VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMRZ/PGMRZDynMap.cpp@ 31402

Last change on this file since 31402 was 31402, checked in by vboxsync, 14 years ago

PGM: Replaced the hazzardous raw-mode context dynamic mapping code with the PGMR0DynMap code used by darwin/x86. This is a risky change but it should pay off once stable by providing 100% certainty that dynamically mapped pages aren't resued behind our back (this has been observed in seemingly benign code paths recently).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 95.4 KB
Line 
1/* $Id: PGMRZDynMap.cpp 31402 2010-08-05 12:28:18Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, dynamic mapping cache.
4 */
5
6/*
7 * Copyright (C) 2008-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Internal Functions *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_DYNMAP
23#include <VBox/pgm.h>
24#include "../PGMInternal.h"
25#include <VBox/vm.h>
26#include "../PGMInline.h"
27#include <VBox/err.h>
28#include <VBox/param.h>
29#include <VBox/sup.h>
30#include <iprt/asm.h>
31#include <iprt/asm-amd64-x86.h>
32#include <iprt/assert.h>
33#ifndef IN_RC
34# include <iprt/cpuset.h>
35# include <iprt/mem.h>
36# include <iprt/memobj.h>
37# include <iprt/mp.h>
38# include <iprt/semaphore.h>
39# include <iprt/spinlock.h>
40#endif
41#include <iprt/string.h>
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47#ifdef IN_RING0
48/** The max size of the mapping cache (in pages). */
49# define PGMR0DYNMAP_MAX_PAGES ((16*_1M) >> PAGE_SHIFT)
50/** The small segment size that is adopted on out-of-memory conditions with a
51 * single big segment. */
52# define PGMR0DYNMAP_SMALL_SEG_PAGES 128
53/** The number of pages we reserve per CPU. */
54# define PGMR0DYNMAP_PAGES_PER_CPU 256
55/** The minimum number of pages we reserve per CPU.
56 * This must be equal or larger than the autoset size. */
57# define PGMR0DYNMAP_PAGES_PER_CPU_MIN 64
58/** Calcs the overload threshold (safety margin). Current set at 50%. */
59# define PGMR0DYNMAP_CALC_OVERLOAD(cPages) ((cPages) / 2)
60/** The number of guard pages.
61 * @remarks Never do tuning of the hashing or whatnot with a strict build! */
62# if defined(VBOX_STRICT)
63# define PGMR0DYNMAP_GUARD_PAGES 1
64# else
65# define PGMR0DYNMAP_GUARD_PAGES 0
66# endif
67#endif /* IN_RING0 */
68/** The dummy physical address of guard pages. */
69#define PGMR0DYNMAP_GUARD_PAGE_HCPHYS UINT32_C(0x7777feed)
70/** The dummy reference count of guard pages. (Must be non-zero.) */
71#define PGMR0DYNMAP_GUARD_PAGE_REF_COUNT INT32_C(0x7777feed)
72#if 0
73/** Define this to just clear the present bit on guard pages.
74 * The alternative is to replace the entire PTE with an bad not-present
75 * PTE. Either way, XNU will screw us. :-/ */
76# define PGMR0DYNMAP_GUARD_NP
77#endif
78/** The dummy PTE value for a page. */
79#define PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE X86_PTE_PG_MASK
80/** The dummy PTE value for a page. */
81#define PGMR0DYNMAP_GUARD_PAGE_PAE_PTE UINT64_MAX /*X86_PTE_PAE_PG_MASK*/
82
83#ifdef IN_RING0 /* Note! Assertions causes panics if preemption is disabled,
84 * disable this to work around that. */
85/**
86 * Acquire the spinlock.
87 * This will declare a temporary variable and expands to two statements!
88 */
89# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) \
90 RTSPINLOCKTMP MySpinlockTmp = RTSPINLOCKTMP_INITIALIZER; \
91 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
92/**
93 * Releases the spinlock.
94 */
95# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) \
96 RTSpinlockRelease((pThis)->hSpinlock, &MySpinlockTmp)
97
98/**
99 * Re-acquires the spinlock.
100 */
101# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) \
102 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
103#else
104# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) do { } while (0)
105# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) do { } while (0)
106# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) do { } while (0)
107#endif
108
109
110/** Converts a PGMCPUM::AutoSet pointer into a PVMCPU. */
111#define PGMRZDYNMAP_SET_2_VMCPU(pSet) (RT_FROM_MEMBER(pSet, VMCPU, pgm.s.AutoSet))
112
113/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
114#define PGMRZDYNMAP_SET_2_VM(pSet) (PGMRZDYNMAP_SET_2_VMCPU(pSet)->CTX_SUFF(pVM))
115
116/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
117#ifdef IN_RC
118# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (PGMRZDYNMAP_SET_2_VM(pSet)->pgm.s.pRCDynMap)
119#else
120# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (g_pPGMR0DynMap)
121#endif
122
123/**
124 * Gets the set index of the current CPU.
125 *
126 * This always returns 0 when in raw-mode context because there is only ever
127 * one EMT in that context (at least presently).
128 */
129#ifdef IN_RC
130# define PGMRZDYNMAP_CUR_CPU() (0)
131#else
132# define PGMRZDYNMAP_CUR_CPU() RTMpCpuIdToSetIndex(RTMpCpuId())
133#endif
134
135/** PGMRZDYNMAP::u32Magic. (Jens Christian Bugge Wesseltoft) */
136#define PGMRZDYNMAP_MAGIC UINT32_C(0x19640201)
137
138
139/** Zaps an set entry. */
140#define PGMRZDYNMAP_ZAP_ENTRY(pEntry) \
141 do \
142 { \
143 (pEntry)->iPage = UINT16_MAX; \
144 (pEntry)->cRefs = 0; \
145 (pEntry)->cInlinedRefs = 0; \
146 (pEntry)->cUnrefs = 0; \
147 } while (0)
148
149
150/*******************************************************************************
151* Structures and Typedefs *
152*******************************************************************************/
153#ifdef IN_RING0
154/**
155 * Ring-0 dynamic mapping cache segment.
156 *
157 * The dynamic mapping cache can be extended with additional segments if the
158 * load is found to be too high. This done the next time a VM is created, under
159 * the protection of the init mutex. The arrays is reallocated and the new
160 * segment is added to the end of these. Nothing is rehashed of course, as the
161 * indexes / addresses must remain unchanged.
162 *
163 * This structure is only modified while owning the init mutex or during module
164 * init / term.
165 */
166typedef struct PGMR0DYNMAPSEG
167{
168 /** Pointer to the next segment. */
169 struct PGMR0DYNMAPSEG *pNext;
170 /** The memory object for the virtual address range that we're abusing. */
171 RTR0MEMOBJ hMemObj;
172 /** The start page in the cache. (I.e. index into the arrays.) */
173 uint16_t iPage;
174 /** The number of pages this segment contributes. */
175 uint16_t cPages;
176 /** The number of page tables. */
177 uint16_t cPTs;
178 /** The memory objects for the page tables. */
179 RTR0MEMOBJ ahMemObjPTs[1];
180} PGMR0DYNMAPSEG;
181/** Pointer to a ring-0 dynamic mapping cache segment. */
182typedef PGMR0DYNMAPSEG *PPGMR0DYNMAPSEG;
183
184
185/**
186 * Ring-0 dynamic mapping cache entry.
187 *
188 * @sa PGMRZDYNMAPENTRY, PGMRCDYNMAPENTRY.
189 */
190typedef struct PGMR0DYNMAPENTRY
191{
192 /** The physical address of the currently mapped page.
193 * This is duplicate for three reasons: cache locality, cache policy of the PT
194 * mappings and sanity checks. */
195 RTHCPHYS HCPhys;
196 /** Pointer to the page. */
197 void *pvPage;
198 /** The number of references. */
199 int32_t volatile cRefs;
200 /** PTE pointer union. */
201 union PGMR0DYNMAPENTRY_PPTE
202 {
203 /** PTE pointer, 32-bit legacy version. */
204 PX86PTE pLegacy;
205 /** PTE pointer, PAE version. */
206 PX86PTEPAE pPae;
207 /** PTE pointer, the void version. */
208 void *pv;
209 } uPte;
210# ifndef IN_RC
211 /** CPUs that haven't invalidated this entry after it's last update. */
212 RTCPUSET PendingSet;
213# endif
214} PGMR0DYNMAPENTRY;
215/** Pointer a mapping cache entry for the ring-0.
216 * @sa PPGMRZDYNMAPENTRY, PPGMRCDYNMAPENTRY, */
217typedef PGMR0DYNMAPENTRY *PPGMR0DYNMAPENTRY;
218
219
220/**
221 * Dynamic mapping cache for ring-0.
222 *
223 * This is initialized during VMMR0 module init but no segments are allocated
224 * at that time. Segments will be added when the first VM is started and
225 * removed again when the last VM shuts down, thus avoid consuming memory while
226 * dormant. At module termination, the remaining bits will be freed up.
227 *
228 * @sa PPGMRZDYNMAP, PGMRCDYNMAP.
229 */
230typedef struct PGMR0DYNMAP
231{
232 /** The usual magic number / eye catcher (PGMRZDYNMAP_MAGIC). */
233 uint32_t u32Magic;
234# ifndef IN_RC
235 /** Spinlock serializing the normal operation of the cache. */
236 RTSPINLOCK hSpinlock;
237# endif
238 /** Array for tracking and managing the pages. */
239 PPGMR0DYNMAPENTRY paPages;
240 /** The cache size given as a number of pages. */
241 uint32_t cPages;
242 /** Whether it's 32-bit legacy or PAE/AMD64 paging mode. */
243 bool fLegacyMode;
244 /** The current load.
245 * This does not include guard pages. */
246 uint32_t cLoad;
247 /** The max load ever.
248 * This is maintained to get trigger adding of more mapping space. */
249 uint32_t cMaxLoad;
250# ifndef IN_RC
251 /** Initialization / termination lock. */
252 RTSEMFASTMUTEX hInitLock;
253# endif
254 /** The number of guard pages. */
255 uint32_t cGuardPages;
256 /** The number of users (protected by hInitLock). */
257 uint32_t cUsers;
258# ifndef IN_RC
259 /** Array containing a copy of the original page tables.
260 * The entries are either X86PTE or X86PTEPAE according to fLegacyMode. */
261 void *pvSavedPTEs;
262 /** List of segments. */
263 PPGMR0DYNMAPSEG pSegHead;
264 /** The paging mode. */
265 SUPPAGINGMODE enmPgMode;
266# endif
267} PGMR0DYNMAP;
268
269
270/**
271 * Paging level data.
272 */
273typedef struct PGMR0DYNMAPPGLVL
274{
275 uint32_t cLevels; /**< The number of levels. */
276 struct
277 {
278 RTHCPHYS HCPhys; /**< The address of the page for the current level,
279 * i.e. what hMemObj/hMapObj is currently mapping. */
280 RTHCPHYS fPhysMask; /**< Mask for extracting HCPhys from uEntry. */
281 RTR0MEMOBJ hMemObj; /**< Memory object for HCPhys, PAGE_SIZE. */
282 RTR0MEMOBJ hMapObj; /**< Mapping object for hMemObj. */
283 uint32_t fPtrShift; /**< The pointer shift count. */
284 uint64_t fPtrMask; /**< The mask to apply to the shifted pointer to get the table index. */
285 uint64_t fAndMask; /**< And mask to check entry flags. */
286 uint64_t fResMask; /**< The result from applying fAndMask. */
287 union
288 {
289 void *pv; /**< hMapObj address. */
290 PX86PGUINT paLegacy; /**< Legacy table view. */
291 PX86PGPAEUINT paPae; /**< PAE/AMD64 table view. */
292 } u;
293 } a[4];
294} PGMR0DYNMAPPGLVL;
295/** Pointer to paging level data. */
296typedef PGMR0DYNMAPPGLVL *PPGMR0DYNMAPPGLVL;
297#endif
298
299/** Mapping cache entry for the current context.
300 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
301typedef CTX_MID(PGM,DYNMAPENTRY) PGMRZDYNMAPENTRY;
302/** Pointer a mapping cache entry for the current context.
303 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
304typedef PGMRZDYNMAPENTRY *PPGMRZDYNMAPENTRY;
305
306/** Pointer the mapping cache instance for the current context.
307 * @sa PGMR0DYNMAP, PGMRCDYNMAP */
308typedef CTX_MID(PGM,DYNMAP) *PPGMRZDYNMAP;
309
310
311
312/*******************************************************************************
313* Global Variables *
314*******************************************************************************/
315#ifdef IN_RING0
316/** Pointer to the ring-0 dynamic mapping cache. */
317static PGMR0DYNMAP *g_pPGMR0DynMap;
318#endif
319/** For overflow testing. */
320static bool g_fPGMR0DynMapTestRunning = false;
321
322
323/*******************************************************************************
324* Internal Functions *
325*******************************************************************************/
326static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs);
327#ifdef IN_RING0
328static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis);
329static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis);
330static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis);
331#endif
332#if 0 /*def DEBUG*/
333static int pgmR0DynMapTest(PVM pVM);
334#endif
335
336
337/**
338 * Initializes the auto mapping sets for a VM.
339 *
340 * @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure.
341 * @param pVM The VM in question.
342 */
343static int pgmRZDynMapInitAutoSetsForVM(PVM pVM)
344{
345 VMCPUID idCpu = pVM->cCpus;
346 AssertReturn(idCpu > 0 && idCpu <= VMM_MAX_CPU_COUNT, VERR_INTERNAL_ERROR);
347 while (idCpu-- > 0)
348 {
349 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
350 uint32_t j = RT_ELEMENTS(pSet->aEntries);
351 while (j-- > 0)
352 {
353 pSet->aEntries[j].pvPage = NULL;
354 pSet->aEntries[j].HCPhys = NIL_RTHCPHYS;
355 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
356 }
357 pSet->cEntries = PGMMAPSET_CLOSED;
358 pSet->iSubset = UINT32_MAX;
359 pSet->iCpu = -1;
360 memset(&pSet->aiHashTable[0], 0xff, sizeof(pSet->aiHashTable));
361 }
362
363 return VINF_SUCCESS;
364}
365
366
367#ifdef IN_RING0
368
369/**
370 * Initializes the ring-0 dynamic mapping cache.
371 *
372 * @returns VBox status code.
373 */
374VMMR0DECL(int) PGMR0DynMapInit(void)
375{
376 Assert(!g_pPGMR0DynMap);
377
378 /*
379 * Create and initialize the cache instance.
380 */
381 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)RTMemAllocZ(sizeof(*pThis));
382 AssertLogRelReturn(pThis, VERR_NO_MEMORY);
383 int rc = VINF_SUCCESS;
384 pThis->enmPgMode = SUPR0GetPagingMode();
385 switch (pThis->enmPgMode)
386 {
387 case SUPPAGINGMODE_32_BIT:
388 case SUPPAGINGMODE_32_BIT_GLOBAL:
389 pThis->fLegacyMode = false;
390 break;
391 case SUPPAGINGMODE_PAE:
392 case SUPPAGINGMODE_PAE_GLOBAL:
393 case SUPPAGINGMODE_PAE_NX:
394 case SUPPAGINGMODE_PAE_GLOBAL_NX:
395 case SUPPAGINGMODE_AMD64:
396 case SUPPAGINGMODE_AMD64_GLOBAL:
397 case SUPPAGINGMODE_AMD64_NX:
398 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
399 pThis->fLegacyMode = false;
400 break;
401 default:
402 rc = VERR_INTERNAL_ERROR;
403 break;
404 }
405 if (RT_SUCCESS(rc))
406 {
407 rc = RTSemFastMutexCreate(&pThis->hInitLock);
408 if (RT_SUCCESS(rc))
409 {
410 rc = RTSpinlockCreate(&pThis->hSpinlock);
411 if (RT_SUCCESS(rc))
412 {
413 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
414 g_pPGMR0DynMap = pThis;
415 return VINF_SUCCESS;
416 }
417 RTSemFastMutexDestroy(pThis->hInitLock);
418 }
419 }
420 RTMemFree(pThis);
421 return rc;
422}
423
424
425/**
426 * Terminates the ring-0 dynamic mapping cache.
427 */
428VMMR0DECL(void) PGMR0DynMapTerm(void)
429{
430 /*
431 * Destroy the cache.
432 *
433 * There is not supposed to be any races here, the loader should
434 * make sure about that. So, don't bother locking anything.
435 *
436 * The VM objects should all be destroyed by now, so there is no
437 * dangling users or anything like that to clean up. This routine
438 * is just a mirror image of PGMR0DynMapInit.
439 */
440 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
441 if (pThis)
442 {
443 AssertPtr(pThis);
444 g_pPGMR0DynMap = NULL;
445
446 /* This should *never* happen, but in case it does try not to leak memory. */
447 AssertLogRelMsg(!pThis->cUsers && !pThis->paPages && !pThis->pvSavedPTEs && !pThis->cPages,
448 ("cUsers=%d paPages=%p pvSavedPTEs=%p cPages=%#x\n",
449 pThis->cUsers, pThis->paPages, pThis->pvSavedPTEs, pThis->cPages));
450 if (pThis->paPages)
451 pgmR0DynMapTearDown(pThis);
452
453 /* Free the associated resources. */
454 RTSemFastMutexDestroy(pThis->hInitLock);
455 pThis->hInitLock = NIL_RTSEMFASTMUTEX;
456 RTSpinlockDestroy(pThis->hSpinlock);
457 pThis->hSpinlock = NIL_RTSPINLOCK;
458 pThis->u32Magic = UINT32_MAX;
459 RTMemFree(pThis);
460 }
461}
462
463
464/**
465 * Initializes the dynamic mapping cache for a new VM.
466 *
467 * @returns VBox status code.
468 * @param pVM Pointer to the shared VM structure.
469 */
470VMMR0DECL(int) PGMR0DynMapInitVM(PVM pVM)
471{
472 AssertMsgReturn(!pVM->pgm.s.pvR0DynMapUsed, ("%p (pThis=%p)\n", pVM->pgm.s.pvR0DynMapUsed, g_pPGMR0DynMap), VERR_WRONG_ORDER);
473
474 /*
475 * Initialize the auto sets.
476 */
477 int rc = pgmRZDynMapInitAutoSetsForVM(pVM);
478 if (RT_FAILURE(rc))
479 return rc;
480
481 /*
482 * Do we need the cache? Skip the last bit if we don't.
483 */
484 if (!VMMIsHwVirtExtForced(pVM))
485 return VINF_SUCCESS;
486
487 /*
488 * Reference and if necessary setup or expand the cache.
489 */
490 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
491 AssertPtrReturn(pThis, VERR_INTERNAL_ERROR);
492 rc = RTSemFastMutexRequest(pThis->hInitLock);
493 AssertLogRelRCReturn(rc, rc);
494
495 pThis->cUsers++;
496 if (pThis->cUsers == 1)
497 {
498 rc = pgmR0DynMapSetup(pThis);
499#if 0 /*def DEBUG*/
500 if (RT_SUCCESS(rc))
501 {
502 rc = pgmR0DynMapTest(pVM);
503 if (RT_FAILURE(rc))
504 pgmR0DynMapTearDown(pThis);
505 }
506#endif
507 }
508 else if (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(pThis->cPages - pThis->cGuardPages))
509 rc = pgmR0DynMapExpand(pThis);
510 if (RT_SUCCESS(rc))
511 pVM->pgm.s.pvR0DynMapUsed = pThis;
512 else
513 pThis->cUsers--;
514
515 RTSemFastMutexRelease(pThis->hInitLock);
516 return rc;
517}
518
519
520/**
521 * Terminates the dynamic mapping cache usage for a VM.
522 *
523 * @param pVM Pointer to the shared VM structure.
524 */
525VMMR0DECL(void) PGMR0DynMapTermVM(PVM pVM)
526{
527 /*
528 * Return immediately if we're not using the cache.
529 */
530 if (!pVM->pgm.s.pvR0DynMapUsed)
531 return;
532
533 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
534 AssertPtrReturnVoid(pThis);
535
536 int rc = RTSemFastMutexRequest(pThis->hInitLock);
537 AssertLogRelRCReturnVoid(rc);
538
539 if (pVM->pgm.s.pvR0DynMapUsed == pThis)
540 {
541 pVM->pgm.s.pvR0DynMapUsed = NULL;
542
543#ifdef VBOX_STRICT
544 PGMR0DynMapAssertIntegrity();
545#endif
546
547 /*
548 * Clean up and check the auto sets.
549 */
550 VMCPUID idCpu = pVM->cCpus;
551 while (idCpu-- > 0)
552 {
553 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
554 uint32_t j = pSet->cEntries;
555 if (j <= RT_ELEMENTS(pSet->aEntries))
556 {
557 /*
558 * The set is open, close it.
559 */
560 while (j-- > 0)
561 {
562 int32_t cRefs = pSet->aEntries[j].cRefs;
563 uint32_t iPage = pSet->aEntries[j].iPage;
564 LogRel(("PGMR0DynMapTermVM: %d dangling refs to %#x\n", cRefs, iPage));
565 if (iPage < pThis->cPages && cRefs > 0)
566 pgmRZDynMapReleasePage(pThis, iPage, cRefs);
567 else
568 AssertLogRelMsgFailed(("cRefs=%d iPage=%#x cPages=%u\n", cRefs, iPage, pThis->cPages));
569
570 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
571 }
572 pSet->cEntries = PGMMAPSET_CLOSED;
573 pSet->iSubset = UINT32_MAX;
574 pSet->iCpu = -1;
575 }
576 else
577 AssertMsg(j == PGMMAPSET_CLOSED, ("cEntries=%#x\n", j));
578
579 j = RT_ELEMENTS(pSet->aEntries);
580 while (j-- > 0)
581 {
582 Assert(pSet->aEntries[j].iPage == UINT16_MAX);
583 Assert(!pSet->aEntries[j].cRefs);
584 }
585 }
586
587 /*
588 * Release our reference to the mapping cache.
589 */
590 Assert(pThis->cUsers > 0);
591 pThis->cUsers--;
592 if (!pThis->cUsers)
593 pgmR0DynMapTearDown(pThis);
594 }
595 else
596 AssertLogRelMsgFailed(("pvR0DynMapUsed=%p pThis=%p\n", pVM->pgm.s.pvR0DynMapUsed, pThis));
597
598 RTSemFastMutexRelease(pThis->hInitLock);
599}
600
601
602/**
603 * Shoots down the TLBs for all the cache pages, pgmR0DynMapTearDown helper.
604 *
605 * @param idCpu The current CPU.
606 * @param pvUser1 The dynamic mapping cache instance.
607 * @param pvUser2 Unused, NULL.
608 */
609static DECLCALLBACK(void) pgmR0DynMapShootDownTlbs(RTCPUID idCpu, void *pvUser1, void *pvUser2)
610{
611 Assert(!pvUser2);
612 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)pvUser1;
613 Assert(pThis == g_pPGMR0DynMap);
614 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
615 uint32_t iPage = pThis->cPages;
616 while (iPage-- > 0)
617 ASMInvalidatePage(paPages[iPage].pvPage);
618}
619
620
621/**
622 * Shoot down the TLBs for every single cache entry on all CPUs.
623 *
624 * @returns IPRT status code (RTMpOnAll).
625 * @param pThis The dynamic mapping cache instance.
626 */
627static int pgmR0DynMapTlbShootDown(PPGMRZDYNMAP pThis)
628{
629 int rc = RTMpOnAll(pgmR0DynMapShootDownTlbs, pThis, NULL);
630 AssertRC(rc);
631 if (RT_FAILURE(rc))
632 {
633 uint32_t iPage = pThis->cPages;
634 while (iPage-- > 0)
635 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
636 }
637 return rc;
638}
639
640
641/**
642 * Calculate the new cache size based on cMaxLoad statistics.
643 *
644 * @returns Number of pages.
645 * @param pThis The dynamic mapping cache instance.
646 * @param pcMinPages The minimal size in pages.
647 */
648static uint32_t pgmR0DynMapCalcNewSize(PPGMRZDYNMAP pThis, uint32_t *pcMinPages)
649{
650 Assert(pThis->cPages <= PGMR0DYNMAP_MAX_PAGES);
651
652 /* cCpus * PGMR0DYNMAP_PAGES_PER_CPU(_MIN). */
653 RTCPUID cCpus = RTMpGetCount();
654 AssertReturn(cCpus > 0 && cCpus <= RTCPUSET_MAX_CPUS, 0);
655 uint32_t cPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU;
656 uint32_t cMinPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU_MIN;
657
658 /* adjust against cMaxLoad. */
659 AssertMsg(pThis->cMaxLoad <= PGMR0DYNMAP_MAX_PAGES, ("%#x\n", pThis->cMaxLoad));
660 if (pThis->cMaxLoad > PGMR0DYNMAP_MAX_PAGES)
661 pThis->cMaxLoad = 0;
662
663 while (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(cPages))
664 cPages += PGMR0DYNMAP_PAGES_PER_CPU;
665
666 if (pThis->cMaxLoad > cMinPages)
667 cMinPages = pThis->cMaxLoad;
668
669 /* adjust against max and current size. */
670 if (cPages < pThis->cPages)
671 cPages = pThis->cPages;
672 cPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
673 if (cPages > PGMR0DYNMAP_MAX_PAGES)
674 cPages = PGMR0DYNMAP_MAX_PAGES;
675
676 if (cMinPages < pThis->cPages)
677 cMinPages = pThis->cPages;
678 cMinPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
679 if (cMinPages > PGMR0DYNMAP_MAX_PAGES)
680 cMinPages = PGMR0DYNMAP_MAX_PAGES;
681
682 Assert(cMinPages);
683 *pcMinPages = cMinPages;
684 return cPages;
685}
686
687
688/**
689 * Initializes the paging level data.
690 *
691 * @param pThis The dynamic mapping cache instance.
692 * @param pPgLvl The paging level data.
693 */
694void pgmR0DynMapPagingArrayInit(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl)
695{
696 RTCCUINTREG cr4 = ASMGetCR4();
697 switch (pThis->enmPgMode)
698 {
699 case SUPPAGINGMODE_32_BIT:
700 case SUPPAGINGMODE_32_BIT_GLOBAL:
701 pPgLvl->cLevels = 2;
702 pPgLvl->a[0].fPhysMask = X86_CR3_PAGE_MASK;
703 pPgLvl->a[0].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
704 pPgLvl->a[0].fResMask = X86_PDE_P | X86_PDE_RW;
705 pPgLvl->a[0].fPtrMask = X86_PD_MASK;
706 pPgLvl->a[0].fPtrShift = X86_PD_SHIFT;
707
708 pPgLvl->a[1].fPhysMask = X86_PDE_PG_MASK;
709 pPgLvl->a[1].fAndMask = X86_PTE_P | X86_PTE_RW;
710 pPgLvl->a[1].fResMask = X86_PTE_P | X86_PTE_RW;
711 pPgLvl->a[1].fPtrMask = X86_PT_MASK;
712 pPgLvl->a[1].fPtrShift = X86_PT_SHIFT;
713 break;
714
715 case SUPPAGINGMODE_PAE:
716 case SUPPAGINGMODE_PAE_GLOBAL:
717 case SUPPAGINGMODE_PAE_NX:
718 case SUPPAGINGMODE_PAE_GLOBAL_NX:
719 pPgLvl->cLevels = 3;
720 pPgLvl->a[0].fPhysMask = X86_CR3_PAE_PAGE_MASK;
721 pPgLvl->a[0].fPtrMask = X86_PDPT_MASK_PAE;
722 pPgLvl->a[0].fPtrShift = X86_PDPT_SHIFT;
723 pPgLvl->a[0].fAndMask = X86_PDPE_P;
724 pPgLvl->a[0].fResMask = X86_PDPE_P;
725
726 pPgLvl->a[1].fPhysMask = X86_PDPE_PG_MASK;
727 pPgLvl->a[1].fPtrMask = X86_PD_PAE_MASK;
728 pPgLvl->a[1].fPtrShift = X86_PD_PAE_SHIFT;
729 pPgLvl->a[1].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
730 pPgLvl->a[1].fResMask = X86_PDE_P | X86_PDE_RW;
731
732 pPgLvl->a[2].fPhysMask = X86_PDE_PAE_PG_MASK;
733 pPgLvl->a[2].fPtrMask = X86_PT_PAE_MASK;
734 pPgLvl->a[2].fPtrShift = X86_PT_PAE_SHIFT;
735 pPgLvl->a[2].fAndMask = X86_PTE_P | X86_PTE_RW;
736 pPgLvl->a[2].fResMask = X86_PTE_P | X86_PTE_RW;
737 break;
738
739 case SUPPAGINGMODE_AMD64:
740 case SUPPAGINGMODE_AMD64_GLOBAL:
741 case SUPPAGINGMODE_AMD64_NX:
742 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
743 pPgLvl->cLevels = 4;
744 pPgLvl->a[0].fPhysMask = X86_CR3_AMD64_PAGE_MASK;
745 pPgLvl->a[0].fPtrShift = X86_PML4_SHIFT;
746 pPgLvl->a[0].fPtrMask = X86_PML4_MASK;
747 pPgLvl->a[0].fAndMask = X86_PML4E_P | X86_PML4E_RW;
748 pPgLvl->a[0].fResMask = X86_PML4E_P | X86_PML4E_RW;
749
750 pPgLvl->a[1].fPhysMask = X86_PML4E_PG_MASK;
751 pPgLvl->a[1].fPtrShift = X86_PDPT_SHIFT;
752 pPgLvl->a[1].fPtrMask = X86_PDPT_MASK_AMD64;
753 pPgLvl->a[1].fAndMask = X86_PDPE_P | X86_PDPE_RW /** @todo check for X86_PDPT_PS support. */;
754 pPgLvl->a[1].fResMask = X86_PDPE_P | X86_PDPE_RW;
755
756 pPgLvl->a[2].fPhysMask = X86_PDPE_PG_MASK;
757 pPgLvl->a[2].fPtrShift = X86_PD_PAE_SHIFT;
758 pPgLvl->a[2].fPtrMask = X86_PD_PAE_MASK;
759 pPgLvl->a[2].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
760 pPgLvl->a[2].fResMask = X86_PDE_P | X86_PDE_RW;
761
762 pPgLvl->a[3].fPhysMask = X86_PDE_PAE_PG_MASK;
763 pPgLvl->a[3].fPtrShift = X86_PT_PAE_SHIFT;
764 pPgLvl->a[3].fPtrMask = X86_PT_PAE_MASK;
765 pPgLvl->a[3].fAndMask = X86_PTE_P | X86_PTE_RW;
766 pPgLvl->a[3].fResMask = X86_PTE_P | X86_PTE_RW;
767 break;
768
769 default:
770 AssertFailed();
771 pPgLvl->cLevels = 0;
772 break;
773 }
774
775 for (uint32_t i = 0; i < 4; i++) /* ASSUMING array size. */
776 {
777 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
778 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
779 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
780 pPgLvl->a[i].u.pv = NULL;
781 }
782}
783
784
785/**
786 * Maps a PTE.
787 *
788 * This will update the segment structure when new PTs are mapped.
789 *
790 * It also assumes that we (for paranoid reasons) wish to establish a mapping
791 * chain from CR3 to the PT that all corresponds to the processor we're
792 * currently running on, and go about this by running with interrupts disabled
793 * and restarting from CR3 for every change.
794 *
795 * @returns VBox status code, VINF_TRY_AGAIN if we changed any mappings and had
796 * to re-enable interrupts.
797 * @param pThis The dynamic mapping cache instance.
798 * @param pPgLvl The paging level structure.
799 * @param pvPage The page.
800 * @param pSeg The segment.
801 * @param cMaxPTs The max number of PTs expected in the segment.
802 * @param ppvPTE Where to store the PTE address.
803 */
804static int pgmR0DynMapPagingArrayMapPte(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl, void *pvPage,
805 PPGMR0DYNMAPSEG pSeg, uint32_t cMaxPTs, void **ppvPTE)
806{
807 Assert(!(ASMGetFlags() & X86_EFL_IF));
808 void *pvEntry = NULL;
809 X86PGPAEUINT uEntry = ASMGetCR3();
810 for (uint32_t i = 0; i < pPgLvl->cLevels; i++)
811 {
812 RTHCPHYS HCPhys = uEntry & pPgLvl->a[i].fPhysMask;
813 if (pPgLvl->a[i].HCPhys != HCPhys)
814 {
815 /*
816 * Need to remap this level.
817 * The final level, the PT, will not be freed since that is what it's all about.
818 */
819 ASMIntEnable();
820 if (i + 1 == pPgLvl->cLevels)
821 AssertReturn(pSeg->cPTs < cMaxPTs, VERR_INTERNAL_ERROR);
822 else
823 {
824 int rc2 = RTR0MemObjFree(pPgLvl->a[i].hMemObj, true /* fFreeMappings */); AssertRC(rc2);
825 pPgLvl->a[i].hMemObj = pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
826 }
827
828 int rc = RTR0MemObjEnterPhys(&pPgLvl->a[i].hMemObj, HCPhys, PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE);
829 if (RT_SUCCESS(rc))
830 {
831 rc = RTR0MemObjMapKernel(&pPgLvl->a[i].hMapObj, pPgLvl->a[i].hMemObj,
832 (void *)-1 /* pvFixed */, 0 /* cbAlignment */,
833 RTMEM_PROT_WRITE | RTMEM_PROT_READ);
834 if (RT_SUCCESS(rc))
835 {
836 pPgLvl->a[i].u.pv = RTR0MemObjAddress(pPgLvl->a[i].hMapObj);
837 AssertMsg(((uintptr_t)pPgLvl->a[i].u.pv & ~(uintptr_t)PAGE_OFFSET_MASK), ("%p\n", pPgLvl->a[i].u.pv));
838 pPgLvl->a[i].HCPhys = HCPhys;
839 if (i + 1 == pPgLvl->cLevels)
840 pSeg->ahMemObjPTs[pSeg->cPTs++] = pPgLvl->a[i].hMemObj;
841 ASMIntDisable();
842 return VINF_TRY_AGAIN;
843 }
844
845 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
846 }
847 else
848 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
849 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
850 return rc;
851 }
852
853 /*
854 * The next level.
855 */
856 uint32_t iEntry = ((uint64_t)(uintptr_t)pvPage >> pPgLvl->a[i].fPtrShift) & pPgLvl->a[i].fPtrMask;
857 if (pThis->fLegacyMode)
858 {
859 pvEntry = &pPgLvl->a[i].u.paLegacy[iEntry];
860 uEntry = pPgLvl->a[i].u.paLegacy[iEntry];
861 }
862 else
863 {
864 pvEntry = &pPgLvl->a[i].u.paPae[iEntry];
865 uEntry = pPgLvl->a[i].u.paPae[iEntry];
866 }
867
868 if ((uEntry & pPgLvl->a[i].fAndMask) != pPgLvl->a[i].fResMask)
869 {
870 LogRel(("PGMR0DynMap: internal error - iPgLvl=%u cLevels=%u uEntry=%#llx fAnd=%#llx fRes=%#llx got=%#llx\n"
871 "PGMR0DynMap: pv=%p pvPage=%p iEntry=%#x fLegacyMode=%RTbool\n",
872 i, pPgLvl->cLevels, uEntry, pPgLvl->a[i].fAndMask, pPgLvl->a[i].fResMask, uEntry & pPgLvl->a[i].fAndMask,
873 pPgLvl->a[i].u.pv, pvPage, iEntry, pThis->fLegacyMode));
874 return VERR_INTERNAL_ERROR;
875 }
876 /*Log(("#%d: iEntry=%4d uEntry=%#llx pvEntry=%p HCPhys=%RHp \n", i, iEntry, uEntry, pvEntry, pPgLvl->a[i].HCPhys));*/
877 }
878
879 /* made it thru without needing to remap anything. */
880 *ppvPTE = pvEntry;
881 return VINF_SUCCESS;
882}
883
884
885/**
886 * Sets up a guard page.
887 *
888 * @param pThis The dynamic mapping cache instance.
889 * @param pPage The page.
890 */
891DECLINLINE(void) pgmR0DynMapSetupGuardPage(PPGMRZDYNMAP pThis, PPGMRZDYNMAPENTRY pPage)
892{
893 memset(pPage->pvPage, 0xfd, PAGE_SIZE);
894 pPage->cRefs = PGMR0DYNMAP_GUARD_PAGE_REF_COUNT;
895 pPage->HCPhys = PGMR0DYNMAP_GUARD_PAGE_HCPHYS;
896#ifdef PGMR0DYNMAP_GUARD_NP
897 ASMAtomicBitClear(pPage->uPte.pv, X86_PTE_BIT_P);
898#else
899 if (pThis->fLegacyMode)
900 ASMAtomicWriteU32(&pPage->uPte.pLegacy->u, PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE);
901 else
902 ASMAtomicWriteU64(&pPage->uPte.pPae->u, PGMR0DYNMAP_GUARD_PAGE_PAE_PTE);
903#endif
904 pThis->cGuardPages++;
905}
906
907
908/**
909 * Adds a new segment of the specified size.
910 *
911 * @returns VBox status code.
912 * @param pThis The dynamic mapping cache instance.
913 * @param cPages The size of the new segment, give as a page count.
914 */
915static int pgmR0DynMapAddSeg(PPGMRZDYNMAP pThis, uint32_t cPages)
916{
917 int rc2;
918 AssertReturn(ASMGetFlags() & X86_EFL_IF, VERR_PREEMPT_DISABLED);
919
920 /*
921 * Do the array reallocations first.
922 * (The pages array has to be replaced behind the spinlock of course.)
923 */
924 void *pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * (pThis->cPages + cPages));
925 if (!pvSavedPTEs)
926 return VERR_NO_MEMORY;
927 pThis->pvSavedPTEs = pvSavedPTEs;
928
929 void *pvPages = RTMemAllocZ(sizeof(pThis->paPages[0]) * (pThis->cPages + cPages));
930 if (!pvPages)
931 {
932 pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * pThis->cPages);
933 if (pvSavedPTEs)
934 pThis->pvSavedPTEs = pvSavedPTEs;
935 return VERR_NO_MEMORY;
936 }
937
938 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
939
940 memcpy(pvPages, pThis->paPages, sizeof(pThis->paPages[0]) * pThis->cPages);
941 void *pvToFree = pThis->paPages;
942 pThis->paPages = (PPGMRZDYNMAPENTRY)pvPages;
943
944 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
945 RTMemFree(pvToFree);
946
947 /*
948 * Allocate the segment structure and pages of memory, then touch all the pages (paranoia).
949 */
950 uint32_t cMaxPTs = cPages / (pThis->fLegacyMode ? X86_PG_ENTRIES : X86_PG_PAE_ENTRIES) + 2;
951 PPGMR0DYNMAPSEG pSeg = (PPGMR0DYNMAPSEG)RTMemAllocZ(RT_UOFFSETOF(PGMR0DYNMAPSEG, ahMemObjPTs[cMaxPTs]));
952 if (!pSeg)
953 return VERR_NO_MEMORY;
954 pSeg->pNext = NULL;
955 pSeg->cPages = cPages;
956 pSeg->iPage = pThis->cPages;
957 pSeg->cPTs = 0;
958 int rc = RTR0MemObjAllocPage(&pSeg->hMemObj, cPages << PAGE_SHIFT, false);
959 if (RT_SUCCESS(rc))
960 {
961 uint8_t *pbPage = (uint8_t *)RTR0MemObjAddress(pSeg->hMemObj);
962 AssertMsg(VALID_PTR(pbPage) && !((uintptr_t)pbPage & PAGE_OFFSET_MASK), ("%p\n", pbPage));
963 memset(pbPage, 0xfe, cPages << PAGE_SHIFT);
964
965 /*
966 * Walk thru the pages and set them up with a mapping of their PTE and everything.
967 */
968 ASMIntDisable();
969 PGMR0DYNMAPPGLVL PgLvl;
970 pgmR0DynMapPagingArrayInit(pThis, &PgLvl);
971 uint32_t const iEndPage = pSeg->iPage + cPages;
972 for (uint32_t iPage = pSeg->iPage;
973 iPage < iEndPage;
974 iPage++, pbPage += PAGE_SIZE)
975 {
976 /* Initialize the page data. */
977 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
978 pThis->paPages[iPage].pvPage = pbPage;
979 pThis->paPages[iPage].cRefs = 0;
980 pThis->paPages[iPage].uPte.pPae = 0;
981#ifndef IN_RC
982 RTCpuSetFill(&pThis->paPages[iPage].PendingSet);
983#endif
984
985 /* Map its page table, retry until we've got a clean run (paranoia). */
986 do
987 rc = pgmR0DynMapPagingArrayMapPte(pThis, &PgLvl, pbPage, pSeg, cMaxPTs,
988 &pThis->paPages[iPage].uPte.pv);
989 while (rc == VINF_TRY_AGAIN);
990 if (RT_FAILURE(rc))
991 break;
992
993 /* Save the PTE. */
994 if (pThis->fLegacyMode)
995 ((PX86PGUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pLegacy->u;
996 else
997 ((PX86PGPAEUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pPae->u;
998
999#ifdef VBOX_STRICT
1000 /* Check that we've got the right entry. */
1001 RTHCPHYS HCPhysPage = RTR0MemObjGetPagePhysAddr(pSeg->hMemObj, iPage - pSeg->iPage);
1002 RTHCPHYS HCPhysPte = pThis->fLegacyMode
1003 ? pThis->paPages[iPage].uPte.pLegacy->u & X86_PTE_PG_MASK
1004 : pThis->paPages[iPage].uPte.pPae->u & X86_PTE_PAE_PG_MASK;
1005 if (HCPhysPage != HCPhysPte)
1006 {
1007 LogRel(("pgmR0DynMapAddSeg: internal error - page #%u HCPhysPage=%RHp HCPhysPte=%RHp pbPage=%p pvPte=%p\n",
1008 iPage - pSeg->iPage, HCPhysPage, HCPhysPte, pbPage, pThis->paPages[iPage].uPte.pv));
1009 rc = VERR_INTERNAL_ERROR;
1010 break;
1011 }
1012#endif
1013 } /* for each page */
1014 ASMIntEnable();
1015
1016 /* cleanup non-PT mappings */
1017 for (uint32_t i = 0; i < PgLvl.cLevels - 1; i++)
1018 RTR0MemObjFree(PgLvl.a[i].hMemObj, true /* fFreeMappings */);
1019
1020 if (RT_SUCCESS(rc))
1021 {
1022#if PGMR0DYNMAP_GUARD_PAGES > 0
1023 /*
1024 * Setup guard pages.
1025 * (Note: TLBs will be shot down later on.)
1026 */
1027 uint32_t iPage = pSeg->iPage;
1028 while (iPage < iEndPage)
1029 {
1030 for (uint32_t iGPg = 0; iGPg < PGMR0DYNMAP_GUARD_PAGES && iPage < iEndPage; iGPg++, iPage++)
1031 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1032 iPage++; /* the guarded page */
1033 }
1034
1035 /* Make sure the very last page is a guard page too. */
1036 iPage = iEndPage - 1;
1037 if (pThis->paPages[iPage].cRefs != PGMR0DYNMAP_GUARD_PAGE_REF_COUNT)
1038 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1039#endif /* PGMR0DYNMAP_GUARD_PAGES > 0 */
1040
1041 /*
1042 * Commit it by adding the segment to the list and updating the page count.
1043 */
1044 pSeg->pNext = pThis->pSegHead;
1045 pThis->pSegHead = pSeg;
1046 pThis->cPages += cPages;
1047 return VINF_SUCCESS;
1048 }
1049
1050 /*
1051 * Bail out.
1052 */
1053 while (pSeg->cPTs-- > 0)
1054 {
1055 rc2 = RTR0MemObjFree(pSeg->ahMemObjPTs[pSeg->cPTs], true /* fFreeMappings */);
1056 AssertRC(rc2);
1057 pSeg->ahMemObjPTs[pSeg->cPTs] = NIL_RTR0MEMOBJ;
1058 }
1059
1060 rc2 = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */);
1061 AssertRC(rc2);
1062 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1063 }
1064 RTMemFree(pSeg);
1065
1066 /* Don't bother resizing the arrays, but free them if we're the only user. */
1067 if (!pThis->cPages)
1068 {
1069 RTMemFree(pThis->paPages);
1070 pThis->paPages = NULL;
1071 RTMemFree(pThis->pvSavedPTEs);
1072 pThis->pvSavedPTEs = NULL;
1073 }
1074 return rc;
1075}
1076
1077
1078/**
1079 * Called by PGMR0DynMapInitVM under the init lock.
1080 *
1081 * @returns VBox status code.
1082 * @param pThis The dynamic mapping cache instance.
1083 */
1084static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis)
1085{
1086 /*
1087 * Calc the size and add a segment of that size.
1088 */
1089 uint32_t cMinPages;
1090 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1091 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1092 int rc = pgmR0DynMapAddSeg(pThis, cPages);
1093 if (rc == VERR_NO_MEMORY)
1094 {
1095 /*
1096 * Try adding smaller segments.
1097 */
1098 do
1099 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1100 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1101 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1102 rc = VINF_SUCCESS;
1103 if (rc == VERR_NO_MEMORY)
1104 {
1105 if (pThis->cPages)
1106 pgmR0DynMapTearDown(pThis);
1107 rc = VERR_PGM_DYNMAP_SETUP_ERROR;
1108 }
1109 }
1110 Assert(ASMGetFlags() & X86_EFL_IF);
1111
1112#if PGMR0DYNMAP_GUARD_PAGES > 0
1113 /* paranoia */
1114 if (RT_SUCCESS(rc))
1115 pgmR0DynMapTlbShootDown(pThis);
1116#endif
1117 return rc;
1118}
1119
1120
1121/**
1122 * Called by PGMR0DynMapInitVM under the init lock.
1123 *
1124 * @returns VBox status code.
1125 * @param pThis The dynamic mapping cache instance.
1126 */
1127static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis)
1128{
1129 /*
1130 * Calc the new target size and add a segment of the appropriate size.
1131 */
1132 uint32_t cMinPages;
1133 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1134 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1135 if (pThis->cPages >= cPages)
1136 return VINF_SUCCESS;
1137
1138 uint32_t cAdd = cPages - pThis->cPages;
1139 int rc = pgmR0DynMapAddSeg(pThis, cAdd);
1140 if (rc == VERR_NO_MEMORY)
1141 {
1142 /*
1143 * Try adding smaller segments.
1144 */
1145 do
1146 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1147 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1148 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1149 rc = VINF_SUCCESS;
1150 if (rc == VERR_NO_MEMORY)
1151 rc = VERR_PGM_DYNMAP_EXPAND_ERROR;
1152 }
1153 Assert(ASMGetFlags() & X86_EFL_IF);
1154
1155#if PGMR0DYNMAP_GUARD_PAGES > 0
1156 /* paranoia */
1157 if (RT_SUCCESS(rc))
1158 pgmR0DynMapTlbShootDown(pThis);
1159#endif
1160 return rc;
1161}
1162
1163
1164/**
1165 * Called by PGMR0DynMapTermVM under the init lock.
1166 *
1167 * @returns VBox status code.
1168 * @param pThis The dynamic mapping cache instance.
1169 */
1170static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis)
1171{
1172 /*
1173 * Restore the original page table entries
1174 */
1175 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1176 uint32_t iPage = pThis->cPages;
1177 if (pThis->fLegacyMode)
1178 {
1179 X86PGUINT const *paSavedPTEs = (X86PGUINT const *)pThis->pvSavedPTEs;
1180 while (iPage-- > 0)
1181 {
1182 X86PGUINT uOld = paPages[iPage].uPte.pLegacy->u;
1183 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1184 X86PGUINT uNew = paSavedPTEs[iPage];
1185 while (!ASMAtomicCmpXchgExU32(&paPages[iPage].uPte.pLegacy->u, uNew, uOld, &uOld))
1186 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1187 Assert(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage]);
1188 }
1189 }
1190 else
1191 {
1192 X86PGPAEUINT const *paSavedPTEs = (X86PGPAEUINT const *)pThis->pvSavedPTEs;
1193 while (iPage-- > 0)
1194 {
1195 X86PGPAEUINT uOld = paPages[iPage].uPte.pPae->u;
1196 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1197 X86PGPAEUINT uNew = paSavedPTEs[iPage];
1198 while (!ASMAtomicCmpXchgExU64(&paPages[iPage].uPte.pPae->u, uNew, uOld, &uOld))
1199 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1200 Assert(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage]);
1201 }
1202 }
1203
1204 /*
1205 * Shoot down the TLBs on all CPUs before freeing them.
1206 */
1207 pgmR0DynMapTlbShootDown(pThis);
1208
1209 /*
1210 * Free the segments.
1211 */
1212 while (pThis->pSegHead)
1213 {
1214 int rc;
1215 PPGMR0DYNMAPSEG pSeg = pThis->pSegHead;
1216 pThis->pSegHead = pSeg->pNext;
1217
1218 uint32_t iPT = pSeg->cPTs;
1219 while (iPT-- > 0)
1220 {
1221 rc = RTR0MemObjFree(pSeg->ahMemObjPTs[iPT], true /* fFreeMappings */); AssertRC(rc);
1222 pSeg->ahMemObjPTs[iPT] = NIL_RTR0MEMOBJ;
1223 }
1224 rc = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */); AssertRC(rc);
1225 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1226 pSeg->pNext = NULL;
1227 pSeg->iPage = UINT16_MAX;
1228 pSeg->cPages = 0;
1229 pSeg->cPTs = 0;
1230 RTMemFree(pSeg);
1231 }
1232
1233 /*
1234 * Free the arrays and restore the initial state.
1235 * The cLoadMax value is left behind for the next setup.
1236 */
1237 RTMemFree(pThis->paPages);
1238 pThis->paPages = NULL;
1239 RTMemFree(pThis->pvSavedPTEs);
1240 pThis->pvSavedPTEs = NULL;
1241 pThis->cPages = 0;
1242 pThis->cLoad = 0;
1243 pThis->cGuardPages = 0;
1244}
1245
1246#endif /* IN_RING0 */
1247#ifdef IN_RC
1248
1249/**
1250 * Initializes the dynamic mapping cache in raw-mode context.
1251 *
1252 * @returns VBox status code.
1253 * @param pVM The VM handle.
1254 */
1255VMMRCDECL(int) PGMRCDynMapInit(PVM pVM)
1256{
1257 /*
1258 * Allocate and initialize the instance data and page array.
1259 */
1260 PPGMRZDYNMAP pThis;
1261 size_t const cPages = MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE;
1262 size_t const cb = RT_ALIGN_Z(sizeof(*pThis), 32)
1263 + sizeof(PGMRZDYNMAPENTRY) * cPages;
1264 int rc = MMHyperAlloc(pVM, cb, 32, MM_TAG_PGM, (void **)&pThis);
1265 if (RT_FAILURE(rc))
1266 return rc;
1267
1268 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
1269 pThis->paPages = RT_ALIGN_PT(pThis + 1, 32, PPGMRZDYNMAPENTRY);
1270 pThis->cPages = cPages;
1271 pThis->fLegacyMode = PGMGetHostMode(pVM) == PGMMODE_32_BIT;
1272 pThis->cLoad = 0;
1273 pThis->cMaxLoad = 0;
1274 pThis->cGuardPages = 0;
1275 pThis->cUsers = 1;
1276
1277 for (size_t iPage = 0; iPage < cPages; iPage++)
1278 {
1279 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1280 pThis->paPages[iPage].pvPage = pVM->pgm.s.pbDynPageMapBaseGC + iPage * PAGE_SIZE;
1281 pThis->paPages[iPage].cRefs = 0;
1282 if (pThis->fLegacyMode)
1283 pThis->paPages[iPage].uPte.pLegacy = &pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage];
1284 else
1285 pThis->paPages[iPage].uPte.pPae = &pVM->pgm.s.paDynPageMapPaePTEsGC[iPage];
1286 }
1287
1288 pVM->pgm.s.pRCDynMap = pThis;
1289
1290 /*
1291 * Initialize the autosets the VM.
1292 */
1293 rc = pgmRZDynMapInitAutoSetsForVM(pVM);
1294 if (RT_FAILURE(rc))
1295 return rc;
1296
1297 return VINF_SUCCESS;
1298}
1299
1300#endif /* IN_RC */
1301
1302/**
1303 * Release references to a page, caller owns the spin lock.
1304 *
1305 * @param pThis The dynamic mapping cache instance.
1306 * @param iPage The page.
1307 * @param cRefs The number of references to release.
1308 */
1309DECLINLINE(void) pgmRZDynMapReleasePageLocked(PPGMRZDYNMAP pThis, uint32_t iPage, int32_t cRefs)
1310{
1311 cRefs = ASMAtomicSubS32(&pThis->paPages[iPage].cRefs, cRefs) - cRefs;
1312 AssertMsg(cRefs >= 0, ("%d\n", cRefs));
1313 if (!cRefs)
1314 pThis->cLoad--;
1315}
1316
1317
1318/**
1319 * Release references to a page, caller does not own the spin lock.
1320 *
1321 * @param pThis The dynamic mapping cache instance.
1322 * @param iPage The page.
1323 * @param cRefs The number of references to release.
1324 */
1325static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs)
1326{
1327 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1328 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1329 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1330}
1331
1332
1333/**
1334 * pgmR0DynMapPage worker that deals with the tedious bits.
1335 *
1336 * @returns The page index on success, UINT32_MAX on failure.
1337 * @param pThis The dynamic mapping cache instance.
1338 * @param HCPhys The address of the page to be mapped.
1339 * @param iPage The page index pgmR0DynMapPage hashed HCPhys to.
1340 * @param pVCpu The current CPU, for statistics.
1341 * @param pfNew Set to @c true if a new entry was made and @c false if
1342 * an old entry was found and reused.
1343 */
1344static uint32_t pgmR0DynMapPageSlow(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, uint32_t iPage, PVMCPU pVCpu, bool *pfNew)
1345{
1346 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlow);
1347
1348 /*
1349 * Check if any of the first 3 pages are unreferenced since the caller
1350 * already has made sure they aren't matching.
1351 */
1352#ifdef VBOX_WITH_STATISTICS
1353 bool fLooped = false;
1354#endif
1355 uint32_t const cPages = pThis->cPages;
1356 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1357 uint32_t iFreePage;
1358 if (!paPages[iPage].cRefs)
1359 iFreePage = iPage;
1360 else if (!paPages[(iPage + 1) % cPages].cRefs)
1361 iFreePage = (iPage + 1) % cPages;
1362 else if (!paPages[(iPage + 2) % cPages].cRefs)
1363 iFreePage = (iPage + 2) % cPages;
1364 else
1365 {
1366 /*
1367 * Search for an unused or matching entry.
1368 */
1369 iFreePage = (iPage + 3) % cPages;
1370 for (;;)
1371 {
1372 if (paPages[iFreePage].HCPhys == HCPhys)
1373 {
1374 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopHits);
1375 *pfNew = false;
1376 return iFreePage;
1377 }
1378 if (!paPages[iFreePage].cRefs)
1379 break;
1380
1381 /* advance */
1382 iFreePage = (iFreePage + 1) % cPages;
1383 if (RT_UNLIKELY(iFreePage == iPage))
1384 return UINT32_MAX;
1385 }
1386 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopMisses);
1387#ifdef VBOX_WITH_STATISTICS
1388 fLooped = true;
1389#endif
1390 }
1391 Assert(iFreePage < cPages);
1392
1393#if 0 //def VBOX_WITH_STATISTICS
1394 /* Check for lost hits. */
1395 if (!fLooped)
1396 for (uint32_t iPage2 = (iPage + 3) % cPages; iPage2 != iPage; iPage2 = (iPage2 + 1) % cPages)
1397 if (paPages[iPage2].HCPhys == HCPhys)
1398 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZDynMapPageSlowLostHits);
1399#endif
1400
1401 /*
1402 * Setup the new entry.
1403 */
1404 *pfNew = true;
1405 /*Log6(("pgmR0DynMapPageSlow: old - %RHp %#x %#llx\n", paPages[iFreePage].HCPhys, paPages[iFreePage].cRefs, paPages[iFreePage].uPte.pPae->u));*/
1406 paPages[iFreePage].HCPhys = HCPhys;
1407#ifndef IN_RC
1408 RTCpuSetFill(&paPages[iFreePage].PendingSet);
1409#endif
1410 if (pThis->fLegacyMode)
1411 {
1412 X86PGUINT uOld = paPages[iFreePage].uPte.pLegacy->u;
1413 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1414 X86PGUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1415 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1416 | (HCPhys & X86_PTE_PG_MASK);
1417 while (!ASMAtomicCmpXchgExU32(&paPages[iFreePage].uPte.pLegacy->u, uNew, uOld, &uOld))
1418 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1419 Assert(paPages[iFreePage].uPte.pLegacy->u == uNew);
1420 }
1421 else
1422 {
1423 X86PGPAEUINT uOld = paPages[iFreePage].uPte.pPae->u;
1424 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1425 X86PGPAEUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1426 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1427 | (HCPhys & X86_PTE_PAE_PG_MASK);
1428 while (!ASMAtomicCmpXchgExU64(&paPages[iFreePage].uPte.pPae->u, uNew, uOld, &uOld))
1429 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1430 Assert(paPages[iFreePage].uPte.pPae->u == uNew);
1431 /*Log6(("pgmR0DynMapPageSlow: #%x - %RHp %p %#llx\n", iFreePage, HCPhys, paPages[iFreePage].pvPage, uNew));*/
1432 }
1433 return iFreePage;
1434}
1435
1436
1437/**
1438 * Maps a page into the pool.
1439 *
1440 * @returns Page index on success, UINT32_MAX on failure.
1441 * @param pThis The dynamic mapping cache instance.
1442 * @param HCPhys The address of the page to be mapped.
1443 * @param iRealCpu The real cpu set index. (optimization)
1444 * @param pVCpu The current CPU (for statistics).
1445 * @param ppvPage Where to the page address.
1446 */
1447DECLINLINE(uint32_t) pgmR0DynMapPage(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, int32_t iRealCpu, PVMCPU pVCpu, void **ppvPage)
1448{
1449 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1450 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
1451 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPage);
1452
1453 /*
1454 * Find an entry, if possible a matching one. The HCPhys address is hashed
1455 * down to a page index, collisions are handled by linear searching.
1456 * Optimized for a hit in the first 3 pages.
1457 *
1458 * Field easy hits here and defer the tedious searching and inserting
1459 * to pgmR0DynMapPageSlow().
1460 */
1461 bool fNew = false;
1462 uint32_t const cPages = pThis->cPages;
1463 uint32_t iPage = (HCPhys >> PAGE_SHIFT) % cPages;
1464 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1465 if (RT_LIKELY(paPages[iPage].HCPhys == HCPhys))
1466 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits0);
1467 else
1468 {
1469 uint32_t iPage2 = (iPage + 1) % cPages;
1470 if (RT_LIKELY(paPages[iPage2].HCPhys == HCPhys))
1471 {
1472 iPage = iPage2;
1473 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits1);
1474 }
1475 else
1476 {
1477 iPage2 = (iPage + 2) % cPages;
1478 if (paPages[iPage2].HCPhys == HCPhys)
1479 {
1480 iPage = iPage2;
1481 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits2);
1482 }
1483 else
1484 {
1485 iPage = pgmR0DynMapPageSlow(pThis, HCPhys, iPage, pVCpu, &fNew);
1486 if (RT_UNLIKELY(iPage == UINT32_MAX))
1487 {
1488 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1489 *ppvPage = NULL;
1490 return iPage;
1491 }
1492 }
1493 }
1494 }
1495
1496 /*
1497 * Reference it, update statistics and get the return address.
1498 */
1499 int32_t cRefs = ASMAtomicIncS32(&paPages[iPage].cRefs);
1500 if (cRefs == 1)
1501 {
1502 pThis->cLoad++;
1503 if (pThis->cLoad > pThis->cMaxLoad)
1504 pThis->cMaxLoad = pThis->cLoad;
1505 AssertMsg(pThis->cLoad <= pThis->cPages - pThis->cGuardPages, ("%d/%d\n", pThis->cLoad, pThis->cPages - pThis->cGuardPages));
1506 }
1507 else if (RT_UNLIKELY(cRefs <= 0))
1508 {
1509 ASMAtomicDecS32(&paPages[iPage].cRefs);
1510 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1511 *ppvPage = NULL;
1512 AssertLogRelMsgFailedReturn(("cRefs=%d iPage=%p HCPhys=%RHp\n", cRefs, iPage, HCPhys), UINT32_MAX);
1513 }
1514 void *pvPage = paPages[iPage].pvPage;
1515
1516#ifndef IN_RC
1517 /*
1518 * Invalidate the entry?
1519 */
1520 bool fInvalidateIt = RTCpuSetIsMemberByIndex(&paPages[iPage].PendingSet, iRealCpu);
1521 if (RT_UNLIKELY(fInvalidateIt))
1522 RTCpuSetDelByIndex(&paPages[iPage].PendingSet, iRealCpu);
1523#endif
1524
1525 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1526
1527 /*
1528 * Do the actual invalidation outside the spinlock.
1529 */
1530#ifdef IN_RC
1531 if (RT_UNLIKELY(fNew))
1532#else
1533 if (RT_UNLIKELY(fInvalidateIt))
1534#endif
1535 {
1536 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageInvlPg);
1537 ASMInvalidatePage(pvPage);
1538 }
1539
1540 *ppvPage = pvPage;
1541 return iPage;
1542}
1543
1544
1545/**
1546 * Assert the the integrity of the pool.
1547 *
1548 * @returns VBox status code.
1549 */
1550static int pgmRZDynMapAssertIntegrity(PPGMRZDYNMAP pThis)
1551{
1552 /*
1553 * Basic pool stuff that doesn't require any lock, just assumes we're a user.
1554 */
1555 if (!pThis)
1556 return VINF_SUCCESS;
1557 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1558 AssertReturn(pThis->u32Magic == PGMRZDYNMAP_MAGIC, VERR_INVALID_MAGIC);
1559 if (!pThis->cUsers)
1560 return VERR_INVALID_PARAMETER;
1561
1562
1563 int rc = VINF_SUCCESS;
1564 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1565
1566#define CHECK_RET(expr, a) \
1567 do { \
1568 if (RT_UNLIKELY(!(expr))) \
1569 { \
1570 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis); \
1571 RTAssertMsg1Weak(#expr, __LINE__, __FILE__, __PRETTY_FUNCTION__); \
1572 RTAssertMsg2Weak a; \
1573 return VERR_INTERNAL_ERROR; \
1574 } \
1575 } while (0)
1576
1577 /*
1578 * Check that the PTEs are correct.
1579 */
1580 uint32_t cGuard = 0;
1581 uint32_t cLoad = 0;
1582 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1583 uint32_t iPage = pThis->cPages;
1584 if (pThis->fLegacyMode)
1585 {
1586#ifdef IN_RING0
1587 PCX86PGUINT paSavedPTEs = (PCX86PGUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1588#endif
1589 while (iPage-- > 0)
1590 {
1591 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1592 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1593 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1594 {
1595#ifdef PGMR0DYNMAP_GUARD_NP
1596 CHECK_RET(paPages[iPage].uPte.pLegacy->u == (paSavedPTEs[iPage] & ~(X86PGUINT)X86_PTE_P),
1597 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1598#else
1599 CHECK_RET(paPages[iPage].uPte.pLegacy->u == PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE,
1600 ("#%u: %#x", iPage, paPages[iPage].uPte.pLegacy->u));
1601#endif
1602 cGuard++;
1603 }
1604 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1605 {
1606 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1607 X86PGUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1608#ifdef IN_RING0
1609 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1610#endif
1611 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1612 CHECK_RET(paPages[iPage].uPte.pLegacy->u == uPte,
1613 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1614 if (paPages[iPage].cRefs)
1615 cLoad++;
1616 }
1617#ifdef IN_RING0
1618 else
1619 CHECK_RET(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage],
1620 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1621#endif
1622 }
1623 }
1624 else
1625 {
1626#ifdef IN_RING0
1627 PCX86PGPAEUINT paSavedPTEs = (PCX86PGPAEUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1628#endif
1629 while (iPage-- > 0)
1630 {
1631 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1632 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1633 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1634 {
1635#ifdef PGMR0DYNMAP_GUARD_NP
1636 CHECK_RET(paPages[iPage].uPte.pPae->u == (paSavedPTEs[iPage] & ~(X86PGPAEUINT)X86_PTE_P),
1637 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1638#else
1639 CHECK_RET(paPages[iPage].uPte.pPae->u == PGMR0DYNMAP_GUARD_PAGE_PAE_PTE,
1640 ("#%u: %#llx", iPage, paPages[iPage].uPte.pPae->u));
1641#endif
1642 cGuard++;
1643 }
1644 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1645 {
1646 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1647 X86PGPAEUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1648#ifdef IN_RING0
1649 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1650#endif
1651 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1652 CHECK_RET(paPages[iPage].uPte.pPae->u == uPte,
1653 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1654 if (paPages[iPage].cRefs)
1655 cLoad++;
1656 }
1657#ifdef IN_RING0
1658 else
1659 CHECK_RET(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage],
1660 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1661#endif
1662 }
1663 }
1664
1665 CHECK_RET(cLoad == pThis->cLoad, ("%u %u\n", cLoad, pThis->cLoad));
1666 CHECK_RET(cGuard == pThis->cGuardPages, ("%u %u\n", cGuard, pThis->cGuardPages));
1667
1668#undef CHECK_RET
1669 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1670 return VINF_SUCCESS;
1671}
1672
1673#ifdef IN_RING0
1674/**
1675 * Assert the the integrity of the pool.
1676 *
1677 * @returns VBox status code.
1678 */
1679VMMR0DECL(int) PGMR0DynMapAssertIntegrity(void)
1680{
1681 return pgmRZDynMapAssertIntegrity(g_pPGMR0DynMap);
1682}
1683#endif /* IN_RING0 */
1684
1685#ifdef IN_RC
1686/**
1687 * Assert the the integrity of the pool.
1688 *
1689 * @returns VBox status code.
1690 */
1691VMMRCDECL(int) PGMRCDynMapAssertIntegrity(PVM pVM)
1692{
1693 return pgmRZDynMapAssertIntegrity((PPGMRZDYNMAP)pVM->pgm.s.pRCDynMap);
1694}
1695#endif /* IN_RC */
1696
1697
1698/**
1699 * As a final resort for a (somewhat) full auto set or full cache, try merge
1700 * duplicate entries and flush the ones we can.
1701 *
1702 * @param pSet The set.
1703 */
1704static void pgmDynMapOptimizeAutoSet(PPGMMAPSET pSet)
1705{
1706 LogFlow(("pgmDynMapOptimizeAutoSet\n"));
1707
1708 for (uint32_t i = 0 ; i < pSet->cEntries; i++)
1709 {
1710 /*
1711 * Try merge entries.
1712 */
1713 uint16_t const iPage = pSet->aEntries[i].iPage;
1714 uint32_t j = i + 1;
1715 while ( j < pSet->cEntries
1716 && ( pSet->iSubset == UINT32_MAX
1717 || pSet->iSubset < pSet->cEntries) )
1718 {
1719 if (pSet->aEntries[j].iPage != iPage)
1720 j++;
1721 else
1722 {
1723 uint32_t const cHardRefs = (uint32_t)pSet->aEntries[i].cRefs
1724 + (uint32_t)pSet->aEntries[j].cRefs;
1725 uint32_t cInlinedRefs = (uint32_t)pSet->aEntries[i].cInlinedRefs
1726 + (uint32_t)pSet->aEntries[j].cInlinedRefs;
1727 uint32_t cUnrefs = (uint32_t)pSet->aEntries[i].cUnrefs
1728 + (uint32_t)pSet->aEntries[j].cUnrefs;
1729 uint32_t cSub = RT_MIN(cUnrefs, cInlinedRefs);
1730 cInlinedRefs -= cSub;
1731 cUnrefs -= cSub;
1732
1733 if ( cHardRefs < UINT16_MAX
1734 && cInlinedRefs < UINT16_MAX
1735 && cUnrefs < UINT16_MAX)
1736 {
1737 /* merge j into i removing j. */
1738 Log2(("pgmDynMapOptimizeAutoSet: Merging #%u into #%u\n", j, i));
1739 pSet->aEntries[i].cRefs = cHardRefs;
1740 pSet->aEntries[i].cInlinedRefs = cInlinedRefs;
1741 pSet->aEntries[i].cUnrefs = cUnrefs;
1742 pSet->cEntries--;
1743 if (j < pSet->cEntries)
1744 {
1745 pSet->aEntries[j] = pSet->aEntries[pSet->cEntries];
1746 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1747 }
1748 else
1749 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
1750 }
1751#if 0 /* too complicated, skip it. */
1752 else
1753 {
1754 /* migrate the max number of refs from j into i and quit the inner loop. */
1755 uint32_t cMigrate = UINT16_MAX - 1 - pSet->aEntries[i].cRefs;
1756 Assert(pSet->aEntries[j].cRefs > cMigrate);
1757 pSet->aEntries[j].cRefs -= cMigrate;
1758 pSet->aEntries[i].cRefs = UINT16_MAX - 1;
1759 break;
1760 }
1761#endif
1762 }
1763 }
1764
1765 /*
1766 * Try make use of the unused hinting (cUnrefs) to evict entries
1767 * from both the set as well as the mapping cache.
1768 */
1769
1770 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[i].cRefs + pSet->aEntries[i].cInlinedRefs;
1771 Log2(("pgmDynMapOptimizeAutoSet: #%u/%u/%u pvPage=%p iPage=%u cRefs=%u cInlinedRefs=%u cUnrefs=%u cTotalRefs=%u\n",
1772 i,
1773 pSet->iSubset,
1774 pSet->cEntries,
1775 pSet->aEntries[i].pvPage,
1776 pSet->aEntries[i].iPage,
1777 pSet->aEntries[i].cRefs,
1778 pSet->aEntries[i].cInlinedRefs,
1779 pSet->aEntries[i].cUnrefs,
1780 cTotalRefs));
1781 Assert(cTotalRefs >= pSet->aEntries[i].cUnrefs);
1782
1783 if ( cTotalRefs == pSet->aEntries[i].cUnrefs
1784 && ( pSet->iSubset == UINT32_MAX
1785 || pSet->iSubset < pSet->cEntries)
1786 )
1787 {
1788 Log2(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1789 //LogFlow(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1790 pgmRZDynMapReleasePage(PGMRZDYNMAP_SET_2_DYNMAP(pSet),
1791 pSet->aEntries[i].iPage,
1792 pSet->aEntries[i].cRefs);
1793 pSet->cEntries--;
1794 if (i < pSet->cEntries)
1795 {
1796 pSet->aEntries[i] = pSet->aEntries[pSet->cEntries];
1797 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1798 }
1799
1800 i--;
1801 }
1802 }
1803}
1804
1805
1806
1807
1808/**
1809 * Signals the start of a new set of mappings.
1810 *
1811 * Mostly for strictness. PGMDynMapHCPage won't work unless this
1812 * API is called.
1813 *
1814 * @param pVCpu The shared data for the current virtual CPU.
1815 */
1816VMMDECL(void) PGMRZDynMapStartAutoSet(PVMCPU pVCpu)
1817{
1818 LogFlow(("PGMRZDynMapStartAutoSet:\n"));
1819 Assert(pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED);
1820 Assert(pVCpu->pgm.s.AutoSet.iSubset == UINT32_MAX);
1821 pVCpu->pgm.s.AutoSet.cEntries = 0;
1822 pVCpu->pgm.s.AutoSet.iCpu = PGMRZDYNMAP_CUR_CPU();
1823}
1824
1825
1826#ifdef IN_RING0
1827/**
1828 * Starts or migrates the autoset of a virtual CPU.
1829 *
1830 * This is used by HWACCMR0Enter. When we've longjumped out of the HWACCM
1831 * execution loop with the set open, we'll migrate it when re-entering. While
1832 * under normal circumstances, we'll start it so VMXR0LoadGuestState can access
1833 * guest memory.
1834 *
1835 * @returns @c true if started, @c false if migrated.
1836 * @param pVCpu The shared data for the current virtual CPU.
1837 * @thread EMT
1838 */
1839VMMR0DECL(bool) PGMR0DynMapStartOrMigrateAutoSet(PVMCPU pVCpu)
1840{
1841 bool fStartIt = pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED;
1842 if (fStartIt)
1843 PGMRZDynMapStartAutoSet(pVCpu);
1844 else
1845 PGMR0DynMapMigrateAutoSet(pVCpu);
1846 return fStartIt;
1847}
1848#endif /* IN_RING0 */
1849
1850
1851/**
1852 * Worker that performs the actual flushing of the set.
1853 *
1854 * @param pSet The set to flush.
1855 * @param cEntries The number of entries.
1856 */
1857DECLINLINE(void) pgmDynMapFlushAutoSetWorker(PPGMMAPSET pSet, uint32_t cEntries)
1858{
1859 /*
1860 * Release any pages it's referencing.
1861 */
1862 if ( cEntries != 0
1863 && RT_LIKELY(cEntries <= RT_ELEMENTS(pSet->aEntries)))
1864 {
1865 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1866 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1867
1868 uint32_t i = cEntries;
1869 while (i-- > 0)
1870 {
1871 uint32_t iPage = pSet->aEntries[i].iPage;
1872 Assert(iPage < pThis->cPages);
1873 int32_t cRefs = pSet->aEntries[i].cRefs;
1874 Assert(cRefs > 0);
1875 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1876
1877 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
1878 }
1879
1880 Assert(pThis->cLoad <= pThis->cPages - pThis->cGuardPages);
1881 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1882 }
1883}
1884
1885
1886/**
1887 * Releases the dynamic memory mappings made by PGMDynMapHCPage and associates
1888 * since the PGMDynMapStartAutoSet call.
1889 *
1890 * @param pVCpu The shared data for the current virtual CPU.
1891 */
1892VMMDECL(void) PGMRZDynMapReleaseAutoSet(PVMCPU pVCpu)
1893{
1894 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1895
1896 /*
1897 * Close and flush the set.
1898 */
1899 uint32_t cEntries = pSet->cEntries;
1900 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1901 pSet->cEntries = PGMMAPSET_CLOSED;
1902 pSet->iSubset = UINT32_MAX;
1903 pSet->iCpu = -1;
1904
1905#ifdef IN_RC
1906 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1907 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1908 else
1909#endif
1910 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1911 AssertMsg(cEntries < PGMMAPSET_MAX_FILL, ("%u\n", cEntries));
1912 if (cEntries > RT_ELEMENTS(pSet->aEntries) * 50 / 100)
1913 Log(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1914 else
1915 LogFlow(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1916
1917 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1918}
1919
1920
1921/**
1922 * Flushes the set if it's above a certain threshold.
1923 *
1924 * @param pVCpu The shared data for the current virtual CPU.
1925 */
1926VMMDECL(void) PGMRZDynMapFlushAutoSet(PVMCPU pVCpu)
1927{
1928 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1929 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1930
1931 /*
1932 * Only flush it if it's 45% full.
1933 */
1934 uint32_t cEntries = pSet->cEntries;
1935 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1936#ifdef IN_RC
1937 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1938 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1939 else
1940#endif
1941 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1942 if (cEntries >= RT_ELEMENTS(pSet->aEntries) * 45 / 100)
1943 {
1944 pSet->cEntries = 0;
1945
1946 AssertMsg(cEntries < PGMMAPSET_MAX_FILL, ("%u\n", cEntries));
1947 Log(("PGMDynMapFlushAutoSet: cEntries=%d\n", pSet->cEntries));
1948
1949 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1950 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1951 }
1952}
1953
1954
1955#ifndef IN_RC
1956/**
1957 * Migrates the automatic mapping set of the current vCPU if it's active and
1958 * necessary.
1959 *
1960 * This is called when re-entering the hardware assisted execution mode after a
1961 * nip down to ring-3. We run the risk that the CPU might have change and we
1962 * will therefore make sure all the cache entries currently in the auto set will
1963 * be valid on the new CPU. If the cpu didn't change nothing will happen as all
1964 * the entries will have been flagged as invalidated.
1965 *
1966 * @param pVCpu The shared data for the current virtual CPU.
1967 * @thread EMT
1968 */
1969VMMR0DECL(void) PGMR0DynMapMigrateAutoSet(PVMCPU pVCpu)
1970{
1971 LogFlow(("PGMR0DynMapMigrateAutoSet\n"));
1972 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1973 int32_t iRealCpu = PGMRZDYNMAP_CUR_CPU();
1974 if (pSet->iCpu != iRealCpu)
1975 {
1976 uint32_t i = pSet->cEntries;
1977 if (i != PGMMAPSET_CLOSED)
1978 {
1979 AssertMsg(i <= RT_ELEMENTS(pSet->aEntries), ("%#x (%u)\n", i, i));
1980 if (i != 0 && RT_LIKELY(i <= RT_ELEMENTS(pSet->aEntries)))
1981 {
1982 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1983 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1984
1985 while (i-- > 0)
1986 {
1987 Assert(pSet->aEntries[i].cRefs > 0);
1988 uint32_t iPage = pSet->aEntries[i].iPage;
1989 Assert(iPage < pThis->cPages);
1990 if (RTCpuSetIsMemberByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu))
1991 {
1992 RTCpuSetDelByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu);
1993 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1994
1995 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
1996 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapMigrateInvlPg);
1997
1998 PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis);
1999 }
2000 }
2001
2002 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2003 }
2004 }
2005 pSet->iCpu = iRealCpu;
2006 }
2007}
2008#endif /* !IN_RC */
2009
2010
2011/**
2012 * Worker function that flushes the current subset.
2013 *
2014 * This is called when the set is popped or when the set
2015 * hash a too high load. As also pointed out elsewhere, the
2016 * whole subset thing is a hack for working around code that
2017 * accesses too many pages. Like PGMPool.
2018 *
2019 * @param pSet The set which subset to flush.
2020 */
2021static void pgmDynMapFlushSubset(PPGMMAPSET pSet)
2022{
2023 uint32_t iSubset = pSet->iSubset;
2024 uint32_t i = pSet->cEntries;
2025 Assert(i <= RT_ELEMENTS(pSet->aEntries));
2026 if ( i > iSubset
2027 && i <= RT_ELEMENTS(pSet->aEntries))
2028 {
2029 Log(("pgmDynMapFlushSubset: cEntries=%d iSubset=%d\n", pSet->cEntries, iSubset));
2030 pSet->cEntries = iSubset;
2031
2032 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2033 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2034
2035 while (i-- > iSubset)
2036 {
2037 uint32_t iPage = pSet->aEntries[i].iPage;
2038 Assert(iPage < pThis->cPages);
2039 int32_t cRefs = pSet->aEntries[i].cRefs;
2040 Assert(cRefs > 0);
2041 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
2042
2043 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
2044 }
2045
2046 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2047 }
2048}
2049
2050
2051/**
2052 * Creates a subset.
2053 *
2054 * A subset is a hack to avoid having to rewrite code that touches a lot of
2055 * pages. It prevents the mapping set from being overflowed by automatically
2056 * flushing previous mappings when a certain threshold is reached.
2057 *
2058 * Pages mapped after calling this function are only valid until the next page
2059 * is mapped.
2060 *
2061 * @returns The index of the previous subset. Pass this to
2062 * PGMDynMapPopAutoSubset when popping it.
2063 * @param pVCpu Pointer to the virtual cpu data.
2064 */
2065VMMDECL(uint32_t) PGMRZDynMapPushAutoSubset(PVMCPU pVCpu)
2066{
2067 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2068 AssertReturn(pSet->cEntries != PGMMAPSET_CLOSED, UINT32_MAX);
2069 uint32_t iPrevSubset = pSet->iSubset;
2070 LogFlow(("PGMRZDynMapPushAutoSubset: pVCpu=%p iPrevSubset=%u\n", pVCpu, iPrevSubset));
2071
2072#ifdef IN_RC
2073 /* kludge */
2074 if (pSet->cEntries > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE / 2)
2075 {
2076 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2077 pgmDynMapOptimizeAutoSet(pSet);
2078 }
2079#endif
2080
2081 pSet->iSubset = pSet->cEntries;
2082 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSubsets);
2083
2084 return iPrevSubset;
2085}
2086
2087
2088/**
2089 * Pops a subset created by a previous call to PGMDynMapPushAutoSubset.
2090 *
2091 * @param pVCpu Pointer to the virtual cpu data.
2092 * @param iPrevSubset What PGMDynMapPushAutoSubset returned.
2093 */
2094VMMDECL(void) PGMRZDynMapPopAutoSubset(PVMCPU pVCpu, uint32_t iPrevSubset)
2095{
2096 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2097 uint32_t cEntries = pSet->cEntries;
2098 LogFlow(("PGMRZDynMapPopAutoSubset: pVCpu=%p iPrevSubset=%u iSubset=%u cEntries=%u\n", pVCpu, iPrevSubset, pSet->iSubset, cEntries));
2099 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
2100 AssertReturnVoid(pSet->iSubset >= iPrevSubset || iPrevSubset == UINT32_MAX);
2101#ifdef IN_RC
2102 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
2103 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
2104 else
2105#endif
2106 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2107 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 40 / 100
2108 && cEntries != pSet->iSubset)
2109 {
2110 AssertMsg(cEntries < PGMMAPSET_MAX_FILL, ("%u\n", cEntries));
2111 pgmDynMapFlushSubset(pSet);
2112 }
2113 pSet->iSubset = iPrevSubset;
2114}
2115
2116
2117/**
2118 * Indicates that the given page is unused and its mapping can be re-used.
2119 *
2120 * @param pVCpu The current CPU.
2121 * @param pvHint The page that is now unused. This does not have to
2122 * point at the start of the page. NULL is ignored.
2123 */
2124#ifdef LOG_ENABLED
2125void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint, RT_SRC_POS_DECL)
2126#else
2127void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint)
2128#endif
2129{
2130 /*
2131 * Ignore NULL pointers and mask off the page offset bits.
2132 */
2133 if (pvHint == NULL)
2134 return;
2135 pvHint = (void *)((uintptr_t)pvHint & ~(uintptr_t)PAGE_OFFSET_MASK);
2136
2137 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2138 uint32_t iEntry = pSet->cEntries;
2139 AssertReturnVoid(iEntry > 0);
2140
2141 /*
2142 * Find the entry in the usual unrolled fashion.
2143 */
2144#define IS_MATCHING_ENTRY(pSet, iEntry, pvHint) \
2145 ( (pSet)->aEntries[(iEntry)].pvPage == (pvHint) \
2146 && (uint32_t)(pSet)->aEntries[(iEntry)].cRefs + (pSet)->aEntries[(iEntry)].cInlinedRefs \
2147 > (pSet)->aEntries[(iEntry)].cUnrefs )
2148 if ( iEntry >= 1 && IS_MATCHING_ENTRY(pSet, iEntry - 1, pvHint))
2149 iEntry = iEntry - 1;
2150 else if (iEntry >= 2 && IS_MATCHING_ENTRY(pSet, iEntry - 2, pvHint))
2151 iEntry = iEntry - 2;
2152 else if (iEntry >= 3 && IS_MATCHING_ENTRY(pSet, iEntry - 3, pvHint))
2153 iEntry = iEntry - 3;
2154 else if (iEntry >= 4 && IS_MATCHING_ENTRY(pSet, iEntry - 4, pvHint))
2155 iEntry = iEntry - 4;
2156 else if (iEntry >= 5 && IS_MATCHING_ENTRY(pSet, iEntry - 5, pvHint))
2157 iEntry = iEntry - 5;
2158 else if (iEntry >= 6 && IS_MATCHING_ENTRY(pSet, iEntry - 6, pvHint))
2159 iEntry = iEntry - 6;
2160 else if (iEntry >= 7 && IS_MATCHING_ENTRY(pSet, iEntry - 7, pvHint))
2161 iEntry = iEntry - 7;
2162 else
2163 {
2164 /*
2165 * Loop till we find it.
2166 */
2167 bool fFound = false;
2168 if (iEntry > 7)
2169 {
2170 iEntry -= 7;
2171 while (iEntry-- > 0)
2172 if (IS_MATCHING_ENTRY(pSet, iEntry, pvHint))
2173 {
2174 fFound = true;
2175 break;
2176 }
2177 }
2178 AssertMsgReturnVoid(fFound,
2179 ("pvHint=%p cEntries=%#x iSubset=%#x\n"
2180 "aEntries[0] = {%#x, %#x, %#x, %#x, %p}\n"
2181 "aEntries[1] = {%#x, %#x, %#x, %#x, %p}\n"
2182 "aEntries[2] = {%#x, %#x, %#x, %#x, %p}\n"
2183 "aEntries[3] = {%#x, %#x, %#x, %#x, %p}\n"
2184 "aEntries[4] = {%#x, %#x, %#x, %#x, %p}\n"
2185 "aEntries[5] = {%#x, %#x, %#x, %#x, %p}\n"
2186 ,
2187 pvHint, pSet->cEntries, pSet->iSubset,
2188 pSet->aEntries[0].iPage, pSet->aEntries[0].cRefs, pSet->aEntries[0].cInlinedRefs, pSet->aEntries[0].cUnrefs, pSet->aEntries[0].pvPage,
2189 pSet->aEntries[1].iPage, pSet->aEntries[1].cRefs, pSet->aEntries[1].cInlinedRefs, pSet->aEntries[1].cUnrefs, pSet->aEntries[1].pvPage,
2190 pSet->aEntries[2].iPage, pSet->aEntries[2].cRefs, pSet->aEntries[2].cInlinedRefs, pSet->aEntries[2].cUnrefs, pSet->aEntries[2].pvPage,
2191 pSet->aEntries[3].iPage, pSet->aEntries[3].cRefs, pSet->aEntries[3].cInlinedRefs, pSet->aEntries[3].cUnrefs, pSet->aEntries[3].pvPage,
2192 pSet->aEntries[4].iPage, pSet->aEntries[4].cRefs, pSet->aEntries[4].cInlinedRefs, pSet->aEntries[4].cUnrefs, pSet->aEntries[4].pvPage,
2193 pSet->aEntries[5].iPage, pSet->aEntries[5].cRefs, pSet->aEntries[5].cInlinedRefs, pSet->aEntries[5].cUnrefs, pSet->aEntries[5].pvPage));
2194 }
2195#undef IS_MATCHING_ENTRY
2196
2197 /*
2198 * Update it.
2199 */
2200 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[iEntry].cRefs + pSet->aEntries[iEntry].cInlinedRefs;
2201 uint32_t const cUnrefs = pSet->aEntries[iEntry].cUnrefs;
2202 LogFlow(("pgmRZDynMapUnusedHint: pvHint=%p #%u cRefs=%d cInlinedRefs=%d cUnrefs=%d (+1) cTotalRefs=%d %s(%d) %s\n",
2203 pvHint, iEntry, pSet->aEntries[iEntry].cRefs, pSet->aEntries[iEntry].cInlinedRefs, cUnrefs, cTotalRefs, pszFile, iLine, pszFunction));
2204 AssertReturnVoid(cTotalRefs > cUnrefs);
2205
2206 if (RT_LIKELY(cUnrefs < UINT16_MAX - 1))
2207 pSet->aEntries[iEntry].cUnrefs++;
2208 else if (pSet->aEntries[iEntry].cInlinedRefs)
2209 {
2210 uint32_t cSub = RT_MIN(pSet->aEntries[iEntry].cInlinedRefs, pSet->aEntries[iEntry].cUnrefs);
2211 pSet->aEntries[iEntry].cInlinedRefs -= cSub;
2212 pSet->aEntries[iEntry].cUnrefs -= cSub;
2213 pSet->aEntries[iEntry].cUnrefs++;
2214 }
2215 else
2216 Log(("pgmRZDynMapUnusedHint: pvHint=%p ignored because of overflow! %s(%d) %s\n", pvHint, pszFile, iLine, pszFunction));
2217}
2218
2219
2220/**
2221 * Common worker code for pgmRZDynMapHCPageInlined, pgmRZDynMapHCPageV2Inlined
2222 * and pgmR0DynMapGCPageOffInlined.
2223 *
2224 * @returns VINF_SUCCESS, bails out to ring-3 on failure.
2225 * @param pSet The set.
2226 * @param HCPhys The physical address of the page.
2227 * @param ppv Where to store the address of the mapping on success.
2228 *
2229 * @remarks This is a very hot path.
2230 */
2231int pgmRZDynMapHCPageCommon(PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL)
2232{
2233 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
2234 PVMCPU pVCpu = PGMRZDYNMAP_SET_2_VMCPU(pSet);
2235 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2236
2237 /*
2238 * Map it.
2239 */
2240 void *pvPage;
2241 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2242 uint32_t iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2243 if (RT_UNLIKELY(iPage == UINT32_MAX))
2244 {
2245 /*
2246 * We're out of mapping space, optimize our set to try remedy the
2247 * situation. (Only works if there are unreference hints.)
2248 */
2249 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2250 pgmDynMapOptimizeAutoSet(pSet);
2251
2252 iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2253 if (RT_UNLIKELY(iPage == UINT32_MAX))
2254 {
2255 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: cLoad=%u/%u cPages=%u cGuardPages=%u\n",
2256 pThis->cLoad, pThis->cMaxLoad, pThis->cPages, pThis->cGuardPages);
2257 if (!g_fPGMR0DynMapTestRunning)
2258 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2259 *ppv = NULL;
2260 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2261 return VERR_PGM_DYNMAP_FAILED;
2262 }
2263 }
2264
2265 /*
2266 * Add the page to the auto reference set.
2267 *
2268 * The typical usage pattern means that the same pages will be mapped
2269 * several times in the same set. We can catch most of these
2270 * remappings by looking a few pages back into the set. (The searching
2271 * and set optimizing path will hardly ever be used when doing this.)
2272 */
2273 AssertCompile(RT_ELEMENTS(pSet->aEntries) >= 8);
2274 int32_t i = pSet->cEntries;
2275 if (i-- < 5)
2276 {
2277 unsigned iEntry = pSet->cEntries++;
2278 pSet->aEntries[iEntry].cRefs = 1;
2279 pSet->aEntries[iEntry].cUnrefs = 0;
2280 pSet->aEntries[iEntry].cInlinedRefs = 0;
2281 pSet->aEntries[iEntry].iPage = iPage;
2282 pSet->aEntries[iEntry].pvPage = pvPage;
2283 pSet->aEntries[iEntry].HCPhys = HCPhys;
2284 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2285 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/0/0 iPage=%#x [a] %s(%d) %s\n",
2286 pSet, HCPhys, iEntry, iEntry + 1, pvPage, 1, iPage, pszFile, iLine, pszFunction));
2287 }
2288 /* Any of the last 5 pages? */
2289 else if ( pSet->aEntries[i - 0].iPage == iPage
2290 && pSet->aEntries[i - 0].cRefs < UINT16_MAX - 1)
2291 {
2292 pSet->aEntries[i - 0].cRefs++;
2293 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [0] %s(%d) %s\n", pSet, HCPhys, i - 0, pSet->cEntries, pvPage, pSet->aEntries[i - 0].cRefs, pSet->aEntries[i - 0].cInlinedRefs, pSet->aEntries[i - 0].cUnrefs, iPage, pszFile, iLine, pszFunction));
2294 }
2295 else if ( pSet->aEntries[i - 1].iPage == iPage
2296 && pSet->aEntries[i - 1].cRefs < UINT16_MAX - 1)
2297 {
2298 pSet->aEntries[i - 1].cRefs++;
2299 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [1] %s(%d) %s\n", pSet, HCPhys, i - 1, pSet->cEntries, pvPage, pSet->aEntries[i - 1].cRefs, pSet->aEntries[i - 1].cInlinedRefs, pSet->aEntries[i - 1].cUnrefs, iPage, pszFile, iLine, pszFunction));
2300 }
2301 else if ( pSet->aEntries[i - 2].iPage == iPage
2302 && pSet->aEntries[i - 2].cRefs < UINT16_MAX - 1)
2303 {
2304 pSet->aEntries[i - 2].cRefs++;
2305 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [2] %s(%d) %s\n", pSet, HCPhys, i - 2, pSet->cEntries, pvPage, pSet->aEntries[i - 2].cRefs, pSet->aEntries[i - 2].cInlinedRefs, pSet->aEntries[i - 2].cUnrefs, iPage, pszFile, iLine, pszFunction));
2306 }
2307 else if ( pSet->aEntries[i - 3].iPage == iPage
2308 && pSet->aEntries[i - 3].cRefs < UINT16_MAX - 1)
2309 {
2310 pSet->aEntries[i - 3].cRefs++;
2311 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 3, pSet->cEntries, pvPage, pSet->aEntries[i - 3].cRefs, pSet->aEntries[i - 3].cInlinedRefs, pSet->aEntries[i - 3].cUnrefs, iPage, pszFile, iLine, pszFunction));
2312 }
2313 else if ( pSet->aEntries[i - 4].iPage == iPage
2314 && pSet->aEntries[i - 4].cRefs < UINT16_MAX - 1)
2315 {
2316 pSet->aEntries[i - 4].cRefs++;
2317 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 4, pSet->cEntries, pvPage, pSet->aEntries[i - 4].cRefs, pSet->aEntries[i - 4].cInlinedRefs, pSet->aEntries[i - 4].cUnrefs, iPage, pszFile, iLine, pszFunction));
2318 }
2319 /* Don't bother searching unless we're above a 60% load. */
2320 else if (RT_LIKELY(i <= (int32_t)RT_ELEMENTS(pSet->aEntries) * 60 / 100))
2321 {
2322 unsigned iEntry = pSet->cEntries++;
2323 pSet->aEntries[iEntry].cRefs = 1;
2324 pSet->aEntries[iEntry].cUnrefs = 0;
2325 pSet->aEntries[iEntry].cInlinedRefs = 0;
2326 pSet->aEntries[iEntry].iPage = iPage;
2327 pSet->aEntries[iEntry].pvPage = pvPage;
2328 pSet->aEntries[iEntry].HCPhys = HCPhys;
2329 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2330 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [b] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2331 }
2332 else
2333 {
2334 /* Search the rest of the set. */
2335 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
2336 i -= 4;
2337 while (i-- > 0)
2338 if ( pSet->aEntries[i].iPage == iPage
2339 && pSet->aEntries[i].cRefs < UINT16_MAX - 1)
2340 {
2341 pSet->aEntries[i].cRefs++;
2342 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchHits);
2343 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [c] %s(%d) %s\n", pSet, HCPhys, i, pSet->cEntries, pvPage, pSet->aEntries[i].cRefs, pSet->aEntries[i].cInlinedRefs, pSet->aEntries[i].cUnrefs, iPage, pszFile, iLine, pszFunction));
2344 break;
2345 }
2346 if (i < 0)
2347 {
2348 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchMisses);
2349 if (pSet->iSubset < pSet->cEntries)
2350 {
2351 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchFlushes);
2352 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(pSet->cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2353 AssertMsg(pSet->cEntries < PGMMAPSET_MAX_FILL, ("%u\n", pSet->cEntries));
2354 pgmDynMapFlushSubset(pSet);
2355 }
2356
2357 if (RT_UNLIKELY(pSet->cEntries >= RT_ELEMENTS(pSet->aEntries)))
2358 {
2359 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2360 pgmDynMapOptimizeAutoSet(pSet);
2361 }
2362
2363 if (RT_LIKELY(pSet->cEntries < RT_ELEMENTS(pSet->aEntries)))
2364 {
2365 unsigned iEntry = pSet->cEntries++;
2366 pSet->aEntries[iEntry].cRefs = 1;
2367 pSet->aEntries[iEntry].cUnrefs = 0;
2368 pSet->aEntries[iEntry].cInlinedRefs = 0;
2369 pSet->aEntries[iEntry].iPage = iPage;
2370 pSet->aEntries[iEntry].pvPage = pvPage;
2371 pSet->aEntries[iEntry].HCPhys = HCPhys;
2372 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2373 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [d] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2374 }
2375 else
2376 {
2377 /* We're screwed. */
2378 pgmRZDynMapReleasePage(pThis, iPage, 1);
2379
2380 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: set is full!\n");
2381 if (!g_fPGMR0DynMapTestRunning)
2382 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2383 *ppv = NULL;
2384 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2385 return VERR_PGM_DYNMAP_FULL_SET;
2386 }
2387 }
2388 }
2389
2390 *ppv = pvPage;
2391 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2392 return VINF_SUCCESS;
2393}
2394
2395
2396#if 0 /*def DEBUG*/
2397/** For pgmR0DynMapTest3PerCpu. */
2398typedef struct PGMR0DYNMAPTEST
2399{
2400 uint32_t u32Expect;
2401 uint32_t *pu32;
2402 uint32_t volatile cFailures;
2403} PGMR0DYNMAPTEST;
2404typedef PGMR0DYNMAPTEST *PPGMR0DYNMAPTEST;
2405
2406/**
2407 * Checks that the content of the page is the same on all CPUs, i.e. that there
2408 * are no CPU specfic PTs or similar nasty stuff involved.
2409 *
2410 * @param idCpu The current CPU.
2411 * @param pvUser1 Pointer a PGMR0DYNMAPTEST structure.
2412 * @param pvUser2 Unused, ignored.
2413 */
2414static DECLCALLBACK(void) pgmR0DynMapTest3PerCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
2415{
2416 PPGMR0DYNMAPTEST pTest = (PPGMR0DYNMAPTEST)pvUser1;
2417 ASMInvalidatePage(pTest->pu32);
2418 if (*pTest->pu32 != pTest->u32Expect)
2419 ASMAtomicIncU32(&pTest->cFailures);
2420 NOREF(pvUser2); NOREF(idCpu);
2421}
2422
2423
2424/**
2425 * Performs some basic tests in debug builds.
2426 */
2427static int pgmR0DynMapTest(PVM pVM)
2428{
2429 LogRel(("pgmR0DynMapTest: ****** START ******\n"));
2430 PPGMMAPSET pSet = &pVM->aCpus[0].pgm.s.AutoSet;
2431 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2432 uint32_t i;
2433
2434 /*
2435 * Assert internal integrity first.
2436 */
2437 LogRel(("Test #0\n"));
2438 int rc = PGMR0DynMapAssertIntegrity();
2439 if (RT_FAILURE(rc))
2440 return rc;
2441
2442 void *pvR0DynMapUsedSaved = pVM->pgm.s.pvR0DynMapUsed;
2443 pVM->pgm.s.pvR0DynMapUsed = pThis;
2444 g_fPGMR0DynMapTestRunning = true;
2445
2446 /*
2447 * Simple test, map CR3 twice and check that we're getting the
2448 * same mapping address back.
2449 */
2450 LogRel(("Test #1\n"));
2451 ASMIntDisable();
2452 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2453
2454 uint64_t cr3 = ASMGetCR3() & ~(uint64_t)PAGE_OFFSET_MASK;
2455 void *pv = (void *)(intptr_t)-1;
2456 void *pv2 = (void *)(intptr_t)-2;
2457 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv RTLOG_COMMA_SRC_POS);
2458 int rc2 = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2459 ASMIntEnable();
2460 if ( RT_SUCCESS(rc2)
2461 && RT_SUCCESS(rc)
2462 && pv == pv2)
2463 {
2464 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2465 rc = PGMR0DynMapAssertIntegrity();
2466
2467 /*
2468 * Check that the simple set overflow code works by filling it
2469 * with more CR3 mappings.
2470 */
2471 LogRel(("Test #2\n"));
2472 ASMIntDisable();
2473 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2474 for (i = 0 ; i < UINT16_MAX*2 - 1 && RT_SUCCESS(rc) && pv2 == pv; i++)
2475 {
2476 pv2 = (void *)(intptr_t)-4;
2477 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2478 }
2479 ASMIntEnable();
2480 if (RT_FAILURE(rc) || pv != pv2)
2481 {
2482 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%p\n", __LINE__, rc, pv, pv2, i));
2483 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2484 }
2485 else if (pSet->cEntries != 5)
2486 {
2487 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries) / 2));
2488 rc = VERR_INTERNAL_ERROR;
2489 }
2490 else if ( pSet->aEntries[4].cRefs != UINT16_MAX - 1
2491 || pSet->aEntries[3].cRefs != UINT16_MAX - 1
2492 || pSet->aEntries[2].cRefs != 1
2493 || pSet->aEntries[1].cRefs != 1
2494 || pSet->aEntries[0].cRefs != 1)
2495 {
2496 LogRel(("failed(%d): bad set dist: ", __LINE__));
2497 for (i = 0; i < pSet->cEntries; i++)
2498 LogRel(("[%d]=%d, ", i, pSet->aEntries[i].cRefs));
2499 LogRel(("\n"));
2500 rc = VERR_INTERNAL_ERROR;
2501 }
2502 if (RT_SUCCESS(rc))
2503 rc = PGMR0DynMapAssertIntegrity();
2504 if (RT_SUCCESS(rc))
2505 {
2506 /*
2507 * Trigger an set optimization run (exactly).
2508 */
2509 LogRel(("Test #3\n"));
2510 ASMIntDisable();
2511 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2512 pv2 = NULL;
2513 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) - 5 && RT_SUCCESS(rc) && pv2 != pv; i++)
2514 {
2515 pv2 = (void *)(intptr_t)(-5 - i);
2516 rc = pgmRZDynMapHCPageCommon(pVM, cr3 + PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2517 }
2518 ASMIntEnable();
2519 if (RT_FAILURE(rc) || pv == pv2)
2520 {
2521 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%d\n", __LINE__, rc, pv, pv2, i));
2522 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2523 }
2524 else if (pSet->cEntries != RT_ELEMENTS(pSet->aEntries))
2525 {
2526 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2527 rc = VERR_INTERNAL_ERROR;
2528 }
2529 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2530 if (RT_SUCCESS(rc))
2531 rc = PGMR0DynMapAssertIntegrity();
2532 if (RT_SUCCESS(rc))
2533 {
2534 /*
2535 * Trigger an overflow error.
2536 */
2537 LogRel(("Test #4\n"));
2538 ASMIntDisable();
2539 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2540 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) + 2; i++)
2541 {
2542 rc = pgmRZDynMapHCPageCommon(pVM, cr3 - PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2543 if (RT_SUCCESS(rc))
2544 rc = PGMR0DynMapAssertIntegrity();
2545 if (RT_FAILURE(rc))
2546 break;
2547 }
2548 ASMIntEnable();
2549 if (rc == VERR_PGM_DYNMAP_FULL_SET)
2550 {
2551 /* flush the set. */
2552 LogRel(("Test #5\n"));
2553 ASMIntDisable();
2554 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2555 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2556 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2557 ASMIntEnable();
2558
2559 rc = PGMR0DynMapAssertIntegrity();
2560 }
2561 else
2562 {
2563 LogRel(("failed(%d): rc=%Rrc, wanted %d ; pv2=%p Set=%u/%u; i=%d\n", __LINE__,
2564 rc, VERR_PGM_DYNMAP_FULL_SET, pv2, pSet->cEntries, RT_ELEMENTS(pSet->aEntries), i));
2565 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2566 }
2567 }
2568 }
2569 }
2570 else
2571 {
2572 LogRel(("failed(%d): rc=%Rrc rc2=%Rrc; pv=%p pv2=%p\n", __LINE__, rc, rc2, pv, pv2));
2573 if (RT_SUCCESS(rc))
2574 rc = rc2;
2575 }
2576
2577 /*
2578 * Check that everyone sees the same stuff.
2579 */
2580 if (RT_SUCCESS(rc))
2581 {
2582 LogRel(("Test #5\n"));
2583 ASMIntDisable();
2584 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2585 RTHCPHYS HCPhysPT = RTR0MemObjGetPagePhysAddr(pThis->pSegHead->ahMemObjPTs[0], 0);
2586 rc = pgmRZDynMapHCPageCommon(pVM, HCPhysPT, &pv RTLOG_COMMA_SRC_POS);
2587 if (RT_SUCCESS(rc))
2588 {
2589 PGMR0DYNMAPTEST Test;
2590 uint32_t *pu32Real = &pThis->paPages[pThis->pSegHead->iPage].uPte.pLegacy->u;
2591 Test.pu32 = (uint32_t *)((uintptr_t)pv | ((uintptr_t)pu32Real & PAGE_OFFSET_MASK));
2592 Test.u32Expect = *pu32Real;
2593 ASMAtomicWriteU32(&Test.cFailures, 0);
2594 ASMIntEnable();
2595
2596 rc = RTMpOnAll(pgmR0DynMapTest3PerCpu, &Test, NULL);
2597 if (RT_FAILURE(rc))
2598 LogRel(("failed(%d): RTMpOnAll rc=%Rrc\n", __LINE__, rc));
2599 else if (Test.cFailures)
2600 {
2601 LogRel(("failed(%d): cFailures=%d pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n", __LINE__,
2602 Test.cFailures, pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2603 rc = VERR_INTERNAL_ERROR;
2604 }
2605 else
2606 LogRel(("pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n",
2607 pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2608 }
2609 else
2610 {
2611 ASMIntEnable();
2612 LogRel(("failed(%d): rc=%Rrc\n", rc));
2613 }
2614 }
2615
2616 /*
2617 * Clean up.
2618 */
2619 LogRel(("Cleanup.\n"));
2620 ASMIntDisable();
2621 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2622 PGMRZDynMapFlushAutoSet(&pVM->aCpus[0]);
2623 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2624 ASMIntEnable();
2625
2626 if (RT_SUCCESS(rc))
2627 rc = PGMR0DynMapAssertIntegrity();
2628 else
2629 PGMR0DynMapAssertIntegrity();
2630
2631 g_fPGMR0DynMapTestRunning = false;
2632 LogRel(("Result: rc=%Rrc Load=%u/%u/%u Set=%#x/%u\n", rc,
2633 pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2634 pVM->pgm.s.pvR0DynMapUsed = pvR0DynMapUsedSaved;
2635 LogRel(("pgmR0DynMapTest: ****** END ******\n"));
2636 return rc;
2637}
2638#endif /* DEBUG */
2639
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette