VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 90806

Last change on this file since 90806 was 90597, checked in by vboxsync, 4 years ago

VMM: Speed up VMMGetCpu in ring-0 by using hash table (via new GVMMR0GetGVCpuByGVMandEMT call). bugref:6695

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 107.1 KB
Line 
1/* $Id: VMM.cpp 90597 2021-08-10 13:08:35Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
154 do { \
155 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
156 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
157 { /* likely? */ } \
158 else \
159 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
160 } while (0)
161
162
163/*********************************************************************************************************************************
164* Internal Functions *
165*********************************************************************************************************************************/
166static int vmmR3InitStacks(PVM pVM);
167static int vmmR3InitLoggers(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171#if 0 /* pointless when timers doesn't run on EMT */
172static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
173#endif
174static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
175 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
176static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
177static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178
179
180/**
181 * Initializes the VMM.
182 *
183 * @returns VBox status code.
184 * @param pVM The cross context VM structure.
185 */
186VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
187{
188 LogFlow(("VMMR3Init\n"));
189
190 /*
191 * Assert alignment, sizes and order.
192 */
193 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
194 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
195
196 /*
197 * Init basic VM VMM members.
198 */
199 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
200 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
201 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
202 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
203 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
204 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
205 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
207 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
208
209#if 0 /* pointless when timers doesn't run on EMT */
210 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
211 * The EMT yield interval. The EMT yielding is a hack we employ to play a
212 * bit nicer with the rest of the system (like for instance the GUI).
213 */
214 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
215 23 /* Value arrived at after experimenting with the grub boot prompt. */);
216 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
217#endif
218
219 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
220 * Controls whether we employ per-cpu preemption timers to limit the time
221 * spent executing guest code. This option is not available on all
222 * platforms and we will silently ignore this setting then. If we are
223 * running in VT-x mode, we will use the VMX-preemption timer instead of
224 * this one when possible.
225 */
226 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
227 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
228 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
229
230 /*
231 * Initialize the VMM rendezvous semaphores.
232 */
233 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
234 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
235 return VERR_NO_MEMORY;
236 for (VMCPUID i = 0; i < pVM->cCpus; i++)
237 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
238 for (VMCPUID i = 0; i < pVM->cCpus; i++)
239 {
240 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
241 AssertRCReturn(rc, rc);
242 }
243 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
244 AssertRCReturn(rc, rc);
245 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
246 AssertRCReturn(rc, rc);
247 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
256 AssertRCReturn(rc, rc);
257 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
258 AssertRCReturn(rc, rc);
259
260 /*
261 * Register the saved state data unit.
262 */
263 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
264 NULL, NULL, NULL,
265 NULL, vmmR3Save, NULL,
266 NULL, vmmR3Load, NULL);
267 if (RT_FAILURE(rc))
268 return rc;
269
270 /*
271 * Register the Ring-0 VM handle with the session for fast ioctl calls.
272 */
273 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
274 if (RT_FAILURE(rc))
275 return rc;
276
277 /*
278 * Init various sub-components.
279 */
280 rc = vmmR3InitStacks(pVM);
281 if (RT_SUCCESS(rc))
282 {
283 rc = vmmR3InitLoggers(pVM);
284
285#ifdef VBOX_WITH_NMI
286 /*
287 * Allocate mapping for the host APIC.
288 */
289 if (RT_SUCCESS(rc))
290 {
291 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
292 AssertRC(rc);
293 }
294#endif
295 if (RT_SUCCESS(rc))
296 {
297 /*
298 * Debug info and statistics.
299 */
300 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
301 vmmR3InitRegisterStats(pVM);
302 vmmInitFormatTypes();
303
304 return VINF_SUCCESS;
305 }
306 }
307 /** @todo Need failure cleanup? */
308
309 return rc;
310}
311
312
313/**
314 * Allocate & setup the VMM RC stack(s) (for EMTs).
315 *
316 * The stacks are also used for long jumps in Ring-0.
317 *
318 * @returns VBox status code.
319 * @param pVM The cross context VM structure.
320 *
321 * @remarks The optional guard page gets it protection setup up during R3 init
322 * completion because of init order issues.
323 */
324static int vmmR3InitStacks(PVM pVM)
325{
326 int rc = VINF_SUCCESS;
327#ifdef VMM_R0_SWITCH_STACK
328 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
329#else
330 uint32_t fFlags = 0;
331#endif
332
333 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
334 {
335 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
336
337#ifdef VBOX_STRICT_VMM_STACK
338 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
339#else
340 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
341#endif
342 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
343 if (RT_SUCCESS(rc))
344 {
345#ifdef VBOX_STRICT_VMM_STACK
346 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
347#endif
348 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
349
350 }
351 }
352
353 return rc;
354}
355
356
357/**
358 * Initialize the loggers.
359 *
360 * @returns VBox status code.
361 * @param pVM The cross context VM structure.
362 */
363static int vmmR3InitLoggers(PVM pVM)
364{
365 int rc;
366#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
367
368 /*
369 * Allocate R0 Logger instance (finalized in the relocator).
370 */
371#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
372 PRTLOGGER pLogger = RTLogDefaultInstance();
373 if (pLogger)
374 {
375 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
376 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
377 {
378 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
379 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
380 (void **)&pVCpu->vmm.s.pR0LoggerR3);
381 if (RT_FAILURE(rc))
382 return rc;
383 pVCpu->vmm.s.pR0LoggerR3->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
384 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
385 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
386 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
387 }
388 }
389#endif /* LOG_ENABLED && VBOX_WITH_R0_LOGGING */
390
391 /*
392 * Release logging.
393 */
394 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
395 if (pRelLogger)
396 {
397 /*
398 * Ring-0 release logger.
399 */
400 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
401 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
402 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
403
404 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
405 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
406 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
407
408 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
409
410 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
411 {
412 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
413 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
414 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
415 if (RT_FAILURE(rc))
416 return rc;
417 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
418 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
419 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
420 pVmmLogger->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
421 pVmmLogger->cbLogger = (uint32_t)cbLogger;
422 pVmmLogger->fCreated = false;
423 pVmmLogger->fFlushingDisabled = false;
424 pVmmLogger->fRegistered = false;
425 pVmmLogger->idCpu = idCpu;
426
427 char szR0ThreadName[16];
428 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", idCpu);
429 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
430 pfnLoggerWrapper, pfnLoggerFlush,
431 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
432 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
433
434 /* We only update the release log instance here. */
435 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
436 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
437 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
438
439 pVmmLogger->fCreated = true;
440 }
441 }
442
443 return VINF_SUCCESS;
444}
445
446
447/**
448 * VMMR3Init worker that register the statistics with STAM.
449 *
450 * @param pVM The cross context VM structure.
451 */
452static void vmmR3InitRegisterStats(PVM pVM)
453{
454 RT_NOREF_PV(pVM);
455
456 /*
457 * Statistics.
458 */
459 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
520 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
521 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
522
523#ifdef VBOX_WITH_STATISTICS
524 for (VMCPUID i = 0; i < pVM->cCpus; i++)
525 {
526 PVMCPU pVCpu = pVM->apCpusR3[i];
527 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
528 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
529 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
530 }
531#endif
532 for (VMCPUID i = 0; i < pVM->cCpus; i++)
533 {
534 PVMCPU pVCpu = pVM->apCpusR3[i];
535 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
536 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
537 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
538 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
539 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
540 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
541 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
542 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
543 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
544 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
545 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
546 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
547 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
548 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
549 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
550 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
551 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
552
553 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
554 }
555}
556
557
558/**
559 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
560 *
561 * @returns VBox status code.
562 * @param pVM The cross context VM structure.
563 * @param pVCpu The cross context per CPU structure.
564 * @thread EMT(pVCpu)
565 */
566static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
567{
568 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
569}
570
571
572/**
573 * Initializes the R0 VMM.
574 *
575 * @returns VBox status code.
576 * @param pVM The cross context VM structure.
577 */
578VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
579{
580 int rc;
581 PVMCPU pVCpu = VMMGetCpu(pVM);
582 Assert(pVCpu && pVCpu->idCpu == 0);
583
584#ifdef LOG_ENABLED
585 /*
586 * Initialize the ring-0 logger if we haven't done so yet.
587 */
588 if ( pVCpu->vmm.s.pR0LoggerR3
589 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
590 {
591 rc = VMMR3UpdateLoggers(pVM);
592 if (RT_FAILURE(rc))
593 return rc;
594 }
595#endif
596
597 /*
598 * Call Ring-0 entry with init code.
599 */
600 for (;;)
601 {
602#ifdef NO_SUPCALLR0VMM
603 //rc = VERR_GENERAL_FAILURE;
604 rc = VINF_SUCCESS;
605#else
606 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
607#endif
608 /*
609 * Flush the logs.
610 */
611#ifdef LOG_ENABLED
612 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
613#endif
614 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
615 if (rc != VINF_VMM_CALL_HOST)
616 break;
617 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
618 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
619 break;
620 /* Resume R0 */
621 }
622
623 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
624 {
625 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
626 if (RT_SUCCESS(rc))
627 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
628 }
629
630 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
631 if (pVM->vmm.s.fIsUsingContextHooks)
632 LogRel(("VMM: Enabled thread-context hooks\n"));
633 else
634 LogRel(("VMM: Thread-context hooks unavailable\n"));
635
636 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
637 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
638 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
639 else
640 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
641 if (pVM->vmm.s.fIsPreemptPossible)
642 LogRel(("VMM: Kernel preemption is possible\n"));
643 else
644 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
645
646 /*
647 * Send all EMTs to ring-0 to get their logger initialized.
648 */
649 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
650 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
651
652 return rc;
653}
654
655
656/**
657 * Called when an init phase completes.
658 *
659 * @returns VBox status code.
660 * @param pVM The cross context VM structure.
661 * @param enmWhat Which init phase.
662 */
663VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
664{
665 int rc = VINF_SUCCESS;
666
667 switch (enmWhat)
668 {
669 case VMINITCOMPLETED_RING3:
670 {
671#if 0 /* pointless when timers doesn't run on EMT */
672 /*
673 * Create the EMT yield timer.
674 */
675 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
676 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
677 AssertRCReturn(rc, rc);
678
679 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
680 AssertRCReturn(rc, rc);
681#endif
682 break;
683 }
684
685 case VMINITCOMPLETED_HM:
686 {
687 /*
688 * Disable the periodic preemption timers if we can use the
689 * VMX-preemption timer instead.
690 */
691 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
692 && HMR3IsVmxPreemptionTimerUsed(pVM))
693 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
694 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
695
696 /*
697 * Last chance for GIM to update its CPUID leaves if it requires
698 * knowledge/information from HM initialization.
699 */
700 rc = GIMR3InitCompleted(pVM);
701 AssertRCReturn(rc, rc);
702
703 /*
704 * CPUM's post-initialization (print CPUIDs).
705 */
706 CPUMR3LogCpuIdAndMsrFeatures(pVM);
707 break;
708 }
709
710 default: /* shuts up gcc */
711 break;
712 }
713
714 return rc;
715}
716
717
718/**
719 * Terminate the VMM bits.
720 *
721 * @returns VBox status code.
722 * @param pVM The cross context VM structure.
723 */
724VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
725{
726 PVMCPU pVCpu = VMMGetCpu(pVM);
727 Assert(pVCpu && pVCpu->idCpu == 0);
728
729 /*
730 * Call Ring-0 entry with termination code.
731 */
732 int rc;
733 for (;;)
734 {
735#ifdef NO_SUPCALLR0VMM
736 //rc = VERR_GENERAL_FAILURE;
737 rc = VINF_SUCCESS;
738#else
739 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
740#endif
741 /*
742 * Flush the logs.
743 */
744#ifdef LOG_ENABLED
745 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
746#endif
747 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
748 if (rc != VINF_VMM_CALL_HOST)
749 break;
750 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
751 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
752 break;
753 /* Resume R0 */
754 }
755 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
756 {
757 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
758 if (RT_SUCCESS(rc))
759 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
760 }
761
762 for (VMCPUID i = 0; i < pVM->cCpus; i++)
763 {
764 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
765 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
766 }
767 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
768 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
769 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
770 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
771 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
772 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
773 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
774 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
775 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
776 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
777 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
778 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
779 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
780 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
781 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
782 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
783
784 vmmTermFormatTypes();
785 return rc;
786}
787
788
789/**
790 * Applies relocations to data and code managed by this
791 * component. This function will be called at init and
792 * whenever the VMM need to relocate it self inside the GC.
793 *
794 * The VMM will need to apply relocations to the core code.
795 *
796 * @param pVM The cross context VM structure.
797 * @param offDelta The relocation delta.
798 */
799VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
800{
801 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
802 RT_NOREF(offDelta);
803
804 /*
805 * Update the logger.
806 */
807 VMMR3UpdateLoggers(pVM);
808}
809
810
811/**
812 * Updates the settings for the RC and R0 loggers.
813 *
814 * @returns VBox status code.
815 * @param pVM The cross context VM structure.
816 */
817VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
818{
819 int rc = VINF_SUCCESS;
820
821#ifdef LOG_ENABLED
822 /*
823 * For the ring-0 EMT logger, we use a per-thread logger instance
824 * in ring-0. Only initialize it once.
825 */
826 PRTLOGGER const pDefault = RTLogDefaultInstance();
827 for (VMCPUID i = 0; i < pVM->cCpus; i++)
828 {
829 PVMCPU pVCpu = pVM->apCpusR3[i];
830 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
831 if (pR0LoggerR3)
832 {
833 if (!pR0LoggerR3->fCreated)
834 {
835 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
836 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
837 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
838
839 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
840 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
841 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
842
843 char szR0ThreadName[16];
844 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
845 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
846 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
847 pfnLoggerWrapper, pfnLoggerFlush,
848 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
849 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
850
851 pR0LoggerR3->idCpu = i;
852 pR0LoggerR3->fCreated = true;
853 pR0LoggerR3->fFlushingDisabled = false;
854 }
855
856 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
857 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
858 AssertRC(rc);
859 }
860 }
861#else
862 RT_NOREF(pVM);
863#endif
864
865 return rc;
866}
867
868
869/**
870 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
871 *
872 * @returns Pointer to the buffer.
873 * @param pVM The cross context VM structure.
874 */
875VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
876{
877 return pVM->vmm.s.szRing0AssertMsg1;
878}
879
880
881/**
882 * Returns the VMCPU of the specified virtual CPU.
883 *
884 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
885 *
886 * @param pUVM The user mode VM handle.
887 * @param idCpu The ID of the virtual CPU.
888 */
889VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
890{
891 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
892 AssertReturn(idCpu < pUVM->cCpus, NULL);
893 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
894 return pUVM->pVM->apCpusR3[idCpu];
895}
896
897
898/**
899 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
900 *
901 * @returns Pointer to the buffer.
902 * @param pVM The cross context VM structure.
903 */
904VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
905{
906 return pVM->vmm.s.szRing0AssertMsg2;
907}
908
909
910/**
911 * Execute state save operation.
912 *
913 * @returns VBox status code.
914 * @param pVM The cross context VM structure.
915 * @param pSSM SSM operation handle.
916 */
917static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
918{
919 LogFlow(("vmmR3Save:\n"));
920
921 /*
922 * Save the started/stopped state of all CPUs except 0 as it will always
923 * be running. This avoids breaking the saved state version. :-)
924 */
925 for (VMCPUID i = 1; i < pVM->cCpus; i++)
926 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
927
928 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
929}
930
931
932/**
933 * Execute state load operation.
934 *
935 * @returns VBox status code.
936 * @param pVM The cross context VM structure.
937 * @param pSSM SSM operation handle.
938 * @param uVersion Data layout version.
939 * @param uPass The data pass.
940 */
941static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
942{
943 LogFlow(("vmmR3Load:\n"));
944 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
945
946 /*
947 * Validate version.
948 */
949 if ( uVersion != VMM_SAVED_STATE_VERSION
950 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
951 {
952 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
953 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
954 }
955
956 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
957 {
958 /* Ignore the stack bottom, stack pointer and stack bits. */
959 RTRCPTR RCPtrIgnored;
960 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
961 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
962#ifdef RT_OS_DARWIN
963 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
964 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
965 && SSMR3HandleRevision(pSSM) >= 48858
966 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
967 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
968 )
969 SSMR3Skip(pSSM, 16384);
970 else
971 SSMR3Skip(pSSM, 8192);
972#else
973 SSMR3Skip(pSSM, 8192);
974#endif
975 }
976
977 /*
978 * Restore the VMCPU states. VCPU 0 is always started.
979 */
980 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
981 for (VMCPUID i = 1; i < pVM->cCpus; i++)
982 {
983 bool fStarted;
984 int rc = SSMR3GetBool(pSSM, &fStarted);
985 if (RT_FAILURE(rc))
986 return rc;
987 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
988 }
989
990 /* terminator */
991 uint32_t u32;
992 int rc = SSMR3GetU32(pSSM, &u32);
993 if (RT_FAILURE(rc))
994 return rc;
995 if (u32 != UINT32_MAX)
996 {
997 AssertMsgFailed(("u32=%#x\n", u32));
998 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
999 }
1000 return VINF_SUCCESS;
1001}
1002
1003
1004/**
1005 * Suspends the CPU yielder.
1006 *
1007 * @param pVM The cross context VM structure.
1008 */
1009VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1010{
1011#if 0 /* pointless when timers doesn't run on EMT */
1012 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1013 if (!pVM->vmm.s.cYieldResumeMillies)
1014 {
1015 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1016 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1017 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1018 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1019 else
1020 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1021 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1022 }
1023 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1024#else
1025 RT_NOREF(pVM);
1026#endif
1027}
1028
1029
1030/**
1031 * Stops the CPU yielder.
1032 *
1033 * @param pVM The cross context VM structure.
1034 */
1035VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1036{
1037#if 0 /* pointless when timers doesn't run on EMT */
1038 if (!pVM->vmm.s.cYieldResumeMillies)
1039 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1040 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1041 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1042#else
1043 RT_NOREF(pVM);
1044#endif
1045}
1046
1047
1048/**
1049 * Resumes the CPU yielder when it has been a suspended or stopped.
1050 *
1051 * @param pVM The cross context VM structure.
1052 */
1053VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1054{
1055#if 0 /* pointless when timers doesn't run on EMT */
1056 if (pVM->vmm.s.cYieldResumeMillies)
1057 {
1058 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1059 pVM->vmm.s.cYieldResumeMillies = 0;
1060 }
1061#else
1062 RT_NOREF(pVM);
1063#endif
1064}
1065
1066
1067#if 0 /* pointless when timers doesn't run on EMT */
1068/**
1069 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1070 *
1071 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1072 */
1073static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1074{
1075 NOREF(pvUser);
1076
1077 /*
1078 * This really needs some careful tuning. While we shouldn't be too greedy since
1079 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1080 * because that'll cause us to stop up.
1081 *
1082 * The current logic is to use the default interval when there is no lag worth
1083 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1084 *
1085 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1086 * so the lag is up to date.)
1087 */
1088 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1089 if ( u64Lag < 50000000 /* 50ms */
1090 || ( u64Lag < 1000000000 /* 1s */
1091 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1092 )
1093 {
1094 uint64_t u64Elapsed = RTTimeNanoTS();
1095 pVM->vmm.s.u64LastYield = u64Elapsed;
1096
1097 RTThreadYield();
1098
1099#ifdef LOG_ENABLED
1100 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1101 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1102#endif
1103 }
1104 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1105}
1106#endif
1107
1108
1109/**
1110 * Executes guest code (Intel VT-x and AMD-V).
1111 *
1112 * @param pVM The cross context VM structure.
1113 * @param pVCpu The cross context virtual CPU structure.
1114 */
1115VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1116{
1117 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1118
1119 for (;;)
1120 {
1121 int rc;
1122 do
1123 {
1124#ifdef NO_SUPCALLR0VMM
1125 rc = VERR_GENERAL_FAILURE;
1126#else
1127 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1128 if (RT_LIKELY(rc == VINF_SUCCESS))
1129 rc = pVCpu->vmm.s.iLastGZRc;
1130#endif
1131 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1132
1133#if 0 /** @todo triggers too often */
1134 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1135#endif
1136
1137 /*
1138 * Flush the logs
1139 */
1140#ifdef LOG_ENABLED
1141 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1142#endif
1143 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1144 if (rc != VINF_VMM_CALL_HOST)
1145 {
1146 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1147 return rc;
1148 }
1149 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1150 if (RT_FAILURE(rc))
1151 return rc;
1152 /* Resume R0 */
1153 }
1154}
1155
1156
1157/**
1158 * Perform one of the fast I/O control VMMR0 operation.
1159 *
1160 * @returns VBox strict status code.
1161 * @param pVM The cross context VM structure.
1162 * @param pVCpu The cross context virtual CPU structure.
1163 * @param enmOperation The operation to perform.
1164 */
1165VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1166{
1167 for (;;)
1168 {
1169 VBOXSTRICTRC rcStrict;
1170 do
1171 {
1172#ifdef NO_SUPCALLR0VMM
1173 rcStrict = VERR_GENERAL_FAILURE;
1174#else
1175 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1176 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1177 rcStrict = pVCpu->vmm.s.iLastGZRc;
1178#endif
1179 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1180
1181 /*
1182 * Flush the logs
1183 */
1184#ifdef LOG_ENABLED
1185 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1186#endif
1187 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1188 if (rcStrict != VINF_VMM_CALL_HOST)
1189 return rcStrict;
1190 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1191 if (RT_FAILURE(rc))
1192 return rc;
1193 /* Resume R0 */
1194 }
1195}
1196
1197
1198/**
1199 * VCPU worker for VMMR3SendStartupIpi.
1200 *
1201 * @param pVM The cross context VM structure.
1202 * @param idCpu Virtual CPU to perform SIPI on.
1203 * @param uVector The SIPI vector.
1204 */
1205static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1206{
1207 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1208 VMCPU_ASSERT_EMT(pVCpu);
1209
1210 /*
1211 * In the INIT state, the target CPU is only responsive to an SIPI.
1212 * This is also true for when when the CPU is in VMX non-root mode.
1213 *
1214 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1215 * See Intel spec. 26.6.2 "Activity State".
1216 */
1217 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1218 return VINF_SUCCESS;
1219
1220 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1221#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1222 if (CPUMIsGuestInVmxRootMode(pCtx))
1223 {
1224 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1225 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1226 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1227
1228 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1229 return VINF_SUCCESS;
1230 }
1231#endif
1232
1233 pCtx->cs.Sel = uVector << 8;
1234 pCtx->cs.ValidSel = uVector << 8;
1235 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1236 pCtx->cs.u64Base = uVector << 12;
1237 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1238 pCtx->rip = 0;
1239
1240 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1241
1242# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1243 EMSetState(pVCpu, EMSTATE_HALTED);
1244 return VINF_EM_RESCHEDULE;
1245# else /* And if we go the VMCPU::enmState way it can stay here. */
1246 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1247 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1248 return VINF_SUCCESS;
1249# endif
1250}
1251
1252
1253/**
1254 * VCPU worker for VMMR3SendInitIpi.
1255 *
1256 * @returns VBox status code.
1257 * @param pVM The cross context VM structure.
1258 * @param idCpu Virtual CPU to perform SIPI on.
1259 */
1260static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1261{
1262 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1263 VMCPU_ASSERT_EMT(pVCpu);
1264
1265 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1266
1267 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1268 * wait-for-SIPI state. Verify. */
1269
1270 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1271#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1272 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1273 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1274 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1275#endif
1276
1277 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1278 * IPI (e.g. SVM_EXIT_INIT). */
1279
1280 PGMR3ResetCpu(pVM, pVCpu);
1281 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1282 APICR3InitIpi(pVCpu);
1283 TRPMR3ResetCpu(pVCpu);
1284 CPUMR3ResetCpu(pVM, pVCpu);
1285 EMR3ResetCpu(pVCpu);
1286 HMR3ResetCpu(pVCpu);
1287 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1288
1289 /* This will trickle up on the target EMT. */
1290 return VINF_EM_WAIT_SIPI;
1291}
1292
1293
1294/**
1295 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1296 * vector-dependent state and unhalting processor.
1297 *
1298 * @param pVM The cross context VM structure.
1299 * @param idCpu Virtual CPU to perform SIPI on.
1300 * @param uVector SIPI vector.
1301 */
1302VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1303{
1304 AssertReturnVoid(idCpu < pVM->cCpus);
1305
1306 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1307 AssertRC(rc);
1308}
1309
1310
1311/**
1312 * Sends init IPI to the virtual CPU.
1313 *
1314 * @param pVM The cross context VM structure.
1315 * @param idCpu Virtual CPU to perform int IPI on.
1316 */
1317VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1318{
1319 AssertReturnVoid(idCpu < pVM->cCpus);
1320
1321 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1322 AssertRC(rc);
1323}
1324
1325
1326/**
1327 * Registers the guest memory range that can be used for patching.
1328 *
1329 * @returns VBox status code.
1330 * @param pVM The cross context VM structure.
1331 * @param pPatchMem Patch memory range.
1332 * @param cbPatchMem Size of the memory range.
1333 */
1334VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1335{
1336 VM_ASSERT_EMT(pVM);
1337 if (HMIsEnabled(pVM))
1338 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1339
1340 return VERR_NOT_SUPPORTED;
1341}
1342
1343
1344/**
1345 * Deregisters the guest memory range that can be used for patching.
1346 *
1347 * @returns VBox status code.
1348 * @param pVM The cross context VM structure.
1349 * @param pPatchMem Patch memory range.
1350 * @param cbPatchMem Size of the memory range.
1351 */
1352VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1353{
1354 if (HMIsEnabled(pVM))
1355 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1356
1357 return VINF_SUCCESS;
1358}
1359
1360
1361/**
1362 * Common recursion handler for the other EMTs.
1363 *
1364 * @returns Strict VBox status code.
1365 * @param pVM The cross context VM structure.
1366 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1367 * @param rcStrict Current status code to be combined with the one
1368 * from this recursion and returned.
1369 */
1370static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1371{
1372 int rc2;
1373
1374 /*
1375 * We wait here while the initiator of this recursion reconfigures
1376 * everything. The last EMT to get in signals the initiator.
1377 */
1378 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1379 {
1380 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1381 AssertLogRelRC(rc2);
1382 }
1383
1384 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1385 AssertLogRelRC(rc2);
1386
1387 /*
1388 * Do the normal rendezvous processing.
1389 */
1390 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1391 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1392
1393 /*
1394 * Wait for the initiator to restore everything.
1395 */
1396 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1397 AssertLogRelRC(rc2);
1398
1399 /*
1400 * Last thread out of here signals the initiator.
1401 */
1402 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1403 {
1404 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1405 AssertLogRelRC(rc2);
1406 }
1407
1408 /*
1409 * Merge status codes and return.
1410 */
1411 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1412 if ( rcStrict2 != VINF_SUCCESS
1413 && ( rcStrict == VINF_SUCCESS
1414 || rcStrict > rcStrict2))
1415 rcStrict = rcStrict2;
1416 return rcStrict;
1417}
1418
1419
1420/**
1421 * Count returns and have the last non-caller EMT wake up the caller.
1422 *
1423 * @returns VBox strict informational status code for EM scheduling. No failures
1424 * will be returned here, those are for the caller only.
1425 *
1426 * @param pVM The cross context VM structure.
1427 * @param rcStrict The current accumulated recursive status code,
1428 * to be merged with i32RendezvousStatus and
1429 * returned.
1430 */
1431DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1432{
1433 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1434
1435 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1436 if (cReturned == pVM->cCpus - 1U)
1437 {
1438 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1439 AssertLogRelRC(rc);
1440 }
1441
1442 /*
1443 * Merge the status codes, ignoring error statuses in this code path.
1444 */
1445 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1446 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1447 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1448 VERR_IPE_UNEXPECTED_INFO_STATUS);
1449
1450 if (RT_SUCCESS(rcStrict2))
1451 {
1452 if ( rcStrict2 != VINF_SUCCESS
1453 && ( rcStrict == VINF_SUCCESS
1454 || rcStrict > rcStrict2))
1455 rcStrict = rcStrict2;
1456 }
1457 return rcStrict;
1458}
1459
1460
1461/**
1462 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1463 *
1464 * @returns VBox strict informational status code for EM scheduling. No failures
1465 * will be returned here, those are for the caller only. When
1466 * fIsCaller is set, VINF_SUCCESS is always returned.
1467 *
1468 * @param pVM The cross context VM structure.
1469 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1470 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1471 * not.
1472 * @param fFlags The flags.
1473 * @param pfnRendezvous The callback.
1474 * @param pvUser The user argument for the callback.
1475 */
1476static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1477 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1478{
1479 int rc;
1480 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1481
1482 /*
1483 * Enter, the last EMT triggers the next callback phase.
1484 */
1485 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1486 if (cEntered != pVM->cCpus)
1487 {
1488 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1489 {
1490 /* Wait for our turn. */
1491 for (;;)
1492 {
1493 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1494 AssertLogRelRC(rc);
1495 if (!pVM->vmm.s.fRendezvousRecursion)
1496 break;
1497 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1498 }
1499 }
1500 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1501 {
1502 /* Wait for the last EMT to arrive and wake everyone up. */
1503 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1504 AssertLogRelRC(rc);
1505 Assert(!pVM->vmm.s.fRendezvousRecursion);
1506 }
1507 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1508 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1509 {
1510 /* Wait for our turn. */
1511 for (;;)
1512 {
1513 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1514 AssertLogRelRC(rc);
1515 if (!pVM->vmm.s.fRendezvousRecursion)
1516 break;
1517 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1518 }
1519 }
1520 else
1521 {
1522 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1523
1524 /*
1525 * The execute once is handled specially to optimize the code flow.
1526 *
1527 * The last EMT to arrive will perform the callback and the other
1528 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1529 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1530 * returns, that EMT will initiate the normal return sequence.
1531 */
1532 if (!fIsCaller)
1533 {
1534 for (;;)
1535 {
1536 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1537 AssertLogRelRC(rc);
1538 if (!pVM->vmm.s.fRendezvousRecursion)
1539 break;
1540 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1541 }
1542
1543 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1544 }
1545 return VINF_SUCCESS;
1546 }
1547 }
1548 else
1549 {
1550 /*
1551 * All EMTs are waiting, clear the FF and take action according to the
1552 * execution method.
1553 */
1554 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1555
1556 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1557 {
1558 /* Wake up everyone. */
1559 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1560 AssertLogRelRC(rc);
1561 }
1562 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1563 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1564 {
1565 /* Figure out who to wake up and wake it up. If it's ourself, then
1566 it's easy otherwise wait for our turn. */
1567 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1568 ? 0
1569 : pVM->cCpus - 1U;
1570 if (pVCpu->idCpu != iFirst)
1571 {
1572 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1573 AssertLogRelRC(rc);
1574 for (;;)
1575 {
1576 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1577 AssertLogRelRC(rc);
1578 if (!pVM->vmm.s.fRendezvousRecursion)
1579 break;
1580 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1581 }
1582 }
1583 }
1584 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1585 }
1586
1587
1588 /*
1589 * Do the callback and update the status if necessary.
1590 */
1591 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1592 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1593 {
1594 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1595 if (rcStrict2 != VINF_SUCCESS)
1596 {
1597 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1598 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1599 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1600 int32_t i32RendezvousStatus;
1601 do
1602 {
1603 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1604 if ( rcStrict2 == i32RendezvousStatus
1605 || RT_FAILURE(i32RendezvousStatus)
1606 || ( i32RendezvousStatus != VINF_SUCCESS
1607 && rcStrict2 > i32RendezvousStatus))
1608 break;
1609 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1610 }
1611 }
1612
1613 /*
1614 * Increment the done counter and take action depending on whether we're
1615 * the last to finish callback execution.
1616 */
1617 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1618 if ( cDone != pVM->cCpus
1619 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1620 {
1621 /* Signal the next EMT? */
1622 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1623 {
1624 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1625 AssertLogRelRC(rc);
1626 }
1627 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1628 {
1629 Assert(cDone == pVCpu->idCpu + 1U);
1630 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1631 AssertLogRelRC(rc);
1632 }
1633 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1634 {
1635 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1636 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1637 AssertLogRelRC(rc);
1638 }
1639
1640 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1641 if (!fIsCaller)
1642 {
1643 for (;;)
1644 {
1645 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1646 AssertLogRelRC(rc);
1647 if (!pVM->vmm.s.fRendezvousRecursion)
1648 break;
1649 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1650 }
1651 }
1652 }
1653 else
1654 {
1655 /* Callback execution is all done, tell the rest to return. */
1656 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1657 AssertLogRelRC(rc);
1658 }
1659
1660 if (!fIsCaller)
1661 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1662 return rcStrictRecursion;
1663}
1664
1665
1666/**
1667 * Called in response to VM_FF_EMT_RENDEZVOUS.
1668 *
1669 * @returns VBox strict status code - EM scheduling. No errors will be returned
1670 * here, nor will any non-EM scheduling status codes be returned.
1671 *
1672 * @param pVM The cross context VM structure.
1673 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1674 *
1675 * @thread EMT
1676 */
1677VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1678{
1679 Assert(!pVCpu->vmm.s.fInRendezvous);
1680 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1681 pVCpu->vmm.s.fInRendezvous = true;
1682 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1683 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1684 pVCpu->vmm.s.fInRendezvous = false;
1685 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1686 return VBOXSTRICTRC_TODO(rcStrict);
1687}
1688
1689
1690/**
1691 * Helper for resetting an single wakeup event sempahore.
1692 *
1693 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1694 * @param hEvt The event semaphore to reset.
1695 */
1696static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1697{
1698 for (uint32_t cLoops = 0; ; cLoops++)
1699 {
1700 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1701 if (rc != VINF_SUCCESS || cLoops > _4K)
1702 return rc;
1703 }
1704}
1705
1706
1707/**
1708 * Worker for VMMR3EmtRendezvous that handles recursion.
1709 *
1710 * @returns VBox strict status code. This will be the first error,
1711 * VINF_SUCCESS, or an EM scheduling status code.
1712 *
1713 * @param pVM The cross context VM structure.
1714 * @param pVCpu The cross context virtual CPU structure of the
1715 * calling EMT.
1716 * @param fFlags Flags indicating execution methods. See
1717 * grp_VMMR3EmtRendezvous_fFlags.
1718 * @param pfnRendezvous The callback.
1719 * @param pvUser User argument for the callback.
1720 *
1721 * @thread EMT(pVCpu)
1722 */
1723static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1724 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1725{
1726 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1727 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1728 Assert(pVCpu->vmm.s.fInRendezvous);
1729
1730 /*
1731 * Save the current state.
1732 */
1733 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1734 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1735 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1736 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1737 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1738
1739 /*
1740 * Check preconditions and save the current state.
1741 */
1742 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1743 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1744 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1745 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1746 VERR_INTERNAL_ERROR);
1747 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1748 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1749
1750 /*
1751 * Reset the recursion prep and pop semaphores.
1752 */
1753 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1754 AssertLogRelRCReturn(rc, rc);
1755 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1756 AssertLogRelRCReturn(rc, rc);
1757 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1758 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1759 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1760 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1761
1762 /*
1763 * Usher the other thread into the recursion routine.
1764 */
1765 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1766 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1767
1768 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1769 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1770 while (cLeft-- > 0)
1771 {
1772 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1773 AssertLogRelRC(rc);
1774 }
1775 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1776 {
1777 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1778 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1779 {
1780 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1781 AssertLogRelRC(rc);
1782 }
1783 }
1784 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1785 {
1786 Assert(cLeft == pVCpu->idCpu);
1787 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1788 {
1789 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1790 AssertLogRelRC(rc);
1791 }
1792 }
1793 else
1794 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1795 VERR_INTERNAL_ERROR_4);
1796
1797 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1798 AssertLogRelRC(rc);
1799 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1800 AssertLogRelRC(rc);
1801
1802
1803 /*
1804 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1805 */
1806 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1807 {
1808 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1809 AssertLogRelRC(rc);
1810 }
1811
1812 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1813
1814 /*
1815 * Clear the slate and setup the new rendezvous.
1816 */
1817 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1818 {
1819 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1820 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1821 }
1822 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1823 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1824 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1825 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1826
1827 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1828 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1829 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1830 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1831 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1832 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1833 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1834 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1835
1836 /*
1837 * We're ready to go now, do normal rendezvous processing.
1838 */
1839 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1840 AssertLogRelRC(rc);
1841
1842 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1843
1844 /*
1845 * The caller waits for the other EMTs to be done, return and waiting on the
1846 * pop semaphore.
1847 */
1848 for (;;)
1849 {
1850 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1851 AssertLogRelRC(rc);
1852 if (!pVM->vmm.s.fRendezvousRecursion)
1853 break;
1854 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1855 }
1856
1857 /*
1858 * Get the return code and merge it with the above recursion status.
1859 */
1860 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1861 if ( rcStrict2 != VINF_SUCCESS
1862 && ( rcStrict == VINF_SUCCESS
1863 || rcStrict > rcStrict2))
1864 rcStrict = rcStrict2;
1865
1866 /*
1867 * Restore the parent rendezvous state.
1868 */
1869 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1870 {
1871 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1872 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1873 }
1874 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1875 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1876 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1877 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1878
1879 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1880 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1881 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1882 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1883 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1884 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1885 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1886
1887 /*
1888 * Usher the other EMTs back to their parent recursion routine, waiting
1889 * for them to all get there before we return (makes sure they've been
1890 * scheduled and are past the pop event sem, see below).
1891 */
1892 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1893 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1894 AssertLogRelRC(rc);
1895
1896 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1897 {
1898 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1899 AssertLogRelRC(rc);
1900 }
1901
1902 /*
1903 * We must reset the pop semaphore on the way out (doing the pop caller too,
1904 * just in case). The parent may be another recursion.
1905 */
1906 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1907 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1908
1909 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1910
1911 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1912 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1913 return rcStrict;
1914}
1915
1916
1917/**
1918 * EMT rendezvous.
1919 *
1920 * Gathers all the EMTs and execute some code on each of them, either in a one
1921 * by one fashion or all at once.
1922 *
1923 * @returns VBox strict status code. This will be the first error,
1924 * VINF_SUCCESS, or an EM scheduling status code.
1925 *
1926 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1927 * doesn't support it or if the recursion is too deep.
1928 *
1929 * @param pVM The cross context VM structure.
1930 * @param fFlags Flags indicating execution methods. See
1931 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1932 * descending and ascending rendezvous types support
1933 * recursion from inside @a pfnRendezvous.
1934 * @param pfnRendezvous The callback.
1935 * @param pvUser User argument for the callback.
1936 *
1937 * @thread Any.
1938 */
1939VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1940{
1941 /*
1942 * Validate input.
1943 */
1944 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1945 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1946 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1947 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1948 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1949 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1950 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1951 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1952
1953 VBOXSTRICTRC rcStrict;
1954 PVMCPU pVCpu = VMMGetCpu(pVM);
1955 if (!pVCpu)
1956 {
1957 /*
1958 * Forward the request to an EMT thread.
1959 */
1960 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
1961 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
1962 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1963 else
1964 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1965 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1966 }
1967 else if ( pVM->cCpus == 1
1968 || ( pVM->enmVMState == VMSTATE_DESTROYING
1969 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
1970 {
1971 /*
1972 * Shortcut for the single EMT case.
1973 *
1974 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
1975 * during vmR3Destroy after other emulation threads have started terminating.
1976 */
1977 if (!pVCpu->vmm.s.fInRendezvous)
1978 {
1979 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
1980 pVCpu->vmm.s.fInRendezvous = true;
1981 pVM->vmm.s.fRendezvousFlags = fFlags;
1982 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1983 pVCpu->vmm.s.fInRendezvous = false;
1984 }
1985 else
1986 {
1987 /* Recursion. Do the same checks as in the SMP case. */
1988 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
1989 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
1990 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
1991 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1992 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1993 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1994 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1995 , VERR_DEADLOCK);
1996
1997 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1998 pVM->vmm.s.cRendezvousRecursions++;
1999 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2000 pVM->vmm.s.fRendezvousFlags = fFlags;
2001
2002 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2003
2004 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2005 pVM->vmm.s.cRendezvousRecursions--;
2006 }
2007 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2008 }
2009 else
2010 {
2011 /*
2012 * Spin lock. If busy, check for recursion, if not recursing wait for
2013 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2014 */
2015 int rc;
2016 rcStrict = VINF_SUCCESS;
2017 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2018 {
2019 /* Allow recursion in some cases. */
2020 if ( pVCpu->vmm.s.fInRendezvous
2021 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2022 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2023 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2024 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2025 ))
2026 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2027
2028 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2029 VERR_DEADLOCK);
2030
2031 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2032 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2033 {
2034 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2035 {
2036 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2037 if ( rc != VINF_SUCCESS
2038 && ( rcStrict == VINF_SUCCESS
2039 || rcStrict > rc))
2040 rcStrict = rc;
2041 /** @todo Perhaps deal with termination here? */
2042 }
2043 ASMNopPause();
2044 }
2045 }
2046
2047 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2048 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2049 Assert(!pVCpu->vmm.s.fInRendezvous);
2050 pVCpu->vmm.s.fInRendezvous = true;
2051
2052 /*
2053 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2054 */
2055 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2056 {
2057 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2058 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2059 }
2060 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2061 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2062 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2063 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2064 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2065 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2066 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2067 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2068 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2069 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2070 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2071
2072 /*
2073 * Set the FF and poke the other EMTs.
2074 */
2075 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2076 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2077
2078 /*
2079 * Do the same ourselves.
2080 */
2081 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2082
2083 /*
2084 * The caller waits for the other EMTs to be done and return before doing
2085 * the cleanup. This makes away with wakeup / reset races we would otherwise
2086 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2087 */
2088 for (;;)
2089 {
2090 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2091 AssertLogRelRC(rc);
2092 if (!pVM->vmm.s.fRendezvousRecursion)
2093 break;
2094 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2095 }
2096
2097 /*
2098 * Get the return code and clean up a little bit.
2099 */
2100 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2101 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2102
2103 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2104 pVCpu->vmm.s.fInRendezvous = false;
2105
2106 /*
2107 * Merge rcStrict, rcStrict2 and rcStrict3.
2108 */
2109 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2110 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2111 if ( rcStrict2 != VINF_SUCCESS
2112 && ( rcStrict == VINF_SUCCESS
2113 || rcStrict > rcStrict2))
2114 rcStrict = rcStrict2;
2115 if ( rcStrict3 != VINF_SUCCESS
2116 && ( rcStrict == VINF_SUCCESS
2117 || rcStrict > rcStrict3))
2118 rcStrict = rcStrict3;
2119 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2120 }
2121
2122 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2123 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2124 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2125 VERR_IPE_UNEXPECTED_INFO_STATUS);
2126 return VBOXSTRICTRC_VAL(rcStrict);
2127}
2128
2129
2130/**
2131 * Interface for vmR3SetHaltMethodU.
2132 *
2133 * @param pVCpu The cross context virtual CPU structure of the
2134 * calling EMT.
2135 * @param fMayHaltInRing0 The new state.
2136 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2137 * @thread EMT(pVCpu)
2138 *
2139 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2140 * component.
2141 */
2142VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2143{
2144 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2145 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2146 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2147}
2148
2149
2150/**
2151 * Read from the ring 0 jump buffer stack.
2152 *
2153 * @returns VBox status code.
2154 *
2155 * @param pVM The cross context VM structure.
2156 * @param idCpu The ID of the source CPU context (for the address).
2157 * @param R0Addr Where to start reading.
2158 * @param pvBuf Where to store the data we've read.
2159 * @param cbRead The number of bytes to read.
2160 */
2161VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2162{
2163 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2164 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2165 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2166
2167 int rc;
2168#ifdef VMM_R0_SWITCH_STACK
2169 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2170#else
2171 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2172#endif
2173 if ( off < VMM_STACK_SIZE
2174 && off + cbRead <= VMM_STACK_SIZE)
2175 {
2176 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2177 rc = VINF_SUCCESS;
2178 }
2179 else
2180 rc = VERR_INVALID_POINTER;
2181
2182 /* Supply the setjmp return RIP/EIP. */
2183 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2184 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2185 {
2186 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2187 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2188 size_t offDst = 0;
2189 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2190 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2191 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2192 {
2193 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2194 Assert(offSrc < cbSrc);
2195 pbSrc -= offSrc;
2196 cbSrc -= offSrc;
2197 }
2198 if (cbSrc > cbRead - offDst)
2199 cbSrc = cbRead - offDst;
2200 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2201
2202 if (cbSrc == cbRead)
2203 rc = VINF_SUCCESS;
2204 }
2205
2206 return rc;
2207}
2208
2209
2210/**
2211 * Used by the DBGF stack unwinder to initialize the register state.
2212 *
2213 * @param pUVM The user mode VM handle.
2214 * @param idCpu The ID of the CPU being unwound.
2215 * @param pState The unwind state to initialize.
2216 */
2217VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2218{
2219 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2220 AssertReturnVoid(pVCpu);
2221
2222 /*
2223 * Locate the resume point on the stack.
2224 */
2225#ifdef VMM_R0_SWITCH_STACK
2226 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2227 AssertReturnVoid(off < VMM_STACK_SIZE);
2228#else
2229 uintptr_t off = 0;
2230#endif
2231
2232#ifdef RT_ARCH_AMD64
2233 /*
2234 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2235 */
2236# ifdef VBOX_STRICT
2237 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2238 off += 8; /* RESUME_MAGIC */
2239# endif
2240# ifdef RT_OS_WINDOWS
2241 off += 0xa0; /* XMM6 thru XMM15 */
2242# endif
2243 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2244 off += 8;
2245 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2246 off += 8;
2247# ifdef RT_OS_WINDOWS
2248 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2249 off += 8;
2250 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2251 off += 8;
2252# endif
2253 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2254 off += 8;
2255 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2256 off += 8;
2257 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2258 off += 8;
2259 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2260 off += 8;
2261 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2262 off += 8;
2263 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2264 off += 8;
2265
2266#elif defined(RT_ARCH_X86)
2267 /*
2268 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2269 */
2270# ifdef VBOX_STRICT
2271 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2272 off += 4; /* RESUME_MAGIC */
2273# endif
2274 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2275 off += 4;
2276 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2277 off += 4;
2278 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2279 off += 4;
2280 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2281 off += 4;
2282 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2283 off += 4;
2284 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2285 off += 4;
2286#else
2287# error "Port me"
2288#endif
2289
2290 /*
2291 * This is all we really need here, though the above helps if the assembly
2292 * doesn't contain unwind info (currently only on win/64, so that is useful).
2293 */
2294 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2295 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2296}
2297
2298
2299/**
2300 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2301 *
2302 * @returns VBox status code.
2303 * @param pVM The cross context VM structure.
2304 * @param uOperation Operation to execute.
2305 * @param u64Arg Constant argument.
2306 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2307 * details.
2308 */
2309VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2310{
2311 PVMCPU pVCpu = VMMGetCpu(pVM);
2312 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2313 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2314}
2315
2316
2317/**
2318 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2319 *
2320 * @returns VBox status code.
2321 * @param pVM The cross context VM structure.
2322 * @param pVCpu The cross context VM structure.
2323 * @param enmOperation Operation to execute.
2324 * @param u64Arg Constant argument.
2325 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2326 * details.
2327 */
2328VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2329{
2330 int rc;
2331 for (;;)
2332 {
2333#ifdef NO_SUPCALLR0VMM
2334 rc = VERR_GENERAL_FAILURE;
2335#else
2336 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2337#endif
2338 /*
2339 * Flush the logs.
2340 */
2341#ifdef LOG_ENABLED
2342 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2343#endif
2344 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2345 if (rc != VINF_VMM_CALL_HOST)
2346 break;
2347 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2348 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2349 break;
2350 /* Resume R0 */
2351 }
2352
2353 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2354 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2355 VERR_IPE_UNEXPECTED_INFO_STATUS);
2356 return rc;
2357}
2358
2359
2360/**
2361 * Service a call to the ring-3 host code.
2362 *
2363 * @returns VBox status code.
2364 * @param pVM The cross context VM structure.
2365 * @param pVCpu The cross context virtual CPU structure.
2366 * @remarks Careful with critsects.
2367 */
2368static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2369{
2370 /*
2371 * We must also check for pending critsect exits or else we can deadlock
2372 * when entering other critsects here.
2373 */
2374 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2375 PDMCritSectBothFF(pVM, pVCpu);
2376
2377 switch (pVCpu->vmm.s.enmCallRing3Operation)
2378 {
2379 /*
2380 * Acquire a critical section.
2381 */
2382 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2383 {
2384 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx(pVM, (PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2385 true /*fCallRing3*/);
2386 break;
2387 }
2388
2389 /*
2390 * Enter a r/w critical section exclusively.
2391 */
2392 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2393 {
2394 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx(pVM, (PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2395 true /*fCallRing3*/);
2396 break;
2397 }
2398
2399 /*
2400 * Enter a r/w critical section shared.
2401 */
2402 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2403 {
2404 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx(pVM, (PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2405 true /*fCallRing3*/);
2406 break;
2407 }
2408
2409 /*
2410 * Acquire the PDM lock.
2411 */
2412 case VMMCALLRING3_PDM_LOCK:
2413 {
2414 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2415 break;
2416 }
2417
2418 /*
2419 * Grow the PGM pool.
2420 */
2421 case VMMCALLRING3_PGM_POOL_GROW:
2422 {
2423 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2424 break;
2425 }
2426
2427 /*
2428 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2429 */
2430 case VMMCALLRING3_PGM_MAP_CHUNK:
2431 {
2432 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2433 break;
2434 }
2435
2436 /*
2437 * Allocates more handy pages.
2438 */
2439 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2440 {
2441 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2442 break;
2443 }
2444
2445 /*
2446 * Allocates a large page.
2447 */
2448 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2449 {
2450 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2451 break;
2452 }
2453
2454 /*
2455 * Acquire the PGM lock.
2456 */
2457 case VMMCALLRING3_PGM_LOCK:
2458 {
2459 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2460 break;
2461 }
2462
2463 /*
2464 * Acquire the MM hypervisor heap lock.
2465 */
2466 case VMMCALLRING3_MMHYPER_LOCK:
2467 {
2468 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2469 break;
2470 }
2471
2472 /*
2473 * This is a noop. We just take this route to avoid unnecessary
2474 * tests in the loops.
2475 */
2476 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2477 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2478 LogAlways(("*FLUSH*\n"));
2479 break;
2480
2481 /*
2482 * Set the VM error message.
2483 */
2484 case VMMCALLRING3_VM_SET_ERROR:
2485 VMR3SetErrorWorker(pVM);
2486 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2487 break;
2488
2489 /*
2490 * Set the VM runtime error message.
2491 */
2492 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2493 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2494 break;
2495
2496 /*
2497 * Signal a ring 0 hypervisor assertion.
2498 * Cancel the longjmp operation that's in progress.
2499 */
2500 case VMMCALLRING3_VM_R0_ASSERTION:
2501 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2502 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2503#ifdef RT_ARCH_X86
2504 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2505#else
2506 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2507#endif
2508#ifdef VMM_R0_SWITCH_STACK
2509 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2510#endif
2511 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2512 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2513 return VERR_VMM_RING0_ASSERTION;
2514
2515 /*
2516 * A forced switch to ring 0 for preemption purposes.
2517 */
2518 case VMMCALLRING3_VM_R0_PREEMPT:
2519 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2520 break;
2521
2522 default:
2523 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2524 return VERR_VMM_UNKNOWN_RING3_CALL;
2525 }
2526
2527 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2528 return VINF_SUCCESS;
2529}
2530
2531
2532/**
2533 * Displays the Force action Flags.
2534 *
2535 * @param pVM The cross context VM structure.
2536 * @param pHlp The output helpers.
2537 * @param pszArgs The additional arguments (ignored).
2538 */
2539static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2540{
2541 int c;
2542 uint32_t f;
2543 NOREF(pszArgs);
2544
2545#define PRINT_FLAG(prf,flag) do { \
2546 if (f & (prf##flag)) \
2547 { \
2548 static const char *s_psz = #flag; \
2549 if (!(c % 6)) \
2550 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2551 else \
2552 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2553 c++; \
2554 f &= ~(prf##flag); \
2555 } \
2556 } while (0)
2557
2558#define PRINT_GROUP(prf,grp,sfx) do { \
2559 if (f & (prf##grp##sfx)) \
2560 { \
2561 static const char *s_psz = #grp; \
2562 if (!(c % 5)) \
2563 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2564 else \
2565 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2566 c++; \
2567 } \
2568 } while (0)
2569
2570 /*
2571 * The global flags.
2572 */
2573 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2574 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2575
2576 /* show the flag mnemonics */
2577 c = 0;
2578 f = fGlobalForcedActions;
2579 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2580 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2581 PRINT_FLAG(VM_FF_,PDM_DMA);
2582 PRINT_FLAG(VM_FF_,DBGF);
2583 PRINT_FLAG(VM_FF_,REQUEST);
2584 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2585 PRINT_FLAG(VM_FF_,RESET);
2586 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2587 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2588 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2589 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2590 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2591 if (f)
2592 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2593 else
2594 pHlp->pfnPrintf(pHlp, "\n");
2595
2596 /* the groups */
2597 c = 0;
2598 f = fGlobalForcedActions;
2599 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2600 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2601 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2602 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2603 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2604 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2605 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2606 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2607 if (c)
2608 pHlp->pfnPrintf(pHlp, "\n");
2609
2610 /*
2611 * Per CPU flags.
2612 */
2613 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2614 {
2615 PVMCPU pVCpu = pVM->apCpusR3[i];
2616 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2617 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2618
2619 /* show the flag mnemonics */
2620 c = 0;
2621 f = fLocalForcedActions;
2622 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2623 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2624 PRINT_FLAG(VMCPU_FF_,TIMER);
2625 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2626 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2627 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2628 PRINT_FLAG(VMCPU_FF_,UNHALT);
2629 PRINT_FLAG(VMCPU_FF_,IEM);
2630 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2631 PRINT_FLAG(VMCPU_FF_,DBGF);
2632 PRINT_FLAG(VMCPU_FF_,REQUEST);
2633 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2634 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2635 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2636 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2637 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2638 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2639 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2640 PRINT_FLAG(VMCPU_FF_,TO_R3);
2641 PRINT_FLAG(VMCPU_FF_,IOM);
2642 if (f)
2643 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2644 else
2645 pHlp->pfnPrintf(pHlp, "\n");
2646
2647 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2648 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2649
2650 /* the groups */
2651 c = 0;
2652 f = fLocalForcedActions;
2653 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2654 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2655 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2656 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2657 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2658 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2659 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2660 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2661 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2662 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2663 if (c)
2664 pHlp->pfnPrintf(pHlp, "\n");
2665 }
2666
2667#undef PRINT_FLAG
2668#undef PRINT_GROUP
2669}
2670
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette