
578 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
579 {
580 rc = VMMR3UpdateLoggers(pVM);
581 if (RT_FAILURE(rc))
582 return rc;
583 }
584#endif
585
586 /*
587 * Call Ring-0 entry with init code.
588 */
589 for (;;)
590 {
591#ifdef NO_SUPCALLR0VMM
592 //rc = VERR_GENERAL_FAILURE;
593 rc = VINF_SUCCESS;
594#else
595 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
596#endif
597 /*
598 * Flush the logs.
599 */
600#ifdef LOG_ENABLED
601 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
602#endif
603 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
604 if (rc != VINF_VMM_CALL_HOST)
605 break;
606 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
607 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
608 break;
609 /* Resume R0 */
610 }
611
612 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
613 {
614 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
615 if (RT_SUCCESS(rc))
616 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
617 }
618
619 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
620 if (pVM->apCpusR3[0]->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
621 LogRel(("VMM: Enabled thread-context hooks\n"));
622 else
623 LogRel(("VMM: Thread-context hooks unavailable\n"));
624
625 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
626 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
627 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
628 else
629 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
630 if (pVM->vmm.s.fIsPreemptPossible)
631 LogRel(("VMM: Kernel preemption is possible\n"));
632 else
633 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
634
635 /*
636 * Send all EMTs to ring-0 to get their logger initialized.
637 */
638 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
639 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
640
641 return rc;
642}
643
644
645/**
646 * Called when an init phase completes.
647 *
648 * @returns VBox status code.
649 * @param pVM The cross context VM structure.
650 * @param enmWhat Which init phase.
651 */
652VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
653{
654 int rc = VINF_SUCCESS;
655
656 switch (enmWhat)
657 {
658 case VMINITCOMPLETED_RING3:
659 {
660 /*
661 * Create the EMT yield timer.
662 */
663 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
664 AssertRCReturn(rc, rc);
665
666 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
667 AssertRCReturn(rc, rc);
668 break;
669 }
670
671 case VMINITCOMPLETED_HM:
672 {
673 /*
674 * Disable the periodic preemption timers if we can use the
675 * VMX-preemption timer instead.
676 */
677 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
678 && HMR3IsVmxPreemptionTimerUsed(pVM))
679 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
680 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
681
682 /*
683 * Last chance for GIM to update its CPUID leaves if it requires
684 * knowledge/information from HM initialization.
685 */
686 rc = GIMR3InitCompleted(pVM);
687 AssertRCReturn(rc, rc);
688
689 /*
690 * CPUM's post-initialization (print CPUIDs).
691 */
692 CPUMR3LogCpuIdAndMsrFeatures(pVM);
693 break;
694 }
695
696 default: /* shuts up gcc */
697 break;
698 }
699
700 return rc;
701}
702
703
704/**
705 * Terminate the VMM bits.
706 *
707 * @returns VBox status code.
708 * @param pVM The cross context VM structure.
709 */
710VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
711{
712 PVMCPU pVCpu = VMMGetCpu(pVM);
713 Assert(pVCpu && pVCpu->idCpu == 0);
714
715 /*
716 * Call Ring-0 entry with termination code.
717 */
718 int rc;
719 for (;;)
720 {
721#ifdef NO_SUPCALLR0VMM
722 //rc = VERR_GENERAL_FAILURE;
723 rc = VINF_SUCCESS;
724#else
725 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
726#endif
727 /*
728 * Flush the logs.
729 */
730#ifdef LOG_ENABLED
731 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
732#endif
733 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
734 if (rc != VINF_VMM_CALL_HOST)
735 break;
736 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
737 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
738 break;
739 /* Resume R0 */
740 }
741 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
742 {
743 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
744 if (RT_SUCCESS(rc))
745 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
746 }
747
748 for (VMCPUID i = 0; i < pVM->cCpus; i++)
749 {
750 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
751 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
752 }
753 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
754 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
755 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
756 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
757 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
758 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
759 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
760 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
761 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
762 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
763 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
764 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
765 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
766 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
767 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
768 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
769
770 vmmTermFormatTypes();
771 return rc;
772}
773
774
775/**
776 * Applies relocations to data and code managed by this
777 * component. This function will be called at init and
778 * whenever the VMM need to relocate it self inside the GC.
779 *
780 * The VMM will need to apply relocations to the core code.
781 *
782 * @param pVM The cross context VM structure.
783 * @param offDelta The relocation delta.
784 */
785VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
786{
787 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
788 RT_NOREF(offDelta);
789
790 /*
791 * Update the logger.
792 */
793 VMMR3UpdateLoggers(pVM);
794}
795
796
797/**
798 * Updates the settings for the RC and R0 loggers.
799 *
800 * @returns VBox status code.
801 * @param pVM The cross context VM structure.
802 */
803VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
804{
805 int rc = VINF_SUCCESS;
806
807#ifdef LOG_ENABLED
808 /*
809 * For the ring-0 EMT logger, we use a per-thread logger instance
810 * in ring-0. Only initialize it once.
811 */
812 PRTLOGGER const pDefault = RTLogDefaultInstance();
813 for (VMCPUID i = 0; i < pVM->cCpus; i++)
814 {
815 PVMCPU pVCpu = pVM->apCpusR3[i];
816 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
817 if (pR0LoggerR3)
818 {
819 if (!pR0LoggerR3->fCreated)
820 {
821 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
822 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
823 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
824
825 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
826 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
827 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
828
829 char szR0ThreadName[16];
830 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
831 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
832 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
833 pfnLoggerWrapper, pfnLoggerFlush,
834 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
835 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
836
837 pR0LoggerR3->idCpu = i;
838 pR0LoggerR3->fCreated = true;
839 pR0LoggerR3->fFlushingDisabled = false;
840 }
841
842 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
843 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
844 AssertRC(rc);
845 }
846 }
847#else
848 RT_NOREF(pVM);
849#endif
850
851 return rc;
852}
853
854
855/**
856 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
857 *
858 * @returns Pointer to the buffer.
859 * @param pVM The cross context VM structure.
860 */
861VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
862{
863 return pVM->vmm.s.szRing0AssertMsg1;
864}
865
866
867/**
868 * Returns the VMCPU of the specified virtual CPU.
869 *
870 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
871 *
872 * @param pUVM The user mode VM handle.
873 * @param idCpu The ID of the virtual CPU.
874 */
875VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
876{
877 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
878 AssertReturn(idCpu < pUVM->cCpus, NULL);
879 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
880 return pUVM->pVM->apCpusR3[idCpu];
881}
882
883
884/**
885 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
886 *
887 * @returns Pointer to the buffer.
888 * @param pVM The cross context VM structure.
889 */
890VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
891{
892 return pVM->vmm.s.szRing0AssertMsg2;
893}
894
895
896/**
897 * Execute state save operation.
898 *
899 * @returns VBox status code.
900 * @param pVM The cross context VM structure.
901 * @param pSSM SSM operation handle.
902 */
903static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
904{
905 LogFlow(("vmmR3Save:\n"));
906
907 /*
908 * Save the started/stopped state of all CPUs except 0 as it will always
909 * be running. This avoids breaking the saved state version. :-)
910 */
911 for (VMCPUID i = 1; i < pVM->cCpus; i++)
912 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
913
914 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
915}
916
917
918/**
919 * Execute state load operation.
920 *
921 * @returns VBox status code.
922 * @param pVM The cross context VM structure.
923 * @param pSSM SSM operation handle.
924 * @param uVersion Data layout version.
925 * @param uPass The data pass.
926 */
927static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
928{
929 LogFlow(("vmmR3Load:\n"));
930 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
931
932 /*
933 * Validate version.
934 */
935 if ( uVersion != VMM_SAVED_STATE_VERSION
936 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
937 {
938 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
939 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
940 }
941
942 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
943 {
944 /* Ignore the stack bottom, stack pointer and stack bits. */
945 RTRCPTR RCPtrIgnored;
946 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
947 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
948#ifdef RT_OS_DARWIN
949 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
950 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
951 && SSMR3HandleRevision(pSSM) >= 48858
952 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
953 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
954 )
955 SSMR3Skip(pSSM, 16384);
956 else
957 SSMR3Skip(pSSM, 8192);
958#else
959 SSMR3Skip(pSSM, 8192);
960#endif
961 }
962
963 /*
964 * Restore the VMCPU states. VCPU 0 is always started.
965 */
966 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
967 for (VMCPUID i = 1; i < pVM->cCpus; i++)
968 {
969 bool fStarted;
970 int rc = SSMR3GetBool(pSSM, &fStarted);
971 if (RT_FAILURE(rc))
972 return rc;
973 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
974 }
975
976 /* terminator */
977 uint32_t u32;
978 int rc = SSMR3GetU32(pSSM, &u32);
979 if (RT_FAILURE(rc))
980 return rc;
981 if (u32 != UINT32_MAX)
982 {
983 AssertMsgFailed(("u32=%#x\n", u32));
984 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
985 }
986 return VINF_SUCCESS;
987}
988
989
990/**
991 * Suspends the CPU yielder.
992 *
993 * @param pVM The cross context VM structure.
994 */
995VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
996{
997 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
998 if (!pVM->vmm.s.cYieldResumeMillies)
999 {
1000 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1001 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1002 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1003 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1004 else
1005 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1006 TMTimerStop(pVM->vmm.s.pYieldTimer);
1007 }
1008 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1009}
1010
1011
1012/**
1013 * Stops the CPU yielder.
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1018{
1019 if (!pVM->vmm.s.cYieldResumeMillies)
1020 TMTimerStop(pVM->vmm.s.pYieldTimer);
1021 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1022 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1023}
1024
1025
1026/**
1027 * Resumes the CPU yielder when it has been a suspended or stopped.
1028 *
1029 * @param pVM The cross context VM structure.
1030 */
1031VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1032{
1033 if (pVM->vmm.s.cYieldResumeMillies)
1034 {
1035 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1036 pVM->vmm.s.cYieldResumeMillies = 0;
1037 }
1038}
1039
1040
1041/**
1042 * Internal timer callback function.
1043 *
1044 * @param pVM The cross context VM structure.
1045 * @param pTimer The timer handle.
1046 * @param pvUser User argument specified upon timer creation.
1047 */
1048static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1049{
1050 NOREF(pvUser);
1051
1052 /*
1053 * This really needs some careful tuning. While we shouldn't be too greedy since
1054 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1055 * because that'll cause us to stop up.
1056 *
1057 * The current logic is to use the default interval when there is no lag worth
1058 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1059 *
1060 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1061 * so the lag is up to date.)
1062 */
1063 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1064 if ( u64Lag < 50000000 /* 50ms */
1065 || ( u64Lag < 1000000000 /* 1s */
1066 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1067 )
1068 {
1069 uint64_t u64Elapsed = RTTimeNanoTS();
1070 pVM->vmm.s.u64LastYield = u64Elapsed;
1071
1072 RTThreadYield();
1073
1074#ifdef LOG_ENABLED
1075 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1076 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1077#endif
1078 }
1079 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1080}
1081
1082
1083/**
1084 * Executes guest code (Intel VT-x and AMD-V).
1085 *
1086 * @param pVM The cross context VM structure.
1087 * @param pVCpu The cross context virtual CPU structure.
1088 */
1089VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1090{
1091 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1092
1093 for (;;)
1094 {
1095 int rc;
1096 do
1097 {
1098#ifdef NO_SUPCALLR0VMM
1099 rc = VERR_GENERAL_FAILURE;
1100#else
1101 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1102 if (RT_LIKELY(rc == VINF_SUCCESS))
1103 rc = pVCpu->vmm.s.iLastGZRc;
1104#endif
1105 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1106
1107#if 0 /** @todo triggers too often */
1108 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1109#endif
1110
1111 /*
1112 * Flush the logs
1113 */
1114#ifdef LOG_ENABLED
1115 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1116#endif
1117 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1118 if (rc != VINF_VMM_CALL_HOST)
1119 {
1120 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1121 return rc;
1122 }
1123 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1124 if (RT_FAILURE(rc))
1125 return rc;
1126 /* Resume R0 */
1127 }
1128}
1129
1130
1131/**
1132 * Perform one of the fast I/O control VMMR0 operation.
1133 *
1134 * @returns VBox strict status code.
1135 * @param pVM The cross context VM structure.
1136 * @param pVCpu The cross context virtual CPU structure.
1137 * @param enmOperation The operation to perform.
1138 */
1139VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1140{
1141 for (;;)
1142 {
1143 VBOXSTRICTRC rcStrict;
1144 do
1145 {
1146#ifdef NO_SUPCALLR0VMM
1147 rcStrict = VERR_GENERAL_FAILURE;
1148#else
1149 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1150 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1151 rcStrict = pVCpu->vmm.s.iLastGZRc;
1152#endif
1153 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1154
1155 /*
1156 * Flush the logs
1157 */
1158#ifdef LOG_ENABLED
1159 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1160#endif
1161 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1162 if (rcStrict != VINF_VMM_CALL_HOST)
1163 return rcStrict;
1164 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1165 if (RT_FAILURE(rc))
1166 return rc;
1167 /* Resume R0 */
1168 }
1169}
1170
1171
1172/**
1173 * VCPU worker for VMMR3SendStartupIpi.
1174 *
1175 * @param pVM The cross context VM structure.
1176 * @param idCpu Virtual CPU to perform SIPI on.
1177 * @param uVector The SIPI vector.
1178 */
1179static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1180{
1181 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1182 VMCPU_ASSERT_EMT(pVCpu);
1183
1184 /*
1185 * In the INIT state, the target CPU is only responsive to an SIPI.
1186 * This is also true for when when the CPU is in VMX non-root mode.
1187 *
1188 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1189 * See Intel spec. 26.6.2 "Activity State".
1190 */
1191 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1192 return VINF_SUCCESS;
1193
1194 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1195#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1196 if (CPUMIsGuestInVmxRootMode(pCtx))
1197 {
1198 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1199 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1200 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1201
1202 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1203 return VINF_SUCCESS;
1204 }
1205#endif
1206
1207 pCtx->cs.Sel = uVector << 8;
1208 pCtx->cs.ValidSel = uVector << 8;
1209 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1210 pCtx->cs.u64Base = uVector << 12;
1211 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1212 pCtx->rip = 0;
1213
1214 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1215
1216# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1217 EMSetState(pVCpu, EMSTATE_HALTED);
1218 return VINF_EM_RESCHEDULE;
1219# else /* And if we go the VMCPU::enmState way it can stay here. */
1220 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1221 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1222 return VINF_SUCCESS;
1223# endif
1224}
1225
1226
1227/**
1228 * VCPU worker for VMMR3SendInitIpi.
1229 *
1230 * @returns VBox status code.
1231 * @param pVM The cross context VM structure.
1232 * @param idCpu Virtual CPU to perform SIPI on.
1233 */
1234static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1235{
1236 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1237 VMCPU_ASSERT_EMT(pVCpu);
1238
1239 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1240
1241 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1242 * wait-for-SIPI state. Verify. */
1243
1244 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1245#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1246 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1247 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1248 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1249#endif
1250
1251 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1252 * IPI (e.g. SVM_EXIT_INIT). */
1253
1254 PGMR3ResetCpu(pVM, pVCpu);
1255 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1256 APICR3InitIpi(pVCpu);
1257 TRPMR3ResetCpu(pVCpu);
1258 CPUMR3ResetCpu(pVM, pVCpu);
1259 EMR3ResetCpu(pVCpu);
1260 HMR3ResetCpu(pVCpu);
1261 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1262
1263 /* This will trickle up on the target EMT. */
1264 return VINF_EM_WAIT_SIPI;
1265}
1266
1267
1268/**
1269 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1270 * vector-dependent state and unhalting processor.
1271 *
1272 * @param pVM The cross context VM structure.
1273 * @param idCpu Virtual CPU to perform SIPI on.
1274 * @param uVector SIPI vector.
1275 */
1276VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1277{
1278 AssertReturnVoid(idCpu < pVM->cCpus);
1279
1280 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1281 AssertRC(rc);
1282}
1283
1284
1285/**
1286 * Sends init IPI to the virtual CPU.
1287 *
1288 * @param pVM The cross context VM structure.
1289 * @param idCpu Virtual CPU to perform int IPI on.
1290 */
1291VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1292{
1293 AssertReturnVoid(idCpu < pVM->cCpus);
1294
1295 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1296 AssertRC(rc);
1297}
1298
1299
1300/**
1301 * Registers the guest memory range that can be used for patching.
1302 *
1303 * @returns VBox status code.
1304 * @param pVM The cross context VM structure.
1305 * @param pPatchMem Patch memory range.
1306 * @param cbPatchMem Size of the memory range.
1307 */
1308VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1309{
1310 VM_ASSERT_EMT(pVM);
1311 if (HMIsEnabled(pVM))
1312 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1313
1314 return VERR_NOT_SUPPORTED;
1315}
1316
1317
1318/**
1319 * Deregisters the guest memory range that can be used for patching.
1320 *
1321 * @returns VBox status code.
1322 * @param pVM The cross context VM structure.
1323 * @param pPatchMem Patch memory range.
1324 * @param cbPatchMem Size of the memory range.
1325 */
1326VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1327{
1328 if (HMIsEnabled(pVM))
1329 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1330
1331 return VINF_SUCCESS;
1332}
1333
1334
1335/**
1336 * Common recursion handler for the other EMTs.
1337 *
1338 * @returns Strict VBox status code.
1339 * @param pVM The cross context VM structure.
1340 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1341 * @param rcStrict Current status code to be combined with the one
1342 * from this recursion and returned.
1343 */
1344static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1345{
1346 int rc2;
1347
1348 /*
1349 * We wait here while the initiator of this recursion reconfigures
1350 * everything. The last EMT to get in signals the initiator.
1351 */
1352 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1353 {
1354 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1355 AssertLogRelRC(rc2);
1356 }
1357
1358 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1359 AssertLogRelRC(rc2);
1360
1361 /*
1362 * Do the normal rendezvous processing.
1363 */
1364 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1365 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1366
1367 /*
1368 * Wait for the initiator to restore everything.
1369 */
1370 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1371 AssertLogRelRC(rc2);
1372
1373 /*
1374 * Last thread out of here signals the initiator.
1375 */
1376 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1377 {
1378 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1379 AssertLogRelRC(rc2);
1380 }
1381
1382 /*
1383 * Merge status codes and return.
1384 */
1385 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1386 if ( rcStrict2 != VINF_SUCCESS
1387 && ( rcStrict == VINF_SUCCESS
1388 || rcStrict > rcStrict2))
1389 rcStrict = rcStrict2;
1390 return rcStrict;
1391}
1392
1393
1394/**
1395 * Count returns and have the last non-caller EMT wake up the caller.
1396 *
1397 * @returns VBox strict informational status code for EM scheduling. No failures
1398 * will be returned here, those are for the caller only.
1399 *
1400 * @param pVM The cross context VM structure.
1401 * @param rcStrict The current accumulated recursive status code,
1402 * to be merged with i32RendezvousStatus and
1403 * returned.
1404 */
1405DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1406{
1407 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1408
1409 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1410 if (cReturned == pVM->cCpus - 1U)
1411 {
1412 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1413 AssertLogRelRC(rc);
1414 }
1415
1416 /*
1417 * Merge the status codes, ignoring error statuses in this code path.
1418 */
1419 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1420 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1421 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1422 VERR_IPE_UNEXPECTED_INFO_STATUS);
1423
1424 if (RT_SUCCESS(rcStrict2))
1425 {
1426 if ( rcStrict2 != VINF_SUCCESS
1427 && ( rcStrict == VINF_SUCCESS
1428 || rcStrict > rcStrict2))
1429 rcStrict = rcStrict2;
1430 }
1431 return rcStrict;
1432}
1433
1434
1435/**
1436 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1437 *
1438 * @returns VBox strict informational status code for EM scheduling. No failures
1439 * will be returned here, those are for the caller only. When
1440 * fIsCaller is set, VINF_SUCCESS is always returned.
1441 *
1442 * @param pVM The cross context VM structure.
1443 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1444 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1445 * not.
1446 * @param fFlags The flags.
1447 * @param pfnRendezvous The callback.
1448 * @param pvUser The user argument for the callback.
1449 */
1450static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1451 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1452{
1453 int rc;
1454 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1455
1456 /*
1457 * Enter, the last EMT triggers the next callback phase.
1458 */
1459 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1460 if (cEntered != pVM->cCpus)
1461 {
1462 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1463 {
1464 /* Wait for our turn. */
1465 for (;;)
1466 {
1467 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1468 AssertLogRelRC(rc);
1469 if (!pVM->vmm.s.fRendezvousRecursion)
1470 break;
1471 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1472 }
1473 }
1474 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1475 {
1476 /* Wait for the last EMT to arrive and wake everyone up. */
1477 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1478 AssertLogRelRC(rc);
1479 Assert(!pVM->vmm.s.fRendezvousRecursion);
1480 }
1481 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1482 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1483 {
1484 /* Wait for our turn. */
1485 for (;;)
1486 {
1487 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1488 AssertLogRelRC(rc);
1489 if (!pVM->vmm.s.fRendezvousRecursion)
1490 break;
1491 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1492 }
1493 }
1494 else
1495 {
1496 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1497
1498 /*
1499 * The execute once is handled specially to optimize the code flow.
1500 *
1501 * The last EMT to arrive will perform the callback and the other
1502 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1503 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1504 * returns, that EMT will initiate the normal return sequence.
1505 */
1506 if (!fIsCaller)
1507 {
1508 for (;;)
1509 {
1510 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1511 AssertLogRelRC(rc);
1512 if (!pVM->vmm.s.fRendezvousRecursion)
1513 break;
1514 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1515 }
1516
1517 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1518 }
1519 return VINF_SUCCESS;
1520 }
1521 }
1522 else
1523 {
1524 /*
1525 * All EMTs are waiting, clear the FF and take action according to the
1526 * execution method.
1527 */
1528 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1529
1530 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1531 {
1532 /* Wake up everyone. */
1533 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1534 AssertLogRelRC(rc);
1535 }
1536 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1537 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1538 {
1539 /* Figure out who to wake up and wake it up. If it's ourself, then
1540 it's easy otherwise wait for our turn. */
1541 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1542 ? 0
1543 : pVM->cCpus - 1U;
1544 if (pVCpu->idCpu != iFirst)
1545 {
1546 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1547 AssertLogRelRC(rc);
1548 for (;;)
1549 {
1550 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1551 AssertLogRelRC(rc);
1552 if (!pVM->vmm.s.fRendezvousRecursion)
1553 break;
1554 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1555 }
1556 }
1557 }
1558 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1559 }
1560
1561
1562 /*
1563 * Do the callback and update the status if necessary.
1564 */
1565 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1566 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1567 {
1568 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1569 if (rcStrict2 != VINF_SUCCESS)
1570 {
1571 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1572 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1573 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1574 int32_t i32RendezvousStatus;
1575 do
1576 {
1577 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1578 if ( rcStrict2 == i32RendezvousStatus
1579 || RT_FAILURE(i32RendezvousStatus)
1580 || ( i32RendezvousStatus != VINF_SUCCESS
1581 && rcStrict2 > i32RendezvousStatus))
1582 break;
1583 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1584 }
1585 }
1586
1587 /*
1588 * Increment the done counter and take action depending on whether we're
1589 * the last to finish callback execution.
1590 */
1591 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1592 if ( cDone != pVM->cCpus
1593 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1594 {
1595 /* Signal the next EMT? */
1596 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1597 {
1598 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1599 AssertLogRelRC(rc);
1600 }
1601 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1602 {
1603 Assert(cDone == pVCpu->idCpu + 1U);
1604 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1605 AssertLogRelRC(rc);
1606 }
1607 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1608 {
1609 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1610 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1611 AssertLogRelRC(rc);
1612 }
1613
1614 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1615 if (!fIsCaller)
1616 {
1617 for (;;)
1618 {
1619 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1620 AssertLogRelRC(rc);
1621 if (!pVM->vmm.s.fRendezvousRecursion)
1622 break;
1623 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1624 }
1625 }
1626 }
1627 else
1628 {
1629 /* Callback execution is all done, tell the rest to return. */
1630 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1631 AssertLogRelRC(rc);
1632 }
1633
1634 if (!fIsCaller)
1635 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1636 return rcStrictRecursion;
1637}
1638
1639
1640/**
1641 * Called in response to VM_FF_EMT_RENDEZVOUS.
1642 *
1643 * @returns VBox strict status code - EM scheduling. No errors will be returned
1644 * here, nor will any non-EM scheduling status codes be returned.
1645 *
1646 * @param pVM The cross context VM structure.
1647 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1648 *
1649 * @thread EMT
1650 */
1651VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1652{
1653 Assert(!pVCpu->vmm.s.fInRendezvous);
1654 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1655 pVCpu->vmm.s.fInRendezvous = true;
1656 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1657 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1658 pVCpu->vmm.s.fInRendezvous = false;
1659 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1660 return VBOXSTRICTRC_TODO(rcStrict);
1661}
1662
1663
1664/**
1665 * Helper for resetting an single wakeup event sempahore.
1666 *
1667 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1668 * @param hEvt The event semaphore to reset.
1669 */
1670static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1671{
1672 for (uint32_t cLoops = 0; ; cLoops++)
1673 {
1674 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1675 if (rc != VINF_SUCCESS || cLoops > _4K)
1676 return rc;
1677 }
1678}
1679
1680
1681/**
1682 * Worker for VMMR3EmtRendezvous that handles recursion.
1683 *
1684 * @returns VBox strict status code. This will be the first error,
1685 * VINF_SUCCESS, or an EM scheduling status code.
1686 *
1687 * @param pVM The cross context VM structure.
1688 * @param pVCpu The cross context virtual CPU structure of the
1689 * calling EMT.
1690 * @param fFlags Flags indicating execution methods. See
1691 * grp_VMMR3EmtRendezvous_fFlags.
1692 * @param pfnRendezvous The callback.
1693 * @param pvUser User argument for the callback.
1694 *
1695 * @thread EMT(pVCpu)
1696 */
1697static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1698 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1699{
1700 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1701 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1702 Assert(pVCpu->vmm.s.fInRendezvous);
1703
1704 /*
1705 * Save the current state.
1706 */
1707 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1708 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1709 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1710 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1711 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1712
1713 /*
1714 * Check preconditions and save the current state.
1715 */
1716 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1717 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1718 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1719 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1720 VERR_INTERNAL_ERROR);
1721 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1722 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1723
1724 /*
1725 * Reset the recursion prep and pop semaphores.
1726 */
1727 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1728 AssertLogRelRCReturn(rc, rc);
1729 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1730 AssertLogRelRCReturn(rc, rc);
1731 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1732 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1733 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1734 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1735
1736 /*
1737 * Usher the other thread into the recursion routine.
1738 */
1739 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1740 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1741
1742 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1743 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1744 while (cLeft-- > 0)
1745 {
1746 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1747 AssertLogRelRC(rc);
1748 }
1749 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1750 {
1751 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1752 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1753 {
1754 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1755 AssertLogRelRC(rc);
1756 }
1757 }
1758 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1759 {
1760 Assert(cLeft == pVCpu->idCpu);
1761 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1762 {
1763 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1764 AssertLogRelRC(rc);
1765 }
1766 }
1767 else
1768 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1769 VERR_INTERNAL_ERROR_4);
1770
1771 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1772 AssertLogRelRC(rc);
1773 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1774 AssertLogRelRC(rc);
1775
1776
1777 /*
1778 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1779 */
1780 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1781 {
1782 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1783 AssertLogRelRC(rc);
1784 }
1785
1786 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1787
1788 /*
1789 * Clear the slate and setup the new rendezvous.
1790 */
1791 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1792 {
1793 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1794 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1795 }
1796 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1797 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1798 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1799 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1800
1801 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1802 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1803 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1804 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1805 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1806 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1807 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1808 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1809
1810 /*
1811 * We're ready to go now, do normal rendezvous processing.
1812 */
1813 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1814 AssertLogRelRC(rc);
1815
1816 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1817
1818 /*
1819 * The caller waits for the other EMTs to be done, return and waiting on the
1820 * pop semaphore.
1821 */
1822 for (;;)
1823 {
1824 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1825 AssertLogRelRC(rc);
1826 if (!pVM->vmm.s.fRendezvousRecursion)
1827 break;
1828 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1829 }
1830
1831 /*
1832 * Get the return code and merge it with the above recursion status.
1833 */
1834 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1835 if ( rcStrict2 != VINF_SUCCESS
1836 && ( rcStrict == VINF_SUCCESS
1837 || rcStrict > rcStrict2))
1838 rcStrict = rcStrict2;
1839
1840 /*
1841 * Restore the parent rendezvous state.
1842 */
1843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1844 {
1845 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1846 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1847 }
1848 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1849 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1850 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1851 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1852
1853 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1854 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1855 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1856 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1857 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1858 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1859 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1860
1861 /*
1862 * Usher the other EMTs back to their parent recursion routine, waiting
1863 * for them to all get there before we return (makes sure they've been
1864 * scheduled and are past the pop event sem, see below).
1865 */
1866 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1867 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1868 AssertLogRelRC(rc);
1869
1870 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1871 {
1872 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1873 AssertLogRelRC(rc);
1874 }
1875
1876 /*
1877 * We must reset the pop semaphore on the way out (doing the pop caller too,
1878 * just in case). The parent may be another recursion.
1879 */
1880 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1881 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1882
1883 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1884
1885 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1886 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1887 return rcStrict;
1888}
1889
1890
1891/**
1892 * EMT rendezvous.
1893 *
1894 * Gathers all the EMTs and execute some code on each of them, either in a one
1895 * by one fashion or all at once.
1896 *
1897 * @returns VBox strict status code. This will be the first error,
1898 * VINF_SUCCESS, or an EM scheduling status code.
1899 *
1900 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1901 * doesn't support it or if the recursion is too deep.
1902 *
1903 * @param pVM The cross context VM structure.
1904 * @param fFlags Flags indicating execution methods. See
1905 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1906 * descending and ascending rendezvous types support
1907 * recursion from inside @a pfnRendezvous.
1908 * @param pfnRendezvous The callback.
1909 * @param pvUser User argument for the callback.
1910 *
1911 * @thread Any.
1912 */
1913VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1914{
1915 /*
1916 * Validate input.
1917 */
1918 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1919 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1920 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1921 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1922 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1923 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1924 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1925 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1926
1927 VBOXSTRICTRC rcStrict;
1928 PVMCPU pVCpu = VMMGetCpu(pVM);
1929 if (!pVCpu)
1930 {
1931 /*
1932 * Forward the request to an EMT thread.
1933 */
1934 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
1935 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
1936 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1937 else
1938 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1939 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1940 }
1941 else if ( pVM->cCpus == 1
1942 || ( pVM->enmVMState == VMSTATE_DESTROYING
1943 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
1944 {
1945 /*
1946 * Shortcut for the single EMT case.
1947 *
1948 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
1949 * during vmR3Destroy after other emulation threads have started terminating.
1950 */
1951 if (!pVCpu->vmm.s.fInRendezvous)
1952 {
1953 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
1954 pVCpu->vmm.s.fInRendezvous = true;
1955 pVM->vmm.s.fRendezvousFlags = fFlags;
1956 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1957 pVCpu->vmm.s.fInRendezvous = false;
1958 }
1959 else
1960 {
1961 /* Recursion. Do the same checks as in the SMP case. */
1962 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
1963 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
1964 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
1965 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1966 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1967 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1968 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1969 , VERR_DEADLOCK);
1970
1971 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1972 pVM->vmm.s.cRendezvousRecursions++;
1973 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1974 pVM->vmm.s.fRendezvousFlags = fFlags;
1975
1976 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1977
1978 pVM->vmm.s.fRendezvousFlags = fParentFlags;
1979 pVM->vmm.s.cRendezvousRecursions--;
1980 }
1981 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1982 }
1983 else
1984 {
1985 /*
1986 * Spin lock. If busy, check for recursion, if not recursing wait for
1987 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
1988 */
1989 int rc;
1990 rcStrict = VINF_SUCCESS;
1991 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1992 {
1993 /* Allow recursion in some cases. */
1994 if ( pVCpu->vmm.s.fInRendezvous
1995 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1996 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1997 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1998 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1999 ))
2000 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2001
2002 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2003 VERR_DEADLOCK);
2004
2005 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2006 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2007 {
2008 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2009 {
2010 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2011 if ( rc != VINF_SUCCESS
2012 && ( rcStrict == VINF_SUCCESS
2013 || rcStrict > rc))
2014 rcStrict = rc;
2015 /** @todo Perhaps deal with termination here? */
2016 }
2017 ASMNopPause();
2018 }
2019 }
2020
2021 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2022 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2023 Assert(!pVCpu->vmm.s.fInRendezvous);
2024 pVCpu->vmm.s.fInRendezvous = true;
2025
2026 /*
2027 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2028 */
2029 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2030 {
2031 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2032 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2033 }
2034 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2035 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2036 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2037 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2038 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2039 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2040 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2041 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2042 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2043 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2044 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2045
2046 /*
2047 * Set the FF and poke the other EMTs.
2048 */
2049 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2050 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2051
2052 /*
2053 * Do the same ourselves.
2054 */
2055 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2056
2057 /*
2058 * The caller waits for the other EMTs to be done and return before doing
2059 * the cleanup. This makes away with wakeup / reset races we would otherwise
2060 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2061 */
2062 for (;;)
2063 {
2064 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2065 AssertLogRelRC(rc);
2066 if (!pVM->vmm.s.fRendezvousRecursion)
2067 break;
2068 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2069 }
2070
2071 /*
2072 * Get the return code and clean up a little bit.
2073 */
2074 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2075 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2076
2077 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2078 pVCpu->vmm.s.fInRendezvous = false;
2079
2080 /*
2081 * Merge rcStrict, rcStrict2 and rcStrict3.
2082 */
2083 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2084 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2085 if ( rcStrict2 != VINF_SUCCESS
2086 && ( rcStrict == VINF_SUCCESS
2087 || rcStrict > rcStrict2))
2088 rcStrict = rcStrict2;
2089 if ( rcStrict3 != VINF_SUCCESS
2090 && ( rcStrict == VINF_SUCCESS
2091 || rcStrict > rcStrict3))
2092 rcStrict = rcStrict3;
2093 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2094 }
2095
2096 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2097 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2098 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2099 VERR_IPE_UNEXPECTED_INFO_STATUS);
2100 return VBOXSTRICTRC_VAL(rcStrict);
2101}
2102
2103
2104/**
2105 * Interface for vmR3SetHaltMethodU.
2106 *
2107 * @param pVCpu The cross context virtual CPU structure of the
2108 * calling EMT.
2109 * @param fMayHaltInRing0 The new state.
2110 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2111 * @thread EMT(pVCpu)
2112 *
2113 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2114 * component.
2115 */
2116VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2117{
2118 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2119 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2120}
2121
2122
2123/**
2124 * Read from the ring 0 jump buffer stack.
2125 *
2126 * @returns VBox status code.
2127 *
2128 * @param pVM The cross context VM structure.
2129 * @param idCpu The ID of the source CPU context (for the address).
2130 * @param R0Addr Where to start reading.
2131 * @param pvBuf Where to store the data we've read.
2132 * @param cbRead The number of bytes to read.
2133 */
2134VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2135{
2136 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2137 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2138 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2139
2140 int rc;
2141#ifdef VMM_R0_SWITCH_STACK
2142 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2143#else
2144 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2145#endif
2146 if ( off < VMM_STACK_SIZE
2147 && off + cbRead <= VMM_STACK_SIZE)
2148 {
2149 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2150 rc = VINF_SUCCESS;
2151 }
2152 else
2153 rc = VERR_INVALID_POINTER;
2154
2155 /* Supply the setjmp return RIP/EIP. */
2156 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2157 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2158 {
2159 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2160 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2161 size_t offDst = 0;
2162 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2163 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2164 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2165 {
2166 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2167 Assert(offSrc < cbSrc);
2168 pbSrc -= offSrc;
2169 cbSrc -= offSrc;
2170 }
2171 if (cbSrc > cbRead - offDst)
2172 cbSrc = cbRead - offDst;
2173 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2174
2175 if (cbSrc == cbRead)
2176 rc = VINF_SUCCESS;
2177 }
2178
2179 return rc;
2180}
2181
2182
2183/**
2184 * Used by the DBGF stack unwinder to initialize the register state.
2185 *
2186 * @param pUVM The user mode VM handle.
2187 * @param idCpu The ID of the CPU being unwound.
2188 * @param pState The unwind state to initialize.
2189 */
2190VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2191{
2192 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2193 AssertReturnVoid(pVCpu);
2194
2195 /*
2196 * Locate the resume point on the stack.
2197 */
2198#ifdef VMM_R0_SWITCH_STACK
2199 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2200 AssertReturnVoid(off < VMM_STACK_SIZE);
2201#else
2202 uintptr_t off = 0;
2203#endif
2204
2205#ifdef RT_ARCH_AMD64
2206 /*
2207 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2208 */
2209# ifdef VBOX_STRICT
2210 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2211 off += 8; /* RESUME_MAGIC */
2212# endif
2213# ifdef RT_OS_WINDOWS
2214 off += 0xa0; /* XMM6 thru XMM15 */
2215# endif
2216 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2217 off += 8;
2218 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2219 off += 8;
2220# ifdef RT_OS_WINDOWS
2221 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2222 off += 8;
2223 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2224 off += 8;
2225# endif
2226 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2227 off += 8;
2228 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2229 off += 8;
2230 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2231 off += 8;
2232 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2233 off += 8;
2234 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2235 off += 8;
2236 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2237 off += 8;
2238
2239#elif defined(RT_ARCH_X86)
2240 /*
2241 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2242 */
2243# ifdef VBOX_STRICT
2244 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2245 off += 4; /* RESUME_MAGIC */
2246# endif
2247 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2248 off += 4;
2249 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2250 off += 4;
2251 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2252 off += 4;
2253 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2254 off += 4;
2255 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2256 off += 4;
2257 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2258 off += 4;
2259#else
2260# error "Port me"
2261#endif
2262
2263 /*
2264 * This is all we really need here, though the above helps if the assembly
2265 * doesn't contain unwind info (currently only on win/64, so that is useful).
2266 */
2267 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2268 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2269}
2270
2271
2272/**
2273 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2274 *
2275 * @returns VBox status code.
2276 * @param pVM The cross context VM structure.
2277 * @param uOperation Operation to execute.
2278 * @param u64Arg Constant argument.
2279 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2280 * details.
2281 */
2282VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2283{
2284 PVMCPU pVCpu = VMMGetCpu(pVM);
2285 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2286 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2287}
2288
2289
2290/**
2291 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2292 *
2293 * @returns VBox status code.
2294 * @param pVM The cross context VM structure.
2295 * @param pVCpu The cross context VM structure.
2296 * @param enmOperation Operation to execute.
2297 * @param u64Arg Constant argument.
2298 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2299 * details.
2300 */
2301VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2302{
2303 int rc;
2304 for (;;)
2305 {
2306#ifdef NO_SUPCALLR0VMM
2307 rc = VERR_GENERAL_FAILURE;
2308#else
2309 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2310#endif
2311 /*
2312 * Flush the logs.
2313 */
2314#ifdef LOG_ENABLED
2315 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2316#endif
2317 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2318 if (rc != VINF_VMM_CALL_HOST)
2319 break;
2320 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2321 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2322 break;
2323 /* Resume R0 */
2324 }
2325
2326 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2327 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2328 VERR_IPE_UNEXPECTED_INFO_STATUS);
2329 return rc;
2330}
2331
2332
2333/**
2334 * Service a call to the ring-3 host code.
2335 *
2336 * @returns VBox status code.
2337 * @param pVM The cross context VM structure.
2338 * @param pVCpu The cross context virtual CPU structure.
2339 * @remarks Careful with critsects.
2340 */
2341static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2342{
2343 /*
2344 * We must also check for pending critsect exits or else we can deadlock
2345 * when entering other critsects here.
2346 */
2347 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2348 PDMCritSectBothFF(pVCpu);
2349
2350 switch (pVCpu->vmm.s.enmCallRing3Operation)
2351 {
2352 /*
2353 * Acquire a critical section.
2354 */
2355 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2356 {
2357 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2358 true /*fCallRing3*/);
2359 break;
2360 }
2361
2362 /*
2363 * Enter a r/w critical section exclusively.
2364 */
2365 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2366 {
2367 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2368 true /*fCallRing3*/);
2369 break;
2370 }
2371
2372 /*
2373 * Enter a r/w critical section shared.
2374 */
2375 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2376 {
2377 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2378 true /*fCallRing3*/);
2379 break;
2380 }
2381
2382 /*
2383 * Acquire the PDM lock.
2384 */
2385 case VMMCALLRING3_PDM_LOCK:
2386 {
2387 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2388 break;
2389 }
2390
2391 /*
2392 * Grow the PGM pool.
2393 */
2394 case VMMCALLRING3_PGM_POOL_GROW:
2395 {
2396 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2397 break;
2398 }
2399
2400 /*
2401 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2402 */
2403 case VMMCALLRING3_PGM_MAP_CHUNK:
2404 {
2405 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2406 break;
2407 }
2408
2409 /*
2410 * Allocates more handy pages.
2411 */
2412 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2413 {
2414 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2415 break;
2416 }
2417
2418 /*
2419 * Allocates a large page.
2420 */
2421 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2422 {
2423 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2424 break;
2425 }
2426
2427 /*
2428 * Acquire the PGM lock.
2429 */
2430 case VMMCALLRING3_PGM_LOCK:
2431 {
2432 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2433 break;
2434 }
2435
2436 /*
2437 * Acquire the MM hypervisor heap lock.
2438 */
2439 case VMMCALLRING3_MMHYPER_LOCK:
2440 {
2441 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2442 break;
2443 }
2444
2445#ifdef VBOX_WITH_REM
2446 /*
2447 * Flush REM handler notifications.
2448 */
2449 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2450 {
2451 REMR3ReplayHandlerNotifications(pVM);
2452 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2453 break;
2454 }
2455#endif
2456
2457 /*
2458 * This is a noop. We just take this route to avoid unnecessary
2459 * tests in the loops.
2460 */
2461 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2462 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2463 LogAlways(("*FLUSH*\n"));
2464 break;
2465
2466 /*
2467 * Set the VM error message.
2468 */
2469 case VMMCALLRING3_VM_SET_ERROR:
2470 VMR3SetErrorWorker(pVM);
2471 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2472 break;
2473
2474 /*
2475 * Set the VM runtime error message.
2476 */
2477 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2478 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2479 break;
2480
2481 /*
2482 * Signal a ring 0 hypervisor assertion.
2483 * Cancel the longjmp operation that's in progress.
2484 */
2485 case VMMCALLRING3_VM_R0_ASSERTION:
2486 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2487 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2488#ifdef RT_ARCH_X86
2489 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2490#else
2491 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2492#endif
2493#ifdef VMM_R0_SWITCH_STACK
2494 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2495#endif
2496 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2497 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2498 return VERR_VMM_RING0_ASSERTION;
2499
2500 /*
2501 * A forced switch to ring 0 for preemption purposes.
2502 */
2503 case VMMCALLRING3_VM_R0_PREEMPT:
2504 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2505 break;
2506
2507 default:
2508 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2509 return VERR_VMM_UNKNOWN_RING3_CALL;
2510 }
2511
2512 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2513 return VINF_SUCCESS;
2514}
2515
2516
2517/**
2518 * Displays the Force action Flags.
2519 *
2520 * @param pVM The cross context VM structure.
2521 * @param pHlp The output helpers.
2522 * @param pszArgs The additional arguments (ignored).
2523 */
2524static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2525{
2526 int c;
2527 uint32_t f;
2528 NOREF(pszArgs);
2529
2530#define PRINT_FLAG(prf,flag) do { \
2531 if (f & (prf##flag)) \
2532 { \
2533 static const char *s_psz = #flag; \
2534 if (!(c % 6)) \
2535 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2536 else \
2537 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2538 c++; \
2539 f &= ~(prf##flag); \
2540 } \
2541 } while (0)
2542
2543#define PRINT_GROUP(prf,grp,sfx) do { \
2544 if (f & (prf##grp##sfx)) \
2545 { \
2546 static const char *s_psz = #grp; \
2547 if (!(c % 5)) \
2548 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2549 else \
2550 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2551 c++; \
2552 } \
2553 } while (0)
2554
2555 /*
2556 * The global flags.
2557 */
2558 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2559 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2560
2561 /* show the flag mnemonics */
2562 c = 0;
2563 f = fGlobalForcedActions;
2564 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2565 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2566 PRINT_FLAG(VM_FF_,PDM_DMA);
2567 PRINT_FLAG(VM_FF_,DBGF);
2568 PRINT_FLAG(VM_FF_,REQUEST);
2569 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2570 PRINT_FLAG(VM_FF_,RESET);
2571 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2572 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2573 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2574 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2575 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2576 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2577 if (f)
2578 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2579 else
2580 pHlp->pfnPrintf(pHlp, "\n");
2581
2582 /* the groups */
2583 c = 0;
2584 f = fGlobalForcedActions;
2585 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2586 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2587 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2588 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2589 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2590 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2591 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2592 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2593 if (c)
2594 pHlp->pfnPrintf(pHlp, "\n");
2595
2596 /*
2597 * Per CPU flags.
2598 */
2599 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2600 {
2601 PVMCPU pVCpu = pVM->apCpusR3[i];
2602 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2603 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2604
2605 /* show the flag mnemonics */
2606 c = 0;
2607 f = fLocalForcedActions;
2608 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2609 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2610 PRINT_FLAG(VMCPU_FF_,TIMER);
2611 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2612 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2613 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2614 PRINT_FLAG(VMCPU_FF_,UNHALT);
2615 PRINT_FLAG(VMCPU_FF_,IEM);
2616 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2617 PRINT_FLAG(VMCPU_FF_,DBGF);
2618 PRINT_FLAG(VMCPU_FF_,REQUEST);
2619 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2620 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2621 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2622 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2623 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2624 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2625 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2626 PRINT_FLAG(VMCPU_FF_,TO_R3);
2627 PRINT_FLAG(VMCPU_FF_,IOM);
2628 if (f)
2629 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2630 else
2631 pHlp->pfnPrintf(pHlp, "\n");
2632
2633 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2634 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2635
2636 /* the groups */
2637 c = 0;
2638 f = fLocalForcedActions;
2639 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2640 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2641 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2642 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2643 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2644 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2645 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2646 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2647 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2648 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2649 if (c)
2650 pHlp->pfnPrintf(pHlp, "\n");
2651 }
2652
2653#undef PRINT_FLAG
2654#undef PRINT_GROUP
2655}
2656
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette