VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 92424

Last change on this file since 92424 was 92408, checked in by vboxsync, 3 years ago

VMM: Reworked most of the call-ring-3 stuff into setjmp-longjmp-on-assert and removed the stack switching/copying/resume code. bugref:10093 bugref:10124

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 104.4 KB
Line 
1/* $Id: VMM.cpp 92408 2021-11-12 21:49:06Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \
154 do { \
155 size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \
156 if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \
157 || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \
158 { /* likely? */ } \
159 else \
160 vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \
161 } while (0)
162
163
164/*********************************************************************************************************************************
165* Internal Functions *
166*********************************************************************************************************************************/
167static void vmmR3InitRegisterStats(PVM pVM);
168static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
169static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
170#if 0 /* pointless when timers doesn't run on EMT */
171static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
172#endif
173static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
174 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
175static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu);
176static FNRTTHREAD vmmR3LogFlusher;
177static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf,
178 PRTLOGGER pDstLogger);
179static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182
183/**
184 * Initializes the VMM.
185 *
186 * @returns VBox status code.
187 * @param pVM The cross context VM structure.
188 */
189VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
190{
191 LogFlow(("VMMR3Init\n"));
192
193 /*
194 * Assert alignment, sizes and order.
195 */
196 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
197 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
198
199 /*
200 * Init basic VM VMM members.
201 */
202 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
203 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
204 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
205 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
207 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
208 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
209 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
210 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
211 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
212
213#if 0 /* pointless when timers doesn't run on EMT */
214 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
215 * The EMT yield interval. The EMT yielding is a hack we employ to play a
216 * bit nicer with the rest of the system (like for instance the GUI).
217 */
218 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
219 23 /* Value arrived at after experimenting with the grub boot prompt. */);
220 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
221#endif
222
223 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
224 * Controls whether we employ per-cpu preemption timers to limit the time
225 * spent executing guest code. This option is not available on all
226 * platforms and we will silently ignore this setting then. If we are
227 * running in VT-x mode, we will use the VMX-preemption timer instead of
228 * this one when possible.
229 */
230 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
231 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
232 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
233
234 /*
235 * Initialize the VMM rendezvous semaphores.
236 */
237 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
238 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
239 return VERR_NO_MEMORY;
240 for (VMCPUID i = 0; i < pVM->cCpus; i++)
241 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
242 for (VMCPUID i = 0; i < pVM->cCpus; i++)
243 {
244 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
245 AssertRCReturn(rc, rc);
246 }
247 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
256 AssertRCReturn(rc, rc);
257 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
258 AssertRCReturn(rc, rc);
259 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
260 AssertRCReturn(rc, rc);
261 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
262 AssertRCReturn(rc, rc);
263
264 /*
265 * Register the saved state data unit.
266 */
267 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
268 NULL, NULL, NULL,
269 NULL, vmmR3Save, NULL,
270 NULL, vmmR3Load, NULL);
271 if (RT_FAILURE(rc))
272 return rc;
273
274 /*
275 * Register the Ring-0 VM handle with the session for fast ioctl calls.
276 */
277 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
278 if (RT_FAILURE(rc))
279 return rc;
280
281#ifdef VBOX_WITH_NMI
282 /*
283 * Allocate mapping for the host APIC.
284 */
285 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
286 AssertRC(rc);
287#endif
288 if (RT_SUCCESS(rc))
289 {
290 /*
291 * Start the log flusher thread.
292 */
293 rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/,
294 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk");
295 if (RT_SUCCESS(rc))
296 {
297
298 /*
299 * Debug info and statistics.
300 */
301 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
302 vmmR3InitRegisterStats(pVM);
303 vmmInitFormatTypes();
304
305 return VINF_SUCCESS;
306 }
307 }
308 /** @todo Need failure cleanup? */
309
310 return rc;
311}
312
313
314/**
315 * VMMR3Init worker that register the statistics with STAM.
316 *
317 * @param pVM The cross context VM structure.
318 */
319static void vmmR3InitRegisterStats(PVM pVM)
320{
321 RT_NOREF_PV(pVM);
322
323 /*
324 * Statistics.
325 */
326 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
327 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
328 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
329 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
330 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
331 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
332 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
333 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
334 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
335 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
336 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
337 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
338 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
339 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
340 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
341 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
342 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
343 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
344 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
345 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
346 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
347 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
348 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
349 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
350 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
351 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
352 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
353 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
379
380 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes");
381 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up.");
382
383 for (VMCPUID i = 0; i < pVM->cCpus; i++)
384 {
385 PVMCPU pVCpu = pVM->apCpusR3[i];
386 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
387 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
388 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
389 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
390 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
391 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
392 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
393 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
394 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
395 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
396 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
397 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
398 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
399 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
400 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
401 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
402 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
403
404 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
405
406 PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger;
407 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i);
408 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i);
409 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i);
410 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i);
411 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i);
412 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i);
413 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i);
414 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i);
415
416 pShared = &pVCpu->vmm.s.u.s.RelLogger;
417 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i);
418 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i);
419 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i);
420 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i);
421 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i);
422 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i);
423 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i);
424 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i);
425 }
426}
427
428
429/**
430 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
431 *
432 * @returns VBox status code.
433 * @param pVM The cross context VM structure.
434 * @param pVCpu The cross context per CPU structure.
435 * @thread EMT(pVCpu)
436 */
437static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
438{
439 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
440}
441
442
443/**
444 * Initializes the R0 VMM.
445 *
446 * @returns VBox status code.
447 * @param pVM The cross context VM structure.
448 */
449VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
450{
451 int rc;
452 PVMCPU pVCpu = VMMGetCpu(pVM);
453 Assert(pVCpu && pVCpu->idCpu == 0);
454
455 /*
456 * Make sure the ring-0 loggers are up to date.
457 */
458 rc = VMMR3UpdateLoggers(pVM);
459 if (RT_FAILURE(rc))
460 return rc;
461
462 /*
463 * Call Ring-0 entry with init code.
464 */
465#ifdef NO_SUPCALLR0VMM
466 //rc = VERR_GENERAL_FAILURE;
467 rc = VINF_SUCCESS;
468#else
469 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
470#endif
471
472 /*
473 * Flush the logs & deal with assertions.
474 */
475#ifdef LOG_ENABLED
476 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
477#endif
478 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
479 if (rc == VERR_VMM_RING0_ASSERTION)
480 rc = vmmR3HandleRing0Assert(pVM, pVCpu);
481 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
482 {
483 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
484 if (RT_SUCCESS(rc))
485 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
486 }
487
488 /*
489 * Log stuff we learned in ring-0.
490 */
491 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
492 if (pVM->vmm.s.fIsUsingContextHooks)
493 LogRel(("VMM: Enabled thread-context hooks\n"));
494 else
495 LogRel(("VMM: Thread-context hooks unavailable\n"));
496
497 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
498 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
499 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
500 else
501 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
502 if (pVM->vmm.s.fIsPreemptPossible)
503 LogRel(("VMM: Kernel preemption is possible\n"));
504 else
505 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
506
507 /*
508 * Send all EMTs to ring-0 to get their logger initialized.
509 */
510 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
511 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
512
513 return rc;
514}
515
516
517/**
518 * Called when an init phase completes.
519 *
520 * @returns VBox status code.
521 * @param pVM The cross context VM structure.
522 * @param enmWhat Which init phase.
523 */
524VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
525{
526 int rc = VINF_SUCCESS;
527
528 switch (enmWhat)
529 {
530 case VMINITCOMPLETED_RING3:
531 {
532#if 0 /* pointless when timers doesn't run on EMT */
533 /*
534 * Create the EMT yield timer.
535 */
536 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
537 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
538 AssertRCReturn(rc, rc);
539
540 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
541 AssertRCReturn(rc, rc);
542#endif
543 break;
544 }
545
546 case VMINITCOMPLETED_HM:
547 {
548 /*
549 * Disable the periodic preemption timers if we can use the
550 * VMX-preemption timer instead.
551 */
552 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
553 && HMR3IsVmxPreemptionTimerUsed(pVM))
554 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
555 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
556
557 /*
558 * Last chance for GIM to update its CPUID leaves if it requires
559 * knowledge/information from HM initialization.
560 */
561 rc = GIMR3InitCompleted(pVM);
562 AssertRCReturn(rc, rc);
563
564 /*
565 * CPUM's post-initialization (print CPUIDs).
566 */
567 CPUMR3LogCpuIdAndMsrFeatures(pVM);
568 break;
569 }
570
571 default: /* shuts up gcc */
572 break;
573 }
574
575 return rc;
576}
577
578
579/**
580 * Terminate the VMM bits.
581 *
582 * @returns VBox status code.
583 * @param pVM The cross context VM structure.
584 */
585VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
586{
587 PVMCPU pVCpu = VMMGetCpu(pVM);
588 Assert(pVCpu && pVCpu->idCpu == 0);
589
590 /*
591 * Call Ring-0 entry with termination code.
592 */
593#ifdef NO_SUPCALLR0VMM
594 //rc = VERR_GENERAL_FAILURE;
595 int rc = VINF_SUCCESS;
596#else
597 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
598#endif
599
600 /*
601 * Flush the logs & deal with assertions.
602 */
603#ifdef LOG_ENABLED
604 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
605#endif
606 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
607 if (rc == VERR_VMM_RING0_ASSERTION)
608 rc = vmmR3HandleRing0Assert(pVM, pVCpu);
609 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
610 {
611 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
612 if (RT_SUCCESS(rc))
613 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
614 }
615
616 /*
617 * Do clean ups.
618 */
619 for (VMCPUID i = 0; i < pVM->cCpus; i++)
620 {
621 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
622 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
623 }
624 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
625 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
626 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
627 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
628 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
629 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
630 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
631 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
632 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
633 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
634 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
635 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
636 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
637 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
638 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
639 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
640
641 vmmTermFormatTypes();
642
643 /*
644 * Wait for the log flusher thread to complete.
645 */
646 if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD)
647 {
648 int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL);
649 AssertLogRelRC(rc2);
650 if (RT_SUCCESS(rc2))
651 pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD;
652 }
653
654 return rc;
655}
656
657
658/**
659 * Applies relocations to data and code managed by this
660 * component. This function will be called at init and
661 * whenever the VMM need to relocate it self inside the GC.
662 *
663 * The VMM will need to apply relocations to the core code.
664 *
665 * @param pVM The cross context VM structure.
666 * @param offDelta The relocation delta.
667 */
668VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
669{
670 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
671 RT_NOREF(offDelta);
672
673 /*
674 * Update the logger.
675 */
676 VMMR3UpdateLoggers(pVM);
677}
678
679
680/**
681 * Worker for VMMR3UpdateLoggers.
682 */
683static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
684{
685 /*
686 * Get the group count.
687 */
688 uint32_t uGroupsCrc32 = 0;
689 uint32_t cGroups = 0;
690 uint64_t fFlags = 0;
691 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
692 Assert(rc == VERR_BUFFER_OVERFLOW);
693
694 /*
695 * Allocate the request of the right size.
696 */
697 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
698 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
699 if (pReq)
700 {
701 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
702 pReq->Hdr.cbReq = cbReq;
703 pReq->cGroups = cGroups;
704 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
705 AssertRC(rc);
706 if (RT_SUCCESS(rc))
707 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fReleaseLogger, &pReq->Hdr);
708
709 RTMemFree(pReq);
710 }
711 else
712 rc = VERR_NO_MEMORY;
713 return rc;
714}
715
716
717/**
718 * Updates the settings for the RC and R0 loggers.
719 *
720 * @returns VBox status code.
721 * @param pVM The cross context VM structure.
722 * @thread EMT
723 */
724VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
725{
726 VM_ASSERT_EMT(pVM);
727 PVMCPU pVCpu = VMMGetCpu(pVM);
728 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
729
730 /*
731 * Each EMT has each own logger instance.
732 */
733 /* Debug logging.*/
734 int rcDebug = VINF_SUCCESS;
735#ifdef LOG_ENABLED
736 PRTLOGGER const pDefault = RTLogDefaultInstance();
737 if (pDefault)
738 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
739#else
740 RT_NOREF(pVM);
741#endif
742
743 /* Release logging. */
744 int rcRelease = VINF_SUCCESS;
745 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
746 if (pRelease)
747 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
748
749 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
750}
751
752
753/**
754 * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.}
755 */
756static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser)
757{
758 PVM const pVM = (PVM)pvUser;
759 RT_NOREF(hThreadSelf);
760
761 /* Reset the flusher state before we start: */
762 pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX;
763
764 /*
765 * The work loop.
766 */
767 for (;;)
768 {
769 /*
770 * Wait for work.
771 */
772 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL);
773 if (RT_SUCCESS(rc))
774 {
775 /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */
776 VMMLOGFLUSHERENTRY Item;
777 Item.u32 = pVM->vmm.s.LogFlusherItem.u32;
778 if ( Item.s.idCpu < pVM->cCpus
779 && Item.s.idxLogger < VMMLOGGER_IDX_MAX
780 && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT)
781 {
782 /*
783 * Verify the request.
784 */
785 PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu];
786 PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger];
787 uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf;
788 if (cbToFlush > 0)
789 {
790 if (cbToFlush <= pShared->cbBuf)
791 {
792 char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3;
793 if (pchBufR3)
794 {
795 /*
796 * Do the flushing.
797 */
798 PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR
799 ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance();
800 if (pLogger)
801 {
802 char szBefore[128];
803 RTStrPrintf(szBefore, sizeof(szBefore),
804 "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n",
805 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush,
806 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped);
807 RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n");
808 }
809 }
810 else
811 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n",
812 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
813 }
814 else
815 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n",
816 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf));
817 }
818 else
819 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n",
820 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
821
822 /*
823 * Mark the descriptor as flushed and set the request flag for same.
824 */
825 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true;
826 }
827 else
828 {
829 Assert(Item.s.idCpu == UINT16_MAX);
830 Assert(Item.s.idxLogger == UINT8_MAX);
831 Assert(Item.s.idxBuffer == UINT8_MAX);
832 }
833 }
834 /*
835 * Interrupted can happen, just ignore it.
836 */
837 else if (rc == VERR_INTERRUPTED)
838 { /* ignore*/ }
839 /*
840 * The ring-0 termination code will set the shutdown flag and wake us
841 * up, and we should return with object destroyed. In case there is
842 * some kind of race, we might also get sempahore destroyed.
843 */
844 else if ( rc == VERR_OBJECT_DESTROYED
845 || rc == VERR_SEM_DESTROYED
846 || rc == VERR_INVALID_HANDLE)
847 {
848 LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc));
849 return VINF_SUCCESS;
850 }
851 /*
852 * There shouldn't be any other errors...
853 */
854 else
855 {
856 LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc));
857 AssertRC(rc);
858 RTThreadSleep(1);
859 }
860 }
861}
862
863
864/**
865 * Helper for VMM_FLUSH_R0_LOG that does the flushing.
866 *
867 * @param pVM The cross context VM structure.
868 * @param pVCpu The cross context virtual CPU structure of the calling
869 * EMT.
870 * @param pShared The shared logger data.
871 * @param idxBuf The buffer to flush.
872 * @param pDstLogger The destination IPRT logger.
873 */
874static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger)
875{
876 uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf;
877 const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n";
878 const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n";
879
880#if VMMLOGGER_BUFFER_COUNT > 1
881 /*
882 * When we have more than one log buffer, the flusher thread may still be
883 * working on the previous buffer when we get here.
884 */
885 char szBefore[64];
886 if (pShared->cFlushing > 0)
887 {
888 STAM_REL_PROFILE_START(&pShared->StatRaces, a);
889 uint64_t const nsStart = RTTimeNanoTS();
890
891 /* A no-op, but it takes the lock and the hope is that we end up waiting
892 on the flusher to finish up. */
893 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
894 if (pShared->cFlushing != 0)
895 {
896 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
897
898 /* If no luck, go to ring-0 and to proper waiting. */
899 if (pShared->cFlushing != 0)
900 {
901 STAM_REL_COUNTER_INC(&pShared->StatRacesToR0);
902 SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL);
903 }
904 }
905
906 RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n",
907 pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart);
908 pszBefore = szBefore;
909 STAM_REL_PROFILE_STOP(&pShared->StatRaces, a);
910 }
911#else
912 RT_NOREF(pVM, pVCpu);
913#endif
914
915 RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter);
916 pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true;
917}
918
919
920/**
921 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
922 *
923 * @returns Pointer to the buffer.
924 * @param pVM The cross context VM structure.
925 */
926VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
927{
928 return pVM->vmm.s.szRing0AssertMsg1;
929}
930
931
932/**
933 * Returns the VMCPU of the specified virtual CPU.
934 *
935 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
936 *
937 * @param pUVM The user mode VM handle.
938 * @param idCpu The ID of the virtual CPU.
939 */
940VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
941{
942 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
943 AssertReturn(idCpu < pUVM->cCpus, NULL);
944 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
945 return pUVM->pVM->apCpusR3[idCpu];
946}
947
948
949/**
950 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
951 *
952 * @returns Pointer to the buffer.
953 * @param pVM The cross context VM structure.
954 */
955VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
956{
957 return pVM->vmm.s.szRing0AssertMsg2;
958}
959
960
961/**
962 * Execute state save operation.
963 *
964 * @returns VBox status code.
965 * @param pVM The cross context VM structure.
966 * @param pSSM SSM operation handle.
967 */
968static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
969{
970 LogFlow(("vmmR3Save:\n"));
971
972 /*
973 * Save the started/stopped state of all CPUs except 0 as it will always
974 * be running. This avoids breaking the saved state version. :-)
975 */
976 for (VMCPUID i = 1; i < pVM->cCpus; i++)
977 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
978
979 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
980}
981
982
983/**
984 * Execute state load operation.
985 *
986 * @returns VBox status code.
987 * @param pVM The cross context VM structure.
988 * @param pSSM SSM operation handle.
989 * @param uVersion Data layout version.
990 * @param uPass The data pass.
991 */
992static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
993{
994 LogFlow(("vmmR3Load:\n"));
995 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
996
997 /*
998 * Validate version.
999 */
1000 if ( uVersion != VMM_SAVED_STATE_VERSION
1001 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1002 {
1003 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1004 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1005 }
1006
1007 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1008 {
1009 /* Ignore the stack bottom, stack pointer and stack bits. */
1010 RTRCPTR RCPtrIgnored;
1011 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1012 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1013#ifdef RT_OS_DARWIN
1014 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1015 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1016 && SSMR3HandleRevision(pSSM) >= 48858
1017 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1018 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1019 )
1020 SSMR3Skip(pSSM, 16384);
1021 else
1022 SSMR3Skip(pSSM, 8192);
1023#else
1024 SSMR3Skip(pSSM, 8192);
1025#endif
1026 }
1027
1028 /*
1029 * Restore the VMCPU states. VCPU 0 is always started.
1030 */
1031 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
1032 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1033 {
1034 bool fStarted;
1035 int rc = SSMR3GetBool(pSSM, &fStarted);
1036 if (RT_FAILURE(rc))
1037 return rc;
1038 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1039 }
1040
1041 /* terminator */
1042 uint32_t u32;
1043 int rc = SSMR3GetU32(pSSM, &u32);
1044 if (RT_FAILURE(rc))
1045 return rc;
1046 if (u32 != UINT32_MAX)
1047 {
1048 AssertMsgFailed(("u32=%#x\n", u32));
1049 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1050 }
1051 return VINF_SUCCESS;
1052}
1053
1054
1055/**
1056 * Suspends the CPU yielder.
1057 *
1058 * @param pVM The cross context VM structure.
1059 */
1060VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1061{
1062#if 0 /* pointless when timers doesn't run on EMT */
1063 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1064 if (!pVM->vmm.s.cYieldResumeMillies)
1065 {
1066 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1067 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1068 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1069 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1070 else
1071 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1072 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1073 }
1074 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1075#else
1076 RT_NOREF(pVM);
1077#endif
1078}
1079
1080
1081/**
1082 * Stops the CPU yielder.
1083 *
1084 * @param pVM The cross context VM structure.
1085 */
1086VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1087{
1088#if 0 /* pointless when timers doesn't run on EMT */
1089 if (!pVM->vmm.s.cYieldResumeMillies)
1090 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1091 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1092 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1093#else
1094 RT_NOREF(pVM);
1095#endif
1096}
1097
1098
1099/**
1100 * Resumes the CPU yielder when it has been a suspended or stopped.
1101 *
1102 * @param pVM The cross context VM structure.
1103 */
1104VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1105{
1106#if 0 /* pointless when timers doesn't run on EMT */
1107 if (pVM->vmm.s.cYieldResumeMillies)
1108 {
1109 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1110 pVM->vmm.s.cYieldResumeMillies = 0;
1111 }
1112#else
1113 RT_NOREF(pVM);
1114#endif
1115}
1116
1117
1118#if 0 /* pointless when timers doesn't run on EMT */
1119/**
1120 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1121 *
1122 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1123 */
1124static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1125{
1126 NOREF(pvUser);
1127
1128 /*
1129 * This really needs some careful tuning. While we shouldn't be too greedy since
1130 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1131 * because that'll cause us to stop up.
1132 *
1133 * The current logic is to use the default interval when there is no lag worth
1134 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1135 *
1136 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1137 * so the lag is up to date.)
1138 */
1139 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1140 if ( u64Lag < 50000000 /* 50ms */
1141 || ( u64Lag < 1000000000 /* 1s */
1142 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1143 )
1144 {
1145 uint64_t u64Elapsed = RTTimeNanoTS();
1146 pVM->vmm.s.u64LastYield = u64Elapsed;
1147
1148 RTThreadYield();
1149
1150#ifdef LOG_ENABLED
1151 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1152 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1153#endif
1154 }
1155 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1156}
1157#endif
1158
1159
1160/**
1161 * Executes guest code (Intel VT-x and AMD-V).
1162 *
1163 * @param pVM The cross context VM structure.
1164 * @param pVCpu The cross context virtual CPU structure.
1165 */
1166VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1167{
1168 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1169
1170 int rc;
1171 do
1172 {
1173#ifdef NO_SUPCALLR0VMM
1174 rc = VERR_GENERAL_FAILURE;
1175#else
1176 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1177 if (RT_LIKELY(rc == VINF_SUCCESS))
1178 rc = pVCpu->vmm.s.iLastGZRc;
1179#endif
1180 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1181
1182#if 0 /** @todo triggers too often */
1183 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1184#endif
1185
1186 /*
1187 * Flush the logs
1188 */
1189#ifdef LOG_ENABLED
1190 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1191#endif
1192 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1193 if (rc != VERR_VMM_RING0_ASSERTION)
1194 {
1195 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1196 return rc;
1197 }
1198 return vmmR3HandleRing0Assert(pVM, pVCpu);
1199}
1200
1201
1202/**
1203 * Perform one of the fast I/O control VMMR0 operation.
1204 *
1205 * @returns VBox strict status code.
1206 * @param pVM The cross context VM structure.
1207 * @param pVCpu The cross context virtual CPU structure.
1208 * @param enmOperation The operation to perform.
1209 */
1210VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1211{
1212 VBOXSTRICTRC rcStrict;
1213 do
1214 {
1215#ifdef NO_SUPCALLR0VMM
1216 rcStrict = VERR_GENERAL_FAILURE;
1217#else
1218 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1219 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1220 rcStrict = pVCpu->vmm.s.iLastGZRc;
1221#endif
1222 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1223
1224 /*
1225 * Flush the logs
1226 */
1227#ifdef LOG_ENABLED
1228 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1229#endif
1230 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1231 if (rcStrict != VERR_VMM_RING0_ASSERTION)
1232 return rcStrict;
1233 return vmmR3HandleRing0Assert(pVM, pVCpu);
1234}
1235
1236
1237/**
1238 * VCPU worker for VMMR3SendStartupIpi.
1239 *
1240 * @param pVM The cross context VM structure.
1241 * @param idCpu Virtual CPU to perform SIPI on.
1242 * @param uVector The SIPI vector.
1243 */
1244static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1245{
1246 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1247 VMCPU_ASSERT_EMT(pVCpu);
1248
1249 /*
1250 * In the INIT state, the target CPU is only responsive to an SIPI.
1251 * This is also true for when when the CPU is in VMX non-root mode.
1252 *
1253 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1254 * See Intel spec. 26.6.2 "Activity State".
1255 */
1256 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1257 return VINF_SUCCESS;
1258
1259 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1260#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1261 if (CPUMIsGuestInVmxRootMode(pCtx))
1262 {
1263 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1264 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1265 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1266
1267 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1268 return VINF_SUCCESS;
1269 }
1270#endif
1271
1272 pCtx->cs.Sel = uVector << 8;
1273 pCtx->cs.ValidSel = uVector << 8;
1274 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1275 pCtx->cs.u64Base = uVector << 12;
1276 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1277 pCtx->rip = 0;
1278
1279 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1280
1281# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1282 EMSetState(pVCpu, EMSTATE_HALTED);
1283 return VINF_EM_RESCHEDULE;
1284# else /* And if we go the VMCPU::enmState way it can stay here. */
1285 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1286 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1287 return VINF_SUCCESS;
1288# endif
1289}
1290
1291
1292/**
1293 * VCPU worker for VMMR3SendInitIpi.
1294 *
1295 * @returns VBox status code.
1296 * @param pVM The cross context VM structure.
1297 * @param idCpu Virtual CPU to perform SIPI on.
1298 */
1299static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1300{
1301 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1302 VMCPU_ASSERT_EMT(pVCpu);
1303
1304 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1305
1306 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1307 * wait-for-SIPI state. Verify. */
1308
1309 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1310#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1311 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1312 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1313 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1314#endif
1315
1316 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1317 * IPI (e.g. SVM_EXIT_INIT). */
1318
1319 PGMR3ResetCpu(pVM, pVCpu);
1320 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1321 APICR3InitIpi(pVCpu);
1322 TRPMR3ResetCpu(pVCpu);
1323 CPUMR3ResetCpu(pVM, pVCpu);
1324 EMR3ResetCpu(pVCpu);
1325 HMR3ResetCpu(pVCpu);
1326 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1327
1328 /* This will trickle up on the target EMT. */
1329 return VINF_EM_WAIT_SIPI;
1330}
1331
1332
1333/**
1334 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1335 * vector-dependent state and unhalting processor.
1336 *
1337 * @param pVM The cross context VM structure.
1338 * @param idCpu Virtual CPU to perform SIPI on.
1339 * @param uVector SIPI vector.
1340 */
1341VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1342{
1343 AssertReturnVoid(idCpu < pVM->cCpus);
1344
1345 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1346 AssertRC(rc);
1347}
1348
1349
1350/**
1351 * Sends init IPI to the virtual CPU.
1352 *
1353 * @param pVM The cross context VM structure.
1354 * @param idCpu Virtual CPU to perform int IPI on.
1355 */
1356VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1357{
1358 AssertReturnVoid(idCpu < pVM->cCpus);
1359
1360 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1361 AssertRC(rc);
1362}
1363
1364
1365/**
1366 * Registers the guest memory range that can be used for patching.
1367 *
1368 * @returns VBox status code.
1369 * @param pVM The cross context VM structure.
1370 * @param pPatchMem Patch memory range.
1371 * @param cbPatchMem Size of the memory range.
1372 */
1373VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1374{
1375 VM_ASSERT_EMT(pVM);
1376 if (HMIsEnabled(pVM))
1377 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1378
1379 return VERR_NOT_SUPPORTED;
1380}
1381
1382
1383/**
1384 * Deregisters the guest memory range that can be used for patching.
1385 *
1386 * @returns VBox status code.
1387 * @param pVM The cross context VM structure.
1388 * @param pPatchMem Patch memory range.
1389 * @param cbPatchMem Size of the memory range.
1390 */
1391VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1392{
1393 if (HMIsEnabled(pVM))
1394 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1395
1396 return VINF_SUCCESS;
1397}
1398
1399
1400/**
1401 * Common recursion handler for the other EMTs.
1402 *
1403 * @returns Strict VBox status code.
1404 * @param pVM The cross context VM structure.
1405 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1406 * @param rcStrict Current status code to be combined with the one
1407 * from this recursion and returned.
1408 */
1409static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1410{
1411 int rc2;
1412
1413 /*
1414 * We wait here while the initiator of this recursion reconfigures
1415 * everything. The last EMT to get in signals the initiator.
1416 */
1417 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1418 {
1419 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1420 AssertLogRelRC(rc2);
1421 }
1422
1423 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1424 AssertLogRelRC(rc2);
1425
1426 /*
1427 * Do the normal rendezvous processing.
1428 */
1429 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1430 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1431
1432 /*
1433 * Wait for the initiator to restore everything.
1434 */
1435 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1436 AssertLogRelRC(rc2);
1437
1438 /*
1439 * Last thread out of here signals the initiator.
1440 */
1441 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1442 {
1443 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1444 AssertLogRelRC(rc2);
1445 }
1446
1447 /*
1448 * Merge status codes and return.
1449 */
1450 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1451 if ( rcStrict2 != VINF_SUCCESS
1452 && ( rcStrict == VINF_SUCCESS
1453 || rcStrict > rcStrict2))
1454 rcStrict = rcStrict2;
1455 return rcStrict;
1456}
1457
1458
1459/**
1460 * Count returns and have the last non-caller EMT wake up the caller.
1461 *
1462 * @returns VBox strict informational status code for EM scheduling. No failures
1463 * will be returned here, those are for the caller only.
1464 *
1465 * @param pVM The cross context VM structure.
1466 * @param rcStrict The current accumulated recursive status code,
1467 * to be merged with i32RendezvousStatus and
1468 * returned.
1469 */
1470DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1471{
1472 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1473
1474 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1475 if (cReturned == pVM->cCpus - 1U)
1476 {
1477 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1478 AssertLogRelRC(rc);
1479 }
1480
1481 /*
1482 * Merge the status codes, ignoring error statuses in this code path.
1483 */
1484 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1485 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1486 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1487 VERR_IPE_UNEXPECTED_INFO_STATUS);
1488
1489 if (RT_SUCCESS(rcStrict2))
1490 {
1491 if ( rcStrict2 != VINF_SUCCESS
1492 && ( rcStrict == VINF_SUCCESS
1493 || rcStrict > rcStrict2))
1494 rcStrict = rcStrict2;
1495 }
1496 return rcStrict;
1497}
1498
1499
1500/**
1501 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1502 *
1503 * @returns VBox strict informational status code for EM scheduling. No failures
1504 * will be returned here, those are for the caller only. When
1505 * fIsCaller is set, VINF_SUCCESS is always returned.
1506 *
1507 * @param pVM The cross context VM structure.
1508 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1509 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1510 * not.
1511 * @param fFlags The flags.
1512 * @param pfnRendezvous The callback.
1513 * @param pvUser The user argument for the callback.
1514 */
1515static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1516 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1517{
1518 int rc;
1519 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1520
1521 /*
1522 * Enter, the last EMT triggers the next callback phase.
1523 */
1524 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1525 if (cEntered != pVM->cCpus)
1526 {
1527 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1528 {
1529 /* Wait for our turn. */
1530 for (;;)
1531 {
1532 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1533 AssertLogRelRC(rc);
1534 if (!pVM->vmm.s.fRendezvousRecursion)
1535 break;
1536 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1537 }
1538 }
1539 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1540 {
1541 /* Wait for the last EMT to arrive and wake everyone up. */
1542 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1543 AssertLogRelRC(rc);
1544 Assert(!pVM->vmm.s.fRendezvousRecursion);
1545 }
1546 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1547 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1548 {
1549 /* Wait for our turn. */
1550 for (;;)
1551 {
1552 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1553 AssertLogRelRC(rc);
1554 if (!pVM->vmm.s.fRendezvousRecursion)
1555 break;
1556 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1557 }
1558 }
1559 else
1560 {
1561 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1562
1563 /*
1564 * The execute once is handled specially to optimize the code flow.
1565 *
1566 * The last EMT to arrive will perform the callback and the other
1567 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1568 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1569 * returns, that EMT will initiate the normal return sequence.
1570 */
1571 if (!fIsCaller)
1572 {
1573 for (;;)
1574 {
1575 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1576 AssertLogRelRC(rc);
1577 if (!pVM->vmm.s.fRendezvousRecursion)
1578 break;
1579 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1580 }
1581
1582 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1583 }
1584 return VINF_SUCCESS;
1585 }
1586 }
1587 else
1588 {
1589 /*
1590 * All EMTs are waiting, clear the FF and take action according to the
1591 * execution method.
1592 */
1593 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1594
1595 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1596 {
1597 /* Wake up everyone. */
1598 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1599 AssertLogRelRC(rc);
1600 }
1601 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1602 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1603 {
1604 /* Figure out who to wake up and wake it up. If it's ourself, then
1605 it's easy otherwise wait for our turn. */
1606 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1607 ? 0
1608 : pVM->cCpus - 1U;
1609 if (pVCpu->idCpu != iFirst)
1610 {
1611 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1612 AssertLogRelRC(rc);
1613 for (;;)
1614 {
1615 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1616 AssertLogRelRC(rc);
1617 if (!pVM->vmm.s.fRendezvousRecursion)
1618 break;
1619 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1620 }
1621 }
1622 }
1623 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1624 }
1625
1626
1627 /*
1628 * Do the callback and update the status if necessary.
1629 */
1630 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1631 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1632 {
1633 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1634 if (rcStrict2 != VINF_SUCCESS)
1635 {
1636 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1637 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1638 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1639 int32_t i32RendezvousStatus;
1640 do
1641 {
1642 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1643 if ( rcStrict2 == i32RendezvousStatus
1644 || RT_FAILURE(i32RendezvousStatus)
1645 || ( i32RendezvousStatus != VINF_SUCCESS
1646 && rcStrict2 > i32RendezvousStatus))
1647 break;
1648 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1649 }
1650 }
1651
1652 /*
1653 * Increment the done counter and take action depending on whether we're
1654 * the last to finish callback execution.
1655 */
1656 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1657 if ( cDone != pVM->cCpus
1658 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1659 {
1660 /* Signal the next EMT? */
1661 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1662 {
1663 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1664 AssertLogRelRC(rc);
1665 }
1666 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1667 {
1668 Assert(cDone == pVCpu->idCpu + 1U);
1669 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1670 AssertLogRelRC(rc);
1671 }
1672 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1673 {
1674 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1675 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1676 AssertLogRelRC(rc);
1677 }
1678
1679 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1680 if (!fIsCaller)
1681 {
1682 for (;;)
1683 {
1684 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1685 AssertLogRelRC(rc);
1686 if (!pVM->vmm.s.fRendezvousRecursion)
1687 break;
1688 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1689 }
1690 }
1691 }
1692 else
1693 {
1694 /* Callback execution is all done, tell the rest to return. */
1695 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1696 AssertLogRelRC(rc);
1697 }
1698
1699 if (!fIsCaller)
1700 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1701 return rcStrictRecursion;
1702}
1703
1704
1705/**
1706 * Called in response to VM_FF_EMT_RENDEZVOUS.
1707 *
1708 * @returns VBox strict status code - EM scheduling. No errors will be returned
1709 * here, nor will any non-EM scheduling status codes be returned.
1710 *
1711 * @param pVM The cross context VM structure.
1712 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1713 *
1714 * @thread EMT
1715 */
1716VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1717{
1718 Assert(!pVCpu->vmm.s.fInRendezvous);
1719 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1720 pVCpu->vmm.s.fInRendezvous = true;
1721 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1722 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1723 pVCpu->vmm.s.fInRendezvous = false;
1724 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1725 return VBOXSTRICTRC_TODO(rcStrict);
1726}
1727
1728
1729/**
1730 * Helper for resetting an single wakeup event sempahore.
1731 *
1732 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1733 * @param hEvt The event semaphore to reset.
1734 */
1735static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1736{
1737 for (uint32_t cLoops = 0; ; cLoops++)
1738 {
1739 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1740 if (rc != VINF_SUCCESS || cLoops > _4K)
1741 return rc;
1742 }
1743}
1744
1745
1746/**
1747 * Worker for VMMR3EmtRendezvous that handles recursion.
1748 *
1749 * @returns VBox strict status code. This will be the first error,
1750 * VINF_SUCCESS, or an EM scheduling status code.
1751 *
1752 * @param pVM The cross context VM structure.
1753 * @param pVCpu The cross context virtual CPU structure of the
1754 * calling EMT.
1755 * @param fFlags Flags indicating execution methods. See
1756 * grp_VMMR3EmtRendezvous_fFlags.
1757 * @param pfnRendezvous The callback.
1758 * @param pvUser User argument for the callback.
1759 *
1760 * @thread EMT(pVCpu)
1761 */
1762static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1763 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1764{
1765 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1766 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1767 Assert(pVCpu->vmm.s.fInRendezvous);
1768
1769 /*
1770 * Save the current state.
1771 */
1772 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1773 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1774 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1775 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1776 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1777
1778 /*
1779 * Check preconditions and save the current state.
1780 */
1781 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1782 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1783 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1784 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1785 VERR_INTERNAL_ERROR);
1786 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1787 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1788
1789 /*
1790 * Reset the recursion prep and pop semaphores.
1791 */
1792 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1793 AssertLogRelRCReturn(rc, rc);
1794 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1795 AssertLogRelRCReturn(rc, rc);
1796 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1797 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1798 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1799 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1800
1801 /*
1802 * Usher the other thread into the recursion routine.
1803 */
1804 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1805 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1806
1807 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1808 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1809 while (cLeft-- > 0)
1810 {
1811 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1812 AssertLogRelRC(rc);
1813 }
1814 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1815 {
1816 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1817 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1818 {
1819 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1820 AssertLogRelRC(rc);
1821 }
1822 }
1823 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1824 {
1825 Assert(cLeft == pVCpu->idCpu);
1826 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1827 {
1828 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1829 AssertLogRelRC(rc);
1830 }
1831 }
1832 else
1833 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1834 VERR_INTERNAL_ERROR_4);
1835
1836 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1837 AssertLogRelRC(rc);
1838 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1839 AssertLogRelRC(rc);
1840
1841
1842 /*
1843 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1844 */
1845 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1846 {
1847 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1848 AssertLogRelRC(rc);
1849 }
1850
1851 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1852
1853 /*
1854 * Clear the slate and setup the new rendezvous.
1855 */
1856 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1857 {
1858 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1859 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1860 }
1861 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1862 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1863 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1864 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1865
1866 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1867 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1868 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1869 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1870 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1871 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1872 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1873 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1874
1875 /*
1876 * We're ready to go now, do normal rendezvous processing.
1877 */
1878 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1879 AssertLogRelRC(rc);
1880
1881 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1882
1883 /*
1884 * The caller waits for the other EMTs to be done, return and waiting on the
1885 * pop semaphore.
1886 */
1887 for (;;)
1888 {
1889 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1890 AssertLogRelRC(rc);
1891 if (!pVM->vmm.s.fRendezvousRecursion)
1892 break;
1893 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1894 }
1895
1896 /*
1897 * Get the return code and merge it with the above recursion status.
1898 */
1899 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1900 if ( rcStrict2 != VINF_SUCCESS
1901 && ( rcStrict == VINF_SUCCESS
1902 || rcStrict > rcStrict2))
1903 rcStrict = rcStrict2;
1904
1905 /*
1906 * Restore the parent rendezvous state.
1907 */
1908 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1909 {
1910 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1911 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1912 }
1913 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1914 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1915 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1916 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1917
1918 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1919 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1920 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1921 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1922 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1923 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1924 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1925
1926 /*
1927 * Usher the other EMTs back to their parent recursion routine, waiting
1928 * for them to all get there before we return (makes sure they've been
1929 * scheduled and are past the pop event sem, see below).
1930 */
1931 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1932 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1933 AssertLogRelRC(rc);
1934
1935 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1936 {
1937 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1938 AssertLogRelRC(rc);
1939 }
1940
1941 /*
1942 * We must reset the pop semaphore on the way out (doing the pop caller too,
1943 * just in case). The parent may be another recursion.
1944 */
1945 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1946 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1947
1948 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1949
1950 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1951 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1952 return rcStrict;
1953}
1954
1955
1956/**
1957 * EMT rendezvous.
1958 *
1959 * Gathers all the EMTs and execute some code on each of them, either in a one
1960 * by one fashion or all at once.
1961 *
1962 * @returns VBox strict status code. This will be the first error,
1963 * VINF_SUCCESS, or an EM scheduling status code.
1964 *
1965 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1966 * doesn't support it or if the recursion is too deep.
1967 *
1968 * @param pVM The cross context VM structure.
1969 * @param fFlags Flags indicating execution methods. See
1970 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1971 * descending and ascending rendezvous types support
1972 * recursion from inside @a pfnRendezvous.
1973 * @param pfnRendezvous The callback.
1974 * @param pvUser User argument for the callback.
1975 *
1976 * @thread Any.
1977 */
1978VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1979{
1980 /*
1981 * Validate input.
1982 */
1983 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1984 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1985 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1986 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1987 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1988 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1989 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1990 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1991
1992 VBOXSTRICTRC rcStrict;
1993 PVMCPU pVCpu = VMMGetCpu(pVM);
1994 if (!pVCpu)
1995 {
1996 /*
1997 * Forward the request to an EMT thread.
1998 */
1999 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2000 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2001 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2002 else
2003 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2004 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2005 }
2006 else if ( pVM->cCpus == 1
2007 || ( pVM->enmVMState == VMSTATE_DESTROYING
2008 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2009 {
2010 /*
2011 * Shortcut for the single EMT case.
2012 *
2013 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2014 * during vmR3Destroy after other emulation threads have started terminating.
2015 */
2016 if (!pVCpu->vmm.s.fInRendezvous)
2017 {
2018 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2019 pVCpu->vmm.s.fInRendezvous = true;
2020 pVM->vmm.s.fRendezvousFlags = fFlags;
2021 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2022 pVCpu->vmm.s.fInRendezvous = false;
2023 }
2024 else
2025 {
2026 /* Recursion. Do the same checks as in the SMP case. */
2027 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2028 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2029 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2030 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2031 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2032 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2033 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2034 , VERR_DEADLOCK);
2035
2036 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2037 pVM->vmm.s.cRendezvousRecursions++;
2038 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2039 pVM->vmm.s.fRendezvousFlags = fFlags;
2040
2041 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2042
2043 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2044 pVM->vmm.s.cRendezvousRecursions--;
2045 }
2046 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2047 }
2048 else
2049 {
2050 /*
2051 * Spin lock. If busy, check for recursion, if not recursing wait for
2052 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2053 */
2054 int rc;
2055 rcStrict = VINF_SUCCESS;
2056 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2057 {
2058 /* Allow recursion in some cases. */
2059 if ( pVCpu->vmm.s.fInRendezvous
2060 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2061 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2062 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2063 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2064 ))
2065 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2066
2067 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2068 VERR_DEADLOCK);
2069
2070 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2071 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2072 {
2073 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2074 {
2075 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2076 if ( rc != VINF_SUCCESS
2077 && ( rcStrict == VINF_SUCCESS
2078 || rcStrict > rc))
2079 rcStrict = rc;
2080 /** @todo Perhaps deal with termination here? */
2081 }
2082 ASMNopPause();
2083 }
2084 }
2085
2086 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2087 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2088 Assert(!pVCpu->vmm.s.fInRendezvous);
2089 pVCpu->vmm.s.fInRendezvous = true;
2090
2091 /*
2092 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2093 */
2094 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2095 {
2096 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2097 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2098 }
2099 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2100 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2101 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2102 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2103 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2104 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2105 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2106 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2107 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2108 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2109 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2110
2111 /*
2112 * Set the FF and poke the other EMTs.
2113 */
2114 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2115 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2116
2117 /*
2118 * Do the same ourselves.
2119 */
2120 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2121
2122 /*
2123 * The caller waits for the other EMTs to be done and return before doing
2124 * the cleanup. This makes away with wakeup / reset races we would otherwise
2125 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2126 */
2127 for (;;)
2128 {
2129 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2130 AssertLogRelRC(rc);
2131 if (!pVM->vmm.s.fRendezvousRecursion)
2132 break;
2133 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2134 }
2135
2136 /*
2137 * Get the return code and clean up a little bit.
2138 */
2139 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2140 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2141
2142 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2143 pVCpu->vmm.s.fInRendezvous = false;
2144
2145 /*
2146 * Merge rcStrict, rcStrict2 and rcStrict3.
2147 */
2148 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2149 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2150 if ( rcStrict2 != VINF_SUCCESS
2151 && ( rcStrict == VINF_SUCCESS
2152 || rcStrict > rcStrict2))
2153 rcStrict = rcStrict2;
2154 if ( rcStrict3 != VINF_SUCCESS
2155 && ( rcStrict == VINF_SUCCESS
2156 || rcStrict > rcStrict3))
2157 rcStrict = rcStrict3;
2158 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2159 }
2160
2161 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2162 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2163 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2164 VERR_IPE_UNEXPECTED_INFO_STATUS);
2165 return VBOXSTRICTRC_VAL(rcStrict);
2166}
2167
2168
2169/**
2170 * Interface for vmR3SetHaltMethodU.
2171 *
2172 * @param pVCpu The cross context virtual CPU structure of the
2173 * calling EMT.
2174 * @param fMayHaltInRing0 The new state.
2175 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2176 * @thread EMT(pVCpu)
2177 *
2178 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2179 * component.
2180 */
2181VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2182{
2183 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2184 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2185 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2186}
2187
2188
2189/**
2190 * Read from the ring 0 jump buffer stack.
2191 *
2192 * @returns VBox status code.
2193 *
2194 * @param pVM The cross context VM structure.
2195 * @param idCpu The ID of the source CPU context (for the address).
2196 * @param R0Addr Where to start reading.
2197 * @param pvBuf Where to store the data we've read.
2198 * @param cbRead The number of bytes to read.
2199 */
2200VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2201{
2202 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2203 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2204 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2205
2206 /*
2207 * Hopefully we've got all the requested bits. If not supply what we
2208 * can and zero the remaining stuff.
2209 */
2210 RTHCUINTPTR off = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindSp;
2211 if (off < pVCpu->vmm.s.AssertJmpBuf.cbStackValid)
2212 {
2213 size_t const cbValid = pVCpu->vmm.s.AssertJmpBuf.cbStackValid - off;
2214 if (cbRead <= cbValid)
2215 {
2216 memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbRead);
2217 return VINF_SUCCESS;
2218 }
2219
2220 memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbValid);
2221 RT_BZERO((uint8_t *)pvBuf + cbValid, cbRead - cbValid);
2222 }
2223 else
2224 RT_BZERO(pvBuf, cbRead);
2225
2226 /*
2227 * Supply the setjmp return RIP/EIP if requested.
2228 */
2229 if ( pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2230 && pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation < R0Addr + cbRead)
2231 {
2232 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue;
2233 size_t cbSrc = sizeof(pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue);
2234 size_t offDst = 0;
2235 if (R0Addr < pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation)
2236 offDst = pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation - R0Addr;
2237 else if (R0Addr > pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation)
2238 {
2239 size_t offSrc = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation;
2240 Assert(offSrc < cbSrc);
2241 pbSrc -= offSrc;
2242 cbSrc -= offSrc;
2243 }
2244 if (cbSrc > cbRead - offDst)
2245 cbSrc = cbRead - offDst;
2246 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2247
2248 //if (cbSrc == cbRead)
2249 // rc = VINF_SUCCESS;
2250 }
2251
2252 return VINF_SUCCESS;
2253}
2254
2255
2256/**
2257 * Used by the DBGF stack unwinder to initialize the register state.
2258 *
2259 * @param pUVM The user mode VM handle.
2260 * @param idCpu The ID of the CPU being unwound.
2261 * @param pState The unwind state to initialize.
2262 */
2263VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2264{
2265 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2266 AssertReturnVoid(pVCpu);
2267
2268 /*
2269 * This is all we really need here if we had proper unwind info (win64 only)...
2270 */
2271 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.AssertJmpBuf.UnwindBp;
2272 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindSp;
2273 pState->uPc = pVCpu->vmm.s.AssertJmpBuf.UnwindPc;
2274
2275 /*
2276 * Locate the resume point on the stack.
2277 */
2278 uintptr_t off = 0;
2279
2280#ifdef RT_ARCH_AMD64
2281 /*
2282 * This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-amd64.asm exactly.
2283 */
2284# ifdef RT_OS_WINDOWS
2285 off += 0xa0; /* XMM6 thru XMM15 */
2286# endif
2287 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2288 off += 8;
2289 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2290 off += 8;
2291# ifdef RT_OS_WINDOWS
2292 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2293 off += 8;
2294 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2295 off += 8;
2296# endif
2297 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2298 off += 8;
2299 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2300 off += 8;
2301 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2302 off += 8;
2303 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2304 off += 8;
2305 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2306 off += 8;
2307 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2308 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp;
2309
2310#elif defined(RT_ARCH_X86)
2311 /*
2312 * This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-x86.asm exactly.
2313 */
2314 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2315 off += 4;
2316 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2317 off += 4;
2318 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2319 off += 4;
2320 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2321 off += 4;
2322 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2323 off += 4;
2324 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2325 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp;
2326#else
2327# error "Port me"
2328#endif
2329}
2330
2331
2332/**
2333 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2334 *
2335 * @returns VBox status code.
2336 * @param pVM The cross context VM structure.
2337 * @param uOperation Operation to execute.
2338 * @param u64Arg Constant argument.
2339 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2340 * details.
2341 */
2342VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2343{
2344 PVMCPU pVCpu = VMMGetCpu(pVM);
2345 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2346 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2347}
2348
2349
2350/**
2351 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2352 *
2353 * @returns VBox status code.
2354 * @param pVM The cross context VM structure.
2355 * @param pVCpu The cross context VM structure.
2356 * @param enmOperation Operation to execute.
2357 * @param u64Arg Constant argument.
2358 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2359 * details.
2360 */
2361VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2362{
2363 /*
2364 * Call ring-0.
2365 */
2366#ifdef NO_SUPCALLR0VMM
2367 int rc = VERR_GENERAL_FAILURE;
2368#else
2369 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2370#endif
2371
2372 /*
2373 * Flush the logs and deal with ring-0 assertions.
2374 */
2375#ifdef LOG_ENABLED
2376 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
2377#endif
2378 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
2379 if (rc != VERR_VMM_RING0_ASSERTION)
2380 {
2381 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2382 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2383 VERR_IPE_UNEXPECTED_INFO_STATUS);
2384 return rc;
2385 }
2386 return vmmR3HandleRing0Assert(pVM, pVCpu);
2387}
2388
2389
2390/**
2391 * Logs a ring-0 assertion ASAP after returning to ring-3.
2392 *
2393 * @returns VBox status code.
2394 * @param pVM The cross context VM structure.
2395 * @param pVCpu The cross context virtual CPU structure.
2396 */
2397static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu)
2398{
2399 RT_NOREF(pVCpu);
2400 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2401 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2402 return VERR_VMM_RING0_ASSERTION;
2403}
2404
2405
2406/**
2407 * Displays the Force action Flags.
2408 *
2409 * @param pVM The cross context VM structure.
2410 * @param pHlp The output helpers.
2411 * @param pszArgs The additional arguments (ignored).
2412 */
2413static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2414{
2415 int c;
2416 uint32_t f;
2417 NOREF(pszArgs);
2418
2419#define PRINT_FLAG(prf,flag) do { \
2420 if (f & (prf##flag)) \
2421 { \
2422 static const char *s_psz = #flag; \
2423 if (!(c % 6)) \
2424 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2425 else \
2426 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2427 c++; \
2428 f &= ~(prf##flag); \
2429 } \
2430 } while (0)
2431
2432#define PRINT_GROUP(prf,grp,sfx) do { \
2433 if (f & (prf##grp##sfx)) \
2434 { \
2435 static const char *s_psz = #grp; \
2436 if (!(c % 5)) \
2437 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2438 else \
2439 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2440 c++; \
2441 } \
2442 } while (0)
2443
2444 /*
2445 * The global flags.
2446 */
2447 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2448 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2449
2450 /* show the flag mnemonics */
2451 c = 0;
2452 f = fGlobalForcedActions;
2453 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2454 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2455 PRINT_FLAG(VM_FF_,PDM_DMA);
2456 PRINT_FLAG(VM_FF_,DBGF);
2457 PRINT_FLAG(VM_FF_,REQUEST);
2458 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2459 PRINT_FLAG(VM_FF_,RESET);
2460 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2461 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2462 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2463 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2464 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2465 if (f)
2466 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2467 else
2468 pHlp->pfnPrintf(pHlp, "\n");
2469
2470 /* the groups */
2471 c = 0;
2472 f = fGlobalForcedActions;
2473 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2474 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2475 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2476 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2477 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2478 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2479 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2480 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2481 if (c)
2482 pHlp->pfnPrintf(pHlp, "\n");
2483
2484 /*
2485 * Per CPU flags.
2486 */
2487 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2488 {
2489 PVMCPU pVCpu = pVM->apCpusR3[i];
2490 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2491 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2492
2493 /* show the flag mnemonics */
2494 c = 0;
2495 f = fLocalForcedActions;
2496 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2497 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2498 PRINT_FLAG(VMCPU_FF_,TIMER);
2499 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2500 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2501 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2502 PRINT_FLAG(VMCPU_FF_,UNHALT);
2503 PRINT_FLAG(VMCPU_FF_,IEM);
2504 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2505 PRINT_FLAG(VMCPU_FF_,DBGF);
2506 PRINT_FLAG(VMCPU_FF_,REQUEST);
2507 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2508 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2509 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2510 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2511 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2512 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2513 PRINT_FLAG(VMCPU_FF_,TO_R3);
2514 PRINT_FLAG(VMCPU_FF_,IOM);
2515 if (f)
2516 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2517 else
2518 pHlp->pfnPrintf(pHlp, "\n");
2519
2520 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2521 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2522
2523 /* the groups */
2524 c = 0;
2525 f = fLocalForcedActions;
2526 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2527 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2528 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2529 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2530 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2531 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2532 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2533 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2534 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2535 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2536 if (c)
2537 pHlp->pfnPrintf(pHlp, "\n");
2538 }
2539
2540#undef PRINT_FLAG
2541#undef PRINT_GROUP
2542}
2543
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette