VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 98970

Last change on this file since 98970 was 98103, checked in by vboxsync, 2 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 105.7 KB
Line 
1/* $Id: VMM.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28//#define NO_SUPCALLR0VMM
29
30/** @page pg_vmm VMM - The Virtual Machine Monitor
31 *
32 * The VMM component is two things at the moment, it's a component doing a few
33 * management and routing tasks, and it's the whole virtual machine monitor
34 * thing. For hysterical reasons, it is not doing all the management that one
35 * would expect, this is instead done by @ref pg_vm. We'll address this
36 * misdesign eventually, maybe.
37 *
38 * VMM is made up of these components:
39 * - @subpage pg_cfgm
40 * - @subpage pg_cpum
41 * - @subpage pg_dbgf
42 * - @subpage pg_em
43 * - @subpage pg_gim
44 * - @subpage pg_gmm
45 * - @subpage pg_gvmm
46 * - @subpage pg_hm
47 * - @subpage pg_iem
48 * - @subpage pg_iom
49 * - @subpage pg_mm
50 * - @subpage pg_nem
51 * - @subpage pg_pdm
52 * - @subpage pg_pgm
53 * - @subpage pg_selm
54 * - @subpage pg_ssm
55 * - @subpage pg_stam
56 * - @subpage pg_tm
57 * - @subpage pg_trpm
58 * - @subpage pg_vm
59 *
60 *
61 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
62 *
63 *
64 * @section sec_vmmstate VMM State
65 *
66 * @image html VM_Statechart_Diagram.gif
67 *
68 * To be written.
69 *
70 *
71 * @subsection subsec_vmm_init VMM Initialization
72 *
73 * To be written.
74 *
75 *
76 * @subsection subsec_vmm_term VMM Termination
77 *
78 * To be written.
79 *
80 *
81 * @section sec_vmm_limits VMM Limits
82 *
83 * There are various resource limits imposed by the VMM and it's
84 * sub-components. We'll list some of them here.
85 *
86 * On 64-bit hosts:
87 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
88 * can be increased up to 64K - 1.
89 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
90 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
91 * - A VM can be assigned all the memory we can use (16TB), however, the
92 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
93 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
94 *
95 * On 32-bit hosts:
96 * - Max 127 VMs. Imposed by GMM's per page structure.
97 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
98 * ROM pages. The limit is imposed by the 28-bit page ID used
99 * internally in GMM. It is also limited by PAE.
100 * - A VM can be assigned all the memory GMM can allocate, however, the
101 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
102 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
103 *
104 */
105
106
107/*********************************************************************************************************************************
108* Header Files *
109*********************************************************************************************************************************/
110#define LOG_GROUP LOG_GROUP_VMM
111#include <VBox/vmm/vmm.h>
112#include <VBox/vmm/vmapi.h>
113#include <VBox/vmm/pgm.h>
114#include <VBox/vmm/cfgm.h>
115#include <VBox/vmm/pdmqueue.h>
116#include <VBox/vmm/pdmcritsect.h>
117#include <VBox/vmm/pdmcritsectrw.h>
118#include <VBox/vmm/pdmapi.h>
119#include <VBox/vmm/cpum.h>
120#include <VBox/vmm/gim.h>
121#include <VBox/vmm/mm.h>
122#include <VBox/vmm/nem.h>
123#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
124# include <VBox/vmm/iem.h>
125#endif
126#include <VBox/vmm/iom.h>
127#include <VBox/vmm/trpm.h>
128#include <VBox/vmm/selm.h>
129#include <VBox/vmm/em.h>
130#include <VBox/sup.h>
131#include <VBox/vmm/dbgf.h>
132#include <VBox/vmm/apic.h>
133#include <VBox/vmm/ssm.h>
134#include <VBox/vmm/tm.h>
135#include "VMMInternal.h"
136#include <VBox/vmm/vmcc.h>
137
138#include <VBox/err.h>
139#include <VBox/param.h>
140#include <VBox/version.h>
141#include <VBox/vmm/hm.h>
142#include <iprt/assert.h>
143#include <iprt/alloc.h>
144#include <iprt/asm.h>
145#include <iprt/time.h>
146#include <iprt/semaphore.h>
147#include <iprt/stream.h>
148#include <iprt/string.h>
149#include <iprt/stdarg.h>
150#include <iprt/ctype.h>
151#include <iprt/x86.h>
152
153
154/*********************************************************************************************************************************
155* Defined Constants And Macros *
156*********************************************************************************************************************************/
157/** The saved state version. */
158#define VMM_SAVED_STATE_VERSION 4
159/** The saved state version used by v3.0 and earlier. (Teleportation) */
160#define VMM_SAVED_STATE_VERSION_3_0 3
161
162/** Macro for flushing the ring-0 logging. */
163#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \
164 do { \
165 size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \
166 if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \
167 || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \
168 { /* likely? */ } \
169 else \
170 vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \
171 } while (0)
172
173
174/*********************************************************************************************************************************
175* Internal Functions *
176*********************************************************************************************************************************/
177static void vmmR3InitRegisterStats(PVM pVM);
178static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
179static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
180#if 0 /* pointless when timers doesn't run on EMT */
181static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
182#endif
183static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
184 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
185static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu);
186static FNRTTHREAD vmmR3LogFlusher;
187static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf,
188 PRTLOGGER pDstLogger);
189static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
190
191
192
193/**
194 * Initializes the VMM.
195 *
196 * @returns VBox status code.
197 * @param pVM The cross context VM structure.
198 */
199VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
200{
201 LogFlow(("VMMR3Init\n"));
202
203 /*
204 * Assert alignment, sizes and order.
205 */
206 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
207 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
208
209 /*
210 * Init basic VM VMM members.
211 */
212 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
213 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
214 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
215 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
216 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
217 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
218 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
219 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
220 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
221 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
222
223#if 0 /* pointless when timers doesn't run on EMT */
224 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
225 * The EMT yield interval. The EMT yielding is a hack we employ to play a
226 * bit nicer with the rest of the system (like for instance the GUI).
227 */
228 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
229 23 /* Value arrived at after experimenting with the grub boot prompt. */);
230 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
231#endif
232
233 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
234 * Controls whether we employ per-cpu preemption timers to limit the time
235 * spent executing guest code. This option is not available on all
236 * platforms and we will silently ignore this setting then. If we are
237 * running in VT-x mode, we will use the VMX-preemption timer instead of
238 * this one when possible.
239 */
240 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
241 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
242 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
243
244 /*
245 * Initialize the VMM rendezvous semaphores.
246 */
247 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
248 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
249 return VERR_NO_MEMORY;
250 for (VMCPUID i = 0; i < pVM->cCpus; i++)
251 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
252 for (VMCPUID i = 0; i < pVM->cCpus; i++)
253 {
254 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
255 AssertRCReturn(rc, rc);
256 }
257 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
258 AssertRCReturn(rc, rc);
259 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
260 AssertRCReturn(rc, rc);
261 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
262 AssertRCReturn(rc, rc);
263 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
264 AssertRCReturn(rc, rc);
265 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
266 AssertRCReturn(rc, rc);
267 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
268 AssertRCReturn(rc, rc);
269 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
270 AssertRCReturn(rc, rc);
271 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
272 AssertRCReturn(rc, rc);
273
274 /*
275 * Register the saved state data unit.
276 */
277 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
278 NULL, NULL, NULL,
279 NULL, vmmR3Save, NULL,
280 NULL, vmmR3Load, NULL);
281 if (RT_FAILURE(rc))
282 return rc;
283
284 /*
285 * Register the Ring-0 VM handle with the session for fast ioctl calls.
286 */
287 bool const fDriverless = SUPR3IsDriverless();
288 if (!fDriverless)
289 {
290 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
291 if (RT_FAILURE(rc))
292 return rc;
293 }
294
295#ifdef VBOX_WITH_NMI
296 /*
297 * Allocate mapping for the host APIC.
298 */
299 rc = MMR3HyperReserve(pVM, HOST_PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
300 AssertRC(rc);
301#endif
302 if (RT_SUCCESS(rc))
303 {
304 /*
305 * Start the log flusher thread.
306 */
307 if (!fDriverless)
308 rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/,
309 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk");
310 if (RT_SUCCESS(rc))
311 {
312
313 /*
314 * Debug info and statistics.
315 */
316 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
317 vmmR3InitRegisterStats(pVM);
318 vmmInitFormatTypes();
319
320 return VINF_SUCCESS;
321 }
322 }
323 /** @todo Need failure cleanup? */
324
325 return rc;
326}
327
328
329/**
330 * VMMR3Init worker that register the statistics with STAM.
331 *
332 * @param pVM The cross context VM structure.
333 */
334static void vmmR3InitRegisterStats(PVM pVM)
335{
336 RT_NOREF_PV(pVM);
337
338 /* Nothing to do here in driverless mode. */
339 if (SUPR3IsDriverless())
340 return;
341
342 /*
343 * Statistics.
344 */
345 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
346 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
347 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
348 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
349 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
350 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
351 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
352 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
353 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
397
398 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes");
399 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up.");
400
401 for (VMCPUID i = 0; i < pVM->cCpus; i++)
402 {
403 PVMCPU pVCpu = pVM->apCpusR3[i];
404 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
405 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
406 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
407 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
408 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
409 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
410 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
411 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
412 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
413 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
414 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
415 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
416 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
417 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
418 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
419 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
420 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
421
422 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
423
424 PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger;
425 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i);
426 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i);
427 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i);
428 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i);
429 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i);
430 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i);
431 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i);
432 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i);
433
434 pShared = &pVCpu->vmm.s.u.s.RelLogger;
435 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i);
436 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i);
437 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i);
438 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i);
439 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i);
440 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i);
441 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i);
442 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i);
443 }
444}
445
446
447/**
448 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
449 *
450 * @returns VBox status code.
451 * @param pVM The cross context VM structure.
452 * @param pVCpu The cross context per CPU structure.
453 * @thread EMT(pVCpu)
454 */
455static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
456{
457 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
458}
459
460
461/**
462 * Initializes the R0 VMM.
463 *
464 * @returns VBox status code.
465 * @param pVM The cross context VM structure.
466 */
467VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
468{
469 int rc;
470 PVMCPU pVCpu = VMMGetCpu(pVM);
471 Assert(pVCpu && pVCpu->idCpu == 0);
472
473 /*
474 * Nothing to do here in driverless mode.
475 */
476 if (SUPR3IsDriverless())
477 return VINF_SUCCESS;
478
479 /*
480 * Make sure the ring-0 loggers are up to date.
481 */
482 rc = VMMR3UpdateLoggers(pVM);
483 if (RT_FAILURE(rc))
484 return rc;
485
486 /*
487 * Call Ring-0 entry with init code.
488 */
489#ifdef NO_SUPCALLR0VMM
490 //rc = VERR_GENERAL_FAILURE;
491 rc = VINF_SUCCESS;
492#else
493 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
494#endif
495
496 /*
497 * Flush the logs & deal with assertions.
498 */
499#ifdef LOG_ENABLED
500 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
501#endif
502 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
503 if (rc == VERR_VMM_RING0_ASSERTION)
504 rc = vmmR3HandleRing0Assert(pVM, pVCpu);
505 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
506 {
507 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
508 if (RT_SUCCESS(rc))
509 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
510 }
511
512 /*
513 * Log stuff we learned in ring-0.
514 */
515 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
516 if (pVM->vmm.s.fIsUsingContextHooks)
517 LogRel(("VMM: Enabled thread-context hooks\n"));
518 else
519 LogRel(("VMM: Thread-context hooks unavailable\n"));
520
521 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
522 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
523 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
524 else
525 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
526 if (pVM->vmm.s.fIsPreemptPossible)
527 LogRel(("VMM: Kernel preemption is possible\n"));
528 else
529 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
530
531 /*
532 * Send all EMTs to ring-0 to get their logger initialized.
533 */
534 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
535 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
536
537 return rc;
538}
539
540
541/**
542 * Called when an init phase completes.
543 *
544 * @returns VBox status code.
545 * @param pVM The cross context VM structure.
546 * @param enmWhat Which init phase.
547 */
548VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
549{
550 int rc = VINF_SUCCESS;
551
552 switch (enmWhat)
553 {
554 case VMINITCOMPLETED_RING3:
555 {
556#if 0 /* pointless when timers doesn't run on EMT */
557 /*
558 * Create the EMT yield timer.
559 */
560 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
561 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
562 AssertRCReturn(rc, rc);
563
564 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
565 AssertRCReturn(rc, rc);
566#endif
567 break;
568 }
569
570 case VMINITCOMPLETED_HM:
571 {
572 /*
573 * Disable the periodic preemption timers if we can use the
574 * VMX-preemption timer instead.
575 */
576 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
577 && HMR3IsVmxPreemptionTimerUsed(pVM))
578 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
579 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
580
581 /*
582 * Last chance for GIM to update its CPUID leaves if it requires
583 * knowledge/information from HM initialization.
584 */
585/** @todo r=bird: This shouldn't be done from here, but rather from VM.cpp. There is no dependency on VMM here. */
586 rc = GIMR3InitCompleted(pVM);
587 AssertRCReturn(rc, rc);
588
589 /*
590 * CPUM's post-initialization (print CPUIDs).
591 */
592 CPUMR3LogCpuIdAndMsrFeatures(pVM);
593 break;
594 }
595
596 default: /* shuts up gcc */
597 break;
598 }
599
600 return rc;
601}
602
603
604/**
605 * Terminate the VMM bits.
606 *
607 * @returns VBox status code.
608 * @param pVM The cross context VM structure.
609 */
610VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
611{
612 PVMCPU pVCpu = VMMGetCpu(pVM);
613 Assert(pVCpu && pVCpu->idCpu == 0);
614
615 /*
616 * Call Ring-0 entry with termination code.
617 */
618 int rc = VINF_SUCCESS;
619 if (!SUPR3IsDriverless())
620 {
621#ifndef NO_SUPCALLR0VMM
622 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
623#endif
624 }
625
626 /*
627 * Flush the logs & deal with assertions.
628 */
629#ifdef LOG_ENABLED
630 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
631#endif
632 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
633 if (rc == VERR_VMM_RING0_ASSERTION)
634 rc = vmmR3HandleRing0Assert(pVM, pVCpu);
635 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
636 {
637 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
638 if (RT_SUCCESS(rc))
639 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
640 }
641
642 /*
643 * Do clean ups.
644 */
645 for (VMCPUID i = 0; i < pVM->cCpus; i++)
646 {
647 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
648 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
649 }
650 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
651 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
652 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
653 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
654 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
655 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
656 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
657 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
658 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
659 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
660 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
661 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
662 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
663 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
664 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
665 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
666
667 vmmTermFormatTypes();
668
669 /*
670 * Wait for the log flusher thread to complete.
671 */
672 if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD)
673 {
674 int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL);
675 AssertLogRelRC(rc2);
676 if (RT_SUCCESS(rc2))
677 pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD;
678 }
679
680 return rc;
681}
682
683
684/**
685 * Applies relocations to data and code managed by this
686 * component. This function will be called at init and
687 * whenever the VMM need to relocate it self inside the GC.
688 *
689 * The VMM will need to apply relocations to the core code.
690 *
691 * @param pVM The cross context VM structure.
692 * @param offDelta The relocation delta.
693 */
694VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
695{
696 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
697 RT_NOREF(offDelta);
698
699 /*
700 * Update the logger.
701 */
702 VMMR3UpdateLoggers(pVM);
703}
704
705
706/**
707 * Worker for VMMR3UpdateLoggers.
708 */
709static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
710{
711 /*
712 * Get the group count.
713 */
714 uint32_t uGroupsCrc32 = 0;
715 uint32_t cGroups = 0;
716 uint64_t fFlags = 0;
717 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
718 Assert(rc == VERR_BUFFER_OVERFLOW);
719
720 /*
721 * Allocate the request of the right size.
722 */
723 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
724 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
725 if (pReq)
726 {
727 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
728 pReq->Hdr.cbReq = cbReq;
729 pReq->cGroups = cGroups;
730 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
731 AssertRC(rc);
732 if (RT_SUCCESS(rc))
733 {
734 /*
735 * The 64-bit value argument.
736 */
737 uint64_t fExtraArg = fReleaseLogger;
738
739 /* Only outputting to the parent VMM's logs? Enable ring-0 to flush directly. */
740 uint32_t fDst = RTLogGetDestinations(pSrcLogger);
741 fDst &= ~(RTLOGDEST_DUMMY | RTLOGDEST_F_NO_DENY | RTLOGDEST_F_DELAY_FILE | RTLOGDEST_FIXED_FILE | RTLOGDEST_FIXED_DIR);
742 if ( (fDst & (RTLOGDEST_VMM | RTLOGDEST_VMM_REL))
743 && !(fDst & ~(RTLOGDEST_VMM | RTLOGDEST_VMM_REL)))
744 fExtraArg |= (fDst & RTLOGDEST_VMM ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_DBG : 0)
745 | (fDst & RTLOGDEST_VMM_REL ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_REL : 0);
746
747 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fExtraArg, &pReq->Hdr);
748 }
749
750 RTMemFree(pReq);
751 }
752 else
753 rc = VERR_NO_MEMORY;
754 return rc;
755}
756
757
758/**
759 * Updates the settings for the RC and R0 loggers.
760 *
761 * @returns VBox status code.
762 * @param pVM The cross context VM structure.
763 * @thread EMT
764 */
765VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
766{
767 /* Nothing to do here if we're in driverless mode: */
768 if (SUPR3IsDriverless())
769 return VINF_SUCCESS;
770
771 PVMCPU pVCpu = VMMGetCpu(pVM);
772 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
773
774 /*
775 * Each EMT has each own logger instance.
776 */
777 /* Debug logging.*/
778 int rcDebug = VINF_SUCCESS;
779#ifdef LOG_ENABLED
780 PRTLOGGER const pDefault = RTLogDefaultInstance();
781 if (pDefault)
782 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
783#else
784 RT_NOREF(pVM);
785#endif
786
787 /* Release logging. */
788 int rcRelease = VINF_SUCCESS;
789 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
790 if (pRelease)
791 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
792
793 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
794}
795
796
797/**
798 * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.}
799 */
800static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser)
801{
802 PVM const pVM = (PVM)pvUser;
803 RT_NOREF(hThreadSelf);
804
805 /* Reset the flusher state before we start: */
806 pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX;
807
808 /*
809 * The work loop.
810 */
811 for (;;)
812 {
813 /*
814 * Wait for work.
815 */
816 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL);
817 if (RT_SUCCESS(rc))
818 {
819 /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */
820 VMMLOGFLUSHERENTRY Item;
821 Item.u32 = pVM->vmm.s.LogFlusherItem.u32;
822 if ( Item.s.idCpu < pVM->cCpus
823 && Item.s.idxLogger < VMMLOGGER_IDX_MAX
824 && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT)
825 {
826 /*
827 * Verify the request.
828 */
829 PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu];
830 PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger];
831 uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf;
832 if (cbToFlush > 0)
833 {
834 if (cbToFlush <= pShared->cbBuf)
835 {
836 char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3;
837 if (pchBufR3)
838 {
839 /*
840 * Do the flushing.
841 */
842 PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR
843 ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance();
844 if (pLogger)
845 {
846 char szBefore[128];
847 RTStrPrintf(szBefore, sizeof(szBefore),
848 "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n",
849 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush,
850 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped);
851 RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n");
852 }
853 }
854 else
855 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n",
856 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
857 }
858 else
859 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n",
860 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf));
861 }
862 else
863 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n",
864 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
865
866 /*
867 * Mark the descriptor as flushed and set the request flag for same.
868 */
869 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true;
870 }
871 else
872 {
873 Assert(Item.s.idCpu == UINT16_MAX);
874 Assert(Item.s.idxLogger == UINT8_MAX);
875 Assert(Item.s.idxBuffer == UINT8_MAX);
876 }
877 }
878 /*
879 * Interrupted can happen, just ignore it.
880 */
881 else if (rc == VERR_INTERRUPTED)
882 { /* ignore*/ }
883 /*
884 * The ring-0 termination code will set the shutdown flag and wake us
885 * up, and we should return with object destroyed. In case there is
886 * some kind of race, we might also get sempahore destroyed.
887 */
888 else if ( rc == VERR_OBJECT_DESTROYED
889 || rc == VERR_SEM_DESTROYED
890 || rc == VERR_INVALID_HANDLE)
891 {
892 LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc));
893 return VINF_SUCCESS;
894 }
895 /*
896 * There shouldn't be any other errors...
897 */
898 else
899 {
900 LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc));
901 AssertRC(rc);
902 RTThreadSleep(1);
903 }
904 }
905}
906
907
908/**
909 * Helper for VMM_FLUSH_R0_LOG that does the flushing.
910 *
911 * @param pVM The cross context VM structure.
912 * @param pVCpu The cross context virtual CPU structure of the calling
913 * EMT.
914 * @param pShared The shared logger data.
915 * @param idxBuf The buffer to flush.
916 * @param pDstLogger The destination IPRT logger.
917 */
918static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger)
919{
920 uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf;
921 const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n";
922 const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n";
923
924#if VMMLOGGER_BUFFER_COUNT > 1
925 /*
926 * When we have more than one log buffer, the flusher thread may still be
927 * working on the previous buffer when we get here.
928 */
929 char szBefore[64];
930 if (pShared->cFlushing > 0)
931 {
932 STAM_REL_PROFILE_START(&pShared->StatRaces, a);
933 uint64_t const nsStart = RTTimeNanoTS();
934
935 /* A no-op, but it takes the lock and the hope is that we end up waiting
936 on the flusher to finish up. */
937 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
938 if (pShared->cFlushing != 0)
939 {
940 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
941
942 /* If no luck, go to ring-0 and to proper waiting. */
943 if (pShared->cFlushing != 0)
944 {
945 STAM_REL_COUNTER_INC(&pShared->StatRacesToR0);
946 SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL);
947 }
948 }
949
950 RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n",
951 pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart);
952 pszBefore = szBefore;
953 STAM_REL_PROFILE_STOP(&pShared->StatRaces, a);
954 }
955#else
956 RT_NOREF(pVM, pVCpu);
957#endif
958
959 RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter);
960 pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true;
961}
962
963
964/**
965 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
966 *
967 * @returns Pointer to the buffer.
968 * @param pVM The cross context VM structure.
969 */
970VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
971{
972 return pVM->vmm.s.szRing0AssertMsg1;
973}
974
975
976/**
977 * Returns the VMCPU of the specified virtual CPU.
978 *
979 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
980 *
981 * @param pUVM The user mode VM handle.
982 * @param idCpu The ID of the virtual CPU.
983 */
984VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
985{
986 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
987 AssertReturn(idCpu < pUVM->cCpus, NULL);
988 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
989 return pUVM->pVM->apCpusR3[idCpu];
990}
991
992
993/**
994 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
995 *
996 * @returns Pointer to the buffer.
997 * @param pVM The cross context VM structure.
998 */
999VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1000{
1001 return pVM->vmm.s.szRing0AssertMsg2;
1002}
1003
1004
1005/**
1006 * Execute state save operation.
1007 *
1008 * @returns VBox status code.
1009 * @param pVM The cross context VM structure.
1010 * @param pSSM SSM operation handle.
1011 */
1012static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1013{
1014 LogFlow(("vmmR3Save:\n"));
1015
1016 /*
1017 * Save the started/stopped state of all CPUs except 0 as it will always
1018 * be running. This avoids breaking the saved state version. :-)
1019 */
1020 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1021 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
1022
1023 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1024}
1025
1026
1027/**
1028 * Execute state load operation.
1029 *
1030 * @returns VBox status code.
1031 * @param pVM The cross context VM structure.
1032 * @param pSSM SSM operation handle.
1033 * @param uVersion Data layout version.
1034 * @param uPass The data pass.
1035 */
1036static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1037{
1038 LogFlow(("vmmR3Load:\n"));
1039 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1040
1041 /*
1042 * Validate version.
1043 */
1044 if ( uVersion != VMM_SAVED_STATE_VERSION
1045 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1046 {
1047 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1048 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1049 }
1050
1051 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1052 {
1053 /* Ignore the stack bottom, stack pointer and stack bits. */
1054 RTRCPTR RCPtrIgnored;
1055 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1056 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1057#ifdef RT_OS_DARWIN
1058 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1059 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1060 && SSMR3HandleRevision(pSSM) >= 48858
1061 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1062 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1063 )
1064 SSMR3Skip(pSSM, 16384);
1065 else
1066 SSMR3Skip(pSSM, 8192);
1067#else
1068 SSMR3Skip(pSSM, 8192);
1069#endif
1070 }
1071
1072 /*
1073 * Restore the VMCPU states. VCPU 0 is always started.
1074 */
1075 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
1076 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1077 {
1078 bool fStarted;
1079 int rc = SSMR3GetBool(pSSM, &fStarted);
1080 if (RT_FAILURE(rc))
1081 return rc;
1082 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1083 }
1084
1085 /* terminator */
1086 uint32_t u32;
1087 int rc = SSMR3GetU32(pSSM, &u32);
1088 if (RT_FAILURE(rc))
1089 return rc;
1090 if (u32 != UINT32_MAX)
1091 {
1092 AssertMsgFailed(("u32=%#x\n", u32));
1093 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1094 }
1095 return VINF_SUCCESS;
1096}
1097
1098
1099/**
1100 * Suspends the CPU yielder.
1101 *
1102 * @param pVM The cross context VM structure.
1103 */
1104VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1105{
1106#if 0 /* pointless when timers doesn't run on EMT */
1107 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1108 if (!pVM->vmm.s.cYieldResumeMillies)
1109 {
1110 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1111 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1112 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1113 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1114 else
1115 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1116 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1117 }
1118 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1119#else
1120 RT_NOREF(pVM);
1121#endif
1122}
1123
1124
1125/**
1126 * Stops the CPU yielder.
1127 *
1128 * @param pVM The cross context VM structure.
1129 */
1130VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1131{
1132#if 0 /* pointless when timers doesn't run on EMT */
1133 if (!pVM->vmm.s.cYieldResumeMillies)
1134 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1135 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1136 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1137#else
1138 RT_NOREF(pVM);
1139#endif
1140}
1141
1142
1143/**
1144 * Resumes the CPU yielder when it has been a suspended or stopped.
1145 *
1146 * @param pVM The cross context VM structure.
1147 */
1148VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1149{
1150#if 0 /* pointless when timers doesn't run on EMT */
1151 if (pVM->vmm.s.cYieldResumeMillies)
1152 {
1153 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1154 pVM->vmm.s.cYieldResumeMillies = 0;
1155 }
1156#else
1157 RT_NOREF(pVM);
1158#endif
1159}
1160
1161
1162#if 0 /* pointless when timers doesn't run on EMT */
1163/**
1164 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1165 *
1166 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1167 */
1168static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1169{
1170 NOREF(pvUser);
1171
1172 /*
1173 * This really needs some careful tuning. While we shouldn't be too greedy since
1174 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1175 * because that'll cause us to stop up.
1176 *
1177 * The current logic is to use the default interval when there is no lag worth
1178 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1179 *
1180 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1181 * so the lag is up to date.)
1182 */
1183 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1184 if ( u64Lag < 50000000 /* 50ms */
1185 || ( u64Lag < 1000000000 /* 1s */
1186 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1187 )
1188 {
1189 uint64_t u64Elapsed = RTTimeNanoTS();
1190 pVM->vmm.s.u64LastYield = u64Elapsed;
1191
1192 RTThreadYield();
1193
1194#ifdef LOG_ENABLED
1195 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1196 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1197#endif
1198 }
1199 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1200}
1201#endif
1202
1203
1204/**
1205 * Executes guest code (Intel VT-x and AMD-V).
1206 *
1207 * @param pVM The cross context VM structure.
1208 * @param pVCpu The cross context virtual CPU structure.
1209 */
1210VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1211{
1212 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1213
1214 int rc;
1215 do
1216 {
1217#ifdef NO_SUPCALLR0VMM
1218 rc = VERR_GENERAL_FAILURE;
1219#else
1220 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1221 if (RT_LIKELY(rc == VINF_SUCCESS))
1222 rc = pVCpu->vmm.s.iLastGZRc;
1223#endif
1224 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1225
1226#if 0 /** @todo triggers too often */
1227 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1228#endif
1229
1230 /*
1231 * Flush the logs
1232 */
1233#ifdef LOG_ENABLED
1234 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1235#endif
1236 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1237 if (rc != VERR_VMM_RING0_ASSERTION)
1238 {
1239 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1240 return rc;
1241 }
1242 return vmmR3HandleRing0Assert(pVM, pVCpu);
1243}
1244
1245
1246/**
1247 * Perform one of the fast I/O control VMMR0 operation.
1248 *
1249 * @returns VBox strict status code.
1250 * @param pVM The cross context VM structure.
1251 * @param pVCpu The cross context virtual CPU structure.
1252 * @param enmOperation The operation to perform.
1253 */
1254VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1255{
1256 VBOXSTRICTRC rcStrict;
1257 do
1258 {
1259#ifdef NO_SUPCALLR0VMM
1260 rcStrict = VERR_GENERAL_FAILURE;
1261#else
1262 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1263 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1264 rcStrict = pVCpu->vmm.s.iLastGZRc;
1265#endif
1266 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1267
1268 /*
1269 * Flush the logs
1270 */
1271#ifdef LOG_ENABLED
1272 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1273#endif
1274 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1275 if (rcStrict != VERR_VMM_RING0_ASSERTION)
1276 return rcStrict;
1277 return vmmR3HandleRing0Assert(pVM, pVCpu);
1278}
1279
1280
1281/**
1282 * VCPU worker for VMMR3SendStartupIpi.
1283 *
1284 * @param pVM The cross context VM structure.
1285 * @param idCpu Virtual CPU to perform SIPI on.
1286 * @param uVector The SIPI vector.
1287 */
1288static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1289{
1290 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1291 VMCPU_ASSERT_EMT(pVCpu);
1292
1293 /*
1294 * In the INIT state, the target CPU is only responsive to an SIPI.
1295 * This is also true for when when the CPU is in VMX non-root mode.
1296 *
1297 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1298 * See Intel spec. 26.6.2 "Activity State".
1299 */
1300 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1301 return VINF_SUCCESS;
1302
1303 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1304#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1305 if (CPUMIsGuestInVmxRootMode(pCtx))
1306 {
1307 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1308 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1309 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1310
1311 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1312 return VINF_SUCCESS;
1313 }
1314#endif
1315
1316 pCtx->cs.Sel = uVector << 8;
1317 pCtx->cs.ValidSel = uVector << 8;
1318 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1319 pCtx->cs.u64Base = uVector << 12;
1320 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1321 pCtx->rip = 0;
1322
1323 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1324
1325# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1326 EMSetState(pVCpu, EMSTATE_HALTED);
1327 return VINF_EM_RESCHEDULE;
1328# else /* And if we go the VMCPU::enmState way it can stay here. */
1329 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1330 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1331 return VINF_SUCCESS;
1332# endif
1333}
1334
1335
1336/**
1337 * VCPU worker for VMMR3SendInitIpi.
1338 *
1339 * @returns VBox status code.
1340 * @param pVM The cross context VM structure.
1341 * @param idCpu Virtual CPU to perform SIPI on.
1342 */
1343static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1344{
1345 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1346 VMCPU_ASSERT_EMT(pVCpu);
1347
1348 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1349
1350 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1351 * wait-for-SIPI state. Verify. */
1352
1353 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1354#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1355 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1356 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1357 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1358#endif
1359
1360 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1361 * IPI (e.g. SVM_EXIT_INIT). */
1362
1363 PGMR3ResetCpu(pVM, pVCpu);
1364 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1365 APICR3InitIpi(pVCpu);
1366 TRPMR3ResetCpu(pVCpu);
1367 CPUMR3ResetCpu(pVM, pVCpu);
1368 EMR3ResetCpu(pVCpu);
1369 HMR3ResetCpu(pVCpu);
1370 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1371
1372 /* This will trickle up on the target EMT. */
1373 return VINF_EM_WAIT_SIPI;
1374}
1375
1376
1377/**
1378 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1379 * vector-dependent state and unhalting processor.
1380 *
1381 * @param pVM The cross context VM structure.
1382 * @param idCpu Virtual CPU to perform SIPI on.
1383 * @param uVector SIPI vector.
1384 */
1385VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1386{
1387 AssertReturnVoid(idCpu < pVM->cCpus);
1388
1389 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1390 AssertRC(rc);
1391}
1392
1393
1394/**
1395 * Sends init IPI to the virtual CPU.
1396 *
1397 * @param pVM The cross context VM structure.
1398 * @param idCpu Virtual CPU to perform int IPI on.
1399 */
1400VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1401{
1402 AssertReturnVoid(idCpu < pVM->cCpus);
1403
1404 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1405 AssertRC(rc);
1406}
1407
1408
1409/**
1410 * Registers the guest memory range that can be used for patching.
1411 *
1412 * @returns VBox status code.
1413 * @param pVM The cross context VM structure.
1414 * @param pPatchMem Patch memory range.
1415 * @param cbPatchMem Size of the memory range.
1416 */
1417VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1418{
1419 VM_ASSERT_EMT(pVM);
1420 if (HMIsEnabled(pVM))
1421 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1422
1423 return VERR_NOT_SUPPORTED;
1424}
1425
1426
1427/**
1428 * Deregisters the guest memory range that can be used for patching.
1429 *
1430 * @returns VBox status code.
1431 * @param pVM The cross context VM structure.
1432 * @param pPatchMem Patch memory range.
1433 * @param cbPatchMem Size of the memory range.
1434 */
1435VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1436{
1437 if (HMIsEnabled(pVM))
1438 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1439
1440 return VINF_SUCCESS;
1441}
1442
1443
1444/**
1445 * Common recursion handler for the other EMTs.
1446 *
1447 * @returns Strict VBox status code.
1448 * @param pVM The cross context VM structure.
1449 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1450 * @param rcStrict Current status code to be combined with the one
1451 * from this recursion and returned.
1452 */
1453static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1454{
1455 int rc2;
1456
1457 /*
1458 * We wait here while the initiator of this recursion reconfigures
1459 * everything. The last EMT to get in signals the initiator.
1460 */
1461 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1462 {
1463 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1464 AssertLogRelRC(rc2);
1465 }
1466
1467 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1468 AssertLogRelRC(rc2);
1469
1470 /*
1471 * Do the normal rendezvous processing.
1472 */
1473 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1474 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1475
1476 /*
1477 * Wait for the initiator to restore everything.
1478 */
1479 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1480 AssertLogRelRC(rc2);
1481
1482 /*
1483 * Last thread out of here signals the initiator.
1484 */
1485 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1486 {
1487 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1488 AssertLogRelRC(rc2);
1489 }
1490
1491 /*
1492 * Merge status codes and return.
1493 */
1494 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1495 if ( rcStrict2 != VINF_SUCCESS
1496 && ( rcStrict == VINF_SUCCESS
1497 || rcStrict > rcStrict2))
1498 rcStrict = rcStrict2;
1499 return rcStrict;
1500}
1501
1502
1503/**
1504 * Count returns and have the last non-caller EMT wake up the caller.
1505 *
1506 * @returns VBox strict informational status code for EM scheduling. No failures
1507 * will be returned here, those are for the caller only.
1508 *
1509 * @param pVM The cross context VM structure.
1510 * @param rcStrict The current accumulated recursive status code,
1511 * to be merged with i32RendezvousStatus and
1512 * returned.
1513 */
1514DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1515{
1516 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1517
1518 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1519 if (cReturned == pVM->cCpus - 1U)
1520 {
1521 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1522 AssertLogRelRC(rc);
1523 }
1524
1525 /*
1526 * Merge the status codes, ignoring error statuses in this code path.
1527 */
1528 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1529 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1530 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1531 VERR_IPE_UNEXPECTED_INFO_STATUS);
1532
1533 if (RT_SUCCESS(rcStrict2))
1534 {
1535 if ( rcStrict2 != VINF_SUCCESS
1536 && ( rcStrict == VINF_SUCCESS
1537 || rcStrict > rcStrict2))
1538 rcStrict = rcStrict2;
1539 }
1540 return rcStrict;
1541}
1542
1543
1544/**
1545 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1546 *
1547 * @returns VBox strict informational status code for EM scheduling. No failures
1548 * will be returned here, those are for the caller only. When
1549 * fIsCaller is set, VINF_SUCCESS is always returned.
1550 *
1551 * @param pVM The cross context VM structure.
1552 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1553 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1554 * not.
1555 * @param fFlags The flags.
1556 * @param pfnRendezvous The callback.
1557 * @param pvUser The user argument for the callback.
1558 */
1559static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1560 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1561{
1562 int rc;
1563 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1564
1565 /*
1566 * Enter, the last EMT triggers the next callback phase.
1567 */
1568 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1569 if (cEntered != pVM->cCpus)
1570 {
1571 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1572 {
1573 /* Wait for our turn. */
1574 for (;;)
1575 {
1576 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1577 AssertLogRelRC(rc);
1578 if (!pVM->vmm.s.fRendezvousRecursion)
1579 break;
1580 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1581 }
1582 }
1583 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1584 {
1585 /* Wait for the last EMT to arrive and wake everyone up. */
1586 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1587 AssertLogRelRC(rc);
1588 Assert(!pVM->vmm.s.fRendezvousRecursion);
1589 }
1590 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1591 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1592 {
1593 /* Wait for our turn. */
1594 for (;;)
1595 {
1596 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1597 AssertLogRelRC(rc);
1598 if (!pVM->vmm.s.fRendezvousRecursion)
1599 break;
1600 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1601 }
1602 }
1603 else
1604 {
1605 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1606
1607 /*
1608 * The execute once is handled specially to optimize the code flow.
1609 *
1610 * The last EMT to arrive will perform the callback and the other
1611 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1612 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1613 * returns, that EMT will initiate the normal return sequence.
1614 */
1615 if (!fIsCaller)
1616 {
1617 for (;;)
1618 {
1619 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1620 AssertLogRelRC(rc);
1621 if (!pVM->vmm.s.fRendezvousRecursion)
1622 break;
1623 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1624 }
1625
1626 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1627 }
1628 return VINF_SUCCESS;
1629 }
1630 }
1631 else
1632 {
1633 /*
1634 * All EMTs are waiting, clear the FF and take action according to the
1635 * execution method.
1636 */
1637 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1638
1639 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1640 {
1641 /* Wake up everyone. */
1642 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1643 AssertLogRelRC(rc);
1644 }
1645 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1646 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1647 {
1648 /* Figure out who to wake up and wake it up. If it's ourself, then
1649 it's easy otherwise wait for our turn. */
1650 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1651 ? 0
1652 : pVM->cCpus - 1U;
1653 if (pVCpu->idCpu != iFirst)
1654 {
1655 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1656 AssertLogRelRC(rc);
1657 for (;;)
1658 {
1659 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1660 AssertLogRelRC(rc);
1661 if (!pVM->vmm.s.fRendezvousRecursion)
1662 break;
1663 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1664 }
1665 }
1666 }
1667 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1668 }
1669
1670
1671 /*
1672 * Do the callback and update the status if necessary.
1673 */
1674 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1675 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1676 {
1677 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1678 if (rcStrict2 != VINF_SUCCESS)
1679 {
1680 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1681 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1682 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1683 int32_t i32RendezvousStatus;
1684 do
1685 {
1686 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1687 if ( rcStrict2 == i32RendezvousStatus
1688 || RT_FAILURE(i32RendezvousStatus)
1689 || ( i32RendezvousStatus != VINF_SUCCESS
1690 && rcStrict2 > i32RendezvousStatus))
1691 break;
1692 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1693 }
1694 }
1695
1696 /*
1697 * Increment the done counter and take action depending on whether we're
1698 * the last to finish callback execution.
1699 */
1700 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1701 if ( cDone != pVM->cCpus
1702 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1703 {
1704 /* Signal the next EMT? */
1705 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1706 {
1707 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1708 AssertLogRelRC(rc);
1709 }
1710 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1711 {
1712 Assert(cDone == pVCpu->idCpu + 1U);
1713 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1714 AssertLogRelRC(rc);
1715 }
1716 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1717 {
1718 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1719 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1720 AssertLogRelRC(rc);
1721 }
1722
1723 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1724 if (!fIsCaller)
1725 {
1726 for (;;)
1727 {
1728 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1729 AssertLogRelRC(rc);
1730 if (!pVM->vmm.s.fRendezvousRecursion)
1731 break;
1732 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1733 }
1734 }
1735 }
1736 else
1737 {
1738 /* Callback execution is all done, tell the rest to return. */
1739 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1740 AssertLogRelRC(rc);
1741 }
1742
1743 if (!fIsCaller)
1744 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1745 return rcStrictRecursion;
1746}
1747
1748
1749/**
1750 * Called in response to VM_FF_EMT_RENDEZVOUS.
1751 *
1752 * @returns VBox strict status code - EM scheduling. No errors will be returned
1753 * here, nor will any non-EM scheduling status codes be returned.
1754 *
1755 * @param pVM The cross context VM structure.
1756 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1757 *
1758 * @thread EMT
1759 */
1760VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1761{
1762 Assert(!pVCpu->vmm.s.fInRendezvous);
1763 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1764 pVCpu->vmm.s.fInRendezvous = true;
1765 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1766 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1767 pVCpu->vmm.s.fInRendezvous = false;
1768 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1769 return VBOXSTRICTRC_TODO(rcStrict);
1770}
1771
1772
1773/**
1774 * Helper for resetting an single wakeup event sempahore.
1775 *
1776 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1777 * @param hEvt The event semaphore to reset.
1778 */
1779static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1780{
1781 for (uint32_t cLoops = 0; ; cLoops++)
1782 {
1783 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1784 if (rc != VINF_SUCCESS || cLoops > _4K)
1785 return rc;
1786 }
1787}
1788
1789
1790/**
1791 * Worker for VMMR3EmtRendezvous that handles recursion.
1792 *
1793 * @returns VBox strict status code. This will be the first error,
1794 * VINF_SUCCESS, or an EM scheduling status code.
1795 *
1796 * @param pVM The cross context VM structure.
1797 * @param pVCpu The cross context virtual CPU structure of the
1798 * calling EMT.
1799 * @param fFlags Flags indicating execution methods. See
1800 * grp_VMMR3EmtRendezvous_fFlags.
1801 * @param pfnRendezvous The callback.
1802 * @param pvUser User argument for the callback.
1803 *
1804 * @thread EMT(pVCpu)
1805 */
1806static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1807 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1808{
1809 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1810 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1811 Assert(pVCpu->vmm.s.fInRendezvous);
1812
1813 /*
1814 * Save the current state.
1815 */
1816 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1817 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1818 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1819 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1820 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1821
1822 /*
1823 * Check preconditions and save the current state.
1824 */
1825 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1826 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1827 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1828 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1829 VERR_INTERNAL_ERROR);
1830 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1831 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1832
1833 /*
1834 * Reset the recursion prep and pop semaphores.
1835 */
1836 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1837 AssertLogRelRCReturn(rc, rc);
1838 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1839 AssertLogRelRCReturn(rc, rc);
1840 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1841 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1842 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1843 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1844
1845 /*
1846 * Usher the other thread into the recursion routine.
1847 */
1848 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1849 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1850
1851 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1852 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1853 while (cLeft-- > 0)
1854 {
1855 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1856 AssertLogRelRC(rc);
1857 }
1858 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1859 {
1860 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1861 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1862 {
1863 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1864 AssertLogRelRC(rc);
1865 }
1866 }
1867 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1868 {
1869 Assert(cLeft == pVCpu->idCpu);
1870 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1871 {
1872 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1873 AssertLogRelRC(rc);
1874 }
1875 }
1876 else
1877 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1878 VERR_INTERNAL_ERROR_4);
1879
1880 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1881 AssertLogRelRC(rc);
1882 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1883 AssertLogRelRC(rc);
1884
1885
1886 /*
1887 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1888 */
1889 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1890 {
1891 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1892 AssertLogRelRC(rc);
1893 }
1894
1895 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1896
1897 /*
1898 * Clear the slate and setup the new rendezvous.
1899 */
1900 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1901 {
1902 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1903 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1904 }
1905 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1906 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1907 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1908 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1909
1910 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1911 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1912 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1913 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1914 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1915 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1916 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1917 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1918
1919 /*
1920 * We're ready to go now, do normal rendezvous processing.
1921 */
1922 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1923 AssertLogRelRC(rc);
1924
1925 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1926
1927 /*
1928 * The caller waits for the other EMTs to be done, return and waiting on the
1929 * pop semaphore.
1930 */
1931 for (;;)
1932 {
1933 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1934 AssertLogRelRC(rc);
1935 if (!pVM->vmm.s.fRendezvousRecursion)
1936 break;
1937 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1938 }
1939
1940 /*
1941 * Get the return code and merge it with the above recursion status.
1942 */
1943 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1944 if ( rcStrict2 != VINF_SUCCESS
1945 && ( rcStrict == VINF_SUCCESS
1946 || rcStrict > rcStrict2))
1947 rcStrict = rcStrict2;
1948
1949 /*
1950 * Restore the parent rendezvous state.
1951 */
1952 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1953 {
1954 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1955 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1956 }
1957 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1958 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1959 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1960 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1961
1962 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1963 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1964 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1965 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1966 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1967 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1968 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1969
1970 /*
1971 * Usher the other EMTs back to their parent recursion routine, waiting
1972 * for them to all get there before we return (makes sure they've been
1973 * scheduled and are past the pop event sem, see below).
1974 */
1975 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1976 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1977 AssertLogRelRC(rc);
1978
1979 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1980 {
1981 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1982 AssertLogRelRC(rc);
1983 }
1984
1985 /*
1986 * We must reset the pop semaphore on the way out (doing the pop caller too,
1987 * just in case). The parent may be another recursion.
1988 */
1989 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1990 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1991
1992 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1993
1994 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1995 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1996 return rcStrict;
1997}
1998
1999
2000/**
2001 * EMT rendezvous.
2002 *
2003 * Gathers all the EMTs and execute some code on each of them, either in a one
2004 * by one fashion or all at once.
2005 *
2006 * @returns VBox strict status code. This will be the first error,
2007 * VINF_SUCCESS, or an EM scheduling status code.
2008 *
2009 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2010 * doesn't support it or if the recursion is too deep.
2011 *
2012 * @param pVM The cross context VM structure.
2013 * @param fFlags Flags indicating execution methods. See
2014 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2015 * descending and ascending rendezvous types support
2016 * recursion from inside @a pfnRendezvous.
2017 * @param pfnRendezvous The callback.
2018 * @param pvUser User argument for the callback.
2019 *
2020 * @thread Any.
2021 */
2022VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2023{
2024 /*
2025 * Validate input.
2026 */
2027 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2028 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2029 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2030 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2031 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2032 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2033 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2034 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2035
2036 VBOXSTRICTRC rcStrict;
2037 PVMCPU pVCpu = VMMGetCpu(pVM);
2038 if (!pVCpu)
2039 {
2040 /*
2041 * Forward the request to an EMT thread.
2042 */
2043 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2044 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2045 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2046 else
2047 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2048 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2049 }
2050 else if ( pVM->cCpus == 1
2051 || ( pVM->enmVMState == VMSTATE_DESTROYING
2052 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2053 {
2054 /*
2055 * Shortcut for the single EMT case.
2056 *
2057 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2058 * during vmR3Destroy after other emulation threads have started terminating.
2059 */
2060 if (!pVCpu->vmm.s.fInRendezvous)
2061 {
2062 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2063 pVCpu->vmm.s.fInRendezvous = true;
2064 pVM->vmm.s.fRendezvousFlags = fFlags;
2065 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2066 pVCpu->vmm.s.fInRendezvous = false;
2067 }
2068 else
2069 {
2070 /* Recursion. Do the same checks as in the SMP case. */
2071 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2072 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2073 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2074 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2075 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2076 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2077 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2078 , VERR_DEADLOCK);
2079
2080 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2081 pVM->vmm.s.cRendezvousRecursions++;
2082 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2083 pVM->vmm.s.fRendezvousFlags = fFlags;
2084
2085 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2086
2087 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2088 pVM->vmm.s.cRendezvousRecursions--;
2089 }
2090 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2091 }
2092 else
2093 {
2094 /*
2095 * Spin lock. If busy, check for recursion, if not recursing wait for
2096 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2097 */
2098 int rc;
2099 rcStrict = VINF_SUCCESS;
2100 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2101 {
2102 /* Allow recursion in some cases. */
2103 if ( pVCpu->vmm.s.fInRendezvous
2104 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2105 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2106 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2107 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2108 ))
2109 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2110
2111 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2112 VERR_DEADLOCK);
2113
2114 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2115 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2116 {
2117 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2118 {
2119 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2120 if ( rc != VINF_SUCCESS
2121 && ( rcStrict == VINF_SUCCESS
2122 || rcStrict > rc))
2123 rcStrict = rc;
2124 /** @todo Perhaps deal with termination here? */
2125 }
2126 ASMNopPause();
2127 }
2128 }
2129
2130 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2131 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2132 Assert(!pVCpu->vmm.s.fInRendezvous);
2133 pVCpu->vmm.s.fInRendezvous = true;
2134
2135 /*
2136 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2137 */
2138 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2139 {
2140 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2141 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2142 }
2143 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2144 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2145 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2146 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2147 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2148 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2149 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2150 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2151 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2152 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2153 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2154
2155 /*
2156 * Set the FF and poke the other EMTs.
2157 */
2158 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2159 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2160
2161 /*
2162 * Do the same ourselves.
2163 */
2164 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2165
2166 /*
2167 * The caller waits for the other EMTs to be done and return before doing
2168 * the cleanup. This makes away with wakeup / reset races we would otherwise
2169 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2170 */
2171 for (;;)
2172 {
2173 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2174 AssertLogRelRC(rc);
2175 if (!pVM->vmm.s.fRendezvousRecursion)
2176 break;
2177 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2178 }
2179
2180 /*
2181 * Get the return code and clean up a little bit.
2182 */
2183 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2184 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2185
2186 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2187 pVCpu->vmm.s.fInRendezvous = false;
2188
2189 /*
2190 * Merge rcStrict, rcStrict2 and rcStrict3.
2191 */
2192 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2193 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2194 if ( rcStrict2 != VINF_SUCCESS
2195 && ( rcStrict == VINF_SUCCESS
2196 || rcStrict > rcStrict2))
2197 rcStrict = rcStrict2;
2198 if ( rcStrict3 != VINF_SUCCESS
2199 && ( rcStrict == VINF_SUCCESS
2200 || rcStrict > rcStrict3))
2201 rcStrict = rcStrict3;
2202 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2203 }
2204
2205 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2206 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2207 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2208 VERR_IPE_UNEXPECTED_INFO_STATUS);
2209 return VBOXSTRICTRC_VAL(rcStrict);
2210}
2211
2212
2213/**
2214 * Interface for vmR3SetHaltMethodU.
2215 *
2216 * @param pVCpu The cross context virtual CPU structure of the
2217 * calling EMT.
2218 * @param fMayHaltInRing0 The new state.
2219 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2220 * @thread EMT(pVCpu)
2221 *
2222 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2223 * component.
2224 */
2225VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2226{
2227 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2228 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2229 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2230}
2231
2232
2233/**
2234 * Read from the ring 0 jump buffer stack.
2235 *
2236 * @returns VBox status code.
2237 *
2238 * @param pVM The cross context VM structure.
2239 * @param idCpu The ID of the source CPU context (for the address).
2240 * @param R0Addr Where to start reading.
2241 * @param pvBuf Where to store the data we've read.
2242 * @param cbRead The number of bytes to read.
2243 */
2244VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2245{
2246 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2247 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2248 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2249
2250 /*
2251 * Hopefully we've got all the requested bits. If not supply what we
2252 * can and zero the remaining stuff.
2253 */
2254 RTHCUINTPTR off = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindSp;
2255 if (off < pVCpu->vmm.s.AssertJmpBuf.cbStackValid)
2256 {
2257 size_t const cbValid = pVCpu->vmm.s.AssertJmpBuf.cbStackValid - off;
2258 if (cbRead <= cbValid)
2259 {
2260 memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbRead);
2261 return VINF_SUCCESS;
2262 }
2263
2264 memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbValid);
2265 RT_BZERO((uint8_t *)pvBuf + cbValid, cbRead - cbValid);
2266 }
2267 else
2268 RT_BZERO(pvBuf, cbRead);
2269
2270 /*
2271 * Supply the setjmp return RIP/EIP if requested.
2272 */
2273 if ( pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2274 && pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation < R0Addr + cbRead)
2275 {
2276 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue;
2277 size_t cbSrc = sizeof(pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue);
2278 size_t offDst = 0;
2279 if (R0Addr < pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation)
2280 offDst = pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation - R0Addr;
2281 else if (R0Addr > pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation)
2282 {
2283 size_t offSrc = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation;
2284 Assert(offSrc < cbSrc);
2285 pbSrc -= offSrc;
2286 cbSrc -= offSrc;
2287 }
2288 if (cbSrc > cbRead - offDst)
2289 cbSrc = cbRead - offDst;
2290 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2291
2292 //if (cbSrc == cbRead)
2293 // rc = VINF_SUCCESS;
2294 }
2295
2296 return VINF_SUCCESS;
2297}
2298
2299
2300/**
2301 * Used by the DBGF stack unwinder to initialize the register state.
2302 *
2303 * @param pUVM The user mode VM handle.
2304 * @param idCpu The ID of the CPU being unwound.
2305 * @param pState The unwind state to initialize.
2306 */
2307VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2308{
2309 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2310 AssertReturnVoid(pVCpu);
2311
2312 /*
2313 * This is all we really need here if we had proper unwind info (win64 only)...
2314 */
2315 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.AssertJmpBuf.UnwindBp;
2316 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindSp;
2317 pState->uPc = pVCpu->vmm.s.AssertJmpBuf.UnwindPc;
2318
2319 /*
2320 * Locate the resume point on the stack.
2321 */
2322#ifdef RT_ARCH_AMD64
2323 /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-amd64.asm exactly. */
2324 uintptr_t off = 0;
2325# ifdef RT_OS_WINDOWS
2326 off += 0xa0; /* XMM6 thru XMM15 */
2327# endif
2328 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2329 off += 8;
2330 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2331 off += 8;
2332# ifdef RT_OS_WINDOWS
2333 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2334 off += 8;
2335 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2336 off += 8;
2337# endif
2338 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2339 off += 8;
2340 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2341 off += 8;
2342 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2343 off += 8;
2344 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2345 off += 8;
2346 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2347 off += 8;
2348 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2349 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp;
2350
2351#elif defined(RT_ARCH_X86)
2352 /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-x86.asm exactly. */
2353 uintptr_t off = 0;
2354 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2355 off += 4;
2356 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2357 off += 4;
2358 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2359 off += 4;
2360 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2361 off += 4;
2362 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2363 off += 4;
2364 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2365 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp;
2366
2367#elif defined(RT_ARCH_ARM64)
2368 /** @todo PORTME: arm ring-0 */
2369
2370#else
2371# error "Port me"
2372#endif
2373}
2374
2375
2376/**
2377 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2378 *
2379 * @returns VBox status code.
2380 * @param pVM The cross context VM structure.
2381 * @param uOperation Operation to execute.
2382 * @param u64Arg Constant argument.
2383 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2384 * details.
2385 */
2386VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2387{
2388 PVMCPU pVCpu = VMMGetCpu(pVM);
2389 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2390 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2391}
2392
2393
2394/**
2395 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2396 *
2397 * @returns VBox status code.
2398 * @param pVM The cross context VM structure.
2399 * @param pVCpu The cross context VM structure.
2400 * @param enmOperation Operation to execute.
2401 * @param u64Arg Constant argument.
2402 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2403 * details.
2404 */
2405VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2406{
2407 /*
2408 * Call ring-0.
2409 */
2410#ifdef NO_SUPCALLR0VMM
2411 int rc = VERR_GENERAL_FAILURE;
2412#else
2413 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2414#endif
2415
2416 /*
2417 * Flush the logs and deal with ring-0 assertions.
2418 */
2419#ifdef LOG_ENABLED
2420 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
2421#endif
2422 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
2423 if (rc != VERR_VMM_RING0_ASSERTION)
2424 {
2425 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2426 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2427 VERR_IPE_UNEXPECTED_INFO_STATUS);
2428 return rc;
2429 }
2430 return vmmR3HandleRing0Assert(pVM, pVCpu);
2431}
2432
2433
2434/**
2435 * Logs a ring-0 assertion ASAP after returning to ring-3.
2436 *
2437 * @returns VBox status code.
2438 * @param pVM The cross context VM structure.
2439 * @param pVCpu The cross context virtual CPU structure.
2440 */
2441static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu)
2442{
2443 RT_NOREF(pVCpu);
2444 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2445 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2446 return VERR_VMM_RING0_ASSERTION;
2447}
2448
2449
2450/**
2451 * Displays the Force action Flags.
2452 *
2453 * @param pVM The cross context VM structure.
2454 * @param pHlp The output helpers.
2455 * @param pszArgs The additional arguments (ignored).
2456 */
2457static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2458{
2459 int c;
2460 uint32_t f;
2461 NOREF(pszArgs);
2462
2463#define PRINT_FLAG(prf,flag) do { \
2464 if (f & (prf##flag)) \
2465 { \
2466 static const char *s_psz = #flag; \
2467 if (!(c % 6)) \
2468 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2469 else \
2470 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2471 c++; \
2472 f &= ~(prf##flag); \
2473 } \
2474 } while (0)
2475
2476#define PRINT_GROUP(prf,grp,sfx) do { \
2477 if (f & (prf##grp##sfx)) \
2478 { \
2479 static const char *s_psz = #grp; \
2480 if (!(c % 5)) \
2481 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2482 else \
2483 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2484 c++; \
2485 } \
2486 } while (0)
2487
2488 /*
2489 * The global flags.
2490 */
2491 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2492 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2493
2494 /* show the flag mnemonics */
2495 c = 0;
2496 f = fGlobalForcedActions;
2497 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2498 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2499 PRINT_FLAG(VM_FF_,PDM_DMA);
2500 PRINT_FLAG(VM_FF_,DBGF);
2501 PRINT_FLAG(VM_FF_,REQUEST);
2502 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2503 PRINT_FLAG(VM_FF_,RESET);
2504 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2505 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2506 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2507 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2508 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2509 if (f)
2510 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2511 else
2512 pHlp->pfnPrintf(pHlp, "\n");
2513
2514 /* the groups */
2515 c = 0;
2516 f = fGlobalForcedActions;
2517 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2518 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2519 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2520 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2521 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2522 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2523 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2524 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2525 if (c)
2526 pHlp->pfnPrintf(pHlp, "\n");
2527
2528 /*
2529 * Per CPU flags.
2530 */
2531 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2532 {
2533 PVMCPU pVCpu = pVM->apCpusR3[i];
2534 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2535 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2536
2537 /* show the flag mnemonics */
2538 c = 0;
2539 f = fLocalForcedActions;
2540 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2541 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2542 PRINT_FLAG(VMCPU_FF_,TIMER);
2543 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2544 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2545 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2546 PRINT_FLAG(VMCPU_FF_,UNHALT);
2547 PRINT_FLAG(VMCPU_FF_,IEM);
2548 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2549 PRINT_FLAG(VMCPU_FF_,DBGF);
2550 PRINT_FLAG(VMCPU_FF_,REQUEST);
2551 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2552 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2553 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2554 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2555 PRINT_FLAG(VMCPU_FF_,TO_R3);
2556 PRINT_FLAG(VMCPU_FF_,IOM);
2557 if (f)
2558 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2559 else
2560 pHlp->pfnPrintf(pHlp, "\n");
2561
2562 /* the groups */
2563 c = 0;
2564 f = fLocalForcedActions;
2565 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2566 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2567 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2568 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2569 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2570 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2571 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2572 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2573 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2574 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2575 if (c)
2576 pHlp->pfnPrintf(pHlp, "\n");
2577 }
2578
2579#undef PRINT_FLAG
2580#undef PRINT_GROUP
2581}
2582
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette