/* $Id: VMMSwitcher.cpp 34322 2010-11-24 13:36:24Z vboxsync $ */ /** @file * VMM - The Virtual Machine Monitor, World Switcher(s). */ /* * Copyright (C) 2006-2007 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_VMM #include #include #include #include #include #include "VMMInternal.h" #include "VMMSwitcher/VMMSwitcher.h" #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Global Variables * *******************************************************************************/ /** Array of switcher definitions. * The type and index shall match! */ static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] = { NULL, /* invalid entry */ #ifdef VBOX_WITH_RAW_MODE # ifndef RT_ARCH_AMD64 &vmmR3Switcher32BitTo32Bit_Def, &vmmR3Switcher32BitToPAE_Def, &vmmR3Switcher32BitToAMD64_Def, &vmmR3SwitcherPAETo32Bit_Def, &vmmR3SwitcherPAEToPAE_Def, &vmmR3SwitcherPAEToAMD64_Def, NULL, //&vmmR3SwitcherPAETo32Bit_Def, # ifdef VBOX_WITH_HYBRID_32BIT_KERNEL &vmmR3SwitcherAMD64ToPAE_Def, # else NULL, //&vmmR3SwitcherAMD64ToPAE_Def, # endif NULL //&vmmR3SwitcherAMD64ToAMD64_Def, # else /* RT_ARCH_AMD64 */ NULL, //&vmmR3Switcher32BitTo32Bit_Def, NULL, //&vmmR3Switcher32BitToPAE_Def, NULL, //&vmmR3Switcher32BitToAMD64_Def, NULL, //&vmmR3SwitcherPAETo32Bit_Def, NULL, //&vmmR3SwitcherPAEToPAE_Def, NULL, //&vmmR3SwitcherPAEToAMD64_Def, &vmmR3SwitcherAMD64To32Bit_Def, &vmmR3SwitcherAMD64ToPAE_Def, NULL //&vmmR3SwitcherAMD64ToAMD64_Def, # endif /* RT_ARCH_AMD64 */ #else /* !VBOX_WITH_RAW_MODE */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL #endif /* !VBOX_WITH_RAW_MODE */ }; /** * VMMR3Init worker that initiates the switcher code (aka core code). * * This is core per VM code which might need fixups and/or for ease of use are * put on linear contiguous backing. * * @returns VBox status code. * @param pVM Pointer to the shared VM structure. */ int vmmR3SwitcherInit(PVM pVM) { #ifndef VBOX_WITH_RAW_MODE return VINF_SUCCESS; #else /* * Calc the size. */ unsigned cbCoreCode = 0; for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++) { pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode; PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher]; if (pSwitcher) { AssertRelease((unsigned)pSwitcher->enmType == iSwitcher); cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32); } } /* * Allocate contiguous pages for switchers and deal with * conflicts in the intermediate mapping of the code. */ pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE); pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode); int rc = VERR_NO_MEMORY; if (pVM->vmm.s.pvCoreCodeR3) { rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode); if (rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT) { /* try more allocations - Solaris, Linux. */ const unsigned cTries = 8234; struct VMMInitBadTry { RTR0PTR pvR0; void *pvR3; RTHCPHYS HCPhys; RTUINT cb; } *paBadTries = (struct VMMInitBadTry *)RTMemTmpAlloc(sizeof(*paBadTries) * cTries); AssertReturn(paBadTries, VERR_NO_TMP_MEMORY); unsigned i = 0; do { paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3; paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0; paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode; i++; pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR; pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS; pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode); if (!pVM->vmm.s.pvCoreCodeR3) break; rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode); } while ( rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT && i < cTries - 1); /* cleanup */ if (RT_FAILURE(rc)) { paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3; paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0; paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode; paBadTries[i].cb = pVM->vmm.s.cbCoreCode; i++; LogRel(("Failed to allocated and map core code: rc=%Rrc\n", rc)); } while (i-- > 0) { LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%RHp\n", i, paBadTries[i].pvR3, paBadTries[i].pvR0, paBadTries[i].HCPhys)); SUPR3ContFree(paBadTries[i].pvR3, paBadTries[i].cb >> PAGE_SHIFT); } RTMemTmpFree(paBadTries); } } if (RT_SUCCESS(rc)) { /* * copy the code. */ for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++) { PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher]; if (pSwitcher) memcpy((uint8_t *)pVM->vmm.s.pvCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher], pSwitcher->pvCode, pSwitcher->cbCode); } /* * Map the code into the GC address space. */ RTGCPTR GCPtr; rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &GCPtr); if (RT_SUCCESS(rc)) { pVM->vmm.s.pvCoreCodeRC = GCPtr; MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); LogRel(("CoreCode: R3=%RHv R0=%RHv RC=%RRv Phys=%RHp cb=%#x\n", pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode)); /* * Finally, PGM probably has selected a switcher already but we need * to get the routine addresses, so we'll reselect it. * This may legally fail so, we're ignoring the rc. */ VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher); return rc; } /* shit */ AssertMsgFailed(("PGMR3Map(,%RRv, %RHp, %#x, 0) failed with rc=%Rrc\n", pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc)); SUPR3ContFree(pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT); } else VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"), cbCoreCode); pVM->vmm.s.pvCoreCodeR3 = NULL; pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR; pVM->vmm.s.pvCoreCodeRC = 0; return rc; #endif } /** * Relocate the switchers, called by VMMR#Relocate. * * @param pVM Pointer to the shared VM structure. * @param offDelta The relocation delta. */ void vmmR3SwitcherRelocate(PVM pVM, RTGCINTPTR offDelta) { #ifdef VBOX_WITH_RAW_MODE /* * Relocate all the switchers. */ for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++) { PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher]; if (pSwitcher && pSwitcher->pfnRelocate) { unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher]; pSwitcher->pfnRelocate(pVM, pSwitcher, pVM->vmm.s.pvCoreCodeR0 + off, (uint8_t *)pVM->vmm.s.pvCoreCodeR3 + off, pVM->vmm.s.pvCoreCodeRC + off, pVM->vmm.s.HCPhysCoreCode + off); } } /* * Recalc the RC address for the current switcher. */ PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher]; RTRCPTR RCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher]; pVM->vmm.s.pfnGuestToHostRC = RCPtr + pSwitcher->offGCGuestToHost; pVM->vmm.s.pfnCallTrampolineRC = RCPtr + pSwitcher->offGCCallTrampoline; pVM->pfnVMMGCGuestToHostAsm = RCPtr + pSwitcher->offGCGuestToHostAsm; pVM->pfnVMMGCGuestToHostAsmHyperCtx = RCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx; pVM->pfnVMMGCGuestToHostAsmGuestCtx = RCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx; // AssertFailed(); #endif } /** * Generic switcher code relocator. * * @param pVM The VM handle. * @param pSwitcher The switcher definition. * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping. * @param R0PtrCode Pointer to the core code block for the switcher, ring-0 mapping. * @param GCPtrCode The guest context address corresponding to pu8Code. * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code. * @param SelCS The hypervisor CS selector. * @param SelDS The hypervisor DS selector. * @param SelTSS The hypervisor TSS selector. * @param GCPtrGDT The GC address of the hypervisor GDT. * @param SelCS64 The 64-bit mode hypervisor CS selector. */ static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode, RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64) { union { const uint8_t *pu8; const uint16_t *pu16; const uint32_t *pu32; const uint64_t *pu64; const void *pv; uintptr_t u; } u; u.pv = pSwitcher->pvFixups; /* * Process fixups. */ uint8_t u8; while ((u8 = *u.pu8++) != FIX_THE_END) { /* * Get the source (where to write the fixup). */ uint32_t offSrc = *u.pu32++; Assert(offSrc < pSwitcher->cbCode); union { uint8_t *pu8; uint16_t *pu16; uint32_t *pu32; uint64_t *pu64; uintptr_t u; } uSrc; uSrc.pu8 = pu8CodeR3 + offSrc; /* The fixup target and method depends on the type. */ switch (u8) { /* * 32-bit relative, source in HC and target in GC. */ case FIX_HC_2_GC_NEAR_REL: { Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1); uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode); *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4)); break; } /* * 32-bit relative, source in HC and target in ID. */ case FIX_HC_2_ID_NEAR_REL: { Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1); uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (R0PtrCode + offSrc + 4)); break; } /* * 32-bit relative, source in GC and target in HC. */ case FIX_GC_2_HC_NEAR_REL: { Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode); uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1); *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (GCPtrCode + offSrc + 4)); break; } /* * 32-bit relative, source in GC and target in ID. */ case FIX_GC_2_ID_NEAR_REL: { AssertMsg(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode, ("%x - %x < %x\n", offSrc, pSwitcher->offGCCode, pSwitcher->cbGCCode)); uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4)); break; } /* * 32-bit relative, source in ID and target in HC. */ case FIX_ID_2_HC_NEAR_REL: { Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1); *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (u32IDCode + offSrc + 4)); break; } /* * 32-bit relative, source in ID and target in HC. */ case FIX_ID_2_GC_NEAR_REL: { Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode); *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4)); break; } /* * 16:32 far jump, target in GC. */ case FIX_GC_FAR32: { uint32_t offTrg = *u.pu32++; Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode); *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg); *uSrc.pu16++ = SelCS; break; } /* * Make 32-bit GC pointer given CPUM offset. */ case FIX_GC_CPUM_OFF: { uint32_t offCPUM = *u.pu32++; Assert(offCPUM < sizeof(pVM->cpum)); *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM); break; } /* * Make 32-bit GC pointer given CPUMCPU offset. */ case FIX_GC_CPUMCPU_OFF: { uint32_t offCPUM = *u.pu32++; Assert(offCPUM < sizeof(pVM->aCpus[0].cpum)); *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->aCpus[0].cpum) + offCPUM); break; } /* * Make 32-bit GC pointer given VM offset. */ case FIX_GC_VM_OFF: { uint32_t offVM = *u.pu32++; Assert(offVM < sizeof(VM)); *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, pVM) + offVM); break; } /* * Make 32-bit HC pointer given CPUM offset. */ case FIX_HC_CPUM_OFF: { uint32_t offCPUM = *u.pu32++; Assert(offCPUM < sizeof(pVM->cpum)); *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM; break; } /* * Make 32-bit R0 pointer given VM offset. */ case FIX_HC_VM_OFF: { uint32_t offVM = *u.pu32++; Assert(offVM < sizeof(VM)); *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM; break; } /* * Store the 32-Bit CR3 (32-bit) for the intermediate memory context. */ case FIX_INTER_32BIT_CR3: { *uSrc.pu32 = PGMGetInter32BitCR3(pVM); break; } /* * Store the PAE CR3 (32-bit) for the intermediate memory context. */ case FIX_INTER_PAE_CR3: { *uSrc.pu32 = PGMGetInterPaeCR3(pVM); break; } /* * Store the AMD64 CR3 (32-bit) for the intermediate memory context. */ case FIX_INTER_AMD64_CR3: { *uSrc.pu32 = PGMGetInterAmd64CR3(pVM); break; } /* * Store Hypervisor CS (16-bit). */ case FIX_HYPER_CS: { *uSrc.pu16 = SelCS; break; } /* * Store Hypervisor DS (16-bit). */ case FIX_HYPER_DS: { *uSrc.pu16 = SelDS; break; } /* * Store Hypervisor TSS (16-bit). */ case FIX_HYPER_TSS: { *uSrc.pu16 = SelTSS; break; } /* * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT). */ case FIX_GC_TSS_GDTE_DW2: { RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4; *uSrc.pu32 = (uint32_t)GCPtr; break; } /* * Store the EFER or mask for the 32->64 bit switcher. */ case FIX_EFER_OR_MASK: { uint32_t u32OrMask = MSR_K6_EFER_LME | MSR_K6_EFER_SCE; /** note: we don't care if cpuid 0x8000001 isn't supported as that implies long mode isn't either, so this switcher would never be used. */ if (!!(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_NX)) u32OrMask |= MSR_K6_EFER_NXE; *uSrc.pu32 = u32OrMask; break; } /* * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu. */ case FIX_NO_FXSAVE_JMP: { uint32_t offTrg = *u.pu32++; Assert(offTrg < pSwitcher->cbCode); if (!CPUMSupportsFXSR(pVM)) { *uSrc.pu8++ = 0xe9; /* jmp rel32 */ *uSrc.pu32++ = offTrg - (offSrc + 5); } else { *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc); *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1); } break; } /* * Insert relative jump to specified target it SYSENTER isn't used by the host. */ case FIX_NO_SYSENTER_JMP: { uint32_t offTrg = *u.pu32++; Assert(offTrg < pSwitcher->cbCode); if (!CPUMIsHostUsingSysEnter(pVM)) { *uSrc.pu8++ = 0xe9; /* jmp rel32 */ *uSrc.pu32++ = offTrg - (offSrc + 5); } else { *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc); *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1); } break; } /* * Insert relative jump to specified target it SYSCALL isn't used by the host. */ case FIX_NO_SYSCALL_JMP: { uint32_t offTrg = *u.pu32++; Assert(offTrg < pSwitcher->cbCode); if (!CPUMIsHostUsingSysCall(pVM)) { *uSrc.pu8++ = 0xe9; /* jmp rel32 */ *uSrc.pu32++ = offTrg - (offSrc + 5); } else { *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc); *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1); } break; } /* * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset). */ case FIX_HC_32BIT: { uint32_t offTrg = *u.pu32++; Assert(offSrc < pSwitcher->cbCode); Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1); *uSrc.pu32 = R0PtrCode + offTrg; break; } #if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) /* * 64-bit HC Code Selector (no argument). */ case FIX_HC_64BIT_CS: { Assert(offSrc < pSwitcher->cbCode); # if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBRID_32BIT_KERNEL) *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */ # else AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n")); # endif break; } /* * 64-bit HC pointer to the CPUM instance data (no argument). */ case FIX_HC_64BIT_CPUM: { Assert(offSrc < pSwitcher->cbCode); *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum); break; } #endif /* * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset). */ case FIX_HC_64BIT: { uint32_t offTrg = *u.pu32++; Assert(offSrc < pSwitcher->cbCode); Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1); *uSrc.pu64 = R0PtrCode + offTrg; break; } #ifdef RT_ARCH_X86 case FIX_GC_64_BIT_CPUM_OFF: { uint32_t offCPUM = *u.pu32++; Assert(offCPUM < sizeof(pVM->cpum)); *uSrc.pu64 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM); break; } #endif /* * 32-bit ID pointer to (ID) target within the code (32-bit offset). */ case FIX_ID_32BIT: { uint32_t offTrg = *u.pu32++; Assert(offSrc < pSwitcher->cbCode); Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); *uSrc.pu32 = u32IDCode + offTrg; break; } /* * 64-bit ID pointer to (ID) target within the code (32-bit offset). */ case FIX_ID_64BIT: case FIX_HC_64BIT_NOCHECK: { uint32_t offTrg = *u.pu32++; Assert(offSrc < pSwitcher->cbCode); Assert(u8 == FIX_HC_64BIT_NOCHECK || offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); *uSrc.pu64 = u32IDCode + offTrg; break; } /* * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset). */ case FIX_ID_FAR32_TO_64BIT_MODE: { uint32_t offTrg = *u.pu32++; Assert(offSrc < pSwitcher->cbCode); Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1); *uSrc.pu32++ = u32IDCode + offTrg; *uSrc.pu16 = SelCS64; AssertRelease(SelCS64); break; } #ifdef VBOX_WITH_NMI /* * 32-bit address to the APIC base. */ case FIX_GC_APIC_BASE_32BIT: { *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase; break; } #endif default: AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc)); break; } } #ifdef LOG_ENABLED /* * If Log2 is enabled disassemble the switcher code. * * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts. */ if (LogIs2Enabled()) { RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n" " R0PtrCode = %p\n" " pu8CodeR3 = %p\n" " GCPtrCode = %RGv\n" " u32IDCode = %08x\n" " pVMRC = %RRv\n" " pCPUMRC = %RRv\n" " pVMR3 = %p\n" " pCPUMR3 = %p\n" " GCPtrGDT = %RGv\n" " InterCR3s = %08RHp, %08RHp, %08RHp (32-Bit, PAE, AMD64)\n" " HyperCR3s = %08RHp (32-Bit, PAE & AMD64)\n" " SelCS = %04x\n" " SelDS = %04x\n" " SelCS64 = %04x\n" " SelTSS = %04x\n", pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, VM_RC_ADDR(pVM, pVM), VM_RC_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum, GCPtrGDT, PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM), PGMGetHyperCR3(VMMGetCpu(pVM)), SelCS, SelDS, SelCS64, SelTSS); uint32_t offCode = 0; while (offCode < pSwitcher->cbCode) { /* * Figure out where this is. */ const char *pszDesc = NULL; RTUINTPTR uBase; uint32_t cbCode; if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0) { pszDesc = "HCCode0"; uBase = R0PtrCode; offCode = pSwitcher->offHCCode0; cbCode = pSwitcher->cbHCCode0; } else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1) { pszDesc = "HCCode1"; uBase = R0PtrCode; offCode = pSwitcher->offHCCode1; cbCode = pSwitcher->cbHCCode1; } else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode) { pszDesc = "GCCode"; uBase = GCPtrCode; offCode = pSwitcher->offGCCode; cbCode = pSwitcher->cbGCCode; } else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0) { pszDesc = "IDCode0"; uBase = u32IDCode; offCode = pSwitcher->offIDCode0; cbCode = pSwitcher->cbIDCode0; } else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1) { pszDesc = "IDCode1"; uBase = u32IDCode; offCode = pSwitcher->offIDCode1; cbCode = pSwitcher->cbIDCode1; } else { RTLogPrintf(" %04x: %02x '%c' (nowhere)\n", offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' '); offCode++; continue; } /* * Disassemble it. */ RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode); DISCPUSTATE Cpu; memset(&Cpu, 0, sizeof(Cpu)); Cpu.mode = CPUMODE_32BIT; while (cbCode > 0) { /* try label it */ if (pSwitcher->offR0HostToGuest == offCode) RTLogPrintf(" *R0HostToGuest:\n"); if (pSwitcher->offGCGuestToHost == offCode) RTLogPrintf(" *GCGuestToHost:\n"); if (pSwitcher->offGCCallTrampoline == offCode) RTLogPrintf(" *GCCallTrampoline:\n"); if (pSwitcher->offGCGuestToHostAsm == offCode) RTLogPrintf(" *GCGuestToHostAsm:\n"); if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode) RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n"); if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode) RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n"); /* disas */ uint32_t cbInstr = 0; char szDisas[256]; if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pu8CodeR3 + offCode, uBase - (uintptr_t)pu8CodeR3, &cbInstr, szDisas))) RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'. else { RTLogPrintf(" %04x: %02x '%c'\n", offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' '); cbInstr = 1; } offCode += cbInstr; cbCode -= RT_MIN(cbInstr, cbCode); } } } #endif } /** * Relocator for the 32-Bit to 32-Bit world switcher. */ DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0); } /** * Relocator for the 32-Bit to PAE world switcher. */ DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0); } /** * Relocator for the 32-Bit to AMD64 world switcher. */ DECLCALLBACK(void) vmmR3Switcher32BitToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM)); } /** * Relocator for the PAE to 32-Bit world switcher. */ DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0); } /** * Relocator for the PAE to PAE world switcher. */ DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0); } /** * Relocator for the PAE to AMD64 world switcher. */ DECLCALLBACK(void) vmmR3SwitcherPAEToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM)); } /** * Relocator for the AMD64 to 32-bit world switcher. */ DECLCALLBACK(void) vmmR3SwitcherAMD64To32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM)); } /** * Relocator for the AMD64 to PAE world switcher. */ DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode) { vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode, SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM)); } /** * Selects the switcher to be used for switching to GC. * * @returns VBox status code. * @param pVM VM handle. * @param enmSwitcher The new switcher. * @remark This function may be called before the VMM is initialized. */ VMMR3_INT_DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher) { /* * Validate input. */ if ( enmSwitcher < VMMSWITCHER_INVALID || enmSwitcher >= VMMSWITCHER_MAX) { AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher)); return VERR_INVALID_PARAMETER; } /* Do nothing if the switcher is disabled. */ if (pVM->vmm.s.fSwitcherDisabled) return VINF_SUCCESS; /* * Select the new switcher. */ PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher]; if (pSwitcher) { Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc)); pVM->vmm.s.enmSwitcher = enmSwitcher; RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */ pVM->vmm.s.pfnHostToGuestR0 = pbCodeR0 + pSwitcher->offR0HostToGuest; RTGCPTR GCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[enmSwitcher]; pVM->vmm.s.pfnGuestToHostRC = GCPtr + pSwitcher->offGCGuestToHost; pVM->vmm.s.pfnCallTrampolineRC = GCPtr + pSwitcher->offGCCallTrampoline; pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm; pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx; pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx; return VINF_SUCCESS; } return VERR_NOT_IMPLEMENTED; } /** * Disable the switcher logic permanently. * * @returns VBox status code. * @param pVM VM handle. */ VMMR3_INT_DECL(int) VMMR3DisableSwitcher(PVM pVM) { /** @todo r=bird: I would suggest that we create a dummy switcher which just does something like: * @code * mov eax, VERR_INTERNAL_ERROR * ret * @endcode * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed. */ pVM->vmm.s.fSwitcherDisabled = true; return VINF_SUCCESS; } /** * Gets the switcher to be used for switching to GC. * * @returns host to guest ring 0 switcher entrypoint * @param pVM VM handle. * @param enmSwitcher The new switcher. */ VMMR3_INT_DECL(RTR0PTR) VMMR3GetHostToGuestSwitcher(PVM pVM, VMMSWITCHER enmSwitcher) { /* * Validate input. */ if ( enmSwitcher < VMMSWITCHER_INVALID || enmSwitcher >= VMMSWITCHER_MAX) { AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher)); return NIL_RTR0PTR; } /* * Select the new switcher. */ PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher]; if (pSwitcher) { RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */ return pbCodeR0 + pSwitcher->offR0HostToGuest; } return NIL_RTR0PTR; }