VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInline.h@ 97406

Last change on this file since 97406 was 97406, checked in by vboxsync, 2 years ago

VMM/IEM,CPUM: Partial single stepping support in the interpreter. bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 92.1 KB
Line 
1/* $Id: IEMInline.h 97406 2022-11-05 12:42:14Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Inlined Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInline_h
29#define VMM_INCLUDED_SRC_include_IEMInline_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35
36/**
37 * Makes status code addjustments (pass up from I/O and access handler)
38 * as well as maintaining statistics.
39 *
40 * @returns Strict VBox status code to pass up.
41 * @param pVCpu The cross context virtual CPU structure of the calling thread.
42 * @param rcStrict The status from executing an instruction.
43 */
44DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecStatusCodeFiddling(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
45{
46 if (rcStrict != VINF_SUCCESS)
47 {
48 if (RT_SUCCESS(rcStrict))
49 {
50 AssertMsg( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
51 || rcStrict == VINF_IOM_R3_IOPORT_READ
52 || rcStrict == VINF_IOM_R3_IOPORT_WRITE
53 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
54 || rcStrict == VINF_IOM_R3_MMIO_READ
55 || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE
56 || rcStrict == VINF_IOM_R3_MMIO_WRITE
57 || rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE
58 || rcStrict == VINF_CPUM_R3_MSR_READ
59 || rcStrict == VINF_CPUM_R3_MSR_WRITE
60 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
61 || rcStrict == VINF_EM_RAW_TO_R3
62 || rcStrict == VINF_EM_TRIPLE_FAULT
63 || rcStrict == VINF_GIM_R3_HYPERCALL
64 /* raw-mode / virt handlers only: */
65 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT
66 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT
67 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT
68 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT
69 || rcStrict == VINF_SELM_SYNC_GDT
70 || rcStrict == VINF_CSAM_PENDING_ACTION
71 || rcStrict == VINF_PATM_CHECK_PATCH_PAGE
72 /* nested hw.virt codes: */
73 || rcStrict == VINF_VMX_VMEXIT
74 || rcStrict == VINF_VMX_INTERCEPT_NOT_ACTIVE
75 || rcStrict == VINF_VMX_MODIFIES_BEHAVIOR
76 || rcStrict == VINF_SVM_VMEXIT
77 , ("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
78/** @todo adjust for VINF_EM_RAW_EMULATE_INSTR. */
79 int32_t const rcPassUp = pVCpu->iem.s.rcPassUp;
80#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
81 if ( rcStrict == VINF_VMX_VMEXIT
82 && rcPassUp == VINF_SUCCESS)
83 rcStrict = VINF_SUCCESS;
84 else
85#endif
86#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
87 if ( rcStrict == VINF_SVM_VMEXIT
88 && rcPassUp == VINF_SUCCESS)
89 rcStrict = VINF_SUCCESS;
90 else
91#endif
92 if (rcPassUp == VINF_SUCCESS)
93 pVCpu->iem.s.cRetInfStatuses++;
94 else if ( rcPassUp < VINF_EM_FIRST
95 || rcPassUp > VINF_EM_LAST
96 || rcPassUp < VBOXSTRICTRC_VAL(rcStrict))
97 {
98 Log(("IEM: rcPassUp=%Rrc! rcStrict=%Rrc\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
99 pVCpu->iem.s.cRetPassUpStatus++;
100 rcStrict = rcPassUp;
101 }
102 else
103 {
104 Log(("IEM: rcPassUp=%Rrc rcStrict=%Rrc!\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
105 pVCpu->iem.s.cRetInfStatuses++;
106 }
107 }
108 else if (rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
109 pVCpu->iem.s.cRetAspectNotImplemented++;
110 else if (rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)
111 pVCpu->iem.s.cRetInstrNotImplemented++;
112 else
113 pVCpu->iem.s.cRetErrStatuses++;
114 }
115 else if (pVCpu->iem.s.rcPassUp != VINF_SUCCESS)
116 {
117 pVCpu->iem.s.cRetPassUpStatus++;
118 rcStrict = pVCpu->iem.s.rcPassUp;
119 }
120
121 return rcStrict;
122}
123
124
125/**
126 * Sets the pass up status.
127 *
128 * @returns VINF_SUCCESS.
129 * @param pVCpu The cross context virtual CPU structure of the
130 * calling thread.
131 * @param rcPassUp The pass up status. Must be informational.
132 * VINF_SUCCESS is not allowed.
133 */
134DECLINLINE(int) iemSetPassUpStatus(PVMCPUCC pVCpu, VBOXSTRICTRC rcPassUp)
135{
136 AssertRC(VBOXSTRICTRC_VAL(rcPassUp)); Assert(rcPassUp != VINF_SUCCESS);
137
138 int32_t const rcOldPassUp = pVCpu->iem.s.rcPassUp;
139 if (rcOldPassUp == VINF_SUCCESS)
140 pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
141 /* If both are EM scheduling codes, use EM priority rules. */
142 else if ( rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST
143 && rcPassUp >= VINF_EM_FIRST && rcPassUp <= VINF_EM_LAST)
144 {
145 if (rcPassUp < rcOldPassUp)
146 {
147 Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
148 pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
149 }
150 else
151 Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
152 }
153 /* Override EM scheduling with specific status code. */
154 else if (rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST)
155 {
156 Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
157 pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
158 }
159 /* Don't override specific status code, first come first served. */
160 else
161 Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
162 return VINF_SUCCESS;
163}
164
165
166/**
167 * Calculates the CPU mode.
168 *
169 * This is mainly for updating IEMCPU::enmCpuMode.
170 *
171 * @returns CPU mode.
172 * @param pVCpu The cross context virtual CPU structure of the
173 * calling thread.
174 */
175DECLINLINE(IEMMODE) iemCalcCpuMode(PVMCPUCC pVCpu)
176{
177 if (CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx))
178 return IEMMODE_64BIT;
179 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig) /** @todo check if this is correct... */
180 return IEMMODE_32BIT;
181 return IEMMODE_16BIT;
182}
183
184
185/**
186 * Initializes the execution state.
187 *
188 * @param pVCpu The cross context virtual CPU structure of the
189 * calling thread.
190 * @param fBypassHandlers Whether to bypass access handlers.
191 *
192 * @remarks Callers of this must call iemUninitExec() to undo potentially fatal
193 * side-effects in strict builds.
194 */
195DECLINLINE(void) iemInitExec(PVMCPUCC pVCpu, bool fBypassHandlers)
196{
197 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
198 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
199 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
200 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
201 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
202 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
203 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
204 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
205 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
206 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
207
208 pVCpu->iem.s.uCpl = CPUMGetGuestCPL(pVCpu);
209 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
210#ifdef VBOX_STRICT
211 pVCpu->iem.s.enmDefAddrMode = (IEMMODE)0xfe;
212 pVCpu->iem.s.enmEffAddrMode = (IEMMODE)0xfe;
213 pVCpu->iem.s.enmDefOpSize = (IEMMODE)0xfe;
214 pVCpu->iem.s.enmEffOpSize = (IEMMODE)0xfe;
215 pVCpu->iem.s.fPrefixes = 0xfeedbeef;
216 pVCpu->iem.s.uRexReg = 127;
217 pVCpu->iem.s.uRexB = 127;
218 pVCpu->iem.s.offModRm = 127;
219 pVCpu->iem.s.uRexIndex = 127;
220 pVCpu->iem.s.iEffSeg = 127;
221 pVCpu->iem.s.idxPrefix = 127;
222 pVCpu->iem.s.uVex3rdReg = 127;
223 pVCpu->iem.s.uVexLength = 127;
224 pVCpu->iem.s.fEvexStuff = 127;
225 pVCpu->iem.s.uFpuOpcode = UINT16_MAX;
226# ifdef IEM_WITH_CODE_TLB
227 pVCpu->iem.s.offInstrNextByte = UINT16_MAX;
228 pVCpu->iem.s.pbInstrBuf = NULL;
229 pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
230 pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
231 pVCpu->iem.s.offCurInstrStart = INT16_MAX;
232 pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
233# else
234 pVCpu->iem.s.offOpcode = 127;
235 pVCpu->iem.s.cbOpcode = 127;
236# endif
237#endif
238
239 pVCpu->iem.s.cActiveMappings = 0;
240 pVCpu->iem.s.iNextMapping = 0;
241 pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
242 pVCpu->iem.s.fBypassHandlers = fBypassHandlers;
243#if 0
244#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
245 if ( CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
246 && CPUMIsGuestVmxProcCtls2Set(pVCpu, &pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
247 {
248 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
249 Assert(pVmcs);
250 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
251 if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
252 {
253 int rc = PGMHandlerPhysicalRegister(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess, GCPhysApicAccess + X86_PAGE_4K_SIZE - 1,
254 pVCpu->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */,
255 NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */);
256 AssertRC(rc);
257 }
258 }
259#endif
260#endif
261}
262
263#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
264/**
265 * Performs a minimal reinitialization of the execution state.
266 *
267 * This is intended to be used by VM-exits, SMM, LOADALL and other similar
268 * 'world-switch' types operations on the CPU. Currently only nested
269 * hardware-virtualization uses it.
270 *
271 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
272 */
273DECLINLINE(void) iemReInitExec(PVMCPUCC pVCpu)
274{
275 IEMMODE const enmMode = iemCalcCpuMode(pVCpu);
276 uint8_t const uCpl = CPUMGetGuestCPL(pVCpu);
277
278 pVCpu->iem.s.uCpl = uCpl;
279 pVCpu->iem.s.enmCpuMode = enmMode;
280 pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
281 pVCpu->iem.s.enmEffAddrMode = enmMode;
282 if (enmMode != IEMMODE_64BIT)
283 {
284 pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
285 pVCpu->iem.s.enmEffOpSize = enmMode;
286 }
287 else
288 {
289 pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
290 pVCpu->iem.s.enmEffOpSize = enmMode;
291 }
292 pVCpu->iem.s.iEffSeg = X86_SREG_DS;
293#ifndef IEM_WITH_CODE_TLB
294 /** @todo Shouldn't we be doing this in IEMTlbInvalidateAll()? */
295 pVCpu->iem.s.offOpcode = 0;
296 pVCpu->iem.s.cbOpcode = 0;
297#endif
298 pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
299}
300#endif
301
302/**
303 * Counterpart to #iemInitExec that undoes evil strict-build stuff.
304 *
305 * @param pVCpu The cross context virtual CPU structure of the
306 * calling thread.
307 */
308DECLINLINE(void) iemUninitExec(PVMCPUCC pVCpu)
309{
310 /* Note! do not touch fInPatchCode here! (see iemUninitExecAndFiddleStatusAndMaybeReenter) */
311#ifdef VBOX_STRICT
312# ifdef IEM_WITH_CODE_TLB
313 NOREF(pVCpu);
314# else
315 pVCpu->iem.s.cbOpcode = 0;
316# endif
317#else
318 NOREF(pVCpu);
319#endif
320}
321
322
323/**
324 * Calls iemUninitExec, iemExecStatusCodeFiddling and iemRCRawMaybeReenter.
325 *
326 * Only calling iemRCRawMaybeReenter in raw-mode, obviously.
327 *
328 * @returns Fiddled strict vbox status code, ready to return to non-IEM caller.
329 * @param pVCpu The cross context virtual CPU structure of the calling thread.
330 * @param rcStrict The status code to fiddle.
331 */
332DECLINLINE(VBOXSTRICTRC) iemUninitExecAndFiddleStatusAndMaybeReenter(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
333{
334 iemUninitExec(pVCpu);
335 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
336}
337
338
339/**
340 * Macro used by the IEMExec* method to check the given instruction length.
341 *
342 * Will return on failure!
343 *
344 * @param a_cbInstr The given instruction length.
345 * @param a_cbMin The minimum length.
346 */
347#define IEMEXEC_ASSERT_INSTR_LEN_RETURN(a_cbInstr, a_cbMin) \
348 AssertMsgReturn((unsigned)(a_cbInstr) - (unsigned)(a_cbMin) <= (unsigned)15 - (unsigned)(a_cbMin), \
349 ("cbInstr=%u cbMin=%u\n", (a_cbInstr), (a_cbMin)), VERR_IEM_INVALID_INSTR_LENGTH)
350
351
352
353#ifndef IEM_WITH_SETJMP
354
355/**
356 * Fetches the next opcode byte.
357 *
358 * @returns Strict VBox status code.
359 * @param pVCpu The cross context virtual CPU structure of the
360 * calling thread.
361 * @param pu8 Where to return the opcode byte.
362 */
363DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU8(PVMCPUCC pVCpu, uint8_t *pu8)
364{
365 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
366 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
367 {
368 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
369 *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
370 return VINF_SUCCESS;
371 }
372 return iemOpcodeGetNextU8Slow(pVCpu, pu8);
373}
374
375#else /* IEM_WITH_SETJMP */
376
377/**
378 * Fetches the next opcode byte, longjmp on error.
379 *
380 * @returns The opcode byte.
381 * @param pVCpu The cross context virtual CPU structure of the calling thread.
382 */
383DECLINLINE(uint8_t) iemOpcodeGetNextU8Jmp(PVMCPUCC pVCpu)
384{
385# ifdef IEM_WITH_CODE_TLB
386 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
387 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
388 if (RT_LIKELY( pbBuf != NULL
389 && offBuf < pVCpu->iem.s.cbInstrBuf))
390 {
391 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
392 return pbBuf[offBuf];
393 }
394# else
395 uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
396 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
397 {
398 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
399 return pVCpu->iem.s.abOpcode[offOpcode];
400 }
401# endif
402 return iemOpcodeGetNextU8SlowJmp(pVCpu);
403}
404
405#endif /* IEM_WITH_SETJMP */
406
407/**
408 * Fetches the next opcode byte, returns automatically on failure.
409 *
410 * @param a_pu8 Where to return the opcode byte.
411 * @remark Implicitly references pVCpu.
412 */
413#ifndef IEM_WITH_SETJMP
414# define IEM_OPCODE_GET_NEXT_U8(a_pu8) \
415 do \
416 { \
417 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU8(pVCpu, (a_pu8)); \
418 if (rcStrict2 == VINF_SUCCESS) \
419 { /* likely */ } \
420 else \
421 return rcStrict2; \
422 } while (0)
423#else
424# define IEM_OPCODE_GET_NEXT_U8(a_pu8) (*(a_pu8) = iemOpcodeGetNextU8Jmp(pVCpu))
425#endif /* IEM_WITH_SETJMP */
426
427
428#ifndef IEM_WITH_SETJMP
429/**
430 * Fetches the next signed byte from the opcode stream.
431 *
432 * @returns Strict VBox status code.
433 * @param pVCpu The cross context virtual CPU structure of the calling thread.
434 * @param pi8 Where to return the signed byte.
435 */
436DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8(PVMCPUCC pVCpu, int8_t *pi8)
437{
438 return iemOpcodeGetNextU8(pVCpu, (uint8_t *)pi8);
439}
440#endif /* !IEM_WITH_SETJMP */
441
442
443/**
444 * Fetches the next signed byte from the opcode stream, returning automatically
445 * on failure.
446 *
447 * @param a_pi8 Where to return the signed byte.
448 * @remark Implicitly references pVCpu.
449 */
450#ifndef IEM_WITH_SETJMP
451# define IEM_OPCODE_GET_NEXT_S8(a_pi8) \
452 do \
453 { \
454 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8(pVCpu, (a_pi8)); \
455 if (rcStrict2 != VINF_SUCCESS) \
456 return rcStrict2; \
457 } while (0)
458#else /* IEM_WITH_SETJMP */
459# define IEM_OPCODE_GET_NEXT_S8(a_pi8) (*(a_pi8) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
460
461#endif /* IEM_WITH_SETJMP */
462
463
464#ifndef IEM_WITH_SETJMP
465/**
466 * Fetches the next signed byte from the opcode stream, extending it to
467 * unsigned 16-bit.
468 *
469 * @returns Strict VBox status code.
470 * @param pVCpu The cross context virtual CPU structure of the calling thread.
471 * @param pu16 Where to return the unsigned word.
472 */
473DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU16(PVMCPUCC pVCpu, uint16_t *pu16)
474{
475 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
476 if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
477 return iemOpcodeGetNextS8SxU16Slow(pVCpu, pu16);
478
479 *pu16 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
480 pVCpu->iem.s.offOpcode = offOpcode + 1;
481 return VINF_SUCCESS;
482}
483#endif /* !IEM_WITH_SETJMP */
484
485/**
486 * Fetches the next signed byte from the opcode stream and sign-extending it to
487 * a word, returning automatically on failure.
488 *
489 * @param a_pu16 Where to return the word.
490 * @remark Implicitly references pVCpu.
491 */
492#ifndef IEM_WITH_SETJMP
493# define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) \
494 do \
495 { \
496 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU16(pVCpu, (a_pu16)); \
497 if (rcStrict2 != VINF_SUCCESS) \
498 return rcStrict2; \
499 } while (0)
500#else
501# define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) (*(a_pu16) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
502#endif
503
504#ifndef IEM_WITH_SETJMP
505/**
506 * Fetches the next signed byte from the opcode stream, extending it to
507 * unsigned 32-bit.
508 *
509 * @returns Strict VBox status code.
510 * @param pVCpu The cross context virtual CPU structure of the calling thread.
511 * @param pu32 Where to return the unsigned dword.
512 */
513DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU32(PVMCPUCC pVCpu, uint32_t *pu32)
514{
515 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
516 if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
517 return iemOpcodeGetNextS8SxU32Slow(pVCpu, pu32);
518
519 *pu32 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
520 pVCpu->iem.s.offOpcode = offOpcode + 1;
521 return VINF_SUCCESS;
522}
523#endif /* !IEM_WITH_SETJMP */
524
525/**
526 * Fetches the next signed byte from the opcode stream and sign-extending it to
527 * a word, returning automatically on failure.
528 *
529 * @param a_pu32 Where to return the word.
530 * @remark Implicitly references pVCpu.
531 */
532#ifndef IEM_WITH_SETJMP
533#define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) \
534 do \
535 { \
536 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU32(pVCpu, (a_pu32)); \
537 if (rcStrict2 != VINF_SUCCESS) \
538 return rcStrict2; \
539 } while (0)
540#else
541# define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) (*(a_pu32) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
542#endif
543
544
545#ifndef IEM_WITH_SETJMP
546/**
547 * Fetches the next signed byte from the opcode stream, extending it to
548 * unsigned 64-bit.
549 *
550 * @returns Strict VBox status code.
551 * @param pVCpu The cross context virtual CPU structure of the calling thread.
552 * @param pu64 Where to return the unsigned qword.
553 */
554DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU64(PVMCPUCC pVCpu, uint64_t *pu64)
555{
556 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
557 if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
558 return iemOpcodeGetNextS8SxU64Slow(pVCpu, pu64);
559
560 *pu64 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
561 pVCpu->iem.s.offOpcode = offOpcode + 1;
562 return VINF_SUCCESS;
563}
564#endif /* !IEM_WITH_SETJMP */
565
566/**
567 * Fetches the next signed byte from the opcode stream and sign-extending it to
568 * a word, returning automatically on failure.
569 *
570 * @param a_pu64 Where to return the word.
571 * @remark Implicitly references pVCpu.
572 */
573#ifndef IEM_WITH_SETJMP
574# define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) \
575 do \
576 { \
577 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU64(pVCpu, (a_pu64)); \
578 if (rcStrict2 != VINF_SUCCESS) \
579 return rcStrict2; \
580 } while (0)
581#else
582# define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) (*(a_pu64) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
583#endif
584
585
586#ifndef IEM_WITH_SETJMP
587/**
588 * Fetches the next opcode byte.
589 *
590 * @returns Strict VBox status code.
591 * @param pVCpu The cross context virtual CPU structure of the
592 * calling thread.
593 * @param pu8 Where to return the opcode byte.
594 */
595DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextRm(PVMCPUCC pVCpu, uint8_t *pu8)
596{
597 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
598 pVCpu->iem.s.offModRm = offOpcode;
599 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
600 {
601 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
602 *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
603 return VINF_SUCCESS;
604 }
605 return iemOpcodeGetNextU8Slow(pVCpu, pu8);
606}
607#else /* IEM_WITH_SETJMP */
608/**
609 * Fetches the next opcode byte, longjmp on error.
610 *
611 * @returns The opcode byte.
612 * @param pVCpu The cross context virtual CPU structure of the calling thread.
613 */
614DECLINLINE(uint8_t) iemOpcodeGetNextRmJmp(PVMCPUCC pVCpu)
615{
616# ifdef IEM_WITH_CODE_TLB
617 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
618 pVCpu->iem.s.offModRm = offBuf;
619 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
620 if (RT_LIKELY( pbBuf != NULL
621 && offBuf < pVCpu->iem.s.cbInstrBuf))
622 {
623 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
624 return pbBuf[offBuf];
625 }
626# else
627 uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
628 pVCpu->iem.s.offModRm = offOpcode;
629 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
630 {
631 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
632 return pVCpu->iem.s.abOpcode[offOpcode];
633 }
634# endif
635 return iemOpcodeGetNextU8SlowJmp(pVCpu);
636}
637#endif /* IEM_WITH_SETJMP */
638
639/**
640 * Fetches the next opcode byte, which is a ModR/M byte, returns automatically
641 * on failure.
642 *
643 * Will note down the position of the ModR/M byte for VT-x exits.
644 *
645 * @param a_pbRm Where to return the RM opcode byte.
646 * @remark Implicitly references pVCpu.
647 */
648#ifndef IEM_WITH_SETJMP
649# define IEM_OPCODE_GET_NEXT_RM(a_pbRm) \
650 do \
651 { \
652 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextRm(pVCpu, (a_pbRm)); \
653 if (rcStrict2 == VINF_SUCCESS) \
654 { /* likely */ } \
655 else \
656 return rcStrict2; \
657 } while (0)
658#else
659# define IEM_OPCODE_GET_NEXT_RM(a_pbRm) (*(a_pbRm) = iemOpcodeGetNextRmJmp(pVCpu))
660#endif /* IEM_WITH_SETJMP */
661
662
663#ifndef IEM_WITH_SETJMP
664
665/**
666 * Fetches the next opcode word.
667 *
668 * @returns Strict VBox status code.
669 * @param pVCpu The cross context virtual CPU structure of the calling thread.
670 * @param pu16 Where to return the opcode word.
671 */
672DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16(PVMCPUCC pVCpu, uint16_t *pu16)
673{
674 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
675 if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
676 {
677 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
678# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
679 *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
680# else
681 *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
682# endif
683 return VINF_SUCCESS;
684 }
685 return iemOpcodeGetNextU16Slow(pVCpu, pu16);
686}
687
688#else /* IEM_WITH_SETJMP */
689
690/**
691 * Fetches the next opcode word, longjmp on error.
692 *
693 * @returns The opcode word.
694 * @param pVCpu The cross context virtual CPU structure of the calling thread.
695 */
696DECLINLINE(uint16_t) iemOpcodeGetNextU16Jmp(PVMCPUCC pVCpu)
697{
698# ifdef IEM_WITH_CODE_TLB
699 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
700 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
701 if (RT_LIKELY( pbBuf != NULL
702 && offBuf + 2 <= pVCpu->iem.s.cbInstrBuf))
703 {
704 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 2;
705# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
706 return *(uint16_t const *)&pbBuf[offBuf];
707# else
708 return RT_MAKE_U16(pbBuf[offBuf], pbBuf[offBuf + 1]);
709# endif
710 }
711# else
712 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
713 if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
714 {
715 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
716# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
717 return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
718# else
719 return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
720# endif
721 }
722# endif
723 return iemOpcodeGetNextU16SlowJmp(pVCpu);
724}
725
726#endif /* IEM_WITH_SETJMP */
727
728/**
729 * Fetches the next opcode word, returns automatically on failure.
730 *
731 * @param a_pu16 Where to return the opcode word.
732 * @remark Implicitly references pVCpu.
733 */
734#ifndef IEM_WITH_SETJMP
735# define IEM_OPCODE_GET_NEXT_U16(a_pu16) \
736 do \
737 { \
738 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16(pVCpu, (a_pu16)); \
739 if (rcStrict2 != VINF_SUCCESS) \
740 return rcStrict2; \
741 } while (0)
742#else
743# define IEM_OPCODE_GET_NEXT_U16(a_pu16) (*(a_pu16) = iemOpcodeGetNextU16Jmp(pVCpu))
744#endif
745
746#ifndef IEM_WITH_SETJMP
747/**
748 * Fetches the next opcode word, zero extending it to a double word.
749 *
750 * @returns Strict VBox status code.
751 * @param pVCpu The cross context virtual CPU structure of the calling thread.
752 * @param pu32 Where to return the opcode double word.
753 */
754DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32(PVMCPUCC pVCpu, uint32_t *pu32)
755{
756 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
757 if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
758 return iemOpcodeGetNextU16ZxU32Slow(pVCpu, pu32);
759
760 *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
761 pVCpu->iem.s.offOpcode = offOpcode + 2;
762 return VINF_SUCCESS;
763}
764#endif /* !IEM_WITH_SETJMP */
765
766/**
767 * Fetches the next opcode word and zero extends it to a double word, returns
768 * automatically on failure.
769 *
770 * @param a_pu32 Where to return the opcode double word.
771 * @remark Implicitly references pVCpu.
772 */
773#ifndef IEM_WITH_SETJMP
774# define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) \
775 do \
776 { \
777 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU32(pVCpu, (a_pu32)); \
778 if (rcStrict2 != VINF_SUCCESS) \
779 return rcStrict2; \
780 } while (0)
781#else
782# define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU16Jmp(pVCpu))
783#endif
784
785#ifndef IEM_WITH_SETJMP
786/**
787 * Fetches the next opcode word, zero extending it to a quad word.
788 *
789 * @returns Strict VBox status code.
790 * @param pVCpu The cross context virtual CPU structure of the calling thread.
791 * @param pu64 Where to return the opcode quad word.
792 */
793DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64(PVMCPUCC pVCpu, uint64_t *pu64)
794{
795 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
796 if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
797 return iemOpcodeGetNextU16ZxU64Slow(pVCpu, pu64);
798
799 *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
800 pVCpu->iem.s.offOpcode = offOpcode + 2;
801 return VINF_SUCCESS;
802}
803#endif /* !IEM_WITH_SETJMP */
804
805/**
806 * Fetches the next opcode word and zero extends it to a quad word, returns
807 * automatically on failure.
808 *
809 * @param a_pu64 Where to return the opcode quad word.
810 * @remark Implicitly references pVCpu.
811 */
812#ifndef IEM_WITH_SETJMP
813# define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) \
814 do \
815 { \
816 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU64(pVCpu, (a_pu64)); \
817 if (rcStrict2 != VINF_SUCCESS) \
818 return rcStrict2; \
819 } while (0)
820#else
821# define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU16Jmp(pVCpu))
822#endif
823
824
825#ifndef IEM_WITH_SETJMP
826/**
827 * Fetches the next signed word from the opcode stream.
828 *
829 * @returns Strict VBox status code.
830 * @param pVCpu The cross context virtual CPU structure of the calling thread.
831 * @param pi16 Where to return the signed word.
832 */
833DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS16(PVMCPUCC pVCpu, int16_t *pi16)
834{
835 return iemOpcodeGetNextU16(pVCpu, (uint16_t *)pi16);
836}
837#endif /* !IEM_WITH_SETJMP */
838
839
840/**
841 * Fetches the next signed word from the opcode stream, returning automatically
842 * on failure.
843 *
844 * @param a_pi16 Where to return the signed word.
845 * @remark Implicitly references pVCpu.
846 */
847#ifndef IEM_WITH_SETJMP
848# define IEM_OPCODE_GET_NEXT_S16(a_pi16) \
849 do \
850 { \
851 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS16(pVCpu, (a_pi16)); \
852 if (rcStrict2 != VINF_SUCCESS) \
853 return rcStrict2; \
854 } while (0)
855#else
856# define IEM_OPCODE_GET_NEXT_S16(a_pi16) (*(a_pi16) = (int16_t)iemOpcodeGetNextU16Jmp(pVCpu))
857#endif
858
859#ifndef IEM_WITH_SETJMP
860
861/**
862 * Fetches the next opcode dword.
863 *
864 * @returns Strict VBox status code.
865 * @param pVCpu The cross context virtual CPU structure of the calling thread.
866 * @param pu32 Where to return the opcode double word.
867 */
868DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32(PVMCPUCC pVCpu, uint32_t *pu32)
869{
870 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
871 if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
872 {
873 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
874# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
875 *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
876# else
877 *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
878 pVCpu->iem.s.abOpcode[offOpcode + 1],
879 pVCpu->iem.s.abOpcode[offOpcode + 2],
880 pVCpu->iem.s.abOpcode[offOpcode + 3]);
881# endif
882 return VINF_SUCCESS;
883 }
884 return iemOpcodeGetNextU32Slow(pVCpu, pu32);
885}
886
887#else /* IEM_WITH_SETJMP */
888
889/**
890 * Fetches the next opcode dword, longjmp on error.
891 *
892 * @returns The opcode dword.
893 * @param pVCpu The cross context virtual CPU structure of the calling thread.
894 */
895DECLINLINE(uint32_t) iemOpcodeGetNextU32Jmp(PVMCPUCC pVCpu)
896{
897# ifdef IEM_WITH_CODE_TLB
898 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
899 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
900 if (RT_LIKELY( pbBuf != NULL
901 && offBuf + 4 <= pVCpu->iem.s.cbInstrBuf))
902 {
903 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 4;
904# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
905 return *(uint32_t const *)&pbBuf[offBuf];
906# else
907 return RT_MAKE_U32_FROM_U8(pbBuf[offBuf],
908 pbBuf[offBuf + 1],
909 pbBuf[offBuf + 2],
910 pbBuf[offBuf + 3]);
911# endif
912 }
913# else
914 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
915 if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
916 {
917 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
918# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
919 return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
920# else
921 return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
922 pVCpu->iem.s.abOpcode[offOpcode + 1],
923 pVCpu->iem.s.abOpcode[offOpcode + 2],
924 pVCpu->iem.s.abOpcode[offOpcode + 3]);
925# endif
926 }
927# endif
928 return iemOpcodeGetNextU32SlowJmp(pVCpu);
929}
930
931#endif /* IEM_WITH_SETJMP */
932
933/**
934 * Fetches the next opcode dword, returns automatically on failure.
935 *
936 * @param a_pu32 Where to return the opcode dword.
937 * @remark Implicitly references pVCpu.
938 */
939#ifndef IEM_WITH_SETJMP
940# define IEM_OPCODE_GET_NEXT_U32(a_pu32) \
941 do \
942 { \
943 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32(pVCpu, (a_pu32)); \
944 if (rcStrict2 != VINF_SUCCESS) \
945 return rcStrict2; \
946 } while (0)
947#else
948# define IEM_OPCODE_GET_NEXT_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU32Jmp(pVCpu))
949#endif
950
951#ifndef IEM_WITH_SETJMP
952/**
953 * Fetches the next opcode dword, zero extending it to a quad word.
954 *
955 * @returns Strict VBox status code.
956 * @param pVCpu The cross context virtual CPU structure of the calling thread.
957 * @param pu64 Where to return the opcode quad word.
958 */
959DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64(PVMCPUCC pVCpu, uint64_t *pu64)
960{
961 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
962 if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
963 return iemOpcodeGetNextU32ZxU64Slow(pVCpu, pu64);
964
965 *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
966 pVCpu->iem.s.abOpcode[offOpcode + 1],
967 pVCpu->iem.s.abOpcode[offOpcode + 2],
968 pVCpu->iem.s.abOpcode[offOpcode + 3]);
969 pVCpu->iem.s.offOpcode = offOpcode + 4;
970 return VINF_SUCCESS;
971}
972#endif /* !IEM_WITH_SETJMP */
973
974/**
975 * Fetches the next opcode dword and zero extends it to a quad word, returns
976 * automatically on failure.
977 *
978 * @param a_pu64 Where to return the opcode quad word.
979 * @remark Implicitly references pVCpu.
980 */
981#ifndef IEM_WITH_SETJMP
982# define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) \
983 do \
984 { \
985 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32ZxU64(pVCpu, (a_pu64)); \
986 if (rcStrict2 != VINF_SUCCESS) \
987 return rcStrict2; \
988 } while (0)
989#else
990# define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU32Jmp(pVCpu))
991#endif
992
993
994#ifndef IEM_WITH_SETJMP
995/**
996 * Fetches the next signed double word from the opcode stream.
997 *
998 * @returns Strict VBox status code.
999 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1000 * @param pi32 Where to return the signed double word.
1001 */
1002DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32(PVMCPUCC pVCpu, int32_t *pi32)
1003{
1004 return iemOpcodeGetNextU32(pVCpu, (uint32_t *)pi32);
1005}
1006#endif
1007
1008/**
1009 * Fetches the next signed double word from the opcode stream, returning
1010 * automatically on failure.
1011 *
1012 * @param a_pi32 Where to return the signed double word.
1013 * @remark Implicitly references pVCpu.
1014 */
1015#ifndef IEM_WITH_SETJMP
1016# define IEM_OPCODE_GET_NEXT_S32(a_pi32) \
1017 do \
1018 { \
1019 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32(pVCpu, (a_pi32)); \
1020 if (rcStrict2 != VINF_SUCCESS) \
1021 return rcStrict2; \
1022 } while (0)
1023#else
1024# define IEM_OPCODE_GET_NEXT_S32(a_pi32) (*(a_pi32) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
1025#endif
1026
1027#ifndef IEM_WITH_SETJMP
1028/**
1029 * Fetches the next opcode dword, sign extending it into a quad word.
1030 *
1031 * @returns Strict VBox status code.
1032 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1033 * @param pu64 Where to return the opcode quad word.
1034 */
1035DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32SxU64(PVMCPUCC pVCpu, uint64_t *pu64)
1036{
1037 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
1038 if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
1039 return iemOpcodeGetNextS32SxU64Slow(pVCpu, pu64);
1040
1041 int32_t i32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
1042 pVCpu->iem.s.abOpcode[offOpcode + 1],
1043 pVCpu->iem.s.abOpcode[offOpcode + 2],
1044 pVCpu->iem.s.abOpcode[offOpcode + 3]);
1045 *pu64 = i32;
1046 pVCpu->iem.s.offOpcode = offOpcode + 4;
1047 return VINF_SUCCESS;
1048}
1049#endif /* !IEM_WITH_SETJMP */
1050
1051/**
1052 * Fetches the next opcode double word and sign extends it to a quad word,
1053 * returns automatically on failure.
1054 *
1055 * @param a_pu64 Where to return the opcode quad word.
1056 * @remark Implicitly references pVCpu.
1057 */
1058#ifndef IEM_WITH_SETJMP
1059# define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) \
1060 do \
1061 { \
1062 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32SxU64(pVCpu, (a_pu64)); \
1063 if (rcStrict2 != VINF_SUCCESS) \
1064 return rcStrict2; \
1065 } while (0)
1066#else
1067# define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) (*(a_pu64) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
1068#endif
1069
1070#ifndef IEM_WITH_SETJMP
1071
1072/**
1073 * Fetches the next opcode qword.
1074 *
1075 * @returns Strict VBox status code.
1076 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1077 * @param pu64 Where to return the opcode qword.
1078 */
1079DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU64(PVMCPUCC pVCpu, uint64_t *pu64)
1080{
1081 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
1082 if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
1083 {
1084# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
1085 *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
1086# else
1087 *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
1088 pVCpu->iem.s.abOpcode[offOpcode + 1],
1089 pVCpu->iem.s.abOpcode[offOpcode + 2],
1090 pVCpu->iem.s.abOpcode[offOpcode + 3],
1091 pVCpu->iem.s.abOpcode[offOpcode + 4],
1092 pVCpu->iem.s.abOpcode[offOpcode + 5],
1093 pVCpu->iem.s.abOpcode[offOpcode + 6],
1094 pVCpu->iem.s.abOpcode[offOpcode + 7]);
1095# endif
1096 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
1097 return VINF_SUCCESS;
1098 }
1099 return iemOpcodeGetNextU64Slow(pVCpu, pu64);
1100}
1101
1102#else /* IEM_WITH_SETJMP */
1103
1104/**
1105 * Fetches the next opcode qword, longjmp on error.
1106 *
1107 * @returns The opcode qword.
1108 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1109 */
1110DECLINLINE(uint64_t) iemOpcodeGetNextU64Jmp(PVMCPUCC pVCpu)
1111{
1112# ifdef IEM_WITH_CODE_TLB
1113 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
1114 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
1115 if (RT_LIKELY( pbBuf != NULL
1116 && offBuf + 8 <= pVCpu->iem.s.cbInstrBuf))
1117 {
1118 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 8;
1119# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
1120 return *(uint64_t const *)&pbBuf[offBuf];
1121# else
1122 return RT_MAKE_U64_FROM_U8(pbBuf[offBuf],
1123 pbBuf[offBuf + 1],
1124 pbBuf[offBuf + 2],
1125 pbBuf[offBuf + 3],
1126 pbBuf[offBuf + 4],
1127 pbBuf[offBuf + 5],
1128 pbBuf[offBuf + 6],
1129 pbBuf[offBuf + 7]);
1130# endif
1131 }
1132# else
1133 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
1134 if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
1135 {
1136 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
1137# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
1138 return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
1139# else
1140 return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
1141 pVCpu->iem.s.abOpcode[offOpcode + 1],
1142 pVCpu->iem.s.abOpcode[offOpcode + 2],
1143 pVCpu->iem.s.abOpcode[offOpcode + 3],
1144 pVCpu->iem.s.abOpcode[offOpcode + 4],
1145 pVCpu->iem.s.abOpcode[offOpcode + 5],
1146 pVCpu->iem.s.abOpcode[offOpcode + 6],
1147 pVCpu->iem.s.abOpcode[offOpcode + 7]);
1148# endif
1149 }
1150# endif
1151 return iemOpcodeGetNextU64SlowJmp(pVCpu);
1152}
1153
1154#endif /* IEM_WITH_SETJMP */
1155
1156/**
1157 * Fetches the next opcode quad word, returns automatically on failure.
1158 *
1159 * @param a_pu64 Where to return the opcode quad word.
1160 * @remark Implicitly references pVCpu.
1161 */
1162#ifndef IEM_WITH_SETJMP
1163# define IEM_OPCODE_GET_NEXT_U64(a_pu64) \
1164 do \
1165 { \
1166 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU64(pVCpu, (a_pu64)); \
1167 if (rcStrict2 != VINF_SUCCESS) \
1168 return rcStrict2; \
1169 } while (0)
1170#else
1171# define IEM_OPCODE_GET_NEXT_U64(a_pu64) ( *(a_pu64) = iemOpcodeGetNextU64Jmp(pVCpu) )
1172#endif
1173
1174
1175/** @name Misc Worker Functions.
1176 * @{
1177 */
1178
1179/**
1180 * Gets the correct EFLAGS regardless of whether PATM stores parts of them or
1181 * not (kind of obsolete now).
1182 *
1183 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1184 */
1185#define IEMMISC_GET_EFL(a_pVCpu) ( (a_pVCpu)->cpum.GstCtx.eflags.u )
1186
1187/**
1188 * Updates the EFLAGS in the correct manner wrt. PATM (kind of obsolete).
1189 *
1190 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1191 * @param a_fEfl The new EFLAGS.
1192 */
1193#define IEMMISC_SET_EFL(a_pVCpu, a_fEfl) do { (a_pVCpu)->cpum.GstCtx.eflags.u = (a_fEfl); } while (0)
1194
1195
1196/**
1197 * Loads a NULL data selector into a selector register, both the hidden and
1198 * visible parts, in protected mode.
1199 *
1200 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1201 * @param pSReg Pointer to the segment register.
1202 * @param uRpl The RPL.
1203 */
1204DECLINLINE(void) iemHlpLoadNullDataSelectorProt(PVMCPUCC pVCpu, PCPUMSELREG pSReg, RTSEL uRpl)
1205{
1206 /** @todo Testcase: write a testcase checking what happends when loading a NULL
1207 * data selector in protected mode. */
1208 pSReg->Sel = uRpl;
1209 pSReg->ValidSel = uRpl;
1210 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
1211 if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
1212 {
1213 /* VT-x (Intel 3960x) observed doing something like this. */
1214 pSReg->Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | (pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT);
1215 pSReg->u32Limit = UINT32_MAX;
1216 pSReg->u64Base = 0;
1217 }
1218 else
1219 {
1220 pSReg->Attr.u = X86DESCATTR_UNUSABLE;
1221 pSReg->u32Limit = 0;
1222 pSReg->u64Base = 0;
1223 }
1224}
1225
1226/** @} */
1227
1228
1229/*
1230 *
1231 * Helpers routines.
1232 * Helpers routines.
1233 * Helpers routines.
1234 *
1235 */
1236
1237/**
1238 * Recalculates the effective operand size.
1239 *
1240 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1241 */
1242DECLINLINE(void) iemRecalEffOpSize(PVMCPUCC pVCpu)
1243{
1244 switch (pVCpu->iem.s.enmCpuMode)
1245 {
1246 case IEMMODE_16BIT:
1247 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_32BIT : IEMMODE_16BIT;
1248 break;
1249 case IEMMODE_32BIT:
1250 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_16BIT : IEMMODE_32BIT;
1251 break;
1252 case IEMMODE_64BIT:
1253 switch (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP))
1254 {
1255 case 0:
1256 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize;
1257 break;
1258 case IEM_OP_PRF_SIZE_OP:
1259 pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
1260 break;
1261 case IEM_OP_PRF_SIZE_REX_W:
1262 case IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP:
1263 pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
1264 break;
1265 }
1266 break;
1267 default:
1268 AssertFailed();
1269 }
1270}
1271
1272
1273/**
1274 * Sets the default operand size to 64-bit and recalculates the effective
1275 * operand size.
1276 *
1277 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1278 */
1279DECLINLINE(void) iemRecalEffOpSize64Default(PVMCPUCC pVCpu)
1280{
1281 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
1282 pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
1283 if ((pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP)
1284 pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
1285 else
1286 pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
1287}
1288
1289
1290
1291
1292/** @name Register Access.
1293 * @{
1294 */
1295
1296/**
1297 * Gets a reference (pointer) to the specified hidden segment register.
1298 *
1299 * @returns Hidden register reference.
1300 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1301 * @param iSegReg The segment register.
1302 */
1303DECLINLINE(PCPUMSELREG) iemSRegGetHid(PVMCPUCC pVCpu, uint8_t iSegReg)
1304{
1305 Assert(iSegReg < X86_SREG_COUNT);
1306 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1307 PCPUMSELREG pSReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1308
1309 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
1310 return pSReg;
1311}
1312
1313
1314/**
1315 * Ensures that the given hidden segment register is up to date.
1316 *
1317 * @returns Hidden register reference.
1318 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1319 * @param pSReg The segment register.
1320 */
1321DECLINLINE(PCPUMSELREG) iemSRegUpdateHid(PVMCPUCC pVCpu, PCPUMSELREG pSReg)
1322{
1323 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
1324 NOREF(pVCpu);
1325 return pSReg;
1326}
1327
1328
1329/**
1330 * Gets a reference (pointer) to the specified segment register (the selector
1331 * value).
1332 *
1333 * @returns Pointer to the selector variable.
1334 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1335 * @param iSegReg The segment register.
1336 */
1337DECLINLINE(uint16_t *) iemSRegRef(PVMCPUCC pVCpu, uint8_t iSegReg)
1338{
1339 Assert(iSegReg < X86_SREG_COUNT);
1340 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1341 return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
1342}
1343
1344
1345/**
1346 * Fetches the selector value of a segment register.
1347 *
1348 * @returns The selector value.
1349 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1350 * @param iSegReg The segment register.
1351 */
1352DECLINLINE(uint16_t) iemSRegFetchU16(PVMCPUCC pVCpu, uint8_t iSegReg)
1353{
1354 Assert(iSegReg < X86_SREG_COUNT);
1355 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1356 return pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
1357}
1358
1359
1360/**
1361 * Fetches the base address value of a segment register.
1362 *
1363 * @returns The selector value.
1364 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1365 * @param iSegReg The segment register.
1366 */
1367DECLINLINE(uint64_t) iemSRegBaseFetchU64(PVMCPUCC pVCpu, uint8_t iSegReg)
1368{
1369 Assert(iSegReg < X86_SREG_COUNT);
1370 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1371 return pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
1372}
1373
1374
1375/**
1376 * Gets a reference (pointer) to the specified general purpose register.
1377 *
1378 * @returns Register reference.
1379 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1380 * @param iReg The general purpose register.
1381 */
1382DECLINLINE(void *) iemGRegRef(PVMCPUCC pVCpu, uint8_t iReg)
1383{
1384 Assert(iReg < 16);
1385 return &pVCpu->cpum.GstCtx.aGRegs[iReg];
1386}
1387
1388
1389/**
1390 * Gets a reference (pointer) to the specified 8-bit general purpose register.
1391 *
1392 * Because of AH, CH, DH and BH we cannot use iemGRegRef directly here.
1393 *
1394 * @returns Register reference.
1395 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1396 * @param iReg The register.
1397 */
1398DECLINLINE(uint8_t *) iemGRegRefU8(PVMCPUCC pVCpu, uint8_t iReg)
1399{
1400 if (iReg < 4 || (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX))
1401 {
1402 Assert(iReg < 16);
1403 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u8;
1404 }
1405 /* high 8-bit register. */
1406 Assert(iReg < 8);
1407 return &pVCpu->cpum.GstCtx.aGRegs[iReg & 3].bHi;
1408}
1409
1410
1411/**
1412 * Gets a reference (pointer) to the specified 16-bit general purpose register.
1413 *
1414 * @returns Register reference.
1415 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1416 * @param iReg The register.
1417 */
1418DECLINLINE(uint16_t *) iemGRegRefU16(PVMCPUCC pVCpu, uint8_t iReg)
1419{
1420 Assert(iReg < 16);
1421 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
1422}
1423
1424
1425/**
1426 * Gets a reference (pointer) to the specified 32-bit general purpose register.
1427 *
1428 * @returns Register reference.
1429 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1430 * @param iReg The register.
1431 */
1432DECLINLINE(uint32_t *) iemGRegRefU32(PVMCPUCC pVCpu, uint8_t iReg)
1433{
1434 Assert(iReg < 16);
1435 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
1436}
1437
1438
1439/**
1440 * Gets a reference (pointer) to the specified signed 32-bit general purpose register.
1441 *
1442 * @returns Register reference.
1443 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1444 * @param iReg The register.
1445 */
1446DECLINLINE(int32_t *) iemGRegRefI32(PVMCPUCC pVCpu, uint8_t iReg)
1447{
1448 Assert(iReg < 16);
1449 return (int32_t *)&pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
1450}
1451
1452
1453/**
1454 * Gets a reference (pointer) to the specified 64-bit general purpose register.
1455 *
1456 * @returns Register reference.
1457 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1458 * @param iReg The register.
1459 */
1460DECLINLINE(uint64_t *) iemGRegRefU64(PVMCPUCC pVCpu, uint8_t iReg)
1461{
1462 Assert(iReg < 64);
1463 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
1464}
1465
1466
1467/**
1468 * Gets a reference (pointer) to the specified signed 64-bit general purpose register.
1469 *
1470 * @returns Register reference.
1471 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1472 * @param iReg The register.
1473 */
1474DECLINLINE(int64_t *) iemGRegRefI64(PVMCPUCC pVCpu, uint8_t iReg)
1475{
1476 Assert(iReg < 16);
1477 return (int64_t *)&pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
1478}
1479
1480
1481/**
1482 * Gets a reference (pointer) to the specified segment register's base address.
1483 *
1484 * @returns Segment register base address reference.
1485 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1486 * @param iSegReg The segment selector.
1487 */
1488DECLINLINE(uint64_t *) iemSRegBaseRefU64(PVMCPUCC pVCpu, uint8_t iSegReg)
1489{
1490 Assert(iSegReg < X86_SREG_COUNT);
1491 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1492 return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
1493}
1494
1495
1496/**
1497 * Fetches the value of a 8-bit general purpose register.
1498 *
1499 * @returns The register value.
1500 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1501 * @param iReg The register.
1502 */
1503DECLINLINE(uint8_t) iemGRegFetchU8(PVMCPUCC pVCpu, uint8_t iReg)
1504{
1505 return *iemGRegRefU8(pVCpu, iReg);
1506}
1507
1508
1509/**
1510 * Fetches the value of a 16-bit general purpose register.
1511 *
1512 * @returns The register value.
1513 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1514 * @param iReg The register.
1515 */
1516DECLINLINE(uint16_t) iemGRegFetchU16(PVMCPUCC pVCpu, uint8_t iReg)
1517{
1518 Assert(iReg < 16);
1519 return pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
1520}
1521
1522
1523/**
1524 * Fetches the value of a 32-bit general purpose register.
1525 *
1526 * @returns The register value.
1527 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1528 * @param iReg The register.
1529 */
1530DECLINLINE(uint32_t) iemGRegFetchU32(PVMCPUCC pVCpu, uint8_t iReg)
1531{
1532 Assert(iReg < 16);
1533 return pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
1534}
1535
1536
1537/**
1538 * Fetches the value of a 64-bit general purpose register.
1539 *
1540 * @returns The register value.
1541 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1542 * @param iReg The register.
1543 */
1544DECLINLINE(uint64_t) iemGRegFetchU64(PVMCPUCC pVCpu, uint8_t iReg)
1545{
1546 Assert(iReg < 16);
1547 return pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
1548}
1549
1550
1551/**
1552 * Get the address of the top of the stack.
1553 *
1554 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1555 */
1556DECLINLINE(RTGCPTR) iemRegGetEffRsp(PCVMCPU pVCpu)
1557{
1558 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1559 return pVCpu->cpum.GstCtx.rsp;
1560 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1561 return pVCpu->cpum.GstCtx.esp;
1562 return pVCpu->cpum.GstCtx.sp;
1563}
1564
1565
1566/**
1567 * Updates the RIP/EIP/IP to point to the next instruction.
1568 *
1569 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1570 * @param cbInstr The number of bytes to add.
1571 */
1572DECL_FORCE_INLINE(void) iemRegAddToRip(PVMCPUCC pVCpu, uint8_t cbInstr)
1573{
1574 /*
1575 * Advance RIP.
1576 *
1577 * When we're targetting 8086/8, 80186/8 or 80286 mode the updates are 16-bit,
1578 * while in all other modes except LM64 the updates are 32-bit. This means
1579 * we need to watch for both 32-bit and 16-bit "carry" situations, i.e.
1580 * 4GB and 64KB rollovers, and decide whether anything needs masking.
1581 *
1582 * See PC wrap around tests in bs3-cpu-weird-1.
1583 */
1584 uint64_t const uRipPrev = pVCpu->cpum.GstCtx.rip;
1585 uint64_t const uRipNext = uRipPrev + cbInstr;
1586 if (RT_LIKELY( !((uRipNext ^ uRipPrev) & (RT_BIT_64(32) | RT_BIT_64(16)))
1587 || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
1588 pVCpu->cpum.GstCtx.rip = uRipNext;
1589 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
1590 pVCpu->cpum.GstCtx.rip = (uint32_t)uRipNext;
1591 else
1592 pVCpu->cpum.GstCtx.rip = (uint16_t)uRipNext;
1593}
1594
1595
1596/**
1597 * Called by iemRegAddToRipAndFinishingClearingRF and others when any of the
1598 * following EFLAGS bits are set:
1599 * - X86_EFL_RF - clear it.
1600 * - CPUMCTX_INHIBIT_SHADOW (_SS/_STI) - clear them.
1601 * - X86_EFL_TF - generate single step \#DB trap.
1602 * - CPUMCTX_DBG_HIT_DR0/1/2/3 - generate \#DB trap (data or I/O, not
1603 * instruction).
1604 *
1605 * According to @sdmv3{077,200,Table 6-2,Priority Among Concurrent Events},
1606 * a #DB due to TF (single stepping) or a DRx non-instruction breakpoint
1607 * takes priority over both NMIs and hardware interrupts. So, neither is
1608 * considered here. (The RESET, \#MC, SMI, INIT, STOPCLK and FLUSH events are
1609 * either unsupported will be triggered on-top of any \#DB raised here.)
1610 *
1611 * The RF flag only needs to be cleared here as it only suppresses instruction
1612 * breakpoints which are not raised here (happens synchronously during
1613 * instruction fetching).
1614 *
1615 * The CPUMCTX_INHIBIT_SHADOW_SS flag will be cleared by this function, so its
1616 * status has no bearing on whether \#DB exceptions are raised.
1617 *
1618 * @note This must *NOT* be called by the two instructions setting the
1619 * CPUMCTX_INHIBIT_SHADOW_SS flag.
1620 *
1621 * @see @sdmv3{077,200,Table 6-2,Priority Among Concurrent Events}
1622 * @see @sdmv3{077,200,6.8.3,Masking Exceptions and Interrupts When Switching
1623 * Stacks}
1624 */
1625static VBOXSTRICTRC iemFinishInstructionWithFlagsSet(PVMCPUCC pVCpu)
1626{
1627 /*
1628 * Normally we're just here to clear RF and/or interrupt shadow bits.
1629 */
1630 if (RT_LIKELY((pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK)) == 0))
1631 pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW);
1632 else
1633 {
1634#if 1
1635 /*
1636 * Raise a #DB.
1637 */
1638 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
1639 if (pVCpu->cpum.GstCtx.eflags.uBoth & X86_EFL_TF)
1640 pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_BS;
1641 pVCpu->cpum.GstCtx.dr[6] |= (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK) >> CPUMCTX_DBG_HIT_DRX_SHIFT;
1642 /** @todo Do we set all pending \#DB events, or just one? */
1643 LogFlowFunc(("Guest #DB fired at %04X:%016llX: DR6=%08X, RFLAGS=%16RX64\n",
1644 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, (unsigned)pVCpu->cpum.GstCtx.dr[6],
1645 pVCpu->cpum.GstCtx.rflags.uBoth));
1646 pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK);
1647 return iemRaiseDebugException(pVCpu);
1648#else
1649 pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK);
1650#endif
1651 }
1652 return VINF_SUCCESS;
1653}
1654
1655
1656/**
1657 * Clears the RF and CPUMCTX_INHIBIT_SHADOW, triggering \#DB if pending.
1658 *
1659 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1660 */
1661DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegFinishClearingRF(PVMCPUCC pVCpu)
1662{
1663 /*
1664 * We assume that most of the time nothing actually needs doing here.
1665 */
1666 AssertCompile(CPUMCTX_INHIBIT_SHADOW < UINT32_MAX);
1667 if (RT_LIKELY(!( pVCpu->cpum.GstCtx.eflags.uBoth
1668 & (X86_EFL_TF | X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK)) ))
1669 return VINF_SUCCESS;
1670 return iemFinishInstructionWithFlagsSet(pVCpu);
1671}
1672
1673
1674/**
1675 * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF
1676 * and CPUMCTX_INHIBIT_SHADOW.
1677 *
1678 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1679 * @param cbInstr The number of bytes to add.
1680 */
1681DECLINLINE(VBOXSTRICTRC) iemRegAddToRipAndFinishingClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr)
1682{
1683 iemRegAddToRip(pVCpu, cbInstr);
1684 return iemRegFinishClearingRF(pVCpu);
1685}
1686
1687
1688/**
1689 * Extended version of iemFinishInstructionWithFlagsSet that goes with
1690 * iemRegAddToRipAndFinishingClearingRfEx.
1691 *
1692 * See iemFinishInstructionWithFlagsSet() for details.
1693 */
1694static VBOXSTRICTRC iemFinishInstructionWithTfSet(PVMCPUCC pVCpu)
1695{
1696 /*
1697 * Raise a #DB.
1698 */
1699 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
1700 pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_BS
1701 | (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK) >> CPUMCTX_DBG_HIT_DRX_SHIFT;
1702 /** @todo Do we set all pending \#DB events, or just one? */
1703 LogFlowFunc(("Guest #DB fired at %04X:%016llX: DR6=%08X, RFLAGS=%16RX64 (popf)\n",
1704 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, (unsigned)pVCpu->cpum.GstCtx.dr[6],
1705 pVCpu->cpum.GstCtx.rflags.uBoth));
1706 pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK);
1707 return iemRaiseDebugException(pVCpu);
1708}
1709
1710
1711/**
1712 * Extended version of iemRegAddToRipAndFinishingClearingRF for use by POPF and
1713 * others potentially updating EFLAGS.TF.
1714 *
1715 * The single step event must be generated using the TF value at the start of
1716 * the instruction, not the new value set by it.
1717 *
1718 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1719 * @param cbInstr The number of bytes to add.
1720 * @param fEflOld The EFLAGS at the start of the instruction
1721 * execution.
1722 */
1723DECLINLINE(VBOXSTRICTRC) iemRegAddToRipAndFinishingClearingRfEx(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t fEflOld)
1724{
1725 iemRegAddToRip(pVCpu, cbInstr);
1726 if (!(fEflOld & X86_EFL_TF))
1727 return iemRegFinishClearingRF(pVCpu);
1728 return iemFinishInstructionWithTfSet(pVCpu);
1729}
1730
1731
1732/**
1733 * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
1734 *
1735 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1736 */
1737DECLINLINE(VBOXSTRICTRC) iemRegUpdateRipAndFinishClearingRF(PVMCPUCC pVCpu)
1738{
1739 return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
1740}
1741
1742
1743/**
1744 * Adds to the stack pointer.
1745 *
1746 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1747 * @param cbToAdd The number of bytes to add (8-bit!).
1748 */
1749DECLINLINE(void) iemRegAddToRsp(PVMCPUCC pVCpu, uint8_t cbToAdd)
1750{
1751 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1752 pVCpu->cpum.GstCtx.rsp += cbToAdd;
1753 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1754 pVCpu->cpum.GstCtx.esp += cbToAdd;
1755 else
1756 pVCpu->cpum.GstCtx.sp += cbToAdd;
1757}
1758
1759
1760/**
1761 * Subtracts from the stack pointer.
1762 *
1763 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1764 * @param cbToSub The number of bytes to subtract (8-bit!).
1765 */
1766DECLINLINE(void) iemRegSubFromRsp(PVMCPUCC pVCpu, uint8_t cbToSub)
1767{
1768 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1769 pVCpu->cpum.GstCtx.rsp -= cbToSub;
1770 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1771 pVCpu->cpum.GstCtx.esp -= cbToSub;
1772 else
1773 pVCpu->cpum.GstCtx.sp -= cbToSub;
1774}
1775
1776
1777/**
1778 * Adds to the temporary stack pointer.
1779 *
1780 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1781 * @param pTmpRsp The temporary SP/ESP/RSP to update.
1782 * @param cbToAdd The number of bytes to add (16-bit).
1783 */
1784DECLINLINE(void) iemRegAddToRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToAdd)
1785{
1786 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1787 pTmpRsp->u += cbToAdd;
1788 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1789 pTmpRsp->DWords.dw0 += cbToAdd;
1790 else
1791 pTmpRsp->Words.w0 += cbToAdd;
1792}
1793
1794
1795/**
1796 * Subtracts from the temporary stack pointer.
1797 *
1798 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1799 * @param pTmpRsp The temporary SP/ESP/RSP to update.
1800 * @param cbToSub The number of bytes to subtract.
1801 * @remarks The @a cbToSub argument *MUST* be 16-bit, iemCImpl_enter is
1802 * expecting that.
1803 */
1804DECLINLINE(void) iemRegSubFromRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToSub)
1805{
1806 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1807 pTmpRsp->u -= cbToSub;
1808 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1809 pTmpRsp->DWords.dw0 -= cbToSub;
1810 else
1811 pTmpRsp->Words.w0 -= cbToSub;
1812}
1813
1814
1815/**
1816 * Calculates the effective stack address for a push of the specified size as
1817 * well as the new RSP value (upper bits may be masked).
1818 *
1819 * @returns Effective stack addressf for the push.
1820 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1821 * @param cbItem The size of the stack item to pop.
1822 * @param puNewRsp Where to return the new RSP value.
1823 */
1824DECLINLINE(RTGCPTR) iemRegGetRspForPush(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp)
1825{
1826 RTUINT64U uTmpRsp;
1827 RTGCPTR GCPtrTop;
1828 uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
1829
1830 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1831 GCPtrTop = uTmpRsp.u -= cbItem;
1832 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1833 GCPtrTop = uTmpRsp.DWords.dw0 -= cbItem;
1834 else
1835 GCPtrTop = uTmpRsp.Words.w0 -= cbItem;
1836 *puNewRsp = uTmpRsp.u;
1837 return GCPtrTop;
1838}
1839
1840
1841/**
1842 * Gets the current stack pointer and calculates the value after a pop of the
1843 * specified size.
1844 *
1845 * @returns Current stack pointer.
1846 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1847 * @param cbItem The size of the stack item to pop.
1848 * @param puNewRsp Where to return the new RSP value.
1849 */
1850DECLINLINE(RTGCPTR) iemRegGetRspForPop(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp)
1851{
1852 RTUINT64U uTmpRsp;
1853 RTGCPTR GCPtrTop;
1854 uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
1855
1856 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1857 {
1858 GCPtrTop = uTmpRsp.u;
1859 uTmpRsp.u += cbItem;
1860 }
1861 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1862 {
1863 GCPtrTop = uTmpRsp.DWords.dw0;
1864 uTmpRsp.DWords.dw0 += cbItem;
1865 }
1866 else
1867 {
1868 GCPtrTop = uTmpRsp.Words.w0;
1869 uTmpRsp.Words.w0 += cbItem;
1870 }
1871 *puNewRsp = uTmpRsp.u;
1872 return GCPtrTop;
1873}
1874
1875
1876/**
1877 * Calculates the effective stack address for a push of the specified size as
1878 * well as the new temporary RSP value (upper bits may be masked).
1879 *
1880 * @returns Effective stack addressf for the push.
1881 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1882 * @param pTmpRsp The temporary stack pointer. This is updated.
1883 * @param cbItem The size of the stack item to pop.
1884 */
1885DECLINLINE(RTGCPTR) iemRegGetRspForPushEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem)
1886{
1887 RTGCPTR GCPtrTop;
1888
1889 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1890 GCPtrTop = pTmpRsp->u -= cbItem;
1891 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1892 GCPtrTop = pTmpRsp->DWords.dw0 -= cbItem;
1893 else
1894 GCPtrTop = pTmpRsp->Words.w0 -= cbItem;
1895 return GCPtrTop;
1896}
1897
1898
1899/**
1900 * Gets the effective stack address for a pop of the specified size and
1901 * calculates and updates the temporary RSP.
1902 *
1903 * @returns Current stack pointer.
1904 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1905 * @param pTmpRsp The temporary stack pointer. This is updated.
1906 * @param cbItem The size of the stack item to pop.
1907 */
1908DECLINLINE(RTGCPTR) iemRegGetRspForPopEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem)
1909{
1910 RTGCPTR GCPtrTop;
1911 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1912 {
1913 GCPtrTop = pTmpRsp->u;
1914 pTmpRsp->u += cbItem;
1915 }
1916 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1917 {
1918 GCPtrTop = pTmpRsp->DWords.dw0;
1919 pTmpRsp->DWords.dw0 += cbItem;
1920 }
1921 else
1922 {
1923 GCPtrTop = pTmpRsp->Words.w0;
1924 pTmpRsp->Words.w0 += cbItem;
1925 }
1926 return GCPtrTop;
1927}
1928
1929/** @} */
1930
1931
1932/** @name FPU access and helpers.
1933 *
1934 * @{
1935 */
1936
1937
1938/**
1939 * Hook for preparing to use the host FPU.
1940 *
1941 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1942 *
1943 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1944 */
1945DECLINLINE(void) iemFpuPrepareUsage(PVMCPUCC pVCpu)
1946{
1947#ifdef IN_RING3
1948 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
1949#else
1950 CPUMRZFpuStatePrepareHostCpuForUse(pVCpu);
1951#endif
1952 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1953}
1954
1955
1956/**
1957 * Hook for preparing to use the host FPU for SSE.
1958 *
1959 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1960 *
1961 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1962 */
1963DECLINLINE(void) iemFpuPrepareUsageSse(PVMCPUCC pVCpu)
1964{
1965 iemFpuPrepareUsage(pVCpu);
1966}
1967
1968
1969/**
1970 * Hook for preparing to use the host FPU for AVX.
1971 *
1972 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1973 *
1974 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1975 */
1976DECLINLINE(void) iemFpuPrepareUsageAvx(PVMCPUCC pVCpu)
1977{
1978 iemFpuPrepareUsage(pVCpu);
1979}
1980
1981
1982/**
1983 * Hook for actualizing the guest FPU state before the interpreter reads it.
1984 *
1985 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1986 *
1987 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1988 */
1989DECLINLINE(void) iemFpuActualizeStateForRead(PVMCPUCC pVCpu)
1990{
1991#ifdef IN_RING3
1992 NOREF(pVCpu);
1993#else
1994 CPUMRZFpuStateActualizeForRead(pVCpu);
1995#endif
1996 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1997}
1998
1999
2000/**
2001 * Hook for actualizing the guest FPU state before the interpreter changes it.
2002 *
2003 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
2004 *
2005 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2006 */
2007DECLINLINE(void) iemFpuActualizeStateForChange(PVMCPUCC pVCpu)
2008{
2009#ifdef IN_RING3
2010 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
2011#else
2012 CPUMRZFpuStateActualizeForChange(pVCpu);
2013#endif
2014 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
2015}
2016
2017
2018/**
2019 * Hook for actualizing the guest XMM0..15 and MXCSR register state for read
2020 * only.
2021 *
2022 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
2023 *
2024 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2025 */
2026DECLINLINE(void) iemFpuActualizeSseStateForRead(PVMCPUCC pVCpu)
2027{
2028#if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
2029 NOREF(pVCpu);
2030#else
2031 CPUMRZFpuStateActualizeSseForRead(pVCpu);
2032#endif
2033 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
2034}
2035
2036
2037/**
2038 * Hook for actualizing the guest XMM0..15 and MXCSR register state for
2039 * read+write.
2040 *
2041 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
2042 *
2043 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2044 */
2045DECLINLINE(void) iemFpuActualizeSseStateForChange(PVMCPUCC pVCpu)
2046{
2047#if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
2048 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
2049#else
2050 CPUMRZFpuStateActualizeForChange(pVCpu);
2051#endif
2052 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
2053
2054 /* Make sure any changes are loaded the next time around. */
2055 pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_SSE;
2056}
2057
2058
2059/**
2060 * Hook for actualizing the guest YMM0..15 and MXCSR register state for read
2061 * only.
2062 *
2063 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
2064 *
2065 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2066 */
2067DECLINLINE(void) iemFpuActualizeAvxStateForRead(PVMCPUCC pVCpu)
2068{
2069#ifdef IN_RING3
2070 NOREF(pVCpu);
2071#else
2072 CPUMRZFpuStateActualizeAvxForRead(pVCpu);
2073#endif
2074 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
2075}
2076
2077
2078/**
2079 * Hook for actualizing the guest YMM0..15 and MXCSR register state for
2080 * read+write.
2081 *
2082 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
2083 *
2084 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2085 */
2086DECLINLINE(void) iemFpuActualizeAvxStateForChange(PVMCPUCC pVCpu)
2087{
2088#ifdef IN_RING3
2089 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
2090#else
2091 CPUMRZFpuStateActualizeForChange(pVCpu);
2092#endif
2093 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
2094
2095 /* Just assume we're going to make changes to the SSE and YMM_HI parts. */
2096 pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_YMM | XSAVE_C_SSE;
2097}
2098
2099
2100/**
2101 * Stores a QNaN value into a FPU register.
2102 *
2103 * @param pReg Pointer to the register.
2104 */
2105DECLINLINE(void) iemFpuStoreQNan(PRTFLOAT80U pReg)
2106{
2107 pReg->au32[0] = UINT32_C(0x00000000);
2108 pReg->au32[1] = UINT32_C(0xc0000000);
2109 pReg->au16[4] = UINT16_C(0xffff);
2110}
2111
2112
2113/**
2114 * Updates the FOP, FPU.CS and FPUIP registers.
2115 *
2116 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2117 * @param pFpuCtx The FPU context.
2118 */
2119DECLINLINE(void) iemFpuUpdateOpcodeAndIpWorker(PVMCPUCC pVCpu, PX86FXSTATE pFpuCtx)
2120{
2121 Assert(pVCpu->iem.s.uFpuOpcode != UINT16_MAX);
2122 pFpuCtx->FOP = pVCpu->iem.s.uFpuOpcode;
2123 /** @todo x87.CS and FPUIP needs to be kept seperately. */
2124 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2125 {
2126 /** @todo Testcase: making assumptions about how FPUIP and FPUDP are handled
2127 * happens in real mode here based on the fnsave and fnstenv images. */
2128 pFpuCtx->CS = 0;
2129 pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.eip | ((uint32_t)pVCpu->cpum.GstCtx.cs.Sel << 4);
2130 }
2131 else if (!IEM_IS_LONG_MODE(pVCpu))
2132 {
2133 pFpuCtx->CS = pVCpu->cpum.GstCtx.cs.Sel;
2134 pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
2135 }
2136 else
2137 *(uint64_t *)&pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
2138}
2139
2140
2141
2142
2143
2144/**
2145 * Marks the specified stack register as free (for FFREE).
2146 *
2147 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2148 * @param iStReg The register to free.
2149 */
2150DECLINLINE(void) iemFpuStackFree(PVMCPUCC pVCpu, uint8_t iStReg)
2151{
2152 Assert(iStReg < 8);
2153 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2154 uint8_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
2155 pFpuCtx->FTW &= ~RT_BIT(iReg);
2156}
2157
2158
2159/**
2160 * Increments FSW.TOP, i.e. pops an item off the stack without freeing it.
2161 *
2162 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2163 */
2164DECLINLINE(void) iemFpuStackIncTop(PVMCPUCC pVCpu)
2165{
2166 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2167 uint16_t uFsw = pFpuCtx->FSW;
2168 uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
2169 uTop = (uTop + (1 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
2170 uFsw &= ~X86_FSW_TOP_MASK;
2171 uFsw |= uTop;
2172 pFpuCtx->FSW = uFsw;
2173}
2174
2175
2176/**
2177 * Decrements FSW.TOP, i.e. push an item off the stack without storing anything.
2178 *
2179 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2180 */
2181DECLINLINE(void) iemFpuStackDecTop(PVMCPUCC pVCpu)
2182{
2183 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2184 uint16_t uFsw = pFpuCtx->FSW;
2185 uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
2186 uTop = (uTop + (7 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
2187 uFsw &= ~X86_FSW_TOP_MASK;
2188 uFsw |= uTop;
2189 pFpuCtx->FSW = uFsw;
2190}
2191
2192
2193
2194
2195DECLINLINE(int) iemFpuStRegNotEmpty(PVMCPUCC pVCpu, uint8_t iStReg)
2196{
2197 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2198 uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
2199 if (pFpuCtx->FTW & RT_BIT(iReg))
2200 return VINF_SUCCESS;
2201 return VERR_NOT_FOUND;
2202}
2203
2204
2205DECLINLINE(int) iemFpuStRegNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg, PCRTFLOAT80U *ppRef)
2206{
2207 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2208 uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
2209 if (pFpuCtx->FTW & RT_BIT(iReg))
2210 {
2211 *ppRef = &pFpuCtx->aRegs[iStReg].r80;
2212 return VINF_SUCCESS;
2213 }
2214 return VERR_NOT_FOUND;
2215}
2216
2217
2218DECLINLINE(int) iemFpu2StRegsNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0,
2219 uint8_t iStReg1, PCRTFLOAT80U *ppRef1)
2220{
2221 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2222 uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2223 uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
2224 uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
2225 if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
2226 {
2227 *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
2228 *ppRef1 = &pFpuCtx->aRegs[iStReg1].r80;
2229 return VINF_SUCCESS;
2230 }
2231 return VERR_NOT_FOUND;
2232}
2233
2234
2235DECLINLINE(int) iemFpu2StRegsNotEmptyRefFirst(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0, uint8_t iStReg1)
2236{
2237 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2238 uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2239 uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
2240 uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
2241 if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
2242 {
2243 *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
2244 return VINF_SUCCESS;
2245 }
2246 return VERR_NOT_FOUND;
2247}
2248
2249
2250/**
2251 * Rotates the stack registers when setting new TOS.
2252 *
2253 * @param pFpuCtx The FPU context.
2254 * @param iNewTop New TOS value.
2255 * @remarks We only do this to speed up fxsave/fxrstor which
2256 * arrange the FP registers in stack order.
2257 * MUST be done before writing the new TOS (FSW).
2258 */
2259DECLINLINE(void) iemFpuRotateStackSetTop(PX86FXSTATE pFpuCtx, uint16_t iNewTop)
2260{
2261 uint16_t iOldTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2262 RTFLOAT80U ar80Temp[8];
2263
2264 if (iOldTop == iNewTop)
2265 return;
2266
2267 /* Unscrew the stack and get it into 'native' order. */
2268 ar80Temp[0] = pFpuCtx->aRegs[(8 - iOldTop + 0) & X86_FSW_TOP_SMASK].r80;
2269 ar80Temp[1] = pFpuCtx->aRegs[(8 - iOldTop + 1) & X86_FSW_TOP_SMASK].r80;
2270 ar80Temp[2] = pFpuCtx->aRegs[(8 - iOldTop + 2) & X86_FSW_TOP_SMASK].r80;
2271 ar80Temp[3] = pFpuCtx->aRegs[(8 - iOldTop + 3) & X86_FSW_TOP_SMASK].r80;
2272 ar80Temp[4] = pFpuCtx->aRegs[(8 - iOldTop + 4) & X86_FSW_TOP_SMASK].r80;
2273 ar80Temp[5] = pFpuCtx->aRegs[(8 - iOldTop + 5) & X86_FSW_TOP_SMASK].r80;
2274 ar80Temp[6] = pFpuCtx->aRegs[(8 - iOldTop + 6) & X86_FSW_TOP_SMASK].r80;
2275 ar80Temp[7] = pFpuCtx->aRegs[(8 - iOldTop + 7) & X86_FSW_TOP_SMASK].r80;
2276
2277 /* Now rotate the stack to the new position. */
2278 pFpuCtx->aRegs[0].r80 = ar80Temp[(iNewTop + 0) & X86_FSW_TOP_SMASK];
2279 pFpuCtx->aRegs[1].r80 = ar80Temp[(iNewTop + 1) & X86_FSW_TOP_SMASK];
2280 pFpuCtx->aRegs[2].r80 = ar80Temp[(iNewTop + 2) & X86_FSW_TOP_SMASK];
2281 pFpuCtx->aRegs[3].r80 = ar80Temp[(iNewTop + 3) & X86_FSW_TOP_SMASK];
2282 pFpuCtx->aRegs[4].r80 = ar80Temp[(iNewTop + 4) & X86_FSW_TOP_SMASK];
2283 pFpuCtx->aRegs[5].r80 = ar80Temp[(iNewTop + 5) & X86_FSW_TOP_SMASK];
2284 pFpuCtx->aRegs[6].r80 = ar80Temp[(iNewTop + 6) & X86_FSW_TOP_SMASK];
2285 pFpuCtx->aRegs[7].r80 = ar80Temp[(iNewTop + 7) & X86_FSW_TOP_SMASK];
2286}
2287
2288
2289/**
2290 * Updates the FPU exception status after FCW is changed.
2291 *
2292 * @param pFpuCtx The FPU context.
2293 */
2294DECLINLINE(void) iemFpuRecalcExceptionStatus(PX86FXSTATE pFpuCtx)
2295{
2296 uint16_t u16Fsw = pFpuCtx->FSW;
2297 if ((u16Fsw & X86_FSW_XCPT_MASK) & ~(pFpuCtx->FCW & X86_FCW_XCPT_MASK))
2298 u16Fsw |= X86_FSW_ES | X86_FSW_B;
2299 else
2300 u16Fsw &= ~(X86_FSW_ES | X86_FSW_B);
2301 pFpuCtx->FSW = u16Fsw;
2302}
2303
2304
2305/**
2306 * Calculates the full FTW (FPU tag word) for use in FNSTENV and FNSAVE.
2307 *
2308 * @returns The full FTW.
2309 * @param pFpuCtx The FPU context.
2310 */
2311DECLINLINE(uint16_t) iemFpuCalcFullFtw(PCX86FXSTATE pFpuCtx)
2312{
2313 uint8_t const u8Ftw = (uint8_t)pFpuCtx->FTW;
2314 uint16_t u16Ftw = 0;
2315 unsigned const iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2316 for (unsigned iSt = 0; iSt < 8; iSt++)
2317 {
2318 unsigned const iReg = (iSt + iTop) & 7;
2319 if (!(u8Ftw & RT_BIT(iReg)))
2320 u16Ftw |= 3 << (iReg * 2); /* empty */
2321 else
2322 {
2323 uint16_t uTag;
2324 PCRTFLOAT80U const pr80Reg = &pFpuCtx->aRegs[iSt].r80;
2325 if (pr80Reg->s.uExponent == 0x7fff)
2326 uTag = 2; /* Exponent is all 1's => Special. */
2327 else if (pr80Reg->s.uExponent == 0x0000)
2328 {
2329 if (pr80Reg->s.uMantissa == 0x0000)
2330 uTag = 1; /* All bits are zero => Zero. */
2331 else
2332 uTag = 2; /* Must be special. */
2333 }
2334 else if (pr80Reg->s.uMantissa & RT_BIT_64(63)) /* The J bit. */
2335 uTag = 0; /* Valid. */
2336 else
2337 uTag = 2; /* Must be special. */
2338
2339 u16Ftw |= uTag << (iReg * 2);
2340 }
2341 }
2342
2343 return u16Ftw;
2344}
2345
2346
2347/**
2348 * Converts a full FTW to a compressed one (for use in FLDENV and FRSTOR).
2349 *
2350 * @returns The compressed FTW.
2351 * @param u16FullFtw The full FTW to convert.
2352 */
2353DECLINLINE(uint16_t) iemFpuCompressFtw(uint16_t u16FullFtw)
2354{
2355 uint8_t u8Ftw = 0;
2356 for (unsigned i = 0; i < 8; i++)
2357 {
2358 if ((u16FullFtw & 3) != 3 /*empty*/)
2359 u8Ftw |= RT_BIT(i);
2360 u16FullFtw >>= 2;
2361 }
2362
2363 return u8Ftw;
2364}
2365
2366/** @} */
2367
2368
2369/** @name Memory access.
2370 *
2371 * @{
2372 */
2373
2374
2375/**
2376 * Checks whether alignment checks are enabled or not.
2377 *
2378 * @returns true if enabled, false if not.
2379 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2380 */
2381DECLINLINE(bool) iemMemAreAlignmentChecksEnabled(PVMCPUCC pVCpu)
2382{
2383 AssertCompile(X86_CR0_AM == X86_EFL_AC);
2384 return pVCpu->iem.s.uCpl == 3
2385 && (((uint32_t)pVCpu->cpum.GstCtx.cr0 & pVCpu->cpum.GstCtx.eflags.u) & X86_CR0_AM);
2386}
2387
2388/**
2389 * Checks if the given segment can be written to, raise the appropriate
2390 * exception if not.
2391 *
2392 * @returns VBox strict status code.
2393 *
2394 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2395 * @param pHid Pointer to the hidden register.
2396 * @param iSegReg The register number.
2397 * @param pu64BaseAddr Where to return the base address to use for the
2398 * segment. (In 64-bit code it may differ from the
2399 * base in the hidden segment.)
2400 */
2401DECLINLINE(VBOXSTRICTRC) iemMemSegCheckWriteAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
2402{
2403 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2404
2405 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2406 *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
2407 else
2408 {
2409 if (!pHid->Attr.n.u1Present)
2410 {
2411 uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
2412 AssertRelease(uSel == 0);
2413 Log(("iemMemSegCheckWriteAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
2414 return iemRaiseGeneralProtectionFault0(pVCpu);
2415 }
2416
2417 if ( ( (pHid->Attr.n.u4Type & X86_SEL_TYPE_CODE)
2418 || !(pHid->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
2419 && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT )
2420 return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
2421 *pu64BaseAddr = pHid->u64Base;
2422 }
2423 return VINF_SUCCESS;
2424}
2425
2426
2427/**
2428 * Checks if the given segment can be read from, raise the appropriate
2429 * exception if not.
2430 *
2431 * @returns VBox strict status code.
2432 *
2433 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2434 * @param pHid Pointer to the hidden register.
2435 * @param iSegReg The register number.
2436 * @param pu64BaseAddr Where to return the base address to use for the
2437 * segment. (In 64-bit code it may differ from the
2438 * base in the hidden segment.)
2439 */
2440DECLINLINE(VBOXSTRICTRC) iemMemSegCheckReadAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
2441{
2442 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2443
2444 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2445 *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
2446 else
2447 {
2448 if (!pHid->Attr.n.u1Present)
2449 {
2450 uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
2451 AssertRelease(uSel == 0);
2452 Log(("iemMemSegCheckReadAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
2453 return iemRaiseGeneralProtectionFault0(pVCpu);
2454 }
2455
2456 if ((pHid->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
2457 return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
2458 *pu64BaseAddr = pHid->u64Base;
2459 }
2460 return VINF_SUCCESS;
2461}
2462
2463
2464/**
2465 * Maps a physical page.
2466 *
2467 * @returns VBox status code (see PGMR3PhysTlbGCPhys2Ptr).
2468 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2469 * @param GCPhysMem The physical address.
2470 * @param fAccess The intended access.
2471 * @param ppvMem Where to return the mapping address.
2472 * @param pLock The PGM lock.
2473 */
2474DECLINLINE(int) iemMemPageMap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, void **ppvMem, PPGMPAGEMAPLOCK pLock)
2475{
2476#ifdef IEM_LOG_MEMORY_WRITES
2477 if (fAccess & IEM_ACCESS_TYPE_WRITE)
2478 return VERR_PGM_PHYS_TLB_CATCH_ALL;
2479#endif
2480
2481 /** @todo This API may require some improving later. A private deal with PGM
2482 * regarding locking and unlocking needs to be struct. A couple of TLBs
2483 * living in PGM, but with publicly accessible inlined access methods
2484 * could perhaps be an even better solution. */
2485 int rc = PGMPhysIemGCPhys2Ptr(pVCpu->CTX_SUFF(pVM), pVCpu,
2486 GCPhysMem,
2487 RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE),
2488 pVCpu->iem.s.fBypassHandlers,
2489 ppvMem,
2490 pLock);
2491 /*Log(("PGMPhysIemGCPhys2Ptr %Rrc pLock=%.*Rhxs\n", rc, sizeof(*pLock), pLock));*/
2492 AssertMsg(rc == VINF_SUCCESS || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
2493
2494 return rc;
2495}
2496
2497
2498/**
2499 * Unmap a page previously mapped by iemMemPageMap.
2500 *
2501 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2502 * @param GCPhysMem The physical address.
2503 * @param fAccess The intended access.
2504 * @param pvMem What iemMemPageMap returned.
2505 * @param pLock The PGM lock.
2506 */
2507DECLINLINE(void) iemMemPageUnmap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, const void *pvMem, PPGMPAGEMAPLOCK pLock)
2508{
2509 NOREF(pVCpu);
2510 NOREF(GCPhysMem);
2511 NOREF(fAccess);
2512 NOREF(pvMem);
2513 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), pLock);
2514}
2515
2516#ifdef IEM_WITH_SETJMP
2517
2518/** @todo slim this down */
2519DECLINLINE(RTGCPTR) iemMemApplySegmentToReadJmp(PVMCPUCC pVCpu, uint8_t iSegReg, size_t cbMem, RTGCPTR GCPtrMem)
2520{
2521 Assert(cbMem >= 1);
2522 Assert(iSegReg < X86_SREG_COUNT);
2523
2524 /*
2525 * 64-bit mode is simpler.
2526 */
2527 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2528 {
2529 if (iSegReg >= X86_SREG_FS && iSegReg != UINT8_MAX)
2530 {
2531 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2532 PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
2533 GCPtrMem += pSel->u64Base;
2534 }
2535
2536 if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
2537 return GCPtrMem;
2538 iemRaiseGeneralProtectionFault0Jmp(pVCpu);
2539 }
2540 /*
2541 * 16-bit and 32-bit segmentation.
2542 */
2543 else if (iSegReg != UINT8_MAX)
2544 {
2545 /** @todo Does this apply to segments with 4G-1 limit? */
2546 uint32_t const GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem - 1;
2547 if (RT_LIKELY(GCPtrLast32 >= (uint32_t)GCPtrMem))
2548 {
2549 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2550 PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
2551 switch (pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
2552 | X86_SEL_TYPE_READ | X86_SEL_TYPE_WRITE /* same as read */
2553 | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_CONF /* same as down */
2554 | X86_SEL_TYPE_CODE))
2555 {
2556 case X86DESCATTR_P: /* readonly data, expand up */
2557 case X86DESCATTR_P | X86_SEL_TYPE_WRITE: /* writable data, expand up */
2558 case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ: /* code, read-only */
2559 case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_CONF: /* conforming code, read-only */
2560 /* expand up */
2561 if (RT_LIKELY(GCPtrLast32 <= pSel->u32Limit))
2562 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2563 Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x vs %#x\n",
2564 (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit));
2565 break;
2566
2567 case X86DESCATTR_P | X86_SEL_TYPE_DOWN: /* readonly data, expand down */
2568 case X86DESCATTR_P | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_WRITE: /* writable data, expand down */
2569 /* expand down */
2570 if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
2571 && ( pSel->Attr.n.u1DefBig
2572 || GCPtrLast32 <= UINT32_C(0xffff)) ))
2573 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2574 Log10(("iemMemApplySegmentToReadJmp: expand down out of bounds %#x..%#x vs %#x..%#x\n",
2575 (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit, pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT16_MAX));
2576 break;
2577
2578 default:
2579 Log10(("iemMemApplySegmentToReadJmp: bad selector %#x\n", pSel->Attr.u));
2580 iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
2581 break;
2582 }
2583 }
2584 Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x\n",(uint32_t)GCPtrMem, GCPtrLast32));
2585 iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
2586 }
2587 /*
2588 * 32-bit flat address.
2589 */
2590 else
2591 return GCPtrMem;
2592}
2593
2594
2595/** @todo slim this down */
2596DECLINLINE(RTGCPTR) iemMemApplySegmentToWriteJmp(PVMCPUCC pVCpu, uint8_t iSegReg, size_t cbMem, RTGCPTR GCPtrMem)
2597{
2598 Assert(cbMem >= 1);
2599 Assert(iSegReg < X86_SREG_COUNT);
2600
2601 /*
2602 * 64-bit mode is simpler.
2603 */
2604 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2605 {
2606 if (iSegReg >= X86_SREG_FS)
2607 {
2608 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2609 PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
2610 GCPtrMem += pSel->u64Base;
2611 }
2612
2613 if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
2614 return GCPtrMem;
2615 }
2616 /*
2617 * 16-bit and 32-bit segmentation.
2618 */
2619 else
2620 {
2621 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2622 PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
2623 uint32_t const fRelevantAttrs = pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
2624 | X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN);
2625 if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE)) /* data, expand up */
2626 {
2627 /* expand up */
2628 uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
2629 if (RT_LIKELY( GCPtrLast32 > pSel->u32Limit
2630 && GCPtrLast32 > (uint32_t)GCPtrMem))
2631 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2632 }
2633 else if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN)) /* data, expand up */
2634 {
2635 /* expand down */
2636 uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
2637 if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
2638 && GCPtrLast32 <= (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
2639 && GCPtrLast32 > (uint32_t)GCPtrMem))
2640 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2641 }
2642 else
2643 iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
2644 iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
2645 }
2646 iemRaiseGeneralProtectionFault0Jmp(pVCpu);
2647}
2648
2649#endif /* IEM_WITH_SETJMP */
2650
2651/**
2652 * Fakes a long mode stack selector for SS = 0.
2653 *
2654 * @param pDescSs Where to return the fake stack descriptor.
2655 * @param uDpl The DPL we want.
2656 */
2657DECLINLINE(void) iemMemFakeStackSelDesc(PIEMSELDESC pDescSs, uint32_t uDpl)
2658{
2659 pDescSs->Long.au64[0] = 0;
2660 pDescSs->Long.au64[1] = 0;
2661 pDescSs->Long.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
2662 pDescSs->Long.Gen.u1DescType = 1; /* 1 = code / data, 0 = system. */
2663 pDescSs->Long.Gen.u2Dpl = uDpl;
2664 pDescSs->Long.Gen.u1Present = 1;
2665 pDescSs->Long.Gen.u1Long = 1;
2666}
2667
2668/** @} */
2669
2670
2671#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2672
2673/**
2674 * Gets CR0 fixed-0 bits in VMX non-root mode.
2675 *
2676 * We do this rather than fetching what we report to the guest (in
2677 * IA32_VMX_CR0_FIXED0 MSR) because real hardware (and so do we) report the same
2678 * values regardless of whether unrestricted-guest feature is available on the CPU.
2679 *
2680 * @returns CR0 fixed-0 bits.
2681 * @param pVCpu The cross context virtual CPU structure.
2682 */
2683DECLINLINE(uint64_t) iemVmxGetCr0Fixed0(PCVMCPUCC pVCpu)
2684{
2685 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
2686 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
2687
2688 static uint64_t const s_auCr0Fixed0[2] = { VMX_V_CR0_FIXED0, VMX_V_CR0_FIXED0_UX };
2689 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2690 uint8_t const fUnrestrictedGuest = !!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
2691 uint64_t const uCr0Fixed0 = s_auCr0Fixed0[fUnrestrictedGuest];
2692 Assert(!(uCr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
2693 return uCr0Fixed0;
2694}
2695
2696
2697/**
2698 * Sets virtual-APIC write emulation as pending.
2699 *
2700 * @param pVCpu The cross context virtual CPU structure.
2701 * @param offApic The offset in the virtual-APIC page that was written.
2702 */
2703DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic)
2704{
2705 Assert(offApic < XAPIC_OFF_END + 4);
2706
2707 /*
2708 * Record the currently updated APIC offset, as we need this later for figuring
2709 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
2710 * as for supplying the exit qualification when causing an APIC-write VM-exit.
2711 */
2712 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
2713
2714 /*
2715 * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
2716 * virtualization or APIC-write emulation).
2717 */
2718 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
2719 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
2720}
2721
2722#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
2723
2724#endif /* !VMM_INCLUDED_SRC_include_IEMInline_h */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette