VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 101399

Last change on this file since 101399 was 101387, checked in by vboxsync, 16 months ago

VMM/IEM: Added a new class of threaded function variants, the 16f/32f/64f variants that will clear RF (and vbox internal friends) and check for TF (and vbox internal friends). The variants w/o the 'f' after the bitcount will skip this test+branch. The motivation of this was to deal with this issue that the threaded recompiler level rather than try optimize away the test+branch++ code when generating native code, make the IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32 a very simple place to start emitting native code (compared to IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32_WITH_FLAGS). bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 275.2 KB
Line 
1/* $Id: IEMInternal.h 101387 2023-10-07 23:34:54Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEM_DO_LONGJMP
89 *
90 * Wrapper around longjmp / throw.
91 *
92 * @param a_pVCpu The CPU handle.
93 * @param a_rc The status code jump back with / throw.
94 */
95#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
96# ifdef IEM_WITH_THROW_CATCH
97# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
98# else
99# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
100# endif
101#endif
102
103/** For use with IEM function that may do a longjmp (when enabled).
104 *
105 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
106 * attribute. So, we indicate that function that may be part of a longjmp may
107 * throw "exceptions" and that the compiler should definitely not generate and
108 * std::terminate calling unwind code.
109 *
110 * Here is one example of this ending in std::terminate:
111 * @code{.txt}
11200 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
11301 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
11402 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
11503 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
11604 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
11705 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
11806 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
11907 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
12008 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
12109 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1220a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1230b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1240c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1250d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1260e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1270f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
12810 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
129 @endcode
130 *
131 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
132 */
133#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
134# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
135#else
136# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
137#endif
138
139#define IEM_IMPLEMENTS_TASKSWITCH
140
141/** @def IEM_WITH_3DNOW
142 * Includes the 3DNow decoding. */
143#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
144# define IEM_WITH_3DNOW
145#endif
146
147/** @def IEM_WITH_THREE_0F_38
148 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
149#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
150# define IEM_WITH_THREE_0F_38
151#endif
152
153/** @def IEM_WITH_THREE_0F_3A
154 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
155#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
156# define IEM_WITH_THREE_0F_3A
157#endif
158
159/** @def IEM_WITH_VEX
160 * Includes the VEX decoding. */
161#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
162# define IEM_WITH_VEX
163#endif
164
165/** @def IEM_CFG_TARGET_CPU
166 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
167 *
168 * By default we allow this to be configured by the user via the
169 * CPUM/GuestCpuName config string, but this comes at a slight cost during
170 * decoding. So, for applications of this code where there is no need to
171 * be dynamic wrt target CPU, just modify this define.
172 */
173#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
174# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
175#endif
176
177//#define IEM_WITH_CODE_TLB // - work in progress
178//#define IEM_WITH_DATA_TLB // - work in progress
179
180
181/** @def IEM_USE_UNALIGNED_DATA_ACCESS
182 * Use unaligned accesses instead of elaborate byte assembly. */
183#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
184# define IEM_USE_UNALIGNED_DATA_ACCESS
185#endif
186
187//#define IEM_LOG_MEMORY_WRITES
188
189#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
190/** Instruction statistics. */
191typedef struct IEMINSTRSTATS
192{
193# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
194# include "IEMInstructionStatisticsTmpl.h"
195# undef IEM_DO_INSTR_STAT
196} IEMINSTRSTATS;
197#else
198struct IEMINSTRSTATS;
199typedef struct IEMINSTRSTATS IEMINSTRSTATS;
200#endif
201/** Pointer to IEM instruction statistics. */
202typedef IEMINSTRSTATS *PIEMINSTRSTATS;
203
204
205/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
206 * @{ */
207#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
208#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
209#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
210#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
211#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
212/** Selects the right variant from a_aArray.
213 * pVCpu is implicit in the caller context. */
214#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
215 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
216/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
217 * be used because the host CPU does not support the operation. */
218#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
219 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
220/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
221 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
222 * into the two.
223 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
224#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
225# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
226 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
227#else
228# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
229 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
230#endif
231/** @} */
232
233/**
234 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
235 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
236 *
237 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
238 * indicator.
239 *
240 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
241 */
242#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
243# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
244 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
245#else
246# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
247#endif
248
249
250/**
251 * Extended operand mode that includes a representation of 8-bit.
252 *
253 * This is used for packing down modes when invoking some C instruction
254 * implementations.
255 */
256typedef enum IEMMODEX
257{
258 IEMMODEX_16BIT = IEMMODE_16BIT,
259 IEMMODEX_32BIT = IEMMODE_32BIT,
260 IEMMODEX_64BIT = IEMMODE_64BIT,
261 IEMMODEX_8BIT
262} IEMMODEX;
263AssertCompileSize(IEMMODEX, 4);
264
265
266/**
267 * Branch types.
268 */
269typedef enum IEMBRANCH
270{
271 IEMBRANCH_JUMP = 1,
272 IEMBRANCH_CALL,
273 IEMBRANCH_TRAP,
274 IEMBRANCH_SOFTWARE_INT,
275 IEMBRANCH_HARDWARE_INT
276} IEMBRANCH;
277AssertCompileSize(IEMBRANCH, 4);
278
279
280/**
281 * INT instruction types.
282 */
283typedef enum IEMINT
284{
285 /** INT n instruction (opcode 0xcd imm). */
286 IEMINT_INTN = 0,
287 /** Single byte INT3 instruction (opcode 0xcc). */
288 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
289 /** Single byte INTO instruction (opcode 0xce). */
290 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
291 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
292 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
293} IEMINT;
294AssertCompileSize(IEMINT, 4);
295
296
297/**
298 * A FPU result.
299 */
300typedef struct IEMFPURESULT
301{
302 /** The output value. */
303 RTFLOAT80U r80Result;
304 /** The output status. */
305 uint16_t FSW;
306} IEMFPURESULT;
307AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
308/** Pointer to a FPU result. */
309typedef IEMFPURESULT *PIEMFPURESULT;
310/** Pointer to a const FPU result. */
311typedef IEMFPURESULT const *PCIEMFPURESULT;
312
313
314/**
315 * A FPU result consisting of two output values and FSW.
316 */
317typedef struct IEMFPURESULTTWO
318{
319 /** The first output value. */
320 RTFLOAT80U r80Result1;
321 /** The output status. */
322 uint16_t FSW;
323 /** The second output value. */
324 RTFLOAT80U r80Result2;
325} IEMFPURESULTTWO;
326AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
327AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
328/** Pointer to a FPU result consisting of two output values and FSW. */
329typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
330/** Pointer to a const FPU result consisting of two output values and FSW. */
331typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
332
333
334/**
335 * IEM TLB entry.
336 *
337 * Lookup assembly:
338 * @code{.asm}
339 ; Calculate tag.
340 mov rax, [VA]
341 shl rax, 16
342 shr rax, 16 + X86_PAGE_SHIFT
343 or rax, [uTlbRevision]
344
345 ; Do indexing.
346 movzx ecx, al
347 lea rcx, [pTlbEntries + rcx]
348
349 ; Check tag.
350 cmp [rcx + IEMTLBENTRY.uTag], rax
351 jne .TlbMiss
352
353 ; Check access.
354 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
355 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
356 cmp rax, [uTlbPhysRev]
357 jne .TlbMiss
358
359 ; Calc address and we're done.
360 mov eax, X86_PAGE_OFFSET_MASK
361 and eax, [VA]
362 or rax, [rcx + IEMTLBENTRY.pMappingR3]
363 %ifdef VBOX_WITH_STATISTICS
364 inc qword [cTlbHits]
365 %endif
366 jmp .Done
367
368 .TlbMiss:
369 mov r8d, ACCESS_FLAGS
370 mov rdx, [VA]
371 mov rcx, [pVCpu]
372 call iemTlbTypeMiss
373 .Done:
374
375 @endcode
376 *
377 */
378typedef struct IEMTLBENTRY
379{
380 /** The TLB entry tag.
381 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
382 * is ASSUMING a virtual address width of 48 bits.
383 *
384 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
385 *
386 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
387 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
388 * revision wraps around though, the tags needs to be zeroed.
389 *
390 * @note Try use SHRD instruction? After seeing
391 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
392 *
393 * @todo This will need to be reorganized for 57-bit wide virtual address and
394 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
395 * have to move the TLB entry versioning entirely to the
396 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
397 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
398 * consumed by PCID and ASID (12 + 6 = 18).
399 */
400 uint64_t uTag;
401 /** Access flags and physical TLB revision.
402 *
403 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
404 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
405 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
406 * - Bit 3 - pgm phys/virt - not directly writable.
407 * - Bit 4 - pgm phys page - not directly readable.
408 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
409 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
410 * - Bit 7 - tlb entry - pMappingR3 member not valid.
411 * - Bits 63 thru 8 are used for the physical TLB revision number.
412 *
413 * We're using complemented bit meanings here because it makes it easy to check
414 * whether special action is required. For instance a user mode write access
415 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
416 * non-zero result would mean special handling needed because either it wasn't
417 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
418 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
419 * need to check any PTE flag.
420 */
421 uint64_t fFlagsAndPhysRev;
422 /** The guest physical page address. */
423 uint64_t GCPhys;
424 /** Pointer to the ring-3 mapping. */
425 R3PTRTYPE(uint8_t *) pbMappingR3;
426#if HC_ARCH_BITS == 32
427 uint32_t u32Padding1;
428#endif
429} IEMTLBENTRY;
430AssertCompileSize(IEMTLBENTRY, 32);
431/** Pointer to an IEM TLB entry. */
432typedef IEMTLBENTRY *PIEMTLBENTRY;
433
434/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
435 * @{ */
436#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
437#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
438#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
439#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
440#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
441#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
442#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
443#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
444#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
445#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
446#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
447/** @} */
448
449
450/**
451 * An IEM TLB.
452 *
453 * We've got two of these, one for data and one for instructions.
454 */
455typedef struct IEMTLB
456{
457 /** The TLB entries.
458 * We've choosen 256 because that way we can obtain the result directly from a
459 * 8-bit register without an additional AND instruction. */
460 IEMTLBENTRY aEntries[256];
461 /** The TLB revision.
462 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
463 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
464 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
465 * (The revision zero indicates an invalid TLB entry.)
466 *
467 * The initial value is choosen to cause an early wraparound. */
468 uint64_t uTlbRevision;
469 /** The TLB physical address revision - shadow of PGM variable.
470 *
471 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
472 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
473 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
474 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
475 *
476 * The initial value is choosen to cause an early wraparound. */
477 uint64_t volatile uTlbPhysRev;
478
479 /* Statistics: */
480
481 /** TLB hits (VBOX_WITH_STATISTICS only). */
482 uint64_t cTlbHits;
483 /** TLB misses. */
484 uint32_t cTlbMisses;
485 /** Slow read path. */
486 uint32_t cTlbSlowReadPath;
487 /** Safe read path. */
488 uint32_t cTlbSafeReadPath;
489 /** Safe write path. */
490 uint32_t cTlbSafeWritePath;
491#if 0
492 /** TLB misses because of tag mismatch. */
493 uint32_t cTlbMissesTag;
494 /** TLB misses because of virtual access violation. */
495 uint32_t cTlbMissesVirtAccess;
496 /** TLB misses because of dirty bit. */
497 uint32_t cTlbMissesDirty;
498 /** TLB misses because of MMIO */
499 uint32_t cTlbMissesMmio;
500 /** TLB misses because of write access handlers. */
501 uint32_t cTlbMissesWriteHandler;
502 /** TLB misses because no r3(/r0) mapping. */
503 uint32_t cTlbMissesMapping;
504#endif
505 /** Alignment padding. */
506 uint32_t au32Padding[6];
507} IEMTLB;
508AssertCompileSizeAlignment(IEMTLB, 64);
509/** IEMTLB::uTlbRevision increment. */
510#define IEMTLB_REVISION_INCR RT_BIT_64(36)
511/** IEMTLB::uTlbRevision mask. */
512#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
513/** IEMTLB::uTlbPhysRev increment.
514 * @sa IEMTLBE_F_PHYS_REV */
515#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
516/**
517 * Calculates the TLB tag for a virtual address.
518 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
519 * @param a_pTlb The TLB.
520 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
521 * the clearing of the top 16 bits won't work (if 32-bit
522 * we'll end up with mostly zeros).
523 */
524#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
525/**
526 * Calculates the TLB tag for a virtual address but without TLB revision.
527 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
528 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
529 * the clearing of the top 16 bits won't work (if 32-bit
530 * we'll end up with mostly zeros).
531 */
532#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
533/**
534 * Converts a TLB tag value into a TLB index.
535 * @returns Index into IEMTLB::aEntries.
536 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
537 */
538#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
539/**
540 * Converts a TLB tag value into a TLB index.
541 * @returns Index into IEMTLB::aEntries.
542 * @param a_pTlb The TLB.
543 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
544 */
545#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
546
547
548/** @name IEM_MC_F_XXX - MC block flags/clues.
549 * @{ */
550#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
551#define IEM_MC_F_MIN_186 RT_BIT_32(1)
552#define IEM_MC_F_MIN_286 RT_BIT_32(2)
553#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
554#define IEM_MC_F_MIN_386 RT_BIT_32(3)
555#define IEM_MC_F_MIN_486 RT_BIT_32(4)
556#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
557#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
558#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
559#define IEM_MC_F_64BIT RT_BIT_32(6)
560#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
561/** @} */
562
563
564/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
565 *
566 * These flags are set when entering IEM and adjusted as code is executed, such
567 * that they will always contain the current values as instructions are
568 * finished.
569 *
570 * In recompiled execution mode, (most of) these flags are included in the
571 * translation block selection key and stored in IEMTB::fFlags alongside the
572 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
573 * in IEMCPU::fExec.
574 *
575 * @{ */
576/** Mode: The block target mode mask. */
577#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
578/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
579#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
580/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
581 * conditional in EIP/IP updating), and flat wide open CS, SS DS, and ES in
582 * 32-bit mode (for simplifying most memory accesses). */
583#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
584/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
585#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
586/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
587#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
588
589/** X86 Mode: 16-bit on 386 or later. */
590#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
591/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
592#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
593/** X86 Mode: 16-bit protected mode on 386 or later. */
594#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
595/** X86 Mode: 16-bit protected mode on 386 or later. */
596#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
597/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
598#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
599
600/** X86 Mode: 32-bit on 386 or later. */
601#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
602/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
603#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
604/** X86 Mode: 32-bit protected mode. */
605#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
606/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
607#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
608
609/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
610#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
611
612
613/** Bypass access handlers when set. */
614#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
615/** Have pending hardware instruction breakpoints. */
616#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
617/** Have pending hardware data breakpoints. */
618#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
619
620/** X86: Have pending hardware I/O breakpoints. */
621#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
622/** X86: Disregard the lock prefix (implied or not) when set. */
623#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
624
625/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
626#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
627
628/** Caller configurable options. */
629#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
630
631/** X86: The current protection level (CPL) shift factor. */
632#define IEM_F_X86_CPL_SHIFT 8
633/** X86: The current protection level (CPL) mask. */
634#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
635/** X86: The current protection level (CPL) shifted mask. */
636#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
637
638/** X86 execution context.
639 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
640 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
641 * mode. */
642#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
643/** X86 context: Plain regular execution context. */
644#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
645/** X86 context: VT-x enabled. */
646#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
647/** X86 context: AMD-V enabled. */
648#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
649/** X86 context: In AMD-V or VT-x guest mode. */
650#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
651/** X86 context: System management mode (SMM). */
652#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
653
654/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
655 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
656 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
657 * alread). */
658
659/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
660 * iemRegFinishClearingRF() most for most situations
661 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
662 * the IEM_F_PENDING_BRK_XXX bits alread). */
663
664/** @} */
665
666
667/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
668 *
669 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
670 * translation block flags. The combined flag mask (subject to
671 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
672 *
673 * @{ */
674/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
675#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
676
677/** Type: The block type mask. */
678#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
679/** Type: Purly threaded recompiler (via tables). */
680#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
681/** Type: Native recompilation. */
682#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
683
684/** Set when we're starting the block in an "interrupt shadow".
685 * We don't need to distingish between the two types of this mask, thus the one.
686 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
687#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
688/** Set when we're currently inhibiting NMIs
689 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
690#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
691
692/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
693 * we're close the limit before starting a TB, as determined by
694 * iemGetTbFlagsForCurrentPc(). */
695#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
696
697/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
698 * @note We skip the CPL as we don't currently generate ring-specific code,
699 * that's all handled in CIMPL functions.
700 *
701 * For the same reasons, we skip all of IEM_F_X86_CTX_MASK, with the
702 * exception of SMM (which we don't implement). */
703#define IEMTB_F_KEY_MASK ( (UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEM_F_X86_CPL_MASK | IEMTB_F_TYPE_MASK)) \
704 | IEM_F_X86_CTX_SMM)
705/** @} */
706
707AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
708AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
709AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
710AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
711AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
712AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
713AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
714AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
715AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
716AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
717AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
718AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
719AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
720AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
721AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
722AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
723AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
724AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
725AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
726
727AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
728AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
729AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
730AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
731AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
732AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
733AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
734AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
735AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
736AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
737AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
738AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
739
740AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
741AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
742AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
743
744/** Native instruction type for use with the native code generator.
745 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
746#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
747typedef uint8_t IEMNATIVEINSTR;
748#else
749typedef uint32_t IEMNATIVEINSTR;
750#endif
751/** Pointer to a native instruction unit. */
752typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
753
754/**
755 * A call for the threaded call table.
756 */
757typedef struct IEMTHRDEDCALLENTRY
758{
759 /** The function to call (IEMTHREADEDFUNCS). */
760 uint16_t enmFunction;
761 /** Instruction number in the TB (for statistics). */
762 uint8_t idxInstr;
763 uint8_t uUnused0;
764
765 /** Offset into IEMTB::pabOpcodes. */
766 uint16_t offOpcode;
767 /** The opcode length. */
768 uint8_t cbOpcode;
769 /** Index in to IEMTB::aRanges. */
770 uint8_t idxRange;
771
772 /** Generic parameters. */
773 uint64_t auParams[3];
774} IEMTHRDEDCALLENTRY;
775AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
776/** Pointer to a threaded call entry. */
777typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
778/** Pointer to a const threaded call entry. */
779typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
780
781/** Native IEM TB 'function' typedef.
782 * This will throw/longjmp on occation. */
783#if RT_CPLUSPLUS_PREREQ(201700)
784typedef int FNIEMTBNATIVE(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
785#else
786typedef int FNIEMTBNATIVE(PVMCPUCC pVCpu);
787#endif
788/** Pointer to a native IEM TB entry point function.
789 * This will throw/longjmp on occation. */
790typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
791
792
793/**
794 * Translation block.
795 *
796 * The current plan is to just keep TBs and associated lookup hash table private
797 * to each VCpu as that simplifies TB removal greatly (no races) and generally
798 * avoids using expensive atomic primitives for updating lists and stuff.
799 */
800#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
801typedef struct IEMTB
802{
803 /** Next block with the same hash table entry. */
804 struct IEMTB *pNext;
805 /** Usage counter. */
806 uint32_t cUsed;
807 /** The IEMCPU::msRecompilerPollNow last time it was used. */
808 uint32_t msLastUsed;
809 /** The allocation chunk this TB belongs to. */
810 uint8_t idxAllocChunk;
811
812 uint8_t abUnused[3];
813 uint32_t uUnused;
814
815
816 /** @name What uniquely identifies the block.
817 * @{ */
818 RTGCPHYS GCPhysPc;
819 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
820 uint32_t fFlags;
821 union
822 {
823 struct
824 {
825 /**< Relevant CS X86DESCATTR_XXX bits. */
826 uint16_t fAttr;
827 } x86;
828 };
829 /** @} */
830
831 /** Number of opcode ranges. */
832 uint8_t cRanges;
833 /** Statistics: Number of instructions in the block. */
834 uint8_t cInstructions;
835
836 /** Type specific info. */
837 union
838 {
839 struct
840 {
841 /** The call sequence table. */
842 PIEMTHRDEDCALLENTRY paCalls;
843 /** Number of calls in paCalls. */
844 uint16_t cCalls;
845 /** Number of calls allocated. */
846 uint16_t cAllocated;
847 } Thrd;
848 struct
849 {
850 /** The native instructions (PFNIEMTBNATIVE). */
851 PIEMNATIVEINSTR paInstructions;
852 /** Number of instructions pointed to by paInstructions. */
853 uint32_t cInstructions;
854 } Native;
855 /** Generic view for zeroing when freeing. */
856 struct
857 {
858 uintptr_t uPtr;
859 uint32_t uData;
860 } Gen;
861 };
862
863 /** Number of bytes of opcodes stored in pabOpcodes. */
864 uint16_t cbOpcodes;
865 /** The max storage available in the pabOpcodes block. */
866 uint16_t cbOpcodesAllocated;
867 /** Pointer to the opcode bytes this block was recompiled from. */
868 uint8_t *pabOpcodes;
869
870 /* --- 64 byte cache line end --- */
871
872 /** Opcode ranges.
873 *
874 * The opcode checkers and maybe TLB loading functions will use this to figure
875 * out what to do. The parameter will specify an entry and the opcode offset to
876 * start at and the minimum number of bytes to verify (instruction length).
877 *
878 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
879 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
880 * code TLB (must have a valid entry for that address) and scan the ranges to
881 * locate the corresponding opcodes. Probably.
882 */
883 struct IEMTBOPCODERANGE
884 {
885 /** Offset within pabOpcodes. */
886 uint16_t offOpcodes;
887 /** Number of bytes. */
888 uint16_t cbOpcodes;
889 /** The page offset. */
890 RT_GCC_EXTENSION
891 uint16_t offPhysPage : 12;
892 /** Unused bits. */
893 RT_GCC_EXTENSION
894 uint16_t u2Unused : 2;
895 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
896 RT_GCC_EXTENSION
897 uint16_t idxPhysPage : 2;
898 } aRanges[8];
899
900 /** Physical pages that this TB covers.
901 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
902 RTGCPHYS aGCPhysPages[2];
903} IEMTB;
904#pragma pack()
905AssertCompileMemberOffset(IEMTB, x86, 36);
906AssertCompileMemberOffset(IEMTB, cRanges, 38);
907AssertCompileMemberOffset(IEMTB, Thrd, 40);
908AssertCompileMemberOffset(IEMTB, Thrd.cCalls, 48);
909AssertCompileMemberOffset(IEMTB, cbOpcodes, 52);
910AssertCompileMemberSize(IEMTB, aRanges[0], 6);
911#if 1
912AssertCompileSize(IEMTB, 128);
913# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
914#else
915AssertCompileSize(IEMTB, 168);
916# undef IEMTB_SIZE_IS_POWER_OF_TWO
917#endif
918
919/** Pointer to a translation block. */
920typedef IEMTB *PIEMTB;
921/** Pointer to a const translation block. */
922typedef IEMTB const *PCIEMTB;
923
924/**
925 * A chunk of memory in the TB allocator.
926 */
927typedef struct IEMTBCHUNK
928{
929 /** Pointer to the translation blocks in this chunk. */
930 PIEMTB paTbs;
931#ifdef IN_RING0
932 /** Allocation handle. */
933 RTR0MEMOBJ hMemObj;
934#endif
935} IEMTBCHUNK;
936
937/**
938 * A per-CPU translation block allocator.
939 *
940 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
941 * the length of the collision list, and of course also for cache line alignment
942 * reasons, the TBs must be allocated with at least 64-byte alignment.
943 * Memory is there therefore allocated using one of the page aligned allocators.
944 *
945 *
946 * To avoid wasting too much memory, it is allocated piecemeal as needed,
947 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
948 * that enables us to quickly calculate the allocation bitmap position when
949 * freeing the translation block.
950 */
951typedef struct IEMTBALLOCATOR
952{
953 /** Magic value (IEMTBALLOCATOR_MAGIC). */
954 uint32_t uMagic;
955
956#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
957 /** Mask corresponding to cTbsPerChunk - 1. */
958 uint32_t fChunkMask;
959 /** Shift count corresponding to cTbsPerChunk. */
960 uint8_t cChunkShift;
961#else
962 uint32_t uUnused;
963 uint8_t bUnused;
964#endif
965 /** Number of chunks we're allowed to allocate. */
966 uint8_t cMaxChunks;
967 /** Number of chunks currently populated. */
968 uint16_t cAllocatedChunks;
969 /** Number of translation blocks per chunk. */
970 uint32_t cTbsPerChunk;
971 /** Chunk size. */
972 uint32_t cbPerChunk;
973
974 /** The maximum number of TBs. */
975 uint32_t cMaxTbs;
976 /** Total number of TBs in the populated chunks.
977 * (cAllocatedChunks * cTbsPerChunk) */
978 uint32_t cTotalTbs;
979 /** The current number of TBs in use.
980 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
981 uint32_t cInUseTbs;
982 /** Statistics: Number of the cInUseTbs that are native ones. */
983 uint32_t cNativeTbs;
984 /** Statistics: Number of the cInUseTbs that are threaded ones. */
985 uint32_t cThreadedTbs;
986
987 /** Where to start pruning TBs from when we're out.
988 * See iemTbAllocatorAllocSlow for details. */
989 uint32_t iPruneFrom;
990 /** Hint about which bit to start scanning the bitmap from. */
991 uint32_t iStartHint;
992
993 /** Statistics: Number of TB allocation calls. */
994 STAMCOUNTER StatAllocs;
995 /** Statistics: Number of TB free calls. */
996 STAMCOUNTER StatFrees;
997 /** Statistics: Time spend pruning. */
998 STAMPROFILE StatPrune;
999
1000 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1001 PIEMTB pDelayedFreeHead;
1002
1003 /** Allocation chunks. */
1004 IEMTBCHUNK aChunks[256];
1005
1006 /** Allocation bitmap for all possible chunk chunks. */
1007 RT_FLEXIBLE_ARRAY_EXTENSION
1008 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1009} IEMTBALLOCATOR;
1010/** Pointer to a TB allocator. */
1011typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1012
1013/** Magic value for the TB allocator (Emmet Harley Cohen). */
1014#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1015
1016
1017/**
1018 * A per-CPU translation block cache (hash table).
1019 *
1020 * The hash table is allocated once during IEM initialization and size double
1021 * the max TB count, rounded up to the nearest power of two (so we can use and
1022 * AND mask rather than a rest division when hashing).
1023 */
1024typedef struct IEMTBCACHE
1025{
1026 /** Magic value (IEMTBCACHE_MAGIC). */
1027 uint32_t uMagic;
1028 /** Size of the hash table. This is a power of two. */
1029 uint32_t cHash;
1030 /** The mask corresponding to cHash. */
1031 uint32_t uHashMask;
1032 uint32_t uPadding;
1033
1034 /** @name Statistics
1035 * @{ */
1036 /** Number of collisions ever. */
1037 STAMCOUNTER cCollisions;
1038
1039 /** Statistics: Number of TB lookup misses. */
1040 STAMCOUNTER cLookupMisses;
1041 /** Statistics: Number of TB lookup hits (debug only). */
1042 STAMCOUNTER cLookupHits;
1043 STAMCOUNTER auPadding2[3];
1044 /** Statistics: Collision list length pruning. */
1045 STAMPROFILE StatPrune;
1046 /** @} */
1047
1048 /** The hash table itself.
1049 * @note The lower 6 bits of the pointer is used for keeping the collision
1050 * list length, so we can take action when it grows too long.
1051 * This works because TBs are allocated using a 64 byte (or
1052 * higher) alignment from page aligned chunks of memory, so the lower
1053 * 6 bits of the address will always be zero.
1054 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1055 */
1056 RT_FLEXIBLE_ARRAY_EXTENSION
1057 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1058} IEMTBCACHE;
1059/** Pointer to a per-CPU translation block cahce. */
1060typedef IEMTBCACHE *PIEMTBCACHE;
1061
1062/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1063#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1064
1065/** The collision count mask for IEMTBCACHE::apHash entries. */
1066#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1067/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1068#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1069/** Combine a TB pointer and a collision list length into a value for an
1070 * IEMTBCACHE::apHash entry. */
1071#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1072/** Combine a TB pointer and a collision list length into a value for an
1073 * IEMTBCACHE::apHash entry. */
1074#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1075/** Combine a TB pointer and a collision list length into a value for an
1076 * IEMTBCACHE::apHash entry. */
1077#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1078
1079/**
1080 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1081 */
1082#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1083 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1084
1085/**
1086 * Calculates the hash table slot for a TB from physical PC address and TB
1087 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1088 */
1089#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1090 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1091
1092
1093/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1094 *
1095 * These flags parallels IEM_CIMPL_F_BRANCH_XXX.
1096 *
1097 * @{ */
1098/** Value if no branching happened recently. */
1099#define IEMBRANCHED_F_NO UINT8_C(0x00)
1100/** Flag set if direct branch, clear if absolute or indirect. */
1101#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1102/** Flag set if indirect branch, clear if direct or relative. */
1103#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1104/** Flag set if relative branch, clear if absolute or indirect. */
1105#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1106/** Flag set if conditional branch, clear if unconditional. */
1107#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1108/** Flag set if it's a far branch. */
1109#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1110/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1111#define IEMBRANCHED_F_ZERO UINT8_C(0x20)
1112/** @} */
1113
1114
1115/**
1116 * The per-CPU IEM state.
1117 */
1118typedef struct IEMCPU
1119{
1120 /** Info status code that needs to be propagated to the IEM caller.
1121 * This cannot be passed internally, as it would complicate all success
1122 * checks within the interpreter making the code larger and almost impossible
1123 * to get right. Instead, we'll store status codes to pass on here. Each
1124 * source of these codes will perform appropriate sanity checks. */
1125 int32_t rcPassUp; /* 0x00 */
1126 /** Execution flag, IEM_F_XXX. */
1127 uint32_t fExec; /* 0x04 */
1128
1129 /** @name Decoder state.
1130 * @{ */
1131#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1132# ifdef IEM_WITH_CODE_TLB
1133 /** The offset of the next instruction byte. */
1134 uint32_t offInstrNextByte; /* 0x08 */
1135 /** The number of bytes available at pbInstrBuf for the current instruction.
1136 * This takes the max opcode length into account so that doesn't need to be
1137 * checked separately. */
1138 uint32_t cbInstrBuf; /* 0x0c */
1139 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1140 * This can be NULL if the page isn't mappable for some reason, in which
1141 * case we'll do fallback stuff.
1142 *
1143 * If we're executing an instruction from a user specified buffer,
1144 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1145 * aligned pointer but pointer to the user data.
1146 *
1147 * For instructions crossing pages, this will start on the first page and be
1148 * advanced to the next page by the time we've decoded the instruction. This
1149 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1150 */
1151 uint8_t const *pbInstrBuf; /* 0x10 */
1152# if ARCH_BITS == 32
1153 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1154# endif
1155 /** The program counter corresponding to pbInstrBuf.
1156 * This is set to a non-canonical address when we need to invalidate it. */
1157 uint64_t uInstrBufPc; /* 0x18 */
1158 /** The guest physical address corresponding to pbInstrBuf. */
1159 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1160 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1161 * This takes the CS segment limit into account. */
1162 uint16_t cbInstrBufTotal; /* 0x28 */
1163 /** Offset into pbInstrBuf of the first byte of the current instruction.
1164 * Can be negative to efficiently handle cross page instructions. */
1165 int16_t offCurInstrStart; /* 0x2a */
1166
1167 /** The prefix mask (IEM_OP_PRF_XXX). */
1168 uint32_t fPrefixes; /* 0x2c */
1169 /** The extra REX ModR/M register field bit (REX.R << 3). */
1170 uint8_t uRexReg; /* 0x30 */
1171 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1172 * (REX.B << 3). */
1173 uint8_t uRexB; /* 0x31 */
1174 /** The extra REX SIB index field bit (REX.X << 3). */
1175 uint8_t uRexIndex; /* 0x32 */
1176
1177 /** The effective segment register (X86_SREG_XXX). */
1178 uint8_t iEffSeg; /* 0x33 */
1179
1180 /** The offset of the ModR/M byte relative to the start of the instruction. */
1181 uint8_t offModRm; /* 0x34 */
1182
1183# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1184 /** The current offset into abOpcode. */
1185 uint8_t offOpcode; /* 0x35 */
1186# else
1187 uint8_t bUnused; /* 0x35 */
1188# endif
1189# else /* !IEM_WITH_CODE_TLB */
1190 /** The size of what has currently been fetched into abOpcode. */
1191 uint8_t cbOpcode; /* 0x08 */
1192 /** The current offset into abOpcode. */
1193 uint8_t offOpcode; /* 0x09 */
1194 /** The offset of the ModR/M byte relative to the start of the instruction. */
1195 uint8_t offModRm; /* 0x0a */
1196
1197 /** The effective segment register (X86_SREG_XXX). */
1198 uint8_t iEffSeg; /* 0x0b */
1199
1200 /** The prefix mask (IEM_OP_PRF_XXX). */
1201 uint32_t fPrefixes; /* 0x0c */
1202 /** The extra REX ModR/M register field bit (REX.R << 3). */
1203 uint8_t uRexReg; /* 0x10 */
1204 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1205 * (REX.B << 3). */
1206 uint8_t uRexB; /* 0x11 */
1207 /** The extra REX SIB index field bit (REX.X << 3). */
1208 uint8_t uRexIndex; /* 0x12 */
1209
1210# endif /* !IEM_WITH_CODE_TLB */
1211
1212 /** The effective operand mode. */
1213 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1214 /** The default addressing mode. */
1215 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1216 /** The effective addressing mode. */
1217 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1218 /** The default operand mode. */
1219 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1220
1221 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1222 uint8_t idxPrefix; /* 0x3a, 0x17 */
1223 /** 3rd VEX/EVEX/XOP register.
1224 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1225 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1226 /** The VEX/EVEX/XOP length field. */
1227 uint8_t uVexLength; /* 0x3c, 0x19 */
1228 /** Additional EVEX stuff. */
1229 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1230
1231# ifndef IEM_WITH_CODE_TLB
1232 /** Explicit alignment padding. */
1233 uint8_t abAlignment2a[1]; /* 0x1b */
1234# endif
1235 /** The FPU opcode (FOP). */
1236 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1237# ifndef IEM_WITH_CODE_TLB
1238 /** Explicit alignment padding. */
1239 uint8_t abAlignment2b[2]; /* 0x1e */
1240# endif
1241
1242 /** The opcode bytes. */
1243 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1244 /** Explicit alignment padding. */
1245# ifdef IEM_WITH_CODE_TLB
1246 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1247# else
1248 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1249# endif
1250#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1251 uint8_t abOpaqueDecoder[0x4f - 0x8];
1252#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1253 /** @} */
1254
1255
1256 /** The number of active guest memory mappings. */
1257 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1258
1259 /** Records for tracking guest memory mappings. */
1260 struct
1261 {
1262 /** The address of the mapped bytes. */
1263 R3R0PTRTYPE(void *) pv;
1264 /** The access flags (IEM_ACCESS_XXX).
1265 * IEM_ACCESS_INVALID if the entry is unused. */
1266 uint32_t fAccess;
1267#if HC_ARCH_BITS == 64
1268 uint32_t u32Alignment4; /**< Alignment padding. */
1269#endif
1270 } aMemMappings[3]; /* 0x50 LB 0x30 */
1271
1272 /** Locking records for the mapped memory. */
1273 union
1274 {
1275 PGMPAGEMAPLOCK Lock;
1276 uint64_t au64Padding[2];
1277 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1278
1279 /** Bounce buffer info.
1280 * This runs in parallel to aMemMappings. */
1281 struct
1282 {
1283 /** The physical address of the first byte. */
1284 RTGCPHYS GCPhysFirst;
1285 /** The physical address of the second page. */
1286 RTGCPHYS GCPhysSecond;
1287 /** The number of bytes in the first page. */
1288 uint16_t cbFirst;
1289 /** The number of bytes in the second page. */
1290 uint16_t cbSecond;
1291 /** Whether it's unassigned memory. */
1292 bool fUnassigned;
1293 /** Explicit alignment padding. */
1294 bool afAlignment5[3];
1295 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1296
1297 /** The flags of the current exception / interrupt. */
1298 uint32_t fCurXcpt; /* 0xf8 */
1299 /** The current exception / interrupt. */
1300 uint8_t uCurXcpt; /* 0xfc */
1301 /** Exception / interrupt recursion depth. */
1302 int8_t cXcptRecursions; /* 0xfb */
1303
1304 /** The next unused mapping index.
1305 * @todo try find room for this up with cActiveMappings. */
1306 uint8_t iNextMapping; /* 0xfd */
1307 uint8_t abAlignment7[1];
1308
1309 /** Bounce buffer storage.
1310 * This runs in parallel to aMemMappings and aMemBbMappings. */
1311 struct
1312 {
1313 uint8_t ab[512];
1314 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1315
1316
1317 /** Pointer set jump buffer - ring-3 context. */
1318 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1319 /** Pointer set jump buffer - ring-0 context. */
1320 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1321
1322 /** @todo Should move this near @a fCurXcpt later. */
1323 /** The CR2 for the current exception / interrupt. */
1324 uint64_t uCurXcptCr2;
1325 /** The error code for the current exception / interrupt. */
1326 uint32_t uCurXcptErr;
1327
1328 /** @name Statistics
1329 * @{ */
1330 /** The number of instructions we've executed. */
1331 uint32_t cInstructions;
1332 /** The number of potential exits. */
1333 uint32_t cPotentialExits;
1334 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1335 * This may contain uncommitted writes. */
1336 uint32_t cbWritten;
1337 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1338 uint32_t cRetInstrNotImplemented;
1339 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1340 uint32_t cRetAspectNotImplemented;
1341 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1342 uint32_t cRetInfStatuses;
1343 /** Counts other error statuses returned. */
1344 uint32_t cRetErrStatuses;
1345 /** Number of times rcPassUp has been used. */
1346 uint32_t cRetPassUpStatus;
1347 /** Number of times RZ left with instruction commit pending for ring-3. */
1348 uint32_t cPendingCommit;
1349 /** Number of long jumps. */
1350 uint32_t cLongJumps;
1351 /** @} */
1352
1353 /** @name Target CPU information.
1354 * @{ */
1355#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1356 /** The target CPU. */
1357 uint8_t uTargetCpu;
1358#else
1359 uint8_t bTargetCpuPadding;
1360#endif
1361 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1362 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1363 * native host support and the 2nd for when there is.
1364 *
1365 * The two values are typically indexed by a g_CpumHostFeatures bit.
1366 *
1367 * This is for instance used for the BSF & BSR instructions where AMD and
1368 * Intel CPUs produce different EFLAGS. */
1369 uint8_t aidxTargetCpuEflFlavour[2];
1370
1371 /** The CPU vendor. */
1372 CPUMCPUVENDOR enmCpuVendor;
1373 /** @} */
1374
1375 /** @name Host CPU information.
1376 * @{ */
1377 /** The CPU vendor. */
1378 CPUMCPUVENDOR enmHostCpuVendor;
1379 /** @} */
1380
1381 /** Counts RDMSR \#GP(0) LogRel(). */
1382 uint8_t cLogRelRdMsr;
1383 /** Counts WRMSR \#GP(0) LogRel(). */
1384 uint8_t cLogRelWrMsr;
1385 /** Alignment padding. */
1386 uint8_t abAlignment9[46];
1387
1388 /** @name Recompilation
1389 * @{ */
1390 /** Pointer to the current translation block.
1391 * This can either be one being executed or one being compiled. */
1392 R3PTRTYPE(PIEMTB) pCurTbR3;
1393 /** Fixed TB used for threaded recompilation.
1394 * This is allocated once with maxed-out sizes and re-used afterwards. */
1395 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1396 /** Pointer to the ring-3 TB cache for this EMT. */
1397 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1398 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1399 * The TBs are based on physical addresses, so this is needed to correleated
1400 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1401 uint64_t uCurTbStartPc;
1402 /** Number of threaded TBs executed. */
1403 uint64_t cTbExecThreaded;
1404 /** Number of native TBs executed. */
1405 uint64_t cTbExecNative;
1406 /** Whether we need to check the opcode bytes for the current instruction.
1407 * This is set by a previous instruction if it modified memory or similar. */
1408 bool fTbCheckOpcodes;
1409 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1410 uint8_t fTbBranched;
1411 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1412 bool fTbCrossedPage;
1413 /** Whether to end the current TB. */
1414 bool fEndTb;
1415 /** Number of instructions before we need emit an IRQ check call again.
1416 * This helps making sure we don't execute too long w/o checking for
1417 * interrupts and immediately following instructions that may enable
1418 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1419 * required to make sure we check following the next instruction as well, see
1420 * fTbCurInstrIsSti. */
1421 uint8_t cInstrTillIrqCheck;
1422 /** Indicates that the current instruction is an STI. This is set by the
1423 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1424 bool fTbCurInstrIsSti;
1425 /** Spaced reserved for recompiler data / alignment. */
1426 bool afRecompilerStuff1[2+4];
1427 /** The virtual sync time at the last timer poll call. */
1428 uint32_t msRecompilerPollNow;
1429 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1430 uint32_t fTbCurInstr;
1431 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1432 uint32_t fTbPrevInstr;
1433 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1434 RTGCPHYS GCPhysInstrBufPrev;
1435 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1436 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1437 * whether a branch instruction jumps to a new page or stays within the
1438 * current one. */
1439 RTGCPHYS GCPhysTbBranchSrcBuf;
1440 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1441 uint64_t GCVirtTbBranchSrcBuf;
1442 /** Pointer to the ring-3 TB allocator for this EMT. */
1443 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1444 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1445 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1446 /** Pointer to the native recompiler state for ring-3. */
1447 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1448 /** Alignment padding. */
1449 uint64_t auAlignment10[4];
1450 /** Statistics: Times TB execution was broken off before reaching the end. */
1451 STAMCOUNTER StatTbExecBreaks;
1452 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1453 STAMCOUNTER StatCheckIrqBreaks;
1454 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1455 STAMCOUNTER StatCheckModeBreaks;
1456 /** Statistics: Times a post jump target check missed and had to find new TB. */
1457 STAMCOUNTER StatCheckBranchMisses;
1458 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1459 STAMCOUNTER StatCheckNeedCsLimChecking;
1460 /** Threaded TB statistics: Number of instructions per TB. */
1461 STAMPROFILE StatTbThreadedInstr;
1462 /** Threaded TB statistics: Number of calls per TB. */
1463 STAMPROFILE StatTbThreadedCalls;
1464 /** Native TB statistics: Native code size per TB. */
1465 STAMPROFILE StatTbNativeCode;
1466 /** Native TB statistics: Profiling native recompilation. */
1467 STAMPROFILE StatNativeRecompilation;
1468 /** @} */
1469
1470 /** Data TLB.
1471 * @remarks Must be 64-byte aligned. */
1472 IEMTLB DataTlb;
1473 /** Instruction TLB.
1474 * @remarks Must be 64-byte aligned. */
1475 IEMTLB CodeTlb;
1476
1477 /** Exception statistics. */
1478 STAMCOUNTER aStatXcpts[32];
1479 /** Interrupt statistics. */
1480 uint32_t aStatInts[256];
1481
1482#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1483 /** Instruction statistics for ring-0/raw-mode. */
1484 IEMINSTRSTATS StatsRZ;
1485 /** Instruction statistics for ring-3. */
1486 IEMINSTRSTATS StatsR3;
1487#endif
1488} IEMCPU;
1489AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1490AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1491AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1492AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1493AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1494AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1495
1496/** Pointer to the per-CPU IEM state. */
1497typedef IEMCPU *PIEMCPU;
1498/** Pointer to the const per-CPU IEM state. */
1499typedef IEMCPU const *PCIEMCPU;
1500
1501
1502/** @def IEM_GET_CTX
1503 * Gets the guest CPU context for the calling EMT.
1504 * @returns PCPUMCTX
1505 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1506 */
1507#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1508
1509/** @def IEM_CTX_ASSERT
1510 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1511 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1512 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1513 */
1514#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1515 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1516 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1517 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1518
1519/** @def IEM_CTX_IMPORT_RET
1520 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1521 *
1522 * Will call the keep to import the bits as needed.
1523 *
1524 * Returns on import failure.
1525 *
1526 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1527 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1528 */
1529#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1530 do { \
1531 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1532 { /* likely */ } \
1533 else \
1534 { \
1535 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1536 AssertRCReturn(rcCtxImport, rcCtxImport); \
1537 } \
1538 } while (0)
1539
1540/** @def IEM_CTX_IMPORT_NORET
1541 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1542 *
1543 * Will call the keep to import the bits as needed.
1544 *
1545 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1546 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1547 */
1548#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1549 do { \
1550 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1551 { /* likely */ } \
1552 else \
1553 { \
1554 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1555 AssertLogRelRC(rcCtxImport); \
1556 } \
1557 } while (0)
1558
1559/** @def IEM_CTX_IMPORT_JMP
1560 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1561 *
1562 * Will call the keep to import the bits as needed.
1563 *
1564 * Jumps on import failure.
1565 *
1566 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1567 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1568 */
1569#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
1570 do { \
1571 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1572 { /* likely */ } \
1573 else \
1574 { \
1575 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1576 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
1577 } \
1578 } while (0)
1579
1580
1581
1582/** @def IEM_GET_TARGET_CPU
1583 * Gets the current IEMTARGETCPU value.
1584 * @returns IEMTARGETCPU value.
1585 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1586 */
1587#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
1588# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
1589#else
1590# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
1591#endif
1592
1593/** @def IEM_GET_INSTR_LEN
1594 * Gets the instruction length. */
1595#ifdef IEM_WITH_CODE_TLB
1596# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
1597#else
1598# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
1599#endif
1600
1601/** @def IEM_TRY_SETJMP
1602 * Wrapper around setjmp / try, hiding all the ugly differences.
1603 *
1604 * @note Use with extreme care as this is a fragile macro.
1605 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1606 * @param a_rcTarget The variable that should receive the status code in case
1607 * of a longjmp/throw.
1608 */
1609/** @def IEM_TRY_SETJMP_AGAIN
1610 * For when setjmp / try is used again in the same variable scope as a previous
1611 * IEM_TRY_SETJMP invocation.
1612 */
1613/** @def IEM_CATCH_LONGJMP_BEGIN
1614 * Start wrapper for catch / setjmp-else.
1615 *
1616 * This will set up a scope.
1617 *
1618 * @note Use with extreme care as this is a fragile macro.
1619 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1620 * @param a_rcTarget The variable that should receive the status code in case
1621 * of a longjmp/throw.
1622 */
1623/** @def IEM_CATCH_LONGJMP_END
1624 * End wrapper for catch / setjmp-else.
1625 *
1626 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
1627 * state.
1628 *
1629 * @note Use with extreme care as this is a fragile macro.
1630 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1631 */
1632#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
1633# ifdef IEM_WITH_THROW_CATCH
1634# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1635 a_rcTarget = VINF_SUCCESS; \
1636 try
1637# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1638 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
1639# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1640 catch (int rcThrown) \
1641 { \
1642 a_rcTarget = rcThrown
1643# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1644 } \
1645 ((void)0)
1646# else /* !IEM_WITH_THROW_CATCH */
1647# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1648 jmp_buf JmpBuf; \
1649 jmp_buf * volatile pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1650 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1651 if ((rcStrict = setjmp(JmpBuf)) == 0)
1652# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1653 pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1654 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1655 if ((rcStrict = setjmp(JmpBuf)) == 0)
1656# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1657 else \
1658 { \
1659 ((void)0)
1660# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1661 } \
1662 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
1663# endif /* !IEM_WITH_THROW_CATCH */
1664#endif /* IEM_WITH_SETJMP */
1665
1666
1667/**
1668 * Shared per-VM IEM data.
1669 */
1670typedef struct IEM
1671{
1672 /** The VMX APIC-access page handler type. */
1673 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
1674#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
1675 /** Set if the CPUID host call functionality is enabled. */
1676 bool fCpuIdHostCall;
1677#endif
1678} IEM;
1679
1680
1681
1682/** @name IEM_ACCESS_XXX - Access details.
1683 * @{ */
1684#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
1685#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
1686#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
1687#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
1688#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
1689#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
1690#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
1691#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
1692#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
1693#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
1694/** The writes are partial, so if initialize the bounce buffer with the
1695 * orignal RAM content. */
1696#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
1697/** Used in aMemMappings to indicate that the entry is bounce buffered. */
1698#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
1699/** Bounce buffer with ring-3 write pending, first page. */
1700#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
1701/** Bounce buffer with ring-3 write pending, second page. */
1702#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
1703/** Not locked, accessed via the TLB. */
1704#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
1705/** Valid bit mask. */
1706#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
1707/** Shift count for the TLB flags (upper word). */
1708#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
1709
1710/** Read+write data alias. */
1711#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1712/** Write data alias. */
1713#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1714/** Read data alias. */
1715#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
1716/** Instruction fetch alias. */
1717#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
1718/** Stack write alias. */
1719#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1720/** Stack read alias. */
1721#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
1722/** Stack read+write alias. */
1723#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1724/** Read system table alias. */
1725#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
1726/** Read+write system table alias. */
1727#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
1728/** @} */
1729
1730/** @name Prefix constants (IEMCPU::fPrefixes)
1731 * @{ */
1732#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
1733#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
1734#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
1735#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
1736#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
1737#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
1738#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
1739
1740#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
1741#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
1742#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
1743
1744#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
1745#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
1746#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
1747
1748#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
1749#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
1750#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
1751#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
1752/** Mask with all the REX prefix flags.
1753 * This is generally for use when needing to undo the REX prefixes when they
1754 * are followed legacy prefixes and therefore does not immediately preceed
1755 * the first opcode byte.
1756 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
1757#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
1758
1759#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
1760#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
1761#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
1762/** @} */
1763
1764/** @name IEMOPFORM_XXX - Opcode forms
1765 * @note These are ORed together with IEMOPHINT_XXX.
1766 * @{ */
1767/** ModR/M: reg, r/m */
1768#define IEMOPFORM_RM 0
1769/** ModR/M: reg, r/m (register) */
1770#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1771/** ModR/M: reg, r/m (memory) */
1772#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1773/** ModR/M: reg, r/m */
1774#define IEMOPFORM_RMI 1
1775/** ModR/M: reg, r/m (register) */
1776#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1777/** ModR/M: reg, r/m (memory) */
1778#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1779/** ModR/M: r/m, reg */
1780#define IEMOPFORM_MR 2
1781/** ModR/M: r/m (register), reg */
1782#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1783/** ModR/M: r/m (memory), reg */
1784#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1785/** ModR/M: r/m, reg */
1786#define IEMOPFORM_MRI 3
1787/** ModR/M: r/m (register), reg */
1788#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1789/** ModR/M: r/m (memory), reg */
1790#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1791/** ModR/M: r/m only */
1792#define IEMOPFORM_M 4
1793/** ModR/M: r/m only (register). */
1794#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
1795/** ModR/M: r/m only (memory). */
1796#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
1797/** ModR/M: reg only */
1798#define IEMOPFORM_R 5
1799
1800/** VEX+ModR/M: reg, r/m */
1801#define IEMOPFORM_VEX_RM 8
1802/** VEX+ModR/M: reg, r/m (register) */
1803#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
1804/** VEX+ModR/M: reg, r/m (memory) */
1805#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
1806/** VEX+ModR/M: r/m, reg */
1807#define IEMOPFORM_VEX_MR 9
1808/** VEX+ModR/M: r/m (register), reg */
1809#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
1810/** VEX+ModR/M: r/m (memory), reg */
1811#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
1812/** VEX+ModR/M: r/m only */
1813#define IEMOPFORM_VEX_M 10
1814/** VEX+ModR/M: r/m only (register). */
1815#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
1816/** VEX+ModR/M: r/m only (memory). */
1817#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
1818/** VEX+ModR/M: reg only */
1819#define IEMOPFORM_VEX_R 11
1820/** VEX+ModR/M: reg, vvvv, r/m */
1821#define IEMOPFORM_VEX_RVM 12
1822/** VEX+ModR/M: reg, vvvv, r/m (register). */
1823#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
1824/** VEX+ModR/M: reg, vvvv, r/m (memory). */
1825#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
1826/** VEX+ModR/M: reg, r/m, vvvv */
1827#define IEMOPFORM_VEX_RMV 13
1828/** VEX+ModR/M: reg, r/m, vvvv (register). */
1829#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
1830/** VEX+ModR/M: reg, r/m, vvvv (memory). */
1831#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
1832/** VEX+ModR/M: reg, r/m, imm8 */
1833#define IEMOPFORM_VEX_RMI 14
1834/** VEX+ModR/M: reg, r/m, imm8 (register). */
1835#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
1836/** VEX+ModR/M: reg, r/m, imm8 (memory). */
1837#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
1838/** VEX+ModR/M: r/m, vvvv, reg */
1839#define IEMOPFORM_VEX_MVR 15
1840/** VEX+ModR/M: r/m, vvvv, reg (register) */
1841#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
1842/** VEX+ModR/M: r/m, vvvv, reg (memory) */
1843#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
1844/** VEX+ModR/M+/n: vvvv, r/m */
1845#define IEMOPFORM_VEX_VM 16
1846/** VEX+ModR/M+/n: vvvv, r/m (register) */
1847#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
1848/** VEX+ModR/M+/n: vvvv, r/m (memory) */
1849#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
1850
1851/** Fixed register instruction, no R/M. */
1852#define IEMOPFORM_FIXED 32
1853
1854/** The r/m is a register. */
1855#define IEMOPFORM_MOD3 RT_BIT_32(8)
1856/** The r/m is a memory access. */
1857#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
1858/** @} */
1859
1860/** @name IEMOPHINT_XXX - Additional Opcode Hints
1861 * @note These are ORed together with IEMOPFORM_XXX.
1862 * @{ */
1863/** Ignores the operand size prefix (66h). */
1864#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
1865/** Ignores REX.W (aka WIG). */
1866#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
1867/** Both the operand size prefixes (66h + REX.W) are ignored. */
1868#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
1869/** Allowed with the lock prefix. */
1870#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
1871/** The VEX.L value is ignored (aka LIG). */
1872#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
1873/** The VEX.L value must be zero (i.e. 128-bit width only). */
1874#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
1875/** The VEX.V value must be zero. */
1876#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
1877
1878/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
1879#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
1880/** @} */
1881
1882/**
1883 * Possible hardware task switch sources.
1884 */
1885typedef enum IEMTASKSWITCH
1886{
1887 /** Task switch caused by an interrupt/exception. */
1888 IEMTASKSWITCH_INT_XCPT = 1,
1889 /** Task switch caused by a far CALL. */
1890 IEMTASKSWITCH_CALL,
1891 /** Task switch caused by a far JMP. */
1892 IEMTASKSWITCH_JUMP,
1893 /** Task switch caused by an IRET. */
1894 IEMTASKSWITCH_IRET
1895} IEMTASKSWITCH;
1896AssertCompileSize(IEMTASKSWITCH, 4);
1897
1898/**
1899 * Possible CrX load (write) sources.
1900 */
1901typedef enum IEMACCESSCRX
1902{
1903 /** CrX access caused by 'mov crX' instruction. */
1904 IEMACCESSCRX_MOV_CRX,
1905 /** CrX (CR0) write caused by 'lmsw' instruction. */
1906 IEMACCESSCRX_LMSW,
1907 /** CrX (CR0) write caused by 'clts' instruction. */
1908 IEMACCESSCRX_CLTS,
1909 /** CrX (CR0) read caused by 'smsw' instruction. */
1910 IEMACCESSCRX_SMSW
1911} IEMACCESSCRX;
1912
1913#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1914/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
1915 *
1916 * These flags provide further context to SLAT page-walk failures that could not be
1917 * determined by PGM (e.g, PGM is not privy to memory access permissions).
1918 *
1919 * @{
1920 */
1921/** Translating a nested-guest linear address failed accessing a nested-guest
1922 * physical address. */
1923# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
1924/** Translating a nested-guest linear address failed accessing a
1925 * paging-structure entry or updating accessed/dirty bits. */
1926# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
1927/** @} */
1928
1929DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
1930# ifndef IN_RING3
1931DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
1932# endif
1933#endif
1934
1935/**
1936 * Indicates to the verifier that the given flag set is undefined.
1937 *
1938 * Can be invoked again to add more flags.
1939 *
1940 * This is a NOOP if the verifier isn't compiled in.
1941 *
1942 * @note We're temporarily keeping this until code is converted to new
1943 * disassembler style opcode handling.
1944 */
1945#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
1946
1947
1948/** @def IEM_DECL_IMPL_TYPE
1949 * For typedef'ing an instruction implementation function.
1950 *
1951 * @param a_RetType The return type.
1952 * @param a_Name The name of the type.
1953 * @param a_ArgList The argument list enclosed in parentheses.
1954 */
1955
1956/** @def IEM_DECL_IMPL_DEF
1957 * For defining an instruction implementation function.
1958 *
1959 * @param a_RetType The return type.
1960 * @param a_Name The name of the type.
1961 * @param a_ArgList The argument list enclosed in parentheses.
1962 */
1963
1964#if defined(__GNUC__) && defined(RT_ARCH_X86)
1965# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1966 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
1967# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1968 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
1969# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1970 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
1971
1972#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
1973# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1974 a_RetType (__fastcall a_Name) a_ArgList
1975# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1976 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1977# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1978 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1979
1980#elif __cplusplus >= 201700 /* P0012R1 support */
1981# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1982 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
1983# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1984 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1985# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1986 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1987
1988#else
1989# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1990 a_RetType (VBOXCALL a_Name) a_ArgList
1991# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1992 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
1993# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1994 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
1995
1996#endif
1997
1998/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
1999RT_C_DECLS_BEGIN
2000extern uint8_t const g_afParity[256];
2001RT_C_DECLS_END
2002
2003
2004/** @name Arithmetic assignment operations on bytes (binary).
2005 * @{ */
2006typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2007typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2008FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2009FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2010FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2011FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2012FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2013FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2014FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2015/** @} */
2016
2017/** @name Arithmetic assignment operations on words (binary).
2018 * @{ */
2019typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2020typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2021FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2022FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2023FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2024FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2025FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2026FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2027FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2028/** @} */
2029
2030/** @name Arithmetic assignment operations on double words (binary).
2031 * @{ */
2032typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2033typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2034FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2035FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2036FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2037FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2038FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2039FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2040FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2041FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2042FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2043FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2044/** @} */
2045
2046/** @name Arithmetic assignment operations on quad words (binary).
2047 * @{ */
2048typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2049typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2050FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2051FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2052FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2053FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2054FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2055FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2056FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2057FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2058FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2059FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2060/** @} */
2061
2062typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2063typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2064typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2065typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2066typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2067typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2068typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2069typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2070
2071/** @name Compare operations (thrown in with the binary ops).
2072 * @{ */
2073FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2074FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2075FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2076FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2077/** @} */
2078
2079/** @name Test operations (thrown in with the binary ops).
2080 * @{ */
2081FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2082FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2083FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2084FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2085/** @} */
2086
2087/** @name Bit operations operations (thrown in with the binary ops).
2088 * @{ */
2089FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2090FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2091FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2092FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2093FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2094FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2095FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2096FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2097FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2098FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2099FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2100FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2101/** @} */
2102
2103/** @name Arithmetic three operand operations on double words (binary).
2104 * @{ */
2105typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2106typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2107FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2108FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2109FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2110/** @} */
2111
2112/** @name Arithmetic three operand operations on quad words (binary).
2113 * @{ */
2114typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2115typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2116FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2117FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2118FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2119/** @} */
2120
2121/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2122 * @{ */
2123typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2124typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2125FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2126FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2127FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2128FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2129FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2130FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2131/** @} */
2132
2133/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2134 * @{ */
2135typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2136typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2137FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2138FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2139FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2140FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2141FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2142FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2143/** @} */
2144
2145/** @name MULX 32-bit and 64-bit.
2146 * @{ */
2147typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2148typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2149FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2150
2151typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2152typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2153FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2154/** @} */
2155
2156
2157/** @name Exchange memory with register operations.
2158 * @{ */
2159IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2160IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2161IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2162IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2163IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2164IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2165IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2166IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2167/** @} */
2168
2169/** @name Exchange and add operations.
2170 * @{ */
2171IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2172IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2173IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2174IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2175IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2176IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2177IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2178IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2179/** @} */
2180
2181/** @name Compare and exchange.
2182 * @{ */
2183IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2184IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2185IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2186IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2187IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2188IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2189#if ARCH_BITS == 32
2190IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2191IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2192#else
2193IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2194IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2195#endif
2196IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2197 uint32_t *pEFlags));
2198IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2199 uint32_t *pEFlags));
2200IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2201 uint32_t *pEFlags));
2202IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2203 uint32_t *pEFlags));
2204#ifndef RT_ARCH_ARM64
2205IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2206 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2207#endif
2208/** @} */
2209
2210/** @name Memory ordering
2211 * @{ */
2212typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2213typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2214IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2215IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2216IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2217#ifndef RT_ARCH_ARM64
2218IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2219#endif
2220/** @} */
2221
2222/** @name Double precision shifts
2223 * @{ */
2224typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2225typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2226typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2227typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2228typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2229typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2230FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2231FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2232FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2233FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2234FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2235FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2236/** @} */
2237
2238
2239/** @name Bit search operations (thrown in with the binary ops).
2240 * @{ */
2241FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2242FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2243FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2244FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2245FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2246FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2247FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2248FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2249FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2250FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2251FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2252FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2253FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2254FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2255FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2256/** @} */
2257
2258/** @name Signed multiplication operations (thrown in with the binary ops).
2259 * @{ */
2260FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2261FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2262FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2263/** @} */
2264
2265/** @name Arithmetic assignment operations on bytes (unary).
2266 * @{ */
2267typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2268typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2269FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2270FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2271FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2272FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2273/** @} */
2274
2275/** @name Arithmetic assignment operations on words (unary).
2276 * @{ */
2277typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2278typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2279FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2280FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2281FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2282FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2283/** @} */
2284
2285/** @name Arithmetic assignment operations on double words (unary).
2286 * @{ */
2287typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2288typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2289FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2290FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2291FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2292FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2293/** @} */
2294
2295/** @name Arithmetic assignment operations on quad words (unary).
2296 * @{ */
2297typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2298typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2299FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2300FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2301FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2302FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2303/** @} */
2304
2305
2306/** @name Shift operations on bytes (Group 2).
2307 * @{ */
2308typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2309typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2310FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2311FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2312FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2313FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2314FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2315FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2316FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2317/** @} */
2318
2319/** @name Shift operations on words (Group 2).
2320 * @{ */
2321typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2322typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2323FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2324FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2325FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2326FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2327FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2328FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2329FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2330/** @} */
2331
2332/** @name Shift operations on double words (Group 2).
2333 * @{ */
2334typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2335typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2336FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2337FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2338FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2339FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2340FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2341FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2342FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2343/** @} */
2344
2345/** @name Shift operations on words (Group 2).
2346 * @{ */
2347typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2348typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2349FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2350FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2351FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2352FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2353FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2354FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2355FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2356/** @} */
2357
2358/** @name Multiplication and division operations.
2359 * @{ */
2360typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2361typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2362FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2363FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2364FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2365FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2366
2367typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2368typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2369FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2370FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2371FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2372FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2373
2374typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2375typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2376FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2377FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2378FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2379FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2380
2381typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2382typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2383FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2384FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2385FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2386FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2387/** @} */
2388
2389/** @name Byte Swap.
2390 * @{ */
2391IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2392IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2393IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2394/** @} */
2395
2396/** @name Misc.
2397 * @{ */
2398FNIEMAIMPLBINU16 iemAImpl_arpl;
2399/** @} */
2400
2401/** @name RDRAND and RDSEED
2402 * @{ */
2403typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2404typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2405typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2406typedef FNIEMAIMPLRDRANDSEEDU16 *FNIEMAIMPLPRDRANDSEEDU16;
2407typedef FNIEMAIMPLRDRANDSEEDU32 *FNIEMAIMPLPRDRANDSEEDU32;
2408typedef FNIEMAIMPLRDRANDSEEDU64 *FNIEMAIMPLPRDRANDSEEDU64;
2409
2410FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2411FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2412FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2413FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2414FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2415FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2416/** @} */
2417
2418/** @name ADOX and ADCX
2419 * @{ */
2420typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU32,(uint32_t *puDst, uint32_t *pfEFlags, uint32_t uSrc));
2421typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU64,(uint64_t *puDst, uint32_t *pfEFlags, uint64_t uSrc));
2422typedef FNIEMAIMPLADXU32 *PFNIEMAIMPLADXU32;
2423typedef FNIEMAIMPLADXU64 *PFNIEMAIMPLADXU64;
2424
2425FNIEMAIMPLADXU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2426FNIEMAIMPLADXU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2427FNIEMAIMPLADXU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2428FNIEMAIMPLADXU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2429/** @} */
2430
2431/** @name FPU operations taking a 32-bit float argument
2432 * @{ */
2433typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2434 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2435typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2436
2437typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2438 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2439typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2440
2441FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2442FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2443FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2444FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2445FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2446FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2447FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2448
2449IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2450IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2451 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2452/** @} */
2453
2454/** @name FPU operations taking a 64-bit float argument
2455 * @{ */
2456typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2457 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2458typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2459
2460typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2461 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2462typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2463
2464FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2465FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2466FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2467FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2468FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2469FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2470FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2471
2472IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2473IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2474 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2475/** @} */
2476
2477/** @name FPU operations taking a 80-bit float argument
2478 * @{ */
2479typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2480 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2481typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2482FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2483FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2484FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2485FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2486FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2487FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2488FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2489FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2490FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2491
2492FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2493FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2494FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2495
2496typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2497 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2498typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2499FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2500FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2501
2502typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2503 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2504typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2505FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2506FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2507
2508typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2509typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2510FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2511FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2512FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2513FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2514FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2515FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2516FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2517
2518typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2519typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2520FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2521FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2522
2523typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2524typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2525FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2526FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2527FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2528FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2529FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2530FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2531FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2532
2533typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2534 PCRTFLOAT80U pr80Val));
2535typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
2536FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
2537FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
2538FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
2539
2540IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2541IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2542 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
2543
2544IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
2545IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2546 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
2547
2548/** @} */
2549
2550/** @name FPU operations taking a 16-bit signed integer argument
2551 * @{ */
2552typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2553 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2554typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
2555typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2556 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
2557typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
2558
2559FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
2560FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
2561FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
2562FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
2563FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
2564FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
2565
2566typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2567 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2568typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
2569FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
2570
2571IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
2572FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
2573FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
2574/** @} */
2575
2576/** @name FPU operations taking a 32-bit signed integer argument
2577 * @{ */
2578typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2579 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2580typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
2581typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2582 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
2583typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
2584
2585FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
2586FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
2587FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
2588FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
2589FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
2590FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
2591
2592typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2593 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2594typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
2595FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
2596
2597IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
2598FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
2599FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
2600/** @} */
2601
2602/** @name FPU operations taking a 64-bit signed integer argument
2603 * @{ */
2604typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2605 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
2606typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
2607
2608IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
2609FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
2610FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
2611/** @} */
2612
2613
2614/** Temporary type representing a 256-bit vector register. */
2615typedef struct { uint64_t au64[4]; } IEMVMM256;
2616/** Temporary type pointing to a 256-bit vector register. */
2617typedef IEMVMM256 *PIEMVMM256;
2618/** Temporary type pointing to a const 256-bit vector register. */
2619typedef IEMVMM256 *PCIEMVMM256;
2620
2621
2622/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
2623 * @{ */
2624typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
2625typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
2626typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
2627typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
2628typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2629typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
2630typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2631typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
2632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
2633typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
2634typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
2635typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
2636typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2637typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
2638typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2639typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
2640typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
2641typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
2642FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
2643FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
2644FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
2645FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
2646FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
2647FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
2648FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
2649FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
2650FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
2651FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
2652FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
2653FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
2654FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64;
2655FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
2656FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
2657FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
2658FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
2659FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
2660FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
2661FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
2662FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
2663FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
2664FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
2665FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
2666FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
2667FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
2668FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
2669FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
2670FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
2671FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
2672FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
2673FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
2674FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
2675FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
2676FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
2677FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
2678FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
2679FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
2680FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
2681
2682FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
2683FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
2684FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
2685FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
2686FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
2687FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
2688FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
2689FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
2690FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
2691FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
2692FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
2693FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
2694FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
2695FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
2696FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
2697FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
2698FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
2699FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128;
2700FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
2701FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
2702FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
2703FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
2704FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
2705FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
2706FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
2707FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
2708FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
2709FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
2710FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
2711FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
2712FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
2713FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
2714FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
2715FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
2716FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
2717FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
2718FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
2719FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
2720FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
2721FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
2722FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
2723FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
2724FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
2725FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
2726FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
2727FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
2728FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
2729FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
2730FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
2731FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
2732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
2733FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
2734FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
2735FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
2736FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
2737FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
2738FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
2739
2740FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
2741FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
2742FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
2743FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
2744FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
2745FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
2746FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
2747FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
2748FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
2749FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
2750FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
2751FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
2752FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
2753FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
2754FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
2755FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
2756FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
2757FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
2758FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
2759FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
2760FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
2761FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
2762FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
2763FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
2764FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
2765FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
2766FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
2767FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
2768FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
2769FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
2770FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
2771FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
2772FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
2773FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
2774FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
2775FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
2776FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
2777FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
2778FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
2779FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
2780FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
2781FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
2782FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
2783FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
2784FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
2785FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
2786FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
2787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
2788FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
2789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
2790FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
2791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
2792FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
2793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
2794FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
2795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
2796FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
2797FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
2798FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
2799FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
2800FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
2801FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
2802FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
2803FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
2804FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
2805
2806FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
2807FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
2808FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
2809FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
2810
2811FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
2812FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
2813FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
2814FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
2815FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
2816FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
2817FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
2818FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
2819FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
2820FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
2821FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
2822FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
2823FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
2824FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
2825FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
2826FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
2827FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
2828FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
2829FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
2830FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
2831FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
2832FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
2833FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
2834FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
2835FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
2836FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
2837FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
2838FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
2839FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
2840FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
2841FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
2842FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
2843FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
2844FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
2845FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
2846FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
2847FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
2848FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
2849FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
2850FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
2851FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
2852FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
2853FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
2854FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
2855FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
2856FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
2857FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
2858FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
2859FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
2860FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
2861FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
2862FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
2863FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
2864FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
2865FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
2866FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
2867FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
2868FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
2869FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
2870FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
2871FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
2872FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
2873FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
2874FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
2875FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
2876
2877FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
2878FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
2879FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
2880/** @} */
2881
2882/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
2883 * @{ */
2884FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
2885FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
2886FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
2887 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
2888 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
2889 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
2890 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
2891 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
2892 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
2893 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
2894
2895FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
2896 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
2897 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
2898 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
2899 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
2900 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
2901 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
2902 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
2903/** @} */
2904
2905/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
2906 * @{ */
2907FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
2908FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
2909FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
2910 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
2911 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
2912 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
2913FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
2914 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
2915 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
2916 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
2917/** @} */
2918
2919/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
2920 * @{ */
2921typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
2922typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
2923typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
2924typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
2925IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
2926FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
2927#ifndef IEM_WITHOUT_ASSEMBLY
2928FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
2929#endif
2930FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
2931/** @} */
2932
2933/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
2934 * @{ */
2935typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
2936typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
2937typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
2938typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
2939typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
2940typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
2941FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
2942FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
2943FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
2944FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
2945FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
2946FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
2947FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
2948/** @} */
2949
2950/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
2951 * @{ */
2952IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
2953IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
2954#ifndef IEM_WITHOUT_ASSEMBLY
2955IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
2956#endif
2957IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
2958/** @} */
2959
2960/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
2961 * @{ */
2962typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
2963typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
2964typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
2965typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
2966typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
2967typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
2968
2969FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
2970FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
2971FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
2972FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
2973FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
2974FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
2975
2976FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
2977FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
2978FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
2979FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
2980FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
2981FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
2982
2983FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
2984FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
2985FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
2986FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
2987FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
2988FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
2989/** @} */
2990
2991
2992/** @name Media (SSE/MMX/AVX) operation: Sort this later
2993 * @{ */
2994IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2995IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2996IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2997IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2998IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2999IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3000
3001IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3002IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3003IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3004IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3005IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3006
3007IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3008IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3009IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3010IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3011IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3012
3013IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3014IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3015IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3016IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3017IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3018
3019IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3020IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3021IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3022IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3023IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3024
3025IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3026IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3027IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3028IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3029IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3030
3031IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3032IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3033IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3034IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3035IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3036
3037IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3038IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3039IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3040IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3041IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3042
3043IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3044IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3045IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3046IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3047IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3048
3049IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3050IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3051IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3052IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3053IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3054
3055IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3056IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3057IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3058IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3059IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3060
3061IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3062IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3063IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3064IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3065IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3066
3067IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3068IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3069IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3070IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3071IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3072
3073IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3074IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3075IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3076IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3077IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3078
3079IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3080IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3081IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3082IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3083IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3084
3085IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3086IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3087
3088IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3089IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3090IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3091IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3092
3093IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
3094IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3095IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3096IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3097
3098IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3099IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3100IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3101IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3102IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3103
3104IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3105IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3106IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3107IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3108IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3109
3110
3111typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3112typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3113typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3114typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3115typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3116typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3117
3118FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3119FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3120FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3121FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3122
3123FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3124FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3125FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3126FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3127
3128FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3129FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3130FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3131FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3132FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3133FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3134
3135FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3136FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3137FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3138FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3139FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3140
3141FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3142FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3143FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3144FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3145FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3146
3147FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3148
3149FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3150
3151FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3152FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3153FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3154FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3155FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3156FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3157IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3158IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3159
3160typedef struct IEMPCMPISTRXSRC
3161{
3162 RTUINT128U uSrc1;
3163 RTUINT128U uSrc2;
3164} IEMPCMPISTRXSRC;
3165typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3166typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3167
3168typedef struct IEMPCMPESTRXSRC
3169{
3170 RTUINT128U uSrc1;
3171 RTUINT128U uSrc2;
3172 uint64_t u64Rax;
3173 uint64_t u64Rdx;
3174} IEMPCMPESTRXSRC;
3175typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3176typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3177
3178typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3179typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3180typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3181typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3182
3183typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3184typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3185typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3186typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3187
3188FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3189FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3190FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3191FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3192
3193FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3194FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3195
3196FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3197FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3198FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3199/** @} */
3200
3201/** @name Media Odds and Ends
3202 * @{ */
3203typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3204typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3205typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3206typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3207FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3208FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3209FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3210FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3211
3212typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3213typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3214FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3215FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3216
3217typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3218typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3219typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3220typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3221typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3222typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3223typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3224typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3225
3226FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3227FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3228
3229FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3230FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3231
3232FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3233FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3234
3235FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3236FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3237
3238typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3239typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3240typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3241typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3242
3243FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3244FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3245
3246typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3247typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3248typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3249typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3250
3251FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3252FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3253
3254
3255typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3256typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3257
3258FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3259FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3260
3261FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3262FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3263
3264FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3265FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3266
3267FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3268FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3269
3270
3271typedef struct IEMMEDIAF2XMMSRC
3272{
3273 X86XMMREG uSrc1;
3274 X86XMMREG uSrc2;
3275} IEMMEDIAF2XMMSRC;
3276typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3277typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3278
3279typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3280typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3281
3282FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3283FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3284FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3285FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3286FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3287FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3288
3289FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3290FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3291
3292FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3293FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3294
3295typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3296typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3297
3298FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3299FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3300
3301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3302typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3303
3304FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3305FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3306
3307typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3308typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3309
3310FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3311FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3312
3313/** @} */
3314
3315
3316/** @name Function tables.
3317 * @{
3318 */
3319
3320/**
3321 * Function table for a binary operator providing implementation based on
3322 * operand size.
3323 */
3324typedef struct IEMOPBINSIZES
3325{
3326 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3327 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3328 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3329 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3330} IEMOPBINSIZES;
3331/** Pointer to a binary operator function table. */
3332typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3333
3334
3335/**
3336 * Function table for a unary operator providing implementation based on
3337 * operand size.
3338 */
3339typedef struct IEMOPUNARYSIZES
3340{
3341 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3342 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3343 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3344 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3345} IEMOPUNARYSIZES;
3346/** Pointer to a unary operator function table. */
3347typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3348
3349
3350/**
3351 * Function table for a shift operator providing implementation based on
3352 * operand size.
3353 */
3354typedef struct IEMOPSHIFTSIZES
3355{
3356 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3357 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3358 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3359 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3360} IEMOPSHIFTSIZES;
3361/** Pointer to a shift operator function table. */
3362typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3363
3364
3365/**
3366 * Function table for a multiplication or division operation.
3367 */
3368typedef struct IEMOPMULDIVSIZES
3369{
3370 PFNIEMAIMPLMULDIVU8 pfnU8;
3371 PFNIEMAIMPLMULDIVU16 pfnU16;
3372 PFNIEMAIMPLMULDIVU32 pfnU32;
3373 PFNIEMAIMPLMULDIVU64 pfnU64;
3374} IEMOPMULDIVSIZES;
3375/** Pointer to a multiplication or division operation function table. */
3376typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3377
3378
3379/**
3380 * Function table for a double precision shift operator providing implementation
3381 * based on operand size.
3382 */
3383typedef struct IEMOPSHIFTDBLSIZES
3384{
3385 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3386 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3387 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3388} IEMOPSHIFTDBLSIZES;
3389/** Pointer to a double precision shift function table. */
3390typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3391
3392
3393/**
3394 * Function table for media instruction taking two full sized media source
3395 * registers and one full sized destination register (AVX).
3396 */
3397typedef struct IEMOPMEDIAF3
3398{
3399 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3400 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3401} IEMOPMEDIAF3;
3402/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3403typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3404
3405/** @def IEMOPMEDIAF3_INIT_VARS_EX
3406 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3407 * given functions as initializers. For use in AVX functions where a pair of
3408 * functions are only used once and the function table need not be public. */
3409#ifndef TST_IEM_CHECK_MC
3410# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3411# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3412 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3413 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3414# else
3415# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3416 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3417# endif
3418#else
3419# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3420#endif
3421/** @def IEMOPMEDIAF3_INIT_VARS
3422 * Generate AVX function tables for the @a a_InstrNm instruction.
3423 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3424#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3425 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3426 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3427
3428/**
3429 * Function table for media instruction taking two full sized media source
3430 * registers and one full sized destination register, but no additional state
3431 * (AVX).
3432 */
3433typedef struct IEMOPMEDIAOPTF3
3434{
3435 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3436 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3437} IEMOPMEDIAOPTF3;
3438/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3439typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3440
3441/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3442 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3443 * given functions as initializers. For use in AVX functions where a pair of
3444 * functions are only used once and the function table need not be public. */
3445#ifndef TST_IEM_CHECK_MC
3446# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3447# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3448 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3449 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3450# else
3451# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3452 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3453# endif
3454#else
3455# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3456#endif
3457/** @def IEMOPMEDIAOPTF3_INIT_VARS
3458 * Generate AVX function tables for the @a a_InstrNm instruction.
3459 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3460#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3461 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3462 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3463
3464/**
3465 * Function table for media instruction taking one full sized media source
3466 * registers and one full sized destination register, but no additional state
3467 * (AVX).
3468 */
3469typedef struct IEMOPMEDIAOPTF2
3470{
3471 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
3472 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
3473} IEMOPMEDIAOPTF2;
3474/** Pointer to a media operation function table for 2 full sized ops (AVX). */
3475typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
3476
3477/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
3478 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3479 * given functions as initializers. For use in AVX functions where a pair of
3480 * functions are only used once and the function table need not be public. */
3481#ifndef TST_IEM_CHECK_MC
3482# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3483# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3484 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3485 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3486# else
3487# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3488 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3489# endif
3490#else
3491# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3492#endif
3493/** @def IEMOPMEDIAOPTF2_INIT_VARS
3494 * Generate AVX function tables for the @a a_InstrNm instruction.
3495 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
3496#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
3497 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3498 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3499
3500/**
3501 * Function table for media instruction taking two full sized media source
3502 * registers and one full sized destination register and an 8-bit immediate, but no additional state
3503 * (AVX).
3504 */
3505typedef struct IEMOPMEDIAOPTF3IMM8
3506{
3507 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
3508 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
3509} IEMOPMEDIAOPTF3IMM8;
3510/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3511typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
3512
3513/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
3514 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3515 * given functions as initializers. For use in AVX functions where a pair of
3516 * functions are only used once and the function table need not be public. */
3517#ifndef TST_IEM_CHECK_MC
3518# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3519# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3520 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3521 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3522# else
3523# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3524 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3525# endif
3526#else
3527# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3528#endif
3529/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
3530 * Generate AVX function tables for the @a a_InstrNm instruction.
3531 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
3532#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
3533 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3534 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3535/** @} */
3536
3537
3538/**
3539 * Function table for blend type instruction taking three full sized media source
3540 * registers and one full sized destination register, but no additional state
3541 * (AVX).
3542 */
3543typedef struct IEMOPBLENDOP
3544{
3545 PFNIEMAIMPLAVXBLENDU128 pfnU128;
3546 PFNIEMAIMPLAVXBLENDU256 pfnU256;
3547} IEMOPBLENDOP;
3548/** Pointer to a media operation function table for 4 full sized ops (AVX). */
3549typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
3550
3551/** @def IEMOPBLENDOP_INIT_VARS_EX
3552 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3553 * given functions as initializers. For use in AVX functions where a pair of
3554 * functions are only used once and the function table need not be public. */
3555#ifndef TST_IEM_CHECK_MC
3556# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3557# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3558 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3559 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3560# else
3561# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3562 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3563# endif
3564#else
3565# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3566#endif
3567/** @def IEMOPBLENDOP_INIT_VARS
3568 * Generate AVX function tables for the @a a_InstrNm instruction.
3569 * @sa IEMOPBLENDOP_INIT_VARS_EX */
3570#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
3571 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3572 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3573
3574
3575/** @name SSE/AVX single/double precision floating point operations.
3576 * @{ */
3577/**
3578 * A SSE result.
3579 */
3580typedef struct IEMSSERESULT
3581{
3582 /** The output value. */
3583 X86XMMREG uResult;
3584 /** The output status. */
3585 uint32_t MXCSR;
3586} IEMSSERESULT;
3587AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
3588/** Pointer to a SSE result. */
3589typedef IEMSSERESULT *PIEMSSERESULT;
3590/** Pointer to a const SSE result. */
3591typedef IEMSSERESULT const *PCIEMSSERESULT;
3592
3593
3594/**
3595 * A AVX128 result.
3596 */
3597typedef struct IEMAVX128RESULT
3598{
3599 /** The output value. */
3600 X86XMMREG uResult;
3601 /** The output status. */
3602 uint32_t MXCSR;
3603} IEMAVX128RESULT;
3604AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
3605/** Pointer to a AVX128 result. */
3606typedef IEMAVX128RESULT *PIEMAVX128RESULT;
3607/** Pointer to a const AVX128 result. */
3608typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
3609
3610
3611/**
3612 * A AVX256 result.
3613 */
3614typedef struct IEMAVX256RESULT
3615{
3616 /** The output value. */
3617 X86YMMREG uResult;
3618 /** The output status. */
3619 uint32_t MXCSR;
3620} IEMAVX256RESULT;
3621AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
3622/** Pointer to a AVX256 result. */
3623typedef IEMAVX256RESULT *PIEMAVX256RESULT;
3624/** Pointer to a const AVX256 result. */
3625typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
3626
3627
3628typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3629typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
3630typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3631typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
3632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3633typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
3634
3635typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3636typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
3637typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3638typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
3639typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3640typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
3641
3642typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3643typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
3644
3645FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
3646FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
3647FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
3648FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
3649FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
3650FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
3651FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
3652FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
3653FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
3654FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
3655FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
3656FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
3657FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
3658FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
3659FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
3660FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
3661FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
3662FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
3663FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
3664FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
3665FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
3666FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
3667FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
3668
3669FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
3670FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
3671FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
3672FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
3673FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
3674FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
3675
3676FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
3677FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
3678FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
3679FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
3680FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
3681FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
3682FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
3683FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
3684FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
3685FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
3686FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
3687FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
3688FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
3689FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
3690FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
3691FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
3692FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
3693
3694FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
3695FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
3696FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
3697FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
3698FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
3699FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
3700FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
3701FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
3702FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
3703FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
3704FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
3705FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
3706FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
3707FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
3708FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
3709FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
3710FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
3711FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
3712FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
3713FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
3714FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
3715FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
3716
3717FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
3718FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
3719FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
3720FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
3721FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
3722FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
3723FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
3724FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
3725FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
3726FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
3727FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
3728FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
3729FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
3730FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
3731
3732FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
3733FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
3734FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
3735FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
3736FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
3737FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
3738FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
3739FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
3740FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
3741FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
3742FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
3743FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
3744FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
3745FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
3746FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
3747FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
3748FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
3749FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
3750FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
3751FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
3752/** @} */
3753
3754/** @name C instruction implementations for anything slightly complicated.
3755 * @{ */
3756
3757/**
3758 * For typedef'ing or declaring a C instruction implementation function taking
3759 * no extra arguments.
3760 *
3761 * @param a_Name The name of the type.
3762 */
3763# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
3764 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3765/**
3766 * For defining a C instruction implementation function taking no extra
3767 * arguments.
3768 *
3769 * @param a_Name The name of the function
3770 */
3771# define IEM_CIMPL_DEF_0(a_Name) \
3772 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3773/**
3774 * Prototype version of IEM_CIMPL_DEF_0.
3775 */
3776# define IEM_CIMPL_PROTO_0(a_Name) \
3777 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3778/**
3779 * For calling a C instruction implementation function taking no extra
3780 * arguments.
3781 *
3782 * This special call macro adds default arguments to the call and allow us to
3783 * change these later.
3784 *
3785 * @param a_fn The name of the function.
3786 */
3787# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
3788
3789/** Type for a C instruction implementation function taking no extra
3790 * arguments. */
3791typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
3792/** Function pointer type for a C instruction implementation function taking
3793 * no extra arguments. */
3794typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
3795
3796/**
3797 * For typedef'ing or declaring a C instruction implementation function taking
3798 * one extra argument.
3799 *
3800 * @param a_Name The name of the type.
3801 * @param a_Type0 The argument type.
3802 * @param a_Arg0 The argument name.
3803 */
3804# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
3805 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3806/**
3807 * For defining a C instruction implementation function taking one extra
3808 * argument.
3809 *
3810 * @param a_Name The name of the function
3811 * @param a_Type0 The argument type.
3812 * @param a_Arg0 The argument name.
3813 */
3814# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
3815 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3816/**
3817 * Prototype version of IEM_CIMPL_DEF_1.
3818 */
3819# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
3820 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3821/**
3822 * For calling a C instruction implementation function taking one extra
3823 * argument.
3824 *
3825 * This special call macro adds default arguments to the call and allow us to
3826 * change these later.
3827 *
3828 * @param a_fn The name of the function.
3829 * @param a0 The name of the 1st argument.
3830 */
3831# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
3832
3833/**
3834 * For typedef'ing or declaring a C instruction implementation function taking
3835 * two extra arguments.
3836 *
3837 * @param a_Name The name of the type.
3838 * @param a_Type0 The type of the 1st argument
3839 * @param a_Arg0 The name of the 1st argument.
3840 * @param a_Type1 The type of the 2nd argument.
3841 * @param a_Arg1 The name of the 2nd argument.
3842 */
3843# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3844 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3845/**
3846 * For defining a C instruction implementation function taking two extra
3847 * arguments.
3848 *
3849 * @param a_Name The name of the function.
3850 * @param a_Type0 The type of the 1st argument
3851 * @param a_Arg0 The name of the 1st argument.
3852 * @param a_Type1 The type of the 2nd argument.
3853 * @param a_Arg1 The name of the 2nd argument.
3854 */
3855# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3856 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3857/**
3858 * Prototype version of IEM_CIMPL_DEF_2.
3859 */
3860# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3861 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3862/**
3863 * For calling a C instruction implementation function taking two extra
3864 * arguments.
3865 *
3866 * This special call macro adds default arguments to the call and allow us to
3867 * change these later.
3868 *
3869 * @param a_fn The name of the function.
3870 * @param a0 The name of the 1st argument.
3871 * @param a1 The name of the 2nd argument.
3872 */
3873# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
3874
3875/**
3876 * For typedef'ing or declaring a C instruction implementation function taking
3877 * three extra arguments.
3878 *
3879 * @param a_Name The name of the type.
3880 * @param a_Type0 The type of the 1st argument
3881 * @param a_Arg0 The name of the 1st argument.
3882 * @param a_Type1 The type of the 2nd argument.
3883 * @param a_Arg1 The name of the 2nd argument.
3884 * @param a_Type2 The type of the 3rd argument.
3885 * @param a_Arg2 The name of the 3rd argument.
3886 */
3887# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3888 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3889/**
3890 * For defining a C instruction implementation function taking three extra
3891 * arguments.
3892 *
3893 * @param a_Name The name of the function.
3894 * @param a_Type0 The type of the 1st argument
3895 * @param a_Arg0 The name of the 1st argument.
3896 * @param a_Type1 The type of the 2nd argument.
3897 * @param a_Arg1 The name of the 2nd argument.
3898 * @param a_Type2 The type of the 3rd argument.
3899 * @param a_Arg2 The name of the 3rd argument.
3900 */
3901# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3902 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3903/**
3904 * Prototype version of IEM_CIMPL_DEF_3.
3905 */
3906# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3907 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3908/**
3909 * For calling a C instruction implementation function taking three extra
3910 * arguments.
3911 *
3912 * This special call macro adds default arguments to the call and allow us to
3913 * change these later.
3914 *
3915 * @param a_fn The name of the function.
3916 * @param a0 The name of the 1st argument.
3917 * @param a1 The name of the 2nd argument.
3918 * @param a2 The name of the 3rd argument.
3919 */
3920# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
3921
3922
3923/**
3924 * For typedef'ing or declaring a C instruction implementation function taking
3925 * four extra arguments.
3926 *
3927 * @param a_Name The name of the type.
3928 * @param a_Type0 The type of the 1st argument
3929 * @param a_Arg0 The name of the 1st argument.
3930 * @param a_Type1 The type of the 2nd argument.
3931 * @param a_Arg1 The name of the 2nd argument.
3932 * @param a_Type2 The type of the 3rd argument.
3933 * @param a_Arg2 The name of the 3rd argument.
3934 * @param a_Type3 The type of the 4th argument.
3935 * @param a_Arg3 The name of the 4th argument.
3936 */
3937# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3938 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
3939/**
3940 * For defining a C instruction implementation function taking four extra
3941 * arguments.
3942 *
3943 * @param a_Name The name of the function.
3944 * @param a_Type0 The type of the 1st argument
3945 * @param a_Arg0 The name of the 1st argument.
3946 * @param a_Type1 The type of the 2nd argument.
3947 * @param a_Arg1 The name of the 2nd argument.
3948 * @param a_Type2 The type of the 3rd argument.
3949 * @param a_Arg2 The name of the 3rd argument.
3950 * @param a_Type3 The type of the 4th argument.
3951 * @param a_Arg3 The name of the 4th argument.
3952 */
3953# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3954 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3955 a_Type2 a_Arg2, a_Type3 a_Arg3))
3956/**
3957 * Prototype version of IEM_CIMPL_DEF_4.
3958 */
3959# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3960 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3961 a_Type2 a_Arg2, a_Type3 a_Arg3))
3962/**
3963 * For calling a C instruction implementation function taking four extra
3964 * arguments.
3965 *
3966 * This special call macro adds default arguments to the call and allow us to
3967 * change these later.
3968 *
3969 * @param a_fn The name of the function.
3970 * @param a0 The name of the 1st argument.
3971 * @param a1 The name of the 2nd argument.
3972 * @param a2 The name of the 3rd argument.
3973 * @param a3 The name of the 4th argument.
3974 */
3975# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
3976
3977
3978/**
3979 * For typedef'ing or declaring a C instruction implementation function taking
3980 * five extra arguments.
3981 *
3982 * @param a_Name The name of the type.
3983 * @param a_Type0 The type of the 1st argument
3984 * @param a_Arg0 The name of the 1st argument.
3985 * @param a_Type1 The type of the 2nd argument.
3986 * @param a_Arg1 The name of the 2nd argument.
3987 * @param a_Type2 The type of the 3rd argument.
3988 * @param a_Arg2 The name of the 3rd argument.
3989 * @param a_Type3 The type of the 4th argument.
3990 * @param a_Arg3 The name of the 4th argument.
3991 * @param a_Type4 The type of the 5th argument.
3992 * @param a_Arg4 The name of the 5th argument.
3993 */
3994# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
3995 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
3996 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
3997 a_Type3 a_Arg3, a_Type4 a_Arg4))
3998/**
3999 * For defining a C instruction implementation function taking five extra
4000 * arguments.
4001 *
4002 * @param a_Name The name of the function.
4003 * @param a_Type0 The type of the 1st argument
4004 * @param a_Arg0 The name of the 1st argument.
4005 * @param a_Type1 The type of the 2nd argument.
4006 * @param a_Arg1 The name of the 2nd argument.
4007 * @param a_Type2 The type of the 3rd argument.
4008 * @param a_Arg2 The name of the 3rd argument.
4009 * @param a_Type3 The type of the 4th argument.
4010 * @param a_Arg3 The name of the 4th argument.
4011 * @param a_Type4 The type of the 5th argument.
4012 * @param a_Arg4 The name of the 5th argument.
4013 */
4014# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4015 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4016 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4017/**
4018 * Prototype version of IEM_CIMPL_DEF_5.
4019 */
4020# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4021 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4022 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4023/**
4024 * For calling a C instruction implementation function taking five extra
4025 * arguments.
4026 *
4027 * This special call macro adds default arguments to the call and allow us to
4028 * change these later.
4029 *
4030 * @param a_fn The name of the function.
4031 * @param a0 The name of the 1st argument.
4032 * @param a1 The name of the 2nd argument.
4033 * @param a2 The name of the 3rd argument.
4034 * @param a3 The name of the 4th argument.
4035 * @param a4 The name of the 5th argument.
4036 */
4037# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4038
4039/** @} */
4040
4041
4042/** @name Opcode Decoder Function Types.
4043 * @{ */
4044
4045/** @typedef PFNIEMOP
4046 * Pointer to an opcode decoder function.
4047 */
4048
4049/** @def FNIEMOP_DEF
4050 * Define an opcode decoder function.
4051 *
4052 * We're using macors for this so that adding and removing parameters as well as
4053 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4054 *
4055 * @param a_Name The function name.
4056 */
4057
4058/** @typedef PFNIEMOPRM
4059 * Pointer to an opcode decoder function with RM byte.
4060 */
4061
4062/** @def FNIEMOPRM_DEF
4063 * Define an opcode decoder function with RM byte.
4064 *
4065 * We're using macors for this so that adding and removing parameters as well as
4066 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4067 *
4068 * @param a_Name The function name.
4069 */
4070
4071#if defined(__GNUC__) && defined(RT_ARCH_X86)
4072typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4073typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4074# define FNIEMOP_DEF(a_Name) \
4075 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4076# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4077 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4078# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4079 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4080
4081#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4082typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4083typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4084# define FNIEMOP_DEF(a_Name) \
4085 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4086# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4087 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4088# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4089 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4090
4091#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4092typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4093typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4094# define FNIEMOP_DEF(a_Name) \
4095 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4096# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4097 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4098# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4099 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4100
4101#else
4102typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4103typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4104# define FNIEMOP_DEF(a_Name) \
4105 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4106# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4107 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4108# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4109 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4110
4111#endif
4112#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4113
4114/**
4115 * Call an opcode decoder function.
4116 *
4117 * We're using macors for this so that adding and removing parameters can be
4118 * done as we please. See FNIEMOP_DEF.
4119 */
4120#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4121
4122/**
4123 * Call a common opcode decoder function taking one extra argument.
4124 *
4125 * We're using macors for this so that adding and removing parameters can be
4126 * done as we please. See FNIEMOP_DEF_1.
4127 */
4128#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4129
4130/**
4131 * Call a common opcode decoder function taking one extra argument.
4132 *
4133 * We're using macors for this so that adding and removing parameters can be
4134 * done as we please. See FNIEMOP_DEF_1.
4135 */
4136#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4137/** @} */
4138
4139
4140/** @name Misc Helpers
4141 * @{ */
4142
4143/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4144 * due to GCC lacking knowledge about the value range of a switch. */
4145#if RT_CPLUSPLUS_PREREQ(202000)
4146# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4147#else
4148# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4149#endif
4150
4151/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4152#if RT_CPLUSPLUS_PREREQ(202000)
4153# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4154#else
4155# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4156#endif
4157
4158/**
4159 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4160 * occation.
4161 */
4162#ifdef LOG_ENABLED
4163# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4164 do { \
4165 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4166 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4167 } while (0)
4168#else
4169# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4170 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4171#endif
4172
4173/**
4174 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4175 * occation using the supplied logger statement.
4176 *
4177 * @param a_LoggerArgs What to log on failure.
4178 */
4179#ifdef LOG_ENABLED
4180# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4181 do { \
4182 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4183 /*LogFunc(a_LoggerArgs);*/ \
4184 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4185 } while (0)
4186#else
4187# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4188 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4189#endif
4190
4191/**
4192 * Gets the CPU mode (from fExec) as a IEMMODE value.
4193 *
4194 * @returns IEMMODE
4195 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4196 */
4197#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4198
4199/**
4200 * Check if we're currently executing in real or virtual 8086 mode.
4201 *
4202 * @returns @c true if it is, @c false if not.
4203 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4204 */
4205#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4206 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4207
4208/**
4209 * Check if we're currently executing in virtual 8086 mode.
4210 *
4211 * @returns @c true if it is, @c false if not.
4212 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4213 */
4214#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4215
4216/**
4217 * Check if we're currently executing in long mode.
4218 *
4219 * @returns @c true if it is, @c false if not.
4220 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4221 */
4222#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4223
4224/**
4225 * Check if we're currently executing in a 16-bit code segment.
4226 *
4227 * @returns @c true if it is, @c false if not.
4228 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4229 */
4230#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4231
4232/**
4233 * Check if we're currently executing in a 32-bit code segment.
4234 *
4235 * @returns @c true if it is, @c false if not.
4236 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4237 */
4238#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4239
4240/**
4241 * Check if we're currently executing in a 64-bit code segment.
4242 *
4243 * @returns @c true if it is, @c false if not.
4244 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4245 */
4246#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4247
4248/**
4249 * Check if we're currently executing in real mode.
4250 *
4251 * @returns @c true if it is, @c false if not.
4252 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4253 */
4254#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4255
4256/**
4257 * Gets the current protection level (CPL).
4258 *
4259 * @returns 0..3
4260 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4261 */
4262#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4263
4264/**
4265 * Sets the current protection level (CPL).
4266 *
4267 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4268 */
4269#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4270 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4271
4272/**
4273 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4274 * @returns PCCPUMFEATURES
4275 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4276 */
4277#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4278
4279/**
4280 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4281 * @returns PCCPUMFEATURES
4282 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4283 */
4284#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4285
4286/**
4287 * Evaluates to true if we're presenting an Intel CPU to the guest.
4288 */
4289#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4290
4291/**
4292 * Evaluates to true if we're presenting an AMD CPU to the guest.
4293 */
4294#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4295
4296/**
4297 * Check if the address is canonical.
4298 */
4299#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4300
4301/** Checks if the ModR/M byte is in register mode or not. */
4302#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4303/** Checks if the ModR/M byte is in memory mode or not. */
4304#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4305
4306/**
4307 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4308 *
4309 * For use during decoding.
4310 */
4311#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4312/**
4313 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4314 *
4315 * For use during decoding.
4316 */
4317#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4318
4319/**
4320 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4321 *
4322 * For use during decoding.
4323 */
4324#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4325/**
4326 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4327 *
4328 * For use during decoding.
4329 */
4330#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4331
4332/**
4333 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4334 * register index, with REX.R added in.
4335 *
4336 * For use during decoding.
4337 *
4338 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4339 */
4340#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4341 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4342 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4343 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4344/**
4345 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4346 * with REX.B added in.
4347 *
4348 * For use during decoding.
4349 *
4350 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4351 */
4352#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4353 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4354 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4355 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4356
4357/**
4358 * Combines the prefix REX and ModR/M byte for passing to
4359 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4360 *
4361 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4362 * The two bits are part of the REG sub-field, which isn't needed in
4363 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4364 *
4365 * For use during decoding/recompiling.
4366 */
4367#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4368 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4369 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (26 - 3) ) )
4370AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(26));
4371AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(27));
4372
4373/**
4374 * Gets the effective VEX.VVVV value.
4375 *
4376 * The 4th bit is ignored if not 64-bit code.
4377 * @returns effective V-register value.
4378 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4379 */
4380#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4381 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4382
4383
4384/**
4385 * Checks if we're executing inside an AMD-V or VT-x guest.
4386 */
4387#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4388# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4389#else
4390# define IEM_IS_IN_GUEST(a_pVCpu) false
4391#endif
4392
4393
4394#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4395
4396/**
4397 * Check if the guest has entered VMX root operation.
4398 */
4399# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4400
4401/**
4402 * Check if the guest has entered VMX non-root operation.
4403 */
4404# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4405 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4406
4407/**
4408 * Check if the nested-guest has the given Pin-based VM-execution control set.
4409 */
4410# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4411
4412/**
4413 * Check if the nested-guest has the given Processor-based VM-execution control set.
4414 */
4415# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4416
4417/**
4418 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4419 * control set.
4420 */
4421# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4422
4423/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4424# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4425
4426/** Whether a shadow VMCS is present for the given VCPU. */
4427# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4428
4429/** Gets the VMXON region pointer. */
4430# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4431
4432/** Gets the guest-physical address of the current VMCS for the given VCPU. */
4433# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
4434
4435/** Whether a current VMCS is present for the given VCPU. */
4436# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4437
4438/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
4439# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
4440 do \
4441 { \
4442 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
4443 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
4444 } while (0)
4445
4446/** Clears any current VMCS for the given VCPU. */
4447# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
4448 do \
4449 { \
4450 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
4451 } while (0)
4452
4453/**
4454 * Invokes the VMX VM-exit handler for an instruction intercept.
4455 */
4456# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
4457 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
4458
4459/**
4460 * Invokes the VMX VM-exit handler for an instruction intercept where the
4461 * instruction provides additional VM-exit information.
4462 */
4463# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
4464 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
4465
4466/**
4467 * Invokes the VMX VM-exit handler for a task switch.
4468 */
4469# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
4470 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
4471
4472/**
4473 * Invokes the VMX VM-exit handler for MWAIT.
4474 */
4475# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
4476 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
4477
4478/**
4479 * Invokes the VMX VM-exit handler for EPT faults.
4480 */
4481# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
4482 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
4483
4484/**
4485 * Invokes the VMX VM-exit handler.
4486 */
4487# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
4488 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
4489
4490#else
4491# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
4492# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
4493# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
4494# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
4495# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
4496# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4497# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4498# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4499# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4500# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4501# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
4502
4503#endif
4504
4505#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4506/**
4507 * Checks if we're executing a guest using AMD-V.
4508 */
4509# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
4510 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
4511/**
4512 * Check if an SVM control/instruction intercept is set.
4513 */
4514# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
4515 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
4516
4517/**
4518 * Check if an SVM read CRx intercept is set.
4519 */
4520# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4521 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4522
4523/**
4524 * Check if an SVM write CRx intercept is set.
4525 */
4526# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4527 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4528
4529/**
4530 * Check if an SVM read DRx intercept is set.
4531 */
4532# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4533 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4534
4535/**
4536 * Check if an SVM write DRx intercept is set.
4537 */
4538# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4539 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4540
4541/**
4542 * Check if an SVM exception intercept is set.
4543 */
4544# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
4545 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
4546
4547/**
4548 * Invokes the SVM \#VMEXIT handler for the nested-guest.
4549 */
4550# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4551 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
4552
4553/**
4554 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
4555 * corresponding decode assist information.
4556 */
4557# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
4558 do \
4559 { \
4560 uint64_t uExitInfo1; \
4561 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
4562 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
4563 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
4564 else \
4565 uExitInfo1 = 0; \
4566 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
4567 } while (0)
4568
4569/** Check and handles SVM nested-guest instruction intercept and updates
4570 * NRIP if needed.
4571 */
4572# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4573 do \
4574 { \
4575 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
4576 { \
4577 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4578 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
4579 } \
4580 } while (0)
4581
4582/** Checks and handles SVM nested-guest CR0 read intercept. */
4583# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4584 do \
4585 { \
4586 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
4587 { /* probably likely */ } \
4588 else \
4589 { \
4590 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4591 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
4592 } \
4593 } while (0)
4594
4595/**
4596 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
4597 */
4598# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
4599 do { \
4600 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
4601 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
4602 } while (0)
4603
4604#else
4605# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
4606# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4607# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4608# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4609# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4610# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
4611# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
4612# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
4613# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
4614 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4615# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4616# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
4617
4618#endif
4619
4620/** @} */
4621
4622uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
4623VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
4624
4625
4626/**
4627 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
4628 */
4629typedef union IEMSELDESC
4630{
4631 /** The legacy view. */
4632 X86DESC Legacy;
4633 /** The long mode view. */
4634 X86DESC64 Long;
4635} IEMSELDESC;
4636/** Pointer to a selector descriptor table entry. */
4637typedef IEMSELDESC *PIEMSELDESC;
4638
4639/** @name Raising Exceptions.
4640 * @{ */
4641VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
4642 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
4643
4644VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
4645 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
4646#ifdef IEM_WITH_SETJMP
4647DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
4648 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
4649#endif
4650VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
4651VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4652VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
4653VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
4654VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
4655VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4656VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
4657VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4658VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4659/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
4660VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4661VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4662VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4663VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4664VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4665VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4666#ifdef IEM_WITH_SETJMP
4667DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4668#endif
4669VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4670VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
4671VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4672#ifdef IEM_WITH_SETJMP
4673DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4674#endif
4675VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4676#ifdef IEM_WITH_SETJMP
4677DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
4678#endif
4679VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4680#ifdef IEM_WITH_SETJMP
4681DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4682#endif
4683VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
4684#ifdef IEM_WITH_SETJMP
4685DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
4686#endif
4687VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4688VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4689#ifdef IEM_WITH_SETJMP
4690DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4691#endif
4692VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4693
4694void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
4695
4696IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
4697IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
4698IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
4699
4700/**
4701 * Macro for calling iemCImplRaiseDivideError().
4702 *
4703 * This is for things that will _always_ decode to an \#DE, taking the
4704 * recompiler into consideration and everything.
4705 *
4706 * @return Strict VBox status code.
4707 */
4708#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseDivideError)
4709
4710/**
4711 * Macro for calling iemCImplRaiseInvalidLockPrefix().
4712 *
4713 * This is for things that will _always_ decode to an \#UD, taking the
4714 * recompiler into consideration and everything.
4715 *
4716 * @return Strict VBox status code.
4717 */
4718#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidLockPrefix)
4719
4720/**
4721 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
4722 *
4723 * This is for things that will _always_ decode to an \#UD, taking the
4724 * recompiler into consideration and everything.
4725 *
4726 * @return Strict VBox status code.
4727 */
4728#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4729
4730/**
4731 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
4732 *
4733 * Using this macro means you've got _buggy_ _code_ and are doing things that
4734 * belongs exclusively in IEMAllCImpl.cpp during decoding.
4735 *
4736 * @return Strict VBox status code.
4737 * @see IEMOP_RAISE_INVALID_OPCODE_RET
4738 */
4739#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4740
4741/** @} */
4742
4743/** @name Register Access.
4744 * @{ */
4745VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
4746 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4747VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
4748VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
4749 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4750VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewRip) RT_NOEXCEPT;
4751VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewRip) RT_NOEXCEPT;
4752VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
4753/** @} */
4754
4755/** @name FPU access and helpers.
4756 * @{ */
4757void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4758void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4759void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4760void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4761void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4762void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4763 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4764void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4765 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4766void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4767void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4768void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4769void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4770void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4771void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4772void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4773void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4774void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4775void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4776void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4777void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4778void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4779void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4780void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4781/** @} */
4782
4783/** @name SSE+AVX SIMD access and helpers.
4784 * @{ */
4785void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
4786void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
4787/** @} */
4788
4789/** @name Memory access.
4790 * @{ */
4791
4792/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
4793#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
4794/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
4795 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
4796#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
4797/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
4798 * Users include FXSAVE & FXRSTOR. */
4799#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
4800
4801VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
4802 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
4803VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4804#ifndef IN_RING3
4805VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4806#endif
4807void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
4808VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
4809VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4810VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
4811
4812void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
4813void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
4814#ifdef IEM_WITH_CODE_TLB
4815void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
4816#else
4817VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
4818#endif
4819#ifdef IEM_WITH_SETJMP
4820uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4821uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4822uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4823uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4824#else
4825VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
4826VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4827VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4828VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4829VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4830VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4831VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4832VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4833VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4834VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4835VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4836#endif
4837
4838VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4839VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4840VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4841VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4842VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4843VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4844VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4845VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4846VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4847VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4848VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4849VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4850VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
4851 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
4852#ifdef IEM_WITH_SETJMP
4853uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4854uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4855uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4856uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4857uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4858uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4859void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4860void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4861void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4862void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4863void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4864void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4865# if 0 /* these are inlined now */
4866uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4867uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4868uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4869uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4870uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4871uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4872# endif
4873void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4874void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4875void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4876void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4877void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4878void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4879#endif
4880
4881VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4882VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4883VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4884VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4885VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
4886
4887VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
4888VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
4889VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
4890VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
4891VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4892VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4893VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4894VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4895VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4896#ifdef IEM_WITH_SETJMP
4897void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4898void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4899void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4900void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4901void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4902void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4903void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4904void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4905#if 0
4906void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4907void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4908void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4909void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4910#endif
4911void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4912void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4913void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4914void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4915#endif
4916
4917#ifdef IEM_WITH_SETJMP
4918uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4919uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4920uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4921uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4922uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4923uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4924uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4925uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4926uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4927uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4928uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4929uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4930
4931void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4932void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4933void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4934#endif
4935
4936VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
4937 void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
4938VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
4939VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
4940VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
4941VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
4942VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4943VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4944VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4945VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
4946VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
4947 void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
4948VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
4949 void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT;
4950VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
4951VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
4952VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
4953VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
4954VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4955VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4956VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4957
4958#ifdef IEM_WITH_SETJMP
4959void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4960void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4961void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4962void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4963uint16_t iemMemStackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4964uint32_t iemMemStackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4965uint64_t iemMemStackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4966
4967void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4968void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4969void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4970uint16_t iemMemFlat32StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4971uint32_t iemMemFlat32StackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4972
4973void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4974void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4975uint16_t iemMemFlat64StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4976uint64_t iemMemFlat64StackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4977#endif
4978
4979/** @} */
4980
4981/** @name IEMAllCImpl.cpp
4982 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
4983 * @{ */
4984IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4985IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4986IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4987IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
4988IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
4989IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
4990IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
4991IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
4992IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
4993IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
4994IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
4995IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
4996IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
4997IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
4998IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
4999IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5000IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5001typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5002typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5003IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5004IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5005IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5006IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5007IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5008IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5009IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5010IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5011IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5012IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5013IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5014IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5015IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5016IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5017IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5018IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5019IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5020IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5021IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5022IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5023IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5024IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5025IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5026IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5027IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5028IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5029IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5030IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5031IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5032IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5033IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5034IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5035IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5036IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5037IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5038IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5039IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5040IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5041IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5042IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5043IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5044IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5045IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5046IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5047IEM_CIMPL_PROTO_0(iemCImpl_clts);
5048IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5049IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5050IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5051IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5052IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5053IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5054IEM_CIMPL_PROTO_0(iemCImpl_invd);
5055IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5056IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5057IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5058IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5059IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5060IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5061IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5062IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5063IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5064IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5065IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5066IEM_CIMPL_PROTO_0(iemCImpl_cli);
5067IEM_CIMPL_PROTO_0(iemCImpl_sti);
5068IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5069IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5070IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5071IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5072IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5073IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5074IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5075IEM_CIMPL_PROTO_0(iemCImpl_daa);
5076IEM_CIMPL_PROTO_0(iemCImpl_das);
5077IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5078IEM_CIMPL_PROTO_0(iemCImpl_aas);
5079IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5080IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5081IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5082IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5083IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5084 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
5085IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5086IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5087IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5088IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5089IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5090IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5091IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5092IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5093IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5094IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5095IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5096IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5097IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5098IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5099IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5100IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5101/** @} */
5102
5103/** @name IEMAllCImplStrInstr.cpp.h
5104 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5105 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5106 * @{ */
5107IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5108IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5109IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5110IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5111IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5112IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5113IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5114IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5115IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5116IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5117IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5118
5119IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5120IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5121IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5122IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5123IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5124IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5125IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5126IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5127IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5128IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5129IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5130
5131IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5132IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5133IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5134IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5135IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5136IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5137IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5138IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5139IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5140IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5141IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5142
5143
5144IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5145IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5146IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5147IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5148IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5149IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5150IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5151IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5152IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5153IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5154IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5155
5156IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5157IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5158IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5159IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5160IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5161IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5162IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5163IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5164IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5165IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5166IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5167
5168IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5169IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5170IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5171IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5172IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5173IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5174IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5175IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5176IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5177IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5178IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5179
5180IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5181IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5182IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5183IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5184IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5185IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5186IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5187IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5188IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5189IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5190IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5191
5192
5193IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5194IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5195IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5196IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5197IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5198IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5199IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5200IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5201IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5202IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5203IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5204
5205IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5206IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5207IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5208IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5209IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5210IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5211IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5212IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5213IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5214IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5215IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5216
5217IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5218IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5219IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5220IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5221IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5222IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5223IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5224IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5225IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5226IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5227IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5228
5229IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5230IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5231IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5232IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5233IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5234IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5235IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5236IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5237IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5238IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5239IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5240/** @} */
5241
5242#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5243VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5244VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5245VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5246VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5247VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5248VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5249VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5250VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5251VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5252VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5253 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5254VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5255 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5256VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5257VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5258VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5259VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5260VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5261VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5262VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5263VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5264 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5265VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5266VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5267VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5268uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5269void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5270VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5271 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5272bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5273IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5274IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5275IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5276IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5277IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5278IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5279IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5280IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5281IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5282IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5283IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5284IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5285IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5286IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5287IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5288IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5289#endif
5290
5291#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5292VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5293VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5294VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5295 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5296VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5297IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5298IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5299IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5300IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5301IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5302IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5303IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5304IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5305#endif
5306
5307IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5308IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5309IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5310
5311extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5312extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5313extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5314extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5315extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5316extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5317extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5318
5319/*
5320 * Recompiler related stuff.
5321 */
5322extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5323extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5324extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5325extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5326extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5327extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5328extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5329
5330DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
5331 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
5332void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
5333void iemTbAllocatorProcessDelayedFrees(PVMCPU pVCpu, PIEMTBALLOCATOR pTbAllocator);
5334
5335
5336/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5337#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5338typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5339typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5340# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5341 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5342# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5343 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5344
5345#else
5346typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5347typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5348# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5349 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5350# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5351 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5352#endif
5353
5354
5355IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5356
5357IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5358IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5359IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5360IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5361
5362IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5363IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5364IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5365
5366/* Branching: */
5367IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5368IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5369IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5370
5371IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5372IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
5373IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
5374
5375/* Natural page crossing: */
5376IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
5377IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
5378IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
5379
5380IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
5381IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
5382IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
5383
5384IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
5385IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
5386IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
5387
5388bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
5389bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
5390
5391/* Native recompiler public bits: */
5392PIEMTB iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb);
5393int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
5394void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
5395
5396
5397/** @} */
5398
5399RT_C_DECLS_END
5400
5401#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
5402
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette