VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 91120

Last change on this file since 91120 was 90999, checked in by vboxsync, 4 years ago

VMM: Removed VMMCALLRING3_PGM_LOCK (now unused). bugref:6695

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 110.2 KB
Line 
1/* $Id: VMM.cpp 90999 2021-08-30 14:08:43Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \
154 do { \
155 size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \
156 if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \
157 || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \
158 { /* likely? */ } \
159 else \
160 vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \
161 } while (0)
162
163
164/*********************************************************************************************************************************
165* Internal Functions *
166*********************************************************************************************************************************/
167static int vmmR3InitStacks(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171#if 0 /* pointless when timers doesn't run on EMT */
172static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
173#endif
174static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
175 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
176static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
177static FNRTTHREAD vmmR3LogFlusher;
178static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf,
179 PRTLOGGER pDstLogger);
180static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
181
182
183
184/**
185 * Initializes the VMM.
186 *
187 * @returns VBox status code.
188 * @param pVM The cross context VM structure.
189 */
190VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
191{
192 LogFlow(("VMMR3Init\n"));
193
194 /*
195 * Assert alignment, sizes and order.
196 */
197 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
198 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
199
200 /*
201 * Init basic VM VMM members.
202 */
203 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
204 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
205 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
207 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
208 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
209 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
210 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
211 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
212 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
213
214#if 0 /* pointless when timers doesn't run on EMT */
215 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
216 * The EMT yield interval. The EMT yielding is a hack we employ to play a
217 * bit nicer with the rest of the system (like for instance the GUI).
218 */
219 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
220 23 /* Value arrived at after experimenting with the grub boot prompt. */);
221 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
222#endif
223
224 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
225 * Controls whether we employ per-cpu preemption timers to limit the time
226 * spent executing guest code. This option is not available on all
227 * platforms and we will silently ignore this setting then. If we are
228 * running in VT-x mode, we will use the VMX-preemption timer instead of
229 * this one when possible.
230 */
231 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
232 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
233 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
234
235 /*
236 * Initialize the VMM rendezvous semaphores.
237 */
238 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
239 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
240 return VERR_NO_MEMORY;
241 for (VMCPUID i = 0; i < pVM->cCpus; i++)
242 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
243 for (VMCPUID i = 0; i < pVM->cCpus; i++)
244 {
245 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
246 AssertRCReturn(rc, rc);
247 }
248 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
249 AssertRCReturn(rc, rc);
250 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
251 AssertRCReturn(rc, rc);
252 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
253 AssertRCReturn(rc, rc);
254 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
255 AssertRCReturn(rc, rc);
256 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
257 AssertRCReturn(rc, rc);
258 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
259 AssertRCReturn(rc, rc);
260 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
261 AssertRCReturn(rc, rc);
262 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
263 AssertRCReturn(rc, rc);
264
265 /*
266 * Register the saved state data unit.
267 */
268 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
269 NULL, NULL, NULL,
270 NULL, vmmR3Save, NULL,
271 NULL, vmmR3Load, NULL);
272 if (RT_FAILURE(rc))
273 return rc;
274
275 /*
276 * Register the Ring-0 VM handle with the session for fast ioctl calls.
277 */
278 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
279 if (RT_FAILURE(rc))
280 return rc;
281
282 /*
283 * Init various sub-components.
284 */
285 rc = vmmR3InitStacks(pVM);
286 if (RT_SUCCESS(rc))
287 {
288#ifdef VBOX_WITH_NMI
289 /*
290 * Allocate mapping for the host APIC.
291 */
292 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
293 AssertRC(rc);
294#endif
295 if (RT_SUCCESS(rc))
296 {
297 /*
298 * Start the log flusher thread.
299 */
300 rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/,
301 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk");
302 if (RT_SUCCESS(rc))
303 {
304
305 /*
306 * Debug info and statistics.
307 */
308 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
309 vmmR3InitRegisterStats(pVM);
310 vmmInitFormatTypes();
311
312 return VINF_SUCCESS;
313 }
314 }
315 }
316 /** @todo Need failure cleanup? */
317
318 return rc;
319}
320
321
322/**
323 * Allocate & setup the VMM RC stack(s) (for EMTs).
324 *
325 * The stacks are also used for long jumps in Ring-0.
326 *
327 * @returns VBox status code.
328 * @param pVM The cross context VM structure.
329 *
330 * @remarks The optional guard page gets it protection setup up during R3 init
331 * completion because of init order issues.
332 */
333static int vmmR3InitStacks(PVM pVM)
334{
335 int rc = VINF_SUCCESS;
336#ifdef VMM_R0_SWITCH_STACK
337 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
338#else
339 uint32_t fFlags = 0;
340#endif
341
342 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
343 {
344 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
345
346#ifdef VBOX_STRICT_VMM_STACK
347 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
348#else
349 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
350#endif
351 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
352 if (RT_SUCCESS(rc))
353 {
354#ifdef VBOX_STRICT_VMM_STACK
355 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
356#endif
357 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
358
359 }
360 }
361
362 return rc;
363}
364
365
366/**
367 * VMMR3Init worker that register the statistics with STAM.
368 *
369 * @param pVM The cross context VM structure.
370 */
371static void vmmR3InitRegisterStats(PVM pVM)
372{
373 RT_NOREF_PV(pVM);
374
375 /*
376 * Statistics.
377 */
378 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
435
436 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes");
437 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up.");
438
439#ifdef VBOX_WITH_STATISTICS
440 for (VMCPUID i = 0; i < pVM->cCpus; i++)
441 {
442 PVMCPU pVCpu = pVM->apCpusR3[i];
443 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
444 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
445 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
446 }
447#endif
448 for (VMCPUID i = 0; i < pVM->cCpus; i++)
449 {
450 PVMCPU pVCpu = pVM->apCpusR3[i];
451 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
452 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
453 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
454 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
455 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
456 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
457 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
458 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
459 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
460 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
461 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
462 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
463 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
464 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
465 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
466 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
467 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
468
469 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
470
471 PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger;
472 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i);
473 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i);
474 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i);
475 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i);
476 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i);
477 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i);
478 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i);
479 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i);
480
481 pShared = &pVCpu->vmm.s.u.s.RelLogger;
482 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i);
483 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i);
484 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i);
485 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i);
486 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i);
487 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i);
488 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i);
489 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i);
490 }
491}
492
493
494/**
495 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
496 *
497 * @returns VBox status code.
498 * @param pVM The cross context VM structure.
499 * @param pVCpu The cross context per CPU structure.
500 * @thread EMT(pVCpu)
501 */
502static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
503{
504 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
505}
506
507
508/**
509 * Initializes the R0 VMM.
510 *
511 * @returns VBox status code.
512 * @param pVM The cross context VM structure.
513 */
514VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
515{
516 int rc;
517 PVMCPU pVCpu = VMMGetCpu(pVM);
518 Assert(pVCpu && pVCpu->idCpu == 0);
519
520 /*
521 * Make sure the ring-0 loggers are up to date.
522 */
523 rc = VMMR3UpdateLoggers(pVM);
524 if (RT_FAILURE(rc))
525 return rc;
526
527 /*
528 * Call Ring-0 entry with init code.
529 */
530 for (;;)
531 {
532#ifdef NO_SUPCALLR0VMM
533 //rc = VERR_GENERAL_FAILURE;
534 rc = VINF_SUCCESS;
535#else
536 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
537#endif
538 /*
539 * Flush the logs.
540 */
541#ifdef LOG_ENABLED
542 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
543#endif
544 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
545 if (rc != VINF_VMM_CALL_HOST)
546 break;
547 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
548 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
549 break;
550 /* Resume R0 */
551 }
552
553 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
554 {
555 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
556 if (RT_SUCCESS(rc))
557 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
558 }
559
560 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
561 if (pVM->vmm.s.fIsUsingContextHooks)
562 LogRel(("VMM: Enabled thread-context hooks\n"));
563 else
564 LogRel(("VMM: Thread-context hooks unavailable\n"));
565
566 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
567 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
568 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
569 else
570 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
571 if (pVM->vmm.s.fIsPreemptPossible)
572 LogRel(("VMM: Kernel preemption is possible\n"));
573 else
574 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
575
576 /*
577 * Send all EMTs to ring-0 to get their logger initialized.
578 */
579 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
580 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
581
582 return rc;
583}
584
585
586/**
587 * Called when an init phase completes.
588 *
589 * @returns VBox status code.
590 * @param pVM The cross context VM structure.
591 * @param enmWhat Which init phase.
592 */
593VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
594{
595 int rc = VINF_SUCCESS;
596
597 switch (enmWhat)
598 {
599 case VMINITCOMPLETED_RING3:
600 {
601#if 0 /* pointless when timers doesn't run on EMT */
602 /*
603 * Create the EMT yield timer.
604 */
605 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
606 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
607 AssertRCReturn(rc, rc);
608
609 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
610 AssertRCReturn(rc, rc);
611#endif
612 break;
613 }
614
615 case VMINITCOMPLETED_HM:
616 {
617 /*
618 * Disable the periodic preemption timers if we can use the
619 * VMX-preemption timer instead.
620 */
621 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
622 && HMR3IsVmxPreemptionTimerUsed(pVM))
623 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
624 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
625
626 /*
627 * Last chance for GIM to update its CPUID leaves if it requires
628 * knowledge/information from HM initialization.
629 */
630 rc = GIMR3InitCompleted(pVM);
631 AssertRCReturn(rc, rc);
632
633 /*
634 * CPUM's post-initialization (print CPUIDs).
635 */
636 CPUMR3LogCpuIdAndMsrFeatures(pVM);
637 break;
638 }
639
640 default: /* shuts up gcc */
641 break;
642 }
643
644 return rc;
645}
646
647
648/**
649 * Terminate the VMM bits.
650 *
651 * @returns VBox status code.
652 * @param pVM The cross context VM structure.
653 */
654VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
655{
656 PVMCPU pVCpu = VMMGetCpu(pVM);
657 Assert(pVCpu && pVCpu->idCpu == 0);
658
659 /*
660 * Call Ring-0 entry with termination code.
661 */
662 int rc;
663 for (;;)
664 {
665#ifdef NO_SUPCALLR0VMM
666 //rc = VERR_GENERAL_FAILURE;
667 rc = VINF_SUCCESS;
668#else
669 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
670#endif
671 /*
672 * Flush the logs.
673 */
674#ifdef LOG_ENABLED
675 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
676#endif
677 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
678 if (rc != VINF_VMM_CALL_HOST)
679 break;
680 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
681 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
682 break;
683 /* Resume R0 */
684 }
685 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
686 {
687 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
688 if (RT_SUCCESS(rc))
689 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
690 }
691
692 for (VMCPUID i = 0; i < pVM->cCpus; i++)
693 {
694 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
695 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
696 }
697 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
698 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
699 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
700 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
701 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
702 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
703 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
704 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
705 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
706 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
707 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
708 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
709 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
710 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
711 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
712 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
713
714 vmmTermFormatTypes();
715
716 /*
717 * Wait for the log flusher thread to complete.
718 */
719 if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD)
720 {
721 int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL);
722 AssertLogRelRC(rc2);
723 if (RT_SUCCESS(rc2))
724 pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD;
725 }
726
727 return rc;
728}
729
730
731/**
732 * Applies relocations to data and code managed by this
733 * component. This function will be called at init and
734 * whenever the VMM need to relocate it self inside the GC.
735 *
736 * The VMM will need to apply relocations to the core code.
737 *
738 * @param pVM The cross context VM structure.
739 * @param offDelta The relocation delta.
740 */
741VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
742{
743 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
744 RT_NOREF(offDelta);
745
746 /*
747 * Update the logger.
748 */
749 VMMR3UpdateLoggers(pVM);
750}
751
752
753/**
754 * Worker for VMMR3UpdateLoggers.
755 */
756static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
757{
758 /*
759 * Get the group count.
760 */
761 uint32_t uGroupsCrc32 = 0;
762 uint32_t cGroups = 0;
763 uint64_t fFlags = 0;
764 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
765 Assert(rc == VERR_BUFFER_OVERFLOW);
766
767 /*
768 * Allocate the request of the right size.
769 */
770 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
771 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
772 if (pReq)
773 {
774 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
775 pReq->Hdr.cbReq = cbReq;
776 pReq->cGroups = cGroups;
777 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
778 AssertRC(rc);
779 if (RT_SUCCESS(rc))
780 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fReleaseLogger, &pReq->Hdr);
781
782 RTMemFree(pReq);
783 }
784 else
785 rc = VERR_NO_MEMORY;
786 return rc;
787}
788
789
790/**
791 * Updates the settings for the RC and R0 loggers.
792 *
793 * @returns VBox status code.
794 * @param pVM The cross context VM structure.
795 * @thread EMT
796 */
797VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
798{
799 VM_ASSERT_EMT(pVM);
800 PVMCPU pVCpu = VMMGetCpu(pVM);
801 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
802
803 /*
804 * Each EMT has each own logger instance.
805 */
806 /* Debug logging.*/
807 int rcDebug = VINF_SUCCESS;
808#ifdef LOG_ENABLED
809 PRTLOGGER const pDefault = RTLogDefaultInstance();
810 if (pDefault)
811 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
812#else
813 RT_NOREF(pVM);
814#endif
815
816 /* Release logging. */
817 int rcRelease = VINF_SUCCESS;
818 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
819 if (pRelease)
820 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
821
822 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
823}
824
825
826/**
827 * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.}
828 */
829static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser)
830{
831 PVM const pVM = (PVM)pvUser;
832 RT_NOREF(hThreadSelf);
833
834 /* Reset the flusher state before we start: */
835 pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX;
836
837 /*
838 * The work loop.
839 */
840 for (;;)
841 {
842 /*
843 * Wait for work.
844 */
845 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL);
846 if (RT_SUCCESS(rc))
847 {
848 /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */
849 VMMLOGFLUSHERENTRY Item;
850 Item.u32 = pVM->vmm.s.LogFlusherItem.u32;
851 if ( Item.s.idCpu < pVM->cCpus
852 && Item.s.idxLogger < VMMLOGGER_IDX_MAX
853 && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT)
854 {
855 /*
856 * Verify the request.
857 */
858 PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu];
859 PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger];
860 uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf;
861 if (cbToFlush > 0)
862 {
863 if (cbToFlush <= pShared->cbBuf)
864 {
865 char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3;
866 if (pchBufR3)
867 {
868 /*
869 * Do the flushing.
870 */
871 PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR
872 ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance();
873 if (pLogger)
874 {
875 char szBefore[128];
876 RTStrPrintf(szBefore, sizeof(szBefore),
877 "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n",
878 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush,
879 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped);
880 RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n");
881 }
882 }
883 else
884 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n",
885 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
886 }
887 else
888 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n",
889 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf));
890 }
891 else
892 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n",
893 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
894
895 /*
896 * Mark the descriptor as flushed and set the request flag for same.
897 */
898 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true;
899 }
900 else
901 {
902 Assert(Item.s.idCpu == UINT16_MAX);
903 Assert(Item.s.idxLogger == UINT8_MAX);
904 Assert(Item.s.idxBuffer == UINT8_MAX);
905 }
906 }
907 /*
908 * Interrupted can happen, just ignore it.
909 */
910 else if (rc == VERR_INTERRUPTED)
911 { /* ignore*/ }
912 /*
913 * The ring-0 termination code will set the shutdown flag and wake us
914 * up, and we should return with object destroyed. In case there is
915 * some kind of race, we might also get sempahore destroyed.
916 */
917 else if ( rc == VERR_OBJECT_DESTROYED
918 || rc == VERR_SEM_DESTROYED
919 || rc == VERR_INVALID_HANDLE)
920 {
921 LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc));
922 return VINF_SUCCESS;
923 }
924 /*
925 * There shouldn't be any other errors...
926 */
927 else
928 {
929 LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc));
930 AssertRC(rc);
931 RTThreadSleep(1);
932 }
933 }
934}
935
936
937/**
938 * Helper for VMM_FLUSH_R0_LOG that does the flushing.
939 *
940 * @param pVM The cross context VM structure.
941 * @param pVCpu The cross context virtual CPU structure of the calling
942 * EMT.
943 * @param pShared The shared logger data.
944 * @param idxBuf The buffer to flush.
945 * @param pDstLogger The destination IPRT logger.
946 */
947static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger)
948{
949 uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf;
950 const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n";
951 const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n";
952
953#if VMMLOGGER_BUFFER_COUNT > 1
954 /*
955 * When we have more than one log buffer, the flusher thread may still be
956 * working on the previous buffer when we get here.
957 */
958 char szBefore[64];
959 if (pShared->cFlushing > 0)
960 {
961 STAM_REL_PROFILE_START(&pShared->StatRaces, a);
962 uint64_t const nsStart = RTTimeNanoTS();
963
964 /* A no-op, but it takes the lock and the hope is that we end up waiting
965 on the flusher to finish up. */
966 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
967 if (pShared->cFlushing != 0)
968 {
969 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
970
971 /* If no luck, go to ring-0 and to proper waiting. */
972 if (pShared->cFlushing != 0)
973 {
974 STAM_REL_COUNTER_INC(&pShared->StatRacesToR0);
975 SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL);
976 }
977 }
978
979 RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n",
980 pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart);
981 pszBefore = szBefore;
982 STAM_REL_PROFILE_STOP(&pShared->StatRaces, a);
983 }
984#else
985 RT_NOREF(pVM, pVCpu);
986#endif
987
988 RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter);
989 pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true;
990}
991
992
993/**
994 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
995 *
996 * @returns Pointer to the buffer.
997 * @param pVM The cross context VM structure.
998 */
999VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
1000{
1001 return pVM->vmm.s.szRing0AssertMsg1;
1002}
1003
1004
1005/**
1006 * Returns the VMCPU of the specified virtual CPU.
1007 *
1008 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1009 *
1010 * @param pUVM The user mode VM handle.
1011 * @param idCpu The ID of the virtual CPU.
1012 */
1013VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1014{
1015 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1016 AssertReturn(idCpu < pUVM->cCpus, NULL);
1017 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1018 return pUVM->pVM->apCpusR3[idCpu];
1019}
1020
1021
1022/**
1023 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1024 *
1025 * @returns Pointer to the buffer.
1026 * @param pVM The cross context VM structure.
1027 */
1028VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1029{
1030 return pVM->vmm.s.szRing0AssertMsg2;
1031}
1032
1033
1034/**
1035 * Execute state save operation.
1036 *
1037 * @returns VBox status code.
1038 * @param pVM The cross context VM structure.
1039 * @param pSSM SSM operation handle.
1040 */
1041static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1042{
1043 LogFlow(("vmmR3Save:\n"));
1044
1045 /*
1046 * Save the started/stopped state of all CPUs except 0 as it will always
1047 * be running. This avoids breaking the saved state version. :-)
1048 */
1049 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1050 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
1051
1052 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1053}
1054
1055
1056/**
1057 * Execute state load operation.
1058 *
1059 * @returns VBox status code.
1060 * @param pVM The cross context VM structure.
1061 * @param pSSM SSM operation handle.
1062 * @param uVersion Data layout version.
1063 * @param uPass The data pass.
1064 */
1065static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1066{
1067 LogFlow(("vmmR3Load:\n"));
1068 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1069
1070 /*
1071 * Validate version.
1072 */
1073 if ( uVersion != VMM_SAVED_STATE_VERSION
1074 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1075 {
1076 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1077 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1078 }
1079
1080 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1081 {
1082 /* Ignore the stack bottom, stack pointer and stack bits. */
1083 RTRCPTR RCPtrIgnored;
1084 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1085 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1086#ifdef RT_OS_DARWIN
1087 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1088 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1089 && SSMR3HandleRevision(pSSM) >= 48858
1090 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1091 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1092 )
1093 SSMR3Skip(pSSM, 16384);
1094 else
1095 SSMR3Skip(pSSM, 8192);
1096#else
1097 SSMR3Skip(pSSM, 8192);
1098#endif
1099 }
1100
1101 /*
1102 * Restore the VMCPU states. VCPU 0 is always started.
1103 */
1104 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
1105 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1106 {
1107 bool fStarted;
1108 int rc = SSMR3GetBool(pSSM, &fStarted);
1109 if (RT_FAILURE(rc))
1110 return rc;
1111 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1112 }
1113
1114 /* terminator */
1115 uint32_t u32;
1116 int rc = SSMR3GetU32(pSSM, &u32);
1117 if (RT_FAILURE(rc))
1118 return rc;
1119 if (u32 != UINT32_MAX)
1120 {
1121 AssertMsgFailed(("u32=%#x\n", u32));
1122 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1123 }
1124 return VINF_SUCCESS;
1125}
1126
1127
1128/**
1129 * Suspends the CPU yielder.
1130 *
1131 * @param pVM The cross context VM structure.
1132 */
1133VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1134{
1135#if 0 /* pointless when timers doesn't run on EMT */
1136 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1137 if (!pVM->vmm.s.cYieldResumeMillies)
1138 {
1139 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1140 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1141 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1142 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1143 else
1144 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1145 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1146 }
1147 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1148#else
1149 RT_NOREF(pVM);
1150#endif
1151}
1152
1153
1154/**
1155 * Stops the CPU yielder.
1156 *
1157 * @param pVM The cross context VM structure.
1158 */
1159VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1160{
1161#if 0 /* pointless when timers doesn't run on EMT */
1162 if (!pVM->vmm.s.cYieldResumeMillies)
1163 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1164 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1165 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1166#else
1167 RT_NOREF(pVM);
1168#endif
1169}
1170
1171
1172/**
1173 * Resumes the CPU yielder when it has been a suspended or stopped.
1174 *
1175 * @param pVM The cross context VM structure.
1176 */
1177VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1178{
1179#if 0 /* pointless when timers doesn't run on EMT */
1180 if (pVM->vmm.s.cYieldResumeMillies)
1181 {
1182 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1183 pVM->vmm.s.cYieldResumeMillies = 0;
1184 }
1185#else
1186 RT_NOREF(pVM);
1187#endif
1188}
1189
1190
1191#if 0 /* pointless when timers doesn't run on EMT */
1192/**
1193 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1194 *
1195 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1196 */
1197static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1198{
1199 NOREF(pvUser);
1200
1201 /*
1202 * This really needs some careful tuning. While we shouldn't be too greedy since
1203 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1204 * because that'll cause us to stop up.
1205 *
1206 * The current logic is to use the default interval when there is no lag worth
1207 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1208 *
1209 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1210 * so the lag is up to date.)
1211 */
1212 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1213 if ( u64Lag < 50000000 /* 50ms */
1214 || ( u64Lag < 1000000000 /* 1s */
1215 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1216 )
1217 {
1218 uint64_t u64Elapsed = RTTimeNanoTS();
1219 pVM->vmm.s.u64LastYield = u64Elapsed;
1220
1221 RTThreadYield();
1222
1223#ifdef LOG_ENABLED
1224 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1225 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1226#endif
1227 }
1228 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1229}
1230#endif
1231
1232
1233/**
1234 * Executes guest code (Intel VT-x and AMD-V).
1235 *
1236 * @param pVM The cross context VM structure.
1237 * @param pVCpu The cross context virtual CPU structure.
1238 */
1239VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1240{
1241 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1242
1243 for (;;)
1244 {
1245 int rc;
1246 do
1247 {
1248#ifdef NO_SUPCALLR0VMM
1249 rc = VERR_GENERAL_FAILURE;
1250#else
1251 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1252 if (RT_LIKELY(rc == VINF_SUCCESS))
1253 rc = pVCpu->vmm.s.iLastGZRc;
1254#endif
1255 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1256
1257#if 0 /** @todo triggers too often */
1258 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1259#endif
1260
1261 /*
1262 * Flush the logs
1263 */
1264#ifdef LOG_ENABLED
1265 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1266#endif
1267 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1268 if (rc != VINF_VMM_CALL_HOST)
1269 {
1270 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1271 return rc;
1272 }
1273 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1274 if (RT_FAILURE(rc))
1275 return rc;
1276 /* Resume R0 */
1277 }
1278}
1279
1280
1281/**
1282 * Perform one of the fast I/O control VMMR0 operation.
1283 *
1284 * @returns VBox strict status code.
1285 * @param pVM The cross context VM structure.
1286 * @param pVCpu The cross context virtual CPU structure.
1287 * @param enmOperation The operation to perform.
1288 */
1289VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1290{
1291 for (;;)
1292 {
1293 VBOXSTRICTRC rcStrict;
1294 do
1295 {
1296#ifdef NO_SUPCALLR0VMM
1297 rcStrict = VERR_GENERAL_FAILURE;
1298#else
1299 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1300 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1301 rcStrict = pVCpu->vmm.s.iLastGZRc;
1302#endif
1303 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1304
1305 /*
1306 * Flush the logs
1307 */
1308#ifdef LOG_ENABLED
1309 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1310#endif
1311 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1312 if (rcStrict != VINF_VMM_CALL_HOST)
1313 return rcStrict;
1314 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1315 if (RT_FAILURE(rc))
1316 return rc;
1317 /* Resume R0 */
1318 }
1319}
1320
1321
1322/**
1323 * VCPU worker for VMMR3SendStartupIpi.
1324 *
1325 * @param pVM The cross context VM structure.
1326 * @param idCpu Virtual CPU to perform SIPI on.
1327 * @param uVector The SIPI vector.
1328 */
1329static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1330{
1331 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1332 VMCPU_ASSERT_EMT(pVCpu);
1333
1334 /*
1335 * In the INIT state, the target CPU is only responsive to an SIPI.
1336 * This is also true for when when the CPU is in VMX non-root mode.
1337 *
1338 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1339 * See Intel spec. 26.6.2 "Activity State".
1340 */
1341 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1342 return VINF_SUCCESS;
1343
1344 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1345#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1346 if (CPUMIsGuestInVmxRootMode(pCtx))
1347 {
1348 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1349 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1350 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1351
1352 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1353 return VINF_SUCCESS;
1354 }
1355#endif
1356
1357 pCtx->cs.Sel = uVector << 8;
1358 pCtx->cs.ValidSel = uVector << 8;
1359 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1360 pCtx->cs.u64Base = uVector << 12;
1361 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1362 pCtx->rip = 0;
1363
1364 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1365
1366# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1367 EMSetState(pVCpu, EMSTATE_HALTED);
1368 return VINF_EM_RESCHEDULE;
1369# else /* And if we go the VMCPU::enmState way it can stay here. */
1370 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1371 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1372 return VINF_SUCCESS;
1373# endif
1374}
1375
1376
1377/**
1378 * VCPU worker for VMMR3SendInitIpi.
1379 *
1380 * @returns VBox status code.
1381 * @param pVM The cross context VM structure.
1382 * @param idCpu Virtual CPU to perform SIPI on.
1383 */
1384static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1385{
1386 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1387 VMCPU_ASSERT_EMT(pVCpu);
1388
1389 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1390
1391 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1392 * wait-for-SIPI state. Verify. */
1393
1394 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1395#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1396 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1397 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1398 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1399#endif
1400
1401 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1402 * IPI (e.g. SVM_EXIT_INIT). */
1403
1404 PGMR3ResetCpu(pVM, pVCpu);
1405 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1406 APICR3InitIpi(pVCpu);
1407 TRPMR3ResetCpu(pVCpu);
1408 CPUMR3ResetCpu(pVM, pVCpu);
1409 EMR3ResetCpu(pVCpu);
1410 HMR3ResetCpu(pVCpu);
1411 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1412
1413 /* This will trickle up on the target EMT. */
1414 return VINF_EM_WAIT_SIPI;
1415}
1416
1417
1418/**
1419 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1420 * vector-dependent state and unhalting processor.
1421 *
1422 * @param pVM The cross context VM structure.
1423 * @param idCpu Virtual CPU to perform SIPI on.
1424 * @param uVector SIPI vector.
1425 */
1426VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1427{
1428 AssertReturnVoid(idCpu < pVM->cCpus);
1429
1430 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1431 AssertRC(rc);
1432}
1433
1434
1435/**
1436 * Sends init IPI to the virtual CPU.
1437 *
1438 * @param pVM The cross context VM structure.
1439 * @param idCpu Virtual CPU to perform int IPI on.
1440 */
1441VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1442{
1443 AssertReturnVoid(idCpu < pVM->cCpus);
1444
1445 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1446 AssertRC(rc);
1447}
1448
1449
1450/**
1451 * Registers the guest memory range that can be used for patching.
1452 *
1453 * @returns VBox status code.
1454 * @param pVM The cross context VM structure.
1455 * @param pPatchMem Patch memory range.
1456 * @param cbPatchMem Size of the memory range.
1457 */
1458VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1459{
1460 VM_ASSERT_EMT(pVM);
1461 if (HMIsEnabled(pVM))
1462 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1463
1464 return VERR_NOT_SUPPORTED;
1465}
1466
1467
1468/**
1469 * Deregisters the guest memory range that can be used for patching.
1470 *
1471 * @returns VBox status code.
1472 * @param pVM The cross context VM structure.
1473 * @param pPatchMem Patch memory range.
1474 * @param cbPatchMem Size of the memory range.
1475 */
1476VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1477{
1478 if (HMIsEnabled(pVM))
1479 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1480
1481 return VINF_SUCCESS;
1482}
1483
1484
1485/**
1486 * Common recursion handler for the other EMTs.
1487 *
1488 * @returns Strict VBox status code.
1489 * @param pVM The cross context VM structure.
1490 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1491 * @param rcStrict Current status code to be combined with the one
1492 * from this recursion and returned.
1493 */
1494static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1495{
1496 int rc2;
1497
1498 /*
1499 * We wait here while the initiator of this recursion reconfigures
1500 * everything. The last EMT to get in signals the initiator.
1501 */
1502 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1503 {
1504 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1505 AssertLogRelRC(rc2);
1506 }
1507
1508 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1509 AssertLogRelRC(rc2);
1510
1511 /*
1512 * Do the normal rendezvous processing.
1513 */
1514 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1515 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1516
1517 /*
1518 * Wait for the initiator to restore everything.
1519 */
1520 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1521 AssertLogRelRC(rc2);
1522
1523 /*
1524 * Last thread out of here signals the initiator.
1525 */
1526 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1527 {
1528 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1529 AssertLogRelRC(rc2);
1530 }
1531
1532 /*
1533 * Merge status codes and return.
1534 */
1535 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1536 if ( rcStrict2 != VINF_SUCCESS
1537 && ( rcStrict == VINF_SUCCESS
1538 || rcStrict > rcStrict2))
1539 rcStrict = rcStrict2;
1540 return rcStrict;
1541}
1542
1543
1544/**
1545 * Count returns and have the last non-caller EMT wake up the caller.
1546 *
1547 * @returns VBox strict informational status code for EM scheduling. No failures
1548 * will be returned here, those are for the caller only.
1549 *
1550 * @param pVM The cross context VM structure.
1551 * @param rcStrict The current accumulated recursive status code,
1552 * to be merged with i32RendezvousStatus and
1553 * returned.
1554 */
1555DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1556{
1557 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1558
1559 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1560 if (cReturned == pVM->cCpus - 1U)
1561 {
1562 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1563 AssertLogRelRC(rc);
1564 }
1565
1566 /*
1567 * Merge the status codes, ignoring error statuses in this code path.
1568 */
1569 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1570 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1571 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1572 VERR_IPE_UNEXPECTED_INFO_STATUS);
1573
1574 if (RT_SUCCESS(rcStrict2))
1575 {
1576 if ( rcStrict2 != VINF_SUCCESS
1577 && ( rcStrict == VINF_SUCCESS
1578 || rcStrict > rcStrict2))
1579 rcStrict = rcStrict2;
1580 }
1581 return rcStrict;
1582}
1583
1584
1585/**
1586 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1587 *
1588 * @returns VBox strict informational status code for EM scheduling. No failures
1589 * will be returned here, those are for the caller only. When
1590 * fIsCaller is set, VINF_SUCCESS is always returned.
1591 *
1592 * @param pVM The cross context VM structure.
1593 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1594 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1595 * not.
1596 * @param fFlags The flags.
1597 * @param pfnRendezvous The callback.
1598 * @param pvUser The user argument for the callback.
1599 */
1600static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1601 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1602{
1603 int rc;
1604 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1605
1606 /*
1607 * Enter, the last EMT triggers the next callback phase.
1608 */
1609 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1610 if (cEntered != pVM->cCpus)
1611 {
1612 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1613 {
1614 /* Wait for our turn. */
1615 for (;;)
1616 {
1617 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1618 AssertLogRelRC(rc);
1619 if (!pVM->vmm.s.fRendezvousRecursion)
1620 break;
1621 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1622 }
1623 }
1624 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1625 {
1626 /* Wait for the last EMT to arrive and wake everyone up. */
1627 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1628 AssertLogRelRC(rc);
1629 Assert(!pVM->vmm.s.fRendezvousRecursion);
1630 }
1631 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1632 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1633 {
1634 /* Wait for our turn. */
1635 for (;;)
1636 {
1637 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1638 AssertLogRelRC(rc);
1639 if (!pVM->vmm.s.fRendezvousRecursion)
1640 break;
1641 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1642 }
1643 }
1644 else
1645 {
1646 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1647
1648 /*
1649 * The execute once is handled specially to optimize the code flow.
1650 *
1651 * The last EMT to arrive will perform the callback and the other
1652 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1653 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1654 * returns, that EMT will initiate the normal return sequence.
1655 */
1656 if (!fIsCaller)
1657 {
1658 for (;;)
1659 {
1660 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1661 AssertLogRelRC(rc);
1662 if (!pVM->vmm.s.fRendezvousRecursion)
1663 break;
1664 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1665 }
1666
1667 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1668 }
1669 return VINF_SUCCESS;
1670 }
1671 }
1672 else
1673 {
1674 /*
1675 * All EMTs are waiting, clear the FF and take action according to the
1676 * execution method.
1677 */
1678 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1679
1680 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1681 {
1682 /* Wake up everyone. */
1683 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1684 AssertLogRelRC(rc);
1685 }
1686 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1687 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1688 {
1689 /* Figure out who to wake up and wake it up. If it's ourself, then
1690 it's easy otherwise wait for our turn. */
1691 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1692 ? 0
1693 : pVM->cCpus - 1U;
1694 if (pVCpu->idCpu != iFirst)
1695 {
1696 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1697 AssertLogRelRC(rc);
1698 for (;;)
1699 {
1700 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1701 AssertLogRelRC(rc);
1702 if (!pVM->vmm.s.fRendezvousRecursion)
1703 break;
1704 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1705 }
1706 }
1707 }
1708 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1709 }
1710
1711
1712 /*
1713 * Do the callback and update the status if necessary.
1714 */
1715 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1716 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1717 {
1718 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1719 if (rcStrict2 != VINF_SUCCESS)
1720 {
1721 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1722 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1723 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1724 int32_t i32RendezvousStatus;
1725 do
1726 {
1727 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1728 if ( rcStrict2 == i32RendezvousStatus
1729 || RT_FAILURE(i32RendezvousStatus)
1730 || ( i32RendezvousStatus != VINF_SUCCESS
1731 && rcStrict2 > i32RendezvousStatus))
1732 break;
1733 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1734 }
1735 }
1736
1737 /*
1738 * Increment the done counter and take action depending on whether we're
1739 * the last to finish callback execution.
1740 */
1741 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1742 if ( cDone != pVM->cCpus
1743 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1744 {
1745 /* Signal the next EMT? */
1746 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1747 {
1748 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1749 AssertLogRelRC(rc);
1750 }
1751 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1752 {
1753 Assert(cDone == pVCpu->idCpu + 1U);
1754 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1755 AssertLogRelRC(rc);
1756 }
1757 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1758 {
1759 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1760 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1761 AssertLogRelRC(rc);
1762 }
1763
1764 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1765 if (!fIsCaller)
1766 {
1767 for (;;)
1768 {
1769 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1770 AssertLogRelRC(rc);
1771 if (!pVM->vmm.s.fRendezvousRecursion)
1772 break;
1773 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1774 }
1775 }
1776 }
1777 else
1778 {
1779 /* Callback execution is all done, tell the rest to return. */
1780 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1781 AssertLogRelRC(rc);
1782 }
1783
1784 if (!fIsCaller)
1785 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1786 return rcStrictRecursion;
1787}
1788
1789
1790/**
1791 * Called in response to VM_FF_EMT_RENDEZVOUS.
1792 *
1793 * @returns VBox strict status code - EM scheduling. No errors will be returned
1794 * here, nor will any non-EM scheduling status codes be returned.
1795 *
1796 * @param pVM The cross context VM structure.
1797 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1798 *
1799 * @thread EMT
1800 */
1801VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1802{
1803 Assert(!pVCpu->vmm.s.fInRendezvous);
1804 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1805 pVCpu->vmm.s.fInRendezvous = true;
1806 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1807 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1808 pVCpu->vmm.s.fInRendezvous = false;
1809 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1810 return VBOXSTRICTRC_TODO(rcStrict);
1811}
1812
1813
1814/**
1815 * Helper for resetting an single wakeup event sempahore.
1816 *
1817 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1818 * @param hEvt The event semaphore to reset.
1819 */
1820static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1821{
1822 for (uint32_t cLoops = 0; ; cLoops++)
1823 {
1824 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1825 if (rc != VINF_SUCCESS || cLoops > _4K)
1826 return rc;
1827 }
1828}
1829
1830
1831/**
1832 * Worker for VMMR3EmtRendezvous that handles recursion.
1833 *
1834 * @returns VBox strict status code. This will be the first error,
1835 * VINF_SUCCESS, or an EM scheduling status code.
1836 *
1837 * @param pVM The cross context VM structure.
1838 * @param pVCpu The cross context virtual CPU structure of the
1839 * calling EMT.
1840 * @param fFlags Flags indicating execution methods. See
1841 * grp_VMMR3EmtRendezvous_fFlags.
1842 * @param pfnRendezvous The callback.
1843 * @param pvUser User argument for the callback.
1844 *
1845 * @thread EMT(pVCpu)
1846 */
1847static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1848 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1849{
1850 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1851 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1852 Assert(pVCpu->vmm.s.fInRendezvous);
1853
1854 /*
1855 * Save the current state.
1856 */
1857 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1858 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1859 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1860 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1861 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1862
1863 /*
1864 * Check preconditions and save the current state.
1865 */
1866 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1867 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1868 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1869 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1870 VERR_INTERNAL_ERROR);
1871 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1872 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1873
1874 /*
1875 * Reset the recursion prep and pop semaphores.
1876 */
1877 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1878 AssertLogRelRCReturn(rc, rc);
1879 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1880 AssertLogRelRCReturn(rc, rc);
1881 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1882 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1883 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1884 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1885
1886 /*
1887 * Usher the other thread into the recursion routine.
1888 */
1889 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1890 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1891
1892 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1893 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1894 while (cLeft-- > 0)
1895 {
1896 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1897 AssertLogRelRC(rc);
1898 }
1899 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1900 {
1901 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1902 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1903 {
1904 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1905 AssertLogRelRC(rc);
1906 }
1907 }
1908 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1909 {
1910 Assert(cLeft == pVCpu->idCpu);
1911 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1912 {
1913 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1914 AssertLogRelRC(rc);
1915 }
1916 }
1917 else
1918 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1919 VERR_INTERNAL_ERROR_4);
1920
1921 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1922 AssertLogRelRC(rc);
1923 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1924 AssertLogRelRC(rc);
1925
1926
1927 /*
1928 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1929 */
1930 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1931 {
1932 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1933 AssertLogRelRC(rc);
1934 }
1935
1936 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1937
1938 /*
1939 * Clear the slate and setup the new rendezvous.
1940 */
1941 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1942 {
1943 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1944 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1945 }
1946 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1947 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1948 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1949 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1950
1951 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1952 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1953 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1954 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1955 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1956 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1957 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1958 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1959
1960 /*
1961 * We're ready to go now, do normal rendezvous processing.
1962 */
1963 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1964 AssertLogRelRC(rc);
1965
1966 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1967
1968 /*
1969 * The caller waits for the other EMTs to be done, return and waiting on the
1970 * pop semaphore.
1971 */
1972 for (;;)
1973 {
1974 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1975 AssertLogRelRC(rc);
1976 if (!pVM->vmm.s.fRendezvousRecursion)
1977 break;
1978 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1979 }
1980
1981 /*
1982 * Get the return code and merge it with the above recursion status.
1983 */
1984 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1985 if ( rcStrict2 != VINF_SUCCESS
1986 && ( rcStrict == VINF_SUCCESS
1987 || rcStrict > rcStrict2))
1988 rcStrict = rcStrict2;
1989
1990 /*
1991 * Restore the parent rendezvous state.
1992 */
1993 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1994 {
1995 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1996 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1997 }
1998 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1999 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2000 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2001 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2002
2003 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
2004 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2005 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
2006 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
2007 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
2008 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
2009 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
2010
2011 /*
2012 * Usher the other EMTs back to their parent recursion routine, waiting
2013 * for them to all get there before we return (makes sure they've been
2014 * scheduled and are past the pop event sem, see below).
2015 */
2016 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
2017 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2018 AssertLogRelRC(rc);
2019
2020 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
2021 {
2022 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2023 AssertLogRelRC(rc);
2024 }
2025
2026 /*
2027 * We must reset the pop semaphore on the way out (doing the pop caller too,
2028 * just in case). The parent may be another recursion.
2029 */
2030 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2031 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2032
2033 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2034
2035 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2036 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2037 return rcStrict;
2038}
2039
2040
2041/**
2042 * EMT rendezvous.
2043 *
2044 * Gathers all the EMTs and execute some code on each of them, either in a one
2045 * by one fashion or all at once.
2046 *
2047 * @returns VBox strict status code. This will be the first error,
2048 * VINF_SUCCESS, or an EM scheduling status code.
2049 *
2050 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2051 * doesn't support it or if the recursion is too deep.
2052 *
2053 * @param pVM The cross context VM structure.
2054 * @param fFlags Flags indicating execution methods. See
2055 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2056 * descending and ascending rendezvous types support
2057 * recursion from inside @a pfnRendezvous.
2058 * @param pfnRendezvous The callback.
2059 * @param pvUser User argument for the callback.
2060 *
2061 * @thread Any.
2062 */
2063VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2064{
2065 /*
2066 * Validate input.
2067 */
2068 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2069 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2070 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2071 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2072 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2073 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2074 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2075 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2076
2077 VBOXSTRICTRC rcStrict;
2078 PVMCPU pVCpu = VMMGetCpu(pVM);
2079 if (!pVCpu)
2080 {
2081 /*
2082 * Forward the request to an EMT thread.
2083 */
2084 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2085 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2086 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2087 else
2088 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2089 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2090 }
2091 else if ( pVM->cCpus == 1
2092 || ( pVM->enmVMState == VMSTATE_DESTROYING
2093 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2094 {
2095 /*
2096 * Shortcut for the single EMT case.
2097 *
2098 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2099 * during vmR3Destroy after other emulation threads have started terminating.
2100 */
2101 if (!pVCpu->vmm.s.fInRendezvous)
2102 {
2103 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2104 pVCpu->vmm.s.fInRendezvous = true;
2105 pVM->vmm.s.fRendezvousFlags = fFlags;
2106 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2107 pVCpu->vmm.s.fInRendezvous = false;
2108 }
2109 else
2110 {
2111 /* Recursion. Do the same checks as in the SMP case. */
2112 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2113 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2114 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2115 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2116 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2117 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2118 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2119 , VERR_DEADLOCK);
2120
2121 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2122 pVM->vmm.s.cRendezvousRecursions++;
2123 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2124 pVM->vmm.s.fRendezvousFlags = fFlags;
2125
2126 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2127
2128 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2129 pVM->vmm.s.cRendezvousRecursions--;
2130 }
2131 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2132 }
2133 else
2134 {
2135 /*
2136 * Spin lock. If busy, check for recursion, if not recursing wait for
2137 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2138 */
2139 int rc;
2140 rcStrict = VINF_SUCCESS;
2141 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2142 {
2143 /* Allow recursion in some cases. */
2144 if ( pVCpu->vmm.s.fInRendezvous
2145 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2146 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2147 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2148 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2149 ))
2150 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2151
2152 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2153 VERR_DEADLOCK);
2154
2155 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2156 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2157 {
2158 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2159 {
2160 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2161 if ( rc != VINF_SUCCESS
2162 && ( rcStrict == VINF_SUCCESS
2163 || rcStrict > rc))
2164 rcStrict = rc;
2165 /** @todo Perhaps deal with termination here? */
2166 }
2167 ASMNopPause();
2168 }
2169 }
2170
2171 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2172 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2173 Assert(!pVCpu->vmm.s.fInRendezvous);
2174 pVCpu->vmm.s.fInRendezvous = true;
2175
2176 /*
2177 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2178 */
2179 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2180 {
2181 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2182 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2183 }
2184 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2185 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2186 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2187 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2188 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2189 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2190 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2191 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2192 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2193 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2194 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2195
2196 /*
2197 * Set the FF and poke the other EMTs.
2198 */
2199 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2200 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2201
2202 /*
2203 * Do the same ourselves.
2204 */
2205 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2206
2207 /*
2208 * The caller waits for the other EMTs to be done and return before doing
2209 * the cleanup. This makes away with wakeup / reset races we would otherwise
2210 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2211 */
2212 for (;;)
2213 {
2214 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2215 AssertLogRelRC(rc);
2216 if (!pVM->vmm.s.fRendezvousRecursion)
2217 break;
2218 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2219 }
2220
2221 /*
2222 * Get the return code and clean up a little bit.
2223 */
2224 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2225 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2226
2227 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2228 pVCpu->vmm.s.fInRendezvous = false;
2229
2230 /*
2231 * Merge rcStrict, rcStrict2 and rcStrict3.
2232 */
2233 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2234 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2235 if ( rcStrict2 != VINF_SUCCESS
2236 && ( rcStrict == VINF_SUCCESS
2237 || rcStrict > rcStrict2))
2238 rcStrict = rcStrict2;
2239 if ( rcStrict3 != VINF_SUCCESS
2240 && ( rcStrict == VINF_SUCCESS
2241 || rcStrict > rcStrict3))
2242 rcStrict = rcStrict3;
2243 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2244 }
2245
2246 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2247 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2248 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2249 VERR_IPE_UNEXPECTED_INFO_STATUS);
2250 return VBOXSTRICTRC_VAL(rcStrict);
2251}
2252
2253
2254/**
2255 * Interface for vmR3SetHaltMethodU.
2256 *
2257 * @param pVCpu The cross context virtual CPU structure of the
2258 * calling EMT.
2259 * @param fMayHaltInRing0 The new state.
2260 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2261 * @thread EMT(pVCpu)
2262 *
2263 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2264 * component.
2265 */
2266VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2267{
2268 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2269 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2270 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2271}
2272
2273
2274/**
2275 * Read from the ring 0 jump buffer stack.
2276 *
2277 * @returns VBox status code.
2278 *
2279 * @param pVM The cross context VM structure.
2280 * @param idCpu The ID of the source CPU context (for the address).
2281 * @param R0Addr Where to start reading.
2282 * @param pvBuf Where to store the data we've read.
2283 * @param cbRead The number of bytes to read.
2284 */
2285VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2286{
2287 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2288 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2289 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2290
2291 int rc;
2292#ifdef VMM_R0_SWITCH_STACK
2293 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2294#else
2295 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2296#endif
2297 if ( off < VMM_STACK_SIZE
2298 && off + cbRead <= VMM_STACK_SIZE)
2299 {
2300 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2301 rc = VINF_SUCCESS;
2302 }
2303 else
2304 rc = VERR_INVALID_POINTER;
2305
2306 /* Supply the setjmp return RIP/EIP. */
2307 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2308 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2309 {
2310 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2311 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2312 size_t offDst = 0;
2313 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2314 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2315 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2316 {
2317 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2318 Assert(offSrc < cbSrc);
2319 pbSrc -= offSrc;
2320 cbSrc -= offSrc;
2321 }
2322 if (cbSrc > cbRead - offDst)
2323 cbSrc = cbRead - offDst;
2324 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2325
2326 if (cbSrc == cbRead)
2327 rc = VINF_SUCCESS;
2328 }
2329
2330 return rc;
2331}
2332
2333
2334/**
2335 * Used by the DBGF stack unwinder to initialize the register state.
2336 *
2337 * @param pUVM The user mode VM handle.
2338 * @param idCpu The ID of the CPU being unwound.
2339 * @param pState The unwind state to initialize.
2340 */
2341VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2342{
2343 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2344 AssertReturnVoid(pVCpu);
2345
2346 /*
2347 * Locate the resume point on the stack.
2348 */
2349#ifdef VMM_R0_SWITCH_STACK
2350 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2351 AssertReturnVoid(off < VMM_STACK_SIZE);
2352#else
2353 uintptr_t off = 0;
2354#endif
2355
2356#ifdef RT_ARCH_AMD64
2357 /*
2358 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2359 */
2360# ifdef VBOX_STRICT
2361 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2362 off += 8; /* RESUME_MAGIC */
2363# endif
2364# ifdef RT_OS_WINDOWS
2365 off += 0xa0; /* XMM6 thru XMM15 */
2366# endif
2367 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2368 off += 8;
2369 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2370 off += 8;
2371# ifdef RT_OS_WINDOWS
2372 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2373 off += 8;
2374 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2375 off += 8;
2376# endif
2377 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2378 off += 8;
2379 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2380 off += 8;
2381 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2382 off += 8;
2383 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2384 off += 8;
2385 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2386 off += 8;
2387 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2388 off += 8;
2389
2390#elif defined(RT_ARCH_X86)
2391 /*
2392 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2393 */
2394# ifdef VBOX_STRICT
2395 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2396 off += 4; /* RESUME_MAGIC */
2397# endif
2398 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2399 off += 4;
2400 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2401 off += 4;
2402 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2403 off += 4;
2404 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2405 off += 4;
2406 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2407 off += 4;
2408 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2409 off += 4;
2410#else
2411# error "Port me"
2412#endif
2413
2414 /*
2415 * This is all we really need here, though the above helps if the assembly
2416 * doesn't contain unwind info (currently only on win/64, so that is useful).
2417 */
2418 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2419 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2420}
2421
2422
2423/**
2424 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2425 *
2426 * @returns VBox status code.
2427 * @param pVM The cross context VM structure.
2428 * @param uOperation Operation to execute.
2429 * @param u64Arg Constant argument.
2430 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2431 * details.
2432 */
2433VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2434{
2435 PVMCPU pVCpu = VMMGetCpu(pVM);
2436 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2437 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2438}
2439
2440
2441/**
2442 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2443 *
2444 * @returns VBox status code.
2445 * @param pVM The cross context VM structure.
2446 * @param pVCpu The cross context VM structure.
2447 * @param enmOperation Operation to execute.
2448 * @param u64Arg Constant argument.
2449 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2450 * details.
2451 */
2452VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2453{
2454 int rc;
2455 for (;;)
2456 {
2457#ifdef NO_SUPCALLR0VMM
2458 rc = VERR_GENERAL_FAILURE;
2459#else
2460 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2461#endif
2462 /*
2463 * Flush the logs.
2464 */
2465#ifdef LOG_ENABLED
2466 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
2467#endif
2468 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
2469 if (rc != VINF_VMM_CALL_HOST)
2470 break;
2471 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2472 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2473 break;
2474 /* Resume R0 */
2475 }
2476
2477 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2478 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2479 VERR_IPE_UNEXPECTED_INFO_STATUS);
2480 return rc;
2481}
2482
2483
2484/**
2485 * Service a call to the ring-3 host code.
2486 *
2487 * @returns VBox status code.
2488 * @param pVM The cross context VM structure.
2489 * @param pVCpu The cross context virtual CPU structure.
2490 * @remarks Careful with critsects.
2491 */
2492static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2493{
2494 /*
2495 * We must also check for pending critsect exits or else we can deadlock
2496 * when entering other critsects here.
2497 */
2498 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2499 PDMCritSectBothFF(pVM, pVCpu);
2500
2501 switch (pVCpu->vmm.s.enmCallRing3Operation)
2502 {
2503 /*
2504 * Grow the PGM pool.
2505 */
2506 case VMMCALLRING3_PGM_POOL_GROW:
2507 {
2508 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2509 break;
2510 }
2511
2512 /*
2513 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2514 */
2515 case VMMCALLRING3_PGM_MAP_CHUNK:
2516 {
2517 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2518 break;
2519 }
2520
2521 /*
2522 * Allocates more handy pages.
2523 */
2524 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2525 {
2526 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2527 break;
2528 }
2529
2530 /*
2531 * Allocates a large page.
2532 */
2533 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2534 {
2535 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2536 break;
2537 }
2538
2539 /*
2540 * Signal a ring 0 hypervisor assertion.
2541 * Cancel the longjmp operation that's in progress.
2542 */
2543 case VMMCALLRING3_VM_R0_ASSERTION:
2544 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2545 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2546#ifdef RT_ARCH_X86
2547 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2548#else
2549 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2550#endif
2551#ifdef VMM_R0_SWITCH_STACK
2552 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2553#endif
2554 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2555 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2556 return VERR_VMM_RING0_ASSERTION;
2557
2558 default:
2559 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2560 return VERR_VMM_UNKNOWN_RING3_CALL;
2561 }
2562
2563 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2564 return VINF_SUCCESS;
2565}
2566
2567
2568/**
2569 * Displays the Force action Flags.
2570 *
2571 * @param pVM The cross context VM structure.
2572 * @param pHlp The output helpers.
2573 * @param pszArgs The additional arguments (ignored).
2574 */
2575static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2576{
2577 int c;
2578 uint32_t f;
2579 NOREF(pszArgs);
2580
2581#define PRINT_FLAG(prf,flag) do { \
2582 if (f & (prf##flag)) \
2583 { \
2584 static const char *s_psz = #flag; \
2585 if (!(c % 6)) \
2586 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2587 else \
2588 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2589 c++; \
2590 f &= ~(prf##flag); \
2591 } \
2592 } while (0)
2593
2594#define PRINT_GROUP(prf,grp,sfx) do { \
2595 if (f & (prf##grp##sfx)) \
2596 { \
2597 static const char *s_psz = #grp; \
2598 if (!(c % 5)) \
2599 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2600 else \
2601 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2602 c++; \
2603 } \
2604 } while (0)
2605
2606 /*
2607 * The global flags.
2608 */
2609 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2610 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2611
2612 /* show the flag mnemonics */
2613 c = 0;
2614 f = fGlobalForcedActions;
2615 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2616 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2617 PRINT_FLAG(VM_FF_,PDM_DMA);
2618 PRINT_FLAG(VM_FF_,DBGF);
2619 PRINT_FLAG(VM_FF_,REQUEST);
2620 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2621 PRINT_FLAG(VM_FF_,RESET);
2622 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2623 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2624 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2625 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2626 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2627 if (f)
2628 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2629 else
2630 pHlp->pfnPrintf(pHlp, "\n");
2631
2632 /* the groups */
2633 c = 0;
2634 f = fGlobalForcedActions;
2635 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2636 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2637 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2638 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2639 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2640 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2641 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2642 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2643 if (c)
2644 pHlp->pfnPrintf(pHlp, "\n");
2645
2646 /*
2647 * Per CPU flags.
2648 */
2649 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2650 {
2651 PVMCPU pVCpu = pVM->apCpusR3[i];
2652 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2653 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2654
2655 /* show the flag mnemonics */
2656 c = 0;
2657 f = fLocalForcedActions;
2658 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2659 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2660 PRINT_FLAG(VMCPU_FF_,TIMER);
2661 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2662 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2663 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2664 PRINT_FLAG(VMCPU_FF_,UNHALT);
2665 PRINT_FLAG(VMCPU_FF_,IEM);
2666 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2667 PRINT_FLAG(VMCPU_FF_,DBGF);
2668 PRINT_FLAG(VMCPU_FF_,REQUEST);
2669 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2670 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2671 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2672 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2673 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2674 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2675 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2676 PRINT_FLAG(VMCPU_FF_,TO_R3);
2677 PRINT_FLAG(VMCPU_FF_,IOM);
2678 if (f)
2679 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2680 else
2681 pHlp->pfnPrintf(pHlp, "\n");
2682
2683 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2684 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2685
2686 /* the groups */
2687 c = 0;
2688 f = fLocalForcedActions;
2689 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2690 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2691 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2692 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2693 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2694 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2695 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2696 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2697 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2698 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2699 if (c)
2700 pHlp->pfnPrintf(pHlp, "\n");
2701 }
2702
2703#undef PRINT_FLAG
2704#undef PRINT_GROUP
2705}
2706
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette