VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMMSwitcher.cpp@ 44410

Last change on this file since 44410 was 44168, checked in by vboxsync, 12 years ago

nit

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 37.4 KB
Line 
1/* $Id: VMMSwitcher.cpp 44168 2012-12-19 17:49:07Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor, World Switcher(s).
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_VMM
22#include <VBox/vmm/vmm.h>
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/sup.h>
27#include "VMMInternal.h"
28#include "VMMSwitcher.h"
29#include <VBox/vmm/vm.h>
30#include <VBox/dis.h>
31
32#include <VBox/err.h>
33#include <VBox/param.h>
34#include <iprt/assert.h>
35#include <iprt/alloc.h>
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/string.h>
39#include <iprt/ctype.h>
40
41
42/*******************************************************************************
43* Global Variables *
44*******************************************************************************/
45/** Array of switcher definitions.
46 * The type and index shall match!
47 */
48static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
49{
50 NULL, /* invalid entry */
51#ifdef VBOX_WITH_RAW_MODE
52# ifndef RT_ARCH_AMD64
53 &vmmR3Switcher32BitTo32Bit_Def,
54 &vmmR3Switcher32BitToPAE_Def,
55 &vmmR3Switcher32BitToAMD64_Def,
56 &vmmR3SwitcherPAETo32Bit_Def,
57 &vmmR3SwitcherPAEToPAE_Def,
58 &vmmR3SwitcherPAEToAMD64_Def,
59 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
60# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
61 &vmmR3SwitcherAMD64ToPAE_Def,
62# else
63 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
64# endif
65 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
66# else /* RT_ARCH_AMD64 */
67 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
68 NULL, //&vmmR3Switcher32BitToPAE_Def,
69 NULL, //&vmmR3Switcher32BitToAMD64_Def,
70 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
71 NULL, //&vmmR3SwitcherPAEToPAE_Def,
72 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
73 &vmmR3SwitcherAMD64To32Bit_Def,
74 &vmmR3SwitcherAMD64ToPAE_Def,
75 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
76# endif /* RT_ARCH_AMD64 */
77#else /* !VBOX_WITH_RAW_MODE */
78 NULL,
79 NULL,
80 NULL,
81 NULL,
82 NULL,
83 NULL,
84 NULL,
85 NULL,
86 NULL
87#endif /* !VBOX_WITH_RAW_MODE */
88};
89
90
91/**
92 * VMMR3Init worker that initiates the switcher code (aka core code).
93 *
94 * This is core per VM code which might need fixups and/or for ease of use are
95 * put on linear contiguous backing.
96 *
97 * @returns VBox status code.
98 * @param pVM Pointer to the VM.
99 */
100int vmmR3SwitcherInit(PVM pVM)
101{
102#ifndef VBOX_WITH_RAW_MODE
103 return VINF_SUCCESS;
104#else
105 /*
106 * Calc the size.
107 */
108 unsigned cbCoreCode = 0;
109 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
110 {
111 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
112 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
113 if (pSwitcher)
114 {
115 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
116 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
117 }
118 }
119
120 /*
121 * Allocate contiguous pages for switchers and deal with
122 * conflicts in the intermediate mapping of the code.
123 */
124 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
125 pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
126 int rc = VERR_NO_MEMORY;
127 if (pVM->vmm.s.pvCoreCodeR3)
128 {
129 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
130 if (rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT)
131 {
132 /* try more allocations - Solaris, Linux. */
133 const unsigned cTries = 8234;
134 struct VMMInitBadTry
135 {
136 RTR0PTR pvR0;
137 void *pvR3;
138 RTHCPHYS HCPhys;
139 RTUINT cb;
140 } *paBadTries = (struct VMMInitBadTry *)RTMemTmpAlloc(sizeof(*paBadTries) * cTries);
141 AssertReturn(paBadTries, VERR_NO_TMP_MEMORY);
142 unsigned i = 0;
143 do
144 {
145 paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3;
146 paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0;
147 paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
148 i++;
149 pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR;
150 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
151 pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
152 if (!pVM->vmm.s.pvCoreCodeR3)
153 break;
154 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
155 } while ( rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT
156 && i < cTries - 1);
157
158 /* cleanup */
159 if (RT_FAILURE(rc))
160 {
161 paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3;
162 paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0;
163 paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
164 paBadTries[i].cb = pVM->vmm.s.cbCoreCode;
165 i++;
166 LogRel(("Failed to allocated and map core code: rc=%Rrc\n", rc));
167 }
168 while (i-- > 0)
169 {
170 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%RHp\n",
171 i, paBadTries[i].pvR3, paBadTries[i].pvR0, paBadTries[i].HCPhys));
172 SUPR3ContFree(paBadTries[i].pvR3, paBadTries[i].cb >> PAGE_SHIFT);
173 }
174 RTMemTmpFree(paBadTries);
175 }
176 }
177 if (RT_SUCCESS(rc))
178 {
179 /*
180 * copy the code.
181 */
182 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
183 {
184 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
185 if (pSwitcher)
186 memcpy((uint8_t *)pVM->vmm.s.pvCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
187 pSwitcher->pvCode, pSwitcher->cbCode);
188 }
189
190 /*
191 * Map the code into the GC address space.
192 */
193 RTGCPTR GCPtr;
194 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode,
195 cbCoreCode, "Core Code", &GCPtr);
196 if (RT_SUCCESS(rc))
197 {
198 pVM->vmm.s.pvCoreCodeRC = GCPtr;
199 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
200 LogRel(("CoreCode: R3=%RHv R0=%RHv RC=%RRv Phys=%RHp cb=%#x\n",
201 pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
202
203 /*
204 * Finally, PGM probably has selected a switcher already but we need
205 * to get the routine addresses, so we'll reselect it.
206 * This may legally fail so, we're ignoring the rc.
207 */
208 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
209 return rc;
210 }
211
212 /* shit */
213 AssertMsgFailed(("PGMR3Map(,%RRv, %RHp, %#x, 0) failed with rc=%Rrc\n", pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
214 SUPR3ContFree(pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
215 }
216 else
217 VMSetError(pVM, rc, RT_SRC_POS,
218 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"),
219 cbCoreCode);
220
221 pVM->vmm.s.pvCoreCodeR3 = NULL;
222 pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR;
223 pVM->vmm.s.pvCoreCodeRC = 0;
224 return rc;
225#endif
226}
227
228/**
229 * Relocate the switchers, called by VMMR#Relocate.
230 *
231 * @param pVM Pointer to the VM.
232 * @param offDelta The relocation delta.
233 */
234void vmmR3SwitcherRelocate(PVM pVM, RTGCINTPTR offDelta)
235{
236#ifdef VBOX_WITH_RAW_MODE
237 /*
238 * Relocate all the switchers.
239 */
240 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
241 {
242 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
243 if (pSwitcher && pSwitcher->pfnRelocate)
244 {
245 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
246 pSwitcher->pfnRelocate(pVM,
247 pSwitcher,
248 pVM->vmm.s.pvCoreCodeR0 + off,
249 (uint8_t *)pVM->vmm.s.pvCoreCodeR3 + off,
250 pVM->vmm.s.pvCoreCodeRC + off,
251 pVM->vmm.s.HCPhysCoreCode + off);
252 }
253 }
254
255 /*
256 * Recalc the RC address for the current switcher.
257 */
258 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
259 RTRCPTR RCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
260 pVM->vmm.s.pfnRCToHost = RCPtr + pSwitcher->offRCToHost;
261 pVM->vmm.s.pfnCallTrampolineRC = RCPtr + pSwitcher->offRCCallTrampoline;
262 pVM->pfnVMMRCToHostAsm = RCPtr + pSwitcher->offRCToHostAsm;
263 pVM->pfnVMMRCToHostAsmNoReturn = RCPtr + pSwitcher->offRCToHostAsmNoReturn;
264
265// AssertFailed();
266#else
267 NOREF(pVM);
268#endif
269 NOREF(offDelta);
270}
271
272
273#ifdef VBOX_WITH_RAW_MODE
274
275/**
276 * Generic switcher code relocator.
277 *
278 * @param pVM Pointer to the VM.
279 * @param pSwitcher The switcher definition.
280 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
281 * @param R0PtrCode Pointer to the core code block for the switcher, ring-0 mapping.
282 * @param GCPtrCode The guest context address corresponding to pu8Code.
283 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
284 * @param SelCS The hypervisor CS selector.
285 * @param SelDS The hypervisor DS selector.
286 * @param SelTSS The hypervisor TSS selector.
287 * @param GCPtrGDT The GC address of the hypervisor GDT.
288 * @param SelCS64 The 64-bit mode hypervisor CS selector.
289 */
290static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher,
291 RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
292 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
293{
294 union
295 {
296 const uint8_t *pu8;
297 const uint16_t *pu16;
298 const uint32_t *pu32;
299 const uint64_t *pu64;
300 const void *pv;
301 uintptr_t u;
302 } u;
303 u.pv = pSwitcher->pvFixups;
304
305 /*
306 * Process fixups.
307 */
308 uint8_t u8;
309 while ((u8 = *u.pu8++) != FIX_THE_END)
310 {
311 /*
312 * Get the source (where to write the fixup).
313 */
314 uint32_t offSrc = *u.pu32++;
315 Assert(offSrc < pSwitcher->cbCode);
316 union
317 {
318 uint8_t *pu8;
319 uint16_t *pu16;
320 uint32_t *pu32;
321 uint64_t *pu64;
322 uintptr_t u;
323 } uSrc;
324 uSrc.pu8 = pu8CodeR3 + offSrc;
325
326 /* The fixup target and method depends on the type. */
327 switch (u8)
328 {
329 /*
330 * 32-bit relative, source in HC and target in GC.
331 */
332 case FIX_HC_2_GC_NEAR_REL:
333 {
334 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
335 uint32_t offTrg = *u.pu32++;
336 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
337 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
338 break;
339 }
340
341 /*
342 * 32-bit relative, source in HC and target in ID.
343 */
344 case FIX_HC_2_ID_NEAR_REL:
345 {
346 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
347 uint32_t offTrg = *u.pu32++;
348 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
349 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (R0PtrCode + offSrc + 4));
350 break;
351 }
352
353 /*
354 * 32-bit relative, source in GC and target in HC.
355 */
356 case FIX_GC_2_HC_NEAR_REL:
357 {
358 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
359 uint32_t offTrg = *u.pu32++;
360 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
361 *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (GCPtrCode + offSrc + 4));
362 break;
363 }
364
365 /*
366 * 32-bit relative, source in GC and target in ID.
367 */
368 case FIX_GC_2_ID_NEAR_REL:
369 {
370 AssertMsg(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode, ("%x - %x < %x\n", offSrc, pSwitcher->offGCCode, pSwitcher->cbGCCode));
371 uint32_t offTrg = *u.pu32++;
372 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
373 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
374 break;
375 }
376
377 /*
378 * 32-bit relative, source in ID and target in HC.
379 */
380 case FIX_ID_2_HC_NEAR_REL:
381 {
382 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
383 uint32_t offTrg = *u.pu32++;
384 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
385 *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (u32IDCode + offSrc + 4));
386 break;
387 }
388
389 /*
390 * 32-bit relative, source in ID and target in HC.
391 */
392 case FIX_ID_2_GC_NEAR_REL:
393 {
394 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
395 uint32_t offTrg = *u.pu32++;
396 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
397 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
398 break;
399 }
400
401 /*
402 * 16:32 far jump, target in GC.
403 */
404 case FIX_GC_FAR32:
405 {
406 uint32_t offTrg = *u.pu32++;
407 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
408 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
409 *uSrc.pu16++ = SelCS;
410 break;
411 }
412
413 /*
414 * Make 32-bit GC pointer given CPUM offset.
415 */
416 case FIX_GC_CPUM_OFF:
417 {
418 uint32_t offCPUM = *u.pu32++;
419 Assert(offCPUM < sizeof(pVM->cpum));
420 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM);
421 break;
422 }
423
424 /*
425 * Make 32-bit GC pointer given CPUMCPU offset.
426 */
427 case FIX_GC_CPUMCPU_OFF:
428 {
429 uint32_t offCPUM = *u.pu32++;
430 Assert(offCPUM < sizeof(pVM->aCpus[0].cpum));
431 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->aCpus[0].cpum) + offCPUM);
432 break;
433 }
434
435 /*
436 * Make 32-bit GC pointer given VM offset.
437 */
438 case FIX_GC_VM_OFF:
439 {
440 uint32_t offVM = *u.pu32++;
441 Assert(offVM < sizeof(VM));
442 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, pVM) + offVM);
443 break;
444 }
445
446 /*
447 * Make 32-bit HC pointer given CPUM offset.
448 */
449 case FIX_HC_CPUM_OFF:
450 {
451 uint32_t offCPUM = *u.pu32++;
452 Assert(offCPUM < sizeof(pVM->cpum));
453 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
454 break;
455 }
456
457 /*
458 * Make 32-bit R0 pointer given VM offset.
459 */
460 case FIX_HC_VM_OFF:
461 {
462 uint32_t offVM = *u.pu32++;
463 Assert(offVM < sizeof(VM));
464 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
465 break;
466 }
467
468 /*
469 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
470 */
471 case FIX_INTER_32BIT_CR3:
472 {
473
474 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
475 break;
476 }
477
478 /*
479 * Store the PAE CR3 (32-bit) for the intermediate memory context.
480 */
481 case FIX_INTER_PAE_CR3:
482 {
483
484 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
485 break;
486 }
487
488 /*
489 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
490 */
491 case FIX_INTER_AMD64_CR3:
492 {
493
494 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
495 break;
496 }
497
498 /*
499 * Store Hypervisor CS (16-bit).
500 */
501 case FIX_HYPER_CS:
502 {
503 *uSrc.pu16 = SelCS;
504 break;
505 }
506
507 /*
508 * Store Hypervisor DS (16-bit).
509 */
510 case FIX_HYPER_DS:
511 {
512 *uSrc.pu16 = SelDS;
513 break;
514 }
515
516 /*
517 * Store Hypervisor TSS (16-bit).
518 */
519 case FIX_HYPER_TSS:
520 {
521 *uSrc.pu16 = SelTSS;
522 break;
523 }
524
525 /*
526 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
527 */
528 case FIX_GC_TSS_GDTE_DW2:
529 {
530 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
531 *uSrc.pu32 = (uint32_t)GCPtr;
532 break;
533 }
534
535 /*
536 * Store the EFER or mask for the 32->64 bit switcher.
537 */
538 case FIX_EFER_OR_MASK:
539 {
540 uint32_t u32OrMask = MSR_K6_EFER_LME | MSR_K6_EFER_SCE;
541 /*
542 * We don't care if cpuid 0x8000001 isn't supported as that implies
543 * long mode isn't supported either, so this switched would never be used.
544 */
545 if (!!(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_NX))
546 u32OrMask |= MSR_K6_EFER_NXE;
547
548 *uSrc.pu32 = u32OrMask;
549 break;
550 }
551
552 /*
553 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
554 */
555 case FIX_NO_FXSAVE_JMP:
556 {
557 uint32_t offTrg = *u.pu32++;
558 Assert(offTrg < pSwitcher->cbCode);
559 if (!CPUMSupportsFXSR(pVM))
560 {
561 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
562 *uSrc.pu32++ = offTrg - (offSrc + 5);
563 }
564 else
565 {
566 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
567 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
568 }
569 break;
570 }
571
572 /*
573 * Insert relative jump to specified target it SYSENTER isn't used by the host.
574 */
575 case FIX_NO_SYSENTER_JMP:
576 {
577 uint32_t offTrg = *u.pu32++;
578 Assert(offTrg < pSwitcher->cbCode);
579 if (!CPUMIsHostUsingSysEnter(pVM))
580 {
581 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
582 *uSrc.pu32++ = offTrg - (offSrc + 5);
583 }
584 else
585 {
586 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
587 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
588 }
589 break;
590 }
591
592 /*
593 * Insert relative jump to specified target it SYSCALL isn't used by the host.
594 */
595 case FIX_NO_SYSCALL_JMP:
596 {
597 uint32_t offTrg = *u.pu32++;
598 Assert(offTrg < pSwitcher->cbCode);
599 if (!CPUMIsHostUsingSysCall(pVM))
600 {
601 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
602 *uSrc.pu32++ = offTrg - (offSrc + 5);
603 }
604 else
605 {
606 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
607 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
608 }
609 break;
610 }
611
612 /*
613 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
614 */
615 case FIX_HC_32BIT:
616 {
617 uint32_t offTrg = *u.pu32++;
618 Assert(offSrc < pSwitcher->cbCode);
619 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
620 *uSrc.pu32 = R0PtrCode + offTrg;
621 break;
622 }
623
624#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
625 /*
626 * 64-bit HC Code Selector (no argument).
627 */
628 case FIX_HC_64BIT_CS:
629 {
630 Assert(offSrc < pSwitcher->cbCode);
631# if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
632 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
633# else
634 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
635# endif
636 break;
637 }
638
639 /*
640 * 64-bit HC pointer to the CPUM instance data (no argument).
641 */
642 case FIX_HC_64BIT_CPUM:
643 {
644 Assert(offSrc < pSwitcher->cbCode);
645 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
646 break;
647 }
648#endif
649 /*
650 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
651 */
652 case FIX_HC_64BIT:
653 {
654 uint32_t offTrg = *u.pu32++;
655 Assert(offSrc < pSwitcher->cbCode);
656 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
657 *uSrc.pu64 = R0PtrCode + offTrg;
658 break;
659 }
660
661#ifdef RT_ARCH_X86
662 case FIX_GC_64_BIT_CPUM_OFF:
663 {
664 uint32_t offCPUM = *u.pu32++;
665 Assert(offCPUM < sizeof(pVM->cpum));
666 *uSrc.pu64 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM);
667 break;
668 }
669#endif
670
671 /*
672 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
673 */
674 case FIX_ID_32BIT:
675 {
676 uint32_t offTrg = *u.pu32++;
677 Assert(offSrc < pSwitcher->cbCode);
678 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
679 *uSrc.pu32 = u32IDCode + offTrg;
680 break;
681 }
682
683 /*
684 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
685 */
686 case FIX_ID_64BIT:
687 case FIX_HC_64BIT_NOCHECK:
688 {
689 uint32_t offTrg = *u.pu32++;
690 Assert(offSrc < pSwitcher->cbCode);
691 Assert(u8 == FIX_HC_64BIT_NOCHECK || offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
692 *uSrc.pu64 = u32IDCode + offTrg;
693 break;
694 }
695
696 /*
697 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
698 */
699 case FIX_ID_FAR32_TO_64BIT_MODE:
700 {
701 uint32_t offTrg = *u.pu32++;
702 Assert(offSrc < pSwitcher->cbCode);
703 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
704 *uSrc.pu32++ = u32IDCode + offTrg;
705 *uSrc.pu16 = SelCS64;
706 AssertRelease(SelCS64);
707 break;
708 }
709
710#ifdef VBOX_WITH_NMI
711 /*
712 * 32-bit address to the APIC base.
713 */
714 case FIX_GC_APIC_BASE_32BIT:
715 {
716 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
717 break;
718 }
719#endif
720
721 default:
722 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
723 break;
724 }
725 }
726
727#ifdef LOG_ENABLED
728 /*
729 * If Log2 is enabled disassemble the switcher code.
730 *
731 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
732 */
733 if (LogIs2Enabled())
734 {
735 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
736 " R0PtrCode = %p\n"
737 " pu8CodeR3 = %p\n"
738 " GCPtrCode = %RGv\n"
739 " u32IDCode = %08x\n"
740 " pVMRC = %RRv\n"
741 " pCPUMRC = %RRv\n"
742 " pVMR3 = %p\n"
743 " pCPUMR3 = %p\n"
744 " GCPtrGDT = %RGv\n"
745 " InterCR3s = %08RHp, %08RHp, %08RHp (32-Bit, PAE, AMD64)\n"
746 " HyperCR3s = %08RHp (32-Bit, PAE & AMD64)\n"
747 " SelCS = %04x\n"
748 " SelDS = %04x\n"
749 " SelCS64 = %04x\n"
750 " SelTSS = %04x\n",
751 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
752 R0PtrCode,
753 pu8CodeR3,
754 GCPtrCode,
755 u32IDCode,
756 VM_RC_ADDR(pVM, pVM),
757 VM_RC_ADDR(pVM, &pVM->cpum),
758 pVM,
759 &pVM->cpum,
760 GCPtrGDT,
761 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
762 PGMGetHyperCR3(VMMGetCpu(pVM)),
763 SelCS, SelDS, SelCS64, SelTSS);
764
765 uint32_t offCode = 0;
766 while (offCode < pSwitcher->cbCode)
767 {
768 /*
769 * Figure out where this is.
770 */
771 const char *pszDesc = NULL;
772 RTUINTPTR uBase;
773 uint32_t cbCode;
774 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
775 {
776 pszDesc = "HCCode0";
777 uBase = R0PtrCode;
778 offCode = pSwitcher->offHCCode0;
779 cbCode = pSwitcher->cbHCCode0;
780 }
781 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
782 {
783 pszDesc = "HCCode1";
784 uBase = R0PtrCode;
785 offCode = pSwitcher->offHCCode1;
786 cbCode = pSwitcher->cbHCCode1;
787 }
788 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
789 {
790 pszDesc = "GCCode";
791 uBase = GCPtrCode;
792 offCode = pSwitcher->offGCCode;
793 cbCode = pSwitcher->cbGCCode;
794 }
795 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
796 {
797 pszDesc = "IDCode0";
798 uBase = u32IDCode;
799 offCode = pSwitcher->offIDCode0;
800 cbCode = pSwitcher->cbIDCode0;
801 }
802 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
803 {
804 pszDesc = "IDCode1";
805 uBase = u32IDCode;
806 offCode = pSwitcher->offIDCode1;
807 cbCode = pSwitcher->cbIDCode1;
808 }
809 else
810 {
811 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
812 offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
813 offCode++;
814 continue;
815 }
816
817 /*
818 * Disassemble it.
819 */
820 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
821
822 while (cbCode > 0)
823 {
824 /* try label it */
825 if (pSwitcher->offR0ToRawMode == offCode)
826 RTLogPrintf(" *R0ToRawMode:\n");
827 if (pSwitcher->offRCToHost == offCode)
828 RTLogPrintf(" *RCToHost:\n");
829 if (pSwitcher->offRCCallTrampoline == offCode)
830 RTLogPrintf(" *RCCallTrampoline:\n");
831 if (pSwitcher->offRCToHostAsm == offCode)
832 RTLogPrintf(" *RCToHostAsm:\n");
833 if (pSwitcher->offRCToHostAsmNoReturn == offCode)
834 RTLogPrintf(" *RCToHostAsmNoReturn:\n");
835
836 /* disas */
837 uint32_t cbInstr = 0;
838 DISCPUSTATE Cpu;
839 char szDisas[256];
840 int rc = DISInstr(pu8CodeR3 + offCode, DISCPUMODE_32BIT, &Cpu, &cbInstr);
841 if (RT_SUCCESS(rc))
842 {
843 Cpu.uInstrAddr += uBase - (uintptr_t)pu8CodeR3;
844 DISFormatYasmEx(&Cpu, szDisas, sizeof(szDisas),
845 DIS_FMT_FLAGS_ADDR_LEFT | DIS_FMT_FLAGS_BYTES_LEFT | DIS_FMT_FLAGS_BYTES_SPACED
846 | DIS_FMT_FLAGS_RELATIVE_BRANCH,
847 NULL, NULL);
848 }
849 if (RT_SUCCESS(rc))
850 RTLogPrintf(" %04x: %s\n", offCode, szDisas);
851 else
852 {
853 RTLogPrintf(" %04x: %02x '%c' (rc=%Rrc\n",
854 offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ', rc);
855 cbInstr = 1;
856 }
857 offCode += cbInstr;
858 cbCode -= RT_MIN(cbInstr, cbCode);
859 }
860 }
861 }
862#endif
863}
864
865/**
866 * Relocator for the 32-Bit to 32-Bit world switcher.
867 */
868DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
869{
870 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
871 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
872}
873
874
875/**
876 * Relocator for the 32-Bit to PAE world switcher.
877 */
878DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
879{
880 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
881 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
882}
883
884
885/**
886 * Relocator for the 32-Bit to AMD64 world switcher.
887 */
888DECLCALLBACK(void) vmmR3Switcher32BitToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
889{
890 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
891 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
892}
893
894
895/**
896 * Relocator for the PAE to 32-Bit world switcher.
897 */
898DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
899{
900 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
901 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
902}
903
904
905/**
906 * Relocator for the PAE to PAE world switcher.
907 */
908DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
909{
910 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
911 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
912}
913
914/**
915 * Relocator for the PAE to AMD64 world switcher.
916 */
917DECLCALLBACK(void) vmmR3SwitcherPAEToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
918{
919 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
920 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
921}
922
923
924/**
925 * Relocator for the AMD64 to 32-bit world switcher.
926 */
927DECLCALLBACK(void) vmmR3SwitcherAMD64To32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
928{
929 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
930 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
931}
932
933
934/**
935 * Relocator for the AMD64 to PAE world switcher.
936 */
937DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
938{
939 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
940 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
941}
942
943
944/**
945 * Selects the switcher to be used for switching to raw-mode context.
946 *
947 * @returns VBox status code.
948 * @param pVM Pointer to the VM.
949 * @param enmSwitcher The new switcher.
950 * @remark This function may be called before the VMM is initialized.
951 */
952VMMR3_INT_DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
953{
954 /*
955 * Validate input.
956 */
957 if ( enmSwitcher < VMMSWITCHER_INVALID
958 || enmSwitcher >= VMMSWITCHER_MAX)
959 {
960 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
961 return VERR_INVALID_PARAMETER;
962 }
963
964 /* Do nothing if the switcher is disabled. */
965 if (pVM->vmm.s.fSwitcherDisabled)
966 return VINF_SUCCESS;
967
968 /*
969 * Select the new switcher.
970 */
971 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
972 if (pSwitcher)
973 {
974 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
975 pVM->vmm.s.enmSwitcher = enmSwitcher;
976
977 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */
978 pVM->vmm.s.pfnR0ToRawMode = pbCodeR0 + pSwitcher->offR0ToRawMode;
979
980 RTRCPTR RCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[enmSwitcher];
981 pVM->vmm.s.pfnRCToHost = RCPtr + pSwitcher->offRCToHost;
982 pVM->vmm.s.pfnCallTrampolineRC = RCPtr + pSwitcher->offRCCallTrampoline;
983 pVM->pfnVMMRCToHostAsm = RCPtr + pSwitcher->offRCToHostAsm;
984 pVM->pfnVMMRCToHostAsmNoReturn = RCPtr + pSwitcher->offRCToHostAsmNoReturn;
985 return VINF_SUCCESS;
986 }
987
988 return VERR_NOT_IMPLEMENTED;
989}
990
991#endif /* VBOX_WITH_RAW_MODE */
992
993
994/**
995 * Disable the switcher logic permanently.
996 *
997 * @returns VBox status code.
998 * @param pVM Pointer to the VM.
999 */
1000VMMR3_INT_DECL(int) VMMR3DisableSwitcher(PVM pVM)
1001{
1002/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1003 * @code
1004 * mov eax, VERR_VMM_DUMMY_SWITCHER
1005 * ret
1006 * @endcode
1007 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1008 */
1009 pVM->vmm.s.fSwitcherDisabled = true;
1010 return VINF_SUCCESS;
1011}
1012
1013
1014/**
1015 * Gets the switcher to be used for switching to GC.
1016 *
1017 * @returns host to guest ring 0 switcher entrypoint
1018 * @param pVM Pointer to the VM.
1019 * @param enmSwitcher The new switcher.
1020 */
1021VMMR3_INT_DECL(RTR0PTR) VMMR3GetHostToGuestSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1022{
1023 /*
1024 * Validate input.
1025 */
1026 if ( enmSwitcher < VMMSWITCHER_INVALID
1027 || enmSwitcher >= VMMSWITCHER_MAX)
1028 {
1029 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1030 return NIL_RTR0PTR;
1031 }
1032
1033 /*
1034 * Select the new switcher.
1035 */
1036 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1037 if (pSwitcher)
1038 {
1039 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */
1040 return pbCodeR0 + pSwitcher->offR0ToRawMode;
1041 }
1042 return NIL_RTR0PTR;
1043}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette