VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMRZ/PGMRZDynMap.cpp@ 33980

Last change on this file since 33980 was 33540, checked in by vboxsync, 14 years ago

*: spelling fixes, thanks Timeless!

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 97.1 KB
Line 
1/* $Id: PGMRZDynMap.cpp 33540 2010-10-28 09:27:05Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, dynamic mapping cache.
4 */
5
6/*
7 * Copyright (C) 2008-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Internal Functions *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_DYNMAP
23#include <VBox/pgm.h>
24#include "../PGMInternal.h"
25#include <VBox/vm.h>
26#include "../PGMInline.h"
27#include <VBox/err.h>
28#include <VBox/param.h>
29#include <VBox/sup.h>
30#include <iprt/asm.h>
31#include <iprt/asm-amd64-x86.h>
32#include <iprt/assert.h>
33#ifndef IN_RC
34# include <iprt/cpuset.h>
35# include <iprt/mem.h>
36# include <iprt/memobj.h>
37# include <iprt/mp.h>
38# include <iprt/semaphore.h>
39# include <iprt/spinlock.h>
40#endif
41#include <iprt/string.h>
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47#ifdef IN_RING0
48/** The max size of the mapping cache (in pages). */
49# define PGMR0DYNMAP_MAX_PAGES ((16*_1M) >> PAGE_SHIFT)
50/** The small segment size that is adopted on out-of-memory conditions with a
51 * single big segment. */
52# define PGMR0DYNMAP_SMALL_SEG_PAGES 128
53/** The number of pages we reserve per CPU. */
54# define PGMR0DYNMAP_PAGES_PER_CPU 256
55/** The minimum number of pages we reserve per CPU.
56 * This must be equal or larger than the autoset size. */
57# define PGMR0DYNMAP_PAGES_PER_CPU_MIN 64
58/** Calcs the overload threshold (safety margin). Current set at 50%. */
59# define PGMR0DYNMAP_CALC_OVERLOAD(cPages) ((cPages) / 2)
60/** The number of guard pages.
61 * @remarks Never do tuning of the hashing or whatnot with a strict build! */
62# if defined(VBOX_STRICT)
63# define PGMR0DYNMAP_GUARD_PAGES 1
64# else
65# define PGMR0DYNMAP_GUARD_PAGES 0
66# endif
67#endif /* IN_RING0 */
68/** The dummy physical address of guard pages. */
69#define PGMR0DYNMAP_GUARD_PAGE_HCPHYS UINT32_C(0x7777feed)
70/** The dummy reference count of guard pages. (Must be non-zero.) */
71#define PGMR0DYNMAP_GUARD_PAGE_REF_COUNT INT32_C(0x7777feed)
72#if 0
73/** Define this to just clear the present bit on guard pages.
74 * The alternative is to replace the entire PTE with an bad not-present
75 * PTE. Either way, XNU will screw us. :-/ */
76# define PGMR0DYNMAP_GUARD_NP
77#endif
78/** The dummy PTE value for a page. */
79#define PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE X86_PTE_PG_MASK
80/** The dummy PTE value for a page. */
81#define PGMR0DYNMAP_GUARD_PAGE_PAE_PTE UINT64_MAX /*X86_PTE_PAE_PG_MASK*/
82
83#ifdef IN_RING0 /* Note! Assertions causes panics if preemption is disabled,
84 * disable this to work around that. */
85/**
86 * Acquire the spinlock.
87 * This will declare a temporary variable and expands to two statements!
88 */
89# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) \
90 RTSPINLOCKTMP MySpinlockTmp = RTSPINLOCKTMP_INITIALIZER; \
91 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
92/**
93 * Releases the spinlock.
94 */
95# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) \
96 RTSpinlockRelease((pThis)->hSpinlock, &MySpinlockTmp)
97
98/**
99 * Re-acquires the spinlock.
100 */
101# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) \
102 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
103#else
104# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) do { } while (0)
105# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) do { } while (0)
106# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) do { } while (0)
107#endif
108
109
110/** Converts a PGMCPUM::AutoSet pointer into a PVMCPU. */
111#define PGMRZDYNMAP_SET_2_VMCPU(pSet) (RT_FROM_MEMBER(pSet, VMCPU, pgm.s.AutoSet))
112
113/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
114#define PGMRZDYNMAP_SET_2_VM(pSet) (PGMRZDYNMAP_SET_2_VMCPU(pSet)->CTX_SUFF(pVM))
115
116/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
117#ifdef IN_RC
118# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (PGMRZDYNMAP_SET_2_VM(pSet)->pgm.s.pRCDynMap)
119#else
120# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (g_pPGMR0DynMap)
121#endif
122
123/**
124 * Gets the set index of the current CPU.
125 *
126 * This always returns 0 when in raw-mode context because there is only ever
127 * one EMT in that context (at least presently).
128 */
129#ifdef IN_RC
130# define PGMRZDYNMAP_CUR_CPU() (0)
131#else
132# define PGMRZDYNMAP_CUR_CPU() RTMpCpuIdToSetIndex(RTMpCpuId())
133#endif
134
135/** PGMRZDYNMAP::u32Magic. (Jens Christian Bugge Wesseltoft) */
136#define PGMRZDYNMAP_MAGIC UINT32_C(0x19640201)
137
138
139/** Zaps an set entry. */
140#define PGMRZDYNMAP_ZAP_ENTRY(pEntry) \
141 do \
142 { \
143 (pEntry)->iPage = UINT16_MAX; \
144 (pEntry)->cRefs = 0; \
145 (pEntry)->cInlinedRefs = 0; \
146 (pEntry)->cUnrefs = 0; \
147 } while (0)
148
149
150/** @def PGMRZDYNMAP_STRICT_RELEASE
151 * Define this to force pages to be released and make non-present ASAP after
152 * use. This should not normally be enabled as it is a bit expensive. */
153#if 0 || defined(DOXYGEN_RUNNING)
154# define PGMRZDYNMAP_STRICT_RELEASE
155#endif
156
157
158/*******************************************************************************
159* Structures and Typedefs *
160*******************************************************************************/
161#ifdef IN_RING0
162/**
163 * Ring-0 dynamic mapping cache segment.
164 *
165 * The dynamic mapping cache can be extended with additional segments if the
166 * load is found to be too high. This done the next time a VM is created, under
167 * the protection of the init mutex. The arrays is reallocated and the new
168 * segment is added to the end of these. Nothing is rehashed of course, as the
169 * indexes / addresses must remain unchanged.
170 *
171 * This structure is only modified while owning the init mutex or during module
172 * init / term.
173 */
174typedef struct PGMR0DYNMAPSEG
175{
176 /** Pointer to the next segment. */
177 struct PGMR0DYNMAPSEG *pNext;
178 /** The memory object for the virtual address range that we're abusing. */
179 RTR0MEMOBJ hMemObj;
180 /** The start page in the cache. (I.e. index into the arrays.) */
181 uint16_t iPage;
182 /** The number of pages this segment contributes. */
183 uint16_t cPages;
184 /** The number of page tables. */
185 uint16_t cPTs;
186 /** The memory objects for the page tables. */
187 RTR0MEMOBJ ahMemObjPTs[1];
188} PGMR0DYNMAPSEG;
189/** Pointer to a ring-0 dynamic mapping cache segment. */
190typedef PGMR0DYNMAPSEG *PPGMR0DYNMAPSEG;
191
192
193/**
194 * Ring-0 dynamic mapping cache entry.
195 *
196 * @sa PGMRZDYNMAPENTRY, PGMRCDYNMAPENTRY.
197 */
198typedef struct PGMR0DYNMAPENTRY
199{
200 /** The physical address of the currently mapped page.
201 * This is duplicate for three reasons: cache locality, cache policy of the PT
202 * mappings and sanity checks. */
203 RTHCPHYS HCPhys;
204 /** Pointer to the page. */
205 void *pvPage;
206 /** The number of references. */
207 int32_t volatile cRefs;
208 /** PTE pointer union. */
209 union PGMR0DYNMAPENTRY_PPTE
210 {
211 /** PTE pointer, 32-bit legacy version. */
212 PX86PTE pLegacy;
213 /** PTE pointer, PAE version. */
214 PX86PTEPAE pPae;
215 /** PTE pointer, the void version. */
216 void *pv;
217 } uPte;
218# ifndef IN_RC
219 /** CPUs that haven't invalidated this entry after it's last update. */
220 RTCPUSET PendingSet;
221# endif
222} PGMR0DYNMAPENTRY;
223/** Pointer a mapping cache entry for the ring-0.
224 * @sa PPGMRZDYNMAPENTRY, PPGMRCDYNMAPENTRY, */
225typedef PGMR0DYNMAPENTRY *PPGMR0DYNMAPENTRY;
226
227
228/**
229 * Dynamic mapping cache for ring-0.
230 *
231 * This is initialized during VMMR0 module init but no segments are allocated
232 * at that time. Segments will be added when the first VM is started and
233 * removed again when the last VM shuts down, thus avoid consuming memory while
234 * dormant. At module termination, the remaining bits will be freed up.
235 *
236 * @sa PPGMRZDYNMAP, PGMRCDYNMAP.
237 */
238typedef struct PGMR0DYNMAP
239{
240 /** The usual magic number / eye catcher (PGMRZDYNMAP_MAGIC). */
241 uint32_t u32Magic;
242# ifndef IN_RC
243 /** Spinlock serializing the normal operation of the cache. */
244 RTSPINLOCK hSpinlock;
245# endif
246 /** Array for tracking and managing the pages. */
247 PPGMR0DYNMAPENTRY paPages;
248 /** The cache size given as a number of pages. */
249 uint32_t cPages;
250 /** Whether it's 32-bit legacy or PAE/AMD64 paging mode. */
251 bool fLegacyMode;
252 /** The current load.
253 * This does not include guard pages. */
254 uint32_t cLoad;
255 /** The max load ever.
256 * This is maintained to trigger the adding of more mapping space. */
257 uint32_t cMaxLoad;
258# ifndef IN_RC
259 /** Initialization / termination lock. */
260 RTSEMFASTMUTEX hInitLock;
261# endif
262 /** The number of guard pages. */
263 uint32_t cGuardPages;
264 /** The number of users (protected by hInitLock). */
265 uint32_t cUsers;
266# ifndef IN_RC
267 /** Array containing a copy of the original page tables.
268 * The entries are either X86PTE or X86PTEPAE according to fLegacyMode. */
269 void *pvSavedPTEs;
270 /** List of segments. */
271 PPGMR0DYNMAPSEG pSegHead;
272 /** The paging mode. */
273 SUPPAGINGMODE enmPgMode;
274# endif
275} PGMR0DYNMAP;
276
277
278/**
279 * Paging level data.
280 */
281typedef struct PGMR0DYNMAPPGLVL
282{
283 uint32_t cLevels; /**< The number of levels. */
284 struct
285 {
286 RTHCPHYS HCPhys; /**< The address of the page for the current level,
287 * i.e. what hMemObj/hMapObj is currently mapping. */
288 RTHCPHYS fPhysMask; /**< Mask for extracting HCPhys from uEntry. */
289 RTR0MEMOBJ hMemObj; /**< Memory object for HCPhys, PAGE_SIZE. */
290 RTR0MEMOBJ hMapObj; /**< Mapping object for hMemObj. */
291 uint32_t fPtrShift; /**< The pointer shift count. */
292 uint64_t fPtrMask; /**< The mask to apply to the shifted pointer to get the table index. */
293 uint64_t fAndMask; /**< And mask to check entry flags. */
294 uint64_t fResMask; /**< The result from applying fAndMask. */
295 union
296 {
297 void *pv; /**< hMapObj address. */
298 PX86PGUINT paLegacy; /**< Legacy table view. */
299 PX86PGPAEUINT paPae; /**< PAE/AMD64 table view. */
300 } u;
301 } a[4];
302} PGMR0DYNMAPPGLVL;
303/** Pointer to paging level data. */
304typedef PGMR0DYNMAPPGLVL *PPGMR0DYNMAPPGLVL;
305#endif
306
307/** Mapping cache entry for the current context.
308 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
309typedef CTX_MID(PGM,DYNMAPENTRY) PGMRZDYNMAPENTRY;
310/** Pointer a mapping cache entry for the current context.
311 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
312typedef PGMRZDYNMAPENTRY *PPGMRZDYNMAPENTRY;
313
314/** Pointer the mapping cache instance for the current context.
315 * @sa PGMR0DYNMAP, PGMRCDYNMAP */
316typedef CTX_MID(PGM,DYNMAP) *PPGMRZDYNMAP;
317
318
319
320/*******************************************************************************
321* Global Variables *
322*******************************************************************************/
323#ifdef IN_RING0
324/** Pointer to the ring-0 dynamic mapping cache. */
325static PGMR0DYNMAP *g_pPGMR0DynMap;
326#endif
327/** For overflow testing. */
328static bool g_fPGMR0DynMapTestRunning = false;
329
330
331/*******************************************************************************
332* Internal Functions *
333*******************************************************************************/
334static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs);
335#ifdef IN_RING0
336static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis);
337static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis);
338static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis);
339#endif
340#if 0 /*def DEBUG*/
341static int pgmR0DynMapTest(PVM pVM);
342#endif
343
344
345/**
346 * Initializes the auto mapping sets for a VM.
347 *
348 * @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure.
349 * @param pVM The VM in question.
350 */
351static int pgmRZDynMapInitAutoSetsForVM(PVM pVM)
352{
353 VMCPUID idCpu = pVM->cCpus;
354 AssertReturn(idCpu > 0 && idCpu <= VMM_MAX_CPU_COUNT, VERR_INTERNAL_ERROR);
355 while (idCpu-- > 0)
356 {
357 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
358 uint32_t j = RT_ELEMENTS(pSet->aEntries);
359 while (j-- > 0)
360 {
361 pSet->aEntries[j].pvPage = NULL;
362 pSet->aEntries[j].HCPhys = NIL_RTHCPHYS;
363 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
364 }
365 pSet->cEntries = PGMMAPSET_CLOSED;
366 pSet->iSubset = UINT32_MAX;
367 pSet->iCpu = -1;
368 memset(&pSet->aiHashTable[0], 0xff, sizeof(pSet->aiHashTable));
369 }
370
371 return VINF_SUCCESS;
372}
373
374
375#ifdef IN_RING0
376
377/**
378 * Initializes the ring-0 dynamic mapping cache.
379 *
380 * @returns VBox status code.
381 */
382VMMR0DECL(int) PGMR0DynMapInit(void)
383{
384 Assert(!g_pPGMR0DynMap);
385
386 /*
387 * Create and initialize the cache instance.
388 */
389 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)RTMemAllocZ(sizeof(*pThis));
390 AssertLogRelReturn(pThis, VERR_NO_MEMORY);
391 int rc = VINF_SUCCESS;
392 pThis->enmPgMode = SUPR0GetPagingMode();
393 switch (pThis->enmPgMode)
394 {
395 case SUPPAGINGMODE_32_BIT:
396 case SUPPAGINGMODE_32_BIT_GLOBAL:
397 pThis->fLegacyMode = false;
398 break;
399 case SUPPAGINGMODE_PAE:
400 case SUPPAGINGMODE_PAE_GLOBAL:
401 case SUPPAGINGMODE_PAE_NX:
402 case SUPPAGINGMODE_PAE_GLOBAL_NX:
403 case SUPPAGINGMODE_AMD64:
404 case SUPPAGINGMODE_AMD64_GLOBAL:
405 case SUPPAGINGMODE_AMD64_NX:
406 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
407 pThis->fLegacyMode = false;
408 break;
409 default:
410 rc = VERR_INTERNAL_ERROR;
411 break;
412 }
413 if (RT_SUCCESS(rc))
414 {
415 rc = RTSemFastMutexCreate(&pThis->hInitLock);
416 if (RT_SUCCESS(rc))
417 {
418 rc = RTSpinlockCreate(&pThis->hSpinlock);
419 if (RT_SUCCESS(rc))
420 {
421 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
422 g_pPGMR0DynMap = pThis;
423 return VINF_SUCCESS;
424 }
425 RTSemFastMutexDestroy(pThis->hInitLock);
426 }
427 }
428 RTMemFree(pThis);
429 return rc;
430}
431
432
433/**
434 * Terminates the ring-0 dynamic mapping cache.
435 */
436VMMR0DECL(void) PGMR0DynMapTerm(void)
437{
438 /*
439 * Destroy the cache.
440 *
441 * There is not supposed to be any races here, the loader should
442 * make sure about that. So, don't bother locking anything.
443 *
444 * The VM objects should all be destroyed by now, so there is no
445 * dangling users or anything like that to clean up. This routine
446 * is just a mirror image of PGMR0DynMapInit.
447 */
448 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
449 if (pThis)
450 {
451 AssertPtr(pThis);
452 g_pPGMR0DynMap = NULL;
453
454 /* This should *never* happen, but in case it does try not to leak memory. */
455 AssertLogRelMsg(!pThis->cUsers && !pThis->paPages && !pThis->pvSavedPTEs && !pThis->cPages,
456 ("cUsers=%d paPages=%p pvSavedPTEs=%p cPages=%#x\n",
457 pThis->cUsers, pThis->paPages, pThis->pvSavedPTEs, pThis->cPages));
458 if (pThis->paPages)
459 pgmR0DynMapTearDown(pThis);
460
461 /* Free the associated resources. */
462 RTSemFastMutexDestroy(pThis->hInitLock);
463 pThis->hInitLock = NIL_RTSEMFASTMUTEX;
464 RTSpinlockDestroy(pThis->hSpinlock);
465 pThis->hSpinlock = NIL_RTSPINLOCK;
466 pThis->u32Magic = UINT32_MAX;
467 RTMemFree(pThis);
468 }
469}
470
471
472/**
473 * Initializes the dynamic mapping cache for a new VM.
474 *
475 * @returns VBox status code.
476 * @param pVM Pointer to the shared VM structure.
477 */
478VMMR0DECL(int) PGMR0DynMapInitVM(PVM pVM)
479{
480 AssertMsgReturn(!pVM->pgm.s.pvR0DynMapUsed, ("%p (pThis=%p)\n", pVM->pgm.s.pvR0DynMapUsed, g_pPGMR0DynMap), VERR_WRONG_ORDER);
481
482 /*
483 * Initialize the auto sets.
484 */
485 int rc = pgmRZDynMapInitAutoSetsForVM(pVM);
486 if (RT_FAILURE(rc))
487 return rc;
488
489 /*
490 * Do we need the cache? Skip the last bit if we don't.
491 */
492 if (!VMMIsHwVirtExtForced(pVM))
493 return VINF_SUCCESS;
494
495 /*
496 * Reference and if necessary setup or expand the cache.
497 */
498 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
499 AssertPtrReturn(pThis, VERR_INTERNAL_ERROR);
500 rc = RTSemFastMutexRequest(pThis->hInitLock);
501 AssertLogRelRCReturn(rc, rc);
502
503 pThis->cUsers++;
504 if (pThis->cUsers == 1)
505 {
506 rc = pgmR0DynMapSetup(pThis);
507#if 0 /*def DEBUG*/
508 if (RT_SUCCESS(rc))
509 {
510 rc = pgmR0DynMapTest(pVM);
511 if (RT_FAILURE(rc))
512 pgmR0DynMapTearDown(pThis);
513 }
514#endif
515 }
516 else if (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(pThis->cPages - pThis->cGuardPages))
517 rc = pgmR0DynMapExpand(pThis);
518 if (RT_SUCCESS(rc))
519 pVM->pgm.s.pvR0DynMapUsed = pThis;
520 else
521 pThis->cUsers--;
522
523 RTSemFastMutexRelease(pThis->hInitLock);
524 return rc;
525}
526
527
528/**
529 * Terminates the dynamic mapping cache usage for a VM.
530 *
531 * @param pVM Pointer to the shared VM structure.
532 */
533VMMR0DECL(void) PGMR0DynMapTermVM(PVM pVM)
534{
535 /*
536 * Return immediately if we're not using the cache.
537 */
538 if (!pVM->pgm.s.pvR0DynMapUsed)
539 return;
540
541 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
542 AssertPtrReturnVoid(pThis);
543
544 int rc = RTSemFastMutexRequest(pThis->hInitLock);
545 AssertLogRelRCReturnVoid(rc);
546
547 if (pVM->pgm.s.pvR0DynMapUsed == pThis)
548 {
549 pVM->pgm.s.pvR0DynMapUsed = NULL;
550
551#ifdef VBOX_STRICT
552 PGMR0DynMapAssertIntegrity();
553#endif
554
555 /*
556 * Clean up and check the auto sets.
557 */
558 VMCPUID idCpu = pVM->cCpus;
559 while (idCpu-- > 0)
560 {
561 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
562 uint32_t j = pSet->cEntries;
563 if (j <= RT_ELEMENTS(pSet->aEntries))
564 {
565 /*
566 * The set is open, close it.
567 */
568 while (j-- > 0)
569 {
570 int32_t cRefs = pSet->aEntries[j].cRefs;
571 uint32_t iPage = pSet->aEntries[j].iPage;
572 LogRel(("PGMR0DynMapTermVM: %d dangling refs to %#x\n", cRefs, iPage));
573 if (iPage < pThis->cPages && cRefs > 0)
574 pgmRZDynMapReleasePage(pThis, iPage, cRefs);
575 else
576 AssertLogRelMsgFailed(("cRefs=%d iPage=%#x cPages=%u\n", cRefs, iPage, pThis->cPages));
577
578 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
579 }
580 pSet->cEntries = PGMMAPSET_CLOSED;
581 pSet->iSubset = UINT32_MAX;
582 pSet->iCpu = -1;
583 }
584 else
585 AssertMsg(j == PGMMAPSET_CLOSED, ("cEntries=%#x\n", j));
586
587 j = RT_ELEMENTS(pSet->aEntries);
588 while (j-- > 0)
589 {
590 Assert(pSet->aEntries[j].iPage == UINT16_MAX);
591 Assert(!pSet->aEntries[j].cRefs);
592 }
593 }
594
595 /*
596 * Release our reference to the mapping cache.
597 */
598 Assert(pThis->cUsers > 0);
599 pThis->cUsers--;
600 if (!pThis->cUsers)
601 pgmR0DynMapTearDown(pThis);
602 }
603 else
604 AssertLogRelMsgFailed(("pvR0DynMapUsed=%p pThis=%p\n", pVM->pgm.s.pvR0DynMapUsed, pThis));
605
606 RTSemFastMutexRelease(pThis->hInitLock);
607}
608
609
610/**
611 * Shoots down the TLBs for all the cache pages, pgmR0DynMapTearDown helper.
612 *
613 * @param idCpu The current CPU.
614 * @param pvUser1 The dynamic mapping cache instance.
615 * @param pvUser2 Unused, NULL.
616 */
617static DECLCALLBACK(void) pgmR0DynMapShootDownTlbs(RTCPUID idCpu, void *pvUser1, void *pvUser2)
618{
619 Assert(!pvUser2);
620 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)pvUser1;
621 Assert(pThis == g_pPGMR0DynMap);
622 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
623 uint32_t iPage = pThis->cPages;
624 while (iPage-- > 0)
625 ASMInvalidatePage(paPages[iPage].pvPage);
626}
627
628
629/**
630 * Shoot down the TLBs for every single cache entry on all CPUs.
631 *
632 * @returns IPRT status code (RTMpOnAll).
633 * @param pThis The dynamic mapping cache instance.
634 */
635static int pgmR0DynMapTlbShootDown(PPGMRZDYNMAP pThis)
636{
637 int rc = RTMpOnAll(pgmR0DynMapShootDownTlbs, pThis, NULL);
638 AssertRC(rc);
639 if (RT_FAILURE(rc))
640 {
641 uint32_t iPage = pThis->cPages;
642 while (iPage-- > 0)
643 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
644 }
645 return rc;
646}
647
648
649/**
650 * Calculate the new cache size based on cMaxLoad statistics.
651 *
652 * @returns Number of pages.
653 * @param pThis The dynamic mapping cache instance.
654 * @param pcMinPages The minimal size in pages.
655 */
656static uint32_t pgmR0DynMapCalcNewSize(PPGMRZDYNMAP pThis, uint32_t *pcMinPages)
657{
658 Assert(pThis->cPages <= PGMR0DYNMAP_MAX_PAGES);
659
660 /* cCpus * PGMR0DYNMAP_PAGES_PER_CPU(_MIN). */
661 RTCPUID cCpus = RTMpGetCount();
662 AssertReturn(cCpus > 0 && cCpus <= RTCPUSET_MAX_CPUS, 0);
663 uint32_t cPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU;
664 uint32_t cMinPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU_MIN;
665
666 /* adjust against cMaxLoad. */
667 AssertMsg(pThis->cMaxLoad <= PGMR0DYNMAP_MAX_PAGES, ("%#x\n", pThis->cMaxLoad));
668 if (pThis->cMaxLoad > PGMR0DYNMAP_MAX_PAGES)
669 pThis->cMaxLoad = 0;
670
671 while (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(cPages))
672 cPages += PGMR0DYNMAP_PAGES_PER_CPU;
673
674 if (pThis->cMaxLoad > cMinPages)
675 cMinPages = pThis->cMaxLoad;
676
677 /* adjust against max and current size. */
678 if (cPages < pThis->cPages)
679 cPages = pThis->cPages;
680 cPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
681 if (cPages > PGMR0DYNMAP_MAX_PAGES)
682 cPages = PGMR0DYNMAP_MAX_PAGES;
683
684 if (cMinPages < pThis->cPages)
685 cMinPages = pThis->cPages;
686 cMinPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
687 if (cMinPages > PGMR0DYNMAP_MAX_PAGES)
688 cMinPages = PGMR0DYNMAP_MAX_PAGES;
689
690 Assert(cMinPages);
691 *pcMinPages = cMinPages;
692 return cPages;
693}
694
695
696/**
697 * Initializes the paging level data.
698 *
699 * @param pThis The dynamic mapping cache instance.
700 * @param pPgLvl The paging level data.
701 */
702void pgmR0DynMapPagingArrayInit(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl)
703{
704 RTCCUINTREG cr4 = ASMGetCR4();
705 switch (pThis->enmPgMode)
706 {
707 case SUPPAGINGMODE_32_BIT:
708 case SUPPAGINGMODE_32_BIT_GLOBAL:
709 pPgLvl->cLevels = 2;
710 pPgLvl->a[0].fPhysMask = X86_CR3_PAGE_MASK;
711 pPgLvl->a[0].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
712 pPgLvl->a[0].fResMask = X86_PDE_P | X86_PDE_RW;
713 pPgLvl->a[0].fPtrMask = X86_PD_MASK;
714 pPgLvl->a[0].fPtrShift = X86_PD_SHIFT;
715
716 pPgLvl->a[1].fPhysMask = X86_PDE_PG_MASK;
717 pPgLvl->a[1].fAndMask = X86_PTE_P | X86_PTE_RW;
718 pPgLvl->a[1].fResMask = X86_PTE_P | X86_PTE_RW;
719 pPgLvl->a[1].fPtrMask = X86_PT_MASK;
720 pPgLvl->a[1].fPtrShift = X86_PT_SHIFT;
721 break;
722
723 case SUPPAGINGMODE_PAE:
724 case SUPPAGINGMODE_PAE_GLOBAL:
725 case SUPPAGINGMODE_PAE_NX:
726 case SUPPAGINGMODE_PAE_GLOBAL_NX:
727 pPgLvl->cLevels = 3;
728 pPgLvl->a[0].fPhysMask = X86_CR3_PAE_PAGE_MASK;
729 pPgLvl->a[0].fPtrMask = X86_PDPT_MASK_PAE;
730 pPgLvl->a[0].fPtrShift = X86_PDPT_SHIFT;
731 pPgLvl->a[0].fAndMask = X86_PDPE_P;
732 pPgLvl->a[0].fResMask = X86_PDPE_P;
733
734 pPgLvl->a[1].fPhysMask = X86_PDPE_PG_MASK;
735 pPgLvl->a[1].fPtrMask = X86_PD_PAE_MASK;
736 pPgLvl->a[1].fPtrShift = X86_PD_PAE_SHIFT;
737 pPgLvl->a[1].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
738 pPgLvl->a[1].fResMask = X86_PDE_P | X86_PDE_RW;
739
740 pPgLvl->a[2].fPhysMask = X86_PDE_PAE_PG_MASK;
741 pPgLvl->a[2].fPtrMask = X86_PT_PAE_MASK;
742 pPgLvl->a[2].fPtrShift = X86_PT_PAE_SHIFT;
743 pPgLvl->a[2].fAndMask = X86_PTE_P | X86_PTE_RW;
744 pPgLvl->a[2].fResMask = X86_PTE_P | X86_PTE_RW;
745 break;
746
747 case SUPPAGINGMODE_AMD64:
748 case SUPPAGINGMODE_AMD64_GLOBAL:
749 case SUPPAGINGMODE_AMD64_NX:
750 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
751 pPgLvl->cLevels = 4;
752 pPgLvl->a[0].fPhysMask = X86_CR3_AMD64_PAGE_MASK;
753 pPgLvl->a[0].fPtrShift = X86_PML4_SHIFT;
754 pPgLvl->a[0].fPtrMask = X86_PML4_MASK;
755 pPgLvl->a[0].fAndMask = X86_PML4E_P | X86_PML4E_RW;
756 pPgLvl->a[0].fResMask = X86_PML4E_P | X86_PML4E_RW;
757
758 pPgLvl->a[1].fPhysMask = X86_PML4E_PG_MASK;
759 pPgLvl->a[1].fPtrShift = X86_PDPT_SHIFT;
760 pPgLvl->a[1].fPtrMask = X86_PDPT_MASK_AMD64;
761 pPgLvl->a[1].fAndMask = X86_PDPE_P | X86_PDPE_RW /** @todo check for X86_PDPT_PS support. */;
762 pPgLvl->a[1].fResMask = X86_PDPE_P | X86_PDPE_RW;
763
764 pPgLvl->a[2].fPhysMask = X86_PDPE_PG_MASK;
765 pPgLvl->a[2].fPtrShift = X86_PD_PAE_SHIFT;
766 pPgLvl->a[2].fPtrMask = X86_PD_PAE_MASK;
767 pPgLvl->a[2].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
768 pPgLvl->a[2].fResMask = X86_PDE_P | X86_PDE_RW;
769
770 pPgLvl->a[3].fPhysMask = X86_PDE_PAE_PG_MASK;
771 pPgLvl->a[3].fPtrShift = X86_PT_PAE_SHIFT;
772 pPgLvl->a[3].fPtrMask = X86_PT_PAE_MASK;
773 pPgLvl->a[3].fAndMask = X86_PTE_P | X86_PTE_RW;
774 pPgLvl->a[3].fResMask = X86_PTE_P | X86_PTE_RW;
775 break;
776
777 default:
778 AssertFailed();
779 pPgLvl->cLevels = 0;
780 break;
781 }
782
783 for (uint32_t i = 0; i < 4; i++) /* ASSUMING array size. */
784 {
785 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
786 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
787 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
788 pPgLvl->a[i].u.pv = NULL;
789 }
790}
791
792
793/**
794 * Maps a PTE.
795 *
796 * This will update the segment structure when new PTs are mapped.
797 *
798 * It also assumes that we (for paranoid reasons) wish to establish a mapping
799 * chain from CR3 to the PT that all corresponds to the processor we're
800 * currently running on, and go about this by running with interrupts disabled
801 * and restarting from CR3 for every change.
802 *
803 * @returns VBox status code, VINF_TRY_AGAIN if we changed any mappings and had
804 * to re-enable interrupts.
805 * @param pThis The dynamic mapping cache instance.
806 * @param pPgLvl The paging level structure.
807 * @param pvPage The page.
808 * @param pSeg The segment.
809 * @param cMaxPTs The max number of PTs expected in the segment.
810 * @param ppvPTE Where to store the PTE address.
811 */
812static int pgmR0DynMapPagingArrayMapPte(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl, void *pvPage,
813 PPGMR0DYNMAPSEG pSeg, uint32_t cMaxPTs, void **ppvPTE)
814{
815 Assert(!(ASMGetFlags() & X86_EFL_IF));
816 void *pvEntry = NULL;
817 X86PGPAEUINT uEntry = ASMGetCR3();
818 for (uint32_t i = 0; i < pPgLvl->cLevels; i++)
819 {
820 RTHCPHYS HCPhys = uEntry & pPgLvl->a[i].fPhysMask;
821 if (pPgLvl->a[i].HCPhys != HCPhys)
822 {
823 /*
824 * Need to remap this level.
825 * The final level, the PT, will not be freed since that is what it's all about.
826 */
827 ASMIntEnable();
828 if (i + 1 == pPgLvl->cLevels)
829 AssertReturn(pSeg->cPTs < cMaxPTs, VERR_INTERNAL_ERROR);
830 else
831 {
832 int rc2 = RTR0MemObjFree(pPgLvl->a[i].hMemObj, true /* fFreeMappings */); AssertRC(rc2);
833 pPgLvl->a[i].hMemObj = pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
834 }
835
836 int rc = RTR0MemObjEnterPhys(&pPgLvl->a[i].hMemObj, HCPhys, PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE);
837 if (RT_SUCCESS(rc))
838 {
839 rc = RTR0MemObjMapKernel(&pPgLvl->a[i].hMapObj, pPgLvl->a[i].hMemObj,
840 (void *)-1 /* pvFixed */, 0 /* cbAlignment */,
841 RTMEM_PROT_WRITE | RTMEM_PROT_READ);
842 if (RT_SUCCESS(rc))
843 {
844 pPgLvl->a[i].u.pv = RTR0MemObjAddress(pPgLvl->a[i].hMapObj);
845 AssertMsg(((uintptr_t)pPgLvl->a[i].u.pv & ~(uintptr_t)PAGE_OFFSET_MASK), ("%p\n", pPgLvl->a[i].u.pv));
846 pPgLvl->a[i].HCPhys = HCPhys;
847 if (i + 1 == pPgLvl->cLevels)
848 pSeg->ahMemObjPTs[pSeg->cPTs++] = pPgLvl->a[i].hMemObj;
849 ASMIntDisable();
850 return VINF_TRY_AGAIN;
851 }
852
853 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
854 }
855 else
856 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
857 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
858 return rc;
859 }
860
861 /*
862 * The next level.
863 */
864 uint32_t iEntry = ((uint64_t)(uintptr_t)pvPage >> pPgLvl->a[i].fPtrShift) & pPgLvl->a[i].fPtrMask;
865 if (pThis->fLegacyMode)
866 {
867 pvEntry = &pPgLvl->a[i].u.paLegacy[iEntry];
868 uEntry = pPgLvl->a[i].u.paLegacy[iEntry];
869 }
870 else
871 {
872 pvEntry = &pPgLvl->a[i].u.paPae[iEntry];
873 uEntry = pPgLvl->a[i].u.paPae[iEntry];
874 }
875
876 if ((uEntry & pPgLvl->a[i].fAndMask) != pPgLvl->a[i].fResMask)
877 {
878 LogRel(("PGMR0DynMap: internal error - iPgLvl=%u cLevels=%u uEntry=%#llx fAnd=%#llx fRes=%#llx got=%#llx\n"
879 "PGMR0DynMap: pv=%p pvPage=%p iEntry=%#x fLegacyMode=%RTbool\n",
880 i, pPgLvl->cLevels, uEntry, pPgLvl->a[i].fAndMask, pPgLvl->a[i].fResMask, uEntry & pPgLvl->a[i].fAndMask,
881 pPgLvl->a[i].u.pv, pvPage, iEntry, pThis->fLegacyMode));
882 return VERR_INTERNAL_ERROR;
883 }
884 /*Log(("#%d: iEntry=%4d uEntry=%#llx pvEntry=%p HCPhys=%RHp \n", i, iEntry, uEntry, pvEntry, pPgLvl->a[i].HCPhys));*/
885 }
886
887 /* made it thru without needing to remap anything. */
888 *ppvPTE = pvEntry;
889 return VINF_SUCCESS;
890}
891
892
893/**
894 * Sets up a guard page.
895 *
896 * @param pThis The dynamic mapping cache instance.
897 * @param pPage The page.
898 */
899DECLINLINE(void) pgmR0DynMapSetupGuardPage(PPGMRZDYNMAP pThis, PPGMRZDYNMAPENTRY pPage)
900{
901 memset(pPage->pvPage, 0xfd, PAGE_SIZE);
902 pPage->cRefs = PGMR0DYNMAP_GUARD_PAGE_REF_COUNT;
903 pPage->HCPhys = PGMR0DYNMAP_GUARD_PAGE_HCPHYS;
904#ifdef PGMR0DYNMAP_GUARD_NP
905 ASMAtomicBitClear(pPage->uPte.pv, X86_PTE_BIT_P);
906#else
907 if (pThis->fLegacyMode)
908 ASMAtomicWriteU32(&pPage->uPte.pLegacy->u, PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE);
909 else
910 ASMAtomicWriteU64(&pPage->uPte.pPae->u, PGMR0DYNMAP_GUARD_PAGE_PAE_PTE);
911#endif
912 pThis->cGuardPages++;
913}
914
915
916/**
917 * Adds a new segment of the specified size.
918 *
919 * @returns VBox status code.
920 * @param pThis The dynamic mapping cache instance.
921 * @param cPages The size of the new segment, give as a page count.
922 */
923static int pgmR0DynMapAddSeg(PPGMRZDYNMAP pThis, uint32_t cPages)
924{
925 int rc2;
926 AssertReturn(ASMGetFlags() & X86_EFL_IF, VERR_PREEMPT_DISABLED);
927
928 /*
929 * Do the array reallocations first.
930 * (The pages array has to be replaced behind the spinlock of course.)
931 */
932 void *pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * (pThis->cPages + cPages));
933 if (!pvSavedPTEs)
934 return VERR_NO_MEMORY;
935 pThis->pvSavedPTEs = pvSavedPTEs;
936
937 void *pvPages = RTMemAllocZ(sizeof(pThis->paPages[0]) * (pThis->cPages + cPages));
938 if (!pvPages)
939 {
940 pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * pThis->cPages);
941 if (pvSavedPTEs)
942 pThis->pvSavedPTEs = pvSavedPTEs;
943 return VERR_NO_MEMORY;
944 }
945
946 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
947
948 memcpy(pvPages, pThis->paPages, sizeof(pThis->paPages[0]) * pThis->cPages);
949 void *pvToFree = pThis->paPages;
950 pThis->paPages = (PPGMRZDYNMAPENTRY)pvPages;
951
952 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
953 RTMemFree(pvToFree);
954
955 /*
956 * Allocate the segment structure and pages of memory, then touch all the pages (paranoia).
957 */
958 uint32_t cMaxPTs = cPages / (pThis->fLegacyMode ? X86_PG_ENTRIES : X86_PG_PAE_ENTRIES) + 2;
959 PPGMR0DYNMAPSEG pSeg = (PPGMR0DYNMAPSEG)RTMemAllocZ(RT_UOFFSETOF(PGMR0DYNMAPSEG, ahMemObjPTs[cMaxPTs]));
960 if (!pSeg)
961 return VERR_NO_MEMORY;
962 pSeg->pNext = NULL;
963 pSeg->cPages = cPages;
964 pSeg->iPage = pThis->cPages;
965 pSeg->cPTs = 0;
966 int rc = RTR0MemObjAllocPage(&pSeg->hMemObj, cPages << PAGE_SHIFT, false);
967 if (RT_SUCCESS(rc))
968 {
969 uint8_t *pbPage = (uint8_t *)RTR0MemObjAddress(pSeg->hMemObj);
970 AssertMsg(VALID_PTR(pbPage) && !((uintptr_t)pbPage & PAGE_OFFSET_MASK), ("%p\n", pbPage));
971 memset(pbPage, 0xfe, cPages << PAGE_SHIFT);
972
973 /*
974 * Walk thru the pages and set them up with a mapping of their PTE and everything.
975 */
976 ASMIntDisable();
977 PGMR0DYNMAPPGLVL PgLvl;
978 pgmR0DynMapPagingArrayInit(pThis, &PgLvl);
979 uint32_t const iEndPage = pSeg->iPage + cPages;
980 for (uint32_t iPage = pSeg->iPage;
981 iPage < iEndPage;
982 iPage++, pbPage += PAGE_SIZE)
983 {
984 /* Initialize the page data. */
985 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
986 pThis->paPages[iPage].pvPage = pbPage;
987 pThis->paPages[iPage].cRefs = 0;
988 pThis->paPages[iPage].uPte.pPae = 0;
989#ifndef IN_RC
990 RTCpuSetFill(&pThis->paPages[iPage].PendingSet);
991#endif
992
993 /* Map its page table, retry until we've got a clean run (paranoia). */
994 do
995 rc = pgmR0DynMapPagingArrayMapPte(pThis, &PgLvl, pbPage, pSeg, cMaxPTs,
996 &pThis->paPages[iPage].uPte.pv);
997 while (rc == VINF_TRY_AGAIN);
998 if (RT_FAILURE(rc))
999 break;
1000
1001 /* Save the PTE. */
1002 if (pThis->fLegacyMode)
1003 ((PX86PGUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pLegacy->u;
1004 else
1005 ((PX86PGPAEUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pPae->u;
1006
1007#ifdef VBOX_STRICT
1008 /* Check that we've got the right entry. */
1009 RTHCPHYS HCPhysPage = RTR0MemObjGetPagePhysAddr(pSeg->hMemObj, iPage - pSeg->iPage);
1010 RTHCPHYS HCPhysPte = pThis->fLegacyMode
1011 ? pThis->paPages[iPage].uPte.pLegacy->u & X86_PTE_PG_MASK
1012 : pThis->paPages[iPage].uPte.pPae->u & X86_PTE_PAE_PG_MASK;
1013 if (HCPhysPage != HCPhysPte)
1014 {
1015 LogRel(("pgmR0DynMapAddSeg: internal error - page #%u HCPhysPage=%RHp HCPhysPte=%RHp pbPage=%p pvPte=%p\n",
1016 iPage - pSeg->iPage, HCPhysPage, HCPhysPte, pbPage, pThis->paPages[iPage].uPte.pv));
1017 rc = VERR_INTERNAL_ERROR;
1018 break;
1019 }
1020#endif
1021 } /* for each page */
1022 ASMIntEnable();
1023
1024 /* cleanup non-PT mappings */
1025 for (uint32_t i = 0; i < PgLvl.cLevels - 1; i++)
1026 RTR0MemObjFree(PgLvl.a[i].hMemObj, true /* fFreeMappings */);
1027
1028 if (RT_SUCCESS(rc))
1029 {
1030#if PGMR0DYNMAP_GUARD_PAGES > 0
1031 /*
1032 * Setup guard pages.
1033 * (Note: TLBs will be shot down later on.)
1034 */
1035 uint32_t iPage = pSeg->iPage;
1036 while (iPage < iEndPage)
1037 {
1038 for (uint32_t iGPg = 0; iGPg < PGMR0DYNMAP_GUARD_PAGES && iPage < iEndPage; iGPg++, iPage++)
1039 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1040 iPage++; /* the guarded page */
1041 }
1042
1043 /* Make sure the very last page is a guard page too. */
1044 iPage = iEndPage - 1;
1045 if (pThis->paPages[iPage].cRefs != PGMR0DYNMAP_GUARD_PAGE_REF_COUNT)
1046 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1047#endif /* PGMR0DYNMAP_GUARD_PAGES > 0 */
1048
1049 /*
1050 * Commit it by adding the segment to the list and updating the page count.
1051 */
1052 pSeg->pNext = pThis->pSegHead;
1053 pThis->pSegHead = pSeg;
1054 pThis->cPages += cPages;
1055 return VINF_SUCCESS;
1056 }
1057
1058 /*
1059 * Bail out.
1060 */
1061 while (pSeg->cPTs-- > 0)
1062 {
1063 rc2 = RTR0MemObjFree(pSeg->ahMemObjPTs[pSeg->cPTs], true /* fFreeMappings */);
1064 AssertRC(rc2);
1065 pSeg->ahMemObjPTs[pSeg->cPTs] = NIL_RTR0MEMOBJ;
1066 }
1067
1068 rc2 = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */);
1069 AssertRC(rc2);
1070 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1071 }
1072 RTMemFree(pSeg);
1073
1074 /* Don't bother resizing the arrays, but free them if we're the only user. */
1075 if (!pThis->cPages)
1076 {
1077 RTMemFree(pThis->paPages);
1078 pThis->paPages = NULL;
1079 RTMemFree(pThis->pvSavedPTEs);
1080 pThis->pvSavedPTEs = NULL;
1081 }
1082 return rc;
1083}
1084
1085
1086/**
1087 * Called by PGMR0DynMapInitVM under the init lock.
1088 *
1089 * @returns VBox status code.
1090 * @param pThis The dynamic mapping cache instance.
1091 */
1092static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis)
1093{
1094 /*
1095 * Calc the size and add a segment of that size.
1096 */
1097 uint32_t cMinPages;
1098 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1099 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1100 int rc = pgmR0DynMapAddSeg(pThis, cPages);
1101 if (rc == VERR_NO_MEMORY)
1102 {
1103 /*
1104 * Try adding smaller segments.
1105 */
1106 do
1107 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1108 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1109 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1110 rc = VINF_SUCCESS;
1111 if (rc == VERR_NO_MEMORY)
1112 {
1113 if (pThis->cPages)
1114 pgmR0DynMapTearDown(pThis);
1115 rc = VERR_PGM_DYNMAP_SETUP_ERROR;
1116 }
1117 }
1118 Assert(ASMGetFlags() & X86_EFL_IF);
1119
1120#if PGMR0DYNMAP_GUARD_PAGES > 0
1121 /* paranoia */
1122 if (RT_SUCCESS(rc))
1123 pgmR0DynMapTlbShootDown(pThis);
1124#endif
1125 return rc;
1126}
1127
1128
1129/**
1130 * Called by PGMR0DynMapInitVM under the init lock.
1131 *
1132 * @returns VBox status code.
1133 * @param pThis The dynamic mapping cache instance.
1134 */
1135static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis)
1136{
1137 /*
1138 * Calc the new target size and add a segment of the appropriate size.
1139 */
1140 uint32_t cMinPages;
1141 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1142 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1143 if (pThis->cPages >= cPages)
1144 return VINF_SUCCESS;
1145
1146 uint32_t cAdd = cPages - pThis->cPages;
1147 int rc = pgmR0DynMapAddSeg(pThis, cAdd);
1148 if (rc == VERR_NO_MEMORY)
1149 {
1150 /*
1151 * Try adding smaller segments.
1152 */
1153 do
1154 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1155 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1156 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1157 rc = VINF_SUCCESS;
1158 if (rc == VERR_NO_MEMORY)
1159 rc = VERR_PGM_DYNMAP_EXPAND_ERROR;
1160 }
1161 Assert(ASMGetFlags() & X86_EFL_IF);
1162
1163#if PGMR0DYNMAP_GUARD_PAGES > 0
1164 /* paranoia */
1165 if (RT_SUCCESS(rc))
1166 pgmR0DynMapTlbShootDown(pThis);
1167#endif
1168 return rc;
1169}
1170
1171
1172/**
1173 * Called by PGMR0DynMapTermVM under the init lock.
1174 *
1175 * @returns VBox status code.
1176 * @param pThis The dynamic mapping cache instance.
1177 */
1178static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis)
1179{
1180 /*
1181 * Restore the original page table entries
1182 */
1183 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1184 uint32_t iPage = pThis->cPages;
1185 if (pThis->fLegacyMode)
1186 {
1187 X86PGUINT const *paSavedPTEs = (X86PGUINT const *)pThis->pvSavedPTEs;
1188 while (iPage-- > 0)
1189 {
1190 X86PGUINT uOld = paPages[iPage].uPte.pLegacy->u;
1191 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1192 X86PGUINT uNew = paSavedPTEs[iPage];
1193 while (!ASMAtomicCmpXchgExU32(&paPages[iPage].uPte.pLegacy->u, uNew, uOld, &uOld))
1194 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1195 Assert(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage]);
1196 }
1197 }
1198 else
1199 {
1200 X86PGPAEUINT const *paSavedPTEs = (X86PGPAEUINT const *)pThis->pvSavedPTEs;
1201 while (iPage-- > 0)
1202 {
1203 X86PGPAEUINT uOld = paPages[iPage].uPte.pPae->u;
1204 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1205 X86PGPAEUINT uNew = paSavedPTEs[iPage];
1206 while (!ASMAtomicCmpXchgExU64(&paPages[iPage].uPte.pPae->u, uNew, uOld, &uOld))
1207 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1208 Assert(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage]);
1209 }
1210 }
1211
1212 /*
1213 * Shoot down the TLBs on all CPUs before freeing them.
1214 */
1215 pgmR0DynMapTlbShootDown(pThis);
1216
1217 /*
1218 * Free the segments.
1219 */
1220 while (pThis->pSegHead)
1221 {
1222 int rc;
1223 PPGMR0DYNMAPSEG pSeg = pThis->pSegHead;
1224 pThis->pSegHead = pSeg->pNext;
1225
1226 uint32_t iPT = pSeg->cPTs;
1227 while (iPT-- > 0)
1228 {
1229 rc = RTR0MemObjFree(pSeg->ahMemObjPTs[iPT], true /* fFreeMappings */); AssertRC(rc);
1230 pSeg->ahMemObjPTs[iPT] = NIL_RTR0MEMOBJ;
1231 }
1232 rc = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */); AssertRC(rc);
1233 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1234 pSeg->pNext = NULL;
1235 pSeg->iPage = UINT16_MAX;
1236 pSeg->cPages = 0;
1237 pSeg->cPTs = 0;
1238 RTMemFree(pSeg);
1239 }
1240
1241 /*
1242 * Free the arrays and restore the initial state.
1243 * The cLoadMax value is left behind for the next setup.
1244 */
1245 RTMemFree(pThis->paPages);
1246 pThis->paPages = NULL;
1247 RTMemFree(pThis->pvSavedPTEs);
1248 pThis->pvSavedPTEs = NULL;
1249 pThis->cPages = 0;
1250 pThis->cLoad = 0;
1251 pThis->cGuardPages = 0;
1252}
1253
1254#endif /* IN_RING0 */
1255#ifdef IN_RC
1256
1257/**
1258 * Initializes the dynamic mapping cache in raw-mode context.
1259 *
1260 * @returns VBox status code.
1261 * @param pVM The VM handle.
1262 */
1263VMMRCDECL(int) PGMRCDynMapInit(PVM pVM)
1264{
1265 /*
1266 * Allocate and initialize the instance data and page array.
1267 */
1268 PPGMRZDYNMAP pThis;
1269 size_t const cPages = MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE;
1270 size_t const cb = RT_ALIGN_Z(sizeof(*pThis), 32)
1271 + sizeof(PGMRZDYNMAPENTRY) * cPages;
1272 int rc = MMHyperAlloc(pVM, cb, 32, MM_TAG_PGM, (void **)&pThis);
1273 if (RT_FAILURE(rc))
1274 return rc;
1275
1276 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
1277 pThis->paPages = RT_ALIGN_PT(pThis + 1, 32, PPGMRZDYNMAPENTRY);
1278 pThis->cPages = cPages;
1279 pThis->fLegacyMode = PGMGetHostMode(pVM) == PGMMODE_32_BIT;
1280 pThis->cLoad = 0;
1281 pThis->cMaxLoad = 0;
1282 pThis->cGuardPages = 0;
1283 pThis->cUsers = 1;
1284
1285 for (size_t iPage = 0; iPage < cPages; iPage++)
1286 {
1287 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1288 pThis->paPages[iPage].pvPage = pVM->pgm.s.pbDynPageMapBaseGC + iPage * PAGE_SIZE;
1289 pThis->paPages[iPage].cRefs = 0;
1290 if (pThis->fLegacyMode)
1291 pThis->paPages[iPage].uPte.pLegacy = &pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage];
1292 else
1293 pThis->paPages[iPage].uPte.pPae = (PX86PTEPAE)&pVM->pgm.s.paDynPageMapPaePTEsGC[iPage];
1294 }
1295
1296 pVM->pgm.s.pRCDynMap = pThis;
1297
1298 /*
1299 * Initialize the autosets the VM.
1300 */
1301 rc = pgmRZDynMapInitAutoSetsForVM(pVM);
1302 if (RT_FAILURE(rc))
1303 return rc;
1304
1305 return VINF_SUCCESS;
1306}
1307
1308#endif /* IN_RC */
1309
1310/**
1311 * Release references to a page, caller owns the spin lock.
1312 *
1313 * @param pThis The dynamic mapping cache instance.
1314 * @param iPage The page.
1315 * @param cRefs The number of references to release.
1316 */
1317DECLINLINE(void) pgmRZDynMapReleasePageLocked(PPGMRZDYNMAP pThis, uint32_t iPage, int32_t cRefs)
1318{
1319 cRefs = ASMAtomicSubS32(&pThis->paPages[iPage].cRefs, cRefs) - cRefs;
1320 AssertMsg(cRefs >= 0, ("%d\n", cRefs));
1321 if (!cRefs)
1322 {
1323 pThis->cLoad--;
1324#ifdef PGMRZDYNMAP_STRICT_RELEASE
1325 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1326 ASMAtomicBitClear(pThis->paPages[iPage].uPte.pv, X86_PTE_BIT_P);
1327 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
1328#endif
1329 }
1330}
1331
1332
1333/**
1334 * Release references to a page, caller does not own the spin lock.
1335 *
1336 * @param pThis The dynamic mapping cache instance.
1337 * @param iPage The page.
1338 * @param cRefs The number of references to release.
1339 */
1340static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs)
1341{
1342 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1343 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1344 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1345}
1346
1347
1348/**
1349 * pgmR0DynMapPage worker that deals with the tedious bits.
1350 *
1351 * @returns The page index on success, UINT32_MAX on failure.
1352 * @param pThis The dynamic mapping cache instance.
1353 * @param HCPhys The address of the page to be mapped.
1354 * @param iPage The page index pgmR0DynMapPage hashed HCPhys to.
1355 * @param pVCpu The current CPU, for statistics.
1356 * @param pfNew Set to @c true if a new entry was made and @c false if
1357 * an old entry was found and reused.
1358 */
1359static uint32_t pgmR0DynMapPageSlow(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, uint32_t iPage, PVMCPU pVCpu, bool *pfNew)
1360{
1361 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlow);
1362
1363 /*
1364 * Check if any of the first 3 pages are unreferenced since the caller
1365 * already has made sure they aren't matching.
1366 */
1367#ifdef VBOX_WITH_STATISTICS
1368 bool fLooped = false;
1369#endif
1370 uint32_t const cPages = pThis->cPages;
1371 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1372 uint32_t iFreePage;
1373 if (!paPages[iPage].cRefs)
1374 iFreePage = iPage;
1375 else if (!paPages[(iPage + 1) % cPages].cRefs)
1376 iFreePage = (iPage + 1) % cPages;
1377 else if (!paPages[(iPage + 2) % cPages].cRefs)
1378 iFreePage = (iPage + 2) % cPages;
1379 else
1380 {
1381 /*
1382 * Search for an unused or matching entry.
1383 */
1384 iFreePage = (iPage + 3) % cPages;
1385 for (;;)
1386 {
1387 if (paPages[iFreePage].HCPhys == HCPhys)
1388 {
1389 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopHits);
1390 *pfNew = false;
1391 return iFreePage;
1392 }
1393 if (!paPages[iFreePage].cRefs)
1394 break;
1395
1396 /* advance */
1397 iFreePage = (iFreePage + 1) % cPages;
1398 if (RT_UNLIKELY(iFreePage == iPage))
1399 return UINT32_MAX;
1400 }
1401 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopMisses);
1402#ifdef VBOX_WITH_STATISTICS
1403 fLooped = true;
1404#endif
1405 }
1406 Assert(iFreePage < cPages);
1407
1408#if 0 //def VBOX_WITH_STATISTICS
1409 /* Check for lost hits. */
1410 if (!fLooped)
1411 for (uint32_t iPage2 = (iPage + 3) % cPages; iPage2 != iPage; iPage2 = (iPage2 + 1) % cPages)
1412 if (paPages[iPage2].HCPhys == HCPhys)
1413 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZDynMapPageSlowLostHits);
1414#endif
1415
1416 /*
1417 * Setup the new entry.
1418 */
1419 *pfNew = true;
1420 /*Log6(("pgmR0DynMapPageSlow: old - %RHp %#x %#llx\n", paPages[iFreePage].HCPhys, paPages[iFreePage].cRefs, paPages[iFreePage].uPte.pPae->u));*/
1421 paPages[iFreePage].HCPhys = HCPhys;
1422#ifndef IN_RC
1423 RTCpuSetFill(&paPages[iFreePage].PendingSet);
1424#endif
1425 if (pThis->fLegacyMode)
1426 {
1427 X86PGUINT uOld = paPages[iFreePage].uPte.pLegacy->u;
1428 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1429 X86PGUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1430 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1431 | (HCPhys & X86_PTE_PG_MASK);
1432 while (!ASMAtomicCmpXchgExU32(&paPages[iFreePage].uPte.pLegacy->u, uNew, uOld, &uOld))
1433 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1434 Assert(paPages[iFreePage].uPte.pLegacy->u == uNew);
1435 }
1436 else
1437 {
1438 X86PGPAEUINT uOld = paPages[iFreePage].uPte.pPae->u;
1439 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1440 X86PGPAEUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1441 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1442 | (HCPhys & X86_PTE_PAE_PG_MASK);
1443 while (!ASMAtomicCmpXchgExU64(&paPages[iFreePage].uPte.pPae->u, uNew, uOld, &uOld))
1444 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1445 Assert(paPages[iFreePage].uPte.pPae->u == uNew);
1446 /*Log6(("pgmR0DynMapPageSlow: #%x - %RHp %p %#llx\n", iFreePage, HCPhys, paPages[iFreePage].pvPage, uNew));*/
1447 }
1448 return iFreePage;
1449}
1450
1451
1452/**
1453 * Maps a page into the pool.
1454 *
1455 * @returns Page index on success, UINT32_MAX on failure.
1456 * @param pThis The dynamic mapping cache instance.
1457 * @param HCPhys The address of the page to be mapped.
1458 * @param iRealCpu The real cpu set index. (optimization)
1459 * @param pVCpu The current CPU (for statistics).
1460 * @param ppvPage Where to the page address.
1461 */
1462DECLINLINE(uint32_t) pgmR0DynMapPage(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, int32_t iRealCpu, PVMCPU pVCpu, void **ppvPage)
1463{
1464 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1465 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
1466 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPage);
1467
1468 /*
1469 * Find an entry, if possible a matching one. The HCPhys address is hashed
1470 * down to a page index, collisions are handled by linear searching.
1471 * Optimized for a hit in the first 3 pages.
1472 *
1473 * Field easy hits here and defer the tedious searching and inserting
1474 * to pgmR0DynMapPageSlow().
1475 */
1476 bool fNew = false;
1477 uint32_t const cPages = pThis->cPages;
1478 uint32_t iPage = (HCPhys >> PAGE_SHIFT) % cPages;
1479 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1480 if (RT_LIKELY(paPages[iPage].HCPhys == HCPhys))
1481 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits0);
1482 else
1483 {
1484 uint32_t iPage2 = (iPage + 1) % cPages;
1485 if (RT_LIKELY(paPages[iPage2].HCPhys == HCPhys))
1486 {
1487 iPage = iPage2;
1488 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits1);
1489 }
1490 else
1491 {
1492 iPage2 = (iPage + 2) % cPages;
1493 if (paPages[iPage2].HCPhys == HCPhys)
1494 {
1495 iPage = iPage2;
1496 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits2);
1497 }
1498 else
1499 {
1500 iPage = pgmR0DynMapPageSlow(pThis, HCPhys, iPage, pVCpu, &fNew);
1501 if (RT_UNLIKELY(iPage == UINT32_MAX))
1502 {
1503 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1504 *ppvPage = NULL;
1505 return iPage;
1506 }
1507 }
1508 }
1509 }
1510
1511 /*
1512 * Reference it, update statistics and get the return address.
1513 */
1514 int32_t cRefs = ASMAtomicIncS32(&paPages[iPage].cRefs);
1515 if (cRefs == 1)
1516 {
1517 pThis->cLoad++;
1518 if (pThis->cLoad > pThis->cMaxLoad)
1519 pThis->cMaxLoad = pThis->cLoad;
1520 AssertMsg(pThis->cLoad <= pThis->cPages - pThis->cGuardPages, ("%d/%d\n", pThis->cLoad, pThis->cPages - pThis->cGuardPages));
1521 }
1522 else if (RT_UNLIKELY(cRefs <= 0))
1523 {
1524 ASMAtomicDecS32(&paPages[iPage].cRefs);
1525 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1526 *ppvPage = NULL;
1527 AssertLogRelMsgFailedReturn(("cRefs=%d iPage=%p HCPhys=%RHp\n", cRefs, iPage, HCPhys), UINT32_MAX);
1528 }
1529 void *pvPage = paPages[iPage].pvPage;
1530
1531#ifndef IN_RC
1532 /*
1533 * Invalidate the entry?
1534 */
1535 bool fInvalidateIt = RTCpuSetIsMemberByIndex(&paPages[iPage].PendingSet, iRealCpu);
1536 if (RT_UNLIKELY(fInvalidateIt))
1537 RTCpuSetDelByIndex(&paPages[iPage].PendingSet, iRealCpu);
1538#endif
1539
1540 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1541
1542 /*
1543 * Do the actual invalidation outside the spinlock.
1544 */
1545#ifdef IN_RC
1546 if (RT_UNLIKELY(fNew))
1547#else
1548 if (RT_UNLIKELY(fInvalidateIt))
1549#endif
1550 {
1551 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageInvlPg);
1552 ASMInvalidatePage(pvPage);
1553 }
1554
1555 *ppvPage = pvPage;
1556 return iPage;
1557}
1558
1559
1560/**
1561 * Assert the the integrity of the pool.
1562 *
1563 * @returns VBox status code.
1564 */
1565static int pgmRZDynMapAssertIntegrity(PPGMRZDYNMAP pThis)
1566{
1567 /*
1568 * Basic pool stuff that doesn't require any lock, just assumes we're a user.
1569 */
1570 if (!pThis)
1571 return VINF_SUCCESS;
1572 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1573 AssertReturn(pThis->u32Magic == PGMRZDYNMAP_MAGIC, VERR_INVALID_MAGIC);
1574 if (!pThis->cUsers)
1575 return VERR_INVALID_PARAMETER;
1576
1577
1578 int rc = VINF_SUCCESS;
1579 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1580
1581#define CHECK_RET(expr, a) \
1582 do { \
1583 if (RT_UNLIKELY(!(expr))) \
1584 { \
1585 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis); \
1586 RTAssertMsg1Weak(#expr, __LINE__, __FILE__, __PRETTY_FUNCTION__); \
1587 RTAssertMsg2Weak a; \
1588 return VERR_INTERNAL_ERROR; \
1589 } \
1590 } while (0)
1591
1592 /*
1593 * Check that the PTEs are correct.
1594 */
1595 uint32_t cGuard = 0;
1596 uint32_t cLoad = 0;
1597 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1598 uint32_t iPage = pThis->cPages;
1599 if (pThis->fLegacyMode)
1600 {
1601#ifdef IN_RING0
1602 PCX86PGUINT paSavedPTEs = (PCX86PGUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1603#endif
1604 while (iPage-- > 0)
1605 {
1606 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1607 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1608 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1609 {
1610#ifdef PGMR0DYNMAP_GUARD_NP
1611 CHECK_RET(paPages[iPage].uPte.pLegacy->u == (paSavedPTEs[iPage] & ~(X86PGUINT)X86_PTE_P),
1612 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1613#else
1614 CHECK_RET(paPages[iPage].uPte.pLegacy->u == PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE,
1615 ("#%u: %#x", iPage, paPages[iPage].uPte.pLegacy->u));
1616#endif
1617 cGuard++;
1618 }
1619 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1620 {
1621 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1622 X86PGUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1623#ifdef IN_RING0
1624 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1625#endif
1626 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1627 CHECK_RET(paPages[iPage].uPte.pLegacy->u == uPte,
1628 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1629 if (paPages[iPage].cRefs)
1630 cLoad++;
1631 }
1632#if defined(IN_RING0) && !defined(PGMRZDYNMAP_STRICT_RELEASE)
1633 else
1634 CHECK_RET(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage],
1635 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1636#endif
1637 }
1638 }
1639 else
1640 {
1641#ifdef IN_RING0
1642 PCX86PGPAEUINT paSavedPTEs = (PCX86PGPAEUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1643#endif
1644 while (iPage-- > 0)
1645 {
1646 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1647 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1648 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1649 {
1650#ifdef PGMR0DYNMAP_GUARD_NP
1651 CHECK_RET(paPages[iPage].uPte.pPae->u == (paSavedPTEs[iPage] & ~(X86PGPAEUINT)X86_PTE_P),
1652 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1653#else
1654 CHECK_RET(paPages[iPage].uPte.pPae->u == PGMR0DYNMAP_GUARD_PAGE_PAE_PTE,
1655 ("#%u: %#llx", iPage, paPages[iPage].uPte.pPae->u));
1656#endif
1657 cGuard++;
1658 }
1659 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1660 {
1661 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1662 X86PGPAEUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1663#ifdef IN_RING0
1664 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1665#endif
1666 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1667 CHECK_RET(paPages[iPage].uPte.pPae->u == uPte,
1668 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1669 if (paPages[iPage].cRefs)
1670 cLoad++;
1671 }
1672#ifdef IN_RING0
1673 else
1674 CHECK_RET(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage],
1675 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1676#endif
1677 }
1678 }
1679
1680 CHECK_RET(cLoad == pThis->cLoad, ("%u %u\n", cLoad, pThis->cLoad));
1681 CHECK_RET(cGuard == pThis->cGuardPages, ("%u %u\n", cGuard, pThis->cGuardPages));
1682
1683#undef CHECK_RET
1684 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1685 return VINF_SUCCESS;
1686}
1687
1688#ifdef IN_RING0
1689/**
1690 * Assert the the integrity of the pool.
1691 *
1692 * @returns VBox status code.
1693 */
1694VMMR0DECL(int) PGMR0DynMapAssertIntegrity(void)
1695{
1696 return pgmRZDynMapAssertIntegrity(g_pPGMR0DynMap);
1697}
1698#endif /* IN_RING0 */
1699
1700#ifdef IN_RC
1701/**
1702 * Assert the the integrity of the pool.
1703 *
1704 * @returns VBox status code.
1705 */
1706VMMRCDECL(int) PGMRCDynMapAssertIntegrity(PVM pVM)
1707{
1708 return pgmRZDynMapAssertIntegrity((PPGMRZDYNMAP)pVM->pgm.s.pRCDynMap);
1709}
1710#endif /* IN_RC */
1711
1712
1713/**
1714 * As a final resort for a (somewhat) full auto set or full cache, try merge
1715 * duplicate entries and flush the ones we can.
1716 *
1717 * @param pSet The set.
1718 */
1719static void pgmDynMapOptimizeAutoSet(PPGMMAPSET pSet)
1720{
1721 LogFlow(("pgmDynMapOptimizeAutoSet\n"));
1722
1723 for (uint32_t i = 0 ; i < pSet->cEntries; i++)
1724 {
1725 /*
1726 * Try merge entries.
1727 */
1728 uint16_t const iPage = pSet->aEntries[i].iPage;
1729 uint32_t j = i + 1;
1730 while ( j < pSet->cEntries
1731 && ( pSet->iSubset == UINT32_MAX
1732 || pSet->iSubset < pSet->cEntries) )
1733 {
1734 if (pSet->aEntries[j].iPage != iPage)
1735 j++;
1736 else
1737 {
1738 uint32_t const cHardRefs = (uint32_t)pSet->aEntries[i].cRefs
1739 + (uint32_t)pSet->aEntries[j].cRefs;
1740 uint32_t cInlinedRefs = (uint32_t)pSet->aEntries[i].cInlinedRefs
1741 + (uint32_t)pSet->aEntries[j].cInlinedRefs;
1742 uint32_t cUnrefs = (uint32_t)pSet->aEntries[i].cUnrefs
1743 + (uint32_t)pSet->aEntries[j].cUnrefs;
1744 uint32_t cSub = RT_MIN(cUnrefs, cInlinedRefs);
1745 cInlinedRefs -= cSub;
1746 cUnrefs -= cSub;
1747
1748 if ( cHardRefs < UINT16_MAX
1749 && cInlinedRefs < UINT16_MAX
1750 && cUnrefs < UINT16_MAX)
1751 {
1752 /* merge j into i removing j. */
1753 Log2(("pgmDynMapOptimizeAutoSet: Merging #%u into #%u\n", j, i));
1754 pSet->aEntries[i].cRefs = cHardRefs;
1755 pSet->aEntries[i].cInlinedRefs = cInlinedRefs;
1756 pSet->aEntries[i].cUnrefs = cUnrefs;
1757 pSet->cEntries--;
1758 if (j < pSet->cEntries)
1759 {
1760 pSet->aEntries[j] = pSet->aEntries[pSet->cEntries];
1761 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1762 }
1763 else
1764 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
1765 }
1766#if 0 /* too complicated, skip it. */
1767 else
1768 {
1769 /* migrate the max number of refs from j into i and quit the inner loop. */
1770 uint32_t cMigrate = UINT16_MAX - 1 - pSet->aEntries[i].cRefs;
1771 Assert(pSet->aEntries[j].cRefs > cMigrate);
1772 pSet->aEntries[j].cRefs -= cMigrate;
1773 pSet->aEntries[i].cRefs = UINT16_MAX - 1;
1774 break;
1775 }
1776#endif
1777 }
1778 }
1779
1780 /*
1781 * Try make use of the unused hinting (cUnrefs) to evict entries
1782 * from both the set as well as the mapping cache.
1783 */
1784
1785 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[i].cRefs + pSet->aEntries[i].cInlinedRefs;
1786 Log2(("pgmDynMapOptimizeAutoSet: #%u/%u/%u pvPage=%p iPage=%u cRefs=%u cInlinedRefs=%u cUnrefs=%u cTotalRefs=%u\n",
1787 i,
1788 pSet->iSubset,
1789 pSet->cEntries,
1790 pSet->aEntries[i].pvPage,
1791 pSet->aEntries[i].iPage,
1792 pSet->aEntries[i].cRefs,
1793 pSet->aEntries[i].cInlinedRefs,
1794 pSet->aEntries[i].cUnrefs,
1795 cTotalRefs));
1796 Assert(cTotalRefs >= pSet->aEntries[i].cUnrefs);
1797
1798 if ( cTotalRefs == pSet->aEntries[i].cUnrefs
1799 && ( pSet->iSubset == UINT32_MAX
1800 || pSet->iSubset < pSet->cEntries)
1801 )
1802 {
1803 Log2(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1804 //LogFlow(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1805 pgmRZDynMapReleasePage(PGMRZDYNMAP_SET_2_DYNMAP(pSet),
1806 pSet->aEntries[i].iPage,
1807 pSet->aEntries[i].cRefs);
1808 pSet->cEntries--;
1809 if (i < pSet->cEntries)
1810 {
1811 pSet->aEntries[i] = pSet->aEntries[pSet->cEntries];
1812 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1813 }
1814
1815 i--;
1816 }
1817 }
1818}
1819
1820
1821
1822
1823/**
1824 * Signals the start of a new set of mappings.
1825 *
1826 * Mostly for strictness. PGMDynMapHCPage won't work unless this
1827 * API is called.
1828 *
1829 * @param pVCpu The shared data for the current virtual CPU.
1830 */
1831VMMDECL(void) PGMRZDynMapStartAutoSet(PVMCPU pVCpu)
1832{
1833 LogFlow(("PGMRZDynMapStartAutoSet:\n"));
1834 Assert(pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED);
1835 Assert(pVCpu->pgm.s.AutoSet.iSubset == UINT32_MAX);
1836 pVCpu->pgm.s.AutoSet.cEntries = 0;
1837 pVCpu->pgm.s.AutoSet.iCpu = PGMRZDYNMAP_CUR_CPU();
1838}
1839
1840
1841#ifdef IN_RING0
1842/**
1843 * Starts or migrates the autoset of a virtual CPU.
1844 *
1845 * This is used by HWACCMR0Enter. When we've longjumped out of the HWACCM
1846 * execution loop with the set open, we'll migrate it when re-entering. While
1847 * under normal circumstances, we'll start it so VMXR0LoadGuestState can access
1848 * guest memory.
1849 *
1850 * @returns @c true if started, @c false if migrated.
1851 * @param pVCpu The shared data for the current virtual CPU.
1852 * @thread EMT
1853 */
1854VMMR0DECL(bool) PGMR0DynMapStartOrMigrateAutoSet(PVMCPU pVCpu)
1855{
1856 bool fStartIt = pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED;
1857 if (fStartIt)
1858 PGMRZDynMapStartAutoSet(pVCpu);
1859 else
1860 PGMR0DynMapMigrateAutoSet(pVCpu);
1861 return fStartIt;
1862}
1863#endif /* IN_RING0 */
1864
1865
1866/**
1867 * Checks if the set has high load.
1868 *
1869 * @returns true on high load, otherwise false.
1870 * @param pSet The set.
1871 */
1872DECLINLINE(bool) pgmRZDynMapHasHighLoad(PPGMMAPSET pSet)
1873{
1874#ifdef IN_RC
1875 if (pSet->cEntries < MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE / 2)
1876 return false;
1877#endif
1878
1879 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1880 uint32_t cUnusedPages = pThis->cPages - pThis->cLoad;
1881#ifdef IN_RC
1882 return cUnusedPages <= MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE * 36 / 100;
1883#else
1884 return cUnusedPages <= PGMR0DYNMAP_PAGES_PER_CPU_MIN;
1885#endif
1886}
1887
1888
1889/**
1890 * Worker that performs the actual flushing of the set.
1891 *
1892 * @param pSet The set to flush.
1893 * @param cEntries The number of entries.
1894 */
1895DECLINLINE(void) pgmDynMapFlushAutoSetWorker(PPGMMAPSET pSet, uint32_t cEntries)
1896{
1897 /*
1898 * Release any pages it's referencing.
1899 */
1900 if ( cEntries != 0
1901 && RT_LIKELY(cEntries <= RT_ELEMENTS(pSet->aEntries)))
1902 {
1903 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1904 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1905
1906 uint32_t i = cEntries;
1907 while (i-- > 0)
1908 {
1909 uint32_t iPage = pSet->aEntries[i].iPage;
1910 Assert(iPage < pThis->cPages);
1911 int32_t cRefs = pSet->aEntries[i].cRefs;
1912 Assert(cRefs > 0);
1913 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1914
1915 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
1916 }
1917
1918 Assert(pThis->cLoad <= pThis->cPages - pThis->cGuardPages);
1919 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1920 }
1921}
1922
1923
1924/**
1925 * Releases the dynamic memory mappings made by PGMDynMapHCPage and associates
1926 * since the PGMDynMapStartAutoSet call.
1927 *
1928 * @param pVCpu The shared data for the current virtual CPU.
1929 */
1930VMMDECL(void) PGMRZDynMapReleaseAutoSet(PVMCPU pVCpu)
1931{
1932 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1933
1934 /*
1935 * Close and flush the set.
1936 */
1937 uint32_t cEntries = pSet->cEntries;
1938 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1939 pSet->cEntries = PGMMAPSET_CLOSED;
1940 pSet->iSubset = UINT32_MAX;
1941 pSet->iCpu = -1;
1942
1943#ifdef IN_RC
1944 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1945 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1946 else
1947#endif
1948 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1949 if (cEntries > RT_ELEMENTS(pSet->aEntries) * 50 / 100)
1950 Log(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1951 else
1952 LogFlow(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1953
1954 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1955}
1956
1957
1958/**
1959 * Flushes the set if it's above a certain threshold.
1960 *
1961 * @param pVCpu The shared data for the current virtual CPU.
1962 */
1963VMMDECL(void) PGMRZDynMapFlushAutoSet(PVMCPU pVCpu)
1964{
1965 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1966 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1967
1968 /*
1969 * Only flush it if it's 45% full.
1970 */
1971 uint32_t cEntries = pSet->cEntries;
1972 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1973 Assert(pSet->iSubset == UINT32_MAX);
1974#ifdef IN_RC
1975 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1976 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1977 else
1978#endif
1979 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1980 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 45 / 100
1981 || pgmRZDynMapHasHighLoad(pSet))
1982 {
1983 pSet->cEntries = 0;
1984 Log(("PGMDynMapFlushAutoSet: cEntries=%d\n", pSet->cEntries));
1985
1986 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1987 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1988 }
1989}
1990
1991
1992#ifndef IN_RC
1993/**
1994 * Migrates the automatic mapping set of the current vCPU if it's active and
1995 * necessary.
1996 *
1997 * This is called when re-entering the hardware assisted execution mode after a
1998 * nip down to ring-3. We run the risk that the CPU might have change and we
1999 * will therefore make sure all the cache entries currently in the auto set will
2000 * be valid on the new CPU. If the cpu didn't change nothing will happen as all
2001 * the entries will have been flagged as invalidated.
2002 *
2003 * @param pVCpu The shared data for the current virtual CPU.
2004 * @thread EMT
2005 */
2006VMMR0DECL(void) PGMR0DynMapMigrateAutoSet(PVMCPU pVCpu)
2007{
2008 LogFlow(("PGMR0DynMapMigrateAutoSet\n"));
2009 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2010 int32_t iRealCpu = PGMRZDYNMAP_CUR_CPU();
2011 if (pSet->iCpu != iRealCpu)
2012 {
2013 uint32_t i = pSet->cEntries;
2014 if (i != PGMMAPSET_CLOSED)
2015 {
2016 AssertMsg(i <= RT_ELEMENTS(pSet->aEntries), ("%#x (%u)\n", i, i));
2017 if (i != 0 && RT_LIKELY(i <= RT_ELEMENTS(pSet->aEntries)))
2018 {
2019 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2020 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2021
2022 while (i-- > 0)
2023 {
2024 Assert(pSet->aEntries[i].cRefs > 0);
2025 uint32_t iPage = pSet->aEntries[i].iPage;
2026 Assert(iPage < pThis->cPages);
2027 if (RTCpuSetIsMemberByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu))
2028 {
2029 RTCpuSetDelByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu);
2030 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2031
2032 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
2033 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapMigrateInvlPg);
2034
2035 PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis);
2036 }
2037 }
2038
2039 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2040 }
2041 }
2042 pSet->iCpu = iRealCpu;
2043 }
2044}
2045#endif /* !IN_RC */
2046
2047
2048/**
2049 * Worker function that flushes the current subset.
2050 *
2051 * This is called when the set is popped or when the set
2052 * hash a too high load. As also pointed out elsewhere, the
2053 * whole subset thing is a hack for working around code that
2054 * accesses too many pages. Like PGMPool.
2055 *
2056 * @param pSet The set which subset to flush.
2057 */
2058static void pgmDynMapFlushSubset(PPGMMAPSET pSet)
2059{
2060 uint32_t iSubset = pSet->iSubset;
2061 uint32_t i = pSet->cEntries;
2062 Assert(i <= RT_ELEMENTS(pSet->aEntries));
2063 if ( i > iSubset
2064 && i <= RT_ELEMENTS(pSet->aEntries))
2065 {
2066 Log(("pgmDynMapFlushSubset: cEntries=%d iSubset=%d\n", pSet->cEntries, iSubset));
2067 pSet->cEntries = iSubset;
2068
2069 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2070 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2071
2072 while (i-- > iSubset)
2073 {
2074 uint32_t iPage = pSet->aEntries[i].iPage;
2075 Assert(iPage < pThis->cPages);
2076 int32_t cRefs = pSet->aEntries[i].cRefs;
2077 Assert(cRefs > 0);
2078 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
2079
2080 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
2081 }
2082
2083 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2084 }
2085}
2086
2087
2088/**
2089 * Creates a subset.
2090 *
2091 * A subset is a hack to avoid having to rewrite code that touches a lot of
2092 * pages. It prevents the mapping set from being overflowed by automatically
2093 * flushing previous mappings when a certain threshold is reached.
2094 *
2095 * Pages mapped after calling this function are only valid until the next page
2096 * is mapped.
2097 *
2098 * @returns The index of the previous subset. Pass this to
2099 * PGMDynMapPopAutoSubset when popping it.
2100 * @param pVCpu Pointer to the virtual cpu data.
2101 */
2102VMMDECL(uint32_t) PGMRZDynMapPushAutoSubset(PVMCPU pVCpu)
2103{
2104 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2105 AssertReturn(pSet->cEntries != PGMMAPSET_CLOSED, UINT32_MAX);
2106 uint32_t iPrevSubset = pSet->iSubset;
2107 LogFlow(("PGMRZDynMapPushAutoSubset: pVCpu=%p iPrevSubset=%u\n", pVCpu, iPrevSubset));
2108
2109 /*
2110 * If it looks like we're approaching the max set size or mapping space
2111 * optimize the set to drop off unused pages.
2112 */
2113 if ( pSet->cEntries > RT_ELEMENTS(pSet->aEntries) * 60 / 100
2114 || pgmRZDynMapHasHighLoad(pSet))
2115 {
2116 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2117 pgmDynMapOptimizeAutoSet(pSet);
2118 }
2119
2120 pSet->iSubset = pSet->cEntries;
2121 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSubsets);
2122
2123 AssertMsg(iPrevSubset <= pSet->iSubset || iPrevSubset == UINT32_MAX, ("iPrevSubset=%#x iSubset=%#x\n", iPrevSubset, pSet->iSubset));
2124 return iPrevSubset;
2125}
2126
2127
2128/**
2129 * Pops a subset created by a previous call to PGMDynMapPushAutoSubset.
2130 *
2131 * @param pVCpu Pointer to the virtual cpu data.
2132 * @param iPrevSubset What PGMDynMapPushAutoSubset returned.
2133 */
2134VMMDECL(void) PGMRZDynMapPopAutoSubset(PVMCPU pVCpu, uint32_t iPrevSubset)
2135{
2136 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2137 uint32_t cEntries = pSet->cEntries;
2138 LogFlow(("PGMRZDynMapPopAutoSubset: pVCpu=%p iPrevSubset=%u iSubset=%u cEntries=%u\n", pVCpu, iPrevSubset, pSet->iSubset, cEntries));
2139 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
2140 AssertMsgReturnVoid(pSet->iSubset >= iPrevSubset || iPrevSubset == UINT32_MAX, ("iPrevSubset=%u iSubset=%u cEntries=%u\n", iPrevSubset, pSet->iSubset, cEntries));
2141#ifdef IN_RC
2142 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
2143 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
2144 else
2145#endif
2146 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2147 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 40 / 100
2148 && cEntries != pSet->iSubset)
2149 {
2150 pgmDynMapFlushSubset(pSet);
2151 Assert(pSet->cEntries >= iPrevSubset || iPrevSubset == UINT32_MAX);
2152 }
2153 pSet->iSubset = iPrevSubset;
2154}
2155
2156
2157/**
2158 * Indicates that the given page is unused and its mapping can be re-used.
2159 *
2160 * @param pVCpu The current CPU.
2161 * @param pvHint The page that is now unused. This does not have to
2162 * point at the start of the page. NULL is ignored.
2163 */
2164#ifdef LOG_ENABLED
2165void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint, RT_SRC_POS_DECL)
2166#else
2167void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint)
2168#endif
2169{
2170 /*
2171 * Ignore NULL pointers and mask off the page offset bits.
2172 */
2173 if (pvHint == NULL)
2174 return;
2175 pvHint = (void *)((uintptr_t)pvHint & ~(uintptr_t)PAGE_OFFSET_MASK);
2176
2177 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2178 uint32_t iEntry = pSet->cEntries;
2179 AssertReturnVoid(iEntry > 0);
2180
2181 /*
2182 * Find the entry in the usual unrolled fashion.
2183 */
2184 /** @todo add a hint to the set which entry was used last since it's not
2185 * always the last entry? */
2186#define IS_MATCHING_ENTRY(pSet, iEntry, pvHint) \
2187 ( (pSet)->aEntries[(iEntry)].pvPage == (pvHint) \
2188 && (uint32_t)(pSet)->aEntries[(iEntry)].cRefs + (pSet)->aEntries[(iEntry)].cInlinedRefs \
2189 > (pSet)->aEntries[(iEntry)].cUnrefs )
2190 if ( iEntry >= 1 && IS_MATCHING_ENTRY(pSet, iEntry - 1, pvHint))
2191 iEntry = iEntry - 1;
2192 else if (iEntry >= 2 && IS_MATCHING_ENTRY(pSet, iEntry - 2, pvHint))
2193 iEntry = iEntry - 2;
2194 else if (iEntry >= 3 && IS_MATCHING_ENTRY(pSet, iEntry - 3, pvHint))
2195 iEntry = iEntry - 3;
2196 else if (iEntry >= 4 && IS_MATCHING_ENTRY(pSet, iEntry - 4, pvHint))
2197 iEntry = iEntry - 4;
2198 else if (iEntry >= 5 && IS_MATCHING_ENTRY(pSet, iEntry - 5, pvHint))
2199 iEntry = iEntry - 5;
2200 else if (iEntry >= 6 && IS_MATCHING_ENTRY(pSet, iEntry - 6, pvHint))
2201 iEntry = iEntry - 6;
2202 else if (iEntry >= 7 && IS_MATCHING_ENTRY(pSet, iEntry - 7, pvHint))
2203 iEntry = iEntry - 7;
2204 else
2205 {
2206 /*
2207 * Loop till we find it.
2208 */
2209 bool fFound = false;
2210 if (iEntry > 7)
2211 {
2212 iEntry -= 7;
2213 while (iEntry-- > 0)
2214 if (IS_MATCHING_ENTRY(pSet, iEntry, pvHint))
2215 {
2216 fFound = true;
2217 break;
2218 }
2219 }
2220 AssertMsgReturnVoid(fFound,
2221 ("pvHint=%p cEntries=%#x iSubset=%#x\n"
2222 "aEntries[0] = {%#x, %#x, %#x, %#x, %p}\n"
2223 "aEntries[1] = {%#x, %#x, %#x, %#x, %p}\n"
2224 "aEntries[2] = {%#x, %#x, %#x, %#x, %p}\n"
2225 "aEntries[3] = {%#x, %#x, %#x, %#x, %p}\n"
2226 "aEntries[4] = {%#x, %#x, %#x, %#x, %p}\n"
2227 "aEntries[5] = {%#x, %#x, %#x, %#x, %p}\n"
2228 ,
2229 pvHint, pSet->cEntries, pSet->iSubset,
2230 pSet->aEntries[0].iPage, pSet->aEntries[0].cRefs, pSet->aEntries[0].cInlinedRefs, pSet->aEntries[0].cUnrefs, pSet->aEntries[0].pvPage,
2231 pSet->aEntries[1].iPage, pSet->aEntries[1].cRefs, pSet->aEntries[1].cInlinedRefs, pSet->aEntries[1].cUnrefs, pSet->aEntries[1].pvPage,
2232 pSet->aEntries[2].iPage, pSet->aEntries[2].cRefs, pSet->aEntries[2].cInlinedRefs, pSet->aEntries[2].cUnrefs, pSet->aEntries[2].pvPage,
2233 pSet->aEntries[3].iPage, pSet->aEntries[3].cRefs, pSet->aEntries[3].cInlinedRefs, pSet->aEntries[3].cUnrefs, pSet->aEntries[3].pvPage,
2234 pSet->aEntries[4].iPage, pSet->aEntries[4].cRefs, pSet->aEntries[4].cInlinedRefs, pSet->aEntries[4].cUnrefs, pSet->aEntries[4].pvPage,
2235 pSet->aEntries[5].iPage, pSet->aEntries[5].cRefs, pSet->aEntries[5].cInlinedRefs, pSet->aEntries[5].cUnrefs, pSet->aEntries[5].pvPage));
2236 }
2237#undef IS_MATCHING_ENTRY
2238
2239 /*
2240 * Update it.
2241 */
2242 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[iEntry].cRefs + pSet->aEntries[iEntry].cInlinedRefs;
2243 uint32_t const cUnrefs = pSet->aEntries[iEntry].cUnrefs;
2244 LogFlow(("pgmRZDynMapUnusedHint: pvHint=%p #%u cRefs=%d cInlinedRefs=%d cUnrefs=%d (+1) cTotalRefs=%d %s(%d) %s\n",
2245 pvHint, iEntry, pSet->aEntries[iEntry].cRefs, pSet->aEntries[iEntry].cInlinedRefs, cUnrefs, cTotalRefs, pszFile, iLine, pszFunction));
2246 AssertReturnVoid(cTotalRefs > cUnrefs);
2247
2248 if (RT_LIKELY(cUnrefs < UINT16_MAX - 1))
2249 pSet->aEntries[iEntry].cUnrefs++;
2250 else if (pSet->aEntries[iEntry].cInlinedRefs)
2251 {
2252 uint32_t cSub = RT_MIN(pSet->aEntries[iEntry].cInlinedRefs, pSet->aEntries[iEntry].cUnrefs);
2253 pSet->aEntries[iEntry].cInlinedRefs -= cSub;
2254 pSet->aEntries[iEntry].cUnrefs -= cSub;
2255 pSet->aEntries[iEntry].cUnrefs++;
2256 }
2257 else
2258 Log(("pgmRZDynMapUnusedHint: pvHint=%p ignored because of overflow! %s(%d) %s\n", pvHint, pszFile, iLine, pszFunction));
2259
2260#ifdef PGMRZDYNMAP_STRICT_RELEASE
2261 /*
2262 * Optimize the set to trigger the unmapping and invalidation of the page.
2263 */
2264 if (cUnrefs + 1 == cTotalRefs)
2265 pgmDynMapOptimizeAutoSet(pSet);
2266#endif
2267}
2268
2269
2270/**
2271 * Common worker code for pgmRZDynMapHCPageInlined, pgmRZDynMapHCPageV2Inlined
2272 * and pgmR0DynMapGCPageOffInlined.
2273 *
2274 * @returns VINF_SUCCESS, bails out to ring-3 on failure.
2275 * @param pSet The set.
2276 * @param HCPhys The physical address of the page.
2277 * @param ppv Where to store the address of the mapping on success.
2278 *
2279 * @remarks This is a very hot path.
2280 */
2281int pgmRZDynMapHCPageCommon(PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL)
2282{
2283 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
2284 PVMCPU pVCpu = PGMRZDYNMAP_SET_2_VMCPU(pSet);
2285 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2286
2287 /*
2288 * Map it.
2289 */
2290 void *pvPage;
2291 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2292 uint32_t iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2293 if (RT_UNLIKELY(iPage == UINT32_MAX))
2294 {
2295 /*
2296 * We're out of mapping space, optimize our set to try remedy the
2297 * situation. (Only works if there are unreference hints.)
2298 */
2299 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2300 pgmDynMapOptimizeAutoSet(pSet);
2301
2302 iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2303 if (RT_UNLIKELY(iPage == UINT32_MAX))
2304 {
2305 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: cLoad=%u/%u cPages=%u cGuardPages=%u\n",
2306 pThis->cLoad, pThis->cMaxLoad, pThis->cPages, pThis->cGuardPages);
2307 if (!g_fPGMR0DynMapTestRunning)
2308 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2309 *ppv = NULL;
2310 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2311 return VERR_PGM_DYNMAP_FAILED;
2312 }
2313 }
2314
2315 /*
2316 * Add the page to the auto reference set.
2317 *
2318 * The typical usage pattern means that the same pages will be mapped
2319 * several times in the same set. We can catch most of these
2320 * remappings by looking a few pages back into the set. (The searching
2321 * and set optimizing path will hardly ever be used when doing this.)
2322 */
2323 AssertCompile(RT_ELEMENTS(pSet->aEntries) >= 8);
2324 int32_t i = pSet->cEntries;
2325 if (i-- < 5)
2326 {
2327 unsigned iEntry = pSet->cEntries++;
2328 pSet->aEntries[iEntry].cRefs = 1;
2329 pSet->aEntries[iEntry].cUnrefs = 0;
2330 pSet->aEntries[iEntry].cInlinedRefs = 0;
2331 pSet->aEntries[iEntry].iPage = iPage;
2332 pSet->aEntries[iEntry].pvPage = pvPage;
2333 pSet->aEntries[iEntry].HCPhys = HCPhys;
2334 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2335 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/0/0 iPage=%#x [a] %s(%d) %s\n",
2336 pSet, HCPhys, iEntry, iEntry + 1, pvPage, 1, iPage, pszFile, iLine, pszFunction));
2337 }
2338 /* Any of the last 5 pages? */
2339 else if ( pSet->aEntries[i - 0].iPage == iPage
2340 && pSet->aEntries[i - 0].cRefs < UINT16_MAX - 1)
2341 {
2342 pSet->aEntries[i - 0].cRefs++;
2343 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [0] %s(%d) %s\n", pSet, HCPhys, i - 0, pSet->cEntries, pvPage, pSet->aEntries[i - 0].cRefs, pSet->aEntries[i - 0].cInlinedRefs, pSet->aEntries[i - 0].cUnrefs, iPage, pszFile, iLine, pszFunction));
2344 }
2345 else if ( pSet->aEntries[i - 1].iPage == iPage
2346 && pSet->aEntries[i - 1].cRefs < UINT16_MAX - 1)
2347 {
2348 pSet->aEntries[i - 1].cRefs++;
2349 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [1] %s(%d) %s\n", pSet, HCPhys, i - 1, pSet->cEntries, pvPage, pSet->aEntries[i - 1].cRefs, pSet->aEntries[i - 1].cInlinedRefs, pSet->aEntries[i - 1].cUnrefs, iPage, pszFile, iLine, pszFunction));
2350 }
2351 else if ( pSet->aEntries[i - 2].iPage == iPage
2352 && pSet->aEntries[i - 2].cRefs < UINT16_MAX - 1)
2353 {
2354 pSet->aEntries[i - 2].cRefs++;
2355 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [2] %s(%d) %s\n", pSet, HCPhys, i - 2, pSet->cEntries, pvPage, pSet->aEntries[i - 2].cRefs, pSet->aEntries[i - 2].cInlinedRefs, pSet->aEntries[i - 2].cUnrefs, iPage, pszFile, iLine, pszFunction));
2356 }
2357 else if ( pSet->aEntries[i - 3].iPage == iPage
2358 && pSet->aEntries[i - 3].cRefs < UINT16_MAX - 1)
2359 {
2360 pSet->aEntries[i - 3].cRefs++;
2361 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 3, pSet->cEntries, pvPage, pSet->aEntries[i - 3].cRefs, pSet->aEntries[i - 3].cInlinedRefs, pSet->aEntries[i - 3].cUnrefs, iPage, pszFile, iLine, pszFunction));
2362 }
2363 else if ( pSet->aEntries[i - 4].iPage == iPage
2364 && pSet->aEntries[i - 4].cRefs < UINT16_MAX - 1)
2365 {
2366 pSet->aEntries[i - 4].cRefs++;
2367 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 4, pSet->cEntries, pvPage, pSet->aEntries[i - 4].cRefs, pSet->aEntries[i - 4].cInlinedRefs, pSet->aEntries[i - 4].cUnrefs, iPage, pszFile, iLine, pszFunction));
2368 }
2369 /* Don't bother searching unless we're above a 60% load. */
2370 else if (RT_LIKELY(i <= (int32_t)RT_ELEMENTS(pSet->aEntries) * 60 / 100))
2371 {
2372 unsigned iEntry = pSet->cEntries++;
2373 pSet->aEntries[iEntry].cRefs = 1;
2374 pSet->aEntries[iEntry].cUnrefs = 0;
2375 pSet->aEntries[iEntry].cInlinedRefs = 0;
2376 pSet->aEntries[iEntry].iPage = iPage;
2377 pSet->aEntries[iEntry].pvPage = pvPage;
2378 pSet->aEntries[iEntry].HCPhys = HCPhys;
2379 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2380 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [b] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2381 }
2382 else
2383 {
2384 /* Search the rest of the set. */
2385 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
2386 i -= 4;
2387 while (i-- > 0)
2388 if ( pSet->aEntries[i].iPage == iPage
2389 && pSet->aEntries[i].cRefs < UINT16_MAX - 1)
2390 {
2391 pSet->aEntries[i].cRefs++;
2392 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchHits);
2393 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [c] %s(%d) %s\n", pSet, HCPhys, i, pSet->cEntries, pvPage, pSet->aEntries[i].cRefs, pSet->aEntries[i].cInlinedRefs, pSet->aEntries[i].cUnrefs, iPage, pszFile, iLine, pszFunction));
2394 break;
2395 }
2396 if (i < 0)
2397 {
2398 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchMisses);
2399#if 0 /* this is very bogus */
2400 if (pSet->iSubset < pSet->cEntries)
2401 {
2402 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchFlushes);
2403 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(pSet->cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2404 pgmDynMapFlushSubset(pSet);
2405 }
2406#endif
2407
2408 if (RT_UNLIKELY(pSet->cEntries >= RT_ELEMENTS(pSet->aEntries)))
2409 {
2410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2411 pgmDynMapOptimizeAutoSet(pSet);
2412 }
2413
2414 if (RT_LIKELY(pSet->cEntries < RT_ELEMENTS(pSet->aEntries)))
2415 {
2416 unsigned iEntry = pSet->cEntries++;
2417 pSet->aEntries[iEntry].cRefs = 1;
2418 pSet->aEntries[iEntry].cUnrefs = 0;
2419 pSet->aEntries[iEntry].cInlinedRefs = 0;
2420 pSet->aEntries[iEntry].iPage = iPage;
2421 pSet->aEntries[iEntry].pvPage = pvPage;
2422 pSet->aEntries[iEntry].HCPhys = HCPhys;
2423 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2424 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [d] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2425 }
2426 else
2427 {
2428 /* We're screwed. */
2429 pgmRZDynMapReleasePage(pThis, iPage, 1);
2430
2431 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: set is full!\n");
2432 if (!g_fPGMR0DynMapTestRunning)
2433 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2434 *ppv = NULL;
2435 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2436 return VERR_PGM_DYNMAP_FULL_SET;
2437 }
2438 }
2439 }
2440
2441 *ppv = pvPage;
2442 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2443 return VINF_SUCCESS;
2444}
2445
2446
2447#if 0 /*def DEBUG*/
2448/** For pgmR0DynMapTest3PerCpu. */
2449typedef struct PGMR0DYNMAPTEST
2450{
2451 uint32_t u32Expect;
2452 uint32_t *pu32;
2453 uint32_t volatile cFailures;
2454} PGMR0DYNMAPTEST;
2455typedef PGMR0DYNMAPTEST *PPGMR0DYNMAPTEST;
2456
2457/**
2458 * Checks that the content of the page is the same on all CPUs, i.e. that there
2459 * are no CPU specific PTs or similar nasty stuff involved.
2460 *
2461 * @param idCpu The current CPU.
2462 * @param pvUser1 Pointer a PGMR0DYNMAPTEST structure.
2463 * @param pvUser2 Unused, ignored.
2464 */
2465static DECLCALLBACK(void) pgmR0DynMapTest3PerCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
2466{
2467 PPGMR0DYNMAPTEST pTest = (PPGMR0DYNMAPTEST)pvUser1;
2468 ASMInvalidatePage(pTest->pu32);
2469 if (*pTest->pu32 != pTest->u32Expect)
2470 ASMAtomicIncU32(&pTest->cFailures);
2471 NOREF(pvUser2); NOREF(idCpu);
2472}
2473
2474
2475/**
2476 * Performs some basic tests in debug builds.
2477 */
2478static int pgmR0DynMapTest(PVM pVM)
2479{
2480 LogRel(("pgmR0DynMapTest: ****** START ******\n"));
2481 PPGMMAPSET pSet = &pVM->aCpus[0].pgm.s.AutoSet;
2482 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2483 uint32_t i;
2484
2485 /*
2486 * Assert internal integrity first.
2487 */
2488 LogRel(("Test #0\n"));
2489 int rc = PGMR0DynMapAssertIntegrity();
2490 if (RT_FAILURE(rc))
2491 return rc;
2492
2493 void *pvR0DynMapUsedSaved = pVM->pgm.s.pvR0DynMapUsed;
2494 pVM->pgm.s.pvR0DynMapUsed = pThis;
2495 g_fPGMR0DynMapTestRunning = true;
2496
2497 /*
2498 * Simple test, map CR3 twice and check that we're getting the
2499 * same mapping address back.
2500 */
2501 LogRel(("Test #1\n"));
2502 ASMIntDisable();
2503 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2504
2505 uint64_t cr3 = ASMGetCR3() & ~(uint64_t)PAGE_OFFSET_MASK;
2506 void *pv = (void *)(intptr_t)-1;
2507 void *pv2 = (void *)(intptr_t)-2;
2508 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv RTLOG_COMMA_SRC_POS);
2509 int rc2 = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2510 ASMIntEnable();
2511 if ( RT_SUCCESS(rc2)
2512 && RT_SUCCESS(rc)
2513 && pv == pv2)
2514 {
2515 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2516 rc = PGMR0DynMapAssertIntegrity();
2517
2518 /*
2519 * Check that the simple set overflow code works by filling it
2520 * with more CR3 mappings.
2521 */
2522 LogRel(("Test #2\n"));
2523 ASMIntDisable();
2524 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2525 for (i = 0 ; i < UINT16_MAX*2 - 1 && RT_SUCCESS(rc) && pv2 == pv; i++)
2526 {
2527 pv2 = (void *)(intptr_t)-4;
2528 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2529 }
2530 ASMIntEnable();
2531 if (RT_FAILURE(rc) || pv != pv2)
2532 {
2533 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%p\n", __LINE__, rc, pv, pv2, i));
2534 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2535 }
2536 else if (pSet->cEntries != 5)
2537 {
2538 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries) / 2));
2539 rc = VERR_INTERNAL_ERROR;
2540 }
2541 else if ( pSet->aEntries[4].cRefs != UINT16_MAX - 1
2542 || pSet->aEntries[3].cRefs != UINT16_MAX - 1
2543 || pSet->aEntries[2].cRefs != 1
2544 || pSet->aEntries[1].cRefs != 1
2545 || pSet->aEntries[0].cRefs != 1)
2546 {
2547 LogRel(("failed(%d): bad set dist: ", __LINE__));
2548 for (i = 0; i < pSet->cEntries; i++)
2549 LogRel(("[%d]=%d, ", i, pSet->aEntries[i].cRefs));
2550 LogRel(("\n"));
2551 rc = VERR_INTERNAL_ERROR;
2552 }
2553 if (RT_SUCCESS(rc))
2554 rc = PGMR0DynMapAssertIntegrity();
2555 if (RT_SUCCESS(rc))
2556 {
2557 /*
2558 * Trigger an set optimization run (exactly).
2559 */
2560 LogRel(("Test #3\n"));
2561 ASMIntDisable();
2562 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2563 pv2 = NULL;
2564 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) - 5 && RT_SUCCESS(rc) && pv2 != pv; i++)
2565 {
2566 pv2 = (void *)(intptr_t)(-5 - i);
2567 rc = pgmRZDynMapHCPageCommon(pVM, cr3 + PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2568 }
2569 ASMIntEnable();
2570 if (RT_FAILURE(rc) || pv == pv2)
2571 {
2572 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%d\n", __LINE__, rc, pv, pv2, i));
2573 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2574 }
2575 else if (pSet->cEntries != RT_ELEMENTS(pSet->aEntries))
2576 {
2577 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2578 rc = VERR_INTERNAL_ERROR;
2579 }
2580 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2581 if (RT_SUCCESS(rc))
2582 rc = PGMR0DynMapAssertIntegrity();
2583 if (RT_SUCCESS(rc))
2584 {
2585 /*
2586 * Trigger an overflow error.
2587 */
2588 LogRel(("Test #4\n"));
2589 ASMIntDisable();
2590 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2591 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) + 2; i++)
2592 {
2593 rc = pgmRZDynMapHCPageCommon(pVM, cr3 - PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2594 if (RT_SUCCESS(rc))
2595 rc = PGMR0DynMapAssertIntegrity();
2596 if (RT_FAILURE(rc))
2597 break;
2598 }
2599 ASMIntEnable();
2600 if (rc == VERR_PGM_DYNMAP_FULL_SET)
2601 {
2602 /* flush the set. */
2603 LogRel(("Test #5\n"));
2604 ASMIntDisable();
2605 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2606 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2607 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2608 ASMIntEnable();
2609
2610 rc = PGMR0DynMapAssertIntegrity();
2611 }
2612 else
2613 {
2614 LogRel(("failed(%d): rc=%Rrc, wanted %d ; pv2=%p Set=%u/%u; i=%d\n", __LINE__,
2615 rc, VERR_PGM_DYNMAP_FULL_SET, pv2, pSet->cEntries, RT_ELEMENTS(pSet->aEntries), i));
2616 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2617 }
2618 }
2619 }
2620 }
2621 else
2622 {
2623 LogRel(("failed(%d): rc=%Rrc rc2=%Rrc; pv=%p pv2=%p\n", __LINE__, rc, rc2, pv, pv2));
2624 if (RT_SUCCESS(rc))
2625 rc = rc2;
2626 }
2627
2628 /*
2629 * Check that everyone sees the same stuff.
2630 */
2631 if (RT_SUCCESS(rc))
2632 {
2633 LogRel(("Test #5\n"));
2634 ASMIntDisable();
2635 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2636 RTHCPHYS HCPhysPT = RTR0MemObjGetPagePhysAddr(pThis->pSegHead->ahMemObjPTs[0], 0);
2637 rc = pgmRZDynMapHCPageCommon(pVM, HCPhysPT, &pv RTLOG_COMMA_SRC_POS);
2638 if (RT_SUCCESS(rc))
2639 {
2640 PGMR0DYNMAPTEST Test;
2641 uint32_t *pu32Real = &pThis->paPages[pThis->pSegHead->iPage].uPte.pLegacy->u;
2642 Test.pu32 = (uint32_t *)((uintptr_t)pv | ((uintptr_t)pu32Real & PAGE_OFFSET_MASK));
2643 Test.u32Expect = *pu32Real;
2644 ASMAtomicWriteU32(&Test.cFailures, 0);
2645 ASMIntEnable();
2646
2647 rc = RTMpOnAll(pgmR0DynMapTest3PerCpu, &Test, NULL);
2648 if (RT_FAILURE(rc))
2649 LogRel(("failed(%d): RTMpOnAll rc=%Rrc\n", __LINE__, rc));
2650 else if (Test.cFailures)
2651 {
2652 LogRel(("failed(%d): cFailures=%d pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n", __LINE__,
2653 Test.cFailures, pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2654 rc = VERR_INTERNAL_ERROR;
2655 }
2656 else
2657 LogRel(("pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n",
2658 pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2659 }
2660 else
2661 {
2662 ASMIntEnable();
2663 LogRel(("failed(%d): rc=%Rrc\n", rc));
2664 }
2665 }
2666
2667 /*
2668 * Clean up.
2669 */
2670 LogRel(("Cleanup.\n"));
2671 ASMIntDisable();
2672 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2673 PGMRZDynMapFlushAutoSet(&pVM->aCpus[0]);
2674 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2675 ASMIntEnable();
2676
2677 if (RT_SUCCESS(rc))
2678 rc = PGMR0DynMapAssertIntegrity();
2679 else
2680 PGMR0DynMapAssertIntegrity();
2681
2682 g_fPGMR0DynMapTestRunning = false;
2683 LogRel(("Result: rc=%Rrc Load=%u/%u/%u Set=%#x/%u\n", rc,
2684 pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2685 pVM->pgm.s.pvR0DynMapUsed = pvR0DynMapUsedSaved;
2686 LogRel(("pgmR0DynMapTest: ****** END ******\n"));
2687 return rc;
2688}
2689#endif /* DEBUG */
2690
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette