/* $Id: VMMGuruMeditation.cpp 69111 2017-10-17 14:26:02Z vboxsync $ */ /** @file * VMM - The Virtual Machine Monitor, Guru Meditation Code. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_VMM #include #include #include #include #include #include "VMMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Structure to pass to DBGFR3Info() and for doing all other * output during fatal dump. */ typedef struct VMMR3FATALDUMPINFOHLP { /** The helper core. */ DBGFINFOHLP Core; /** The release logger instance. */ PRTLOGGER pRelLogger; /** The saved release logger flags. */ uint32_t fRelLoggerFlags; /** The logger instance. */ PRTLOGGER pLogger; /** The saved logger flags. */ uint32_t fLoggerFlags; /** The saved logger destination flags. */ uint32_t fLoggerDestFlags; /** Whether to output to stderr or not. */ bool fStdErr; /** Whether we're still recording the summary or not. */ bool fRecSummary; /** Buffer for the summary. */ char szSummary[4096-2]; /** The current summary offset. */ size_t offSummary; } VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP; /** Pointer to a VMMR3FATALDUMPINFOHLP structure. */ typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP; /** * Print formatted string. * * @param pHlp Pointer to this structure. * @param pszFormat The format string. * @param ... Arguments. */ static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...) { va_list args; va_start(args, pszFormat); pHlp->pfnPrintfV(pHlp, pszFormat, args); va_end(args); } /** * Print formatted string. * * @param pHlp Pointer to this structure. * @param pszFormat The format string. * @param args Argument list. */ static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args) { PVMMR3FATALDUMPINFOHLP pMyHlp = (PVMMR3FATALDUMPINFOHLP)pHlp; if (pMyHlp->pRelLogger) { va_list args2; va_copy(args2, args); RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2); va_end(args2); } if (pMyHlp->pLogger) { va_list args2; va_copy(args2, args); RTLogLoggerV(pMyHlp->pLogger, pszFormat, args); va_end(args2); } if (pMyHlp->fStdErr) { va_list args2; va_copy(args2, args); RTStrmPrintfV(g_pStdErr, pszFormat, args); va_end(args2); } if (pMyHlp->fRecSummary) { size_t cchLeft = sizeof(pMyHlp->szSummary) - pMyHlp->offSummary; if (cchLeft > 1) { va_list args2; va_copy(args2, args); size_t cch = RTStrPrintfV(&pMyHlp->szSummary[pMyHlp->offSummary], cchLeft, pszFormat, args); va_end(args2); Assert(cch <= cchLeft); pMyHlp->offSummary += cch; } } } /** * Initializes the fatal dump output helper. * * @param pHlp The structure to initialize. */ static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp) { RT_BZERO(pHlp, sizeof(*pHlp)); pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf; pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV; /* * The loggers. */ pHlp->pRelLogger = RTLogRelGetDefaultInstance(); #ifdef LOG_ENABLED pHlp->pLogger = RTLogDefaultInstance(); #else if (pHlp->pRelLogger) pHlp->pLogger = RTLogGetDefaultInstance(); else pHlp->pLogger = RTLogDefaultInstance(); #endif if (pHlp->pRelLogger) { pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags; pHlp->pRelLogger->fFlags &= ~RTLOGFLAGS_DISABLED; pHlp->pRelLogger->fFlags |= RTLOGFLAGS_BUFFERED; } if (pHlp->pLogger) { pHlp->fLoggerFlags = pHlp->pLogger->fFlags; pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags; pHlp->pLogger->fFlags &= ~RTLOGFLAGS_DISABLED; pHlp->pLogger->fFlags |= RTLOGFLAGS_BUFFERED; #ifndef DEBUG_sandervl pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER; #endif } /* * Check if we need write to stderr. */ pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR))) && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR))); #ifdef DEBUG_sandervl pHlp->fStdErr = false; /* takes too long to display here */ #endif /* * Init the summary recording. */ pHlp->fRecSummary = true; pHlp->offSummary = 0; pHlp->szSummary[0] = '\0'; } /** * Deletes the fatal dump output helper. * * @param pHlp The structure to delete. */ static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp) { if (pHlp->pRelLogger) { RTLogFlush(pHlp->pRelLogger); pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags; } if (pHlp->pLogger) { RTLogFlush(pHlp->pLogger); pHlp->pLogger->fFlags = pHlp->fLoggerFlags; pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags; } } /** * Dumps the VM state on a fatal error. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param rcErr VBox status code. */ VMMR3DECL(void) VMMR3FatalDump(PVM pVM, PVMCPU pVCpu, int rcErr) { /* * Create our output helper and sync it with the log settings. * This helper will be used for all the output. */ VMMR3FATALDUMPINFOHLP Hlp; PCDBGFINFOHLP pHlp = &Hlp.Core; vmmR3FatalDumpInfoHlpInit(&Hlp); /* Release owned locks to make sure other VCPUs can continue in case they were waiting for one. */ PDMR3CritSectLeaveAll(pVM); /* * Header. */ pHlp->pfnPrintf(pHlp, "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n" "!!\n" "!! VCPU%u: Guru Meditation %d (%Rrc)\n" "!!\n", pVCpu->idCpu, rcErr, rcErr); /* * Continue according to context. */ bool fDoneHyper = false; switch (rcErr) { /* * Hypervisor errors. */ case VERR_VMM_RING0_ASSERTION: case VINF_EM_DBG_HYPER_ASSERTION: case VERR_VMM_RING3_CALL_DISABLED: { const char *pszMsg1 = VMMR3GetRZAssertMsg1(pVM); while (pszMsg1 && *pszMsg1 == '\n') pszMsg1++; const char *pszMsg2 = VMMR3GetRZAssertMsg2(pVM); while (pszMsg2 && *pszMsg2 == '\n') pszMsg2++; pHlp->pfnPrintf(pHlp, "%s" "%s", pszMsg1, pszMsg2); if ( !pszMsg2 || !*pszMsg2 || strchr(pszMsg2, '\0')[-1] != '\n') pHlp->pfnPrintf(pHlp, "\n"); } RT_FALL_THRU(); case VERR_TRPM_DONT_PANIC: case VERR_TRPM_PANIC: case VINF_EM_RAW_STALE_SELECTOR: case VINF_EM_RAW_IRET_TRAP: case VINF_EM_DBG_HYPER_BREAKPOINT: case VINF_EM_DBG_HYPER_STEPPED: case VINF_EM_TRIPLE_FAULT: case VERR_VMM_HYPER_CR3_MISMATCH: { /* * Active trap? This is only of partial interest when in hardware * assisted virtualization mode, thus the different messages. */ uint32_t uEIP = CPUMGetHyperEIP(pVCpu); TRPMEVENT enmType; uint8_t u8TrapNo = 0xce; RTGCUINT uErrorCode = 0xdeadface; RTGCUINTPTR uCR2 = 0xdeadface; uint8_t cbInstr = UINT8_MAX; int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrorCode, &uCR2, &cbInstr); if (!HMIsEnabled(pVM)) { if (RT_SUCCESS(rc2)) pHlp->pfnPrintf(pHlp, "!! TRAP=%02x ERRCD=%RGv CR2=%RGv EIP=%RX32 Type=%d cbInstr=%02x\n", u8TrapNo, uErrorCode, uCR2, uEIP, enmType, cbInstr); else pHlp->pfnPrintf(pHlp, "!! EIP=%RX32 NOTRAP\n", uEIP); } else if (RT_SUCCESS(rc2)) pHlp->pfnPrintf(pHlp, "!! ACTIVE TRAP=%02x ERRCD=%RGv CR2=%RGv PC=%RGr Type=%d cbInstr=%02x (Guest!)\n", u8TrapNo, uErrorCode, uCR2, CPUMGetGuestRIP(pVCpu), enmType, cbInstr); /* * Dump the relevant hypervisor registers and stack. */ if (HMIsEnabled(pVM)) { if ( rcErr == VERR_VMM_RING0_ASSERTION /* fInRing3Call has already been cleared here. */ || pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call) { /* Dump the jmpbuf. */ pHlp->pfnPrintf(pHlp, "!!\n" "!! CallRing3JmpBuf:\n" "!!\n"); pHlp->pfnPrintf(pHlp, "SavedEsp=%RHv SavedEbp=%RHv SpResume=%RHv SpCheck=%RHv\n", pVCpu->vmm.s.CallRing3JmpBufR0.SavedEsp, pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp, pVCpu->vmm.s.CallRing3JmpBufR0.SpResume, pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck); pHlp->pfnPrintf(pHlp, "pvSavedStack=%RHv cbSavedStack=%#x fInRing3Call=%RTbool\n", pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack, pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack, pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call); pHlp->pfnPrintf(pHlp, "cbUsedMax=%#x cbUsedAvg=%#x cbUsedTotal=%#llx cUsedTotal=%#llx\n", pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedTotal, pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal); /* Dump the resume register frame on the stack. */ PRTHCUINTPTR pBP; #ifdef VMM_R0_SWITCH_STACK pBP = (PRTHCUINTPTR)&pVCpu->vmm.s.pbEMTStackR3[ pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3)]; #else pBP = (PRTHCUINTPTR)&pVCpu->vmm.s.pbEMTStackR3[ pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck + pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp]; #endif #if HC_ARCH_BITS == 32 pHlp->pfnPrintf(pHlp, "eax=volatile ebx=%08x ecx=volatile edx=volatile esi=%08x edi=%08x\n" "eip=%08x esp=%08x ebp=%08x efl=%08x\n" , pBP[-3], pBP[-2], pBP[-1], pBP[1], pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp - 8, pBP[0], pBP[-4]); #else # ifdef RT_OS_WINDOWS pHlp->pfnPrintf(pHlp, "rax=volatile rbx=%016RX64 rcx=volatile rdx=volatile\n" "rsi=%016RX64 rdi=%016RX64 r8=volatile r9=volatile \n" "r10=volatile r11=volatile r12=%016RX64 r13=%016RX64\n" "r14=%016RX64 r15=%016RX64\n" "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 rfl=%08RX64\n" , pBP[-7], pBP[-6], pBP[-5], pBP[-4], pBP[-3], pBP[-2], pBP[-1], pBP[1], pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp - 16, pBP[0], pBP[-8]); # else pHlp->pfnPrintf(pHlp, "rax=volatile rbx=%016RX64 rcx=volatile rdx=volatile\n" "rsi=volatile rdi=volatile r8=volatile r9=volatile \n" "r10=volatile r11=volatile r12=%016RX64 r13=%016RX64\n" "r14=%016RX64 r15=%016RX64\n" "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 rflags=%08RX64\n" , pBP[-5], pBP[-4], pBP[-3], pBP[-2], pBP[-1], pBP[1], pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp - 16, pBP[0], pBP[-6]); # endif #endif /* Callstack. */ DBGFADDRESS pc; pc.fFlags = DBGFADDRESS_FLAGS_RING0 | DBGFADDRESS_FLAGS_VALID; #if HC_ARCH_BITS == 64 pc.FlatPtr = pc.off = pVCpu->vmm.s.CallRing3JmpBufR0.rip; #else pc.FlatPtr = pc.off = pVCpu->vmm.s.CallRing3JmpBufR0.eip; #endif pc.Sel = DBGF_SEL_FLAT; DBGFADDRESS ebp; ebp.fFlags = DBGFADDRESS_FLAGS_RING0 | DBGFADDRESS_FLAGS_VALID; ebp.FlatPtr = ebp.off = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp; ebp.Sel = DBGF_SEL_FLAT; DBGFADDRESS esp; esp.fFlags = DBGFADDRESS_FLAGS_RING0 | DBGFADDRESS_FLAGS_VALID; esp.Sel = DBGF_SEL_FLAT; esp.FlatPtr = esp.off = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEsp; PCDBGFSTACKFRAME pFirstFrame; rc2 = DBGFR3StackWalkBeginEx(pVM->pUVM, pVCpu->idCpu, DBGFCODETYPE_RING0, &ebp, &esp, &pc, DBGFRETURNTYPE_INVALID, &pFirstFrame); if (RT_SUCCESS(rc2)) { pHlp->pfnPrintf(pHlp, "!!\n" "!! Call Stack:\n" "!!\n"); #if HC_ARCH_BITS == 32 pHlp->pfnPrintf(pHlp, "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n"); #else pHlp->pfnPrintf(pHlp, "RBP Ret RBP Ret RIP RIP Symbol [line]\n"); #endif for (PCDBGFSTACKFRAME pFrame = pFirstFrame; pFrame; pFrame = DBGFR3StackWalkNext(pFrame)) { #if HC_ARCH_BITS == 32 pHlp->pfnPrintf(pHlp, "%RHv %RHv %04RX32:%RHv %RHv %RHv %RHv %RHv", (RTHCUINTPTR)pFrame->AddrFrame.off, (RTHCUINTPTR)pFrame->AddrReturnFrame.off, (RTHCUINTPTR)pFrame->AddrReturnPC.Sel, (RTHCUINTPTR)pFrame->AddrReturnPC.off, pFrame->Args.au32[0], pFrame->Args.au32[1], pFrame->Args.au32[2], pFrame->Args.au32[3]); pHlp->pfnPrintf(pHlp, " %RTsel:%08RHv", pFrame->AddrPC.Sel, pFrame->AddrPC.off); #else pHlp->pfnPrintf(pHlp, "%RHv %RHv %RHv %RHv", (RTHCUINTPTR)pFrame->AddrFrame.off, (RTHCUINTPTR)pFrame->AddrReturnFrame.off, (RTHCUINTPTR)pFrame->AddrReturnPC.off, (RTHCUINTPTR)pFrame->AddrPC.off); #endif if (pFrame->pSymPC) { RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; if (offDisp > 0) pHlp->pfnPrintf(pHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp); else if (offDisp < 0) pHlp->pfnPrintf(pHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp); else pHlp->pfnPrintf(pHlp, " %s", pFrame->pSymPC->szName); } if (pFrame->pLinePC) pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo); pHlp->pfnPrintf(pHlp, "\n"); } DBGFR3StackWalkEnd(pFirstFrame); } /* Symbols on the stack. */ #ifdef VMM_R0_SWITCH_STACK uint32_t const iLast = VMM_STACK_SIZE / sizeof(uintptr_t); uint32_t iAddr = (uint32_t)( pVCpu->vmm.s.CallRing3JmpBufR0.SavedEsp - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3)) / sizeof(uintptr_t); if (iAddr > iLast) iAddr = 0; #else uint32_t const iLast = RT_MIN(pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack, VMM_STACK_SIZE) / sizeof(uintptr_t); uint32_t iAddr = 0; #endif pHlp->pfnPrintf(pHlp, "!!\n" "!! Addresses on the stack (iAddr=%#x, iLast=%#x)\n" "!!\n", iAddr, iLast); uintptr_t const *paAddr = (uintptr_t const *)pVCpu->vmm.s.pbEMTStackR3; while (iAddr < iLast) { uintptr_t const uAddr = paAddr[iAddr]; if (uAddr > X86_PAGE_SIZE) { DBGFADDRESS Addr; DBGFR3AddrFromFlat(pVM->pUVM, &Addr, uAddr); RTGCINTPTR offDisp = 0; PRTDBGSYMBOL pSym = DBGFR3AsSymbolByAddrA(pVM->pUVM, DBGF_AS_R0, &Addr, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDisp, NULL); RTGCINTPTR offLineDisp; PRTDBGLINE pLine = DBGFR3AsLineByAddrA(pVM->pUVM, DBGF_AS_R0, &Addr, &offLineDisp, NULL); if (pLine || pSym) { pHlp->pfnPrintf(pHlp, "%#06x: %p =>", iAddr * sizeof(uintptr_t), uAddr); if (pSym) pHlp->pfnPrintf(pHlp, " %s + %#x", pSym->szName, (intptr_t)offDisp); if (pLine) pHlp->pfnPrintf(pHlp, " [%s:%u + %#x]\n", pLine->szFilename, pLine->uLineNo, offLineDisp); else pHlp->pfnPrintf(pHlp, "\n"); RTDbgSymbolFree(pSym); RTDbgLineFree(pLine); } } iAddr++; } /* raw stack */ Hlp.fRecSummary = false; pHlp->pfnPrintf(pHlp, "!!\n" "!! Raw stack (mind the direction).\n" "!! pbEMTStackR0=%RHv pbEMTStackBottomR0=%RHv VMM_STACK_SIZE=%#x\n" "!! pbEmtStackR3=%p\n" "!!\n" "%.*Rhxd\n", MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3), MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3) + VMM_STACK_SIZE, VMM_STACK_SIZE, pVCpu->vmm.s.pbEMTStackR3, VMM_STACK_SIZE, pVCpu->vmm.s.pbEMTStackR3); } else { pHlp->pfnPrintf(pHlp, "!! Skipping ring-0 registers and stack, rcErr=%Rrc\n", rcErr); } } else { /* * Try figure out where eip is. */ /* core code? */ if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvCoreCodeRC < pVM->vmm.s.cbCoreCode) pHlp->pfnPrintf(pHlp, "!! EIP is in CoreCode, offset %#x\n", uEIP - (RTGCUINTPTR)pVM->vmm.s.pvCoreCodeRC); else { /* ask PDM */ /** @todo ask DBGFR3Sym later? */ char szModName[64]; RTRCPTR RCPtrMod; char szNearSym1[260]; RTRCPTR RCPtrNearSym1; char szNearSym2[260]; RTRCPTR RCPtrNearSym2; int rc = PDMR3LdrQueryRCModFromPC(pVM, uEIP, &szModName[0], sizeof(szModName), &RCPtrMod, &szNearSym1[0], sizeof(szNearSym1), &RCPtrNearSym1, &szNearSym2[0], sizeof(szNearSym2), &RCPtrNearSym2); if (RT_SUCCESS(rc)) pHlp->pfnPrintf(pHlp, "!! EIP in %s (%RRv) at rva %x near symbols:\n" "!! %RRv rva %RRv off %08x %s\n" "!! %RRv rva %RRv off -%08x %s\n", szModName, RCPtrMod, (unsigned)(uEIP - RCPtrMod), RCPtrNearSym1, RCPtrNearSym1 - RCPtrMod, (unsigned)(uEIP - RCPtrNearSym1), szNearSym1, RCPtrNearSym2, RCPtrNearSym2 - RCPtrMod, (unsigned)(RCPtrNearSym2 - uEIP), szNearSym2); else pHlp->pfnPrintf(pHlp, "!! EIP is not in any code known to VMM!\n"); } /* Disassemble the instruction. */ char szInstr[256]; rc2 = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER | DBGF_DISAS_FLAGS_DEFAULT_MODE, &szInstr[0], sizeof(szInstr), NULL); if (RT_SUCCESS(rc2)) pHlp->pfnPrintf(pHlp, "!! %s\n", szInstr); /* Dump the hypervisor cpu state. */ pHlp->pfnPrintf(pHlp, "!!\n" "!!\n" "!!\n"); rc2 = DBGFR3Info(pVM->pUVM, "cpumhyper", "verbose", pHlp); fDoneHyper = true; /* Callstack. */ PCDBGFSTACKFRAME pFirstFrame; rc2 = DBGFR3StackWalkBegin(pVM->pUVM, pVCpu->idCpu, DBGFCODETYPE_HYPER, &pFirstFrame); if (RT_SUCCESS(rc2)) { pHlp->pfnPrintf(pHlp, "!!\n" "!! Call Stack:\n" "!!\n" "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n"); for (PCDBGFSTACKFRAME pFrame = pFirstFrame; pFrame; pFrame = DBGFR3StackWalkNext(pFrame)) { pHlp->pfnPrintf(pHlp, "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32", (uint32_t)pFrame->AddrFrame.off, (uint32_t)pFrame->AddrReturnFrame.off, (uint32_t)pFrame->AddrReturnPC.Sel, (uint32_t)pFrame->AddrReturnPC.off, pFrame->Args.au32[0], pFrame->Args.au32[1], pFrame->Args.au32[2], pFrame->Args.au32[3]); pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", pFrame->AddrPC.Sel, pFrame->AddrPC.off); if (pFrame->pSymPC) { RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; if (offDisp > 0) pHlp->pfnPrintf(pHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp); else if (offDisp < 0) pHlp->pfnPrintf(pHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp); else pHlp->pfnPrintf(pHlp, " %s", pFrame->pSymPC->szName); } if (pFrame->pLinePC) pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo); pHlp->pfnPrintf(pHlp, "\n"); } DBGFR3StackWalkEnd(pFirstFrame); } /* raw stack */ Hlp.fRecSummary = false; pHlp->pfnPrintf(pHlp, "!!\n" "!! Raw stack (mind the direction). pbEMTStackRC=%RRv pbEMTStackBottomRC=%RRv\n" "!!\n" "%.*Rhxd\n", pVCpu->vmm.s.pbEMTStackRC, pVCpu->vmm.s.pbEMTStackBottomRC, VMM_STACK_SIZE, pVCpu->vmm.s.pbEMTStackR3); } /* !HMIsEnabled */ break; } case VERR_IEM_INSTR_NOT_IMPLEMENTED: case VERR_IEM_ASPECT_NOT_IMPLEMENTED: case VERR_PATM_IPE_TRAP_IN_PATCH_CODE: case VERR_EM_GUEST_CPU_HANG: { DBGFR3Info(pVM->pUVM, "cpumguest", NULL, pHlp); DBGFR3Info(pVM->pUVM, "cpumguestinstr", NULL, pHlp); DBGFR3Info(pVM->pUVM, "cpumguesthwvirt", NULL, pHlp); break; } default: { break; } } /* switch (rcErr) */ Hlp.fRecSummary = false; /* * Generic info dumper loop. */ static struct { const char *pszInfo; const char *pszArgs; } const aInfo[] = { { "mappings", NULL }, { "hma", NULL }, { "cpumguest", "verbose" }, { "cpumguesthwvirt", "verbose" }, { "cpumguestinstr", "verbose" }, { "cpumhyper", "verbose" }, { "cpumhost", "verbose" }, { "mode", "all" }, { "cpuid", "verbose" }, { "handlers", "phys virt hyper stats" }, { "timers", NULL }, { "activetimers", NULL }, }; for (unsigned i = 0; i < RT_ELEMENTS(aInfo); i++) { if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper")) continue; pHlp->pfnPrintf(pHlp, "!!\n" "!! {%s, %s}\n" "!!\n", aInfo[i].pszInfo, aInfo[i].pszArgs); DBGFR3Info(pVM->pUVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp); } /* All other info items */ DBGFR3InfoMulti(pVM, "*", "mappings|hma|cpum|cpumguest|cpumguesthwvirt|cpumguestinstr|cpumhyper|cpumhost|mode|cpuid" "|pgmpd|pgmcr3|timers|activetimers|handlers|help", "!!\n" "!! {%s}\n" "!!\n", pHlp); /* done */ pHlp->pfnPrintf(pHlp, "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); /* * Repeat the summary to stderr so we don't have to scroll half a mile up. */ if (Hlp.szSummary[0]) RTStrmPrintf(g_pStdErr, "%s" "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n", Hlp.szSummary); /* * Delete the output instance (flushing and restoring of flags). */ vmmR3FatalDumpInfoHlpDelete(&Hlp); }