VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 90870

Last change on this file since 90870 was 90862, checked in by vboxsync, 3 years ago

IPRT,SUPDrv,VMM,++: Bumped major support driver version. Added RTLogSetR0ProgramStart and make the VMM use it when configuring the ring-0 loggers. Removed pfnFlush from the parameter list of RTLogCreateEx[V]. bugref:10086

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 102.9 KB
Line 
1/* $Id: VMM.cpp 90862 2021-08-25 00:37:59Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pLogger, a_pR3Logger) \
154 do { \
155 if ((a_pLogger)->AuxDesc.offBuf == 0 || (a_pLogger)->AuxDesc.fFlushedIndicator) \
156 { /* likely? */ } \
157 else \
158 { \
159 RTLogBulkWrite(a_pR3Logger, (a_pLogger)->pchBufR3, (a_pLogger)->AuxDesc.offBuf); \
160 (a_pLogger)->AuxDesc.fFlushedIndicator = true; \
161 } \
162 } while (0)
163
164
165/*********************************************************************************************************************************
166* Internal Functions *
167*********************************************************************************************************************************/
168static int vmmR3InitStacks(PVM pVM);
169static void vmmR3InitRegisterStats(PVM pVM);
170static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
172#if 0 /* pointless when timers doesn't run on EMT */
173static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
174#endif
175static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
176 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
177static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
178static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179
180
181/**
182 * Initializes the VMM.
183 *
184 * @returns VBox status code.
185 * @param pVM The cross context VM structure.
186 */
187VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
188{
189 LogFlow(("VMMR3Init\n"));
190
191 /*
192 * Assert alignment, sizes and order.
193 */
194 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
195 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
196
197 /*
198 * Init basic VM VMM members.
199 */
200 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
201 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
202 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
203 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
204 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
205 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
207 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
208 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
209 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
210
211#if 0 /* pointless when timers doesn't run on EMT */
212 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
213 * The EMT yield interval. The EMT yielding is a hack we employ to play a
214 * bit nicer with the rest of the system (like for instance the GUI).
215 */
216 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
217 23 /* Value arrived at after experimenting with the grub boot prompt. */);
218 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
219#endif
220
221 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
222 * Controls whether we employ per-cpu preemption timers to limit the time
223 * spent executing guest code. This option is not available on all
224 * platforms and we will silently ignore this setting then. If we are
225 * running in VT-x mode, we will use the VMX-preemption timer instead of
226 * this one when possible.
227 */
228 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
229 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
230 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
231
232 /*
233 * Initialize the VMM rendezvous semaphores.
234 */
235 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
236 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
237 return VERR_NO_MEMORY;
238 for (VMCPUID i = 0; i < pVM->cCpus; i++)
239 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
240 for (VMCPUID i = 0; i < pVM->cCpus; i++)
241 {
242 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
243 AssertRCReturn(rc, rc);
244 }
245 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
246 AssertRCReturn(rc, rc);
247 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
256 AssertRCReturn(rc, rc);
257 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
258 AssertRCReturn(rc, rc);
259 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
260 AssertRCReturn(rc, rc);
261
262 /*
263 * Register the saved state data unit.
264 */
265 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
266 NULL, NULL, NULL,
267 NULL, vmmR3Save, NULL,
268 NULL, vmmR3Load, NULL);
269 if (RT_FAILURE(rc))
270 return rc;
271
272 /*
273 * Register the Ring-0 VM handle with the session for fast ioctl calls.
274 */
275 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
276 if (RT_FAILURE(rc))
277 return rc;
278
279 /*
280 * Init various sub-components.
281 */
282 rc = vmmR3InitStacks(pVM);
283 if (RT_SUCCESS(rc))
284 {
285#ifdef VBOX_WITH_NMI
286 /*
287 * Allocate mapping for the host APIC.
288 */
289 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
290 AssertRC(rc);
291#endif
292 if (RT_SUCCESS(rc))
293 {
294 /*
295 * Debug info and statistics.
296 */
297 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
298 vmmR3InitRegisterStats(pVM);
299 vmmInitFormatTypes();
300
301 return VINF_SUCCESS;
302 }
303 }
304 /** @todo Need failure cleanup? */
305
306 return rc;
307}
308
309
310/**
311 * Allocate & setup the VMM RC stack(s) (for EMTs).
312 *
313 * The stacks are also used for long jumps in Ring-0.
314 *
315 * @returns VBox status code.
316 * @param pVM The cross context VM structure.
317 *
318 * @remarks The optional guard page gets it protection setup up during R3 init
319 * completion because of init order issues.
320 */
321static int vmmR3InitStacks(PVM pVM)
322{
323 int rc = VINF_SUCCESS;
324#ifdef VMM_R0_SWITCH_STACK
325 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
326#else
327 uint32_t fFlags = 0;
328#endif
329
330 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
331 {
332 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
333
334#ifdef VBOX_STRICT_VMM_STACK
335 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
336#else
337 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
338#endif
339 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
340 if (RT_SUCCESS(rc))
341 {
342#ifdef VBOX_STRICT_VMM_STACK
343 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
344#endif
345 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
346
347 }
348 }
349
350 return rc;
351}
352
353
354/**
355 * VMMR3Init worker that register the statistics with STAM.
356 *
357 * @param pVM The cross context VM structure.
358 */
359static void vmmR3InitRegisterStats(PVM pVM)
360{
361 RT_NOREF_PV(pVM);
362
363 /*
364 * Statistics.
365 */
366 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
429
430#ifdef VBOX_WITH_STATISTICS
431 for (VMCPUID i = 0; i < pVM->cCpus; i++)
432 {
433 PVMCPU pVCpu = pVM->apCpusR3[i];
434 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
435 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
436 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
437 }
438#endif
439 for (VMCPUID i = 0; i < pVM->cCpus; i++)
440 {
441 PVMCPU pVCpu = pVM->apCpusR3[i];
442 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
443 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
444 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
445 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
446 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
447 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
448 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
449 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
450 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
451 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
452 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
453 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
454 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
455 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
456 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
457 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
458 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
459
460 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
461 }
462}
463
464
465/**
466 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
467 *
468 * @returns VBox status code.
469 * @param pVM The cross context VM structure.
470 * @param pVCpu The cross context per CPU structure.
471 * @thread EMT(pVCpu)
472 */
473static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
474{
475 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
476}
477
478
479/**
480 * Initializes the R0 VMM.
481 *
482 * @returns VBox status code.
483 * @param pVM The cross context VM structure.
484 */
485VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
486{
487 int rc;
488 PVMCPU pVCpu = VMMGetCpu(pVM);
489 Assert(pVCpu && pVCpu->idCpu == 0);
490
491 /*
492 * Make sure the ring-0 loggers are up to date.
493 */
494 rc = VMMR3UpdateLoggers(pVM);
495 if (RT_FAILURE(rc))
496 return rc;
497
498 /*
499 * Call Ring-0 entry with init code.
500 */
501 for (;;)
502 {
503#ifdef NO_SUPCALLR0VMM
504 //rc = VERR_GENERAL_FAILURE;
505 rc = VINF_SUCCESS;
506#else
507 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
508#endif
509 /*
510 * Flush the logs.
511 */
512#ifdef LOG_ENABLED
513 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.Logger, NULL);
514#endif
515 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.RelLogger, RTLogRelGetDefaultInstance());
516 if (rc != VINF_VMM_CALL_HOST)
517 break;
518 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
519 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
520 break;
521 /* Resume R0 */
522 }
523
524 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
525 {
526 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
527 if (RT_SUCCESS(rc))
528 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
529 }
530
531 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
532 if (pVM->vmm.s.fIsUsingContextHooks)
533 LogRel(("VMM: Enabled thread-context hooks\n"));
534 else
535 LogRel(("VMM: Thread-context hooks unavailable\n"));
536
537 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
538 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
539 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
540 else
541 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
542 if (pVM->vmm.s.fIsPreemptPossible)
543 LogRel(("VMM: Kernel preemption is possible\n"));
544 else
545 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
546
547 /*
548 * Send all EMTs to ring-0 to get their logger initialized.
549 */
550 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
551 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
552
553 return rc;
554}
555
556
557/**
558 * Called when an init phase completes.
559 *
560 * @returns VBox status code.
561 * @param pVM The cross context VM structure.
562 * @param enmWhat Which init phase.
563 */
564VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
565{
566 int rc = VINF_SUCCESS;
567
568 switch (enmWhat)
569 {
570 case VMINITCOMPLETED_RING3:
571 {
572#if 0 /* pointless when timers doesn't run on EMT */
573 /*
574 * Create the EMT yield timer.
575 */
576 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
577 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
578 AssertRCReturn(rc, rc);
579
580 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
581 AssertRCReturn(rc, rc);
582#endif
583 break;
584 }
585
586 case VMINITCOMPLETED_HM:
587 {
588 /*
589 * Disable the periodic preemption timers if we can use the
590 * VMX-preemption timer instead.
591 */
592 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
593 && HMR3IsVmxPreemptionTimerUsed(pVM))
594 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
595 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
596
597 /*
598 * Last chance for GIM to update its CPUID leaves if it requires
599 * knowledge/information from HM initialization.
600 */
601 rc = GIMR3InitCompleted(pVM);
602 AssertRCReturn(rc, rc);
603
604 /*
605 * CPUM's post-initialization (print CPUIDs).
606 */
607 CPUMR3LogCpuIdAndMsrFeatures(pVM);
608 break;
609 }
610
611 default: /* shuts up gcc */
612 break;
613 }
614
615 return rc;
616}
617
618
619/**
620 * Terminate the VMM bits.
621 *
622 * @returns VBox status code.
623 * @param pVM The cross context VM structure.
624 */
625VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
626{
627 PVMCPU pVCpu = VMMGetCpu(pVM);
628 Assert(pVCpu && pVCpu->idCpu == 0);
629
630 /*
631 * Call Ring-0 entry with termination code.
632 */
633 int rc;
634 for (;;)
635 {
636#ifdef NO_SUPCALLR0VMM
637 //rc = VERR_GENERAL_FAILURE;
638 rc = VINF_SUCCESS;
639#else
640 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
641#endif
642 /*
643 * Flush the logs.
644 */
645#ifdef LOG_ENABLED
646 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.Logger, NULL);
647#endif
648 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.RelLogger, RTLogRelGetDefaultInstance());
649 if (rc != VINF_VMM_CALL_HOST)
650 break;
651 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
652 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
653 break;
654 /* Resume R0 */
655 }
656 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
657 {
658 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
659 if (RT_SUCCESS(rc))
660 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
661 }
662
663 for (VMCPUID i = 0; i < pVM->cCpus; i++)
664 {
665 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
666 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
667 }
668 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
669 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
670 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
671 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
672 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
673 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
674 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
675 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
676 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
677 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
678 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
679 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
680 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
681 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
682 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
683 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
684
685 vmmTermFormatTypes();
686 return rc;
687}
688
689
690/**
691 * Applies relocations to data and code managed by this
692 * component. This function will be called at init and
693 * whenever the VMM need to relocate it self inside the GC.
694 *
695 * The VMM will need to apply relocations to the core code.
696 *
697 * @param pVM The cross context VM structure.
698 * @param offDelta The relocation delta.
699 */
700VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
701{
702 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
703 RT_NOREF(offDelta);
704
705 /*
706 * Update the logger.
707 */
708 VMMR3UpdateLoggers(pVM);
709}
710
711
712/**
713 * Worker for VMMR3UpdateLoggers.
714 */
715static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
716{
717 /*
718 * Get the group count.
719 */
720 uint32_t uGroupsCrc32 = 0;
721 uint32_t cGroups = 0;
722 uint64_t fFlags = 0;
723 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
724 Assert(rc == VERR_BUFFER_OVERFLOW);
725
726 /*
727 * Allocate the request of the right size.
728 */
729 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
730 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
731 if (pReq)
732 {
733 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
734 pReq->Hdr.cbReq = cbReq;
735 pReq->cGroups = cGroups;
736 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
737 AssertRC(rc);
738 if (RT_SUCCESS(rc))
739 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fReleaseLogger, &pReq->Hdr);
740
741 RTMemFree(pReq);
742 }
743 else
744 rc = VERR_NO_MEMORY;
745 return rc;
746}
747
748
749/**
750 * Updates the settings for the RC and R0 loggers.
751 *
752 * @returns VBox status code.
753 * @param pVM The cross context VM structure.
754 * @thread EMT
755 */
756VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
757{
758 VM_ASSERT_EMT(pVM);
759 PVMCPU pVCpu = VMMGetCpu(pVM);
760 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
761
762 /*
763 * Each EMT has each own logger instance.
764 */
765 /* Debug logging.*/
766 int rcDebug = VINF_SUCCESS;
767#ifdef LOG_ENABLED
768 PRTLOGGER const pDefault = RTLogDefaultInstance();
769 if (pDefault)
770 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
771#else
772 RT_NOREF(pVM);
773#endif
774
775 /* Release logging. */
776 int rcRelease = VINF_SUCCESS;
777 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
778 if (pRelease)
779 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
780
781 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
782}
783
784
785/**
786 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
787 *
788 * @returns Pointer to the buffer.
789 * @param pVM The cross context VM structure.
790 */
791VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
792{
793 return pVM->vmm.s.szRing0AssertMsg1;
794}
795
796
797/**
798 * Returns the VMCPU of the specified virtual CPU.
799 *
800 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
801 *
802 * @param pUVM The user mode VM handle.
803 * @param idCpu The ID of the virtual CPU.
804 */
805VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
806{
807 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
808 AssertReturn(idCpu < pUVM->cCpus, NULL);
809 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
810 return pUVM->pVM->apCpusR3[idCpu];
811}
812
813
814/**
815 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
816 *
817 * @returns Pointer to the buffer.
818 * @param pVM The cross context VM structure.
819 */
820VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
821{
822 return pVM->vmm.s.szRing0AssertMsg2;
823}
824
825
826/**
827 * Execute state save operation.
828 *
829 * @returns VBox status code.
830 * @param pVM The cross context VM structure.
831 * @param pSSM SSM operation handle.
832 */
833static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
834{
835 LogFlow(("vmmR3Save:\n"));
836
837 /*
838 * Save the started/stopped state of all CPUs except 0 as it will always
839 * be running. This avoids breaking the saved state version. :-)
840 */
841 for (VMCPUID i = 1; i < pVM->cCpus; i++)
842 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
843
844 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
845}
846
847
848/**
849 * Execute state load operation.
850 *
851 * @returns VBox status code.
852 * @param pVM The cross context VM structure.
853 * @param pSSM SSM operation handle.
854 * @param uVersion Data layout version.
855 * @param uPass The data pass.
856 */
857static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
858{
859 LogFlow(("vmmR3Load:\n"));
860 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
861
862 /*
863 * Validate version.
864 */
865 if ( uVersion != VMM_SAVED_STATE_VERSION
866 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
867 {
868 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
869 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
870 }
871
872 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
873 {
874 /* Ignore the stack bottom, stack pointer and stack bits. */
875 RTRCPTR RCPtrIgnored;
876 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
877 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
878#ifdef RT_OS_DARWIN
879 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
880 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
881 && SSMR3HandleRevision(pSSM) >= 48858
882 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
883 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
884 )
885 SSMR3Skip(pSSM, 16384);
886 else
887 SSMR3Skip(pSSM, 8192);
888#else
889 SSMR3Skip(pSSM, 8192);
890#endif
891 }
892
893 /*
894 * Restore the VMCPU states. VCPU 0 is always started.
895 */
896 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
897 for (VMCPUID i = 1; i < pVM->cCpus; i++)
898 {
899 bool fStarted;
900 int rc = SSMR3GetBool(pSSM, &fStarted);
901 if (RT_FAILURE(rc))
902 return rc;
903 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
904 }
905
906 /* terminator */
907 uint32_t u32;
908 int rc = SSMR3GetU32(pSSM, &u32);
909 if (RT_FAILURE(rc))
910 return rc;
911 if (u32 != UINT32_MAX)
912 {
913 AssertMsgFailed(("u32=%#x\n", u32));
914 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
915 }
916 return VINF_SUCCESS;
917}
918
919
920/**
921 * Suspends the CPU yielder.
922 *
923 * @param pVM The cross context VM structure.
924 */
925VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
926{
927#if 0 /* pointless when timers doesn't run on EMT */
928 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
929 if (!pVM->vmm.s.cYieldResumeMillies)
930 {
931 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
932 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
933 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
934 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
935 else
936 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
937 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
938 }
939 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
940#else
941 RT_NOREF(pVM);
942#endif
943}
944
945
946/**
947 * Stops the CPU yielder.
948 *
949 * @param pVM The cross context VM structure.
950 */
951VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
952{
953#if 0 /* pointless when timers doesn't run on EMT */
954 if (!pVM->vmm.s.cYieldResumeMillies)
955 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
956 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
957 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
958#else
959 RT_NOREF(pVM);
960#endif
961}
962
963
964/**
965 * Resumes the CPU yielder when it has been a suspended or stopped.
966 *
967 * @param pVM The cross context VM structure.
968 */
969VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
970{
971#if 0 /* pointless when timers doesn't run on EMT */
972 if (pVM->vmm.s.cYieldResumeMillies)
973 {
974 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
975 pVM->vmm.s.cYieldResumeMillies = 0;
976 }
977#else
978 RT_NOREF(pVM);
979#endif
980}
981
982
983#if 0 /* pointless when timers doesn't run on EMT */
984/**
985 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
986 *
987 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
988 */
989static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
990{
991 NOREF(pvUser);
992
993 /*
994 * This really needs some careful tuning. While we shouldn't be too greedy since
995 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
996 * because that'll cause us to stop up.
997 *
998 * The current logic is to use the default interval when there is no lag worth
999 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1000 *
1001 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1002 * so the lag is up to date.)
1003 */
1004 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1005 if ( u64Lag < 50000000 /* 50ms */
1006 || ( u64Lag < 1000000000 /* 1s */
1007 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1008 )
1009 {
1010 uint64_t u64Elapsed = RTTimeNanoTS();
1011 pVM->vmm.s.u64LastYield = u64Elapsed;
1012
1013 RTThreadYield();
1014
1015#ifdef LOG_ENABLED
1016 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1017 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1018#endif
1019 }
1020 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1021}
1022#endif
1023
1024
1025/**
1026 * Executes guest code (Intel VT-x and AMD-V).
1027 *
1028 * @param pVM The cross context VM structure.
1029 * @param pVCpu The cross context virtual CPU structure.
1030 */
1031VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1032{
1033 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1034
1035 for (;;)
1036 {
1037 int rc;
1038 do
1039 {
1040#ifdef NO_SUPCALLR0VMM
1041 rc = VERR_GENERAL_FAILURE;
1042#else
1043 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1044 if (RT_LIKELY(rc == VINF_SUCCESS))
1045 rc = pVCpu->vmm.s.iLastGZRc;
1046#endif
1047 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1048
1049#if 0 /** @todo triggers too often */
1050 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1051#endif
1052
1053 /*
1054 * Flush the logs
1055 */
1056#ifdef LOG_ENABLED
1057 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.Logger, NULL);
1058#endif
1059 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.RelLogger, RTLogRelGetDefaultInstance());
1060 if (rc != VINF_VMM_CALL_HOST)
1061 {
1062 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1063 return rc;
1064 }
1065 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1066 if (RT_FAILURE(rc))
1067 return rc;
1068 /* Resume R0 */
1069 }
1070}
1071
1072
1073/**
1074 * Perform one of the fast I/O control VMMR0 operation.
1075 *
1076 * @returns VBox strict status code.
1077 * @param pVM The cross context VM structure.
1078 * @param pVCpu The cross context virtual CPU structure.
1079 * @param enmOperation The operation to perform.
1080 */
1081VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1082{
1083 for (;;)
1084 {
1085 VBOXSTRICTRC rcStrict;
1086 do
1087 {
1088#ifdef NO_SUPCALLR0VMM
1089 rcStrict = VERR_GENERAL_FAILURE;
1090#else
1091 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1092 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1093 rcStrict = pVCpu->vmm.s.iLastGZRc;
1094#endif
1095 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1096
1097 /*
1098 * Flush the logs
1099 */
1100#ifdef LOG_ENABLED
1101 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.Logger, NULL);
1102#endif
1103 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.RelLogger, RTLogRelGetDefaultInstance());
1104 if (rcStrict != VINF_VMM_CALL_HOST)
1105 return rcStrict;
1106 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1107 if (RT_FAILURE(rc))
1108 return rc;
1109 /* Resume R0 */
1110 }
1111}
1112
1113
1114/**
1115 * VCPU worker for VMMR3SendStartupIpi.
1116 *
1117 * @param pVM The cross context VM structure.
1118 * @param idCpu Virtual CPU to perform SIPI on.
1119 * @param uVector The SIPI vector.
1120 */
1121static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1122{
1123 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1124 VMCPU_ASSERT_EMT(pVCpu);
1125
1126 /*
1127 * In the INIT state, the target CPU is only responsive to an SIPI.
1128 * This is also true for when when the CPU is in VMX non-root mode.
1129 *
1130 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1131 * See Intel spec. 26.6.2 "Activity State".
1132 */
1133 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1134 return VINF_SUCCESS;
1135
1136 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1137#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1138 if (CPUMIsGuestInVmxRootMode(pCtx))
1139 {
1140 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1141 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1142 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1143
1144 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1145 return VINF_SUCCESS;
1146 }
1147#endif
1148
1149 pCtx->cs.Sel = uVector << 8;
1150 pCtx->cs.ValidSel = uVector << 8;
1151 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1152 pCtx->cs.u64Base = uVector << 12;
1153 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1154 pCtx->rip = 0;
1155
1156 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1157
1158# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1159 EMSetState(pVCpu, EMSTATE_HALTED);
1160 return VINF_EM_RESCHEDULE;
1161# else /* And if we go the VMCPU::enmState way it can stay here. */
1162 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1163 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1164 return VINF_SUCCESS;
1165# endif
1166}
1167
1168
1169/**
1170 * VCPU worker for VMMR3SendInitIpi.
1171 *
1172 * @returns VBox status code.
1173 * @param pVM The cross context VM structure.
1174 * @param idCpu Virtual CPU to perform SIPI on.
1175 */
1176static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1177{
1178 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1179 VMCPU_ASSERT_EMT(pVCpu);
1180
1181 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1182
1183 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1184 * wait-for-SIPI state. Verify. */
1185
1186 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1187#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1188 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1189 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1190 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1191#endif
1192
1193 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1194 * IPI (e.g. SVM_EXIT_INIT). */
1195
1196 PGMR3ResetCpu(pVM, pVCpu);
1197 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1198 APICR3InitIpi(pVCpu);
1199 TRPMR3ResetCpu(pVCpu);
1200 CPUMR3ResetCpu(pVM, pVCpu);
1201 EMR3ResetCpu(pVCpu);
1202 HMR3ResetCpu(pVCpu);
1203 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1204
1205 /* This will trickle up on the target EMT. */
1206 return VINF_EM_WAIT_SIPI;
1207}
1208
1209
1210/**
1211 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1212 * vector-dependent state and unhalting processor.
1213 *
1214 * @param pVM The cross context VM structure.
1215 * @param idCpu Virtual CPU to perform SIPI on.
1216 * @param uVector SIPI vector.
1217 */
1218VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1219{
1220 AssertReturnVoid(idCpu < pVM->cCpus);
1221
1222 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1223 AssertRC(rc);
1224}
1225
1226
1227/**
1228 * Sends init IPI to the virtual CPU.
1229 *
1230 * @param pVM The cross context VM structure.
1231 * @param idCpu Virtual CPU to perform int IPI on.
1232 */
1233VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1234{
1235 AssertReturnVoid(idCpu < pVM->cCpus);
1236
1237 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1238 AssertRC(rc);
1239}
1240
1241
1242/**
1243 * Registers the guest memory range that can be used for patching.
1244 *
1245 * @returns VBox status code.
1246 * @param pVM The cross context VM structure.
1247 * @param pPatchMem Patch memory range.
1248 * @param cbPatchMem Size of the memory range.
1249 */
1250VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1251{
1252 VM_ASSERT_EMT(pVM);
1253 if (HMIsEnabled(pVM))
1254 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1255
1256 return VERR_NOT_SUPPORTED;
1257}
1258
1259
1260/**
1261 * Deregisters the guest memory range that can be used for patching.
1262 *
1263 * @returns VBox status code.
1264 * @param pVM The cross context VM structure.
1265 * @param pPatchMem Patch memory range.
1266 * @param cbPatchMem Size of the memory range.
1267 */
1268VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1269{
1270 if (HMIsEnabled(pVM))
1271 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1272
1273 return VINF_SUCCESS;
1274}
1275
1276
1277/**
1278 * Common recursion handler for the other EMTs.
1279 *
1280 * @returns Strict VBox status code.
1281 * @param pVM The cross context VM structure.
1282 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1283 * @param rcStrict Current status code to be combined with the one
1284 * from this recursion and returned.
1285 */
1286static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1287{
1288 int rc2;
1289
1290 /*
1291 * We wait here while the initiator of this recursion reconfigures
1292 * everything. The last EMT to get in signals the initiator.
1293 */
1294 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1295 {
1296 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1297 AssertLogRelRC(rc2);
1298 }
1299
1300 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1301 AssertLogRelRC(rc2);
1302
1303 /*
1304 * Do the normal rendezvous processing.
1305 */
1306 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1307 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1308
1309 /*
1310 * Wait for the initiator to restore everything.
1311 */
1312 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1313 AssertLogRelRC(rc2);
1314
1315 /*
1316 * Last thread out of here signals the initiator.
1317 */
1318 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1319 {
1320 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1321 AssertLogRelRC(rc2);
1322 }
1323
1324 /*
1325 * Merge status codes and return.
1326 */
1327 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1328 if ( rcStrict2 != VINF_SUCCESS
1329 && ( rcStrict == VINF_SUCCESS
1330 || rcStrict > rcStrict2))
1331 rcStrict = rcStrict2;
1332 return rcStrict;
1333}
1334
1335
1336/**
1337 * Count returns and have the last non-caller EMT wake up the caller.
1338 *
1339 * @returns VBox strict informational status code for EM scheduling. No failures
1340 * will be returned here, those are for the caller only.
1341 *
1342 * @param pVM The cross context VM structure.
1343 * @param rcStrict The current accumulated recursive status code,
1344 * to be merged with i32RendezvousStatus and
1345 * returned.
1346 */
1347DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1348{
1349 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1350
1351 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1352 if (cReturned == pVM->cCpus - 1U)
1353 {
1354 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1355 AssertLogRelRC(rc);
1356 }
1357
1358 /*
1359 * Merge the status codes, ignoring error statuses in this code path.
1360 */
1361 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1362 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1363 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1364 VERR_IPE_UNEXPECTED_INFO_STATUS);
1365
1366 if (RT_SUCCESS(rcStrict2))
1367 {
1368 if ( rcStrict2 != VINF_SUCCESS
1369 && ( rcStrict == VINF_SUCCESS
1370 || rcStrict > rcStrict2))
1371 rcStrict = rcStrict2;
1372 }
1373 return rcStrict;
1374}
1375
1376
1377/**
1378 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1379 *
1380 * @returns VBox strict informational status code for EM scheduling. No failures
1381 * will be returned here, those are for the caller only. When
1382 * fIsCaller is set, VINF_SUCCESS is always returned.
1383 *
1384 * @param pVM The cross context VM structure.
1385 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1386 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1387 * not.
1388 * @param fFlags The flags.
1389 * @param pfnRendezvous The callback.
1390 * @param pvUser The user argument for the callback.
1391 */
1392static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1393 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1394{
1395 int rc;
1396 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1397
1398 /*
1399 * Enter, the last EMT triggers the next callback phase.
1400 */
1401 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1402 if (cEntered != pVM->cCpus)
1403 {
1404 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1405 {
1406 /* Wait for our turn. */
1407 for (;;)
1408 {
1409 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1410 AssertLogRelRC(rc);
1411 if (!pVM->vmm.s.fRendezvousRecursion)
1412 break;
1413 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1414 }
1415 }
1416 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1417 {
1418 /* Wait for the last EMT to arrive and wake everyone up. */
1419 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1420 AssertLogRelRC(rc);
1421 Assert(!pVM->vmm.s.fRendezvousRecursion);
1422 }
1423 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1424 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1425 {
1426 /* Wait for our turn. */
1427 for (;;)
1428 {
1429 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1430 AssertLogRelRC(rc);
1431 if (!pVM->vmm.s.fRendezvousRecursion)
1432 break;
1433 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1434 }
1435 }
1436 else
1437 {
1438 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1439
1440 /*
1441 * The execute once is handled specially to optimize the code flow.
1442 *
1443 * The last EMT to arrive will perform the callback and the other
1444 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1445 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1446 * returns, that EMT will initiate the normal return sequence.
1447 */
1448 if (!fIsCaller)
1449 {
1450 for (;;)
1451 {
1452 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1453 AssertLogRelRC(rc);
1454 if (!pVM->vmm.s.fRendezvousRecursion)
1455 break;
1456 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1457 }
1458
1459 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1460 }
1461 return VINF_SUCCESS;
1462 }
1463 }
1464 else
1465 {
1466 /*
1467 * All EMTs are waiting, clear the FF and take action according to the
1468 * execution method.
1469 */
1470 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1471
1472 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1473 {
1474 /* Wake up everyone. */
1475 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1476 AssertLogRelRC(rc);
1477 }
1478 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1479 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1480 {
1481 /* Figure out who to wake up and wake it up. If it's ourself, then
1482 it's easy otherwise wait for our turn. */
1483 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1484 ? 0
1485 : pVM->cCpus - 1U;
1486 if (pVCpu->idCpu != iFirst)
1487 {
1488 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1489 AssertLogRelRC(rc);
1490 for (;;)
1491 {
1492 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1493 AssertLogRelRC(rc);
1494 if (!pVM->vmm.s.fRendezvousRecursion)
1495 break;
1496 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1497 }
1498 }
1499 }
1500 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1501 }
1502
1503
1504 /*
1505 * Do the callback and update the status if necessary.
1506 */
1507 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1508 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1509 {
1510 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1511 if (rcStrict2 != VINF_SUCCESS)
1512 {
1513 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1514 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1515 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1516 int32_t i32RendezvousStatus;
1517 do
1518 {
1519 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1520 if ( rcStrict2 == i32RendezvousStatus
1521 || RT_FAILURE(i32RendezvousStatus)
1522 || ( i32RendezvousStatus != VINF_SUCCESS
1523 && rcStrict2 > i32RendezvousStatus))
1524 break;
1525 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1526 }
1527 }
1528
1529 /*
1530 * Increment the done counter and take action depending on whether we're
1531 * the last to finish callback execution.
1532 */
1533 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1534 if ( cDone != pVM->cCpus
1535 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1536 {
1537 /* Signal the next EMT? */
1538 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1539 {
1540 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1541 AssertLogRelRC(rc);
1542 }
1543 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1544 {
1545 Assert(cDone == pVCpu->idCpu + 1U);
1546 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1547 AssertLogRelRC(rc);
1548 }
1549 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1550 {
1551 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1552 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1553 AssertLogRelRC(rc);
1554 }
1555
1556 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1557 if (!fIsCaller)
1558 {
1559 for (;;)
1560 {
1561 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1562 AssertLogRelRC(rc);
1563 if (!pVM->vmm.s.fRendezvousRecursion)
1564 break;
1565 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1566 }
1567 }
1568 }
1569 else
1570 {
1571 /* Callback execution is all done, tell the rest to return. */
1572 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1573 AssertLogRelRC(rc);
1574 }
1575
1576 if (!fIsCaller)
1577 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1578 return rcStrictRecursion;
1579}
1580
1581
1582/**
1583 * Called in response to VM_FF_EMT_RENDEZVOUS.
1584 *
1585 * @returns VBox strict status code - EM scheduling. No errors will be returned
1586 * here, nor will any non-EM scheduling status codes be returned.
1587 *
1588 * @param pVM The cross context VM structure.
1589 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1590 *
1591 * @thread EMT
1592 */
1593VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1594{
1595 Assert(!pVCpu->vmm.s.fInRendezvous);
1596 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1597 pVCpu->vmm.s.fInRendezvous = true;
1598 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1599 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1600 pVCpu->vmm.s.fInRendezvous = false;
1601 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1602 return VBOXSTRICTRC_TODO(rcStrict);
1603}
1604
1605
1606/**
1607 * Helper for resetting an single wakeup event sempahore.
1608 *
1609 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1610 * @param hEvt The event semaphore to reset.
1611 */
1612static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1613{
1614 for (uint32_t cLoops = 0; ; cLoops++)
1615 {
1616 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1617 if (rc != VINF_SUCCESS || cLoops > _4K)
1618 return rc;
1619 }
1620}
1621
1622
1623/**
1624 * Worker for VMMR3EmtRendezvous that handles recursion.
1625 *
1626 * @returns VBox strict status code. This will be the first error,
1627 * VINF_SUCCESS, or an EM scheduling status code.
1628 *
1629 * @param pVM The cross context VM structure.
1630 * @param pVCpu The cross context virtual CPU structure of the
1631 * calling EMT.
1632 * @param fFlags Flags indicating execution methods. See
1633 * grp_VMMR3EmtRendezvous_fFlags.
1634 * @param pfnRendezvous The callback.
1635 * @param pvUser User argument for the callback.
1636 *
1637 * @thread EMT(pVCpu)
1638 */
1639static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1640 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1641{
1642 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1643 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1644 Assert(pVCpu->vmm.s.fInRendezvous);
1645
1646 /*
1647 * Save the current state.
1648 */
1649 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1650 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1651 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1652 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1653 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1654
1655 /*
1656 * Check preconditions and save the current state.
1657 */
1658 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1659 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1660 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1661 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1662 VERR_INTERNAL_ERROR);
1663 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1664 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1665
1666 /*
1667 * Reset the recursion prep and pop semaphores.
1668 */
1669 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1670 AssertLogRelRCReturn(rc, rc);
1671 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1672 AssertLogRelRCReturn(rc, rc);
1673 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1674 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1675 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1676 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1677
1678 /*
1679 * Usher the other thread into the recursion routine.
1680 */
1681 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1682 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1683
1684 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1685 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1686 while (cLeft-- > 0)
1687 {
1688 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1689 AssertLogRelRC(rc);
1690 }
1691 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1692 {
1693 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1694 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1695 {
1696 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1697 AssertLogRelRC(rc);
1698 }
1699 }
1700 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1701 {
1702 Assert(cLeft == pVCpu->idCpu);
1703 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1704 {
1705 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1706 AssertLogRelRC(rc);
1707 }
1708 }
1709 else
1710 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1711 VERR_INTERNAL_ERROR_4);
1712
1713 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1714 AssertLogRelRC(rc);
1715 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1716 AssertLogRelRC(rc);
1717
1718
1719 /*
1720 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1721 */
1722 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1723 {
1724 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1725 AssertLogRelRC(rc);
1726 }
1727
1728 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1729
1730 /*
1731 * Clear the slate and setup the new rendezvous.
1732 */
1733 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1734 {
1735 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1736 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1737 }
1738 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1739 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1740 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1741 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1742
1743 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1744 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1745 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1746 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1747 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1748 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1749 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1750 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1751
1752 /*
1753 * We're ready to go now, do normal rendezvous processing.
1754 */
1755 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1756 AssertLogRelRC(rc);
1757
1758 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1759
1760 /*
1761 * The caller waits for the other EMTs to be done, return and waiting on the
1762 * pop semaphore.
1763 */
1764 for (;;)
1765 {
1766 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1767 AssertLogRelRC(rc);
1768 if (!pVM->vmm.s.fRendezvousRecursion)
1769 break;
1770 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1771 }
1772
1773 /*
1774 * Get the return code and merge it with the above recursion status.
1775 */
1776 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1777 if ( rcStrict2 != VINF_SUCCESS
1778 && ( rcStrict == VINF_SUCCESS
1779 || rcStrict > rcStrict2))
1780 rcStrict = rcStrict2;
1781
1782 /*
1783 * Restore the parent rendezvous state.
1784 */
1785 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1786 {
1787 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1788 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1789 }
1790 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1791 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1792 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1793 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1794
1795 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1796 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1797 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1798 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1799 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1800 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1801 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1802
1803 /*
1804 * Usher the other EMTs back to their parent recursion routine, waiting
1805 * for them to all get there before we return (makes sure they've been
1806 * scheduled and are past the pop event sem, see below).
1807 */
1808 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1809 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1810 AssertLogRelRC(rc);
1811
1812 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1813 {
1814 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1815 AssertLogRelRC(rc);
1816 }
1817
1818 /*
1819 * We must reset the pop semaphore on the way out (doing the pop caller too,
1820 * just in case). The parent may be another recursion.
1821 */
1822 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1823 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1824
1825 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1826
1827 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1828 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1829 return rcStrict;
1830}
1831
1832
1833/**
1834 * EMT rendezvous.
1835 *
1836 * Gathers all the EMTs and execute some code on each of them, either in a one
1837 * by one fashion or all at once.
1838 *
1839 * @returns VBox strict status code. This will be the first error,
1840 * VINF_SUCCESS, or an EM scheduling status code.
1841 *
1842 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1843 * doesn't support it or if the recursion is too deep.
1844 *
1845 * @param pVM The cross context VM structure.
1846 * @param fFlags Flags indicating execution methods. See
1847 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1848 * descending and ascending rendezvous types support
1849 * recursion from inside @a pfnRendezvous.
1850 * @param pfnRendezvous The callback.
1851 * @param pvUser User argument for the callback.
1852 *
1853 * @thread Any.
1854 */
1855VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1856{
1857 /*
1858 * Validate input.
1859 */
1860 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1861 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1862 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1863 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1864 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1865 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1866 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1867 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1868
1869 VBOXSTRICTRC rcStrict;
1870 PVMCPU pVCpu = VMMGetCpu(pVM);
1871 if (!pVCpu)
1872 {
1873 /*
1874 * Forward the request to an EMT thread.
1875 */
1876 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
1877 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
1878 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1879 else
1880 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1881 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1882 }
1883 else if ( pVM->cCpus == 1
1884 || ( pVM->enmVMState == VMSTATE_DESTROYING
1885 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
1886 {
1887 /*
1888 * Shortcut for the single EMT case.
1889 *
1890 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
1891 * during vmR3Destroy after other emulation threads have started terminating.
1892 */
1893 if (!pVCpu->vmm.s.fInRendezvous)
1894 {
1895 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
1896 pVCpu->vmm.s.fInRendezvous = true;
1897 pVM->vmm.s.fRendezvousFlags = fFlags;
1898 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1899 pVCpu->vmm.s.fInRendezvous = false;
1900 }
1901 else
1902 {
1903 /* Recursion. Do the same checks as in the SMP case. */
1904 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
1905 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
1906 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
1907 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1908 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1909 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1910 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1911 , VERR_DEADLOCK);
1912
1913 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1914 pVM->vmm.s.cRendezvousRecursions++;
1915 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1916 pVM->vmm.s.fRendezvousFlags = fFlags;
1917
1918 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1919
1920 pVM->vmm.s.fRendezvousFlags = fParentFlags;
1921 pVM->vmm.s.cRendezvousRecursions--;
1922 }
1923 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1924 }
1925 else
1926 {
1927 /*
1928 * Spin lock. If busy, check for recursion, if not recursing wait for
1929 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
1930 */
1931 int rc;
1932 rcStrict = VINF_SUCCESS;
1933 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1934 {
1935 /* Allow recursion in some cases. */
1936 if ( pVCpu->vmm.s.fInRendezvous
1937 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1938 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1939 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1940 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1941 ))
1942 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
1943
1944 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
1945 VERR_DEADLOCK);
1946
1947 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
1948 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1949 {
1950 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
1951 {
1952 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1953 if ( rc != VINF_SUCCESS
1954 && ( rcStrict == VINF_SUCCESS
1955 || rcStrict > rc))
1956 rcStrict = rc;
1957 /** @todo Perhaps deal with termination here? */
1958 }
1959 ASMNopPause();
1960 }
1961 }
1962
1963 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
1964 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
1965 Assert(!pVCpu->vmm.s.fInRendezvous);
1966 pVCpu->vmm.s.fInRendezvous = true;
1967
1968 /*
1969 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
1970 */
1971 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1972 {
1973 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1974 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1975 }
1976 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1977 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1978 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1979 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1980 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1981 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1982 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1983 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1984 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1985 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1986 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1987
1988 /*
1989 * Set the FF and poke the other EMTs.
1990 */
1991 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1992 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1993
1994 /*
1995 * Do the same ourselves.
1996 */
1997 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1998
1999 /*
2000 * The caller waits for the other EMTs to be done and return before doing
2001 * the cleanup. This makes away with wakeup / reset races we would otherwise
2002 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2003 */
2004 for (;;)
2005 {
2006 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2007 AssertLogRelRC(rc);
2008 if (!pVM->vmm.s.fRendezvousRecursion)
2009 break;
2010 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2011 }
2012
2013 /*
2014 * Get the return code and clean up a little bit.
2015 */
2016 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2017 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2018
2019 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2020 pVCpu->vmm.s.fInRendezvous = false;
2021
2022 /*
2023 * Merge rcStrict, rcStrict2 and rcStrict3.
2024 */
2025 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2026 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2027 if ( rcStrict2 != VINF_SUCCESS
2028 && ( rcStrict == VINF_SUCCESS
2029 || rcStrict > rcStrict2))
2030 rcStrict = rcStrict2;
2031 if ( rcStrict3 != VINF_SUCCESS
2032 && ( rcStrict == VINF_SUCCESS
2033 || rcStrict > rcStrict3))
2034 rcStrict = rcStrict3;
2035 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2036 }
2037
2038 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2039 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2040 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2041 VERR_IPE_UNEXPECTED_INFO_STATUS);
2042 return VBOXSTRICTRC_VAL(rcStrict);
2043}
2044
2045
2046/**
2047 * Interface for vmR3SetHaltMethodU.
2048 *
2049 * @param pVCpu The cross context virtual CPU structure of the
2050 * calling EMT.
2051 * @param fMayHaltInRing0 The new state.
2052 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2053 * @thread EMT(pVCpu)
2054 *
2055 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2056 * component.
2057 */
2058VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2059{
2060 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2061 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2062 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2063}
2064
2065
2066/**
2067 * Read from the ring 0 jump buffer stack.
2068 *
2069 * @returns VBox status code.
2070 *
2071 * @param pVM The cross context VM structure.
2072 * @param idCpu The ID of the source CPU context (for the address).
2073 * @param R0Addr Where to start reading.
2074 * @param pvBuf Where to store the data we've read.
2075 * @param cbRead The number of bytes to read.
2076 */
2077VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2078{
2079 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2080 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2081 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2082
2083 int rc;
2084#ifdef VMM_R0_SWITCH_STACK
2085 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2086#else
2087 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2088#endif
2089 if ( off < VMM_STACK_SIZE
2090 && off + cbRead <= VMM_STACK_SIZE)
2091 {
2092 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2093 rc = VINF_SUCCESS;
2094 }
2095 else
2096 rc = VERR_INVALID_POINTER;
2097
2098 /* Supply the setjmp return RIP/EIP. */
2099 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2100 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2101 {
2102 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2103 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2104 size_t offDst = 0;
2105 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2106 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2107 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2108 {
2109 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2110 Assert(offSrc < cbSrc);
2111 pbSrc -= offSrc;
2112 cbSrc -= offSrc;
2113 }
2114 if (cbSrc > cbRead - offDst)
2115 cbSrc = cbRead - offDst;
2116 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2117
2118 if (cbSrc == cbRead)
2119 rc = VINF_SUCCESS;
2120 }
2121
2122 return rc;
2123}
2124
2125
2126/**
2127 * Used by the DBGF stack unwinder to initialize the register state.
2128 *
2129 * @param pUVM The user mode VM handle.
2130 * @param idCpu The ID of the CPU being unwound.
2131 * @param pState The unwind state to initialize.
2132 */
2133VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2134{
2135 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2136 AssertReturnVoid(pVCpu);
2137
2138 /*
2139 * Locate the resume point on the stack.
2140 */
2141#ifdef VMM_R0_SWITCH_STACK
2142 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2143 AssertReturnVoid(off < VMM_STACK_SIZE);
2144#else
2145 uintptr_t off = 0;
2146#endif
2147
2148#ifdef RT_ARCH_AMD64
2149 /*
2150 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2151 */
2152# ifdef VBOX_STRICT
2153 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2154 off += 8; /* RESUME_MAGIC */
2155# endif
2156# ifdef RT_OS_WINDOWS
2157 off += 0xa0; /* XMM6 thru XMM15 */
2158# endif
2159 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2160 off += 8;
2161 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2162 off += 8;
2163# ifdef RT_OS_WINDOWS
2164 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2165 off += 8;
2166 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2167 off += 8;
2168# endif
2169 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2170 off += 8;
2171 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2172 off += 8;
2173 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2174 off += 8;
2175 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2176 off += 8;
2177 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2178 off += 8;
2179 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2180 off += 8;
2181
2182#elif defined(RT_ARCH_X86)
2183 /*
2184 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2185 */
2186# ifdef VBOX_STRICT
2187 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2188 off += 4; /* RESUME_MAGIC */
2189# endif
2190 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2191 off += 4;
2192 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2193 off += 4;
2194 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2195 off += 4;
2196 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2197 off += 4;
2198 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2199 off += 4;
2200 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2201 off += 4;
2202#else
2203# error "Port me"
2204#endif
2205
2206 /*
2207 * This is all we really need here, though the above helps if the assembly
2208 * doesn't contain unwind info (currently only on win/64, so that is useful).
2209 */
2210 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2211 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2212}
2213
2214
2215/**
2216 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2217 *
2218 * @returns VBox status code.
2219 * @param pVM The cross context VM structure.
2220 * @param uOperation Operation to execute.
2221 * @param u64Arg Constant argument.
2222 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2223 * details.
2224 */
2225VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2226{
2227 PVMCPU pVCpu = VMMGetCpu(pVM);
2228 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2229 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2230}
2231
2232
2233/**
2234 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2235 *
2236 * @returns VBox status code.
2237 * @param pVM The cross context VM structure.
2238 * @param pVCpu The cross context VM structure.
2239 * @param enmOperation Operation to execute.
2240 * @param u64Arg Constant argument.
2241 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2242 * details.
2243 */
2244VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2245{
2246 int rc;
2247 for (;;)
2248 {
2249#ifdef NO_SUPCALLR0VMM
2250 rc = VERR_GENERAL_FAILURE;
2251#else
2252 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2253#endif
2254 /*
2255 * Flush the logs.
2256 */
2257#ifdef LOG_ENABLED
2258 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.Logger, NULL);
2259#endif
2260 VMM_FLUSH_R0_LOG(&pVCpu->vmm.s.RelLogger, RTLogRelGetDefaultInstance());
2261 if (rc != VINF_VMM_CALL_HOST)
2262 break;
2263 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2264 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2265 break;
2266 /* Resume R0 */
2267 }
2268
2269 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2270 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2271 VERR_IPE_UNEXPECTED_INFO_STATUS);
2272 return rc;
2273}
2274
2275
2276/**
2277 * Service a call to the ring-3 host code.
2278 *
2279 * @returns VBox status code.
2280 * @param pVM The cross context VM structure.
2281 * @param pVCpu The cross context virtual CPU structure.
2282 * @remarks Careful with critsects.
2283 */
2284static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2285{
2286 /*
2287 * We must also check for pending critsect exits or else we can deadlock
2288 * when entering other critsects here.
2289 */
2290 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2291 PDMCritSectBothFF(pVM, pVCpu);
2292
2293 switch (pVCpu->vmm.s.enmCallRing3Operation)
2294 {
2295 /*
2296 * Acquire a critical section.
2297 */
2298 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2299 {
2300 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx(pVM, (PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2301 true /*fCallRing3*/);
2302 break;
2303 }
2304
2305 /*
2306 * Enter a r/w critical section exclusively.
2307 */
2308 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2309 {
2310 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx(pVM, (PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2311 true /*fCallRing3*/);
2312 break;
2313 }
2314
2315 /*
2316 * Enter a r/w critical section shared.
2317 */
2318 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2319 {
2320 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx(pVM, (PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2321 true /*fCallRing3*/);
2322 break;
2323 }
2324
2325 /*
2326 * Acquire the PDM lock.
2327 */
2328 case VMMCALLRING3_PDM_LOCK:
2329 {
2330 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2331 break;
2332 }
2333
2334 /*
2335 * Grow the PGM pool.
2336 */
2337 case VMMCALLRING3_PGM_POOL_GROW:
2338 {
2339 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2340 break;
2341 }
2342
2343 /*
2344 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2345 */
2346 case VMMCALLRING3_PGM_MAP_CHUNK:
2347 {
2348 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2349 break;
2350 }
2351
2352 /*
2353 * Allocates more handy pages.
2354 */
2355 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2356 {
2357 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2358 break;
2359 }
2360
2361 /*
2362 * Allocates a large page.
2363 */
2364 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2365 {
2366 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2367 break;
2368 }
2369
2370 /*
2371 * Acquire the PGM lock.
2372 */
2373 case VMMCALLRING3_PGM_LOCK:
2374 {
2375 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2376 break;
2377 }
2378
2379 /*
2380 * Acquire the MM hypervisor heap lock.
2381 */
2382 case VMMCALLRING3_MMHYPER_LOCK:
2383 {
2384 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2385 break;
2386 }
2387
2388 /*
2389 * This is a noop. We just take this route to avoid unnecessary
2390 * tests in the loops.
2391 */
2392 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2393 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2394 LogAlways(("*FLUSH*\n"));
2395 break;
2396
2397 /*
2398 * Set the VM error message.
2399 */
2400 case VMMCALLRING3_VM_SET_ERROR:
2401 VMR3SetErrorWorker(pVM);
2402 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2403 break;
2404
2405 /*
2406 * Set the VM runtime error message.
2407 */
2408 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2409 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2410 break;
2411
2412 /*
2413 * Signal a ring 0 hypervisor assertion.
2414 * Cancel the longjmp operation that's in progress.
2415 */
2416 case VMMCALLRING3_VM_R0_ASSERTION:
2417 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2418 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2419#ifdef RT_ARCH_X86
2420 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2421#else
2422 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2423#endif
2424#ifdef VMM_R0_SWITCH_STACK
2425 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2426#endif
2427 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2428 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2429 return VERR_VMM_RING0_ASSERTION;
2430
2431 /*
2432 * A forced switch to ring 0 for preemption purposes.
2433 */
2434 case VMMCALLRING3_VM_R0_PREEMPT:
2435 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2436 break;
2437
2438 default:
2439 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2440 return VERR_VMM_UNKNOWN_RING3_CALL;
2441 }
2442
2443 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2444 return VINF_SUCCESS;
2445}
2446
2447
2448/**
2449 * Displays the Force action Flags.
2450 *
2451 * @param pVM The cross context VM structure.
2452 * @param pHlp The output helpers.
2453 * @param pszArgs The additional arguments (ignored).
2454 */
2455static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2456{
2457 int c;
2458 uint32_t f;
2459 NOREF(pszArgs);
2460
2461#define PRINT_FLAG(prf,flag) do { \
2462 if (f & (prf##flag)) \
2463 { \
2464 static const char *s_psz = #flag; \
2465 if (!(c % 6)) \
2466 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2467 else \
2468 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2469 c++; \
2470 f &= ~(prf##flag); \
2471 } \
2472 } while (0)
2473
2474#define PRINT_GROUP(prf,grp,sfx) do { \
2475 if (f & (prf##grp##sfx)) \
2476 { \
2477 static const char *s_psz = #grp; \
2478 if (!(c % 5)) \
2479 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2480 else \
2481 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2482 c++; \
2483 } \
2484 } while (0)
2485
2486 /*
2487 * The global flags.
2488 */
2489 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2490 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2491
2492 /* show the flag mnemonics */
2493 c = 0;
2494 f = fGlobalForcedActions;
2495 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2496 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2497 PRINT_FLAG(VM_FF_,PDM_DMA);
2498 PRINT_FLAG(VM_FF_,DBGF);
2499 PRINT_FLAG(VM_FF_,REQUEST);
2500 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2501 PRINT_FLAG(VM_FF_,RESET);
2502 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2503 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2504 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2505 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2506 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2507 if (f)
2508 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2509 else
2510 pHlp->pfnPrintf(pHlp, "\n");
2511
2512 /* the groups */
2513 c = 0;
2514 f = fGlobalForcedActions;
2515 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2516 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2517 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2518 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2519 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2520 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2521 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2522 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2523 if (c)
2524 pHlp->pfnPrintf(pHlp, "\n");
2525
2526 /*
2527 * Per CPU flags.
2528 */
2529 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2530 {
2531 PVMCPU pVCpu = pVM->apCpusR3[i];
2532 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2533 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2534
2535 /* show the flag mnemonics */
2536 c = 0;
2537 f = fLocalForcedActions;
2538 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2539 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2540 PRINT_FLAG(VMCPU_FF_,TIMER);
2541 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2542 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2543 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2544 PRINT_FLAG(VMCPU_FF_,UNHALT);
2545 PRINT_FLAG(VMCPU_FF_,IEM);
2546 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2547 PRINT_FLAG(VMCPU_FF_,DBGF);
2548 PRINT_FLAG(VMCPU_FF_,REQUEST);
2549 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2550 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2551 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2552 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2553 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2554 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2555 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2556 PRINT_FLAG(VMCPU_FF_,TO_R3);
2557 PRINT_FLAG(VMCPU_FF_,IOM);
2558 if (f)
2559 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2560 else
2561 pHlp->pfnPrintf(pHlp, "\n");
2562
2563 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2564 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2565
2566 /* the groups */
2567 c = 0;
2568 f = fLocalForcedActions;
2569 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2570 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2571 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2572 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2573 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2574 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2575 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2576 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2577 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2578 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2579 if (c)
2580 pHlp->pfnPrintf(pHlp, "\n");
2581 }
2582
2583#undef PRINT_FLAG
2584#undef PRINT_GROUP
2585}
2586
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette