1 | /* $Id: IEMInline.h 100734 2023-07-29 02:04:22Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - Inlined Functions.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 | #ifndef VMM_INCLUDED_SRC_include_IEMInline_h
|
---|
29 | #define VMM_INCLUDED_SRC_include_IEMInline_h
|
---|
30 | #ifndef RT_WITHOUT_PRAGMA_ONCE
|
---|
31 | # pragma once
|
---|
32 | #endif
|
---|
33 |
|
---|
34 |
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * Makes status code addjustments (pass up from I/O and access handler)
|
---|
38 | * as well as maintaining statistics.
|
---|
39 | *
|
---|
40 | * @returns Strict VBox status code to pass up.
|
---|
41 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
42 | * @param rcStrict The status from executing an instruction.
|
---|
43 | */
|
---|
44 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecStatusCodeFiddling(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
45 | {
|
---|
46 | if (rcStrict != VINF_SUCCESS)
|
---|
47 | {
|
---|
48 | if (RT_SUCCESS(rcStrict))
|
---|
49 | {
|
---|
50 | AssertMsg( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|
---|
51 | || rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
52 | || rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
53 | || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
54 | || rcStrict == VINF_IOM_R3_MMIO_READ
|
---|
55 | || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE
|
---|
56 | || rcStrict == VINF_IOM_R3_MMIO_WRITE
|
---|
57 | || rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE
|
---|
58 | || rcStrict == VINF_CPUM_R3_MSR_READ
|
---|
59 | || rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
60 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
61 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
62 | || rcStrict == VINF_EM_TRIPLE_FAULT
|
---|
63 | || rcStrict == VINF_GIM_R3_HYPERCALL
|
---|
64 | /* raw-mode / virt handlers only: */
|
---|
65 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT
|
---|
66 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT
|
---|
67 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT
|
---|
68 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT
|
---|
69 | || rcStrict == VINF_SELM_SYNC_GDT
|
---|
70 | || rcStrict == VINF_CSAM_PENDING_ACTION
|
---|
71 | || rcStrict == VINF_PATM_CHECK_PATCH_PAGE
|
---|
72 | /* nested hw.virt codes: */
|
---|
73 | || rcStrict == VINF_VMX_VMEXIT
|
---|
74 | || rcStrict == VINF_VMX_INTERCEPT_NOT_ACTIVE
|
---|
75 | || rcStrict == VINF_VMX_MODIFIES_BEHAVIOR
|
---|
76 | || rcStrict == VINF_SVM_VMEXIT
|
---|
77 | , ("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
78 | /** @todo adjust for VINF_EM_RAW_EMULATE_INSTR. */
|
---|
79 | int32_t const rcPassUp = pVCpu->iem.s.rcPassUp;
|
---|
80 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
81 | if ( rcStrict == VINF_VMX_VMEXIT
|
---|
82 | && rcPassUp == VINF_SUCCESS)
|
---|
83 | rcStrict = VINF_SUCCESS;
|
---|
84 | else
|
---|
85 | #endif
|
---|
86 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
87 | if ( rcStrict == VINF_SVM_VMEXIT
|
---|
88 | && rcPassUp == VINF_SUCCESS)
|
---|
89 | rcStrict = VINF_SUCCESS;
|
---|
90 | else
|
---|
91 | #endif
|
---|
92 | if (rcPassUp == VINF_SUCCESS)
|
---|
93 | pVCpu->iem.s.cRetInfStatuses++;
|
---|
94 | else if ( rcPassUp < VINF_EM_FIRST
|
---|
95 | || rcPassUp > VINF_EM_LAST
|
---|
96 | || rcPassUp < VBOXSTRICTRC_VAL(rcStrict))
|
---|
97 | {
|
---|
98 | Log(("IEM: rcPassUp=%Rrc! rcStrict=%Rrc\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
99 | pVCpu->iem.s.cRetPassUpStatus++;
|
---|
100 | rcStrict = rcPassUp;
|
---|
101 | }
|
---|
102 | else
|
---|
103 | {
|
---|
104 | Log(("IEM: rcPassUp=%Rrc rcStrict=%Rrc!\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
105 | pVCpu->iem.s.cRetInfStatuses++;
|
---|
106 | }
|
---|
107 | }
|
---|
108 | else if (rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
|
---|
109 | pVCpu->iem.s.cRetAspectNotImplemented++;
|
---|
110 | else if (rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
111 | pVCpu->iem.s.cRetInstrNotImplemented++;
|
---|
112 | else
|
---|
113 | pVCpu->iem.s.cRetErrStatuses++;
|
---|
114 | }
|
---|
115 | else if (pVCpu->iem.s.rcPassUp != VINF_SUCCESS)
|
---|
116 | {
|
---|
117 | pVCpu->iem.s.cRetPassUpStatus++;
|
---|
118 | rcStrict = pVCpu->iem.s.rcPassUp;
|
---|
119 | }
|
---|
120 |
|
---|
121 | return rcStrict;
|
---|
122 | }
|
---|
123 |
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Sets the pass up status.
|
---|
127 | *
|
---|
128 | * @returns VINF_SUCCESS.
|
---|
129 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
130 | * calling thread.
|
---|
131 | * @param rcPassUp The pass up status. Must be informational.
|
---|
132 | * VINF_SUCCESS is not allowed.
|
---|
133 | */
|
---|
134 | DECLINLINE(int) iemSetPassUpStatus(PVMCPUCC pVCpu, VBOXSTRICTRC rcPassUp) RT_NOEXCEPT
|
---|
135 | {
|
---|
136 | AssertRC(VBOXSTRICTRC_VAL(rcPassUp)); Assert(rcPassUp != VINF_SUCCESS);
|
---|
137 |
|
---|
138 | int32_t const rcOldPassUp = pVCpu->iem.s.rcPassUp;
|
---|
139 | if (rcOldPassUp == VINF_SUCCESS)
|
---|
140 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
141 | /* If both are EM scheduling codes, use EM priority rules. */
|
---|
142 | else if ( rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST
|
---|
143 | && rcPassUp >= VINF_EM_FIRST && rcPassUp <= VINF_EM_LAST)
|
---|
144 | {
|
---|
145 | if (rcPassUp < rcOldPassUp)
|
---|
146 | {
|
---|
147 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
148 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
149 | }
|
---|
150 | else
|
---|
151 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
152 | }
|
---|
153 | /* Override EM scheduling with specific status code. */
|
---|
154 | else if (rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST)
|
---|
155 | {
|
---|
156 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
157 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
158 | }
|
---|
159 | /* Don't override specific status code, first come first served. */
|
---|
160 | else
|
---|
161 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
162 | return VINF_SUCCESS;
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Calculates the IEM_F_MODE_X86_32BIT_FLAT flag.
|
---|
168 | *
|
---|
169 | * Checks if CS, SS, DS and SS are all wide open flat 32-bit segments. This will
|
---|
170 | * reject expand down data segments and conforming code segments.
|
---|
171 | *
|
---|
172 | * ASSUMES that the CPU is in 32-bit mode.
|
---|
173 | *
|
---|
174 | * @returns IEM_F_MODE_X86_32BIT_FLAT or zero.
|
---|
175 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
176 | * calling thread.
|
---|
177 | * @sa iemCalc32BitFlatIndicatorEsDs
|
---|
178 | */
|
---|
179 | DECL_FORCE_INLINE(uint32_t) iemCalc32BitFlatIndicator(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
180 | {
|
---|
181 | AssertCompile(X86_SEL_TYPE_DOWN == X86_SEL_TYPE_CONF);
|
---|
182 | return ( ( pVCpu->cpum.GstCtx.es.Attr.u
|
---|
183 | | pVCpu->cpum.GstCtx.cs.Attr.u
|
---|
184 | | pVCpu->cpum.GstCtx.ss.Attr.u
|
---|
185 | | pVCpu->cpum.GstCtx.ds.Attr.u)
|
---|
186 | & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_DOWN | X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_P))
|
---|
187 | == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_DOWN | X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_P)
|
---|
188 | && ( (pVCpu->cpum.GstCtx.es.u32Limit + 1)
|
---|
189 | | (pVCpu->cpum.GstCtx.cs.u32Limit + 1)
|
---|
190 | | (pVCpu->cpum.GstCtx.ss.u32Limit + 1)
|
---|
191 | | (pVCpu->cpum.GstCtx.ds.u32Limit + 1))
|
---|
192 | == 0
|
---|
193 | && ( pVCpu->cpum.GstCtx.es.u64Base
|
---|
194 | | pVCpu->cpum.GstCtx.cs.u64Base
|
---|
195 | | pVCpu->cpum.GstCtx.ss.u64Base
|
---|
196 | | pVCpu->cpum.GstCtx.ds.u64Base)
|
---|
197 | == 0
|
---|
198 | && !(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ES | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_ES))
|
---|
199 | ? IEM_F_MODE_X86_32BIT_FLAT : 0;
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | /**
|
---|
204 | * Calculates the IEM_F_MODE_X86_32BIT_FLAT flag, ASSUMING the CS and SS are
|
---|
205 | * flat already.
|
---|
206 | *
|
---|
207 | * This is used by sysenter.
|
---|
208 | *
|
---|
209 | * @returns IEM_F_MODE_X86_32BIT_FLAT or zero.
|
---|
210 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
211 | * calling thread.
|
---|
212 | * @sa iemCalc32BitFlatIndicator
|
---|
213 | */
|
---|
214 | DECL_FORCE_INLINE(uint32_t) iemCalc32BitFlatIndicatorEsDs(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
215 | {
|
---|
216 | AssertCompile(X86_SEL_TYPE_DOWN == X86_SEL_TYPE_CONF);
|
---|
217 | return ( ( pVCpu->cpum.GstCtx.es.Attr.u
|
---|
218 | | pVCpu->cpum.GstCtx.ds.Attr.u)
|
---|
219 | & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_DOWN | X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_P))
|
---|
220 | == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_DOWN | X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_P)
|
---|
221 | && ( (pVCpu->cpum.GstCtx.es.u32Limit + 1)
|
---|
222 | | (pVCpu->cpum.GstCtx.ds.u32Limit + 1))
|
---|
223 | == 0
|
---|
224 | && ( pVCpu->cpum.GstCtx.es.u64Base
|
---|
225 | | pVCpu->cpum.GstCtx.ds.u64Base)
|
---|
226 | == 0
|
---|
227 | && !(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ES | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_ES))
|
---|
228 | ? IEM_F_MODE_X86_32BIT_FLAT : 0;
|
---|
229 | }
|
---|
230 |
|
---|
231 |
|
---|
232 | /**
|
---|
233 | * Calculates the IEM_F_MODE_XXX and CPL flags.
|
---|
234 | *
|
---|
235 | * @returns IEM_F_MODE_XXX
|
---|
236 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
237 | * calling thread.
|
---|
238 | */
|
---|
239 | DECL_FORCE_INLINE(uint32_t) iemCalcExecModeAndCplFlags(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
240 | {
|
---|
241 | /*
|
---|
242 | * We're duplicates code from CPUMGetGuestCPL and CPUMIsGuestIn64BitCodeEx
|
---|
243 | * here to try get this done as efficiently as possible.
|
---|
244 | */
|
---|
245 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS);
|
---|
246 |
|
---|
247 | if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
|
---|
248 | {
|
---|
249 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1VM)
|
---|
250 | {
|
---|
251 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
252 | uint32_t fExec = ((uint32_t)pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl << IEM_F_X86_CPL_SHIFT);
|
---|
253 | if (pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
|
---|
254 | {
|
---|
255 | Assert(!pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA));
|
---|
256 | fExec |= IEM_F_MODE_X86_32BIT_PROT | iemCalc32BitFlatIndicator(pVCpu);
|
---|
257 | }
|
---|
258 | else if ( pVCpu->cpum.GstCtx.cs.Attr.n.u1Long
|
---|
259 | && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA))
|
---|
260 | fExec |= IEM_F_MODE_X86_64BIT;
|
---|
261 | else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
|
---|
262 | fExec |= IEM_F_MODE_X86_16BIT_PROT;
|
---|
263 | else
|
---|
264 | fExec |= IEM_F_MODE_X86_16BIT_PROT_PRE_386;
|
---|
265 | return fExec;
|
---|
266 | }
|
---|
267 | return IEM_F_MODE_X86_16BIT_PROT_V86 | (UINT32_C(3) << IEM_F_X86_CPL_SHIFT);
|
---|
268 | }
|
---|
269 |
|
---|
270 | /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
|
---|
271 | if (RT_LIKELY(!pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig))
|
---|
272 | {
|
---|
273 | if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
|
---|
274 | return IEM_F_MODE_X86_16BIT;
|
---|
275 | return IEM_F_MODE_X86_16BIT_PRE_386;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /* 32-bit unreal mode. */
|
---|
279 | return IEM_F_MODE_X86_32BIT | iemCalc32BitFlatIndicator(pVCpu);
|
---|
280 | }
|
---|
281 |
|
---|
282 |
|
---|
283 | /**
|
---|
284 | * Calculates the AMD-V and VT-x related context flags.
|
---|
285 | *
|
---|
286 | * @returns 0 or a combination of IEM_F_X86_CTX_IN_GUEST, IEM_F_X86_CTX_SVM and
|
---|
287 | * IEM_F_X86_CTX_VMX.
|
---|
288 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
289 | * calling thread.
|
---|
290 | */
|
---|
291 | DECL_FORCE_INLINE(uint32_t) iemCalcExecHwVirtFlags(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
292 | {
|
---|
293 | /*
|
---|
294 | * This duplicates code from CPUMIsGuestVmxEnabled, CPUMIsGuestSvmEnabled
|
---|
295 | * and CPUMIsGuestInNestedHwvirtMode to some extent.
|
---|
296 | */
|
---|
297 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
|
---|
298 |
|
---|
299 | AssertCompile(X86_CR4_VMXE != MSR_K6_EFER_SVME);
|
---|
300 | uint64_t const fTmp = (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VMXE)
|
---|
301 | | (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SVME);
|
---|
302 | if (RT_LIKELY(!fTmp))
|
---|
303 | return 0; /* likely */
|
---|
304 |
|
---|
305 | if (fTmp & X86_CR4_VMXE)
|
---|
306 | {
|
---|
307 | Assert(pVCpu->cpum.GstCtx.hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
|
---|
308 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode)
|
---|
309 | return IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST;
|
---|
310 | return IEM_F_X86_CTX_VMX;
|
---|
311 | }
|
---|
312 |
|
---|
313 | Assert(pVCpu->cpum.GstCtx.hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
|
---|
314 | if (pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMRUN)
|
---|
315 | return IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST;
|
---|
316 | return IEM_F_X86_CTX_SVM;
|
---|
317 | }
|
---|
318 |
|
---|
319 |
|
---|
320 | /**
|
---|
321 | * Calculates IEM_F_BRK_PENDING_XXX (IEM_F_PENDING_BRK_MASK) flags.
|
---|
322 | *
|
---|
323 | * @returns IEM_F_BRK_PENDING_XXX or zero.
|
---|
324 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
325 | * calling thread.
|
---|
326 | */
|
---|
327 | DECL_FORCE_INLINE(uint32_t) iemCalcExecDbgFlags(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
328 | {
|
---|
329 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
|
---|
330 |
|
---|
331 | if (RT_LIKELY( !(pVCpu->cpum.GstCtx.dr[7] & X86_DR7_ENABLED_MASK)
|
---|
332 | && pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledHwBreakpoints == 0))
|
---|
333 | return 0;
|
---|
334 | return iemCalcExecDbgFlagsSlow(pVCpu);
|
---|
335 | }
|
---|
336 |
|
---|
337 | /**
|
---|
338 | * Calculates the the IEM_F_XXX flags.
|
---|
339 | *
|
---|
340 | * @returns IEM_F_XXX combination match the current CPU state.
|
---|
341 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
342 | * calling thread.
|
---|
343 | */
|
---|
344 | DECL_FORCE_INLINE(uint32_t) iemCalcExecFlags(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
345 | {
|
---|
346 | return iemCalcExecModeAndCplFlags(pVCpu)
|
---|
347 | | iemCalcExecHwVirtFlags(pVCpu)
|
---|
348 | /* SMM is not yet implemented */
|
---|
349 | | iemCalcExecDbgFlags(pVCpu)
|
---|
350 | ;
|
---|
351 | }
|
---|
352 |
|
---|
353 |
|
---|
354 | /**
|
---|
355 | * Re-calculates the MODE and CPL parts of IEMCPU::fExec.
|
---|
356 | *
|
---|
357 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
358 | * calling thread.
|
---|
359 | */
|
---|
360 | DECL_FORCE_INLINE(void) iemRecalcExecModeAndCplFlags(PVMCPUCC pVCpu)
|
---|
361 | {
|
---|
362 | pVCpu->iem.s.fExec = (pVCpu->iem.s.fExec & ~(IEM_F_MODE_MASK | IEM_F_X86_CPL_MASK))
|
---|
363 | | iemCalcExecModeAndCplFlags(pVCpu);
|
---|
364 | }
|
---|
365 |
|
---|
366 |
|
---|
367 | /**
|
---|
368 | * Re-calculates the IEM_F_PENDING_BRK_MASK part of IEMCPU::fExec.
|
---|
369 | *
|
---|
370 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
371 | * calling thread.
|
---|
372 | */
|
---|
373 | DECL_FORCE_INLINE(void) iemRecalcExecDbgFlags(PVMCPUCC pVCpu)
|
---|
374 | {
|
---|
375 | pVCpu->iem.s.fExec = (pVCpu->iem.s.fExec & ~IEM_F_PENDING_BRK_MASK)
|
---|
376 | | iemCalcExecDbgFlags(pVCpu);
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
381 |
|
---|
382 | # if defined(VBOX_INCLUDED_vmm_dbgf_h) || defined(DOXYGEN_RUNNING) /* dbgf.ro.cEnabledHwBreakpoints */
|
---|
383 | /**
|
---|
384 | * Initializes the execution state.
|
---|
385 | *
|
---|
386 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
387 | * calling thread.
|
---|
388 | * @param fExecOpts Optional execution flags:
|
---|
389 | * - IEM_F_BYPASS_HANDLERS
|
---|
390 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
391 | *
|
---|
392 | * @remarks Callers of this must call iemUninitExec() to undo potentially fatal
|
---|
393 | * side-effects in strict builds.
|
---|
394 | */
|
---|
395 | DECLINLINE(void) iemInitExec(PVMCPUCC pVCpu, uint32_t fExecOpts) RT_NOEXCEPT
|
---|
396 | {
|
---|
397 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
398 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
399 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
400 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
401 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
402 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
403 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
404 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
405 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
406 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
407 |
|
---|
408 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
409 | pVCpu->iem.s.fExec = iemCalcExecFlags(pVCpu) | fExecOpts;
|
---|
410 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
411 | pVCpu->iem.s.iNextMapping = 0;
|
---|
412 |
|
---|
413 | # ifdef VBOX_STRICT
|
---|
414 | pVCpu->iem.s.enmDefAddrMode = (IEMMODE)0xfe;
|
---|
415 | pVCpu->iem.s.enmEffAddrMode = (IEMMODE)0xfe;
|
---|
416 | pVCpu->iem.s.enmDefOpSize = (IEMMODE)0xfe;
|
---|
417 | pVCpu->iem.s.enmEffOpSize = (IEMMODE)0xfe;
|
---|
418 | pVCpu->iem.s.fPrefixes = 0xfeedbeef;
|
---|
419 | pVCpu->iem.s.uRexReg = 127;
|
---|
420 | pVCpu->iem.s.uRexB = 127;
|
---|
421 | pVCpu->iem.s.offModRm = 127;
|
---|
422 | pVCpu->iem.s.uRexIndex = 127;
|
---|
423 | pVCpu->iem.s.iEffSeg = 127;
|
---|
424 | pVCpu->iem.s.idxPrefix = 127;
|
---|
425 | pVCpu->iem.s.uVex3rdReg = 127;
|
---|
426 | pVCpu->iem.s.uVexLength = 127;
|
---|
427 | pVCpu->iem.s.fEvexStuff = 127;
|
---|
428 | pVCpu->iem.s.uFpuOpcode = UINT16_MAX;
|
---|
429 | # ifdef IEM_WITH_CODE_TLB
|
---|
430 | pVCpu->iem.s.offInstrNextByte = UINT16_MAX;
|
---|
431 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
432 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
433 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
434 | pVCpu->iem.s.offCurInstrStart = INT16_MAX;
|
---|
435 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
436 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
437 | pVCpu->iem.s.offOpcode = 127;
|
---|
438 | # endif
|
---|
439 | # else
|
---|
440 | pVCpu->iem.s.offOpcode = 127;
|
---|
441 | pVCpu->iem.s.cbOpcode = 127;
|
---|
442 | # endif
|
---|
443 | # endif /* VBOX_STRICT */
|
---|
444 | }
|
---|
445 | # endif /* VBOX_INCLUDED_vmm_dbgf_h */
|
---|
446 |
|
---|
447 |
|
---|
448 | # if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
449 | /**
|
---|
450 | * Performs a minimal reinitialization of the execution state.
|
---|
451 | *
|
---|
452 | * This is intended to be used by VM-exits, SMM, LOADALL and other similar
|
---|
453 | * 'world-switch' types operations on the CPU. Currently only nested
|
---|
454 | * hardware-virtualization uses it.
|
---|
455 | *
|
---|
456 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
457 | * @param cbInstr The instruction length (for flushing).
|
---|
458 | */
|
---|
459 | DECLINLINE(void) iemReInitExec(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
460 | {
|
---|
461 | pVCpu->iem.s.fExec = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS);
|
---|
462 | iemOpcodeFlushHeavy(pVCpu, cbInstr);
|
---|
463 | }
|
---|
464 | # endif
|
---|
465 |
|
---|
466 |
|
---|
467 | /**
|
---|
468 | * Counterpart to #iemInitExec that undoes evil strict-build stuff.
|
---|
469 | *
|
---|
470 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
471 | * calling thread.
|
---|
472 | */
|
---|
473 | DECLINLINE(void) iemUninitExec(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
474 | {
|
---|
475 | /* Note! do not touch fInPatchCode here! (see iemUninitExecAndFiddleStatusAndMaybeReenter) */
|
---|
476 | # ifdef VBOX_STRICT
|
---|
477 | # ifdef IEM_WITH_CODE_TLB
|
---|
478 | NOREF(pVCpu);
|
---|
479 | # else
|
---|
480 | pVCpu->iem.s.cbOpcode = 0;
|
---|
481 | # endif
|
---|
482 | # else
|
---|
483 | NOREF(pVCpu);
|
---|
484 | # endif
|
---|
485 | }
|
---|
486 |
|
---|
487 |
|
---|
488 | /**
|
---|
489 | * Calls iemUninitExec, iemExecStatusCodeFiddling and iemRCRawMaybeReenter.
|
---|
490 | *
|
---|
491 | * Only calling iemRCRawMaybeReenter in raw-mode, obviously.
|
---|
492 | *
|
---|
493 | * @returns Fiddled strict vbox status code, ready to return to non-IEM caller.
|
---|
494 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
495 | * @param rcStrict The status code to fiddle.
|
---|
496 | */
|
---|
497 | DECLINLINE(VBOXSTRICTRC) iemUninitExecAndFiddleStatusAndMaybeReenter(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
498 | {
|
---|
499 | iemUninitExec(pVCpu);
|
---|
500 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
501 | }
|
---|
502 |
|
---|
503 |
|
---|
504 | /**
|
---|
505 | * Macro used by the IEMExec* method to check the given instruction length.
|
---|
506 | *
|
---|
507 | * Will return on failure!
|
---|
508 | *
|
---|
509 | * @param a_cbInstr The given instruction length.
|
---|
510 | * @param a_cbMin The minimum length.
|
---|
511 | */
|
---|
512 | # define IEMEXEC_ASSERT_INSTR_LEN_RETURN(a_cbInstr, a_cbMin) \
|
---|
513 | AssertMsgReturn((unsigned)(a_cbInstr) - (unsigned)(a_cbMin) <= (unsigned)15 - (unsigned)(a_cbMin), \
|
---|
514 | ("cbInstr=%u cbMin=%u\n", (a_cbInstr), (a_cbMin)), VERR_IEM_INVALID_INSTR_LENGTH)
|
---|
515 |
|
---|
516 |
|
---|
517 | # ifndef IEM_WITH_SETJMP
|
---|
518 |
|
---|
519 | /**
|
---|
520 | * Fetches the first opcode byte.
|
---|
521 | *
|
---|
522 | * @returns Strict VBox status code.
|
---|
523 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
524 | * calling thread.
|
---|
525 | * @param pu8 Where to return the opcode byte.
|
---|
526 | */
|
---|
527 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetFirstU8(PVMCPUCC pVCpu, uint8_t *pu8) RT_NOEXCEPT
|
---|
528 | {
|
---|
529 | /*
|
---|
530 | * Check for hardware instruction breakpoints.
|
---|
531 | */
|
---|
532 | if (RT_LIKELY(!(pVCpu->iem.s.fExec & IEM_F_PENDING_BRK_INSTR)))
|
---|
533 | { /* likely */ }
|
---|
534 | else
|
---|
535 | {
|
---|
536 | VBOXSTRICTRC rcStrict = DBGFBpCheckInstruction(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
537 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
538 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
539 | { /* likely */ }
|
---|
540 | else if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
541 | return iemRaiseDebugException(pVCpu);
|
---|
542 | else
|
---|
543 | return rcStrict;
|
---|
544 | }
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * Fetch the first opcode byte.
|
---|
548 | */
|
---|
549 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
550 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
551 | {
|
---|
552 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
553 | *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
554 | return VINF_SUCCESS;
|
---|
555 | }
|
---|
556 | return iemOpcodeGetNextU8Slow(pVCpu, pu8);
|
---|
557 | }
|
---|
558 |
|
---|
559 | # else /* IEM_WITH_SETJMP */
|
---|
560 |
|
---|
561 | /**
|
---|
562 | * Fetches the first opcode byte, longjmp on error.
|
---|
563 | *
|
---|
564 | * @returns The opcode byte.
|
---|
565 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
566 | */
|
---|
567 | DECL_INLINE_THROW(uint8_t) iemOpcodeGetFirstU8Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
568 | {
|
---|
569 | /*
|
---|
570 | * Check for hardware instruction breakpoints.
|
---|
571 | */
|
---|
572 | if (RT_LIKELY(!(pVCpu->iem.s.fExec & IEM_F_PENDING_BRK_INSTR)))
|
---|
573 | { /* likely */ }
|
---|
574 | else
|
---|
575 | {
|
---|
576 | VBOXSTRICTRC rcStrict = DBGFBpCheckInstruction(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
577 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
578 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
579 | { /* likely */ }
|
---|
580 | else
|
---|
581 | {
|
---|
582 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
583 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
584 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
585 | }
|
---|
586 | }
|
---|
587 |
|
---|
588 | /*
|
---|
589 | * Fetch the first opcode byte.
|
---|
590 | */
|
---|
591 | # ifdef IEM_WITH_CODE_TLB
|
---|
592 | uint8_t bRet;
|
---|
593 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
594 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
595 | if (RT_LIKELY( pbBuf != NULL
|
---|
596 | && offBuf < pVCpu->iem.s.cbInstrBuf))
|
---|
597 | {
|
---|
598 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
|
---|
599 | bRet = pbBuf[offBuf];
|
---|
600 | }
|
---|
601 | else
|
---|
602 | bRet = iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
603 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
604 | Assert(pVCpu->iem.s.offOpcode == 0);
|
---|
605 | pVCpu->iem.s.abOpcode[pVCpu->iem.s.offOpcode++] = bRet;
|
---|
606 | # endif
|
---|
607 | return bRet;
|
---|
608 |
|
---|
609 | # else /* !IEM_WITH_CODE_TLB */
|
---|
610 | uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
611 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
612 | {
|
---|
613 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
614 | return pVCpu->iem.s.abOpcode[offOpcode];
|
---|
615 | }
|
---|
616 | return iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
617 | # endif
|
---|
618 | }
|
---|
619 |
|
---|
620 | # endif /* IEM_WITH_SETJMP */
|
---|
621 |
|
---|
622 | /**
|
---|
623 | * Fetches the first opcode byte, returns/throws automatically on failure.
|
---|
624 | *
|
---|
625 | * @param a_pu8 Where to return the opcode byte.
|
---|
626 | * @remark Implicitly references pVCpu.
|
---|
627 | */
|
---|
628 | # ifndef IEM_WITH_SETJMP
|
---|
629 | # define IEM_OPCODE_GET_FIRST_U8(a_pu8) \
|
---|
630 | do \
|
---|
631 | { \
|
---|
632 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetFirstU8(pVCpu, (a_pu8)); \
|
---|
633 | if (rcStrict2 == VINF_SUCCESS) \
|
---|
634 | { /* likely */ } \
|
---|
635 | else \
|
---|
636 | return rcStrict2; \
|
---|
637 | } while (0)
|
---|
638 | # else
|
---|
639 | # define IEM_OPCODE_GET_FIRST_U8(a_pu8) (*(a_pu8) = iemOpcodeGetFirstU8Jmp(pVCpu))
|
---|
640 | # endif /* IEM_WITH_SETJMP */
|
---|
641 |
|
---|
642 |
|
---|
643 | # ifndef IEM_WITH_SETJMP
|
---|
644 |
|
---|
645 | /**
|
---|
646 | * Fetches the next opcode byte.
|
---|
647 | *
|
---|
648 | * @returns Strict VBox status code.
|
---|
649 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
650 | * calling thread.
|
---|
651 | * @param pu8 Where to return the opcode byte.
|
---|
652 | */
|
---|
653 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU8(PVMCPUCC pVCpu, uint8_t *pu8) RT_NOEXCEPT
|
---|
654 | {
|
---|
655 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
656 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
657 | {
|
---|
658 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
659 | *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
660 | return VINF_SUCCESS;
|
---|
661 | }
|
---|
662 | return iemOpcodeGetNextU8Slow(pVCpu, pu8);
|
---|
663 | }
|
---|
664 |
|
---|
665 | # else /* IEM_WITH_SETJMP */
|
---|
666 |
|
---|
667 | /**
|
---|
668 | * Fetches the next opcode byte, longjmp on error.
|
---|
669 | *
|
---|
670 | * @returns The opcode byte.
|
---|
671 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
672 | */
|
---|
673 | DECL_INLINE_THROW(uint8_t) iemOpcodeGetNextU8Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
674 | {
|
---|
675 | # ifdef IEM_WITH_CODE_TLB
|
---|
676 | uint8_t bRet;
|
---|
677 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
678 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
679 | if (RT_LIKELY( pbBuf != NULL
|
---|
680 | && offBuf < pVCpu->iem.s.cbInstrBuf))
|
---|
681 | {
|
---|
682 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
|
---|
683 | bRet = pbBuf[offBuf];
|
---|
684 | }
|
---|
685 | else
|
---|
686 | bRet = iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
687 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
688 | Assert(pVCpu->iem.s.offOpcode < sizeof(pVCpu->iem.s.abOpcode));
|
---|
689 | pVCpu->iem.s.abOpcode[pVCpu->iem.s.offOpcode++] = bRet;
|
---|
690 | # endif
|
---|
691 | return bRet;
|
---|
692 |
|
---|
693 | # else /* !IEM_WITH_CODE_TLB */
|
---|
694 | uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
695 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
696 | {
|
---|
697 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
698 | return pVCpu->iem.s.abOpcode[offOpcode];
|
---|
699 | }
|
---|
700 | return iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
701 | # endif
|
---|
702 | }
|
---|
703 |
|
---|
704 | # endif /* IEM_WITH_SETJMP */
|
---|
705 |
|
---|
706 | /**
|
---|
707 | * Fetches the next opcode byte, returns automatically on failure.
|
---|
708 | *
|
---|
709 | * @param a_pu8 Where to return the opcode byte.
|
---|
710 | * @remark Implicitly references pVCpu.
|
---|
711 | */
|
---|
712 | # ifndef IEM_WITH_SETJMP
|
---|
713 | # define IEM_OPCODE_GET_NEXT_U8(a_pu8) \
|
---|
714 | do \
|
---|
715 | { \
|
---|
716 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU8(pVCpu, (a_pu8)); \
|
---|
717 | if (rcStrict2 == VINF_SUCCESS) \
|
---|
718 | { /* likely */ } \
|
---|
719 | else \
|
---|
720 | return rcStrict2; \
|
---|
721 | } while (0)
|
---|
722 | # else
|
---|
723 | # define IEM_OPCODE_GET_NEXT_U8(a_pu8) (*(a_pu8) = iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
724 | # endif /* IEM_WITH_SETJMP */
|
---|
725 |
|
---|
726 |
|
---|
727 | # ifndef IEM_WITH_SETJMP
|
---|
728 | /**
|
---|
729 | * Fetches the next signed byte from the opcode stream.
|
---|
730 | *
|
---|
731 | * @returns Strict VBox status code.
|
---|
732 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
733 | * @param pi8 Where to return the signed byte.
|
---|
734 | */
|
---|
735 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8(PVMCPUCC pVCpu, int8_t *pi8) RT_NOEXCEPT
|
---|
736 | {
|
---|
737 | return iemOpcodeGetNextU8(pVCpu, (uint8_t *)pi8);
|
---|
738 | }
|
---|
739 | # endif /* !IEM_WITH_SETJMP */
|
---|
740 |
|
---|
741 |
|
---|
742 | /**
|
---|
743 | * Fetches the next signed byte from the opcode stream, returning automatically
|
---|
744 | * on failure.
|
---|
745 | *
|
---|
746 | * @param a_pi8 Where to return the signed byte.
|
---|
747 | * @remark Implicitly references pVCpu.
|
---|
748 | */
|
---|
749 | # ifndef IEM_WITH_SETJMP
|
---|
750 | # define IEM_OPCODE_GET_NEXT_S8(a_pi8) \
|
---|
751 | do \
|
---|
752 | { \
|
---|
753 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8(pVCpu, (a_pi8)); \
|
---|
754 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
755 | return rcStrict2; \
|
---|
756 | } while (0)
|
---|
757 | # else /* IEM_WITH_SETJMP */
|
---|
758 | # define IEM_OPCODE_GET_NEXT_S8(a_pi8) (*(a_pi8) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
759 |
|
---|
760 | # endif /* IEM_WITH_SETJMP */
|
---|
761 |
|
---|
762 |
|
---|
763 | # ifndef IEM_WITH_SETJMP
|
---|
764 | /**
|
---|
765 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
766 | * unsigned 16-bit.
|
---|
767 | *
|
---|
768 | * @returns Strict VBox status code.
|
---|
769 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
770 | * @param pu16 Where to return the unsigned word.
|
---|
771 | */
|
---|
772 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU16(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
773 | {
|
---|
774 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
775 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
776 | return iemOpcodeGetNextS8SxU16Slow(pVCpu, pu16);
|
---|
777 |
|
---|
778 | *pu16 = (uint16_t)(int16_t)(int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
779 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
780 | return VINF_SUCCESS;
|
---|
781 | }
|
---|
782 | # endif /* !IEM_WITH_SETJMP */
|
---|
783 |
|
---|
784 | /**
|
---|
785 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
786 | * a word, returning automatically on failure.
|
---|
787 | *
|
---|
788 | * @param a_pu16 Where to return the word.
|
---|
789 | * @remark Implicitly references pVCpu.
|
---|
790 | */
|
---|
791 | # ifndef IEM_WITH_SETJMP
|
---|
792 | # define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) \
|
---|
793 | do \
|
---|
794 | { \
|
---|
795 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU16(pVCpu, (a_pu16)); \
|
---|
796 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
797 | return rcStrict2; \
|
---|
798 | } while (0)
|
---|
799 | # else
|
---|
800 | # define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) (*(a_pu16) = (uint16_t)(int16_t)(int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
801 | # endif
|
---|
802 |
|
---|
803 | # ifndef IEM_WITH_SETJMP
|
---|
804 | /**
|
---|
805 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
806 | * unsigned 32-bit.
|
---|
807 | *
|
---|
808 | * @returns Strict VBox status code.
|
---|
809 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
810 | * @param pu32 Where to return the unsigned dword.
|
---|
811 | */
|
---|
812 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU32(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
813 | {
|
---|
814 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
815 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
816 | return iemOpcodeGetNextS8SxU32Slow(pVCpu, pu32);
|
---|
817 |
|
---|
818 | *pu32 = (uint32_t)(int32_t)(int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
819 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
820 | return VINF_SUCCESS;
|
---|
821 | }
|
---|
822 | # endif /* !IEM_WITH_SETJMP */
|
---|
823 |
|
---|
824 | /**
|
---|
825 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
826 | * a word, returning automatically on failure.
|
---|
827 | *
|
---|
828 | * @param a_pu32 Where to return the word.
|
---|
829 | * @remark Implicitly references pVCpu.
|
---|
830 | */
|
---|
831 | # ifndef IEM_WITH_SETJMP
|
---|
832 | # define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) \
|
---|
833 | do \
|
---|
834 | { \
|
---|
835 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU32(pVCpu, (a_pu32)); \
|
---|
836 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
837 | return rcStrict2; \
|
---|
838 | } while (0)
|
---|
839 | # else
|
---|
840 | # define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) (*(a_pu32) = (uint32_t)(int32_t)(int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
841 | # endif
|
---|
842 |
|
---|
843 |
|
---|
844 | # ifndef IEM_WITH_SETJMP
|
---|
845 | /**
|
---|
846 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
847 | * unsigned 64-bit.
|
---|
848 | *
|
---|
849 | * @returns Strict VBox status code.
|
---|
850 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
851 | * @param pu64 Where to return the unsigned qword.
|
---|
852 | */
|
---|
853 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
854 | {
|
---|
855 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
856 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
857 | return iemOpcodeGetNextS8SxU64Slow(pVCpu, pu64);
|
---|
858 |
|
---|
859 | *pu64 = (uint64_t)(int64_t)(int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
860 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
861 | return VINF_SUCCESS;
|
---|
862 | }
|
---|
863 | # endif /* !IEM_WITH_SETJMP */
|
---|
864 |
|
---|
865 | /**
|
---|
866 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
867 | * a word, returning automatically on failure.
|
---|
868 | *
|
---|
869 | * @param a_pu64 Where to return the word.
|
---|
870 | * @remark Implicitly references pVCpu.
|
---|
871 | */
|
---|
872 | # ifndef IEM_WITH_SETJMP
|
---|
873 | # define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) \
|
---|
874 | do \
|
---|
875 | { \
|
---|
876 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU64(pVCpu, (a_pu64)); \
|
---|
877 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
878 | return rcStrict2; \
|
---|
879 | } while (0)
|
---|
880 | # else
|
---|
881 | # define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) (*(a_pu64) = (uint64_t)(int64_t)(int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
882 | # endif
|
---|
883 |
|
---|
884 |
|
---|
885 | # ifndef IEM_WITH_SETJMP
|
---|
886 |
|
---|
887 | /**
|
---|
888 | * Fetches the next opcode word.
|
---|
889 | *
|
---|
890 | * @returns Strict VBox status code.
|
---|
891 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
892 | * @param pu16 Where to return the opcode word.
|
---|
893 | */
|
---|
894 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
895 | {
|
---|
896 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
897 | if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
|
---|
898 | {
|
---|
899 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
|
---|
900 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
901 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
902 | # else
|
---|
903 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
904 | # endif
|
---|
905 | return VINF_SUCCESS;
|
---|
906 | }
|
---|
907 | return iemOpcodeGetNextU16Slow(pVCpu, pu16);
|
---|
908 | }
|
---|
909 |
|
---|
910 | # else /* IEM_WITH_SETJMP */
|
---|
911 |
|
---|
912 | /**
|
---|
913 | * Fetches the next opcode word, longjmp on error.
|
---|
914 | *
|
---|
915 | * @returns The opcode word.
|
---|
916 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
917 | */
|
---|
918 | DECL_INLINE_THROW(uint16_t) iemOpcodeGetNextU16Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
919 | {
|
---|
920 | # ifdef IEM_WITH_CODE_TLB
|
---|
921 | uint16_t u16Ret;
|
---|
922 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
923 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
924 | if (RT_LIKELY( pbBuf != NULL
|
---|
925 | && offBuf + 2 <= pVCpu->iem.s.cbInstrBuf))
|
---|
926 | {
|
---|
927 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 2;
|
---|
928 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
929 | u16Ret = *(uint16_t const *)&pbBuf[offBuf];
|
---|
930 | # else
|
---|
931 | u16Ret = RT_MAKE_U16(pbBuf[offBuf], pbBuf[offBuf + 1]);
|
---|
932 | # endif
|
---|
933 | }
|
---|
934 | else
|
---|
935 | u16Ret = iemOpcodeGetNextU16SlowJmp(pVCpu);
|
---|
936 |
|
---|
937 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
938 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
939 | Assert(offOpcode + 1 < sizeof(pVCpu->iem.s.abOpcode));
|
---|
940 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
941 | *(uint16_t *)&pVCpu->iem.s.abOpcode[offOpcode] = u16Ret;
|
---|
942 | # else
|
---|
943 | pVCpu->iem.s.abOpcode[offOpcode] = RT_LO_U8(u16Ret);
|
---|
944 | pVCpu->iem.s.abOpcode[offOpcode + 1] = RT_HI_U8(u16Ret);
|
---|
945 | # endif
|
---|
946 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + (uint8_t)2;
|
---|
947 | # endif
|
---|
948 |
|
---|
949 | return u16Ret;
|
---|
950 |
|
---|
951 | # else /* !IEM_WITH_CODE_TLB */
|
---|
952 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
953 | if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
|
---|
954 | {
|
---|
955 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
|
---|
956 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
957 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
958 | # else
|
---|
959 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
960 | # endif
|
---|
961 | }
|
---|
962 | return iemOpcodeGetNextU16SlowJmp(pVCpu);
|
---|
963 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
964 | }
|
---|
965 |
|
---|
966 | # endif /* IEM_WITH_SETJMP */
|
---|
967 |
|
---|
968 | /**
|
---|
969 | * Fetches the next opcode word, returns automatically on failure.
|
---|
970 | *
|
---|
971 | * @param a_pu16 Where to return the opcode word.
|
---|
972 | * @remark Implicitly references pVCpu.
|
---|
973 | */
|
---|
974 | # ifndef IEM_WITH_SETJMP
|
---|
975 | # define IEM_OPCODE_GET_NEXT_U16(a_pu16) \
|
---|
976 | do \
|
---|
977 | { \
|
---|
978 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16(pVCpu, (a_pu16)); \
|
---|
979 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
980 | return rcStrict2; \
|
---|
981 | } while (0)
|
---|
982 | # else
|
---|
983 | # define IEM_OPCODE_GET_NEXT_U16(a_pu16) (*(a_pu16) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
984 | # endif
|
---|
985 |
|
---|
986 | # ifndef IEM_WITH_SETJMP
|
---|
987 | /**
|
---|
988 | * Fetches the next opcode word, zero extending it to a double word.
|
---|
989 | *
|
---|
990 | * @returns Strict VBox status code.
|
---|
991 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
992 | * @param pu32 Where to return the opcode double word.
|
---|
993 | */
|
---|
994 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
995 | {
|
---|
996 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
997 | if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
|
---|
998 | return iemOpcodeGetNextU16ZxU32Slow(pVCpu, pu32);
|
---|
999 |
|
---|
1000 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1001 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1002 | return VINF_SUCCESS;
|
---|
1003 | }
|
---|
1004 | # endif /* !IEM_WITH_SETJMP */
|
---|
1005 |
|
---|
1006 | /**
|
---|
1007 | * Fetches the next opcode word and zero extends it to a double word, returns
|
---|
1008 | * automatically on failure.
|
---|
1009 | *
|
---|
1010 | * @param a_pu32 Where to return the opcode double word.
|
---|
1011 | * @remark Implicitly references pVCpu.
|
---|
1012 | */
|
---|
1013 | # ifndef IEM_WITH_SETJMP
|
---|
1014 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) \
|
---|
1015 | do \
|
---|
1016 | { \
|
---|
1017 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU32(pVCpu, (a_pu32)); \
|
---|
1018 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1019 | return rcStrict2; \
|
---|
1020 | } while (0)
|
---|
1021 | # else
|
---|
1022 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
1023 | # endif
|
---|
1024 |
|
---|
1025 | # ifndef IEM_WITH_SETJMP
|
---|
1026 | /**
|
---|
1027 | * Fetches the next opcode word, zero extending it to a quad word.
|
---|
1028 | *
|
---|
1029 | * @returns Strict VBox status code.
|
---|
1030 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1031 | * @param pu64 Where to return the opcode quad word.
|
---|
1032 | */
|
---|
1033 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1034 | {
|
---|
1035 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1036 | if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
|
---|
1037 | return iemOpcodeGetNextU16ZxU64Slow(pVCpu, pu64);
|
---|
1038 |
|
---|
1039 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1040 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1041 | return VINF_SUCCESS;
|
---|
1042 | }
|
---|
1043 | # endif /* !IEM_WITH_SETJMP */
|
---|
1044 |
|
---|
1045 | /**
|
---|
1046 | * Fetches the next opcode word and zero extends it to a quad word, returns
|
---|
1047 | * automatically on failure.
|
---|
1048 | *
|
---|
1049 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1050 | * @remark Implicitly references pVCpu.
|
---|
1051 | */
|
---|
1052 | # ifndef IEM_WITH_SETJMP
|
---|
1053 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) \
|
---|
1054 | do \
|
---|
1055 | { \
|
---|
1056 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU64(pVCpu, (a_pu64)); \
|
---|
1057 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1058 | return rcStrict2; \
|
---|
1059 | } while (0)
|
---|
1060 | # else
|
---|
1061 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
1062 | # endif
|
---|
1063 |
|
---|
1064 |
|
---|
1065 | # ifndef IEM_WITH_SETJMP
|
---|
1066 | /**
|
---|
1067 | * Fetches the next signed word from the opcode stream.
|
---|
1068 | *
|
---|
1069 | * @returns Strict VBox status code.
|
---|
1070 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1071 | * @param pi16 Where to return the signed word.
|
---|
1072 | */
|
---|
1073 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS16(PVMCPUCC pVCpu, int16_t *pi16) RT_NOEXCEPT
|
---|
1074 | {
|
---|
1075 | return iemOpcodeGetNextU16(pVCpu, (uint16_t *)pi16);
|
---|
1076 | }
|
---|
1077 | # endif /* !IEM_WITH_SETJMP */
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | /**
|
---|
1081 | * Fetches the next signed word from the opcode stream, returning automatically
|
---|
1082 | * on failure.
|
---|
1083 | *
|
---|
1084 | * @param a_pi16 Where to return the signed word.
|
---|
1085 | * @remark Implicitly references pVCpu.
|
---|
1086 | */
|
---|
1087 | # ifndef IEM_WITH_SETJMP
|
---|
1088 | # define IEM_OPCODE_GET_NEXT_S16(a_pi16) \
|
---|
1089 | do \
|
---|
1090 | { \
|
---|
1091 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS16(pVCpu, (a_pi16)); \
|
---|
1092 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1093 | return rcStrict2; \
|
---|
1094 | } while (0)
|
---|
1095 | # else
|
---|
1096 | # define IEM_OPCODE_GET_NEXT_S16(a_pi16) (*(a_pi16) = (int16_t)iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
1097 | # endif
|
---|
1098 |
|
---|
1099 | # ifndef IEM_WITH_SETJMP
|
---|
1100 |
|
---|
1101 | /**
|
---|
1102 | * Fetches the next opcode dword.
|
---|
1103 | *
|
---|
1104 | * @returns Strict VBox status code.
|
---|
1105 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1106 | * @param pu32 Where to return the opcode double word.
|
---|
1107 | */
|
---|
1108 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1109 | {
|
---|
1110 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1111 | if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
|
---|
1112 | {
|
---|
1113 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
|
---|
1114 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1115 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1116 | # else
|
---|
1117 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1118 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1119 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1120 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1121 | # endif
|
---|
1122 | return VINF_SUCCESS;
|
---|
1123 | }
|
---|
1124 | return iemOpcodeGetNextU32Slow(pVCpu, pu32);
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 | # else /* IEM_WITH_SETJMP */
|
---|
1128 |
|
---|
1129 | /**
|
---|
1130 | * Fetches the next opcode dword, longjmp on error.
|
---|
1131 | *
|
---|
1132 | * @returns The opcode dword.
|
---|
1133 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1134 | */
|
---|
1135 | DECL_INLINE_THROW(uint32_t) iemOpcodeGetNextU32Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1136 | {
|
---|
1137 | # ifdef IEM_WITH_CODE_TLB
|
---|
1138 | uint32_t u32Ret;
|
---|
1139 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1140 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
1141 | if (RT_LIKELY( pbBuf != NULL
|
---|
1142 | && offBuf + 4 <= pVCpu->iem.s.cbInstrBuf))
|
---|
1143 | {
|
---|
1144 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 4;
|
---|
1145 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1146 | u32Ret = *(uint32_t const *)&pbBuf[offBuf];
|
---|
1147 | # else
|
---|
1148 | u32Ret = RT_MAKE_U32_FROM_U8(pbBuf[offBuf],
|
---|
1149 | pbBuf[offBuf + 1],
|
---|
1150 | pbBuf[offBuf + 2],
|
---|
1151 | pbBuf[offBuf + 3]);
|
---|
1152 | # endif
|
---|
1153 | }
|
---|
1154 | else
|
---|
1155 | u32Ret = iemOpcodeGetNextU32SlowJmp(pVCpu);
|
---|
1156 |
|
---|
1157 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
1158 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1159 | Assert(offOpcode + 3 < sizeof(pVCpu->iem.s.abOpcode));
|
---|
1160 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1161 | *(uint32_t *)&pVCpu->iem.s.abOpcode[offOpcode] = u32Ret;
|
---|
1162 | # else
|
---|
1163 | pVCpu->iem.s.abOpcode[offOpcode] = RT_BYTE1(u32Ret);
|
---|
1164 | pVCpu->iem.s.abOpcode[offOpcode + 1] = RT_BYTE2(u32Ret);
|
---|
1165 | pVCpu->iem.s.abOpcode[offOpcode + 2] = RT_BYTE3(u32Ret);
|
---|
1166 | pVCpu->iem.s.abOpcode[offOpcode + 3] = RT_BYTE4(u32Ret);
|
---|
1167 | # endif
|
---|
1168 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + (uint8_t)4;
|
---|
1169 | # endif /* IEM_WITH_CODE_TLB_AND_OPCODE_BUF */
|
---|
1170 |
|
---|
1171 | return u32Ret;
|
---|
1172 |
|
---|
1173 | # else /* !IEM_WITH_CODE_TLB */
|
---|
1174 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1175 | if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
|
---|
1176 | {
|
---|
1177 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
|
---|
1178 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1179 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1180 | # else
|
---|
1181 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1182 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1183 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1184 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1185 | # endif
|
---|
1186 | }
|
---|
1187 | return iemOpcodeGetNextU32SlowJmp(pVCpu);
|
---|
1188 | # endif
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | # endif /* IEM_WITH_SETJMP */
|
---|
1192 |
|
---|
1193 | /**
|
---|
1194 | * Fetches the next opcode dword, returns automatically on failure.
|
---|
1195 | *
|
---|
1196 | * @param a_pu32 Where to return the opcode dword.
|
---|
1197 | * @remark Implicitly references pVCpu.
|
---|
1198 | */
|
---|
1199 | # ifndef IEM_WITH_SETJMP
|
---|
1200 | # define IEM_OPCODE_GET_NEXT_U32(a_pu32) \
|
---|
1201 | do \
|
---|
1202 | { \
|
---|
1203 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32(pVCpu, (a_pu32)); \
|
---|
1204 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1205 | return rcStrict2; \
|
---|
1206 | } while (0)
|
---|
1207 | # else
|
---|
1208 | # define IEM_OPCODE_GET_NEXT_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1209 | # endif
|
---|
1210 |
|
---|
1211 | # ifndef IEM_WITH_SETJMP
|
---|
1212 | /**
|
---|
1213 | * Fetches the next opcode dword, zero extending it to a quad word.
|
---|
1214 | *
|
---|
1215 | * @returns Strict VBox status code.
|
---|
1216 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1217 | * @param pu64 Where to return the opcode quad word.
|
---|
1218 | */
|
---|
1219 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1220 | {
|
---|
1221 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1222 | if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
|
---|
1223 | return iemOpcodeGetNextU32ZxU64Slow(pVCpu, pu64);
|
---|
1224 |
|
---|
1225 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1226 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1227 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1228 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1229 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1230 | return VINF_SUCCESS;
|
---|
1231 | }
|
---|
1232 | # endif /* !IEM_WITH_SETJMP */
|
---|
1233 |
|
---|
1234 | /**
|
---|
1235 | * Fetches the next opcode dword and zero extends it to a quad word, returns
|
---|
1236 | * automatically on failure.
|
---|
1237 | *
|
---|
1238 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1239 | * @remark Implicitly references pVCpu.
|
---|
1240 | */
|
---|
1241 | # ifndef IEM_WITH_SETJMP
|
---|
1242 | # define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) \
|
---|
1243 | do \
|
---|
1244 | { \
|
---|
1245 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32ZxU64(pVCpu, (a_pu64)); \
|
---|
1246 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1247 | return rcStrict2; \
|
---|
1248 | } while (0)
|
---|
1249 | # else
|
---|
1250 | # define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1251 | # endif
|
---|
1252 |
|
---|
1253 |
|
---|
1254 | # ifndef IEM_WITH_SETJMP
|
---|
1255 | /**
|
---|
1256 | * Fetches the next signed double word from the opcode stream.
|
---|
1257 | *
|
---|
1258 | * @returns Strict VBox status code.
|
---|
1259 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1260 | * @param pi32 Where to return the signed double word.
|
---|
1261 | */
|
---|
1262 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32(PVMCPUCC pVCpu, int32_t *pi32) RT_NOEXCEPT
|
---|
1263 | {
|
---|
1264 | return iemOpcodeGetNextU32(pVCpu, (uint32_t *)pi32);
|
---|
1265 | }
|
---|
1266 | # endif
|
---|
1267 |
|
---|
1268 | /**
|
---|
1269 | * Fetches the next signed double word from the opcode stream, returning
|
---|
1270 | * automatically on failure.
|
---|
1271 | *
|
---|
1272 | * @param a_pi32 Where to return the signed double word.
|
---|
1273 | * @remark Implicitly references pVCpu.
|
---|
1274 | */
|
---|
1275 | # ifndef IEM_WITH_SETJMP
|
---|
1276 | # define IEM_OPCODE_GET_NEXT_S32(a_pi32) \
|
---|
1277 | do \
|
---|
1278 | { \
|
---|
1279 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32(pVCpu, (a_pi32)); \
|
---|
1280 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1281 | return rcStrict2; \
|
---|
1282 | } while (0)
|
---|
1283 | # else
|
---|
1284 | # define IEM_OPCODE_GET_NEXT_S32(a_pi32) (*(a_pi32) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1285 | # endif
|
---|
1286 |
|
---|
1287 | # ifndef IEM_WITH_SETJMP
|
---|
1288 | /**
|
---|
1289 | * Fetches the next opcode dword, sign extending it into a quad word.
|
---|
1290 | *
|
---|
1291 | * @returns Strict VBox status code.
|
---|
1292 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1293 | * @param pu64 Where to return the opcode quad word.
|
---|
1294 | */
|
---|
1295 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32SxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1296 | {
|
---|
1297 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1298 | if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
|
---|
1299 | return iemOpcodeGetNextS32SxU64Slow(pVCpu, pu64);
|
---|
1300 |
|
---|
1301 | int32_t i32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1302 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1303 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1304 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1305 | *pu64 = (uint64_t)(int64_t)i32;
|
---|
1306 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1307 | return VINF_SUCCESS;
|
---|
1308 | }
|
---|
1309 | # endif /* !IEM_WITH_SETJMP */
|
---|
1310 |
|
---|
1311 | /**
|
---|
1312 | * Fetches the next opcode double word and sign extends it to a quad word,
|
---|
1313 | * returns automatically on failure.
|
---|
1314 | *
|
---|
1315 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1316 | * @remark Implicitly references pVCpu.
|
---|
1317 | */
|
---|
1318 | # ifndef IEM_WITH_SETJMP
|
---|
1319 | # define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) \
|
---|
1320 | do \
|
---|
1321 | { \
|
---|
1322 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32SxU64(pVCpu, (a_pu64)); \
|
---|
1323 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1324 | return rcStrict2; \
|
---|
1325 | } while (0)
|
---|
1326 | # else
|
---|
1327 | # define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) (*(a_pu64) = (uint64_t)(int64_t)(int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1328 | # endif
|
---|
1329 |
|
---|
1330 | # ifndef IEM_WITH_SETJMP
|
---|
1331 |
|
---|
1332 | /**
|
---|
1333 | * Fetches the next opcode qword.
|
---|
1334 | *
|
---|
1335 | * @returns Strict VBox status code.
|
---|
1336 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1337 | * @param pu64 Where to return the opcode qword.
|
---|
1338 | */
|
---|
1339 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1340 | {
|
---|
1341 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1342 | if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
|
---|
1343 | {
|
---|
1344 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1345 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1346 | # else
|
---|
1347 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1348 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1349 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1350 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1351 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1352 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1353 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1354 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1355 | # endif
|
---|
1356 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
|
---|
1357 | return VINF_SUCCESS;
|
---|
1358 | }
|
---|
1359 | return iemOpcodeGetNextU64Slow(pVCpu, pu64);
|
---|
1360 | }
|
---|
1361 |
|
---|
1362 | # else /* IEM_WITH_SETJMP */
|
---|
1363 |
|
---|
1364 | /**
|
---|
1365 | * Fetches the next opcode qword, longjmp on error.
|
---|
1366 | *
|
---|
1367 | * @returns The opcode qword.
|
---|
1368 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1369 | */
|
---|
1370 | DECL_INLINE_THROW(uint64_t) iemOpcodeGetNextU64Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1371 | {
|
---|
1372 | # ifdef IEM_WITH_CODE_TLB
|
---|
1373 | uint64_t u64Ret;
|
---|
1374 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1375 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
1376 | if (RT_LIKELY( pbBuf != NULL
|
---|
1377 | && offBuf + 8 <= pVCpu->iem.s.cbInstrBuf))
|
---|
1378 | {
|
---|
1379 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 8;
|
---|
1380 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1381 | u64Ret = *(uint64_t const *)&pbBuf[offBuf];
|
---|
1382 | # else
|
---|
1383 | u64Ret = RT_MAKE_U64_FROM_U8(pbBuf[offBuf],
|
---|
1384 | pbBuf[offBuf + 1],
|
---|
1385 | pbBuf[offBuf + 2],
|
---|
1386 | pbBuf[offBuf + 3],
|
---|
1387 | pbBuf[offBuf + 4],
|
---|
1388 | pbBuf[offBuf + 5],
|
---|
1389 | pbBuf[offBuf + 6],
|
---|
1390 | pbBuf[offBuf + 7]);
|
---|
1391 | # endif
|
---|
1392 | }
|
---|
1393 | else
|
---|
1394 | u64Ret = iemOpcodeGetNextU64SlowJmp(pVCpu);
|
---|
1395 |
|
---|
1396 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
1397 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1398 | Assert(offOpcode + 7 < sizeof(pVCpu->iem.s.abOpcode));
|
---|
1399 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1400 | *(uint64_t *)&pVCpu->iem.s.abOpcode[offOpcode] = u64Ret;
|
---|
1401 | # else
|
---|
1402 | pVCpu->iem.s.abOpcode[offOpcode] = RT_BYTE1(u64Ret);
|
---|
1403 | pVCpu->iem.s.abOpcode[offOpcode + 1] = RT_BYTE2(u64Ret);
|
---|
1404 | pVCpu->iem.s.abOpcode[offOpcode + 2] = RT_BYTE3(u64Ret);
|
---|
1405 | pVCpu->iem.s.abOpcode[offOpcode + 3] = RT_BYTE4(u64Ret);
|
---|
1406 | pVCpu->iem.s.abOpcode[offOpcode + 4] = RT_BYTE5(u64Ret);
|
---|
1407 | pVCpu->iem.s.abOpcode[offOpcode + 5] = RT_BYTE6(u64Ret);
|
---|
1408 | pVCpu->iem.s.abOpcode[offOpcode + 6] = RT_BYTE7(u64Ret);
|
---|
1409 | pVCpu->iem.s.abOpcode[offOpcode + 7] = RT_BYTE8(u64Ret);
|
---|
1410 | # endif
|
---|
1411 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + (uint8_t)8;
|
---|
1412 | # endif /* IEM_WITH_CODE_TLB_AND_OPCODE_BUF */
|
---|
1413 |
|
---|
1414 | return u64Ret;
|
---|
1415 |
|
---|
1416 | # else /* !IEM_WITH_CODE_TLB */
|
---|
1417 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1418 | if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
|
---|
1419 | {
|
---|
1420 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
|
---|
1421 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1422 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1423 | # else
|
---|
1424 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1425 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1426 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1427 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1428 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1429 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1430 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1431 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1432 | # endif
|
---|
1433 | }
|
---|
1434 | return iemOpcodeGetNextU64SlowJmp(pVCpu);
|
---|
1435 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | # endif /* IEM_WITH_SETJMP */
|
---|
1439 |
|
---|
1440 | /**
|
---|
1441 | * Fetches the next opcode quad word, returns automatically on failure.
|
---|
1442 | *
|
---|
1443 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1444 | * @remark Implicitly references pVCpu.
|
---|
1445 | */
|
---|
1446 | # ifndef IEM_WITH_SETJMP
|
---|
1447 | # define IEM_OPCODE_GET_NEXT_U64(a_pu64) \
|
---|
1448 | do \
|
---|
1449 | { \
|
---|
1450 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU64(pVCpu, (a_pu64)); \
|
---|
1451 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1452 | return rcStrict2; \
|
---|
1453 | } while (0)
|
---|
1454 | # else
|
---|
1455 | # define IEM_OPCODE_GET_NEXT_U64(a_pu64) ( *(a_pu64) = iemOpcodeGetNextU64Jmp(pVCpu) )
|
---|
1456 | # endif
|
---|
1457 |
|
---|
1458 | /**
|
---|
1459 | * For fetching the opcode bytes for an ModR/M effective address, but throw
|
---|
1460 | * away the result.
|
---|
1461 | *
|
---|
1462 | * This is used when decoding undefined opcodes and such where we want to avoid
|
---|
1463 | * unnecessary MC blocks.
|
---|
1464 | *
|
---|
1465 | * @note The recompiler code overrides this one so iemOpHlpCalcRmEffAddrJmpEx is
|
---|
1466 | * used instead. At least for now...
|
---|
1467 | */
|
---|
1468 | # ifndef IEM_WITH_SETJMP
|
---|
1469 | # define IEM_OPCODE_SKIP_RM_EFF_ADDR_BYTES(a_bRm) do { \
|
---|
1470 | RTGCPTR GCPtrEff; \
|
---|
1471 | VBOXSTRICTRC rcStrict = iemOpHlpCalcRmEffAddr(pVCpu, bRm, 0, &GCPtrEff); \
|
---|
1472 | if (rcStrict != VINF_SUCCESS) \
|
---|
1473 | return rcStrict; \
|
---|
1474 | } while (0)
|
---|
1475 | # else
|
---|
1476 | # define IEM_OPCODE_SKIP_RM_EFF_ADDR_BYTES(a_bRm) do { \
|
---|
1477 | (void)iemOpHlpCalcRmEffAddrJmp(pVCpu, bRm, 0); \
|
---|
1478 | } while (0)
|
---|
1479 | # endif
|
---|
1480 |
|
---|
1481 | #endif /* !IEM_WITH_OPAQUE_DECODER_STATE */
|
---|
1482 |
|
---|
1483 |
|
---|
1484 | /** @name Misc Worker Functions.
|
---|
1485 | * @{
|
---|
1486 | */
|
---|
1487 |
|
---|
1488 | /**
|
---|
1489 | * Gets the correct EFLAGS regardless of whether PATM stores parts of them or
|
---|
1490 | * not (kind of obsolete now).
|
---|
1491 | *
|
---|
1492 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1493 | */
|
---|
1494 | #define IEMMISC_GET_EFL(a_pVCpu) ( (a_pVCpu)->cpum.GstCtx.eflags.u )
|
---|
1495 |
|
---|
1496 | /**
|
---|
1497 | * Updates the EFLAGS in the correct manner wrt. PATM (kind of obsolete).
|
---|
1498 | *
|
---|
1499 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1500 | * @param a_fEfl The new EFLAGS.
|
---|
1501 | */
|
---|
1502 | #define IEMMISC_SET_EFL(a_pVCpu, a_fEfl) do { (a_pVCpu)->cpum.GstCtx.eflags.u = (a_fEfl); } while (0)
|
---|
1503 |
|
---|
1504 |
|
---|
1505 | /**
|
---|
1506 | * Loads a NULL data selector into a selector register, both the hidden and
|
---|
1507 | * visible parts, in protected mode.
|
---|
1508 | *
|
---|
1509 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1510 | * @param pSReg Pointer to the segment register.
|
---|
1511 | * @param uRpl The RPL.
|
---|
1512 | */
|
---|
1513 | DECLINLINE(void) iemHlpLoadNullDataSelectorProt(PVMCPUCC pVCpu, PCPUMSELREG pSReg, RTSEL uRpl) RT_NOEXCEPT
|
---|
1514 | {
|
---|
1515 | /** @todo Testcase: write a testcase checking what happends when loading a NULL
|
---|
1516 | * data selector in protected mode. */
|
---|
1517 | pSReg->Sel = uRpl;
|
---|
1518 | pSReg->ValidSel = uRpl;
|
---|
1519 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1520 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
1521 | {
|
---|
1522 | /* VT-x (Intel 3960x) observed doing something like this. */
|
---|
1523 | pSReg->Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | (IEM_GET_CPL(pVCpu) << X86DESCATTR_DPL_SHIFT);
|
---|
1524 | pSReg->u32Limit = UINT32_MAX;
|
---|
1525 | pSReg->u64Base = 0;
|
---|
1526 | }
|
---|
1527 | else
|
---|
1528 | {
|
---|
1529 | pSReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
1530 | pSReg->u32Limit = 0;
|
---|
1531 | pSReg->u64Base = 0;
|
---|
1532 | }
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | /** @} */
|
---|
1536 |
|
---|
1537 |
|
---|
1538 | /*
|
---|
1539 | *
|
---|
1540 | * Helpers routines.
|
---|
1541 | * Helpers routines.
|
---|
1542 | * Helpers routines.
|
---|
1543 | *
|
---|
1544 | */
|
---|
1545 |
|
---|
1546 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1547 |
|
---|
1548 | /**
|
---|
1549 | * Recalculates the effective operand size.
|
---|
1550 | *
|
---|
1551 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1552 | */
|
---|
1553 | DECLINLINE(void) iemRecalEffOpSize(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1554 | {
|
---|
1555 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
1556 | {
|
---|
1557 | case IEMMODE_16BIT:
|
---|
1558 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_32BIT : IEMMODE_16BIT;
|
---|
1559 | break;
|
---|
1560 | case IEMMODE_32BIT:
|
---|
1561 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_16BIT : IEMMODE_32BIT;
|
---|
1562 | break;
|
---|
1563 | case IEMMODE_64BIT:
|
---|
1564 | switch (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP))
|
---|
1565 | {
|
---|
1566 | case 0:
|
---|
1567 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize;
|
---|
1568 | break;
|
---|
1569 | case IEM_OP_PRF_SIZE_OP:
|
---|
1570 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
1571 | break;
|
---|
1572 | case IEM_OP_PRF_SIZE_REX_W:
|
---|
1573 | case IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP:
|
---|
1574 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
1575 | break;
|
---|
1576 | }
|
---|
1577 | break;
|
---|
1578 | default:
|
---|
1579 | AssertFailed();
|
---|
1580 | }
|
---|
1581 | }
|
---|
1582 |
|
---|
1583 |
|
---|
1584 | /**
|
---|
1585 | * Sets the default operand size to 64-bit and recalculates the effective
|
---|
1586 | * operand size.
|
---|
1587 | *
|
---|
1588 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1589 | */
|
---|
1590 | DECLINLINE(void) iemRecalEffOpSize64Default(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1591 | {
|
---|
1592 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
1593 | pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
|
---|
1594 | if ((pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP)
|
---|
1595 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
1596 | else
|
---|
1597 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 |
|
---|
1601 | /**
|
---|
1602 | * Sets the default operand size to 64-bit and recalculates the effective
|
---|
1603 | * operand size, with intel ignoring any operand size prefix (AMD respects it).
|
---|
1604 | *
|
---|
1605 | * This is for the relative jumps.
|
---|
1606 | *
|
---|
1607 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1608 | */
|
---|
1609 | DECLINLINE(void) iemRecalEffOpSize64DefaultAndIntelIgnoresOpSizePrefix(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1610 | {
|
---|
1611 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
1612 | pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
|
---|
1613 | if ( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP
|
---|
1614 | || pVCpu->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL)
|
---|
1615 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
1616 | else
|
---|
1617 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | #endif /* !IEM_WITH_OPAQUE_DECODER_STATE */
|
---|
1621 |
|
---|
1622 |
|
---|
1623 |
|
---|
1624 | /** @name Register Access.
|
---|
1625 | * @{
|
---|
1626 | */
|
---|
1627 |
|
---|
1628 | /**
|
---|
1629 | * Gets a reference (pointer) to the specified hidden segment register.
|
---|
1630 | *
|
---|
1631 | * @returns Hidden register reference.
|
---|
1632 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1633 | * @param iSegReg The segment register.
|
---|
1634 | */
|
---|
1635 | DECL_FORCE_INLINE(PCPUMSELREG) iemSRegGetHid(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1636 | {
|
---|
1637 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1638 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1639 | PCPUMSELREG pSReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
1640 |
|
---|
1641 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
1642 | return pSReg;
|
---|
1643 | }
|
---|
1644 |
|
---|
1645 |
|
---|
1646 | /**
|
---|
1647 | * Ensures that the given hidden segment register is up to date.
|
---|
1648 | *
|
---|
1649 | * @returns Hidden register reference.
|
---|
1650 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1651 | * @param pSReg The segment register.
|
---|
1652 | */
|
---|
1653 | DECL_FORCE_INLINE(PCPUMSELREG) iemSRegUpdateHid(PVMCPUCC pVCpu, PCPUMSELREG pSReg) RT_NOEXCEPT
|
---|
1654 | {
|
---|
1655 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
1656 | NOREF(pVCpu);
|
---|
1657 | return pSReg;
|
---|
1658 | }
|
---|
1659 |
|
---|
1660 |
|
---|
1661 | /**
|
---|
1662 | * Gets a reference (pointer) to the specified segment register (the selector
|
---|
1663 | * value).
|
---|
1664 | *
|
---|
1665 | * @returns Pointer to the selector variable.
|
---|
1666 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1667 | * @param iSegReg The segment register.
|
---|
1668 | */
|
---|
1669 | DECL_FORCE_INLINE(uint16_t *) iemSRegRef(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1670 | {
|
---|
1671 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1672 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1673 | return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 |
|
---|
1677 | /**
|
---|
1678 | * Fetches the selector value of a segment register.
|
---|
1679 | *
|
---|
1680 | * @returns The selector value.
|
---|
1681 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1682 | * @param iSegReg The segment register.
|
---|
1683 | */
|
---|
1684 | DECL_FORCE_INLINE(uint16_t) iemSRegFetchU16(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1685 | {
|
---|
1686 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1687 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1688 | return pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
|
---|
1689 | }
|
---|
1690 |
|
---|
1691 |
|
---|
1692 | /**
|
---|
1693 | * Fetches the base address value of a segment register.
|
---|
1694 | *
|
---|
1695 | * @returns The selector value.
|
---|
1696 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1697 | * @param iSegReg The segment register.
|
---|
1698 | */
|
---|
1699 | DECL_FORCE_INLINE(uint64_t) iemSRegBaseFetchU64(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1700 | {
|
---|
1701 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1702 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1703 | return pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 |
|
---|
1707 | /**
|
---|
1708 | * Gets a reference (pointer) to the specified general purpose register.
|
---|
1709 | *
|
---|
1710 | * @returns Register reference.
|
---|
1711 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1712 | * @param iReg The general purpose register.
|
---|
1713 | */
|
---|
1714 | DECL_FORCE_INLINE(void *) iemGRegRef(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1715 | {
|
---|
1716 | Assert(iReg < 16);
|
---|
1717 | return &pVCpu->cpum.GstCtx.aGRegs[iReg];
|
---|
1718 | }
|
---|
1719 |
|
---|
1720 |
|
---|
1721 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1722 | /**
|
---|
1723 | * Gets a reference (pointer) to the specified 8-bit general purpose register.
|
---|
1724 | *
|
---|
1725 | * Because of AH, CH, DH and BH we cannot use iemGRegRef directly here.
|
---|
1726 | *
|
---|
1727 | * @returns Register reference.
|
---|
1728 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1729 | * @param iReg The register.
|
---|
1730 | */
|
---|
1731 | DECL_FORCE_INLINE(uint8_t *) iemGRegRefU8(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1732 | {
|
---|
1733 | if (iReg < 4 || (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX))
|
---|
1734 | {
|
---|
1735 | Assert(iReg < 16);
|
---|
1736 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u8;
|
---|
1737 | }
|
---|
1738 | /* high 8-bit register. */
|
---|
1739 | Assert(iReg < 8);
|
---|
1740 | return &pVCpu->cpum.GstCtx.aGRegs[iReg & 3].bHi;
|
---|
1741 | }
|
---|
1742 | #endif
|
---|
1743 |
|
---|
1744 |
|
---|
1745 | /**
|
---|
1746 | * Gets a reference (pointer) to the specified 8-bit general purpose register,
|
---|
1747 | * alternative version with extended (20) register index.
|
---|
1748 | *
|
---|
1749 | * @returns Register reference.
|
---|
1750 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1751 | * @param iRegEx The register. The 16 first are regular ones,
|
---|
1752 | * whereas 16 thru 19 maps to AH, CH, DH and BH.
|
---|
1753 | */
|
---|
1754 | DECL_FORCE_INLINE(uint8_t *) iemGRegRefU8Ex(PVMCPUCC pVCpu, uint8_t iRegEx) RT_NOEXCEPT
|
---|
1755 | {
|
---|
1756 | /** @todo This could be done by double indexing on little endian hosts:
|
---|
1757 | * return &pVCpu->cpum.GstCtx.aGRegs[iRegEx & 15].ab[iRegEx >> 4]; */
|
---|
1758 | if (iRegEx < 16)
|
---|
1759 | return &pVCpu->cpum.GstCtx.aGRegs[iRegEx].u8;
|
---|
1760 |
|
---|
1761 | /* high 8-bit register. */
|
---|
1762 | Assert(iRegEx < 20);
|
---|
1763 | return &pVCpu->cpum.GstCtx.aGRegs[iRegEx & 3].bHi;
|
---|
1764 | }
|
---|
1765 |
|
---|
1766 |
|
---|
1767 | /**
|
---|
1768 | * Gets a reference (pointer) to the specified 16-bit general purpose register.
|
---|
1769 | *
|
---|
1770 | * @returns Register reference.
|
---|
1771 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1772 | * @param iReg The register.
|
---|
1773 | */
|
---|
1774 | DECL_FORCE_INLINE(uint16_t *) iemGRegRefU16(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1775 | {
|
---|
1776 | Assert(iReg < 16);
|
---|
1777 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 |
|
---|
1781 | /**
|
---|
1782 | * Gets a reference (pointer) to the specified 32-bit general purpose register.
|
---|
1783 | *
|
---|
1784 | * @returns Register reference.
|
---|
1785 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1786 | * @param iReg The register.
|
---|
1787 | */
|
---|
1788 | DECL_FORCE_INLINE(uint32_t *) iemGRegRefU32(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1789 | {
|
---|
1790 | Assert(iReg < 16);
|
---|
1791 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
|
---|
1792 | }
|
---|
1793 |
|
---|
1794 |
|
---|
1795 | /**
|
---|
1796 | * Gets a reference (pointer) to the specified signed 32-bit general purpose register.
|
---|
1797 | *
|
---|
1798 | * @returns Register reference.
|
---|
1799 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1800 | * @param iReg The register.
|
---|
1801 | */
|
---|
1802 | DECL_FORCE_INLINE(int32_t *) iemGRegRefI32(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1803 | {
|
---|
1804 | Assert(iReg < 16);
|
---|
1805 | return (int32_t *)&pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
|
---|
1806 | }
|
---|
1807 |
|
---|
1808 |
|
---|
1809 | /**
|
---|
1810 | * Gets a reference (pointer) to the specified 64-bit general purpose register.
|
---|
1811 | *
|
---|
1812 | * @returns Register reference.
|
---|
1813 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1814 | * @param iReg The register.
|
---|
1815 | */
|
---|
1816 | DECL_FORCE_INLINE(uint64_t *) iemGRegRefU64(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1817 | {
|
---|
1818 | Assert(iReg < 64);
|
---|
1819 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
|
---|
1820 | }
|
---|
1821 |
|
---|
1822 |
|
---|
1823 | /**
|
---|
1824 | * Gets a reference (pointer) to the specified signed 64-bit general purpose register.
|
---|
1825 | *
|
---|
1826 | * @returns Register reference.
|
---|
1827 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1828 | * @param iReg The register.
|
---|
1829 | */
|
---|
1830 | DECL_FORCE_INLINE(int64_t *) iemGRegRefI64(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1831 | {
|
---|
1832 | Assert(iReg < 16);
|
---|
1833 | return (int64_t *)&pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 |
|
---|
1837 | /**
|
---|
1838 | * Gets a reference (pointer) to the specified segment register's base address.
|
---|
1839 | *
|
---|
1840 | * @returns Segment register base address reference.
|
---|
1841 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1842 | * @param iSegReg The segment selector.
|
---|
1843 | */
|
---|
1844 | DECL_FORCE_INLINE(uint64_t *) iemSRegBaseRefU64(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1845 | {
|
---|
1846 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1847 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1848 | return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
1849 | }
|
---|
1850 |
|
---|
1851 |
|
---|
1852 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1853 | /**
|
---|
1854 | * Fetches the value of a 8-bit general purpose register.
|
---|
1855 | *
|
---|
1856 | * @returns The register value.
|
---|
1857 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1858 | * @param iReg The register.
|
---|
1859 | */
|
---|
1860 | DECL_FORCE_INLINE(uint8_t) iemGRegFetchU8(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1861 | {
|
---|
1862 | return *iemGRegRefU8(pVCpu, iReg);
|
---|
1863 | }
|
---|
1864 | #endif
|
---|
1865 |
|
---|
1866 |
|
---|
1867 | /**
|
---|
1868 | * Fetches the value of a 8-bit general purpose register, alternative version
|
---|
1869 | * with extended (20) register index.
|
---|
1870 |
|
---|
1871 | * @returns The register value.
|
---|
1872 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1873 | * @param iRegEx The register. The 16 first are regular ones,
|
---|
1874 | * whereas 16 thru 19 maps to AH, CH, DH and BH.
|
---|
1875 | */
|
---|
1876 | DECL_FORCE_INLINE(uint8_t) iemGRegFetchU8Ex(PVMCPUCC pVCpu, uint8_t iRegEx) RT_NOEXCEPT
|
---|
1877 | {
|
---|
1878 | return *iemGRegRefU8Ex(pVCpu, iRegEx);
|
---|
1879 | }
|
---|
1880 |
|
---|
1881 |
|
---|
1882 | /**
|
---|
1883 | * Fetches the value of a 16-bit general purpose register.
|
---|
1884 | *
|
---|
1885 | * @returns The register value.
|
---|
1886 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1887 | * @param iReg The register.
|
---|
1888 | */
|
---|
1889 | DECL_FORCE_INLINE(uint16_t) iemGRegFetchU16(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1890 | {
|
---|
1891 | Assert(iReg < 16);
|
---|
1892 | return pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 |
|
---|
1896 | /**
|
---|
1897 | * Fetches the value of a 32-bit general purpose register.
|
---|
1898 | *
|
---|
1899 | * @returns The register value.
|
---|
1900 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1901 | * @param iReg The register.
|
---|
1902 | */
|
---|
1903 | DECL_FORCE_INLINE(uint32_t) iemGRegFetchU32(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1904 | {
|
---|
1905 | Assert(iReg < 16);
|
---|
1906 | return pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
|
---|
1907 | }
|
---|
1908 |
|
---|
1909 |
|
---|
1910 | /**
|
---|
1911 | * Fetches the value of a 64-bit general purpose register.
|
---|
1912 | *
|
---|
1913 | * @returns The register value.
|
---|
1914 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1915 | * @param iReg The register.
|
---|
1916 | */
|
---|
1917 | DECL_FORCE_INLINE(uint64_t) iemGRegFetchU64(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1918 | {
|
---|
1919 | Assert(iReg < 16);
|
---|
1920 | return pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
|
---|
1921 | }
|
---|
1922 |
|
---|
1923 |
|
---|
1924 | /**
|
---|
1925 | * Stores a 16-bit value to a general purpose register.
|
---|
1926 | *
|
---|
1927 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1928 | * @param iReg The register.
|
---|
1929 | * @param uValue The value to store.
|
---|
1930 | */
|
---|
1931 | DECL_FORCE_INLINE(void) iemGRegStoreU16(PVMCPUCC pVCpu, uint8_t iReg, uint16_t uValue) RT_NOEXCEPT
|
---|
1932 | {
|
---|
1933 | Assert(iReg < 16);
|
---|
1934 | pVCpu->cpum.GstCtx.aGRegs[iReg].u16 = uValue;
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 |
|
---|
1938 | /**
|
---|
1939 | * Stores a 32-bit value to a general purpose register, implicitly clearing high
|
---|
1940 | * values.
|
---|
1941 | *
|
---|
1942 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1943 | * @param iReg The register.
|
---|
1944 | * @param uValue The value to store.
|
---|
1945 | */
|
---|
1946 | DECL_FORCE_INLINE(void) iemGRegStoreU32(PVMCPUCC pVCpu, uint8_t iReg, uint32_t uValue) RT_NOEXCEPT
|
---|
1947 | {
|
---|
1948 | Assert(iReg < 16);
|
---|
1949 | pVCpu->cpum.GstCtx.aGRegs[iReg].u64 = uValue;
|
---|
1950 | }
|
---|
1951 |
|
---|
1952 |
|
---|
1953 | /**
|
---|
1954 | * Stores a 64-bit value to a general purpose register.
|
---|
1955 | *
|
---|
1956 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1957 | * @param iReg The register.
|
---|
1958 | * @param uValue The value to store.
|
---|
1959 | */
|
---|
1960 | DECL_FORCE_INLINE(void) iemGRegStoreU64(PVMCPUCC pVCpu, uint8_t iReg, uint64_t uValue) RT_NOEXCEPT
|
---|
1961 | {
|
---|
1962 | Assert(iReg < 16);
|
---|
1963 | pVCpu->cpum.GstCtx.aGRegs[iReg].u64 = uValue;
|
---|
1964 | }
|
---|
1965 |
|
---|
1966 |
|
---|
1967 | /**
|
---|
1968 | * Get the address of the top of the stack.
|
---|
1969 | *
|
---|
1970 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1971 | */
|
---|
1972 | DECL_FORCE_INLINE(RTGCPTR) iemRegGetEffRsp(PCVMCPU pVCpu) RT_NOEXCEPT
|
---|
1973 | {
|
---|
1974 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
1975 | return pVCpu->cpum.GstCtx.rsp;
|
---|
1976 | if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1977 | return pVCpu->cpum.GstCtx.esp;
|
---|
1978 | return pVCpu->cpum.GstCtx.sp;
|
---|
1979 | }
|
---|
1980 |
|
---|
1981 |
|
---|
1982 | /**
|
---|
1983 | * Updates the RIP/EIP/IP to point to the next instruction.
|
---|
1984 | *
|
---|
1985 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1986 | * @param cbInstr The number of bytes to add.
|
---|
1987 | */
|
---|
1988 | DECL_FORCE_INLINE(void) iemRegAddToRip(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
1989 | {
|
---|
1990 | /*
|
---|
1991 | * Advance RIP.
|
---|
1992 | *
|
---|
1993 | * When we're targetting 8086/8, 80186/8 or 80286 mode the updates are 16-bit,
|
---|
1994 | * while in all other modes except LM64 the updates are 32-bit. This means
|
---|
1995 | * we need to watch for both 32-bit and 16-bit "carry" situations, i.e.
|
---|
1996 | * 4GB and 64KB rollovers, and decide whether anything needs masking.
|
---|
1997 | *
|
---|
1998 | * See PC wrap around tests in bs3-cpu-weird-1.
|
---|
1999 | */
|
---|
2000 | uint64_t const uRipPrev = pVCpu->cpum.GstCtx.rip;
|
---|
2001 | uint64_t const uRipNext = uRipPrev + cbInstr;
|
---|
2002 | if (RT_LIKELY( !((uRipNext ^ uRipPrev) & (RT_BIT_64(32) | RT_BIT_64(16)))
|
---|
2003 | || IEM_IS_64BIT_CODE(pVCpu)))
|
---|
2004 | pVCpu->cpum.GstCtx.rip = uRipNext;
|
---|
2005 | else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
|
---|
2006 | pVCpu->cpum.GstCtx.rip = (uint32_t)uRipNext;
|
---|
2007 | else
|
---|
2008 | pVCpu->cpum.GstCtx.rip = (uint16_t)uRipNext;
|
---|
2009 | }
|
---|
2010 |
|
---|
2011 |
|
---|
2012 | /**
|
---|
2013 | * Called by iemRegAddToRipAndFinishingClearingRF and others when any of the
|
---|
2014 | * following EFLAGS bits are set:
|
---|
2015 | * - X86_EFL_RF - clear it.
|
---|
2016 | * - CPUMCTX_INHIBIT_SHADOW (_SS/_STI) - clear them.
|
---|
2017 | * - X86_EFL_TF - generate single step \#DB trap.
|
---|
2018 | * - CPUMCTX_DBG_HIT_DR0/1/2/3 - generate \#DB trap (data or I/O, not
|
---|
2019 | * instruction).
|
---|
2020 | *
|
---|
2021 | * According to @sdmv3{077,200,Table 6-2,Priority Among Concurrent Events},
|
---|
2022 | * a \#DB due to TF (single stepping) or a DRx non-instruction breakpoint
|
---|
2023 | * takes priority over both NMIs and hardware interrupts. So, neither is
|
---|
2024 | * considered here. (The RESET, \#MC, SMI, INIT, STOPCLK and FLUSH events are
|
---|
2025 | * either unsupported will be triggered on-top of any \#DB raised here.)
|
---|
2026 | *
|
---|
2027 | * The RF flag only needs to be cleared here as it only suppresses instruction
|
---|
2028 | * breakpoints which are not raised here (happens synchronously during
|
---|
2029 | * instruction fetching).
|
---|
2030 | *
|
---|
2031 | * The CPUMCTX_INHIBIT_SHADOW_SS flag will be cleared by this function, so its
|
---|
2032 | * status has no bearing on whether \#DB exceptions are raised.
|
---|
2033 | *
|
---|
2034 | * @note This must *NOT* be called by the two instructions setting the
|
---|
2035 | * CPUMCTX_INHIBIT_SHADOW_SS flag.
|
---|
2036 | *
|
---|
2037 | * @see @sdmv3{077,200,Table 6-2,Priority Among Concurrent Events}
|
---|
2038 | * @see @sdmv3{077,200,6.8.3,Masking Exceptions and Interrupts When Switching
|
---|
2039 | * Stacks}
|
---|
2040 | */
|
---|
2041 | static VBOXSTRICTRC iemFinishInstructionWithFlagsSet(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2042 | {
|
---|
2043 | /*
|
---|
2044 | * Normally we're just here to clear RF and/or interrupt shadow bits.
|
---|
2045 | */
|
---|
2046 | if (RT_LIKELY((pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK)) == 0))
|
---|
2047 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW);
|
---|
2048 | else
|
---|
2049 | {
|
---|
2050 | /*
|
---|
2051 | * Raise a #DB or/and DBGF event.
|
---|
2052 | */
|
---|
2053 | VBOXSTRICTRC rcStrict;
|
---|
2054 | if (pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK))
|
---|
2055 | {
|
---|
2056 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
2057 | pVCpu->cpum.GstCtx.dr[6] &= ~X86_DR6_B_MASK;
|
---|
2058 | if (pVCpu->cpum.GstCtx.eflags.uBoth & X86_EFL_TF)
|
---|
2059 | pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_BS;
|
---|
2060 | pVCpu->cpum.GstCtx.dr[6] |= (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK) >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
2061 | LogFlowFunc(("Guest #DB fired at %04X:%016llX: DR6=%08X, RFLAGS=%16RX64\n",
|
---|
2062 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, (unsigned)pVCpu->cpum.GstCtx.dr[6],
|
---|
2063 | pVCpu->cpum.GstCtx.rflags.uBoth));
|
---|
2064 |
|
---|
2065 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK);
|
---|
2066 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
2067 |
|
---|
2068 | /* A DBGF event/breakpoint trumps the iemRaiseDebugException informational status code. */
|
---|
2069 | if ((pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_MASK) && RT_FAILURE(rcStrict))
|
---|
2070 | {
|
---|
2071 | rcStrict = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_BP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_EVENT;
|
---|
2072 | LogFlowFunc(("dbgf at %04X:%016llX: %Rrc\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2073 | }
|
---|
2074 | }
|
---|
2075 | else
|
---|
2076 | {
|
---|
2077 | Assert(pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_MASK);
|
---|
2078 | rcStrict = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_BP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_EVENT;
|
---|
2079 | LogFlowFunc(("dbgf at %04X:%016llX: %Rrc\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2080 | }
|
---|
2081 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_DBG_DBGF_MASK;
|
---|
2082 | return rcStrict;
|
---|
2083 | }
|
---|
2084 | return VINF_SUCCESS;
|
---|
2085 | }
|
---|
2086 |
|
---|
2087 |
|
---|
2088 | /**
|
---|
2089 | * Clears the RF and CPUMCTX_INHIBIT_SHADOW, triggering \#DB if pending.
|
---|
2090 | *
|
---|
2091 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2092 | */
|
---|
2093 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegFinishClearingRF(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2094 | {
|
---|
2095 | /*
|
---|
2096 | * We assume that most of the time nothing actually needs doing here.
|
---|
2097 | */
|
---|
2098 | AssertCompile(CPUMCTX_INHIBIT_SHADOW < UINT32_MAX);
|
---|
2099 | if (RT_LIKELY(!( pVCpu->cpum.GstCtx.eflags.uBoth
|
---|
2100 | & (X86_EFL_TF | X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK)) ))
|
---|
2101 | return VINF_SUCCESS;
|
---|
2102 | return iemFinishInstructionWithFlagsSet(pVCpu);
|
---|
2103 | }
|
---|
2104 |
|
---|
2105 |
|
---|
2106 | /**
|
---|
2107 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF
|
---|
2108 | * and CPUMCTX_INHIBIT_SHADOW.
|
---|
2109 | *
|
---|
2110 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2111 | * @param cbInstr The number of bytes to add.
|
---|
2112 | */
|
---|
2113 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegAddToRipAndFinishingClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
2114 | {
|
---|
2115 | iemRegAddToRip(pVCpu, cbInstr);
|
---|
2116 | return iemRegFinishClearingRF(pVCpu);
|
---|
2117 | }
|
---|
2118 |
|
---|
2119 |
|
---|
2120 | /**
|
---|
2121 | * Updates the RIP to point to the next instruction and clears EFLAGS.RF
|
---|
2122 | * and CPUMCTX_INHIBIT_SHADOW.
|
---|
2123 | *
|
---|
2124 | * Only called from 64-bit code.
|
---|
2125 | *
|
---|
2126 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2127 | * @param cbInstr The number of bytes to add.
|
---|
2128 | */
|
---|
2129 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegAddToRip64AndFinishingClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
2130 | {
|
---|
2131 | pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rip + cbInstr;
|
---|
2132 | return iemRegFinishClearingRF(pVCpu);
|
---|
2133 | }
|
---|
2134 |
|
---|
2135 |
|
---|
2136 | /**
|
---|
2137 | * Updates the EIP to point to the next instruction and clears EFLAGS.RF and
|
---|
2138 | * CPUMCTX_INHIBIT_SHADOW.
|
---|
2139 | *
|
---|
2140 | * This is never from 64-bit code.
|
---|
2141 | *
|
---|
2142 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2143 | * @param cbInstr The number of bytes to add.
|
---|
2144 | */
|
---|
2145 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegAddToEip32AndFinishingClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
2146 | {
|
---|
2147 | pVCpu->cpum.GstCtx.rip = (uint32_t)(pVCpu->cpum.GstCtx.eip + cbInstr);
|
---|
2148 | return iemRegFinishClearingRF(pVCpu);
|
---|
2149 | }
|
---|
2150 |
|
---|
2151 |
|
---|
2152 | /**
|
---|
2153 | * Updates the IP to point to the next instruction and clears EFLAGS.RF and
|
---|
2154 | * CPUMCTX_INHIBIT_SHADOW.
|
---|
2155 | *
|
---|
2156 | * This is only ever used from 16-bit code on a pre-386 CPU.
|
---|
2157 | *
|
---|
2158 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2159 | * @param cbInstr The number of bytes to add.
|
---|
2160 | */
|
---|
2161 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegAddToIp16AndFinishingClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
2162 | {
|
---|
2163 | pVCpu->cpum.GstCtx.rip = (uint16_t)(pVCpu->cpum.GstCtx.ip + cbInstr);
|
---|
2164 | return iemRegFinishClearingRF(pVCpu);
|
---|
2165 | }
|
---|
2166 |
|
---|
2167 |
|
---|
2168 | /**
|
---|
2169 | * Adds a 8-bit signed jump offset to RIP from 64-bit code.
|
---|
2170 | *
|
---|
2171 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
2172 | * segment limit.
|
---|
2173 | *
|
---|
2174 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2175 | * @param cbInstr Instruction size.
|
---|
2176 | * @param offNextInstr The offset of the next instruction.
|
---|
2177 | * @param enmEffOpSize Effective operand size.
|
---|
2178 | */
|
---|
2179 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegRip64RelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
|
---|
2180 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
2181 | {
|
---|
2182 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
2183 | Assert(enmEffOpSize == IEMMODE_64BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
2184 |
|
---|
2185 | uint64_t uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
2186 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2187 | uNewRip &= UINT16_MAX;
|
---|
2188 |
|
---|
2189 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
2190 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
2191 | else
|
---|
2192 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2193 |
|
---|
2194 | #ifndef IEM_WITH_CODE_TLB
|
---|
2195 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2196 | #endif
|
---|
2197 |
|
---|
2198 | /*
|
---|
2199 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2200 | */
|
---|
2201 | return iemRegFinishClearingRF(pVCpu);
|
---|
2202 | }
|
---|
2203 |
|
---|
2204 |
|
---|
2205 | /**
|
---|
2206 | * Adds a 8-bit signed jump offset to EIP, on 386 or later from 16-bit or 32-bit
|
---|
2207 | * code (never 64-bit).
|
---|
2208 | *
|
---|
2209 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
2210 | * segment limit.
|
---|
2211 | *
|
---|
2212 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2213 | * @param cbInstr Instruction size.
|
---|
2214 | * @param offNextInstr The offset of the next instruction.
|
---|
2215 | * @param enmEffOpSize Effective operand size.
|
---|
2216 | */
|
---|
2217 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegEip32RelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
|
---|
2218 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
2219 | {
|
---|
2220 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2221 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
2222 |
|
---|
2223 | uint32_t uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + (int32_t)offNextInstr;
|
---|
2224 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2225 | uNewEip &= UINT16_MAX;
|
---|
2226 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
2227 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
2228 | else
|
---|
2229 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2230 |
|
---|
2231 | #ifndef IEM_WITH_CODE_TLB
|
---|
2232 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2233 | #endif
|
---|
2234 |
|
---|
2235 | /*
|
---|
2236 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2237 | */
|
---|
2238 | return iemRegFinishClearingRF(pVCpu);
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 |
|
---|
2242 | /**
|
---|
2243 | * Adds a 8-bit signed jump offset to IP, on a pre-386 CPU.
|
---|
2244 | *
|
---|
2245 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
2246 | * segment limit.
|
---|
2247 | *
|
---|
2248 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2249 | * @param cbInstr Instruction size.
|
---|
2250 | * @param offNextInstr The offset of the next instruction.
|
---|
2251 | */
|
---|
2252 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegIp16RelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr,
|
---|
2253 | int8_t offNextInstr) RT_NOEXCEPT
|
---|
2254 | {
|
---|
2255 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2256 |
|
---|
2257 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + (int16_t)offNextInstr;
|
---|
2258 | if (RT_LIKELY(uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
2259 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
2260 | else
|
---|
2261 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2262 |
|
---|
2263 | #ifndef IEM_WITH_CODE_TLB
|
---|
2264 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2265 | #endif
|
---|
2266 |
|
---|
2267 | /*
|
---|
2268 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2269 | */
|
---|
2270 | return iemRegFinishClearingRF(pVCpu);
|
---|
2271 | }
|
---|
2272 |
|
---|
2273 |
|
---|
2274 | /**
|
---|
2275 | * Adds a 16-bit signed jump offset to RIP from 64-bit code.
|
---|
2276 | *
|
---|
2277 | * @returns Strict VBox status code.
|
---|
2278 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2279 | * @param cbInstr Instruction size.
|
---|
2280 | * @param offNextInstr The offset of the next instruction.
|
---|
2281 | */
|
---|
2282 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegRip64RelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr,
|
---|
2283 | int16_t offNextInstr) RT_NOEXCEPT
|
---|
2284 | {
|
---|
2285 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
2286 |
|
---|
2287 | pVCpu->cpum.GstCtx.rip = (uint16_t)(pVCpu->cpum.GstCtx.ip + cbInstr + offNextInstr);
|
---|
2288 |
|
---|
2289 | #ifndef IEM_WITH_CODE_TLB
|
---|
2290 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2291 | #endif
|
---|
2292 |
|
---|
2293 | /*
|
---|
2294 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2295 | */
|
---|
2296 | return iemRegFinishClearingRF(pVCpu);
|
---|
2297 | }
|
---|
2298 |
|
---|
2299 |
|
---|
2300 | /**
|
---|
2301 | * Adds a 16-bit signed jump offset to EIP from 16-bit or 32-bit code.
|
---|
2302 | *
|
---|
2303 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
2304 | * segment limit.
|
---|
2305 | *
|
---|
2306 | * @returns Strict VBox status code.
|
---|
2307 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2308 | * @param cbInstr Instruction size.
|
---|
2309 | * @param offNextInstr The offset of the next instruction.
|
---|
2310 | *
|
---|
2311 | * @note This is also used by 16-bit code in pre-386 mode, as the code is
|
---|
2312 | * identical.
|
---|
2313 | */
|
---|
2314 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegEip32RelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr,
|
---|
2315 | int16_t offNextInstr) RT_NOEXCEPT
|
---|
2316 | {
|
---|
2317 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2318 |
|
---|
2319 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + offNextInstr;
|
---|
2320 | if (RT_LIKELY(uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
2321 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
2322 | else
|
---|
2323 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2324 |
|
---|
2325 | #ifndef IEM_WITH_CODE_TLB
|
---|
2326 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2327 | #endif
|
---|
2328 |
|
---|
2329 | /*
|
---|
2330 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2331 | */
|
---|
2332 | return iemRegFinishClearingRF(pVCpu);
|
---|
2333 | }
|
---|
2334 |
|
---|
2335 |
|
---|
2336 | /**
|
---|
2337 | * Adds a 32-bit signed jump offset to RIP from 64-bit code.
|
---|
2338 | *
|
---|
2339 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
2340 | * segment limit.
|
---|
2341 | *
|
---|
2342 | * We ASSUME that the effective operand size is 64-bit here, as 16-bit is the
|
---|
2343 | * only alternative for relative jumps in 64-bit code and that is already
|
---|
2344 | * handled in the decoder stage.
|
---|
2345 | *
|
---|
2346 | * @returns Strict VBox status code.
|
---|
2347 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2348 | * @param cbInstr Instruction size.
|
---|
2349 | * @param offNextInstr The offset of the next instruction.
|
---|
2350 | */
|
---|
2351 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegRip64RelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr,
|
---|
2352 | int32_t offNextInstr) RT_NOEXCEPT
|
---|
2353 | {
|
---|
2354 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
2355 |
|
---|
2356 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
2357 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
2358 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
2359 | else
|
---|
2360 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2361 |
|
---|
2362 | #ifndef IEM_WITH_CODE_TLB
|
---|
2363 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2364 | #endif
|
---|
2365 |
|
---|
2366 | /*
|
---|
2367 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2368 | */
|
---|
2369 | return iemRegFinishClearingRF(pVCpu);
|
---|
2370 | }
|
---|
2371 |
|
---|
2372 |
|
---|
2373 | /**
|
---|
2374 | * Adds a 32-bit signed jump offset to RIP from 64-bit code.
|
---|
2375 | *
|
---|
2376 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
2377 | * segment limit.
|
---|
2378 | *
|
---|
2379 | * We ASSUME that the effective operand size is 32-bit here, as 16-bit is the
|
---|
2380 | * only alternative for relative jumps in 32-bit code and that is already
|
---|
2381 | * handled in the decoder stage.
|
---|
2382 | *
|
---|
2383 | * @returns Strict VBox status code.
|
---|
2384 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2385 | * @param cbInstr Instruction size.
|
---|
2386 | * @param offNextInstr The offset of the next instruction.
|
---|
2387 | */
|
---|
2388 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegEip32RelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr,
|
---|
2389 | int32_t offNextInstr) RT_NOEXCEPT
|
---|
2390 | {
|
---|
2391 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2392 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX);
|
---|
2393 |
|
---|
2394 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + offNextInstr;
|
---|
2395 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
2396 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
2397 | else
|
---|
2398 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2399 |
|
---|
2400 | #ifndef IEM_WITH_CODE_TLB
|
---|
2401 | iemOpcodeFlushLight(pVCpu, cbInstr);
|
---|
2402 | #endif
|
---|
2403 |
|
---|
2404 | /*
|
---|
2405 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
2406 | */
|
---|
2407 | return iemRegFinishClearingRF(pVCpu);
|
---|
2408 | }
|
---|
2409 |
|
---|
2410 |
|
---|
2411 | /**
|
---|
2412 | * Extended version of iemFinishInstructionWithFlagsSet that goes with
|
---|
2413 | * iemRegAddToRipAndFinishingClearingRfEx.
|
---|
2414 | *
|
---|
2415 | * See iemFinishInstructionWithFlagsSet() for details.
|
---|
2416 | */
|
---|
2417 | static VBOXSTRICTRC iemFinishInstructionWithTfSet(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2418 | {
|
---|
2419 | /*
|
---|
2420 | * Raise a #DB.
|
---|
2421 | */
|
---|
2422 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
2423 | pVCpu->cpum.GstCtx.dr[6] &= ~X86_DR6_B_MASK;
|
---|
2424 | pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_BS
|
---|
2425 | | (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK) >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
2426 | /** @todo Do we set all pending \#DB events, or just one? */
|
---|
2427 | LogFlowFunc(("Guest #DB fired at %04X:%016llX: DR6=%08X, RFLAGS=%16RX64 (popf)\n",
|
---|
2428 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, (unsigned)pVCpu->cpum.GstCtx.dr[6],
|
---|
2429 | pVCpu->cpum.GstCtx.rflags.uBoth));
|
---|
2430 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK);
|
---|
2431 | return iemRaiseDebugException(pVCpu);
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 |
|
---|
2435 | /**
|
---|
2436 | * Extended version of iemRegAddToRipAndFinishingClearingRF for use by POPF and
|
---|
2437 | * others potentially updating EFLAGS.TF.
|
---|
2438 | *
|
---|
2439 | * The single step event must be generated using the TF value at the start of
|
---|
2440 | * the instruction, not the new value set by it.
|
---|
2441 | *
|
---|
2442 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2443 | * @param cbInstr The number of bytes to add.
|
---|
2444 | * @param fEflOld The EFLAGS at the start of the instruction
|
---|
2445 | * execution.
|
---|
2446 | */
|
---|
2447 | DECLINLINE(VBOXSTRICTRC) iemRegAddToRipAndFinishingClearingRfEx(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t fEflOld) RT_NOEXCEPT
|
---|
2448 | {
|
---|
2449 | iemRegAddToRip(pVCpu, cbInstr);
|
---|
2450 | if (!(fEflOld & X86_EFL_TF))
|
---|
2451 | return iemRegFinishClearingRF(pVCpu);
|
---|
2452 | return iemFinishInstructionWithTfSet(pVCpu);
|
---|
2453 | }
|
---|
2454 |
|
---|
2455 |
|
---|
2456 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
2457 | /**
|
---|
2458 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
|
---|
2459 | *
|
---|
2460 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2461 | */
|
---|
2462 | DECLINLINE(VBOXSTRICTRC) iemRegUpdateRipAndFinishClearingRF(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2463 | {
|
---|
2464 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
2465 | }
|
---|
2466 | #endif
|
---|
2467 |
|
---|
2468 |
|
---|
2469 | /**
|
---|
2470 | * Adds to the stack pointer.
|
---|
2471 | *
|
---|
2472 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2473 | * @param cbToAdd The number of bytes to add (8-bit!).
|
---|
2474 | */
|
---|
2475 | DECLINLINE(void) iemRegAddToRsp(PVMCPUCC pVCpu, uint8_t cbToAdd) RT_NOEXCEPT
|
---|
2476 | {
|
---|
2477 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2478 | pVCpu->cpum.GstCtx.rsp += cbToAdd;
|
---|
2479 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2480 | pVCpu->cpum.GstCtx.esp += cbToAdd;
|
---|
2481 | else
|
---|
2482 | pVCpu->cpum.GstCtx.sp += cbToAdd;
|
---|
2483 | }
|
---|
2484 |
|
---|
2485 |
|
---|
2486 | /**
|
---|
2487 | * Subtracts from the stack pointer.
|
---|
2488 | *
|
---|
2489 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2490 | * @param cbToSub The number of bytes to subtract (8-bit!).
|
---|
2491 | */
|
---|
2492 | DECLINLINE(void) iemRegSubFromRsp(PVMCPUCC pVCpu, uint8_t cbToSub) RT_NOEXCEPT
|
---|
2493 | {
|
---|
2494 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2495 | pVCpu->cpum.GstCtx.rsp -= cbToSub;
|
---|
2496 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2497 | pVCpu->cpum.GstCtx.esp -= cbToSub;
|
---|
2498 | else
|
---|
2499 | pVCpu->cpum.GstCtx.sp -= cbToSub;
|
---|
2500 | }
|
---|
2501 |
|
---|
2502 |
|
---|
2503 | /**
|
---|
2504 | * Adds to the temporary stack pointer.
|
---|
2505 | *
|
---|
2506 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2507 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
2508 | * @param cbToAdd The number of bytes to add (16-bit).
|
---|
2509 | */
|
---|
2510 | DECLINLINE(void) iemRegAddToRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToAdd) RT_NOEXCEPT
|
---|
2511 | {
|
---|
2512 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2513 | pTmpRsp->u += cbToAdd;
|
---|
2514 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2515 | pTmpRsp->DWords.dw0 += cbToAdd;
|
---|
2516 | else
|
---|
2517 | pTmpRsp->Words.w0 += cbToAdd;
|
---|
2518 | }
|
---|
2519 |
|
---|
2520 |
|
---|
2521 | /**
|
---|
2522 | * Subtracts from the temporary stack pointer.
|
---|
2523 | *
|
---|
2524 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2525 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
2526 | * @param cbToSub The number of bytes to subtract.
|
---|
2527 | * @remarks The @a cbToSub argument *MUST* be 16-bit, iemCImpl_enter is
|
---|
2528 | * expecting that.
|
---|
2529 | */
|
---|
2530 | DECLINLINE(void) iemRegSubFromRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToSub) RT_NOEXCEPT
|
---|
2531 | {
|
---|
2532 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2533 | pTmpRsp->u -= cbToSub;
|
---|
2534 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2535 | pTmpRsp->DWords.dw0 -= cbToSub;
|
---|
2536 | else
|
---|
2537 | pTmpRsp->Words.w0 -= cbToSub;
|
---|
2538 | }
|
---|
2539 |
|
---|
2540 |
|
---|
2541 | /**
|
---|
2542 | * Calculates the effective stack address for a push of the specified size as
|
---|
2543 | * well as the new RSP value (upper bits may be masked).
|
---|
2544 | *
|
---|
2545 | * @returns Effective stack addressf for the push.
|
---|
2546 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2547 | * @param cbItem The size of the stack item to pop.
|
---|
2548 | * @param puNewRsp Where to return the new RSP value.
|
---|
2549 | */
|
---|
2550 | DECLINLINE(RTGCPTR) iemRegGetRspForPush(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
2551 | {
|
---|
2552 | RTUINT64U uTmpRsp;
|
---|
2553 | RTGCPTR GCPtrTop;
|
---|
2554 | uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
|
---|
2555 |
|
---|
2556 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2557 | GCPtrTop = uTmpRsp.u -= cbItem;
|
---|
2558 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2559 | GCPtrTop = uTmpRsp.DWords.dw0 -= cbItem;
|
---|
2560 | else
|
---|
2561 | GCPtrTop = uTmpRsp.Words.w0 -= cbItem;
|
---|
2562 | *puNewRsp = uTmpRsp.u;
|
---|
2563 | return GCPtrTop;
|
---|
2564 | }
|
---|
2565 |
|
---|
2566 |
|
---|
2567 | /**
|
---|
2568 | * Gets the current stack pointer and calculates the value after a pop of the
|
---|
2569 | * specified size.
|
---|
2570 | *
|
---|
2571 | * @returns Current stack pointer.
|
---|
2572 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2573 | * @param cbItem The size of the stack item to pop.
|
---|
2574 | * @param puNewRsp Where to return the new RSP value.
|
---|
2575 | */
|
---|
2576 | DECLINLINE(RTGCPTR) iemRegGetRspForPop(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
2577 | {
|
---|
2578 | RTUINT64U uTmpRsp;
|
---|
2579 | RTGCPTR GCPtrTop;
|
---|
2580 | uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
|
---|
2581 |
|
---|
2582 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2583 | {
|
---|
2584 | GCPtrTop = uTmpRsp.u;
|
---|
2585 | uTmpRsp.u += cbItem;
|
---|
2586 | }
|
---|
2587 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2588 | {
|
---|
2589 | GCPtrTop = uTmpRsp.DWords.dw0;
|
---|
2590 | uTmpRsp.DWords.dw0 += cbItem;
|
---|
2591 | }
|
---|
2592 | else
|
---|
2593 | {
|
---|
2594 | GCPtrTop = uTmpRsp.Words.w0;
|
---|
2595 | uTmpRsp.Words.w0 += cbItem;
|
---|
2596 | }
|
---|
2597 | *puNewRsp = uTmpRsp.u;
|
---|
2598 | return GCPtrTop;
|
---|
2599 | }
|
---|
2600 |
|
---|
2601 |
|
---|
2602 | /**
|
---|
2603 | * Calculates the effective stack address for a push of the specified size as
|
---|
2604 | * well as the new temporary RSP value (upper bits may be masked).
|
---|
2605 | *
|
---|
2606 | * @returns Effective stack addressf for the push.
|
---|
2607 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2608 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
2609 | * @param cbItem The size of the stack item to pop.
|
---|
2610 | */
|
---|
2611 | DECLINLINE(RTGCPTR) iemRegGetRspForPushEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem) RT_NOEXCEPT
|
---|
2612 | {
|
---|
2613 | RTGCPTR GCPtrTop;
|
---|
2614 |
|
---|
2615 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2616 | GCPtrTop = pTmpRsp->u -= cbItem;
|
---|
2617 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2618 | GCPtrTop = pTmpRsp->DWords.dw0 -= cbItem;
|
---|
2619 | else
|
---|
2620 | GCPtrTop = pTmpRsp->Words.w0 -= cbItem;
|
---|
2621 | return GCPtrTop;
|
---|
2622 | }
|
---|
2623 |
|
---|
2624 |
|
---|
2625 | /**
|
---|
2626 | * Gets the effective stack address for a pop of the specified size and
|
---|
2627 | * calculates and updates the temporary RSP.
|
---|
2628 | *
|
---|
2629 | * @returns Current stack pointer.
|
---|
2630 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2631 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
2632 | * @param cbItem The size of the stack item to pop.
|
---|
2633 | */
|
---|
2634 | DECLINLINE(RTGCPTR) iemRegGetRspForPopEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem) RT_NOEXCEPT
|
---|
2635 | {
|
---|
2636 | RTGCPTR GCPtrTop;
|
---|
2637 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2638 | {
|
---|
2639 | GCPtrTop = pTmpRsp->u;
|
---|
2640 | pTmpRsp->u += cbItem;
|
---|
2641 | }
|
---|
2642 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2643 | {
|
---|
2644 | GCPtrTop = pTmpRsp->DWords.dw0;
|
---|
2645 | pTmpRsp->DWords.dw0 += cbItem;
|
---|
2646 | }
|
---|
2647 | else
|
---|
2648 | {
|
---|
2649 | GCPtrTop = pTmpRsp->Words.w0;
|
---|
2650 | pTmpRsp->Words.w0 += cbItem;
|
---|
2651 | }
|
---|
2652 | return GCPtrTop;
|
---|
2653 | }
|
---|
2654 |
|
---|
2655 | /** @} */
|
---|
2656 |
|
---|
2657 |
|
---|
2658 | /** @name FPU access and helpers.
|
---|
2659 | *
|
---|
2660 | * @{
|
---|
2661 | */
|
---|
2662 |
|
---|
2663 |
|
---|
2664 | /**
|
---|
2665 | * Hook for preparing to use the host FPU.
|
---|
2666 | *
|
---|
2667 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2668 | *
|
---|
2669 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2670 | */
|
---|
2671 | DECLINLINE(void) iemFpuPrepareUsage(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2672 | {
|
---|
2673 | #ifdef IN_RING3
|
---|
2674 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2675 | #else
|
---|
2676 | CPUMRZFpuStatePrepareHostCpuForUse(pVCpu);
|
---|
2677 | #endif
|
---|
2678 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 |
|
---|
2682 | /**
|
---|
2683 | * Hook for preparing to use the host FPU for SSE.
|
---|
2684 | *
|
---|
2685 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2686 | *
|
---|
2687 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2688 | */
|
---|
2689 | DECLINLINE(void) iemFpuPrepareUsageSse(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2690 | {
|
---|
2691 | iemFpuPrepareUsage(pVCpu);
|
---|
2692 | }
|
---|
2693 |
|
---|
2694 |
|
---|
2695 | /**
|
---|
2696 | * Hook for preparing to use the host FPU for AVX.
|
---|
2697 | *
|
---|
2698 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2699 | *
|
---|
2700 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2701 | */
|
---|
2702 | DECLINLINE(void) iemFpuPrepareUsageAvx(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2703 | {
|
---|
2704 | iemFpuPrepareUsage(pVCpu);
|
---|
2705 | }
|
---|
2706 |
|
---|
2707 |
|
---|
2708 | /**
|
---|
2709 | * Hook for actualizing the guest FPU state before the interpreter reads it.
|
---|
2710 | *
|
---|
2711 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2712 | *
|
---|
2713 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2714 | */
|
---|
2715 | DECLINLINE(void) iemFpuActualizeStateForRead(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2716 | {
|
---|
2717 | #ifdef IN_RING3
|
---|
2718 | NOREF(pVCpu);
|
---|
2719 | #else
|
---|
2720 | CPUMRZFpuStateActualizeForRead(pVCpu);
|
---|
2721 | #endif
|
---|
2722 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2723 | }
|
---|
2724 |
|
---|
2725 |
|
---|
2726 | /**
|
---|
2727 | * Hook for actualizing the guest FPU state before the interpreter changes it.
|
---|
2728 | *
|
---|
2729 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2730 | *
|
---|
2731 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2732 | */
|
---|
2733 | DECLINLINE(void) iemFpuActualizeStateForChange(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2734 | {
|
---|
2735 | #ifdef IN_RING3
|
---|
2736 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2737 | #else
|
---|
2738 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
2739 | #endif
|
---|
2740 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 |
|
---|
2744 | /**
|
---|
2745 | * Hook for actualizing the guest XMM0..15 and MXCSR register state for read
|
---|
2746 | * only.
|
---|
2747 | *
|
---|
2748 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2749 | *
|
---|
2750 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2751 | */
|
---|
2752 | DECLINLINE(void) iemFpuActualizeSseStateForRead(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2753 | {
|
---|
2754 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
2755 | NOREF(pVCpu);
|
---|
2756 | #else
|
---|
2757 | CPUMRZFpuStateActualizeSseForRead(pVCpu);
|
---|
2758 | #endif
|
---|
2759 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2760 | }
|
---|
2761 |
|
---|
2762 |
|
---|
2763 | /**
|
---|
2764 | * Hook for actualizing the guest XMM0..15 and MXCSR register state for
|
---|
2765 | * read+write.
|
---|
2766 | *
|
---|
2767 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2768 | *
|
---|
2769 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2770 | */
|
---|
2771 | DECLINLINE(void) iemFpuActualizeSseStateForChange(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2772 | {
|
---|
2773 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
2774 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2775 | #else
|
---|
2776 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
2777 | #endif
|
---|
2778 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2779 |
|
---|
2780 | /* Make sure any changes are loaded the next time around. */
|
---|
2781 | pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_SSE;
|
---|
2782 | }
|
---|
2783 |
|
---|
2784 |
|
---|
2785 | /**
|
---|
2786 | * Hook for actualizing the guest YMM0..15 and MXCSR register state for read
|
---|
2787 | * only.
|
---|
2788 | *
|
---|
2789 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2790 | *
|
---|
2791 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2792 | */
|
---|
2793 | DECLINLINE(void) iemFpuActualizeAvxStateForRead(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2794 | {
|
---|
2795 | #ifdef IN_RING3
|
---|
2796 | NOREF(pVCpu);
|
---|
2797 | #else
|
---|
2798 | CPUMRZFpuStateActualizeAvxForRead(pVCpu);
|
---|
2799 | #endif
|
---|
2800 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2801 | }
|
---|
2802 |
|
---|
2803 |
|
---|
2804 | /**
|
---|
2805 | * Hook for actualizing the guest YMM0..15 and MXCSR register state for
|
---|
2806 | * read+write.
|
---|
2807 | *
|
---|
2808 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2809 | *
|
---|
2810 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2811 | */
|
---|
2812 | DECLINLINE(void) iemFpuActualizeAvxStateForChange(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2813 | {
|
---|
2814 | #ifdef IN_RING3
|
---|
2815 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2816 | #else
|
---|
2817 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
2818 | #endif
|
---|
2819 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2820 |
|
---|
2821 | /* Just assume we're going to make changes to the SSE and YMM_HI parts. */
|
---|
2822 | pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_YMM | XSAVE_C_SSE;
|
---|
2823 | }
|
---|
2824 |
|
---|
2825 |
|
---|
2826 | /**
|
---|
2827 | * Stores a QNaN value into a FPU register.
|
---|
2828 | *
|
---|
2829 | * @param pReg Pointer to the register.
|
---|
2830 | */
|
---|
2831 | DECLINLINE(void) iemFpuStoreQNan(PRTFLOAT80U pReg) RT_NOEXCEPT
|
---|
2832 | {
|
---|
2833 | pReg->au32[0] = UINT32_C(0x00000000);
|
---|
2834 | pReg->au32[1] = UINT32_C(0xc0000000);
|
---|
2835 | pReg->au16[4] = UINT16_C(0xffff);
|
---|
2836 | }
|
---|
2837 |
|
---|
2838 |
|
---|
2839 | /**
|
---|
2840 | * Updates the FOP, FPU.CS and FPUIP registers, extended version.
|
---|
2841 | *
|
---|
2842 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2843 | * @param pFpuCtx The FPU context.
|
---|
2844 | * @param uFpuOpcode The FPU opcode value (see IEMCPU::uFpuOpcode).
|
---|
2845 | */
|
---|
2846 | DECLINLINE(void) iemFpuUpdateOpcodeAndIpWorkerEx(PVMCPUCC pVCpu, PX86FXSTATE pFpuCtx, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
2847 | {
|
---|
2848 | Assert(uFpuOpcode != UINT16_MAX);
|
---|
2849 | pFpuCtx->FOP = uFpuOpcode;
|
---|
2850 | /** @todo x87.CS and FPUIP needs to be kept seperately. */
|
---|
2851 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
2852 | {
|
---|
2853 | /** @todo Testcase: making assumptions about how FPUIP and FPUDP are handled
|
---|
2854 | * happens in real mode here based on the fnsave and fnstenv images. */
|
---|
2855 | pFpuCtx->CS = 0;
|
---|
2856 | pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.eip | ((uint32_t)pVCpu->cpum.GstCtx.cs.Sel << 4);
|
---|
2857 | }
|
---|
2858 | else if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
2859 | {
|
---|
2860 | pFpuCtx->CS = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2861 | pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
|
---|
2862 | }
|
---|
2863 | else
|
---|
2864 | *(uint64_t *)&pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
|
---|
2865 | }
|
---|
2866 |
|
---|
2867 |
|
---|
2868 | /**
|
---|
2869 | * Marks the specified stack register as free (for FFREE).
|
---|
2870 | *
|
---|
2871 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2872 | * @param iStReg The register to free.
|
---|
2873 | */
|
---|
2874 | DECLINLINE(void) iemFpuStackFree(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT
|
---|
2875 | {
|
---|
2876 | Assert(iStReg < 8);
|
---|
2877 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2878 | uint8_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
2879 | pFpuCtx->FTW &= ~RT_BIT(iReg);
|
---|
2880 | }
|
---|
2881 |
|
---|
2882 |
|
---|
2883 | /**
|
---|
2884 | * Increments FSW.TOP, i.e. pops an item off the stack without freeing it.
|
---|
2885 | *
|
---|
2886 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2887 | */
|
---|
2888 | DECLINLINE(void) iemFpuStackIncTop(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2889 | {
|
---|
2890 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2891 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
2892 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
2893 | uTop = (uTop + (1 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
2894 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
2895 | uFsw |= uTop;
|
---|
2896 | pFpuCtx->FSW = uFsw;
|
---|
2897 | }
|
---|
2898 |
|
---|
2899 |
|
---|
2900 | /**
|
---|
2901 | * Decrements FSW.TOP, i.e. push an item off the stack without storing anything.
|
---|
2902 | *
|
---|
2903 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2904 | */
|
---|
2905 | DECLINLINE(void) iemFpuStackDecTop(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2906 | {
|
---|
2907 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2908 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
2909 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
2910 | uTop = (uTop + (7 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
2911 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
2912 | uFsw |= uTop;
|
---|
2913 | pFpuCtx->FSW = uFsw;
|
---|
2914 | }
|
---|
2915 |
|
---|
2916 |
|
---|
2917 |
|
---|
2918 |
|
---|
2919 | DECLINLINE(int) iemFpuStRegNotEmpty(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT
|
---|
2920 | {
|
---|
2921 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2922 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
2923 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
2924 | return VINF_SUCCESS;
|
---|
2925 | return VERR_NOT_FOUND;
|
---|
2926 | }
|
---|
2927 |
|
---|
2928 |
|
---|
2929 | DECLINLINE(int) iemFpuStRegNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg, PCRTFLOAT80U *ppRef) RT_NOEXCEPT
|
---|
2930 | {
|
---|
2931 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2932 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
2933 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
2934 | {
|
---|
2935 | *ppRef = &pFpuCtx->aRegs[iStReg].r80;
|
---|
2936 | return VINF_SUCCESS;
|
---|
2937 | }
|
---|
2938 | return VERR_NOT_FOUND;
|
---|
2939 | }
|
---|
2940 |
|
---|
2941 |
|
---|
2942 | DECLINLINE(int) iemFpu2StRegsNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0,
|
---|
2943 | uint8_t iStReg1, PCRTFLOAT80U *ppRef1) RT_NOEXCEPT
|
---|
2944 | {
|
---|
2945 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2946 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2947 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
2948 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
2949 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
2950 | {
|
---|
2951 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
2952 | *ppRef1 = &pFpuCtx->aRegs[iStReg1].r80;
|
---|
2953 | return VINF_SUCCESS;
|
---|
2954 | }
|
---|
2955 | return VERR_NOT_FOUND;
|
---|
2956 | }
|
---|
2957 |
|
---|
2958 |
|
---|
2959 | DECLINLINE(int) iemFpu2StRegsNotEmptyRefFirst(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0, uint8_t iStReg1) RT_NOEXCEPT
|
---|
2960 | {
|
---|
2961 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2962 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2963 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
2964 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
2965 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
2966 | {
|
---|
2967 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
2968 | return VINF_SUCCESS;
|
---|
2969 | }
|
---|
2970 | return VERR_NOT_FOUND;
|
---|
2971 | }
|
---|
2972 |
|
---|
2973 |
|
---|
2974 | /**
|
---|
2975 | * Rotates the stack registers when setting new TOS.
|
---|
2976 | *
|
---|
2977 | * @param pFpuCtx The FPU context.
|
---|
2978 | * @param iNewTop New TOS value.
|
---|
2979 | * @remarks We only do this to speed up fxsave/fxrstor which
|
---|
2980 | * arrange the FP registers in stack order.
|
---|
2981 | * MUST be done before writing the new TOS (FSW).
|
---|
2982 | */
|
---|
2983 | DECLINLINE(void) iemFpuRotateStackSetTop(PX86FXSTATE pFpuCtx, uint16_t iNewTop) RT_NOEXCEPT
|
---|
2984 | {
|
---|
2985 | uint16_t iOldTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2986 | RTFLOAT80U ar80Temp[8];
|
---|
2987 |
|
---|
2988 | if (iOldTop == iNewTop)
|
---|
2989 | return;
|
---|
2990 |
|
---|
2991 | /* Unscrew the stack and get it into 'native' order. */
|
---|
2992 | ar80Temp[0] = pFpuCtx->aRegs[(8 - iOldTop + 0) & X86_FSW_TOP_SMASK].r80;
|
---|
2993 | ar80Temp[1] = pFpuCtx->aRegs[(8 - iOldTop + 1) & X86_FSW_TOP_SMASK].r80;
|
---|
2994 | ar80Temp[2] = pFpuCtx->aRegs[(8 - iOldTop + 2) & X86_FSW_TOP_SMASK].r80;
|
---|
2995 | ar80Temp[3] = pFpuCtx->aRegs[(8 - iOldTop + 3) & X86_FSW_TOP_SMASK].r80;
|
---|
2996 | ar80Temp[4] = pFpuCtx->aRegs[(8 - iOldTop + 4) & X86_FSW_TOP_SMASK].r80;
|
---|
2997 | ar80Temp[5] = pFpuCtx->aRegs[(8 - iOldTop + 5) & X86_FSW_TOP_SMASK].r80;
|
---|
2998 | ar80Temp[6] = pFpuCtx->aRegs[(8 - iOldTop + 6) & X86_FSW_TOP_SMASK].r80;
|
---|
2999 | ar80Temp[7] = pFpuCtx->aRegs[(8 - iOldTop + 7) & X86_FSW_TOP_SMASK].r80;
|
---|
3000 |
|
---|
3001 | /* Now rotate the stack to the new position. */
|
---|
3002 | pFpuCtx->aRegs[0].r80 = ar80Temp[(iNewTop + 0) & X86_FSW_TOP_SMASK];
|
---|
3003 | pFpuCtx->aRegs[1].r80 = ar80Temp[(iNewTop + 1) & X86_FSW_TOP_SMASK];
|
---|
3004 | pFpuCtx->aRegs[2].r80 = ar80Temp[(iNewTop + 2) & X86_FSW_TOP_SMASK];
|
---|
3005 | pFpuCtx->aRegs[3].r80 = ar80Temp[(iNewTop + 3) & X86_FSW_TOP_SMASK];
|
---|
3006 | pFpuCtx->aRegs[4].r80 = ar80Temp[(iNewTop + 4) & X86_FSW_TOP_SMASK];
|
---|
3007 | pFpuCtx->aRegs[5].r80 = ar80Temp[(iNewTop + 5) & X86_FSW_TOP_SMASK];
|
---|
3008 | pFpuCtx->aRegs[6].r80 = ar80Temp[(iNewTop + 6) & X86_FSW_TOP_SMASK];
|
---|
3009 | pFpuCtx->aRegs[7].r80 = ar80Temp[(iNewTop + 7) & X86_FSW_TOP_SMASK];
|
---|
3010 | }
|
---|
3011 |
|
---|
3012 |
|
---|
3013 | /**
|
---|
3014 | * Updates the FPU exception status after FCW is changed.
|
---|
3015 | *
|
---|
3016 | * @param pFpuCtx The FPU context.
|
---|
3017 | */
|
---|
3018 | DECLINLINE(void) iemFpuRecalcExceptionStatus(PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
3019 | {
|
---|
3020 | uint16_t u16Fsw = pFpuCtx->FSW;
|
---|
3021 | if ((u16Fsw & X86_FSW_XCPT_MASK) & ~(pFpuCtx->FCW & X86_FCW_XCPT_MASK))
|
---|
3022 | u16Fsw |= X86_FSW_ES | X86_FSW_B;
|
---|
3023 | else
|
---|
3024 | u16Fsw &= ~(X86_FSW_ES | X86_FSW_B);
|
---|
3025 | pFpuCtx->FSW = u16Fsw;
|
---|
3026 | }
|
---|
3027 |
|
---|
3028 |
|
---|
3029 | /**
|
---|
3030 | * Calculates the full FTW (FPU tag word) for use in FNSTENV and FNSAVE.
|
---|
3031 | *
|
---|
3032 | * @returns The full FTW.
|
---|
3033 | * @param pFpuCtx The FPU context.
|
---|
3034 | */
|
---|
3035 | DECLINLINE(uint16_t) iemFpuCalcFullFtw(PCX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
3036 | {
|
---|
3037 | uint8_t const u8Ftw = (uint8_t)pFpuCtx->FTW;
|
---|
3038 | uint16_t u16Ftw = 0;
|
---|
3039 | unsigned const iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
3040 | for (unsigned iSt = 0; iSt < 8; iSt++)
|
---|
3041 | {
|
---|
3042 | unsigned const iReg = (iSt + iTop) & 7;
|
---|
3043 | if (!(u8Ftw & RT_BIT(iReg)))
|
---|
3044 | u16Ftw |= 3 << (iReg * 2); /* empty */
|
---|
3045 | else
|
---|
3046 | {
|
---|
3047 | uint16_t uTag;
|
---|
3048 | PCRTFLOAT80U const pr80Reg = &pFpuCtx->aRegs[iSt].r80;
|
---|
3049 | if (pr80Reg->s.uExponent == 0x7fff)
|
---|
3050 | uTag = 2; /* Exponent is all 1's => Special. */
|
---|
3051 | else if (pr80Reg->s.uExponent == 0x0000)
|
---|
3052 | {
|
---|
3053 | if (pr80Reg->s.uMantissa == 0x0000)
|
---|
3054 | uTag = 1; /* All bits are zero => Zero. */
|
---|
3055 | else
|
---|
3056 | uTag = 2; /* Must be special. */
|
---|
3057 | }
|
---|
3058 | else if (pr80Reg->s.uMantissa & RT_BIT_64(63)) /* The J bit. */
|
---|
3059 | uTag = 0; /* Valid. */
|
---|
3060 | else
|
---|
3061 | uTag = 2; /* Must be special. */
|
---|
3062 |
|
---|
3063 | u16Ftw |= uTag << (iReg * 2);
|
---|
3064 | }
|
---|
3065 | }
|
---|
3066 |
|
---|
3067 | return u16Ftw;
|
---|
3068 | }
|
---|
3069 |
|
---|
3070 |
|
---|
3071 | /**
|
---|
3072 | * Converts a full FTW to a compressed one (for use in FLDENV and FRSTOR).
|
---|
3073 | *
|
---|
3074 | * @returns The compressed FTW.
|
---|
3075 | * @param u16FullFtw The full FTW to convert.
|
---|
3076 | */
|
---|
3077 | DECLINLINE(uint16_t) iemFpuCompressFtw(uint16_t u16FullFtw) RT_NOEXCEPT
|
---|
3078 | {
|
---|
3079 | uint8_t u8Ftw = 0;
|
---|
3080 | for (unsigned i = 0; i < 8; i++)
|
---|
3081 | {
|
---|
3082 | if ((u16FullFtw & 3) != 3 /*empty*/)
|
---|
3083 | u8Ftw |= RT_BIT(i);
|
---|
3084 | u16FullFtw >>= 2;
|
---|
3085 | }
|
---|
3086 |
|
---|
3087 | return u8Ftw;
|
---|
3088 | }
|
---|
3089 |
|
---|
3090 | /** @} */
|
---|
3091 |
|
---|
3092 |
|
---|
3093 | /** @name Memory access.
|
---|
3094 | *
|
---|
3095 | * @{
|
---|
3096 | */
|
---|
3097 |
|
---|
3098 |
|
---|
3099 | /**
|
---|
3100 | * Checks whether alignment checks are enabled or not.
|
---|
3101 | *
|
---|
3102 | * @returns true if enabled, false if not.
|
---|
3103 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3104 | */
|
---|
3105 | DECLINLINE(bool) iemMemAreAlignmentChecksEnabled(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
3106 | {
|
---|
3107 | AssertCompile(X86_CR0_AM == X86_EFL_AC);
|
---|
3108 | return IEM_GET_CPL(pVCpu) == 3
|
---|
3109 | && (((uint32_t)pVCpu->cpum.GstCtx.cr0 & pVCpu->cpum.GstCtx.eflags.u) & X86_CR0_AM);
|
---|
3110 | }
|
---|
3111 |
|
---|
3112 | /**
|
---|
3113 | * Checks if the given segment can be written to, raise the appropriate
|
---|
3114 | * exception if not.
|
---|
3115 | *
|
---|
3116 | * @returns VBox strict status code.
|
---|
3117 | *
|
---|
3118 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3119 | * @param pHid Pointer to the hidden register.
|
---|
3120 | * @param iSegReg The register number.
|
---|
3121 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
3122 | * segment. (In 64-bit code it may differ from the
|
---|
3123 | * base in the hidden segment.)
|
---|
3124 | */
|
---|
3125 | DECLINLINE(VBOXSTRICTRC) iemMemSegCheckWriteAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid,
|
---|
3126 | uint8_t iSegReg, uint64_t *pu64BaseAddr) RT_NOEXCEPT
|
---|
3127 | {
|
---|
3128 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
3129 |
|
---|
3130 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
3131 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
3132 | else
|
---|
3133 | {
|
---|
3134 | if (!pHid->Attr.n.u1Present)
|
---|
3135 | {
|
---|
3136 | uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
|
---|
3137 | AssertRelease(uSel == 0);
|
---|
3138 | Log(("iemMemSegCheckWriteAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
|
---|
3139 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3140 | }
|
---|
3141 |
|
---|
3142 | if ( ( (pHid->Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
3143 | || !(pHid->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
3144 | && !IEM_IS_64BIT_CODE(pVCpu) )
|
---|
3145 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
3146 | *pu64BaseAddr = pHid->u64Base;
|
---|
3147 | }
|
---|
3148 | return VINF_SUCCESS;
|
---|
3149 | }
|
---|
3150 |
|
---|
3151 |
|
---|
3152 | /**
|
---|
3153 | * Checks if the given segment can be read from, raise the appropriate
|
---|
3154 | * exception if not.
|
---|
3155 | *
|
---|
3156 | * @returns VBox strict status code.
|
---|
3157 | *
|
---|
3158 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3159 | * @param pHid Pointer to the hidden register.
|
---|
3160 | * @param iSegReg The register number.
|
---|
3161 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
3162 | * segment. (In 64-bit code it may differ from the
|
---|
3163 | * base in the hidden segment.)
|
---|
3164 | */
|
---|
3165 | DECLINLINE(VBOXSTRICTRC) iemMemSegCheckReadAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid,
|
---|
3166 | uint8_t iSegReg, uint64_t *pu64BaseAddr) RT_NOEXCEPT
|
---|
3167 | {
|
---|
3168 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
3169 |
|
---|
3170 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
3171 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
3172 | else
|
---|
3173 | {
|
---|
3174 | if (!pHid->Attr.n.u1Present)
|
---|
3175 | {
|
---|
3176 | uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
|
---|
3177 | AssertRelease(uSel == 0);
|
---|
3178 | Log(("iemMemSegCheckReadAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
|
---|
3179 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3180 | }
|
---|
3181 |
|
---|
3182 | if ((pHid->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
3183 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
3184 | *pu64BaseAddr = pHid->u64Base;
|
---|
3185 | }
|
---|
3186 | return VINF_SUCCESS;
|
---|
3187 | }
|
---|
3188 |
|
---|
3189 |
|
---|
3190 | /**
|
---|
3191 | * Maps a physical page.
|
---|
3192 | *
|
---|
3193 | * @returns VBox status code (see PGMR3PhysTlbGCPhys2Ptr).
|
---|
3194 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3195 | * @param GCPhysMem The physical address.
|
---|
3196 | * @param fAccess The intended access.
|
---|
3197 | * @param ppvMem Where to return the mapping address.
|
---|
3198 | * @param pLock The PGM lock.
|
---|
3199 | */
|
---|
3200 | DECLINLINE(int) iemMemPageMap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess,
|
---|
3201 | void **ppvMem, PPGMPAGEMAPLOCK pLock) RT_NOEXCEPT
|
---|
3202 | {
|
---|
3203 | #ifdef IEM_LOG_MEMORY_WRITES
|
---|
3204 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
3205 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
3206 | #endif
|
---|
3207 |
|
---|
3208 | /** @todo This API may require some improving later. A private deal with PGM
|
---|
3209 | * regarding locking and unlocking needs to be struct. A couple of TLBs
|
---|
3210 | * living in PGM, but with publicly accessible inlined access methods
|
---|
3211 | * could perhaps be an even better solution. */
|
---|
3212 | int rc = PGMPhysIemGCPhys2Ptr(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
3213 | GCPhysMem,
|
---|
3214 | RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE),
|
---|
3215 | RT_BOOL(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS),
|
---|
3216 | ppvMem,
|
---|
3217 | pLock);
|
---|
3218 | /*Log(("PGMPhysIemGCPhys2Ptr %Rrc pLock=%.*Rhxs\n", rc, sizeof(*pLock), pLock));*/
|
---|
3219 | AssertMsg(rc == VINF_SUCCESS || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
|
---|
3220 |
|
---|
3221 | return rc;
|
---|
3222 | }
|
---|
3223 |
|
---|
3224 |
|
---|
3225 | /**
|
---|
3226 | * Unmap a page previously mapped by iemMemPageMap.
|
---|
3227 | *
|
---|
3228 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3229 | * @param GCPhysMem The physical address.
|
---|
3230 | * @param fAccess The intended access.
|
---|
3231 | * @param pvMem What iemMemPageMap returned.
|
---|
3232 | * @param pLock The PGM lock.
|
---|
3233 | */
|
---|
3234 | DECLINLINE(void) iemMemPageUnmap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess,
|
---|
3235 | const void *pvMem, PPGMPAGEMAPLOCK pLock) RT_NOEXCEPT
|
---|
3236 | {
|
---|
3237 | NOREF(pVCpu);
|
---|
3238 | NOREF(GCPhysMem);
|
---|
3239 | NOREF(fAccess);
|
---|
3240 | NOREF(pvMem);
|
---|
3241 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), pLock);
|
---|
3242 | }
|
---|
3243 |
|
---|
3244 | #ifdef IEM_WITH_SETJMP
|
---|
3245 |
|
---|
3246 | /** @todo slim this down */
|
---|
3247 | DECL_INLINE_THROW(RTGCPTR) iemMemApplySegmentToReadJmp(PVMCPUCC pVCpu, uint8_t iSegReg,
|
---|
3248 | size_t cbMem, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
3249 | {
|
---|
3250 | Assert(cbMem >= 1);
|
---|
3251 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
3252 |
|
---|
3253 | /*
|
---|
3254 | * 64-bit mode is simpler.
|
---|
3255 | */
|
---|
3256 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
3257 | {
|
---|
3258 | if (iSegReg >= X86_SREG_FS && iSegReg != UINT8_MAX)
|
---|
3259 | {
|
---|
3260 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
3261 | PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
3262 | GCPtrMem += pSel->u64Base;
|
---|
3263 | }
|
---|
3264 |
|
---|
3265 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
3266 | return GCPtrMem;
|
---|
3267 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
3268 | }
|
---|
3269 | /*
|
---|
3270 | * 16-bit and 32-bit segmentation.
|
---|
3271 | */
|
---|
3272 | else if (iSegReg != UINT8_MAX)
|
---|
3273 | {
|
---|
3274 | /** @todo Does this apply to segments with 4G-1 limit? */
|
---|
3275 | uint32_t const GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem - 1;
|
---|
3276 | if (RT_LIKELY(GCPtrLast32 >= (uint32_t)GCPtrMem))
|
---|
3277 | {
|
---|
3278 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
3279 | PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
3280 | switch (pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
|
---|
3281 | | X86_SEL_TYPE_READ | X86_SEL_TYPE_WRITE /* same as read */
|
---|
3282 | | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_CONF /* same as down */
|
---|
3283 | | X86_SEL_TYPE_CODE))
|
---|
3284 | {
|
---|
3285 | case X86DESCATTR_P: /* readonly data, expand up */
|
---|
3286 | case X86DESCATTR_P | X86_SEL_TYPE_WRITE: /* writable data, expand up */
|
---|
3287 | case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ: /* code, read-only */
|
---|
3288 | case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_CONF: /* conforming code, read-only */
|
---|
3289 | /* expand up */
|
---|
3290 | if (RT_LIKELY(GCPtrLast32 <= pSel->u32Limit))
|
---|
3291 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
3292 | Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x vs %#x\n",
|
---|
3293 | (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit));
|
---|
3294 | break;
|
---|
3295 |
|
---|
3296 | case X86DESCATTR_P | X86_SEL_TYPE_DOWN: /* readonly data, expand down */
|
---|
3297 | case X86DESCATTR_P | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_WRITE: /* writable data, expand down */
|
---|
3298 | /* expand down */
|
---|
3299 | if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
|
---|
3300 | && ( pSel->Attr.n.u1DefBig
|
---|
3301 | || GCPtrLast32 <= UINT32_C(0xffff)) ))
|
---|
3302 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
3303 | Log10(("iemMemApplySegmentToReadJmp: expand down out of bounds %#x..%#x vs %#x..%#x\n",
|
---|
3304 | (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit, pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT16_MAX));
|
---|
3305 | break;
|
---|
3306 |
|
---|
3307 | default:
|
---|
3308 | Log10(("iemMemApplySegmentToReadJmp: bad selector %#x\n", pSel->Attr.u));
|
---|
3309 | iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
3310 | break;
|
---|
3311 | }
|
---|
3312 | }
|
---|
3313 | Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x\n",(uint32_t)GCPtrMem, GCPtrLast32));
|
---|
3314 | iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
3315 | }
|
---|
3316 | /*
|
---|
3317 | * 32-bit flat address.
|
---|
3318 | */
|
---|
3319 | else
|
---|
3320 | return GCPtrMem;
|
---|
3321 | }
|
---|
3322 |
|
---|
3323 |
|
---|
3324 | /** @todo slim this down */
|
---|
3325 | DECL_INLINE_THROW(RTGCPTR) iemMemApplySegmentToWriteJmp(PVMCPUCC pVCpu, uint8_t iSegReg, size_t cbMem,
|
---|
3326 | RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
3327 | {
|
---|
3328 | Assert(cbMem >= 1);
|
---|
3329 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
3330 |
|
---|
3331 | /*
|
---|
3332 | * 64-bit mode is simpler.
|
---|
3333 | */
|
---|
3334 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
3335 | {
|
---|
3336 | if (iSegReg >= X86_SREG_FS)
|
---|
3337 | {
|
---|
3338 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
3339 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
3340 | GCPtrMem += pSel->u64Base;
|
---|
3341 | }
|
---|
3342 |
|
---|
3343 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
3344 | return GCPtrMem;
|
---|
3345 | }
|
---|
3346 | /*
|
---|
3347 | * 16-bit and 32-bit segmentation.
|
---|
3348 | */
|
---|
3349 | else
|
---|
3350 | {
|
---|
3351 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
3352 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
3353 | uint32_t const fRelevantAttrs = pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
|
---|
3354 | | X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN);
|
---|
3355 | if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE)) /* data, expand up */
|
---|
3356 | {
|
---|
3357 | /* expand up */
|
---|
3358 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
3359 | if (RT_LIKELY( GCPtrLast32 > pSel->u32Limit
|
---|
3360 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
3361 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
3362 | }
|
---|
3363 | else if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN)) /* data, expand up */
|
---|
3364 | {
|
---|
3365 | /* expand down */
|
---|
3366 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
3367 | if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
|
---|
3368 | && GCPtrLast32 <= (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
|
---|
3369 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
3370 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
3371 | }
|
---|
3372 | else
|
---|
3373 | iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
3374 | iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
3375 | }
|
---|
3376 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
3377 | }
|
---|
3378 |
|
---|
3379 | #endif /* IEM_WITH_SETJMP */
|
---|
3380 |
|
---|
3381 | /**
|
---|
3382 | * Fakes a long mode stack selector for SS = 0.
|
---|
3383 | *
|
---|
3384 | * @param pDescSs Where to return the fake stack descriptor.
|
---|
3385 | * @param uDpl The DPL we want.
|
---|
3386 | */
|
---|
3387 | DECLINLINE(void) iemMemFakeStackSelDesc(PIEMSELDESC pDescSs, uint32_t uDpl) RT_NOEXCEPT
|
---|
3388 | {
|
---|
3389 | pDescSs->Long.au64[0] = 0;
|
---|
3390 | pDescSs->Long.au64[1] = 0;
|
---|
3391 | pDescSs->Long.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
|
---|
3392 | pDescSs->Long.Gen.u1DescType = 1; /* 1 = code / data, 0 = system. */
|
---|
3393 | pDescSs->Long.Gen.u2Dpl = uDpl;
|
---|
3394 | pDescSs->Long.Gen.u1Present = 1;
|
---|
3395 | pDescSs->Long.Gen.u1Long = 1;
|
---|
3396 | }
|
---|
3397 |
|
---|
3398 | /** @} */
|
---|
3399 |
|
---|
3400 |
|
---|
3401 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3402 |
|
---|
3403 | /**
|
---|
3404 | * Gets CR0 fixed-0 bits in VMX operation.
|
---|
3405 | *
|
---|
3406 | * We do this rather than fetching what we report to the guest (in
|
---|
3407 | * IA32_VMX_CR0_FIXED0 MSR) because real hardware (and so do we) report the same
|
---|
3408 | * values regardless of whether unrestricted-guest feature is available on the CPU.
|
---|
3409 | *
|
---|
3410 | * @returns CR0 fixed-0 bits.
|
---|
3411 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3412 | * @param fVmxNonRootMode Whether the CR0 fixed-0 bits for VMX non-root mode
|
---|
3413 | * must be returned. When @c false, the CR0 fixed-0
|
---|
3414 | * bits for VMX root mode is returned.
|
---|
3415 | *
|
---|
3416 | */
|
---|
3417 | DECLINLINE(uint64_t) iemVmxGetCr0Fixed0(PCVMCPUCC pVCpu, bool fVmxNonRootMode) RT_NOEXCEPT
|
---|
3418 | {
|
---|
3419 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
3420 |
|
---|
3421 | PCVMXMSRS pMsrs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs;
|
---|
3422 | if ( fVmxNonRootMode
|
---|
3423 | && (pMsrs->ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST))
|
---|
3424 | return VMX_V_CR0_FIXED0_UX;
|
---|
3425 | return VMX_V_CR0_FIXED0;
|
---|
3426 | }
|
---|
3427 |
|
---|
3428 |
|
---|
3429 | /**
|
---|
3430 | * Sets virtual-APIC write emulation as pending.
|
---|
3431 | *
|
---|
3432 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3433 | * @param offApic The offset in the virtual-APIC page that was written.
|
---|
3434 | */
|
---|
3435 | DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic) RT_NOEXCEPT
|
---|
3436 | {
|
---|
3437 | Assert(offApic < XAPIC_OFF_END + 4);
|
---|
3438 |
|
---|
3439 | /*
|
---|
3440 | * Record the currently updated APIC offset, as we need this later for figuring
|
---|
3441 | * out whether to perform TPR, EOI or self-IPI virtualization as well as well
|
---|
3442 | * as for supplying the exit qualification when causing an APIC-write VM-exit.
|
---|
3443 | */
|
---|
3444 | pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
|
---|
3445 |
|
---|
3446 | /*
|
---|
3447 | * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
|
---|
3448 | * virtualization or APIC-write emulation).
|
---|
3449 | */
|
---|
3450 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
3451 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
|
---|
3452 | }
|
---|
3453 |
|
---|
3454 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
3455 |
|
---|
3456 | #endif /* !VMM_INCLUDED_SRC_include_IEMInline_h */
|
---|