VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 108178

Last change on this file since 108178 was 108178, checked in by vboxsync, 3 months ago

VMM/IEM: Eliminated unused enmHostCpuVendor IEMCPU member. jiraref:VBP-1531

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 357.1 KB
Line 
1/* $Id: IEMInternal.h 108178 2025-02-12 13:28:13Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEM_WITH_ADAPTIVE_TIMER_POLLING
96 * Enables the adaptive timer polling code.
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEM_WITH_ADAPTIVE_TIMER_POLLING
100#endif
101
102/** @def IEM_WITH_INTRA_TB_JUMPS
103 * Enables loop-jumps within a TB (currently only to the first call).
104 */
105#if defined(DOXYGEN_RUNNING) || 1
106# define IEM_WITH_INTRA_TB_JUMPS
107#endif
108
109/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
110 * Enables the delayed PC updating optimization (see @bugref{10373}).
111 */
112#if defined(DOXYGEN_RUNNING) || 1
113# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
114#endif
115/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
116 * Enabled delayed PC updating debugging code.
117 * This is an alternative to the ARM64-only IEMNATIVE_REG_FIXED_PC_DBG. */
118#if defined(DOXYGEN_RUNNING) || 0
119# define IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
120#endif
121
122/** Enables access to even callee saved registers. */
123/*# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS*/
124
125#if defined(DOXYGEN_RUNNING) || 1
126/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
127 * Delay the writeback or dirty registers as long as possible. */
128# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
129#endif
130
131/** @def IEM_WITH_TLB_STATISTICS
132 * Enables all TLB statistics. */
133#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
134# define IEM_WITH_TLB_STATISTICS
135#endif
136
137/** @def IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
138 * Enable this to use native emitters for certain SIMD FP operations. */
139#if 1 || defined(DOXYGEN_RUNNING)
140# define IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
141#endif
142
143/** @def VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING
144 * Enable this to create a saved state file with the threaded translation
145 * blocks fed to the native recompiler on VCPU \#0. The resulting file can
146 * then be fed into the native recompiler for code profiling purposes.
147 * This is not a feature that should be normally be enabled! */
148#if 0 || defined(DOXYGEN_RUNNING)
149# define VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING
150#endif
151
152/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
153 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
154 * executing native translation blocks.
155 *
156 * This exploits the fact that we save all non-volatile registers in the TB
157 * prologue and thus just need to do the same as the TB epilogue to get the
158 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
159 * non-volatile (and does something even more crazy for ARM), this probably
160 * won't work reliably on Windows. */
161#ifdef RT_ARCH_ARM64
162# ifndef RT_OS_WINDOWS
163# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
164# endif
165#endif
166/* ASM-NOINC-START */
167#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
168# if !defined(IN_RING3) \
169 || !defined(VBOX_WITH_IEM_RECOMPILER) \
170 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
171# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
172# elif defined(RT_OS_WINDOWS)
173# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
174# endif
175#endif
176
177
178/** @def IEM_DO_LONGJMP
179 *
180 * Wrapper around longjmp / throw.
181 *
182 * @param a_pVCpu The CPU handle.
183 * @param a_rc The status code jump back with / throw.
184 */
185#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
186# ifdef IEM_WITH_THROW_CATCH
187# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
188# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
189 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
190 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
191 throw int(a_rc); \
192 } while (0)
193# else
194# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
195# endif
196# else
197# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
198# endif
199#endif
200
201/** For use with IEM function that may do a longjmp (when enabled).
202 *
203 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
204 * attribute. So, we indicate that function that may be part of a longjmp may
205 * throw "exceptions" and that the compiler should definitely not generate and
206 * std::terminate calling unwind code.
207 *
208 * Here is one example of this ending in std::terminate:
209 * @code{.txt}
21000 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
21101 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
21202 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
21303 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
21404 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
21505 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
21606 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
21707 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
21808 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
21909 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
2200a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
2210b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
2220c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
2230d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
2240e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
2250f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
22610 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
227 @endcode
228 *
229 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
230 */
231#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
232# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
233#else
234# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
235#endif
236/* ASM-NOINC-END */
237
238#define IEM_IMPLEMENTS_TASKSWITCH
239
240/** @def IEM_WITH_3DNOW
241 * Includes the 3DNow decoding. */
242#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
243# ifndef IEM_WITHOUT_3DNOW
244# define IEM_WITH_3DNOW
245# endif
246#endif
247
248/** @def IEM_WITH_THREE_0F_38
249 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
250#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
251# ifndef IEM_WITHOUT_THREE_0F_38
252# define IEM_WITH_THREE_0F_38
253# endif
254#endif
255
256/** @def IEM_WITH_THREE_0F_3A
257 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
258#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
259# ifndef IEM_WITHOUT_THREE_0F_3A
260# define IEM_WITH_THREE_0F_3A
261# endif
262#endif
263
264/** @def IEM_WITH_VEX
265 * Includes the VEX decoding. */
266#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
267# ifndef IEM_WITHOUT_VEX
268# define IEM_WITH_VEX
269# endif
270#endif
271
272/** @def IEM_CFG_TARGET_CPU
273 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
274 *
275 * By default we allow this to be configured by the user via the
276 * CPUM/GuestCpuName config string, but this comes at a slight cost during
277 * decoding. So, for applications of this code where there is no need to
278 * be dynamic wrt target CPU, just modify this define.
279 */
280#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
281# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
282#endif
283
284//#define IEM_WITH_CODE_TLB // - work in progress
285//#define IEM_WITH_DATA_TLB // - work in progress
286
287
288/** @def IEM_USE_UNALIGNED_DATA_ACCESS
289 * Use unaligned accesses instead of elaborate byte assembly. */
290#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
291# define IEM_USE_UNALIGNED_DATA_ACCESS
292#endif /*ASM-NOINC*/
293
294//#define IEM_LOG_MEMORY_WRITES
295
296
297
298#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
299
300# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
301/** Instruction statistics. */
302typedef struct IEMINSTRSTATS
303{
304# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
305# include "IEMInstructionStatisticsTmpl.h"
306# undef IEM_DO_INSTR_STAT
307} IEMINSTRSTATS;
308#else
309struct IEMINSTRSTATS;
310typedef struct IEMINSTRSTATS IEMINSTRSTATS;
311#endif
312/** Pointer to IEM instruction statistics. */
313typedef IEMINSTRSTATS *PIEMINSTRSTATS;
314
315
316/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
317 * @{ */
318#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
319#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
320#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
321#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
322#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
323/** Selects the right variant from a_aArray.
324 * pVCpu is implicit in the caller context. */
325#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
326 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
327/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
328 * be used because the host CPU does not support the operation. */
329#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
330 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
331/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
332 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
333 * into the two.
334 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
335#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
336# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
337 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
338#else
339# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
340 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
341#endif
342/** @} */
343
344/**
345 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
346 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
347 *
348 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
349 * indicator.
350 *
351 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
352 */
353#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
354# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
355 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
356#else
357# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
358#endif
359
360/** @name Helpers for passing C++ template arguments to an
361 * IEM_MC_NATIVE_EMIT_3/4/5 style macro.
362 * @{
363 */
364#define IEM_TEMPL_ARG_1(a1) <a1>
365#define IEM_TEMPL_ARG_2(a1, a2) <a1,a2>
366#define IEM_TEMPL_ARG_3(a1, a2, a3) <a1,a2,a3>
367/** @} */
368
369
370/**
371 * Branch types.
372 */
373typedef enum IEMBRANCH
374{
375 IEMBRANCH_JUMP = 1,
376 IEMBRANCH_CALL,
377 IEMBRANCH_TRAP,
378 IEMBRANCH_SOFTWARE_INT,
379 IEMBRANCH_HARDWARE_INT
380} IEMBRANCH;
381AssertCompileSize(IEMBRANCH, 4);
382
383
384/**
385 * INT instruction types.
386 */
387typedef enum IEMINT
388{
389 /** INT n instruction (opcode 0xcd imm). */
390 IEMINT_INTN = 0,
391 /** Single byte INT3 instruction (opcode 0xcc). */
392 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
393 /** Single byte INTO instruction (opcode 0xce). */
394 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
395 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
396 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
397} IEMINT;
398AssertCompileSize(IEMINT, 4);
399
400
401/**
402 * A FPU result.
403 */
404typedef struct IEMFPURESULT
405{
406 /** The output value. */
407 RTFLOAT80U r80Result;
408 /** The output status. */
409 uint16_t FSW;
410} IEMFPURESULT;
411AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
412/** Pointer to a FPU result. */
413typedef IEMFPURESULT *PIEMFPURESULT;
414/** Pointer to a const FPU result. */
415typedef IEMFPURESULT const *PCIEMFPURESULT;
416
417
418/**
419 * A FPU result consisting of two output values and FSW.
420 */
421typedef struct IEMFPURESULTTWO
422{
423 /** The first output value. */
424 RTFLOAT80U r80Result1;
425 /** The output status. */
426 uint16_t FSW;
427 /** The second output value. */
428 RTFLOAT80U r80Result2;
429} IEMFPURESULTTWO;
430AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
431AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
432/** Pointer to a FPU result consisting of two output values and FSW. */
433typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
434/** Pointer to a const FPU result consisting of two output values and FSW. */
435typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
436
437
438/**
439 * IEM TLB entry.
440 *
441 * Lookup assembly:
442 * @code{.asm}
443 ; Calculate tag.
444 mov rax, [VA]
445 shl rax, 16
446 shr rax, 16 + X86_PAGE_SHIFT
447 or rax, [uTlbRevision]
448
449 ; Do indexing.
450 movzx ecx, al
451 lea rcx, [pTlbEntries + rcx]
452
453 ; Check tag.
454 cmp [rcx + IEMTLBENTRY.uTag], rax
455 jne .TlbMiss
456
457 ; Check access.
458 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
459 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
460 cmp rax, [uTlbPhysRev]
461 jne .TlbMiss
462
463 ; Calc address and we're done.
464 mov eax, X86_PAGE_OFFSET_MASK
465 and eax, [VA]
466 or rax, [rcx + IEMTLBENTRY.pMappingR3]
467 %ifdef VBOX_WITH_STATISTICS
468 inc qword [cTlbHits]
469 %endif
470 jmp .Done
471
472 .TlbMiss:
473 mov r8d, ACCESS_FLAGS
474 mov rdx, [VA]
475 mov rcx, [pVCpu]
476 call iemTlbTypeMiss
477 .Done:
478
479 @endcode
480 *
481 */
482typedef struct IEMTLBENTRY
483{
484 /** The TLB entry tag.
485 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
486 * is ASSUMING a virtual address width of 48 bits.
487 *
488 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
489 *
490 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
491 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
492 * revision wraps around though, the tags needs to be zeroed.
493 *
494 * @note Try use SHRD instruction? After seeing
495 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
496 *
497 * @todo This will need to be reorganized for 57-bit wide virtual address and
498 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
499 * have to move the TLB entry versioning entirely to the
500 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
501 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
502 * consumed by PCID and ASID (12 + 6 = 18).
503 */
504 uint64_t uTag;
505 /** Access flags and physical TLB revision.
506 *
507 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
508 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
509 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
510 * - Bit 3 - pgm phys/virt - not directly writable.
511 * - Bit 4 - pgm phys page - not directly readable.
512 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
513 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
514 * - Bit 7 - tlb entry - pMappingR3 member not valid.
515 * - Bits 63 thru 8 are used for the physical TLB revision number.
516 *
517 * We're using complemented bit meanings here because it makes it easy to check
518 * whether special action is required. For instance a user mode write access
519 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
520 * non-zero result would mean special handling needed because either it wasn't
521 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
522 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
523 * need to check any PTE flag.
524 */
525 uint64_t fFlagsAndPhysRev;
526 /** The guest physical page address. */
527 uint64_t GCPhys;
528 /** Pointer to the ring-3 mapping. */
529 R3PTRTYPE(uint8_t *) pbMappingR3;
530#if HC_ARCH_BITS == 32
531 uint32_t u32Padding1;
532#endif
533} IEMTLBENTRY;
534AssertCompileSize(IEMTLBENTRY, 32);
535/** Pointer to an IEM TLB entry. */
536typedef IEMTLBENTRY *PIEMTLBENTRY;
537/** Pointer to a const IEM TLB entry. */
538typedef IEMTLBENTRY const *PCIEMTLBENTRY;
539
540/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
541 * @{ */
542#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
543#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
544#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
545#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
546#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
547#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
548#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
549#define IEMTLBE_F_PT_LARGE_PAGE RT_BIT_64(7) /**< Page tables: Large 2 or 4 MiB page (for flushing). */
550#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(8) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
551#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(9) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
552#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(10) /**< Phys page: Code page. */
553#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffff800) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
554/** @} */
555AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
556AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
557AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
558AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
559AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
560AssertCompile(PGM_WALKINFO_BIG_PAGE == IEMTLBE_F_PT_LARGE_PAGE);
561/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
562#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
563 | PGMIEMGCPHYS2PTR_F_NO_READ \
564 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
565 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
566 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
567 | IEMTLBE_F_PHYS_REV )
568
569
570/** The TLB size (power of two).
571 * We initially chose 256 because that way we can obtain the result directly
572 * from a 8-bit register without an additional AND instruction.
573 * See also @bugref{10687}. */
574#if defined(RT_ARCH_AMD64)
575# define IEMTLB_ENTRY_COUNT 256
576# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
577#else
578# define IEMTLB_ENTRY_COUNT 8192
579# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 13
580#endif
581AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
582
583/** TLB slot format spec (assumes uint32_t or unsigned value). */
584#if IEMTLB_ENTRY_COUNT <= 0x100 / 2
585# define IEMTLB_SLOT_FMT "%02x"
586#elif IEMTLB_ENTRY_COUNT <= 0x1000 / 2
587# define IEMTLB_SLOT_FMT "%03x"
588#elif IEMTLB_ENTRY_COUNT <= 0x10000 / 2
589# define IEMTLB_SLOT_FMT "%04x"
590#else
591# define IEMTLB_SLOT_FMT "%05x"
592#endif
593
594/** Enable the large page bitmap TLB optimization.
595 *
596 * The idea here is to avoid scanning the full 32 KB (2MB pages, 2*512 TLB
597 * entries) or 64 KB (4MB pages, 2*1024 TLB entries) worth of TLB entries during
598 * invlpg when large pages are used, and instead just scan 128 or 256 bytes of
599 * the bmLargePage bitmap to determin which TLB entires that might be containing
600 * large pages and actually require checking.
601 *
602 * There is a good posibility of false positives since we currently don't clear
603 * the bitmap when flushing the TLB, but it should help reduce the workload when
604 * the large pages aren't fully loaded into the TLB in their entirity...
605 */
606#define IEMTLB_WITH_LARGE_PAGE_BITMAP
607
608/**
609 * An IEM TLB.
610 *
611 * We've got two of these, one for data and one for instructions.
612 */
613typedef struct IEMTLB
614{
615 /** The non-global TLB revision.
616 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
617 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
618 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
619 * (The revision zero indicates an invalid TLB entry.)
620 *
621 * The initial value is choosen to cause an early wraparound. */
622 uint64_t uTlbRevision;
623 /** The TLB physical address revision - shadow of PGM variable.
624 *
625 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
626 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
627 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
628 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
629 *
630 * The initial value is choosen to cause an early wraparound.
631 *
632 * @note This is placed between the two TLB revisions because we
633 * load it in pair with one or the other on arm64. */
634 uint64_t volatile uTlbPhysRev;
635 /** The global TLB revision.
636 * Same as uTlbRevision, but only increased for global flushes. */
637 uint64_t uTlbRevisionGlobal;
638
639 /** Large page tag range.
640 *
641 * This is used to avoid scanning a large page's worth of TLB entries for each
642 * INVLPG instruction, and only to do so iff we've loaded any and when the
643 * address is in this range. This is kept up to date when we loading new TLB
644 * entries.
645 */
646 struct LARGEPAGERANGE
647 {
648 /** The lowest large page address tag, UINT64_MAX if none. */
649 uint64_t uFirstTag;
650 /** The highest large page address tag (with offset mask part set), 0 if none. */
651 uint64_t uLastTag;
652 }
653 /** Large page range for non-global pages. */
654 NonGlobalLargePageRange,
655 /** Large page range for global pages. */
656 GlobalLargePageRange;
657 /** Number of non-global entries for large pages loaded since last TLB flush. */
658 uint32_t cTlbNonGlobalLargePageCurLoads;
659 /** Number of global entries for large pages loaded since last TLB flush. */
660 uint32_t cTlbGlobalLargePageCurLoads;
661
662 /* Statistics: */
663
664 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
665 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
666 * not via safe read/write path) calls to iemMemMapJmp. */
667 uint64_t cTlbCoreHits;
668 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
669 * only; data tlb only). */
670 uint64_t cTlbSafeHits;
671 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
672 uint64_t cTlbInlineCodeHits;
673
674 /** TLB misses in IEMAll.cpp code (both).
675 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
676 * not via safe read/write path) calls to iemMemMapJmp. So,
677 * for the data TLB this more like 'other misses', while for the code
678 * TLB is all misses. */
679 uint64_t cTlbCoreMisses;
680 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
681 uint64_t cTlbCoreGlobalLoads;
682 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
683 uint64_t cTlbSafeMisses;
684 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
685 uint64_t cTlbSafeGlobalLoads;
686 /** Safe read path taken (data only). */
687 uint64_t cTlbSafeReadPath;
688 /** Safe write path taken (data only). */
689 uint64_t cTlbSafeWritePath;
690
691 /** @name Details for native code TLB misses.
692 * @note These counts are included in the above counters (cTlbSafeReadPath,
693 * cTlbSafeWritePath, cTlbInlineCodeHits).
694 * @{ */
695 /** TLB misses in native code due to tag mismatch. */
696 STAMCOUNTER cTlbNativeMissTag;
697 /** TLB misses in native code due to flags or physical revision mismatch. */
698 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
699 /** TLB misses in native code due to misaligned access. */
700 STAMCOUNTER cTlbNativeMissAlignment;
701 /** TLB misses in native code due to cross page access. */
702 uint32_t cTlbNativeMissCrossPage;
703 /** TLB misses in native code due to non-canonical address. */
704 uint32_t cTlbNativeMissNonCanonical;
705 /** @} */
706
707 /** Slow read path (code only). */
708 uint32_t cTlbSlowCodeReadPath;
709
710 /** Regular TLB flush count. */
711 uint32_t cTlsFlushes;
712 /** Global TLB flush count. */
713 uint32_t cTlsGlobalFlushes;
714 /** Revision rollovers. */
715 uint32_t cTlbRevisionRollovers;
716 /** Physical revision flushes. */
717 uint32_t cTlbPhysRevFlushes;
718 /** Physical revision rollovers. */
719 uint32_t cTlbPhysRevRollovers;
720
721 /** Number of INVLPG (and similar) operations. */
722 uint32_t cTlbInvlPg;
723 /** Subset of cTlbInvlPg that involved non-global large pages. */
724 uint32_t cTlbInvlPgLargeNonGlobal;
725 /** Subset of cTlbInvlPg that involved global large pages. */
726 uint32_t cTlbInvlPgLargeGlobal;
727
728 uint32_t au32Padding[13];
729
730 /** The TLB entries.
731 * Even entries are for PTE.G=0 and uses uTlbRevision.
732 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
733 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
734#ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
735 /** Bitmap tracking TLB entries for large pages.
736 * This duplicates IEMTLBE_F_PT_LARGE_PAGE for each TLB entry. */
737 uint64_t bmLargePage[IEMTLB_ENTRY_COUNT * 2 / 64];
738#endif
739} IEMTLB;
740AssertCompileSizeAlignment(IEMTLB, 64);
741#ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
742AssertCompile(IEMTLB_ENTRY_COUNT >= 32 /* bmLargePage ASSUMPTION */);
743#endif
744/** The width (in bits) of the address portion of the TLB tag. */
745#define IEMTLB_TAG_ADDR_WIDTH 36
746/** IEMTLB::uTlbRevision increment. */
747#define IEMTLB_REVISION_INCR RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH)
748/** IEMTLB::uTlbRevision mask. */
749#define IEMTLB_REVISION_MASK (~(RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH) - 1))
750
751/** IEMTLB::uTlbPhysRev increment.
752 * @sa IEMTLBE_F_PHYS_REV */
753#define IEMTLB_PHYS_REV_INCR RT_BIT_64(11)
754AssertCompile(IEMTLBE_F_PHYS_REV == ~(IEMTLB_PHYS_REV_INCR - 1U));
755
756/**
757 * Calculates the TLB tag for a virtual address but without TLB revision.
758 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
759 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
760 * the clearing of the top 16 bits won't work (if 32-bit
761 * we'll end up with mostly zeros).
762 */
763#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
764/**
765 * Converts a TLB tag value into a even TLB index.
766 * @returns Index into IEMTLB::aEntries.
767 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
768 */
769#if IEMTLB_ENTRY_COUNT == 256
770# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
771#else
772# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
773AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
774#endif
775/**
776 * Converts a TLB tag value into an even TLB index.
777 * @returns Pointer into IEMTLB::aEntries corresponding to .
778 * @param a_pTlb The TLB.
779 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
780 * IEMTLB_CALC_TAG_NO_REV.
781 */
782#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
783
784/** Converts a GC address to an even TLB index. */
785#define IEMTLB_ADDR_TO_EVEN_INDEX(a_GCPtr) IEMTLB_TAG_TO_EVEN_INDEX(IEMTLB_CALC_TAG_NO_REV(a_GCPtr))
786
787
788/** @def IEM_WITH_TLB_TRACE
789 * Enables the TLB tracing.
790 * Adjust buffer size in IEMR3Init. */
791#if defined(DOXYGEN_RUNNING) || 0
792# define IEM_WITH_TLB_TRACE
793#endif
794
795#ifdef IEM_WITH_TLB_TRACE
796
797/** TLB trace entry types. */
798typedef enum : uint8_t
799{
800 kIemTlbTraceType_Invalid,
801 kIemTlbTraceType_InvlPg,
802 kIemTlbTraceType_EvictSlot,
803 kIemTlbTraceType_LargeEvictSlot,
804 kIemTlbTraceType_LargeScan,
805 kIemTlbTraceType_Flush,
806 kIemTlbTraceType_FlushGlobal,
807 kIemTlbTraceType_Load,
808 kIemTlbTraceType_LoadGlobal,
809 kIemTlbTraceType_Load_Cr0,
810 kIemTlbTraceType_Load_Cr3,
811 kIemTlbTraceType_Load_Cr4,
812 kIemTlbTraceType_Load_Efer,
813 kIemTlbTraceType_Irq,
814 kIemTlbTraceType_Xcpt,
815 kIemTlbTraceType_IRet,
816 kIemTlbTraceType_Tb_Compile,
817 kIemTlbTraceType_Tb_Exec_Threaded,
818 kIemTlbTraceType_Tb_Exec_Native,
819 kIemTlbTraceType_User0,
820 kIemTlbTraceType_User1,
821 kIemTlbTraceType_User2,
822 kIemTlbTraceType_User3,
823} IEMTLBTRACETYPE;
824
825/** TLB trace entry. */
826typedef struct IEMTLBTRACEENTRY
827{
828 /** The flattened RIP for the event. */
829 uint64_t rip;
830 /** The event type. */
831 IEMTLBTRACETYPE enmType;
832 /** Byte parameter - typically used as 'bool fDataTlb'. */
833 uint8_t bParam;
834 /** 16-bit parameter value. */
835 uint16_t u16Param;
836 /** 32-bit parameter value. */
837 uint32_t u32Param;
838 /** 64-bit parameter value. */
839 uint64_t u64Param;
840 /** 64-bit parameter value. */
841 uint64_t u64Param2;
842} IEMTLBTRACEENTRY;
843AssertCompileSize(IEMTLBTRACEENTRY, 32);
844/** Pointer to a TLB trace entry. */
845typedef IEMTLBTRACEENTRY *PIEMTLBTRACEENTRY;
846/** Pointer to a const TLB trace entry. */
847typedef IEMTLBTRACEENTRY const *PCIEMTLBTRACEENTRY;
848#endif /* !IEM_WITH_TLB_TRACE */
849
850#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
851# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) \
852 iemTlbTrace(a_pVCpu, kIemTlbTraceType_InvlPg, a_GCPtr)
853# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
854 iemTlbTrace(a_pVCpu, kIemTlbTraceType_EvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
855# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
856 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeEvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
857# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) \
858 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeScan, 0, 0, a_fDataTlb, (uint8_t)a_fGlobal | ((uint8_t)a_fNonGlobal << 1))
859# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) \
860 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Flush, a_uRev, 0, a_fDataTlb)
861# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) \
862 iemTlbTrace(a_pVCpu, kIemTlbTraceType_FlushGlobal, a_uRev, a_uGRev, a_fDataTlb)
863# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
864 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
865# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
866 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LoadGlobal, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
867#else
868# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) do { } while (0)
869# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
870# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
871# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) do { } while (0)
872# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) do { } while (0)
873# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) do { } while (0)
874# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
875# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
876#endif
877
878#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
879# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr0, a_uNew, a_uOld)
880# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr3, a_uNew, a_uOld)
881# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr4, a_uNew, a_uOld)
882# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Efer, a_uNew, a_uOld)
883#else
884# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) do { } while (0)
885# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) do { } while (0)
886# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) do { } while (0)
887# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) do { } while (0)
888#endif
889
890#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
891# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) \
892 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Irq, a_fEFlags, 0, a_uVector, a_fFlags)
893# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) \
894 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Xcpt, a_uErr, a_uCr2, a_uVector, a_fFlags)
895# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) \
896 iemTlbTrace(a_pVCpu, kIemTlbTraceType_IRet, a_uRetRip, a_fEFlags, 0, a_uRetCs)
897#else
898# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) do { } while (0)
899# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) do { } while (0)
900# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) do { } while (0)
901#endif
902
903#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
904# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) \
905 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Compile, a_GCPhysPc)
906# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) \
907 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Threaded, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
908# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) \
909 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Native, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
910#else
911# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) do { } while (0)
912# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) do { } while (0)
913# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) do { } while (0)
914#endif
915
916#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
917# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
918 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User0, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
919# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
920 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User1, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
921# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
922 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User2, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
923# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
924 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User3, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
925#else
926# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
927# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
928# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
929# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
930#endif
931
932
933/** @name IEM_MC_F_XXX - MC block flags/clues.
934 * @todo Merge with IEM_CIMPL_F_XXX
935 * @{ */
936#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
937#define IEM_MC_F_MIN_186 RT_BIT_32(1)
938#define IEM_MC_F_MIN_286 RT_BIT_32(2)
939#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
940#define IEM_MC_F_MIN_386 RT_BIT_32(3)
941#define IEM_MC_F_MIN_486 RT_BIT_32(4)
942#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
943#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
944#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
945#define IEM_MC_F_64BIT RT_BIT_32(6)
946#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
947/** This is set by IEMAllN8vePython.py to indicate a variation with the
948 * flags-clearing-and-checking. */
949#define IEM_MC_F_WITH_FLAGS RT_BIT_32(8)
950/** This is set by IEMAllN8vePython.py to indicate a variation without the
951 * flags-clearing-and-checking, when there is also a variation with that.
952 * @note Do not set this manully, it's only for python and for testing in
953 * the native recompiler! */
954#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(9)
955/** @} */
956
957/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
958 *
959 * These clues are mainly for the recompiler, so that it can emit correct code.
960 *
961 * They are processed by the python script and which also automatically
962 * calculates flags for MC blocks based on the statements, extending the use of
963 * these flags to describe MC block behavior to the recompiler core. The python
964 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
965 * error checking purposes. The script emits the necessary fEndTb = true and
966 * similar statements as this reduces compile time a tiny bit.
967 *
968 * @{ */
969/** Flag set if direct branch, clear if absolute or indirect. */
970#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
971/** Flag set if indirect branch, clear if direct or relative.
972 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
973 * as well as for return instructions (RET, IRET, RETF). */
974#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
975/** Flag set if relative branch, clear if absolute or indirect. */
976#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
977/** Flag set if conditional branch, clear if unconditional. */
978#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
979/** Flag set if it's a far branch (changes CS). */
980#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
981/** Convenience: Testing any kind of branch. */
982#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
983
984/** Execution flags may change (IEMCPU::fExec). */
985#define IEM_CIMPL_F_MODE RT_BIT_32(5)
986/** May change significant portions of RFLAGS. */
987#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
988/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
989#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
990/** May trigger interrupt shadowing. */
991#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
992/** May enable interrupts, so recheck IRQ immediately afterwards executing
993 * the instruction. */
994#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
995/** May disable interrupts, so recheck IRQ immediately before executing the
996 * instruction. */
997#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
998/** Convenience: Check for IRQ both before and after an instruction. */
999#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
1000/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
1001#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
1002/** May modify FPU state.
1003 * @todo Not sure if this is useful yet. */
1004#define IEM_CIMPL_F_FPU RT_BIT_32(12)
1005/** REP prefixed instruction which may yield before updating PC.
1006 * @todo Not sure if this is useful, REP functions now return non-zero
1007 * status if they don't update the PC. */
1008#define IEM_CIMPL_F_REP RT_BIT_32(13)
1009/** I/O instruction.
1010 * @todo Not sure if this is useful yet. */
1011#define IEM_CIMPL_F_IO RT_BIT_32(14)
1012/** Force end of TB after the instruction. */
1013#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
1014/** Flag set if a branch may also modify the stack (push/pop return address). */
1015#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
1016/** Flag set if a branch may also modify the stack (push/pop return address)
1017 * and switch it (load/restore SS:RSP). */
1018#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
1019/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
1020#define IEM_CIMPL_F_XCPT \
1021 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
1022 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
1023
1024/** The block calls a C-implementation instruction function with two implicit arguments.
1025 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
1026 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1027 * @note The python scripts will add this if missing. */
1028#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
1029/** The block calls an ASM-implementation instruction function.
1030 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
1031 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1032 * @note The python scripts will add this if missing. */
1033#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
1034/** The block calls an ASM-implementation instruction function with an implicit
1035 * X86FXSTATE pointer argument.
1036 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
1037 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
1038 * @note The python scripts will add this if missing. */
1039#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
1040/** The block calls an ASM-implementation instruction function with an implicit
1041 * X86XSAVEAREA pointer argument.
1042 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
1043 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1044 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
1045 * @note The python scripts will add this if missing. */
1046#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
1047/** @} */
1048
1049
1050/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
1051 *
1052 * These flags are set when entering IEM and adjusted as code is executed, such
1053 * that they will always contain the current values as instructions are
1054 * finished.
1055 *
1056 * In recompiled execution mode, (most of) these flags are included in the
1057 * translation block selection key and stored in IEMTB::fFlags alongside the
1058 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
1059 * in IEMCPU::fExec.
1060 *
1061 * @{ */
1062/** Mode: The block target mode mask. */
1063#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
1064/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
1065#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
1066/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
1067 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
1068 * 32-bit mode (for simplifying most memory accesses). */
1069#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
1070/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
1071#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
1072/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
1073#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
1074
1075/** X86 Mode: 16-bit on 386 or later. */
1076#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
1077/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
1078#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
1079/** X86 Mode: 16-bit protected mode on 386 or later. */
1080#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
1081/** X86 Mode: 16-bit protected mode on 386 or later. */
1082#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
1083/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
1084#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
1085
1086/** X86 Mode: 32-bit on 386 or later. */
1087#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
1088/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
1089#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
1090/** X86 Mode: 32-bit protected mode. */
1091#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
1092/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
1093#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
1094
1095/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
1096#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
1097
1098/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
1099#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
1100 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
1101 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
1102
1103/** Bypass access handlers when set. */
1104#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
1105/** Have pending hardware instruction breakpoints. */
1106#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
1107/** Have pending hardware data breakpoints. */
1108#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
1109
1110/** X86: Have pending hardware I/O breakpoints. */
1111#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
1112/** X86: Disregard the lock prefix (implied or not) when set. */
1113#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
1114
1115/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
1116#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
1117
1118/** Caller configurable options. */
1119#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
1120
1121/** X86: The current protection level (CPL) shift factor. */
1122#define IEM_F_X86_CPL_SHIFT 8
1123/** X86: The current protection level (CPL) mask. */
1124#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
1125/** X86: The current protection level (CPL) shifted mask. */
1126#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
1127
1128/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
1129#define IEM_F_X86_AC UINT32_C(0x00080000)
1130
1131/** X86 execution context.
1132 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
1133 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
1134 * mode. */
1135#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
1136/** X86 context: Plain regular execution context. */
1137#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
1138/** X86 context: VT-x enabled. */
1139#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
1140/** X86 context: AMD-V enabled. */
1141#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
1142/** X86 context: In AMD-V or VT-x guest mode. */
1143#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
1144/** X86 context: System management mode (SMM). */
1145#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
1146
1147/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1148 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
1149 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
1150 * alread). */
1151
1152/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1153 * iemRegFinishClearingRF() most for most situations
1154 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
1155 * the IEM_F_PENDING_BRK_XXX bits alread). */
1156
1157/** @} */
1158
1159
1160/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
1161 *
1162 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
1163 * translation block flags. The combined flag mask (subject to
1164 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
1165 *
1166 * @{ */
1167/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
1168#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
1169
1170/** Type: The block type mask. */
1171#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
1172/** Type: Purly threaded recompiler (via tables). */
1173#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
1174/** Type: Native recompilation. */
1175#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
1176
1177/** Set when we're starting the block in an "interrupt shadow".
1178 * We don't need to distingish between the two types of this mask, thus the one.
1179 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
1180#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
1181/** Set when we're currently inhibiting NMIs
1182 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
1183#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
1184
1185/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
1186 * we're close the limit before starting a TB, as determined by
1187 * iemGetTbFlagsForCurrentPc(). */
1188#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
1189
1190/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
1191 *
1192 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
1193 * don't implement), because we don't currently generate any context
1194 * specific code - that's all handled in CIMPL functions.
1195 *
1196 * For the threaded recompiler we don't generate any CPL specific code
1197 * either, but the native recompiler does for memory access (saves getting
1198 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
1199 * Since most OSes will not share code between rings, this shouldn't
1200 * have any real effect on TB/memory/recompiling load.
1201 */
1202#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
1203/** @} */
1204
1205AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1206AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1207AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
1208AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
1209AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1210AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1211AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
1212AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1213AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1214AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1215AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1216AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
1217AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1218AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1219AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
1220AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1221AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
1222AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1223AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
1224
1225AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1226AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1227AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
1228AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1229AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1230AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
1231AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1232AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1233AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1234AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1235AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1236AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
1237
1238AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
1239AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
1240AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1241
1242/** Native instruction type for use with the native code generator.
1243 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
1244#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1245typedef uint8_t IEMNATIVEINSTR;
1246#else
1247typedef uint32_t IEMNATIVEINSTR;
1248#endif
1249/** Pointer to a native instruction unit. */
1250typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
1251/** Pointer to a const native instruction unit. */
1252typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
1253
1254/**
1255 * A call for the threaded call table.
1256 */
1257typedef struct IEMTHRDEDCALLENTRY
1258{
1259 /** The function to call (IEMTHREADEDFUNCS). */
1260 uint16_t enmFunction;
1261
1262 /** Instruction number in the TB (for statistics). */
1263 uint8_t idxInstr;
1264 /** The opcode length. */
1265 uint8_t cbOpcode;
1266 /** Offset into IEMTB::pabOpcodes. */
1267 uint16_t offOpcode;
1268
1269 /** TB lookup table index (7 bits) and large size (1 bits).
1270 *
1271 * The default size is 1 entry, but for indirect calls and returns we set the
1272 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1273 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1274 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1275 *
1276 * By default lookup table entry 0 for a TB is reserved as a fallback for
1277 * calltable entries w/o explicit entreis, so this member will be non-zero if
1278 * there is a lookup entry associated with this call.
1279 *
1280 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1281 */
1282 uint8_t uTbLookup;
1283
1284 /** Flags - IEMTHREADEDCALLENTRY_F_XXX. */
1285 uint8_t fFlags;
1286
1287 /** Generic parameters. */
1288 uint64_t auParams[3];
1289} IEMTHRDEDCALLENTRY;
1290AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1291/** Pointer to a threaded call entry. */
1292typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1293/** Pointer to a const threaded call entry. */
1294typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1295
1296/** The number of TB lookup table entries for a large allocation
1297 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1298#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1299/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1300#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1301/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1302#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1303/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1304#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1305 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1306
1307/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1308#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1309
1310
1311/** The call entry is a jump target. */
1312#define IEMTHREADEDCALLENTRY_F_JUMP_TARGET UINT8_C(0x01)
1313
1314
1315/**
1316 * Native IEM TB 'function' typedef.
1317 *
1318 * This will throw/longjmp on occation.
1319 *
1320 * @note AMD64 doesn't have that many non-volatile registers and does sport
1321 * 32-bit address displacments, so we don't need pCtx.
1322 *
1323 * On ARM64 pCtx allows us to directly address the whole register
1324 * context without requiring a separate indexing register holding the
1325 * offset. This saves an instruction loading the offset for each guest
1326 * CPU context access, at the cost of a non-volatile register.
1327 * Fortunately, ARM64 has quite a lot more registers.
1328 */
1329typedef
1330#ifdef RT_ARCH_AMD64
1331int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1332#else
1333int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1334#endif
1335#if RT_CPLUSPLUS_PREREQ(201700)
1336 IEM_NOEXCEPT_MAY_LONGJMP
1337#endif
1338 ;
1339/** Pointer to a native IEM TB entry point function.
1340 * This will throw/longjmp on occation. */
1341typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1342
1343
1344/**
1345 * Translation block.
1346 *
1347 * The current plan is to just keep TBs and associated lookup hash table private
1348 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1349 * avoids using expensive atomic primitives for updating lists and stuff.
1350 */
1351#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1352typedef struct IEMTB
1353{
1354 /** Next block with the same hash table entry. */
1355 struct IEMTB *pNext;
1356 /** Usage counter. */
1357 uint32_t cUsed;
1358 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1359 uint32_t msLastUsed;
1360
1361 /** @name What uniquely identifies the block.
1362 * @{ */
1363 RTGCPHYS GCPhysPc;
1364 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1365 uint32_t fFlags;
1366 union
1367 {
1368 struct
1369 {
1370 /**< Relevant CS X86DESCATTR_XXX bits. */
1371 uint16_t fAttr;
1372 } x86;
1373 };
1374 /** @} */
1375
1376 /** Number of opcode ranges. */
1377 uint8_t cRanges;
1378 /** Statistics: Number of instructions in the block. */
1379 uint8_t cInstructions;
1380
1381 /** Type specific info. */
1382 union
1383 {
1384 struct
1385 {
1386 /** The call sequence table. */
1387 PIEMTHRDEDCALLENTRY paCalls;
1388 /** Number of calls in paCalls. */
1389 uint16_t cCalls;
1390 /** Number of calls allocated. */
1391 uint16_t cAllocated;
1392 } Thrd;
1393 struct
1394 {
1395 /** The native instructions (PFNIEMTBNATIVE). */
1396 PIEMNATIVEINSTR paInstructions;
1397 /** Number of instructions pointed to by paInstructions. */
1398 uint32_t cInstructions;
1399 } Native;
1400 /** Generic view for zeroing when freeing. */
1401 struct
1402 {
1403 uintptr_t uPtr;
1404 uint32_t uData;
1405 } Gen;
1406 };
1407
1408 /** The allocation chunk this TB belongs to. */
1409 uint8_t idxAllocChunk;
1410 /** The number of entries in the lookup table.
1411 * Because we're out of space, the TB lookup table is located before the
1412 * opcodes pointed to by pabOpcodes. */
1413 uint8_t cTbLookupEntries;
1414
1415 /** Number of bytes of opcodes stored in pabOpcodes.
1416 * @todo this field isn't really needed, aRanges keeps the actual info. */
1417 uint16_t cbOpcodes;
1418 /** Pointer to the opcode bytes this block was recompiled from.
1419 * This also points to the TB lookup table, which starts cTbLookupEntries
1420 * entries before the opcodes (we don't have room atm for another point). */
1421 uint8_t *pabOpcodes;
1422
1423 union
1424 {
1425 /** Native recompilation debug info if enabled.
1426 * This is only generated by the native recompiler. */
1427 struct IEMTBDBG *pDbgInfo;
1428 /** For threaded TBs and natives when debug info is disabled, this is the flat
1429 * PC corresponding to GCPhysPc. */
1430 RTGCPTR FlatPc;
1431 };
1432
1433 /* --- 64 byte cache line end --- */
1434
1435 /** Opcode ranges.
1436 *
1437 * The opcode checkers and maybe TLB loading functions will use this to figure
1438 * out what to do. The parameter will specify an entry and the opcode offset to
1439 * start at and the minimum number of bytes to verify (instruction length).
1440 *
1441 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1442 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1443 * code TLB (must have a valid entry for that address) and scan the ranges to
1444 * locate the corresponding opcodes. Probably.
1445 */
1446 struct IEMTBOPCODERANGE
1447 {
1448 /** Offset within pabOpcodes. */
1449 uint16_t offOpcodes;
1450 /** Number of bytes. */
1451 uint16_t cbOpcodes;
1452 /** The page offset. */
1453 RT_GCC_EXTENSION
1454 uint16_t offPhysPage : 12;
1455 /** Unused bits. */
1456 RT_GCC_EXTENSION
1457 uint16_t u2Unused : 2;
1458 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1459 RT_GCC_EXTENSION
1460 uint16_t idxPhysPage : 2;
1461 } aRanges[8];
1462
1463 /** Physical pages that this TB covers.
1464 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1465 RTGCPHYS aGCPhysPages[2];
1466} IEMTB;
1467#pragma pack()
1468AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1469AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1470AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1471AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1472AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1473AssertCompileMemberOffset(IEMTB, aRanges, 64);
1474AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1475#if 1
1476AssertCompileSize(IEMTB, 128);
1477# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1478#else
1479AssertCompileSize(IEMTB, 168);
1480# undef IEMTB_SIZE_IS_POWER_OF_TWO
1481#endif
1482
1483/** Pointer to a translation block. */
1484typedef IEMTB *PIEMTB;
1485/** Pointer to a const translation block. */
1486typedef IEMTB const *PCIEMTB;
1487
1488/** Gets address of the given TB lookup table entry. */
1489#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1490 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1491
1492/**
1493 * Gets the physical address for a TB opcode range.
1494 */
1495DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1496{
1497 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1498 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1499 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1500 if (idxPage == 0)
1501 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1502 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1503 return pTb->aGCPhysPages[idxPage - 1];
1504}
1505
1506
1507/**
1508 * A chunk of memory in the TB allocator.
1509 */
1510typedef struct IEMTBCHUNK
1511{
1512 /** Pointer to the translation blocks in this chunk. */
1513 PIEMTB paTbs;
1514#ifdef IN_RING0
1515 /** Allocation handle. */
1516 RTR0MEMOBJ hMemObj;
1517#endif
1518} IEMTBCHUNK;
1519
1520/**
1521 * A per-CPU translation block allocator.
1522 *
1523 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1524 * the length of the collision list, and of course also for cache line alignment
1525 * reasons, the TBs must be allocated with at least 64-byte alignment.
1526 * Memory is there therefore allocated using one of the page aligned allocators.
1527 *
1528 *
1529 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1530 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1531 * that enables us to quickly calculate the allocation bitmap position when
1532 * freeing the translation block.
1533 */
1534typedef struct IEMTBALLOCATOR
1535{
1536 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1537 uint32_t uMagic;
1538
1539#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1540 /** Mask corresponding to cTbsPerChunk - 1. */
1541 uint32_t fChunkMask;
1542 /** Shift count corresponding to cTbsPerChunk. */
1543 uint8_t cChunkShift;
1544#else
1545 uint32_t uUnused;
1546 uint8_t bUnused;
1547#endif
1548 /** Number of chunks we're allowed to allocate. */
1549 uint8_t cMaxChunks;
1550 /** Number of chunks currently populated. */
1551 uint16_t cAllocatedChunks;
1552 /** Number of translation blocks per chunk. */
1553 uint32_t cTbsPerChunk;
1554 /** Chunk size. */
1555 uint32_t cbPerChunk;
1556
1557 /** The maximum number of TBs. */
1558 uint32_t cMaxTbs;
1559 /** Total number of TBs in the populated chunks.
1560 * (cAllocatedChunks * cTbsPerChunk) */
1561 uint32_t cTotalTbs;
1562 /** The current number of TBs in use.
1563 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1564 uint32_t cInUseTbs;
1565 /** Statistics: Number of the cInUseTbs that are native ones. */
1566 uint32_t cNativeTbs;
1567 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1568 uint32_t cThreadedTbs;
1569
1570 /** Where to start pruning TBs from when we're out.
1571 * See iemTbAllocatorAllocSlow for details. */
1572 uint32_t iPruneFrom;
1573 /** Where to start pruning native TBs from when we're out of executable memory.
1574 * See iemTbAllocatorFreeupNativeSpace for details. */
1575 uint32_t iPruneNativeFrom;
1576 uint64_t u64Padding;
1577
1578 /** Statistics: Number of TB allocation calls. */
1579 STAMCOUNTER StatAllocs;
1580 /** Statistics: Number of TB free calls. */
1581 STAMCOUNTER StatFrees;
1582 /** Statistics: Time spend pruning. */
1583 STAMPROFILE StatPrune;
1584 /** Statistics: Time spend pruning native TBs. */
1585 STAMPROFILE StatPruneNative;
1586
1587 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1588 PIEMTB pDelayedFreeHead;
1589 /* Head of the list of free TBs. */
1590 PIEMTB pTbsFreeHead;
1591
1592 /** Allocation chunks. */
1593 IEMTBCHUNK aChunks[256];
1594} IEMTBALLOCATOR;
1595/** Pointer to a TB allocator. */
1596typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1597
1598/** Magic value for the TB allocator (Emmet Harley Cohen). */
1599#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1600
1601
1602/**
1603 * A per-CPU translation block cache (hash table).
1604 *
1605 * The hash table is allocated once during IEM initialization and size double
1606 * the max TB count, rounded up to the nearest power of two (so we can use and
1607 * AND mask rather than a rest division when hashing).
1608 */
1609typedef struct IEMTBCACHE
1610{
1611 /** Magic value (IEMTBCACHE_MAGIC). */
1612 uint32_t uMagic;
1613 /** Size of the hash table. This is a power of two. */
1614 uint32_t cHash;
1615 /** The mask corresponding to cHash. */
1616 uint32_t uHashMask;
1617 uint32_t uPadding;
1618
1619 /** @name Statistics
1620 * @{ */
1621 /** Number of collisions ever. */
1622 STAMCOUNTER cCollisions;
1623
1624 /** Statistics: Number of TB lookup misses. */
1625 STAMCOUNTER cLookupMisses;
1626 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1627 STAMCOUNTER cLookupHits;
1628 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1629 STAMCOUNTER cLookupHitsViaTbLookupTable;
1630 STAMCOUNTER auPadding2[2];
1631 /** Statistics: Collision list length pruning. */
1632 STAMPROFILE StatPrune;
1633 /** @} */
1634
1635 /** The hash table itself.
1636 * @note The lower 6 bits of the pointer is used for keeping the collision
1637 * list length, so we can take action when it grows too long.
1638 * This works because TBs are allocated using a 64 byte (or
1639 * higher) alignment from page aligned chunks of memory, so the lower
1640 * 6 bits of the address will always be zero.
1641 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1642 */
1643 RT_FLEXIBLE_ARRAY_EXTENSION
1644 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1645} IEMTBCACHE;
1646/** Pointer to a per-CPU translation block cache. */
1647typedef IEMTBCACHE *PIEMTBCACHE;
1648
1649/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1650#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1651
1652/** The collision count mask for IEMTBCACHE::apHash entries. */
1653#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1654/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1655#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1656/** Combine a TB pointer and a collision list length into a value for an
1657 * IEMTBCACHE::apHash entry. */
1658#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1659/** Combine a TB pointer and a collision list length into a value for an
1660 * IEMTBCACHE::apHash entry. */
1661#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1662/** Combine a TB pointer and a collision list length into a value for an
1663 * IEMTBCACHE::apHash entry. */
1664#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1665
1666/**
1667 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1668 */
1669#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1670 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1671
1672/**
1673 * Calculates the hash table slot for a TB from physical PC address and TB
1674 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1675 */
1676#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1677 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1678
1679
1680/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1681 *
1682 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1683 *
1684 * @{ */
1685/** Value if no branching happened recently. */
1686#define IEMBRANCHED_F_NO UINT8_C(0x00)
1687/** Flag set if direct branch, clear if absolute or indirect. */
1688#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1689/** Flag set if indirect branch, clear if direct or relative. */
1690#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1691/** Flag set if relative branch, clear if absolute or indirect. */
1692#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1693/** Flag set if conditional branch, clear if unconditional. */
1694#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1695/** Flag set if it's a far branch. */
1696#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1697/** Flag set if the stack pointer is modified. */
1698#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1699/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1700#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1701/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1702#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1703/** @} */
1704
1705
1706/**
1707 * The per-CPU IEM state.
1708 */
1709typedef struct IEMCPU
1710{
1711 /** Info status code that needs to be propagated to the IEM caller.
1712 * This cannot be passed internally, as it would complicate all success
1713 * checks within the interpreter making the code larger and almost impossible
1714 * to get right. Instead, we'll store status codes to pass on here. Each
1715 * source of these codes will perform appropriate sanity checks. */
1716 int32_t rcPassUp; /* 0x00 */
1717 /** Execution flag, IEM_F_XXX. */
1718 uint32_t fExec; /* 0x04 */
1719
1720 /** @name Decoder state.
1721 * @{ */
1722#ifdef IEM_WITH_CODE_TLB
1723 /** The offset of the next instruction byte. */
1724 uint32_t offInstrNextByte; /* 0x08 */
1725 /** The number of bytes available at pbInstrBuf for the current instruction.
1726 * This takes the max opcode length into account so that doesn't need to be
1727 * checked separately. */
1728 uint32_t cbInstrBuf; /* 0x0c */
1729 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1730 * This can be NULL if the page isn't mappable for some reason, in which
1731 * case we'll do fallback stuff.
1732 *
1733 * If we're executing an instruction from a user specified buffer,
1734 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1735 * aligned pointer but pointer to the user data.
1736 *
1737 * For instructions crossing pages, this will start on the first page and be
1738 * advanced to the next page by the time we've decoded the instruction. This
1739 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1740 */
1741 uint8_t const *pbInstrBuf; /* 0x10 */
1742# if ARCH_BITS == 32
1743 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1744# endif
1745 /** The program counter corresponding to pbInstrBuf.
1746 * This is set to a non-canonical address when we need to invalidate it. */
1747 uint64_t uInstrBufPc; /* 0x18 */
1748 /** The guest physical address corresponding to pbInstrBuf. */
1749 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1750 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1751 * This takes the CS segment limit into account.
1752 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1753 uint16_t cbInstrBufTotal; /* 0x28 */
1754 /** Offset into pbInstrBuf of the first byte of the current instruction.
1755 * Can be negative to efficiently handle cross page instructions. */
1756 int16_t offCurInstrStart; /* 0x2a */
1757
1758# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1759 /** The prefix mask (IEM_OP_PRF_XXX). */
1760 uint32_t fPrefixes; /* 0x2c */
1761 /** The extra REX ModR/M register field bit (REX.R << 3). */
1762 uint8_t uRexReg; /* 0x30 */
1763 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1764 * (REX.B << 3). */
1765 uint8_t uRexB; /* 0x31 */
1766 /** The extra REX SIB index field bit (REX.X << 3). */
1767 uint8_t uRexIndex; /* 0x32 */
1768
1769 /** The effective segment register (X86_SREG_XXX). */
1770 uint8_t iEffSeg; /* 0x33 */
1771
1772 /** The offset of the ModR/M byte relative to the start of the instruction. */
1773 uint8_t offModRm; /* 0x34 */
1774
1775# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1776 /** The current offset into abOpcode. */
1777 uint8_t offOpcode; /* 0x35 */
1778# else
1779 uint8_t bUnused; /* 0x35 */
1780# endif
1781# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1782 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1783# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1784
1785#else /* !IEM_WITH_CODE_TLB */
1786# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1787 /** The size of what has currently been fetched into abOpcode. */
1788 uint8_t cbOpcode; /* 0x08 */
1789 /** The current offset into abOpcode. */
1790 uint8_t offOpcode; /* 0x09 */
1791 /** The offset of the ModR/M byte relative to the start of the instruction. */
1792 uint8_t offModRm; /* 0x0a */
1793
1794 /** The effective segment register (X86_SREG_XXX). */
1795 uint8_t iEffSeg; /* 0x0b */
1796
1797 /** The prefix mask (IEM_OP_PRF_XXX). */
1798 uint32_t fPrefixes; /* 0x0c */
1799 /** The extra REX ModR/M register field bit (REX.R << 3). */
1800 uint8_t uRexReg; /* 0x10 */
1801 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1802 * (REX.B << 3). */
1803 uint8_t uRexB; /* 0x11 */
1804 /** The extra REX SIB index field bit (REX.X << 3). */
1805 uint8_t uRexIndex; /* 0x12 */
1806
1807# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1808 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1809# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1810#endif /* !IEM_WITH_CODE_TLB */
1811
1812#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1813 /** The effective operand mode. */
1814 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1815 /** The default addressing mode. */
1816 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1817 /** The effective addressing mode. */
1818 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1819 /** The default operand mode. */
1820 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1821
1822 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1823 uint8_t idxPrefix; /* 0x3a, 0x17 */
1824 /** 3rd VEX/EVEX/XOP register.
1825 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1826 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1827 /** The VEX/EVEX/XOP length field. */
1828 uint8_t uVexLength; /* 0x3c, 0x19 */
1829 /** Additional EVEX stuff. */
1830 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1831
1832# ifndef IEM_WITH_CODE_TLB
1833 /** Explicit alignment padding. */
1834 uint8_t abAlignment2a[1]; /* 0x1b */
1835# endif
1836 /** The FPU opcode (FOP). */
1837 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1838# ifndef IEM_WITH_CODE_TLB
1839 /** Explicit alignment padding. */
1840 uint8_t abAlignment2b[2]; /* 0x1e */
1841# endif
1842
1843 /** The opcode bytes. */
1844 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1845 /** Explicit alignment padding. */
1846# ifdef IEM_WITH_CODE_TLB
1847 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1848# else
1849 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1850# endif
1851
1852#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1853# ifdef IEM_WITH_CODE_TLB
1854 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1855# else
1856 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1857# endif
1858#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1859 /** @} */
1860
1861
1862 /** The number of active guest memory mappings. */
1863 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1864
1865 /** Records for tracking guest memory mappings. */
1866 struct
1867 {
1868 /** The address of the mapped bytes. */
1869 R3R0PTRTYPE(void *) pv;
1870 /** The access flags (IEM_ACCESS_XXX).
1871 * IEM_ACCESS_INVALID if the entry is unused. */
1872 uint32_t fAccess;
1873#if HC_ARCH_BITS == 64
1874 uint32_t u32Alignment4; /**< Alignment padding. */
1875#endif
1876 } aMemMappings[3]; /* 0x50 LB 0x30 */
1877
1878 /** Locking records for the mapped memory. */
1879 union
1880 {
1881 PGMPAGEMAPLOCK Lock;
1882 uint64_t au64Padding[2];
1883 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1884
1885 /** Bounce buffer info.
1886 * This runs in parallel to aMemMappings. */
1887 struct
1888 {
1889 /** The physical address of the first byte. */
1890 RTGCPHYS GCPhysFirst;
1891 /** The physical address of the second page. */
1892 RTGCPHYS GCPhysSecond;
1893 /** The number of bytes in the first page. */
1894 uint16_t cbFirst;
1895 /** The number of bytes in the second page. */
1896 uint16_t cbSecond;
1897 /** Whether it's unassigned memory. */
1898 bool fUnassigned;
1899 /** Explicit alignment padding. */
1900 bool afAlignment5[3];
1901 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1902
1903 /** The flags of the current exception / interrupt. */
1904 uint32_t fCurXcpt; /* 0xf8 */
1905 /** The current exception / interrupt. */
1906 uint8_t uCurXcpt; /* 0xfc */
1907 /** Exception / interrupt recursion depth. */
1908 int8_t cXcptRecursions; /* 0xfb */
1909
1910 /** The next unused mapping index.
1911 * @todo try find room for this up with cActiveMappings. */
1912 uint8_t iNextMapping; /* 0xfd */
1913 uint8_t abAlignment7[1];
1914
1915 /** Bounce buffer storage.
1916 * This runs in parallel to aMemMappings and aMemBbMappings. */
1917 struct
1918 {
1919 uint8_t ab[512];
1920 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1921
1922
1923 /** Pointer set jump buffer - ring-3 context. */
1924 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1925 /** Pointer set jump buffer - ring-0 context. */
1926 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1927
1928 /** @todo Should move this near @a fCurXcpt later. */
1929 /** The CR2 for the current exception / interrupt. */
1930 uint64_t uCurXcptCr2;
1931 /** The error code for the current exception / interrupt. */
1932 uint32_t uCurXcptErr;
1933
1934 /** @name Statistics
1935 * @{ */
1936 /** The number of instructions we've executed. */
1937 uint32_t cInstructions;
1938 /** The number of potential exits. */
1939 uint32_t cPotentialExits;
1940 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1941 * This may contain uncommitted writes. */
1942 uint32_t cbWritten;
1943 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1944 uint32_t cRetInstrNotImplemented;
1945 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1946 uint32_t cRetAspectNotImplemented;
1947 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1948 uint32_t cRetInfStatuses;
1949 /** Counts other error statuses returned. */
1950 uint32_t cRetErrStatuses;
1951 /** Number of times rcPassUp has been used. */
1952 uint32_t cRetPassUpStatus;
1953 /** Number of times RZ left with instruction commit pending for ring-3. */
1954 uint32_t cPendingCommit;
1955 /** Number of misaligned (host sense) atomic instruction accesses. */
1956 uint32_t cMisalignedAtomics;
1957 /** Number of long jumps. */
1958 uint32_t cLongJumps;
1959 /** @} */
1960
1961 /** @name Target CPU information.
1962 * @{ */
1963#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1964 /** The target CPU. */
1965 uint8_t uTargetCpu;
1966#else
1967 uint8_t bTargetCpuPadding;
1968#endif
1969 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1970 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1971 * native host support and the 2nd for when there is.
1972 *
1973 * The two values are typically indexed by a g_CpumHostFeatures bit.
1974 *
1975 * This is for instance used for the BSF & BSR instructions where AMD and
1976 * Intel CPUs produce different EFLAGS. */
1977 uint8_t aidxTargetCpuEflFlavour[2];
1978
1979 /** The CPU vendor. */
1980 CPUMCPUVENDOR enmCpuVendor;
1981 /** @} */
1982
1983 /** Counts RDMSR \#GP(0) LogRel(). */
1984 uint8_t cLogRelRdMsr;
1985 /** Counts WRMSR \#GP(0) LogRel(). */
1986 uint8_t cLogRelWrMsr;
1987 /** Alignment padding. */
1988 uint8_t abAlignment9[46];
1989
1990
1991 /** @name Recompiled Exection
1992 * @{ */
1993 /** Pointer to the current translation block.
1994 * This can either be one being executed or one being compiled. */
1995 R3PTRTYPE(PIEMTB) pCurTbR3;
1996#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1997 /** Frame pointer for the last native TB to execute. */
1998 R3PTRTYPE(void *) pvTbFramePointerR3;
1999#else
2000 R3PTRTYPE(void *) pvUnusedR3;
2001#endif
2002#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2003 /** The saved host floating point control register (MXCSR on x86, FPCR on arm64)
2004 * needing restore when the TB finished, IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED indicates the TB
2005 * didn't modify it so we don't need to restore it. */
2006# ifdef RT_ARCH_AMD64
2007 uint32_t uRegFpCtrl;
2008 /** Temporary copy of MXCSR for stmxcsr/ldmxcsr (so we don't have to fiddle with stack pointers). */
2009 uint32_t uRegMxcsrTmp;
2010# elif defined(RT_ARCH_ARM64)
2011 uint64_t uRegFpCtrl;
2012# else
2013# error "Port me"
2014# endif
2015#else
2016 uint64_t u64Unused;
2017#endif
2018 /** Pointer to the ring-3 TB cache for this EMT. */
2019 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
2020 /** Pointer to the ring-3 TB lookup entry.
2021 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
2022 * entry, thus it can always safely be used w/o NULL checking. */
2023 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
2024#if 0 /* unused */
2025 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
2026 * The TBs are based on physical addresses, so this is needed to correleated
2027 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
2028 uint64_t uCurTbStartPc;
2029#endif
2030
2031 /** Number of threaded TBs executed. */
2032 uint64_t cTbExecThreaded;
2033 /** Number of native TBs executed. */
2034 uint64_t cTbExecNative;
2035
2036 /** The number of IRQ/FF checks till the next timer poll call. */
2037 uint32_t cTbsTillNextTimerPoll;
2038 /** The virtual sync time at the last timer poll call in milliseconds. */
2039 uint32_t msRecompilerPollNow;
2040 /** The virtual sync time at the last timer poll call in nanoseconds. */
2041 uint64_t nsRecompilerPollNow;
2042 /** The previous cTbsTillNextTimerPoll value. */
2043 uint32_t cTbsTillNextTimerPollPrev;
2044
2045 /** The current instruction number in a native TB.
2046 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
2047 * and will be picked up by the TB execution loop. Only used when
2048 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
2049 uint8_t idxTbCurInstr;
2050 /** @} */
2051
2052 /** @name Recompilation
2053 * @{ */
2054 /** Whether we need to check the opcode bytes for the current instruction.
2055 * This is set by a previous instruction if it modified memory or similar. */
2056 bool fTbCheckOpcodes;
2057 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
2058 uint8_t fTbBranched;
2059 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
2060 bool fTbCrossedPage;
2061 /** Whether to end the current TB. */
2062 bool fEndTb;
2063 /** Indicates that the current instruction is an STI. This is set by the
2064 * iemCImpl_sti code and subsequently cleared by the recompiler. */
2065 bool fTbCurInstrIsSti;
2066 /** Spaced reserved for recompiler data / alignment. */
2067 bool afRecompilerStuff1[1];
2068 /** Number of instructions before we need emit an IRQ check call again.
2069 * This helps making sure we don't execute too long w/o checking for
2070 * interrupts and immediately following instructions that may enable
2071 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
2072 * required to make sure we check following the next instruction as well, see
2073 * fTbCurInstrIsSti. */
2074 uint8_t cInstrTillIrqCheck;
2075 /** The index of the last CheckIrq call during threaded recompilation. */
2076 uint16_t idxLastCheckIrqCallNo;
2077 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
2078 uint16_t cbOpcodesAllocated;
2079 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
2080 uint32_t uTbNativeRecompileAtUsedCount;
2081 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
2082 uint32_t fTbCurInstr;
2083 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
2084 uint32_t fTbPrevInstr;
2085 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
2086 * currently not up to date in EFLAGS. */
2087 uint32_t fSkippingEFlags;
2088#if 0 /* unused */
2089 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
2090 RTGCPHYS GCPhysInstrBufPrev;
2091#endif
2092
2093 /** Fixed TB used for threaded recompilation.
2094 * This is allocated once with maxed-out sizes and re-used afterwards. */
2095 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
2096 /** Pointer to the ring-3 TB allocator for this EMT. */
2097 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
2098 /** Pointer to the ring-3 executable memory allocator for this EMT. */
2099 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
2100 /** Pointer to the native recompiler state for ring-3. */
2101 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
2102 /** Dummy entry for ppTbLookupEntryR3. */
2103 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
2104#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
2105 /** The debug code advances this register as if it was CPUMCTX::rip and we
2106 * didn't do delayed PC updating. When CPUMCTX::rip is finally updated,
2107 * the result is compared with this value. */
2108 uint64_t uPcUpdatingDebug;
2109#elif defined(VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING)
2110 /** The SSM handle used for saving threaded TBs for recompiler profiling. */
2111 R3PTRTYPE(PSSMHANDLE) pSsmThreadedTbsForProfiling;
2112#else
2113 uint64_t u64Placeholder;
2114#endif
2115 /**
2116 * Whether we should use the host instruction invalidation APIs of the
2117 * host OS or our own version of it (macOS). */
2118 uint8_t fHostICacheInvalidation;
2119#define IEMNATIVE_ICACHE_F_USE_HOST_API UINT8_C(0x01) /**< Use the host API (macOS) instead of our code. */
2120#define IEMNATIVE_ICACHE_F_END_WITH_ISH UINT8_C(0x02) /**< Whether to end with a ISH barrier (arm). */
2121 bool afRecompilerStuff2[7];
2122 /** @} */
2123
2124 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
2125 IEMTLBENTRY DataBreakpointTlbe;
2126
2127 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
2128 STAMCOUNTER StatTbThreadedExecBreaks;
2129 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
2130 STAMCOUNTER StatCheckIrqBreaks;
2131 /** Statistics: Times BltIn_CheckTimers breaks direct linking TBs. */
2132 STAMCOUNTER StatCheckTimersBreaks;
2133 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
2134 STAMCOUNTER StatCheckModeBreaks;
2135 /** Threaded TB statistics: Times execution break on call with lookup entries. */
2136 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
2137 /** Threaded TB statistics: Times execution break on call without lookup entries. */
2138 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
2139 /** Statistics: Times a post jump target check missed and had to find new TB. */
2140 STAMCOUNTER StatCheckBranchMisses;
2141 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
2142 STAMCOUNTER StatCheckNeedCsLimChecking;
2143 /** Statistics: Times a loop was detected within a TB. */
2144 STAMCOUNTER StatTbLoopInTbDetected;
2145 /** Statistics: Times a loop back to the start of the TB was detected. */
2146 STAMCOUNTER StatTbLoopFullTbDetected;
2147 /** Statistics: Times a loop back to the start of the TB was detected, var 2. */
2148 STAMCOUNTER StatTbLoopFullTbDetected2;
2149 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2150 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2151 /** Native TB statistics: Number of fully recompiled TBs. */
2152 STAMCOUNTER StatNativeFullyRecompiledTbs;
2153 /** TB statistics: Number of instructions per TB. */
2154 STAMPROFILE StatTbInstr;
2155 /** TB statistics: Number of TB lookup table entries per TB. */
2156 STAMPROFILE StatTbLookupEntries;
2157 /** Threaded TB statistics: Number of calls per TB. */
2158 STAMPROFILE StatTbThreadedCalls;
2159 /** Native TB statistics: Native code size per TB. */
2160 STAMPROFILE StatTbNativeCode;
2161 /** Native TB statistics: Profiling native recompilation. */
2162 STAMPROFILE StatNativeRecompilation;
2163 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2164 STAMPROFILE StatNativeCallsRecompiled;
2165 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2166 STAMPROFILE StatNativeCallsThreaded;
2167 /** Native recompiled execution: TLB hits for data fetches. */
2168 STAMCOUNTER StatNativeTlbHitsForFetch;
2169 /** Native recompiled execution: TLB hits for data stores. */
2170 STAMCOUNTER StatNativeTlbHitsForStore;
2171 /** Native recompiled execution: TLB hits for stack accesses. */
2172 STAMCOUNTER StatNativeTlbHitsForStack;
2173 /** Native recompiled execution: TLB hits for mapped accesses. */
2174 STAMCOUNTER StatNativeTlbHitsForMapped;
2175 /** Native recompiled execution: Code TLB misses for new page. */
2176 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2177 /** Native recompiled execution: Code TLB hits for new page. */
2178 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2179 /** Native recompiled execution: Code TLB misses for new page with offset. */
2180 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2181 /** Native recompiled execution: Code TLB hits for new page with offset. */
2182 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2183
2184 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2185 STAMCOUNTER StatNativeRegFindFree;
2186 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2187 * to free a variable. */
2188 STAMCOUNTER StatNativeRegFindFreeVar;
2189 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2190 * not need to free any variables. */
2191 STAMCOUNTER StatNativeRegFindFreeNoVar;
2192 /** Native recompiler: Liveness info freed shadowed guest registers in
2193 * iemNativeRegAllocFindFree. */
2194 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2195 /** Native recompiler: Liveness info helped with the allocation in
2196 * iemNativeRegAllocFindFree. */
2197 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2198
2199 /** Native recompiler: Number of times status flags calc has been skipped. */
2200 STAMCOUNTER StatNativeEflSkippedArithmetic;
2201 /** Native recompiler: Number of times status flags calc has been postponed. */
2202 STAMCOUNTER StatNativeEflPostponedArithmetic;
2203 /** Native recompiler: Total number instructions in this category. */
2204 STAMCOUNTER StatNativeEflTotalArithmetic;
2205
2206 /** Native recompiler: Number of times status flags calc has been skipped. */
2207 STAMCOUNTER StatNativeEflSkippedLogical;
2208 /** Native recompiler: Number of times status flags calc has been postponed. */
2209 STAMCOUNTER StatNativeEflPostponedLogical;
2210 /** Native recompiler: Total number instructions in this category. */
2211 STAMCOUNTER StatNativeEflTotalLogical;
2212
2213 /** Native recompiler: Number of times status flags calc has been skipped. */
2214 STAMCOUNTER StatNativeEflSkippedShift;
2215 /** Native recompiler: Number of times status flags calc has been postponed. */
2216 STAMCOUNTER StatNativeEflPostponedShift;
2217 /** Native recompiler: Total number instructions in this category. */
2218 STAMCOUNTER StatNativeEflTotalShift;
2219
2220 /** Native recompiler: Number of emits per postponement. */
2221 STAMPROFILE StatNativeEflPostponedEmits;
2222
2223 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2224 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2225 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2226 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2227 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2228 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2229 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2230 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2231 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2232 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2233 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2234 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2235 /** Native recompiler: Number of required EFLAGS.CF updates. */
2236 STAMCOUNTER StatNativeLivenessEflCfRequired;
2237 /** Native recompiler: Number of required EFLAGS.PF updates. */
2238 STAMCOUNTER StatNativeLivenessEflPfRequired;
2239 /** Native recompiler: Number of required EFLAGS.AF updates. */
2240 STAMCOUNTER StatNativeLivenessEflAfRequired;
2241 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2242 STAMCOUNTER StatNativeLivenessEflZfRequired;
2243 /** Native recompiler: Number of required EFLAGS.SF updates. */
2244 STAMCOUNTER StatNativeLivenessEflSfRequired;
2245 /** Native recompiler: Number of required EFLAGS.OF updates. */
2246 STAMCOUNTER StatNativeLivenessEflOfRequired;
2247 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2248 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2249 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2250 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2251 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2252 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2253 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2254 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2255 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2256 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2257 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2258 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2259
2260 /** Native recompiler: Number of potential PC updates in total. */
2261 STAMCOUNTER StatNativePcUpdateTotal;
2262 /** Native recompiler: Number of PC updates which could be delayed. */
2263 STAMCOUNTER StatNativePcUpdateDelayed;
2264
2265 /** Native recompiler: Number of time we had complicated dirty shadow
2266 * register situations with the other branch in IEM_MC_ENDIF. */
2267 STAMCOUNTER StatNativeEndIfOtherBranchDirty;
2268
2269 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2270 STAMCOUNTER StatNativeSimdRegFindFree;
2271 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2272 * to free a variable. */
2273 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2274 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2275 * not need to free any variables. */
2276 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2277 /** Native recompiler: Liveness info freed shadowed guest registers in
2278 * iemNativeSimdRegAllocFindFree. */
2279 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2280 /** Native recompiler: Liveness info helped with the allocation in
2281 * iemNativeSimdRegAllocFindFree. */
2282 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2283
2284 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2285 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2286 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2287 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2288 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2289 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2290 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2291 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2292
2293 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2294 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2295 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2296 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2297 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2298 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2299 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2300 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2301
2302 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2303 * Not availabe in release builds. */
2304 STAMCOUNTER StatNativeTbFinished;
2305 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2306 STAMCOUNTER StatNativeTbExitReturnBreak;
2307 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2308 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2309 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2310 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2311 /** Native recompiler: The TB finished executing with other non-zero status. */
2312 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2313 /** Native recompiler: The TB finished executing via throw / long jump. */
2314 STAMCOUNTER StatNativeTbExitLongJump;
2315 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2316 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2317 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2318 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2319 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2320 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2321 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2322 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2323 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2324 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2325 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2326 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2327
2328 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2329 STAMCOUNTER StatNativeTbExitRaiseDe;
2330 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2331 STAMCOUNTER StatNativeTbExitRaiseUd;
2332 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2333 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2334 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2335 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2336 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2337 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2338 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2339 STAMCOUNTER StatNativeTbExitRaiseNm;
2340 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2341 STAMCOUNTER StatNativeTbExitRaiseGp0;
2342 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2343 STAMCOUNTER StatNativeTbExitRaiseMf;
2344 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2345 STAMCOUNTER StatNativeTbExitRaiseXf;
2346 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2347 STAMCOUNTER StatNativeTbExitObsoleteTb;
2348
2349 /** Native recompiler: Number of full TB loops (jumps from end to start). */
2350 STAMCOUNTER StatNativeTbExitLoopFullTb;
2351
2352 /** Native recompiler: Failure situations with direct linking scenario \#1.
2353 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2354 * @{ */
2355 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2356 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2357 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2358 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2359 /** @} */
2360
2361 /** Native recompiler: Failure situations with direct linking scenario \#2.
2362 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2363 * @{ */
2364 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2365 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2366 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2367 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2368 /** @} */
2369
2370 /** iemMemMap and iemMemMapJmp statistics.
2371 * @{ */
2372 STAMCOUNTER StatMemMapJmp;
2373 STAMCOUNTER StatMemMapNoJmp;
2374 STAMCOUNTER StatMemBounceBufferCrossPage;
2375 STAMCOUNTER StatMemBounceBufferMapPhys;
2376 /** @} */
2377
2378 /** Timer polling statistics (debug only).
2379 * @{ */
2380 STAMPROFILE StatTimerPoll;
2381 STAMPROFILE StatTimerPollPoll;
2382 STAMPROFILE StatTimerPollRun;
2383 STAMCOUNTER StatTimerPollUnchanged;
2384 STAMCOUNTER StatTimerPollTiny;
2385 STAMCOUNTER StatTimerPollDefaultCalc;
2386 STAMCOUNTER StatTimerPollMax;
2387 STAMPROFILE StatTimerPollFactorDivision;
2388 STAMPROFILE StatTimerPollFactorMultiplication;
2389 /** @} */
2390
2391
2392 STAMCOUNTER aStatAdHoc[8];
2393
2394#ifdef IEM_WITH_TLB_TRACE
2395 /*uint64_t au64Padding[0];*/
2396#else
2397 uint64_t au64Padding[2];
2398#endif
2399
2400#ifdef IEM_WITH_TLB_TRACE
2401 /** The end (next) trace entry. */
2402 uint32_t idxTlbTraceEntry;
2403 /** Number of trace entries allocated expressed as a power of two. */
2404 uint32_t cTlbTraceEntriesShift;
2405 /** The trace entries. */
2406 PIEMTLBTRACEENTRY paTlbTraceEntries;
2407#endif
2408
2409 /** Data TLB.
2410 * @remarks Must be 64-byte aligned. */
2411 IEMTLB DataTlb;
2412 /** Instruction TLB.
2413 * @remarks Must be 64-byte aligned. */
2414 IEMTLB CodeTlb;
2415
2416 /** Exception statistics. */
2417 STAMCOUNTER aStatXcpts[32];
2418 /** Interrupt statistics. */
2419 uint32_t aStatInts[256];
2420
2421#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2422 /** Instruction statistics for ring-0/raw-mode. */
2423 IEMINSTRSTATS StatsRZ;
2424 /** Instruction statistics for ring-3. */
2425 IEMINSTRSTATS StatsR3;
2426# ifdef VBOX_WITH_IEM_RECOMPILER
2427 /** Statistics per threaded function call.
2428 * Updated by both the threaded and native recompilers. */
2429 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2430# endif
2431#endif
2432} IEMCPU;
2433AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2434AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2435AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2436AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2437AssertCompileMemberAlignment(IEMCPU, pCurTbR3, 64);
2438AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2439AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2440
2441/** Pointer to the per-CPU IEM state. */
2442typedef IEMCPU *PIEMCPU;
2443/** Pointer to the const per-CPU IEM state. */
2444typedef IEMCPU const *PCIEMCPU;
2445
2446/** @def IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED
2447 * Value indicating the TB didn't modified the floating point control register.
2448 * @note Neither FPCR nor MXCSR accept this as a valid value (MXCSR is not fully populated,
2449 * FPCR has the upper 32-bit reserved), so this is safe. */
2450#if defined(IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS) || defined(DOXYGEN_RUNNING)
2451# ifdef RT_ARCH_AMD64
2452# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT32_MAX
2453# elif defined(RT_ARCH_ARM64)
2454# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT64_MAX
2455# else
2456# error "Port me"
2457# endif
2458#endif
2459
2460/** @def IEM_GET_CTX
2461 * Gets the guest CPU context for the calling EMT.
2462 * @returns PCPUMCTX
2463 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2464 */
2465#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2466
2467/** @def IEM_CTX_ASSERT
2468 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2469 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2470 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2471 */
2472#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2473 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2474 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2475 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2476
2477/** @def IEM_CTX_IMPORT_RET
2478 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2479 *
2480 * Will call the keep to import the bits as needed.
2481 *
2482 * Returns on import failure.
2483 *
2484 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2485 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2486 */
2487#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2488 do { \
2489 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2490 { /* likely */ } \
2491 else \
2492 { \
2493 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2494 AssertRCReturn(rcCtxImport, rcCtxImport); \
2495 } \
2496 } while (0)
2497
2498/** @def IEM_CTX_IMPORT_NORET
2499 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2500 *
2501 * Will call the keep to import the bits as needed.
2502 *
2503 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2504 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2505 */
2506#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2507 do { \
2508 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2509 { /* likely */ } \
2510 else \
2511 { \
2512 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2513 AssertLogRelRC(rcCtxImport); \
2514 } \
2515 } while (0)
2516
2517/** @def IEM_CTX_IMPORT_JMP
2518 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2519 *
2520 * Will call the keep to import the bits as needed.
2521 *
2522 * Jumps on import failure.
2523 *
2524 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2525 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2526 */
2527#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2528 do { \
2529 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2530 { /* likely */ } \
2531 else \
2532 { \
2533 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2534 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2535 } \
2536 } while (0)
2537
2538
2539
2540/** @def IEM_GET_TARGET_CPU
2541 * Gets the current IEMTARGETCPU value.
2542 * @returns IEMTARGETCPU value.
2543 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2544 */
2545#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2546# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2547#else
2548# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2549#endif
2550
2551/** @def IEM_GET_INSTR_LEN
2552 * Gets the instruction length. */
2553#ifdef IEM_WITH_CODE_TLB
2554# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2555#else
2556# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2557#endif
2558
2559/** @def IEM_TRY_SETJMP
2560 * Wrapper around setjmp / try, hiding all the ugly differences.
2561 *
2562 * @note Use with extreme care as this is a fragile macro.
2563 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2564 * @param a_rcTarget The variable that should receive the status code in case
2565 * of a longjmp/throw.
2566 */
2567/** @def IEM_TRY_SETJMP_AGAIN
2568 * For when setjmp / try is used again in the same variable scope as a previous
2569 * IEM_TRY_SETJMP invocation.
2570 */
2571/** @def IEM_CATCH_LONGJMP_BEGIN
2572 * Start wrapper for catch / setjmp-else.
2573 *
2574 * This will set up a scope.
2575 *
2576 * @note Use with extreme care as this is a fragile macro.
2577 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2578 * @param a_rcTarget The variable that should receive the status code in case
2579 * of a longjmp/throw.
2580 */
2581/** @def IEM_CATCH_LONGJMP_END
2582 * End wrapper for catch / setjmp-else.
2583 *
2584 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2585 * state.
2586 *
2587 * @note Use with extreme care as this is a fragile macro.
2588 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2589 */
2590#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2591# ifdef IEM_WITH_THROW_CATCH
2592# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2593 a_rcTarget = VINF_SUCCESS; \
2594 try
2595# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2596 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2597# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2598 catch (int rcThrown) \
2599 { \
2600 a_rcTarget = rcThrown
2601# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2602 } \
2603 ((void)0)
2604# else /* !IEM_WITH_THROW_CATCH */
2605# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2606 jmp_buf JmpBuf; \
2607 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2608 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2609 if ((rcStrict = setjmp(JmpBuf)) == 0)
2610# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2611 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2612 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2613 if ((rcStrict = setjmp(JmpBuf)) == 0)
2614# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2615 else \
2616 { \
2617 ((void)0)
2618# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2619 } \
2620 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2621# endif /* !IEM_WITH_THROW_CATCH */
2622#endif /* IEM_WITH_SETJMP */
2623
2624
2625/**
2626 * Shared per-VM IEM data.
2627 */
2628typedef struct IEM
2629{
2630 /** The VMX APIC-access page handler type. */
2631 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2632#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2633 /** Set if the CPUID host call functionality is enabled. */
2634 bool fCpuIdHostCall;
2635#endif
2636} IEM;
2637
2638
2639
2640/** @name IEM_ACCESS_XXX - Access details.
2641 * @{ */
2642#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2643#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2644#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2645#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2646#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2647#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2648#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2649#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2650#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2651#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2652/** The writes are partial, so if initialize the bounce buffer with the
2653 * orignal RAM content. */
2654#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2655/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2656#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2657/** Bounce buffer with ring-3 write pending, first page. */
2658#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2659/** Bounce buffer with ring-3 write pending, second page. */
2660#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2661/** Not locked, accessed via the TLB. */
2662#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2663/** Atomic access.
2664 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2665 * fallback for misaligned stuff. See @bugref{10547}. */
2666#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2667/** Valid bit mask. */
2668#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2669/** Shift count for the TLB flags (upper word). */
2670#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2671
2672/** Atomic read+write data alias. */
2673#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2674/** Read+write data alias. */
2675#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2676/** Write data alias. */
2677#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2678/** Read data alias. */
2679#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2680/** Instruction fetch alias. */
2681#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2682/** Stack write alias. */
2683#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2684/** Stack read alias. */
2685#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2686/** Stack read+write alias. */
2687#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2688/** Read system table alias. */
2689#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2690/** Read+write system table alias. */
2691#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2692/** @} */
2693
2694/** @name Prefix constants (IEMCPU::fPrefixes)
2695 * @{ */
2696#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2697#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2698#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2699#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2700#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2701#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2702#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2703
2704#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2705#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2706#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2707
2708#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2709#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2710#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2711
2712#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2713#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2714#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2715#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2716/** Mask with all the REX prefix flags.
2717 * This is generally for use when needing to undo the REX prefixes when they
2718 * are followed legacy prefixes and therefore does not immediately preceed
2719 * the first opcode byte.
2720 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2721#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2722
2723#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2724#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2725#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2726/** @} */
2727
2728/** @name IEMOPFORM_XXX - Opcode forms
2729 * @note These are ORed together with IEMOPHINT_XXX.
2730 * @{ */
2731/** ModR/M: reg, r/m */
2732#define IEMOPFORM_RM 0
2733/** ModR/M: reg, r/m (register) */
2734#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2735/** ModR/M: reg, r/m (memory) */
2736#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2737/** ModR/M: reg, r/m, imm */
2738#define IEMOPFORM_RMI 1
2739/** ModR/M: reg, r/m (register), imm */
2740#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2741/** ModR/M: reg, r/m (memory), imm */
2742#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2743/** ModR/M: reg, r/m, xmm0 */
2744#define IEMOPFORM_RM0 2
2745/** ModR/M: reg, r/m (register), xmm0 */
2746#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2747/** ModR/M: reg, r/m (memory), xmm0 */
2748#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2749/** ModR/M: r/m, reg */
2750#define IEMOPFORM_MR 3
2751/** ModR/M: r/m (register), reg */
2752#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2753/** ModR/M: r/m (memory), reg */
2754#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2755/** ModR/M: r/m, reg, imm */
2756#define IEMOPFORM_MRI 4
2757/** ModR/M: r/m (register), reg, imm */
2758#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2759/** ModR/M: r/m (memory), reg, imm */
2760#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2761/** ModR/M: r/m only */
2762#define IEMOPFORM_M 5
2763/** ModR/M: r/m only (register). */
2764#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2765/** ModR/M: r/m only (memory). */
2766#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2767/** ModR/M: r/m, imm */
2768#define IEMOPFORM_MI 6
2769/** ModR/M: r/m (register), imm */
2770#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2771/** ModR/M: r/m (memory), imm */
2772#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2773/** ModR/M: r/m, 1 (shift and rotate instructions) */
2774#define IEMOPFORM_M1 7
2775/** ModR/M: r/m (register), 1. */
2776#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2777/** ModR/M: r/m (memory), 1. */
2778#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2779/** ModR/M: r/m, CL (shift and rotate instructions)
2780 * @todo This should just've been a generic fixed register. But the python
2781 * code doesn't needs more convincing. */
2782#define IEMOPFORM_M_CL 8
2783/** ModR/M: r/m (register), CL. */
2784#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2785/** ModR/M: r/m (memory), CL. */
2786#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2787/** ModR/M: reg only */
2788#define IEMOPFORM_R 9
2789
2790/** VEX+ModR/M: reg, r/m */
2791#define IEMOPFORM_VEX_RM 16
2792/** VEX+ModR/M: reg, r/m (register) */
2793#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2794/** VEX+ModR/M: reg, r/m (memory) */
2795#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2796/** VEX+ModR/M: r/m, reg */
2797#define IEMOPFORM_VEX_MR 17
2798/** VEX+ModR/M: r/m (register), reg */
2799#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2800/** VEX+ModR/M: r/m (memory), reg */
2801#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2802/** VEX+ModR/M: r/m, reg, imm8 */
2803#define IEMOPFORM_VEX_MRI 18
2804/** VEX+ModR/M: r/m (register), reg, imm8 */
2805#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2806/** VEX+ModR/M: r/m (memory), reg, imm8 */
2807#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2808/** VEX+ModR/M: r/m only */
2809#define IEMOPFORM_VEX_M 19
2810/** VEX+ModR/M: r/m only (register). */
2811#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2812/** VEX+ModR/M: r/m only (memory). */
2813#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2814/** VEX+ModR/M: reg only */
2815#define IEMOPFORM_VEX_R 20
2816/** VEX+ModR/M: reg, vvvv, r/m */
2817#define IEMOPFORM_VEX_RVM 21
2818/** VEX+ModR/M: reg, vvvv, r/m (register). */
2819#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2820/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2821#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2822/** VEX+ModR/M: reg, vvvv, r/m, imm */
2823#define IEMOPFORM_VEX_RVMI 22
2824/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2825#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2826/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2827#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2828/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2829#define IEMOPFORM_VEX_RVMR 23
2830/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2831#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2832/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2833#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2834/** VEX+ModR/M: reg, r/m, vvvv */
2835#define IEMOPFORM_VEX_RMV 24
2836/** VEX+ModR/M: reg, r/m, vvvv (register). */
2837#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2838/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2839#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2840/** VEX+ModR/M: reg, r/m, imm8 */
2841#define IEMOPFORM_VEX_RMI 25
2842/** VEX+ModR/M: reg, r/m, imm8 (register). */
2843#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2844/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2845#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2846/** VEX+ModR/M: r/m, vvvv, reg */
2847#define IEMOPFORM_VEX_MVR 26
2848/** VEX+ModR/M: r/m, vvvv, reg (register) */
2849#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2850/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2851#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2852/** VEX+ModR/M+/n: vvvv, r/m */
2853#define IEMOPFORM_VEX_VM 27
2854/** VEX+ModR/M+/n: vvvv, r/m (register) */
2855#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2856/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2857#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2858/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2859#define IEMOPFORM_VEX_VMI 28
2860/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2861#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2862/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2863#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2864
2865/** Fixed register instruction, no R/M. */
2866#define IEMOPFORM_FIXED 32
2867
2868/** The r/m is a register. */
2869#define IEMOPFORM_MOD3 RT_BIT_32(8)
2870/** The r/m is a memory access. */
2871#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2872/** @} */
2873
2874/** @name IEMOPHINT_XXX - Additional Opcode Hints
2875 * @note These are ORed together with IEMOPFORM_XXX.
2876 * @{ */
2877/** Ignores the operand size prefix (66h). */
2878#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2879/** Ignores REX.W (aka WIG). */
2880#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2881/** Both the operand size prefixes (66h + REX.W) are ignored. */
2882#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2883/** Allowed with the lock prefix. */
2884#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2885/** The VEX.L value is ignored (aka LIG). */
2886#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2887/** The VEX.L value must be zero (i.e. 128-bit width only). */
2888#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2889/** The VEX.L value must be one (i.e. 256-bit width only). */
2890#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2891/** The VEX.V value must be zero. */
2892#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2893/** The REX.W/VEX.V value must be zero. */
2894#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2895#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2896/** The REX.W/VEX.V value must be one. */
2897#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2898#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2899
2900/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2901#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2902/** @} */
2903
2904/**
2905 * Possible hardware task switch sources.
2906 */
2907typedef enum IEMTASKSWITCH
2908{
2909 /** Task switch caused by an interrupt/exception. */
2910 IEMTASKSWITCH_INT_XCPT = 1,
2911 /** Task switch caused by a far CALL. */
2912 IEMTASKSWITCH_CALL,
2913 /** Task switch caused by a far JMP. */
2914 IEMTASKSWITCH_JUMP,
2915 /** Task switch caused by an IRET. */
2916 IEMTASKSWITCH_IRET
2917} IEMTASKSWITCH;
2918AssertCompileSize(IEMTASKSWITCH, 4);
2919
2920/**
2921 * Possible CrX load (write) sources.
2922 */
2923typedef enum IEMACCESSCRX
2924{
2925 /** CrX access caused by 'mov crX' instruction. */
2926 IEMACCESSCRX_MOV_CRX,
2927 /** CrX (CR0) write caused by 'lmsw' instruction. */
2928 IEMACCESSCRX_LMSW,
2929 /** CrX (CR0) write caused by 'clts' instruction. */
2930 IEMACCESSCRX_CLTS,
2931 /** CrX (CR0) read caused by 'smsw' instruction. */
2932 IEMACCESSCRX_SMSW
2933} IEMACCESSCRX;
2934
2935#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2936/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2937 *
2938 * These flags provide further context to SLAT page-walk failures that could not be
2939 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2940 *
2941 * @{
2942 */
2943/** Translating a nested-guest linear address failed accessing a nested-guest
2944 * physical address. */
2945# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2946/** Translating a nested-guest linear address failed accessing a
2947 * paging-structure entry or updating accessed/dirty bits. */
2948# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2949/** @} */
2950
2951DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2952# ifndef IN_RING3
2953DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2954# endif
2955#endif
2956
2957/**
2958 * Indicates to the verifier that the given flag set is undefined.
2959 *
2960 * Can be invoked again to add more flags.
2961 *
2962 * This is a NOOP if the verifier isn't compiled in.
2963 *
2964 * @note We're temporarily keeping this until code is converted to new
2965 * disassembler style opcode handling.
2966 */
2967#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2968
2969
2970/** @def IEM_DECL_MSC_GUARD_IGNORE
2971 * Disables control flow guards checks inside a method and any function pointers
2972 * referenced by it. */
2973#if defined(_MSC_VER) && !defined(IN_RING0)
2974# define IEM_DECL_MSC_GUARD_IGNORE __declspec(guard(ignore))
2975#else
2976# define IEM_DECL_MSC_GUARD_IGNORE
2977#endif
2978
2979/** @def IEM_DECL_MSC_GUARD_NONE
2980 * Disables control flow guards checks inside a method and but continue track
2981 * function pointers references by it. */
2982#if defined(_MSC_VER) && !defined(IN_RING0)
2983# define IEM_DECL_MSC_GUARD_NONE __declspec(guard(nocf))
2984#else
2985# define IEM_DECL_MSC_GUARD_NONE
2986#endif
2987
2988
2989/** @def IEM_DECL_IMPL_TYPE
2990 * For typedef'ing an instruction implementation function.
2991 *
2992 * @param a_RetType The return type.
2993 * @param a_Name The name of the type.
2994 * @param a_ArgList The argument list enclosed in parentheses.
2995 */
2996
2997/** @def IEM_DECL_IMPL_DEF
2998 * For defining an instruction implementation function.
2999 *
3000 * @param a_RetType The return type.
3001 * @param a_Name The name of the type.
3002 * @param a_ArgList The argument list enclosed in parentheses.
3003 */
3004
3005#if defined(__GNUC__) && defined(RT_ARCH_X86)
3006# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3007 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
3008# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3009 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3010# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3011 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3012
3013#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
3014# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3015 a_RetType (__fastcall a_Name) a_ArgList
3016# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3017 IEM_DECL_MSC_GUARD_IGNORE a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3018# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3019 IEM_DECL_MSC_GUARD_IGNORE a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3020
3021#elif __cplusplus >= 201700 /* P0012R1 support */
3022# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3023 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
3024# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3025 IEM_DECL_MSC_GUARD_IGNORE DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3026# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3027 IEM_DECL_MSC_GUARD_IGNORE DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3028
3029#else
3030# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3031 a_RetType (VBOXCALL a_Name) a_ArgList
3032# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3033 IEM_DECL_MSC_GUARD_IGNORE DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3034# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3035 IEM_DECL_MSC_GUARD_IGNORE DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3036
3037#endif
3038
3039/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
3040RT_C_DECLS_BEGIN
3041extern uint8_t const g_afParity[256];
3042RT_C_DECLS_END
3043
3044
3045/** @name Arithmetic assignment operations on bytes (binary).
3046 * @{ */
3047typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
3048typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
3049FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
3050FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
3051FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
3052FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
3053FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
3054FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
3055FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
3056/** @} */
3057
3058/** @name Arithmetic assignment operations on words (binary).
3059 * @{ */
3060typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
3061typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
3062FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
3063FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
3064FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
3065FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
3066FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
3067FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
3068FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
3069/** @} */
3070
3071
3072/** @name Arithmetic assignment operations on double words (binary).
3073 * @{ */
3074typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
3075typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
3076FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
3077FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
3078FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
3079FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
3080FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
3081FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
3082FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
3083FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
3084FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
3085FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
3086/** @} */
3087
3088/** @name Arithmetic assignment operations on quad words (binary).
3089 * @{ */
3090typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
3091typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
3092FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
3093FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
3094FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
3095FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
3096FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
3097FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
3098FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
3099FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
3100FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
3101FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
3102/** @} */
3103
3104typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
3105typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
3106typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
3107typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
3108typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
3109typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
3110typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
3111typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
3112
3113/** @name Compare operations (thrown in with the binary ops).
3114 * @{ */
3115FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
3116FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
3117FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
3118FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
3119/** @} */
3120
3121/** @name Test operations (thrown in with the binary ops).
3122 * @{ */
3123FNIEMAIMPLBINROU8 iemAImpl_test_u8;
3124FNIEMAIMPLBINROU16 iemAImpl_test_u16;
3125FNIEMAIMPLBINROU32 iemAImpl_test_u32;
3126FNIEMAIMPLBINROU64 iemAImpl_test_u64;
3127/** @} */
3128
3129/** @name Bit operations operations (thrown in with the binary ops).
3130 * @{ */
3131FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
3132FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
3133FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
3134FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
3135FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
3136FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
3137FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
3138FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
3139FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
3140FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
3141FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
3142FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
3143/** @} */
3144
3145/** @name Arithmetic three operand operations on double words (binary).
3146 * @{ */
3147typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
3148typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
3149FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
3150FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
3151FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
3152/** @} */
3153
3154/** @name Arithmetic three operand operations on quad words (binary).
3155 * @{ */
3156typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
3157typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
3158FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
3159FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
3160FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
3161/** @} */
3162
3163/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
3164 * @{ */
3165typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
3166typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
3167FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
3168FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
3169FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
3170FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
3171FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
3172FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
3173/** @} */
3174
3175/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
3176 * @{ */
3177typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
3178typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
3179FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
3180FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
3181FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
3182FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
3183FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
3184FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
3185/** @} */
3186
3187/** @name MULX 32-bit and 64-bit.
3188 * @{ */
3189typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
3190typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
3191FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
3192
3193typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
3194typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
3195FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
3196/** @} */
3197
3198
3199/** @name Exchange memory with register operations.
3200 * @{ */
3201IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3202IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3203IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3204IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3205IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3206IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3207IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3208IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3209/** @} */
3210
3211/** @name Exchange and add operations.
3212 * @{ */
3213IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3214IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3215IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3216IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3217IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3218IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3219IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3220IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3221/** @} */
3222
3223/** @name Compare and exchange.
3224 * @{ */
3225IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3226IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3227IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3228IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3229IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3230IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3231#if ARCH_BITS == 32
3232IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3233IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3234#else
3235IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3236IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3237#endif
3238IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3239 uint32_t *pEFlags));
3240IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3241 uint32_t *pEFlags));
3242IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3243 uint32_t *pEFlags));
3244IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3245 uint32_t *pEFlags));
3246#ifndef RT_ARCH_ARM64
3247IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3248 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3249#endif
3250/** @} */
3251
3252/** @name Memory ordering
3253 * @{ */
3254typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3255typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3256IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3257IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3258IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3259#ifndef RT_ARCH_ARM64
3260IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3261#endif
3262/** @} */
3263
3264/** @name Double precision shifts
3265 * @{ */
3266typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3267typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3268typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3269typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3270typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3271typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3272FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3273FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3274FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3275FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3276FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3277FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3278/** @} */
3279
3280
3281/** @name Bit search operations (thrown in with the binary ops).
3282 * @{ */
3283FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3284FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3285FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3286FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3287FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3288FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3289FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3290FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3291FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3292FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3293FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3294FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3295FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3296FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3297FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3298/** @} */
3299
3300/** @name Signed multiplication operations (thrown in with the binary ops).
3301 * @{ */
3302FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3303FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3304FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3305/** @} */
3306
3307/** @name Arithmetic assignment operations on bytes (unary).
3308 * @{ */
3309typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3310typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3311FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3312FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3313FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3314FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3315/** @} */
3316
3317/** @name Arithmetic assignment operations on words (unary).
3318 * @{ */
3319typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3320typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3321FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3322FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3323FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3324FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3325/** @} */
3326
3327/** @name Arithmetic assignment operations on double words (unary).
3328 * @{ */
3329typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3330typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3331FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3332FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3333FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3334FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3335/** @} */
3336
3337/** @name Arithmetic assignment operations on quad words (unary).
3338 * @{ */
3339typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3340typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3341FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3342FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3343FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3344FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3345/** @} */
3346
3347
3348/** @name Shift operations on bytes (Group 2).
3349 * @{ */
3350typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3351typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3352FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3353FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3354FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3355FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3356FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3357FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3358FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3359/** @} */
3360
3361/** @name Shift operations on words (Group 2).
3362 * @{ */
3363typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3364typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3365FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3366FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3367FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3368FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3369FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3370FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3371FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3372/** @} */
3373
3374/** @name Shift operations on double words (Group 2).
3375 * @{ */
3376typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3377typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3378FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3379FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3380FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3381FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3382FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3383FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3384FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3385/** @} */
3386
3387/** @name Shift operations on words (Group 2).
3388 * @{ */
3389typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3390typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3391FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3392FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3393FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3394FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3395FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3396FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3397FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3398/** @} */
3399
3400/** @name Multiplication and division operations.
3401 * @{ */
3402typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t fEFlags));
3403typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3404FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3405FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3406FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3407FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3408
3409typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t fEFlags));
3410typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3411FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3412FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3413FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3414FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3415
3416typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t fEFlags));
3417typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3418FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3419FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3420FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3421FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3422
3423typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t fEFlags));
3424typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3425FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3426FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3427FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3428FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3429/** @} */
3430
3431/** @name Byte Swap.
3432 * @{ */
3433IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3434IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3435IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3436/** @} */
3437
3438/** @name Misc.
3439 * @{ */
3440FNIEMAIMPLBINU16 iemAImpl_arpl;
3441/** @} */
3442
3443/** @name RDRAND and RDSEED
3444 * @{ */
3445typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3446typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3447typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3448typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3449typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3450typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3451
3452FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3453FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3454FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3455FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3456FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3457FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3458/** @} */
3459
3460/** @name ADOX and ADCX
3461 * @{ */
3462FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3463FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3464FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3465FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3466/** @} */
3467
3468/** @name FPU operations taking a 32-bit float argument
3469 * @{ */
3470typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3471 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3472typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3473
3474typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3475 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3476typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3477
3478FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3479FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3480FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3481FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3482FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3483FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3484FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3485
3486IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3487IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3488 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3489/** @} */
3490
3491/** @name FPU operations taking a 64-bit float argument
3492 * @{ */
3493typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3494 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3495typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3496
3497typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3498 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3499typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3500
3501FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3502FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3503FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3504FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3505FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3506FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3507FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3508
3509IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3510IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3511 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3512/** @} */
3513
3514/** @name FPU operations taking a 80-bit float argument
3515 * @{ */
3516typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3517 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3518typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3519FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3520FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3521FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3522FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3523FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3524FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3525FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3526FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3527FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3528
3529FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3530FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3531FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3532
3533typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3534 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3535typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3536FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3537FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3538
3539typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3540 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3541typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3542FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3543FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3544
3545typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3546typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3547FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3548FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3549FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3550FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3551FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3552FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3553FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3554
3555typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3556typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3557FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3558FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3559
3560typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3561typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3562FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3563FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3564FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3565FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3566FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3567FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3568FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3569
3570typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3571 PCRTFLOAT80U pr80Val));
3572typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3573FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3574FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3575FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3576
3577IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3578IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3579 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3580
3581IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3582IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3583 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3584
3585/** @} */
3586
3587/** @name FPU operations taking a 16-bit signed integer argument
3588 * @{ */
3589typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3590 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3591typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3592typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3593 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3594typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3595
3596FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3597FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3598FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3599FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3600FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3601FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3602
3603typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3604 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3605typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3606FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3607
3608IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3609FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3610FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3611/** @} */
3612
3613/** @name FPU operations taking a 32-bit signed integer argument
3614 * @{ */
3615typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3616 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3617typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3618typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3619 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3620typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3621
3622FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3623FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3624FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3625FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3626FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3627FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3628
3629typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3630 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3631typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3632FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3633
3634IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3635FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3636FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3637/** @} */
3638
3639/** @name FPU operations taking a 64-bit signed integer argument
3640 * @{ */
3641typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3642 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3643typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3644
3645IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3646FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3647FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3648/** @} */
3649
3650
3651/** Temporary type representing a 256-bit vector register. */
3652typedef struct { uint64_t au64[4]; } IEMVMM256;
3653/** Temporary type pointing to a 256-bit vector register. */
3654typedef IEMVMM256 *PIEMVMM256;
3655/** Temporary type pointing to a const 256-bit vector register. */
3656typedef IEMVMM256 *PCIEMVMM256;
3657
3658
3659/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3660 * @{ */
3661typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3662typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3663typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
3664typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3665typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc));
3666typedef FNIEMAIMPLMEDIAF2U256 *PFNIEMAIMPLMEDIAF2U256;
3667typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3668typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3669typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3670typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3671typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3672typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3673typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3674typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3675typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3676typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3677typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3678typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3679typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3680typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3681FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3682FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3683FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3684FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3685FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3686FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3687FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3688FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3689FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3690FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3691FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3692FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3693FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3694FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3695FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3696FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3697FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3698FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3699FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3700FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3701FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3702FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3703FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3704FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3705FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3706FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3707FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3708FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3709FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3710FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3711FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3712FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3713FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3714FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3715FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3716FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3717FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3718FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3719FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3720
3721FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3722FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3723FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3724FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3725FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3726FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3727FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3728FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3729FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3730FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3731FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3733FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3734FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3735FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3736FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3737FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3738FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3739FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3740FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3741FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3742FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3743FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3744FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3745FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3746FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3747FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3748FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3749FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3750FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3751FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3752FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3753FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3754FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3755FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3756FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3757FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3758FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3759FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3760FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3761FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3762FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3763FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3764FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3765FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3766FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3767FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3768FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3769FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3770FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3771FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3772FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3773FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3774FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3775FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3776FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3777FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3778FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3779
3780FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3781FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3782FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3783FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3784FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3785FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3786FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3788FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3790FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3792FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3794FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3796FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3797FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3798FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3799FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3800FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3801FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3802FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3803FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3804FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3805FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3806FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3807FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3808FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3809FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3810FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3811FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3812FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3813FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3814FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3815FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3816FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3817FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3818FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3819FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3820FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3821FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3822FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3823FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3824FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3825FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3826FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3827FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3828FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3829FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3830FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3831FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3832FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3833FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3834FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3835FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3836FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3837FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3838FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3839FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3840FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3841FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3842FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3843FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3844FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3845FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3846FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3847FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3848FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3849FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3850FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3851FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3852FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3853FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3854
3855FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3856FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3857FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3858FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3859
3860FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3861FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3862FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3863FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3864FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3865FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3866FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3867FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3868FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3869FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3870FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3871FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3872FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3873FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3874FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3875FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3876FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3877FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3878FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3879FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3880FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3881FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3882FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3883FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3884FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3885FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3886FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3887FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3888FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3889FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3890FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3891FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3892FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3893FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3894FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3895FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3896FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3897FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3898FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3899FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3900FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3901FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3902FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3903FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3904FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3905FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3906FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3907FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3908FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3909FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3910FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3911FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3912FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3913FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3914FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3915FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3916FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3917FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3918FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3919FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3920FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3921FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3922FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3923FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3924FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3925FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3926FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3927FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3928FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3929FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3930FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3931FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3932FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3933FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3934FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermps_u256, iemAImpl_vpermps_u256_fallback;
3935FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermd_u256, iemAImpl_vpermd_u256_fallback;
3936
3937FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3938FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3939FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3940/** @} */
3941
3942/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3943 * @{ */
3944FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3945FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3946FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3947 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3948 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3949 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3950 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3951 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3952 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3953 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3954
3955FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3956 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3957 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3958 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3959 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3960 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3961 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3962 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3963/** @} */
3964
3965/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3966 * @{ */
3967FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3968FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3969FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3970 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3971 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3972 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3973FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3974 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3975 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3976 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3977/** @} */
3978
3979/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3980 * @{ */
3981typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3982typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3983typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3984typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3985IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3986FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3987#ifndef IEM_WITHOUT_ASSEMBLY
3988FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3989#endif
3990FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3991/** @} */
3992
3993/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3994 * @{ */
3995typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3996typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3997typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3998typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3999typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
4000typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
4001FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
4002FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
4003FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
4004FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
4005FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
4006FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
4007FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
4008/** @} */
4009
4010/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
4011 * @{ */
4012IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
4013IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
4014IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
4015IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
4016#ifndef IEM_WITHOUT_ASSEMBLY
4017IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4018#endif
4019IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4020/** @} */
4021
4022/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
4023 * @{ */
4024typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
4025typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
4026typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
4027typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
4028typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
4029typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
4030
4031FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
4032FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
4033FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
4034FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
4035FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
4036FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
4037
4038FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
4039FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
4040FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
4041FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
4042FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
4043FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
4044
4045FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
4046FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
4047FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
4048FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
4049FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
4050FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
4051/** @} */
4052
4053
4054/** @name Media (SSE/MMX/AVX) operation: Sort this later
4055 * @{ */
4056IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4057IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4058IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4059IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4060IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4061
4062IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4063IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4064IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4065IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4066IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4067
4068IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4069IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4070IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4071IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4072IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4073
4074IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4075IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4076IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4077IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4078IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4079
4080IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4081IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4082IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4083IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4084IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4085
4086IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4087IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4088IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4089IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4090IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4091
4092IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4093IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4094IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4095IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4096IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4097
4098IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4099IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4100IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4101IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4102IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4103
4104IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4105IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4106IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4107IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4108IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4109
4110IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4111IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4112IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4113IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4114IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4115
4116IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4117IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4118IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4119IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4120IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4121
4122IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4123IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4124IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4125IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4126IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4127
4128IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4129IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4130IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4131IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4132IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4133
4134IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4135IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4136IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4137IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4138IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4139
4140IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4141IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4142
4143IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4144IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4145IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4146IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4147IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4148
4149IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4150IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4151IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4152IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4153IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4154
4155
4156typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4157typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
4158typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
4159typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
4160typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4161typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
4162typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4163typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
4164
4165FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
4166FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
4167FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
4168FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
4169
4170FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
4171FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
4172FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
4173FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
4174FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
4175
4176FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
4177FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
4178FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
4179FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
4180FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
4181FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
4182FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
4183
4184FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
4185FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
4186FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
4187FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
4188FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
4189
4190FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
4191FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
4192FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
4193FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
4194FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
4195
4196FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
4197
4198FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
4199
4200FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
4201FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
4202FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
4203FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
4204FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
4205FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
4206IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4207IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4208
4209FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermq_u256, iemAImpl_vpermq_u256_fallback;
4210FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermpd_u256, iemAImpl_vpermpd_u256_fallback;
4211
4212typedef struct IEMPCMPISTRXSRC
4213{
4214 RTUINT128U uSrc1;
4215 RTUINT128U uSrc2;
4216} IEMPCMPISTRXSRC;
4217typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
4218typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
4219
4220typedef struct IEMPCMPESTRXSRC
4221{
4222 RTUINT128U uSrc1;
4223 RTUINT128U uSrc2;
4224 uint64_t u64Rax;
4225 uint64_t u64Rdx;
4226} IEMPCMPESTRXSRC;
4227typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
4228typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
4229
4230typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
4231typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
4232typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4233typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
4234
4235typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
4236typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
4237typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4238typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4239
4240FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4241FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4242FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4243FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4244FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_vpcmpistri_u128, iemAImpl_vpcmpistri_u128_fallback;
4245FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_vpcmpestri_u128, iemAImpl_vpcmpestri_u128_fallback;
4246FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_vpcmpistrm_u128, iemAImpl_vpcmpistrm_u128_fallback;
4247FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_vpcmpestrm_u128, iemAImpl_vpcmpestrm_u128_fallback;
4248
4249
4250FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4251FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4252
4253FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4254FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4255FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4256
4257FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4258FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4259FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4260FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4261FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4262FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4263IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4264IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4265IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4266IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4267
4268FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4269FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4270FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4271FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4272
4273FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4274FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4275FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4276FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4277FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4278FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4279IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4280IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4281IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4282IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4283
4284FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4285FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4286FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4287FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4288
4289FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4290FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4291FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4292FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4293
4294FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4295FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4296FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4297FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4298FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4299FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4300FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4301FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4302FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4303FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4304/** @} */
4305
4306/** @name Media Odds and Ends
4307 * @{ */
4308typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4309typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4310typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4311typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4312FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4313FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4314FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4315FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4316
4317typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4318typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4319typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4320typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4321FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4322FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4323FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4324FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4325FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4326FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4327
4328typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4329typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4330typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4331typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4332typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4333typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4334typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4335typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4336typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R32,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT32U pr32Src));
4337typedef FNIEMAIMPLSSEF2I32R32 *PFNIEMAIMPLSSEF2I32R32;
4338typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R32,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT32U pr32Src));
4339typedef FNIEMAIMPLSSEF2I64R32 *PFNIEMAIMPLSSEF2I64R32;
4340typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R64,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT64U pr64Src));
4341typedef FNIEMAIMPLSSEF2I32R64 *PFNIEMAIMPLSSEF2I32R64;
4342typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R64,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT64U pr64Src));
4343typedef FNIEMAIMPLSSEF2I64R64 *PFNIEMAIMPLSSEF2I64R64;
4344
4345FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4346FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4347
4348FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4349FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4350
4351FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4352FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4353
4354FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4355FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4356
4357FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttss2si_i32_r32, iemAImpl_vcvttss2si_i32_r32_fallback;
4358FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttss2si_i64_r32, iemAImpl_vcvttss2si_i64_r32_fallback;
4359FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtss2si_i32_r32, iemAImpl_vcvtss2si_i32_r32_fallback;
4360FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtss2si_i64_r32, iemAImpl_vcvtss2si_i64_r32_fallback;
4361
4362FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttss2si_i32_r64, iemAImpl_vcvttss2si_i32_r64_fallback;
4363FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttss2si_i64_r64, iemAImpl_vcvttss2si_i64_r64_fallback;
4364FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtss2si_i32_r64, iemAImpl_vcvtss2si_i32_r64_fallback;
4365FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtss2si_i64_r64, iemAImpl_vcvtss2si_i64_r64_fallback;
4366
4367FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttsd2si_i32_r32, iemAImpl_vcvttsd2si_i32_r32_fallback;
4368FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttsd2si_i64_r32, iemAImpl_vcvttsd2si_i64_r32_fallback;
4369FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtsd2si_i32_r32, iemAImpl_vcvtsd2si_i32_r32_fallback;
4370FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtsd2si_i64_r32, iemAImpl_vcvtsd2si_i64_r32_fallback;
4371
4372FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttsd2si_i32_r64, iemAImpl_vcvttsd2si_i32_r64_fallback;
4373FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttsd2si_i64_r64, iemAImpl_vcvttsd2si_i64_r64_fallback;
4374FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtsd2si_i32_r64, iemAImpl_vcvtsd2si_i32_r64_fallback;
4375FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtsd2si_i64_r64, iemAImpl_vcvtsd2si_i64_r64_fallback;
4376
4377typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4378typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4379typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4380typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4381
4382FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4383FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4384
4385typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI32,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int32_t *pi32Src));
4386typedef FNIEMAIMPLAVXF3XMMI32 *PFNIEMAIMPLAVXF3XMMI32;
4387typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI64,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int64_t *pi64Src));
4388typedef FNIEMAIMPLAVXF3XMMI64 *PFNIEMAIMPLAVXF3XMMI64;
4389
4390FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2ss_u128_i32, iemAImpl_vcvtsi2ss_u128_i32_fallback;
4391FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2ss_u128_i64, iemAImpl_vcvtsi2ss_u128_i64_fallback;
4392
4393
4394typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4395typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4396typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4397typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4398
4399FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4400FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4401
4402FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2sd_u128_i32, iemAImpl_vcvtsi2sd_u128_i32_fallback;
4403FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2sd_u128_i64, iemAImpl_vcvtsi2sd_u128_i64_fallback;
4404
4405IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4406IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4407IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4408IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4409
4410
4411IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4412IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4413IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4414IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4415
4416
4417typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4418typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4419
4420typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4421typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4422
4423FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4424FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4425
4426FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4427FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4428
4429FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4430FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4431
4432FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4433FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4434
4435
4436typedef struct IEMMEDIAF2XMMSRC
4437{
4438 X86XMMREG uSrc1;
4439 X86XMMREG uSrc2;
4440} IEMMEDIAF2XMMSRC;
4441typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4442typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4443
4444
4445typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4446typedef FNIEMAIMPLMEDIAF3XMMIMM8 *PFNIEMAIMPLMEDIAF3XMMIMM8;
4447
4448
4449typedef struct IEMMEDIAF2YMMSRC
4450{
4451 X86YMMREG uSrc1;
4452 X86YMMREG uSrc2;
4453} IEMMEDIAF2YMMSRC;
4454typedef IEMMEDIAF2YMMSRC *PIEMMEDIAF2YMMSRC;
4455typedef const IEMMEDIAF2YMMSRC *PCIEMMEDIAF2YMMSRC;
4456
4457
4458typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3YMMIMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCIEMMEDIAF2YMMSRC puSrc, uint8_t bEvil));
4459typedef FNIEMAIMPLMEDIAF3YMMIMM8 *PFNIEMAIMPLMEDIAF3YMMIMM8;
4460
4461
4462FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpps_u128;
4463FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmppd_u128;
4464FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpss_u128;
4465FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpsd_u128;
4466
4467FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpps_u128, iemAImpl_vcmpps_u128_fallback;
4468FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmppd_u128, iemAImpl_vcmppd_u128_fallback;
4469FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpss_u128, iemAImpl_vcmpss_u128_fallback;
4470FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpsd_u128, iemAImpl_vcmpsd_u128_fallback;
4471
4472FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmpps_u256, iemAImpl_vcmpps_u256_fallback;
4473FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmppd_u256, iemAImpl_vcmppd_u256_fallback;
4474
4475FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundss_u128;
4476FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundsd_u128;
4477
4478FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4479FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4480
4481
4482typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128IMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, uint8_t bEvil));
4483typedef FNIEMAIMPLMEDIAF2U128IMM8 *PFNIEMAIMPLMEDIAF2U128IMM8;
4484
4485
4486typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256IMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc, uint8_t bEvil));
4487typedef FNIEMAIMPLMEDIAF2U256IMM8 *PFNIEMAIMPLMEDIAF2U256IMM8;
4488
4489
4490FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4491FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4492
4493FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundps_u128, iemAImpl_vroundps_u128_fallback;
4494FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundpd_u128, iemAImpl_vroundpd_u128_fallback;
4495
4496FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundps_u256, iemAImpl_vroundps_u256_fallback;
4497FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundpd_u256, iemAImpl_vroundpd_u256_fallback;
4498
4499FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundss_u128, iemAImpl_vroundss_u128_fallback;
4500FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundsd_u128, iemAImpl_vroundsd_u128_fallback;
4501
4502FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdpps_u128, iemAImpl_vdpps_u128_fallback;
4503FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdppd_u128, iemAImpl_vdppd_u128_fallback;
4504
4505FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vdpps_u256, iemAImpl_vdpps_u256_fallback;
4506
4507
4508typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4509typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4510
4511FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4512FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4513
4514typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4515typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4516
4517FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4518FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4519
4520typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4521typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4522
4523FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4524FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4525
4526/** @} */
4527
4528
4529/** @name Function tables.
4530 * @{
4531 */
4532
4533/**
4534 * Function table for a binary operator providing implementation based on
4535 * operand size.
4536 */
4537typedef struct IEMOPBINSIZES
4538{
4539 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4540 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4541 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4542 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4543} IEMOPBINSIZES;
4544/** Pointer to a binary operator function table. */
4545typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4546
4547
4548/**
4549 * Function table for a unary operator providing implementation based on
4550 * operand size.
4551 */
4552typedef struct IEMOPUNARYSIZES
4553{
4554 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4555 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4556 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4557 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4558} IEMOPUNARYSIZES;
4559/** Pointer to a unary operator function table. */
4560typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4561
4562
4563/**
4564 * Function table for a shift operator providing implementation based on
4565 * operand size.
4566 */
4567typedef struct IEMOPSHIFTSIZES
4568{
4569 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4570 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4571 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4572 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4573} IEMOPSHIFTSIZES;
4574/** Pointer to a shift operator function table. */
4575typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4576
4577
4578/**
4579 * Function table for a multiplication or division operation.
4580 */
4581typedef struct IEMOPMULDIVSIZES
4582{
4583 PFNIEMAIMPLMULDIVU8 pfnU8;
4584 PFNIEMAIMPLMULDIVU16 pfnU16;
4585 PFNIEMAIMPLMULDIVU32 pfnU32;
4586 PFNIEMAIMPLMULDIVU64 pfnU64;
4587} IEMOPMULDIVSIZES;
4588/** Pointer to a multiplication or division operation function table. */
4589typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4590
4591
4592/**
4593 * Function table for a double precision shift operator providing implementation
4594 * based on operand size.
4595 */
4596typedef struct IEMOPSHIFTDBLSIZES
4597{
4598 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4599 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4600 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4601} IEMOPSHIFTDBLSIZES;
4602/** Pointer to a double precision shift function table. */
4603typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4604
4605
4606/**
4607 * Function table for media instruction taking two full sized media source
4608 * registers and one full sized destination register (AVX).
4609 */
4610typedef struct IEMOPMEDIAF3
4611{
4612 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4613 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4614} IEMOPMEDIAF3;
4615/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4616typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4617
4618/** @def IEMOPMEDIAF3_INIT_VARS_EX
4619 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4620 * given functions as initializers. For use in AVX functions where a pair of
4621 * functions are only used once and the function table need not be public. */
4622#ifndef TST_IEM_CHECK_MC
4623# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4624# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4625 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4626 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4627# else
4628# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4629 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4630# endif
4631#else
4632# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4633#endif
4634/** @def IEMOPMEDIAF3_INIT_VARS
4635 * Generate AVX function tables for the @a a_InstrNm instruction.
4636 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4637#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4638 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4639 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4640
4641
4642/**
4643 * Function table for media instruction taking one full sized media source
4644 * registers and one full sized destination register (AVX).
4645 */
4646typedef struct IEMOPMEDIAF2
4647{
4648 PFNIEMAIMPLMEDIAF2U128 pfnU128;
4649 PFNIEMAIMPLMEDIAF2U256 pfnU256;
4650} IEMOPMEDIAF2;
4651/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4652typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
4653
4654/** @def IEMOPMEDIAF2_INIT_VARS_EX
4655 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4656 * given functions as initializers. For use in AVX functions where a pair of
4657 * functions are only used once and the function table need not be public. */
4658#ifndef TST_IEM_CHECK_MC
4659# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4660# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4661 static IEMOPMEDIAF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4662 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4663# else
4664# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4665 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4666# endif
4667#else
4668# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4669#endif
4670/** @def IEMOPMEDIAF2_INIT_VARS
4671 * Generate AVX function tables for the @a a_InstrNm instruction.
4672 * @sa IEMOPMEDIAF2_INIT_VARS_EX */
4673#define IEMOPMEDIAF2_INIT_VARS(a_InstrNm) \
4674 IEMOPMEDIAF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4675 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4676
4677
4678/**
4679 * Function table for media instruction taking two full sized media source
4680 * registers and one full sized destination register, but no additional state
4681 * (AVX).
4682 */
4683typedef struct IEMOPMEDIAOPTF3
4684{
4685 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4686 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4687} IEMOPMEDIAOPTF3;
4688/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4689typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4690
4691/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4692 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4693 * given functions as initializers. For use in AVX functions where a pair of
4694 * functions are only used once and the function table need not be public. */
4695#ifndef TST_IEM_CHECK_MC
4696# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4697# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4698 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4699 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4700# else
4701# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4702 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4703# endif
4704#else
4705# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4706#endif
4707/** @def IEMOPMEDIAOPTF3_INIT_VARS
4708 * Generate AVX function tables for the @a a_InstrNm instruction.
4709 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4710#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4711 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4712 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4713
4714/**
4715 * Function table for media instruction taking one full sized media source
4716 * registers and one full sized destination register, but no additional state
4717 * (AVX).
4718 */
4719typedef struct IEMOPMEDIAOPTF2
4720{
4721 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4722 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4723} IEMOPMEDIAOPTF2;
4724/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4725typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4726
4727/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4728 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4729 * given functions as initializers. For use in AVX functions where a pair of
4730 * functions are only used once and the function table need not be public. */
4731#ifndef TST_IEM_CHECK_MC
4732# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4733# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4734 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4735 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4736# else
4737# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4738 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4739# endif
4740#else
4741# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4742#endif
4743/** @def IEMOPMEDIAOPTF2_INIT_VARS
4744 * Generate AVX function tables for the @a a_InstrNm instruction.
4745 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4746#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4747 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4748 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4749
4750
4751/**
4752 * Function table for media instruction taking one full sized media source
4753 * register and one full sized destination register and an 8-bit immediate (AVX).
4754 */
4755typedef struct IEMOPMEDIAF2IMM8
4756{
4757 PFNIEMAIMPLMEDIAF2U128IMM8 pfnU128;
4758 PFNIEMAIMPLMEDIAF2U256IMM8 pfnU256;
4759} IEMOPMEDIAF2IMM8;
4760/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4761typedef IEMOPMEDIAF2IMM8 const *PCIEMOPMEDIAF2IMM8;
4762
4763/** @def IEMOPMEDIAF2IMM8_INIT_VARS_EX
4764 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4765 * given functions as initializers. For use in AVX functions where a pair of
4766 * functions are only used once and the function table need not be public. */
4767#ifndef TST_IEM_CHECK_MC
4768# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4769# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4770 static IEMOPMEDIAF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4771 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4772# else
4773# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4774 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4775# endif
4776#else
4777# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4778#endif
4779/** @def IEMOPMEDIAF2IMM8_INIT_VARS
4780 * Generate AVX function tables for the @a a_InstrNm instruction.
4781 * @sa IEMOPMEDIAF2IMM8_INIT_VARS_EX */
4782#define IEMOPMEDIAF2IMM8_INIT_VARS(a_InstrNm) \
4783 IEMOPMEDIAF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4784 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4785
4786
4787/**
4788 * Function table for media instruction taking one full sized media source
4789 * register and one full sized destination register and an 8-bit immediate, but no additional state
4790 * (AVX).
4791 */
4792typedef struct IEMOPMEDIAOPTF2IMM8
4793{
4794 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4795 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4796} IEMOPMEDIAOPTF2IMM8;
4797/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4798typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4799
4800/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4801 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4802 * given functions as initializers. For use in AVX functions where a pair of
4803 * functions are only used once and the function table need not be public. */
4804#ifndef TST_IEM_CHECK_MC
4805# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4806# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4807 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4808 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4809# else
4810# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4811 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4812# endif
4813#else
4814# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4815#endif
4816/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4817 * Generate AVX function tables for the @a a_InstrNm instruction.
4818 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4819#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4820 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4821 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4822
4823/**
4824 * Function table for media instruction taking two full sized media source
4825 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4826 * (AVX).
4827 */
4828typedef struct IEMOPMEDIAOPTF3IMM8
4829{
4830 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4831 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4832} IEMOPMEDIAOPTF3IMM8;
4833/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4834typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4835
4836/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4837 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4838 * given functions as initializers. For use in AVX functions where a pair of
4839 * functions are only used once and the function table need not be public. */
4840#ifndef TST_IEM_CHECK_MC
4841# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4842# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4843 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4844 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4845# else
4846# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4847 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4848# endif
4849#else
4850# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4851#endif
4852/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4853 * Generate AVX function tables for the @a a_InstrNm instruction.
4854 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4855#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4856 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4857 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4858/** @} */
4859
4860
4861/**
4862 * Function table for blend type instruction taking three full sized media source
4863 * registers and one full sized destination register, but no additional state
4864 * (AVX).
4865 */
4866typedef struct IEMOPBLENDOP
4867{
4868 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4869 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4870} IEMOPBLENDOP;
4871/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4872typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4873
4874/** @def IEMOPBLENDOP_INIT_VARS_EX
4875 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4876 * given functions as initializers. For use in AVX functions where a pair of
4877 * functions are only used once and the function table need not be public. */
4878#ifndef TST_IEM_CHECK_MC
4879# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4880# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4881 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4882 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4883# else
4884# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4885 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4886# endif
4887#else
4888# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4889#endif
4890/** @def IEMOPBLENDOP_INIT_VARS
4891 * Generate AVX function tables for the @a a_InstrNm instruction.
4892 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4893#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4894 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4895 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4896
4897
4898/** @name SSE/AVX single/double precision floating point operations.
4899 * @{ */
4900typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4901typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4902typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4903typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4904typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4905typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4906
4907typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4908typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4909typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4910typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4911typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4912typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4913
4914typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4915typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4916
4917FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4918FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4919FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4920FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4921FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4922FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4923FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4924FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4925FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4926FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4927FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4928FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4929FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4930FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4931FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4932FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4933FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4934FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4935FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4936FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4937FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4938FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4939
4940FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4941IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4942
4943FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4944FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4945FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4946FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4947FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4948FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4949
4950FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4951FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4952FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4953FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4954FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4955FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4956FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4957FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4958FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4959FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4960FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4961FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4962FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4963FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4964FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4965FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4966FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4967FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4968
4969FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4970FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4971FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4972FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4973FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4974FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4975FNIEMAIMPLMEDIAF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4976FNIEMAIMPLMEDIAF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4977FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4978FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4979FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4980FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4981FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4982FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4983FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4984FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4985FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4986FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4987FNIEMAIMPLMEDIAF2U128 iemAImpl_vrsqrtps_u128, iemAImpl_vrsqrtps_u128_fallback;
4988FNIEMAIMPLMEDIAF2U128 iemAImpl_vrcpps_u128, iemAImpl_vrcpps_u128_fallback;
4989FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4990FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4991FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtdq2ps_u128, iemAImpl_vcvtdq2ps_u128_fallback;
4992FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtps2dq_u128, iemAImpl_vcvtps2dq_u128_fallback;
4993FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvttps2dq_u128, iemAImpl_vcvttps2dq_u128_fallback;
4994IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4995IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4996IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4997IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4998IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4999IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5000
5001
5002FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
5003FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
5004FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
5005FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
5006FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
5007FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
5008FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
5009FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
5010FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
5011FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
5012FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
5013FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
5014FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
5015FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
5016FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrsqrtss_u128_r32, iemAImpl_vrsqrtss_u128_r32_fallback;
5017FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrcpss_u128_r32, iemAImpl_vrcpss_u128_r32_fallback;
5018FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vcvtss2sd_u128_r32, iemAImpl_vcvtss2sd_u128_r32_fallback;
5019FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vcvtsd2ss_u128_r64, iemAImpl_vcvtsd2ss_u128_r64_fallback;
5020
5021
5022FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
5023FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
5024FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
5025FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
5026FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
5027FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
5028FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
5029FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
5030FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
5031FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
5032FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
5033FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
5034FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
5035FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
5036FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
5037FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
5038FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubps_u256, iemAImpl_vaddsubps_u256_fallback;
5039FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubpd_u256, iemAImpl_vaddsubpd_u256_fallback;
5040FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtps_u256, iemAImpl_vsqrtps_u256_fallback;
5041FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtpd_u256, iemAImpl_vsqrtpd_u256_fallback;
5042FNIEMAIMPLMEDIAF2U256 iemAImpl_vrsqrtps_u256, iemAImpl_vrsqrtps_u256_fallback;
5043FNIEMAIMPLMEDIAF2U256 iemAImpl_vrcpps_u256, iemAImpl_vrcpps_u256_fallback;
5044FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtdq2ps_u256, iemAImpl_vcvtdq2ps_u256_fallback;
5045FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtps2dq_u256, iemAImpl_vcvtps2dq_u256_fallback;
5046FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvttps2dq_u256, iemAImpl_vcvttps2dq_u256_fallback;
5047IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5048IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5049IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5050IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5051IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5052IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5053/** @} */
5054
5055/** @name C instruction implementations for anything slightly complicated.
5056 * @{ */
5057
5058/**
5059 * For typedef'ing or declaring a C instruction implementation function taking
5060 * no extra arguments.
5061 *
5062 * @param a_Name The name of the type.
5063 */
5064# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
5065 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5066/**
5067 * For defining a C instruction implementation function taking no extra
5068 * arguments.
5069 *
5070 * @param a_Name The name of the function
5071 */
5072# define IEM_CIMPL_DEF_0(a_Name) \
5073 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5074/**
5075 * Prototype version of IEM_CIMPL_DEF_0.
5076 */
5077# define IEM_CIMPL_PROTO_0(a_Name) \
5078 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5079/**
5080 * For calling a C instruction implementation function taking no extra
5081 * arguments.
5082 *
5083 * This special call macro adds default arguments to the call and allow us to
5084 * change these later.
5085 *
5086 * @param a_fn The name of the function.
5087 */
5088# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
5089
5090/** Type for a C instruction implementation function taking no extra
5091 * arguments. */
5092typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
5093/** Function pointer type for a C instruction implementation function taking
5094 * no extra arguments. */
5095typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
5096
5097/**
5098 * For typedef'ing or declaring a C instruction implementation function taking
5099 * one extra argument.
5100 *
5101 * @param a_Name The name of the type.
5102 * @param a_Type0 The argument type.
5103 * @param a_Arg0 The argument name.
5104 */
5105# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
5106 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5107/**
5108 * For defining a C instruction implementation function taking one extra
5109 * argument.
5110 *
5111 * @param a_Name The name of the function
5112 * @param a_Type0 The argument type.
5113 * @param a_Arg0 The argument name.
5114 */
5115# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
5116 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5117/**
5118 * Prototype version of IEM_CIMPL_DEF_1.
5119 */
5120# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
5121 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5122/**
5123 * For calling a C instruction implementation function taking one extra
5124 * argument.
5125 *
5126 * This special call macro adds default arguments to the call and allow us to
5127 * change these later.
5128 *
5129 * @param a_fn The name of the function.
5130 * @param a0 The name of the 1st argument.
5131 */
5132# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
5133
5134/**
5135 * For typedef'ing or declaring a C instruction implementation function taking
5136 * two extra arguments.
5137 *
5138 * @param a_Name The name of the type.
5139 * @param a_Type0 The type of the 1st argument
5140 * @param a_Arg0 The name of the 1st argument.
5141 * @param a_Type1 The type of the 2nd argument.
5142 * @param a_Arg1 The name of the 2nd argument.
5143 */
5144# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5145 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5146/**
5147 * For defining a C instruction implementation function taking two extra
5148 * arguments.
5149 *
5150 * @param a_Name The name of the function.
5151 * @param a_Type0 The type of the 1st argument
5152 * @param a_Arg0 The name of the 1st argument.
5153 * @param a_Type1 The type of the 2nd argument.
5154 * @param a_Arg1 The name of the 2nd argument.
5155 */
5156# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5157 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5158/**
5159 * Prototype version of IEM_CIMPL_DEF_2.
5160 */
5161# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5162 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5163/**
5164 * For calling a C instruction implementation function taking two extra
5165 * arguments.
5166 *
5167 * This special call macro adds default arguments to the call and allow us to
5168 * change these later.
5169 *
5170 * @param a_fn The name of the function.
5171 * @param a0 The name of the 1st argument.
5172 * @param a1 The name of the 2nd argument.
5173 */
5174# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
5175
5176/**
5177 * For typedef'ing or declaring a C instruction implementation function taking
5178 * three extra arguments.
5179 *
5180 * @param a_Name The name of the type.
5181 * @param a_Type0 The type of the 1st argument
5182 * @param a_Arg0 The name of the 1st argument.
5183 * @param a_Type1 The type of the 2nd argument.
5184 * @param a_Arg1 The name of the 2nd argument.
5185 * @param a_Type2 The type of the 3rd argument.
5186 * @param a_Arg2 The name of the 3rd argument.
5187 */
5188# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5189 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5190/**
5191 * For defining a C instruction implementation function taking three extra
5192 * arguments.
5193 *
5194 * @param a_Name The name of the function.
5195 * @param a_Type0 The type of the 1st argument
5196 * @param a_Arg0 The name of the 1st argument.
5197 * @param a_Type1 The type of the 2nd argument.
5198 * @param a_Arg1 The name of the 2nd argument.
5199 * @param a_Type2 The type of the 3rd argument.
5200 * @param a_Arg2 The name of the 3rd argument.
5201 */
5202# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5203 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5204/**
5205 * Prototype version of IEM_CIMPL_DEF_3.
5206 */
5207# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5208 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5209/**
5210 * For calling a C instruction implementation function taking three extra
5211 * arguments.
5212 *
5213 * This special call macro adds default arguments to the call and allow us to
5214 * change these later.
5215 *
5216 * @param a_fn The name of the function.
5217 * @param a0 The name of the 1st argument.
5218 * @param a1 The name of the 2nd argument.
5219 * @param a2 The name of the 3rd argument.
5220 */
5221# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
5222
5223
5224/**
5225 * For typedef'ing or declaring a C instruction implementation function taking
5226 * four extra arguments.
5227 *
5228 * @param a_Name The name of the type.
5229 * @param a_Type0 The type of the 1st argument
5230 * @param a_Arg0 The name of the 1st argument.
5231 * @param a_Type1 The type of the 2nd argument.
5232 * @param a_Arg1 The name of the 2nd argument.
5233 * @param a_Type2 The type of the 3rd argument.
5234 * @param a_Arg2 The name of the 3rd argument.
5235 * @param a_Type3 The type of the 4th argument.
5236 * @param a_Arg3 The name of the 4th argument.
5237 */
5238# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5239 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
5240/**
5241 * For defining a C instruction implementation function taking four extra
5242 * arguments.
5243 *
5244 * @param a_Name The name of the function.
5245 * @param a_Type0 The type of the 1st argument
5246 * @param a_Arg0 The name of the 1st argument.
5247 * @param a_Type1 The type of the 2nd argument.
5248 * @param a_Arg1 The name of the 2nd argument.
5249 * @param a_Type2 The type of the 3rd argument.
5250 * @param a_Arg2 The name of the 3rd argument.
5251 * @param a_Type3 The type of the 4th argument.
5252 * @param a_Arg3 The name of the 4th argument.
5253 */
5254# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5255 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5256 a_Type2 a_Arg2, a_Type3 a_Arg3))
5257/**
5258 * Prototype version of IEM_CIMPL_DEF_4.
5259 */
5260# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5261 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5262 a_Type2 a_Arg2, a_Type3 a_Arg3))
5263/**
5264 * For calling a C instruction implementation function taking four extra
5265 * arguments.
5266 *
5267 * This special call macro adds default arguments to the call and allow us to
5268 * change these later.
5269 *
5270 * @param a_fn The name of the function.
5271 * @param a0 The name of the 1st argument.
5272 * @param a1 The name of the 2nd argument.
5273 * @param a2 The name of the 3rd argument.
5274 * @param a3 The name of the 4th argument.
5275 */
5276# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
5277
5278
5279/**
5280 * For typedef'ing or declaring a C instruction implementation function taking
5281 * five extra arguments.
5282 *
5283 * @param a_Name The name of the type.
5284 * @param a_Type0 The type of the 1st argument
5285 * @param a_Arg0 The name of the 1st argument.
5286 * @param a_Type1 The type of the 2nd argument.
5287 * @param a_Arg1 The name of the 2nd argument.
5288 * @param a_Type2 The type of the 3rd argument.
5289 * @param a_Arg2 The name of the 3rd argument.
5290 * @param a_Type3 The type of the 4th argument.
5291 * @param a_Arg3 The name of the 4th argument.
5292 * @param a_Type4 The type of the 5th argument.
5293 * @param a_Arg4 The name of the 5th argument.
5294 */
5295# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5296 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
5297 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
5298 a_Type3 a_Arg3, a_Type4 a_Arg4))
5299/**
5300 * For defining a C instruction implementation function taking five extra
5301 * arguments.
5302 *
5303 * @param a_Name The name of the function.
5304 * @param a_Type0 The type of the 1st argument
5305 * @param a_Arg0 The name of the 1st argument.
5306 * @param a_Type1 The type of the 2nd argument.
5307 * @param a_Arg1 The name of the 2nd argument.
5308 * @param a_Type2 The type of the 3rd argument.
5309 * @param a_Arg2 The name of the 3rd argument.
5310 * @param a_Type3 The type of the 4th argument.
5311 * @param a_Arg3 The name of the 4th argument.
5312 * @param a_Type4 The type of the 5th argument.
5313 * @param a_Arg4 The name of the 5th argument.
5314 */
5315# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5316 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5317 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5318/**
5319 * Prototype version of IEM_CIMPL_DEF_5.
5320 */
5321# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5322 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5323 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5324/**
5325 * For calling a C instruction implementation function taking five extra
5326 * arguments.
5327 *
5328 * This special call macro adds default arguments to the call and allow us to
5329 * change these later.
5330 *
5331 * @param a_fn The name of the function.
5332 * @param a0 The name of the 1st argument.
5333 * @param a1 The name of the 2nd argument.
5334 * @param a2 The name of the 3rd argument.
5335 * @param a3 The name of the 4th argument.
5336 * @param a4 The name of the 5th argument.
5337 */
5338# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
5339
5340/** @} */
5341
5342
5343/** @name Opcode Decoder Function Types.
5344 * @{ */
5345
5346/** @typedef PFNIEMOP
5347 * Pointer to an opcode decoder function.
5348 */
5349
5350/** @def FNIEMOP_DEF
5351 * Define an opcode decoder function.
5352 *
5353 * We're using macors for this so that adding and removing parameters as well as
5354 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
5355 *
5356 * @param a_Name The function name.
5357 */
5358
5359/** @typedef PFNIEMOPRM
5360 * Pointer to an opcode decoder function with RM byte.
5361 */
5362
5363/** @def FNIEMOPRM_DEF
5364 * Define an opcode decoder function with RM byte.
5365 *
5366 * We're using macors for this so that adding and removing parameters as well as
5367 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
5368 *
5369 * @param a_Name The function name.
5370 */
5371
5372#if defined(__GNUC__) && defined(RT_ARCH_X86)
5373typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
5374typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5375# define FNIEMOP_DEF(a_Name) \
5376 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
5377# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5378 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5379# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5380 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5381
5382#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
5383typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
5384typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5385# define FNIEMOP_DEF(a_Name) \
5386 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5387# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5388 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5389# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5390 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5391
5392#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5393typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5394typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5395# define FNIEMOP_DEF(a_Name) \
5396 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
5397# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5398 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5399# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5400 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5401
5402#else
5403typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5404typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5405# define FNIEMOP_DEF(a_Name) \
5406 IEM_STATIC IEM_DECL_MSC_GUARD_IGNORE VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5407# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5408 IEM_STATIC IEM_DECL_MSC_GUARD_IGNORE VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5409# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5410 IEM_STATIC IEM_DECL_MSC_GUARD_IGNORE VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5411
5412#endif
5413#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
5414
5415/**
5416 * Call an opcode decoder function.
5417 *
5418 * We're using macors for this so that adding and removing parameters can be
5419 * done as we please. See FNIEMOP_DEF.
5420 */
5421#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
5422
5423/**
5424 * Call a common opcode decoder function taking one extra argument.
5425 *
5426 * We're using macors for this so that adding and removing parameters can be
5427 * done as we please. See FNIEMOP_DEF_1.
5428 */
5429#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
5430
5431/**
5432 * Call a common opcode decoder function taking one extra argument.
5433 *
5434 * We're using macors for this so that adding and removing parameters can be
5435 * done as we please. See FNIEMOP_DEF_1.
5436 */
5437#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
5438/** @} */
5439
5440
5441/** @name Misc Helpers
5442 * @{ */
5443
5444/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5445 * due to GCC lacking knowledge about the value range of a switch. */
5446#if RT_CPLUSPLUS_PREREQ(202000)
5447# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5448#else
5449# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5450#endif
5451
5452/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5453#if RT_CPLUSPLUS_PREREQ(202000)
5454# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5455#else
5456# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5457#endif
5458
5459/**
5460 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5461 * occation.
5462 */
5463#ifdef LOG_ENABLED
5464# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5465 do { \
5466 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5467 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5468 } while (0)
5469#else
5470# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5471 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5472#endif
5473
5474/**
5475 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5476 * occation using the supplied logger statement.
5477 *
5478 * @param a_LoggerArgs What to log on failure.
5479 */
5480#ifdef LOG_ENABLED
5481# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5482 do { \
5483 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5484 /*LogFunc(a_LoggerArgs);*/ \
5485 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5486 } while (0)
5487#else
5488# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5489 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5490#endif
5491
5492/**
5493 * Gets the CPU mode (from fExec) as a IEMMODE value.
5494 *
5495 * @returns IEMMODE
5496 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5497 */
5498#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5499
5500/**
5501 * Check if we're currently executing in real or virtual 8086 mode.
5502 *
5503 * @returns @c true if it is, @c false if not.
5504 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5505 */
5506#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5507 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5508
5509/**
5510 * Check if we're currently executing in virtual 8086 mode.
5511 *
5512 * @returns @c true if it is, @c false if not.
5513 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5514 */
5515#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5516
5517/**
5518 * Check if we're currently executing in long mode.
5519 *
5520 * @returns @c true if it is, @c false if not.
5521 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5522 */
5523#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5524
5525/**
5526 * Check if we're currently executing in a 16-bit code segment.
5527 *
5528 * @returns @c true if it is, @c false if not.
5529 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5530 */
5531#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5532
5533/**
5534 * Check if we're currently executing in a 32-bit code segment.
5535 *
5536 * @returns @c true if it is, @c false if not.
5537 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5538 */
5539#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5540
5541/**
5542 * Check if we're currently executing in a 64-bit code segment.
5543 *
5544 * @returns @c true if it is, @c false if not.
5545 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5546 */
5547#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5548
5549/**
5550 * Check if we're currently executing in real mode.
5551 *
5552 * @returns @c true if it is, @c false if not.
5553 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5554 */
5555#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5556
5557/**
5558 * Gets the current protection level (CPL).
5559 *
5560 * @returns 0..3
5561 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5562 */
5563#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5564
5565/**
5566 * Sets the current protection level (CPL).
5567 *
5568 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5569 */
5570#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5571 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5572
5573/**
5574 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5575 * @returns PCCPUMFEATURES
5576 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5577 */
5578#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5579
5580/**
5581 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5582 * @returns PCCPUMFEATURES
5583 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5584 */
5585#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5586
5587/**
5588 * Evaluates to true if we're presenting an Intel CPU to the guest.
5589 */
5590#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5591
5592/**
5593 * Evaluates to true if we're presenting an AMD CPU to the guest.
5594 */
5595#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5596
5597/**
5598 * Check if the address is canonical.
5599 */
5600#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5601
5602/** Checks if the ModR/M byte is in register mode or not. */
5603#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5604/** Checks if the ModR/M byte is in memory mode or not. */
5605#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5606
5607/**
5608 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5609 *
5610 * For use during decoding.
5611 */
5612#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5613/**
5614 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5615 *
5616 * For use during decoding.
5617 */
5618#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5619
5620/**
5621 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5622 *
5623 * For use during decoding.
5624 */
5625#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5626/**
5627 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5628 *
5629 * For use during decoding.
5630 */
5631#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5632
5633/**
5634 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5635 * register index, with REX.R added in.
5636 *
5637 * For use during decoding.
5638 *
5639 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5640 */
5641#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5642 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5643 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5644 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5645/**
5646 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5647 * with REX.B added in.
5648 *
5649 * For use during decoding.
5650 *
5651 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5652 */
5653#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5654 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5655 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5656 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5657
5658/**
5659 * Combines the prefix REX and ModR/M byte for passing to
5660 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5661 *
5662 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5663 * The two bits are part of the REG sub-field, which isn't needed in
5664 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5665 *
5666 * For use during decoding/recompiling.
5667 */
5668#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5669 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5670 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5671AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5672AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5673
5674/**
5675 * Gets the effective VEX.VVVV value.
5676 *
5677 * The 4th bit is ignored if not 64-bit code.
5678 * @returns effective V-register value.
5679 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5680 */
5681#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5682 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5683
5684
5685/**
5686 * Gets the register (reg) part of a the special 4th register byte used by
5687 * vblendvps and vblendvpd.
5688 *
5689 * For use during decoding.
5690 */
5691#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5692 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5693
5694
5695/**
5696 * Checks if we're executing inside an AMD-V or VT-x guest.
5697 */
5698#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5699# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5700#else
5701# define IEM_IS_IN_GUEST(a_pVCpu) false
5702#endif
5703
5704
5705#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5706
5707/**
5708 * Check if the guest has entered VMX root operation.
5709 */
5710# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5711
5712/**
5713 * Check if the guest has entered VMX non-root operation.
5714 */
5715# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5716 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5717
5718/**
5719 * Check if the nested-guest has the given Pin-based VM-execution control set.
5720 */
5721# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5722
5723/**
5724 * Check if the nested-guest has the given Processor-based VM-execution control set.
5725 */
5726# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5727
5728/**
5729 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5730 * control set.
5731 */
5732# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5733
5734/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5735# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5736
5737/** Whether a shadow VMCS is present for the given VCPU. */
5738# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5739
5740/** Gets the VMXON region pointer. */
5741# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5742
5743/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5744# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5745
5746/** Whether a current VMCS is present for the given VCPU. */
5747# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5748
5749/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5750# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5751 do \
5752 { \
5753 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5754 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5755 } while (0)
5756
5757/** Clears any current VMCS for the given VCPU. */
5758# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5759 do \
5760 { \
5761 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5762 } while (0)
5763
5764/**
5765 * Invokes the VMX VM-exit handler for an instruction intercept.
5766 */
5767# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5768 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5769
5770/**
5771 * Invokes the VMX VM-exit handler for an instruction intercept where the
5772 * instruction provides additional VM-exit information.
5773 */
5774# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5775 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5776
5777/**
5778 * Invokes the VMX VM-exit handler for a task switch.
5779 */
5780# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5781 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5782
5783/**
5784 * Invokes the VMX VM-exit handler for MWAIT.
5785 */
5786# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5787 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5788
5789/**
5790 * Invokes the VMX VM-exit handler for EPT faults.
5791 */
5792# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5793 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5794
5795/**
5796 * Invokes the VMX VM-exit handler.
5797 */
5798# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5799 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5800
5801#else
5802# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5803# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5804# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5805# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5806# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5807# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5808# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5809# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5810# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5811# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5812# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5813
5814#endif
5815
5816#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5817/**
5818 * Checks if we're executing a guest using AMD-V.
5819 */
5820# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5821 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5822/**
5823 * Check if an SVM control/instruction intercept is set.
5824 */
5825# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5826 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5827
5828/**
5829 * Check if an SVM read CRx intercept is set.
5830 */
5831# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5832 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5833
5834/**
5835 * Check if an SVM write CRx intercept is set.
5836 */
5837# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5838 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5839
5840/**
5841 * Check if an SVM read DRx intercept is set.
5842 */
5843# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5844 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5845
5846/**
5847 * Check if an SVM write DRx intercept is set.
5848 */
5849# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5850 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5851
5852/**
5853 * Check if an SVM exception intercept is set.
5854 */
5855# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5856 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5857
5858/**
5859 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5860 */
5861# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5862 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5863
5864/**
5865 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5866 * corresponding decode assist information.
5867 */
5868# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5869 do \
5870 { \
5871 uint64_t uExitInfo1; \
5872 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5873 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5874 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5875 else \
5876 uExitInfo1 = 0; \
5877 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5878 } while (0)
5879
5880/** Check and handles SVM nested-guest instruction intercept and updates
5881 * NRIP if needed.
5882 */
5883# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5884 do \
5885 { \
5886 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5887 { \
5888 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5889 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5890 } \
5891 } while (0)
5892
5893/** Checks and handles SVM nested-guest CR0 read intercept. */
5894# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5895 do \
5896 { \
5897 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5898 { /* probably likely */ } \
5899 else \
5900 { \
5901 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5902 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5903 } \
5904 } while (0)
5905
5906/**
5907 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5908 */
5909# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5910 do { \
5911 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5912 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5913 } while (0)
5914
5915#else
5916# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5917# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5918# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5919# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5920# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5921# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5922# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5923# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5924# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5925 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5926# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5927# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5928
5929#endif
5930
5931/** @} */
5932
5933uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5934VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5935
5936
5937/**
5938 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5939 */
5940typedef union IEMSELDESC
5941{
5942 /** The legacy view. */
5943 X86DESC Legacy;
5944 /** The long mode view. */
5945 X86DESC64 Long;
5946} IEMSELDESC;
5947/** Pointer to a selector descriptor table entry. */
5948typedef IEMSELDESC *PIEMSELDESC;
5949
5950/** @name Raising Exceptions.
5951 * @{ */
5952VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5953 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5954
5955VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5956 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5957#ifdef IEM_WITH_SETJMP
5958DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5959 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5960#endif
5961VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5962#ifdef IEM_WITH_SETJMP
5963DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5964#endif
5965VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5966VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5967VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5968#ifdef IEM_WITH_SETJMP
5969DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5970#endif
5971VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5972#ifdef IEM_WITH_SETJMP
5973DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5974#endif
5975VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5976VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5977VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5978VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5979/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5980VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5981VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5982VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5983VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5984VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5985VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5986#ifdef IEM_WITH_SETJMP
5987DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5988#endif
5989VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5990VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5991VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5992#ifdef IEM_WITH_SETJMP
5993DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5994#endif
5995VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5996#ifdef IEM_WITH_SETJMP
5997DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5998#endif
5999VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
6000#ifdef IEM_WITH_SETJMP
6001DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
6002#endif
6003VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
6004#ifdef IEM_WITH_SETJMP
6005DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
6006#endif
6007VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6008#ifdef IEM_WITH_SETJMP
6009DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6010#endif
6011VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6012#ifdef IEM_WITH_SETJMP
6013DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6014#endif
6015VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6016#ifdef IEM_WITH_SETJMP
6017DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6018#endif
6019
6020void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6021void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6022
6023IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
6024IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
6025IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
6026
6027/**
6028 * Macro for calling iemCImplRaiseDivideError().
6029 *
6030 * This is for things that will _always_ decode to an \#DE, taking the
6031 * recompiler into consideration and everything.
6032 *
6033 * @return Strict VBox status code.
6034 */
6035#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
6036
6037/**
6038 * Macro for calling iemCImplRaiseInvalidLockPrefix().
6039 *
6040 * This is for things that will _always_ decode to an \#UD, taking the
6041 * recompiler into consideration and everything.
6042 *
6043 * @return Strict VBox status code.
6044 */
6045#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
6046
6047/**
6048 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
6049 *
6050 * This is for things that will _always_ decode to an \#UD, taking the
6051 * recompiler into consideration and everything.
6052 *
6053 * @return Strict VBox status code.
6054 */
6055#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6056
6057/**
6058 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
6059 *
6060 * Using this macro means you've got _buggy_ _code_ and are doing things that
6061 * belongs exclusively in IEMAllCImpl.cpp during decoding.
6062 *
6063 * @return Strict VBox status code.
6064 * @see IEMOP_RAISE_INVALID_OPCODE_RET
6065 */
6066#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6067
6068/** @} */
6069
6070/** @name Register Access.
6071 * @{ */
6072VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
6073 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6074VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
6075VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
6076 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6077/** @} */
6078
6079/** @name FPU access and helpers.
6080 * @{ */
6081void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6082void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6083void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6084void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6085void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6086void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6087 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6088void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6089 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6090void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6091void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6092void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6093void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6094void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6095void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6096void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6097void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6098void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6099void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6100void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6101void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6102void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6103void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6104void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6105/** @} */
6106
6107/** @name SSE+AVX SIMD access and helpers.
6108 * @{ */
6109void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
6110/** @} */
6111
6112/** @name Memory access.
6113 * @{ */
6114
6115/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
6116#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
6117/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
6118 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
6119#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
6120/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
6121 * Users include FXSAVE & FXRSTOR. */
6122#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
6123
6124VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
6125 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
6126VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6127#ifndef IN_RING3
6128VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6129#endif
6130void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6131void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
6132VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
6133VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6134VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
6135
6136void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
6137void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
6138#ifdef IEM_WITH_CODE_TLB
6139void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
6140#else
6141VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
6142#endif
6143#ifdef IEM_WITH_SETJMP
6144uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6145uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6146uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6147uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6148#else
6149VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
6150VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6151VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6152VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6153VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6154VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6155VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6156VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6157VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6158VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6159VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6160#endif
6161
6162VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6163VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6164VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6165VBOXSTRICTRC iemMemFetchDataU32NoAc(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6166VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6167VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6168VBOXSTRICTRC iemMemFetchDataU64NoAc(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6169VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6170VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6171VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6172VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6173VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6174VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6175VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6176VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6177VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6178VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
6179 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
6180#ifdef IEM_WITH_SETJMP
6181uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6182uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6183uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6184uint32_t iemMemFetchDataU32NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6185uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6186uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6187uint64_t iemMemFetchDataU64NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6188uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6189void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6190void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6191void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6192void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6193void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6194void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6195void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6196void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6197# if 0 /* these are inlined now */
6198uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6199uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6200uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6201uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6202uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6203uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6204void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6205void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6206void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6207void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6208void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6209void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6210void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6211# endif
6212void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6213#endif
6214
6215VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6216VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6217VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6218VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6219VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
6220
6221VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
6222VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
6223VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
6224VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
6225VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6226VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6227VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6228VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6229VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6230VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6231VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6232#ifdef IEM_WITH_SETJMP
6233void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6234void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6235void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6236void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6237void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6238void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6239void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6240void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6241void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6242void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6243void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6244void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6245#if 0
6246void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6247void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6248void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6249void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6250void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6251void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6252void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6253void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6254#endif
6255void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6256void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6257#endif
6258
6259#ifdef IEM_WITH_SETJMP
6260uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6261uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6262uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6263uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6264uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6265uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6266uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6267uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6268uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6269uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6270uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6271uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6272uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6273uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6274uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6275uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6276PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6277PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6278PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6279PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6280PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6281PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6282PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6283PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6284PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6285PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6286
6287void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6288void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6289void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6290void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6291void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6292void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6293#endif
6294
6295VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6296 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6297VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
6298VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
6299VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6300VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
6301VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6302VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6303VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6304VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6305VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6306 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6307VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
6308 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
6309VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6310VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
6311VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
6312VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
6313VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6314VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6315VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6316
6317#ifdef IEM_WITH_SETJMP
6318void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6319void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6320void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6321void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6322void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6323void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6324void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6325
6326void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6327void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6328void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6329void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6330void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6331
6332void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6333void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6334void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6335void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6336
6337void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6338void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6339void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6340void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6341
6342uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6343uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6344uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6345
6346#endif
6347
6348/** @} */
6349
6350/** @name IEMAllCImpl.cpp
6351 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
6352 * @{ */
6353IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6354IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6355IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6356IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
6357IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
6358IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
6359IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
6360IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
6361IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
6362IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6363IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6364typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6365typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
6366IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
6367IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
6368IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
6369IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
6370IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
6371IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
6372IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
6373IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
6374IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
6375IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
6376IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
6377IEM_CIMPL_PROTO_0(iemCImpl_syscall);
6378IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
6379IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
6380IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
6381IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
6382IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
6383IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
6384IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
6385IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
6386IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
6387IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
6388IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6389IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6390IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6391IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6392IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
6393IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6394IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6395IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
6396IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6397IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6398IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
6399IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6400IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6401IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
6402IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
6403IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
6404IEM_CIMPL_PROTO_0(iemCImpl_clts);
6405IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
6406IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
6407IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
6408IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
6409IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
6410IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
6411IEM_CIMPL_PROTO_0(iemCImpl_invd);
6412IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
6413IEM_CIMPL_PROTO_0(iemCImpl_rsm);
6414IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
6415IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
6416IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
6417IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
6418IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
6419IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6420IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6421IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6422IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6423IEM_CIMPL_PROTO_0(iemCImpl_cli);
6424IEM_CIMPL_PROTO_0(iemCImpl_sti);
6425IEM_CIMPL_PROTO_0(iemCImpl_hlt);
6426IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
6427IEM_CIMPL_PROTO_0(iemCImpl_mwait);
6428IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
6429IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
6430IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
6431IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
6432IEM_CIMPL_PROTO_0(iemCImpl_daa);
6433IEM_CIMPL_PROTO_0(iemCImpl_das);
6434IEM_CIMPL_PROTO_0(iemCImpl_aaa);
6435IEM_CIMPL_PROTO_0(iemCImpl_aas);
6436IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
6437IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
6438IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
6439IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
6440IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
6441 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
6442IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6443IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
6444IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6445IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6446IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6447IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6448IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6449IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6450IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6451IEM_CIMPL_PROTO_2(iemCImpl_vldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6452IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6453IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6454IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6455IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6456IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6457IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6458IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6459IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6460IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6461IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6462IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6463IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6464IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6465IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6466IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6467IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6468IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6469IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6470IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6471IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6472IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6473IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6474IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6475IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6476IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6477IEM_CIMPL_PROTO_2(iemCImpl_vpgather_worker_xx, uint32_t, u32PackedArgs, uint32_t, u32Disp);
6478
6479/** @} */
6480
6481/** @name IEMAllCImplStrInstr.cpp.h
6482 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6483 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6484 * @{ */
6485IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6486IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6487IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6488IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6489IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6490IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6491IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6492IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6493IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6494IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6495IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6496
6497IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6498IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6499IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6500IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6501IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6502IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6503IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6504IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6505IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6506IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6507IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6508
6509IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6510IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6511IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6512IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6513IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6514IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6515IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6516IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6517IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6518IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6519IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6520
6521
6522IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6523IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6524IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6525IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6526IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6527IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6528IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6529IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6530IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6531IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6532IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6533
6534IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6535IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6536IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6537IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6538IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6539IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6540IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6541IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6542IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6543IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6544IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6545
6546IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6547IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6548IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6549IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6550IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6551IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6552IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6553IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6554IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6555IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6556IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6557
6558IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6559IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6560IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6561IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6562IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6563IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6564IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6565IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6566IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6567IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6568IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6569
6570
6571IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6572IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6573IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6574IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6575IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6576IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6577IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6578IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6579IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6580IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6581IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6582
6583IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6584IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6585IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6586IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6587IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6588IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6589IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6590IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6591IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6592IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6593IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6594
6595IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6596IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6597IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6598IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6599IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6600IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6601IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6602IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6603IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6604IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6605IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6606
6607IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6608IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6609IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6610IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6611IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6612IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6613IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6614IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6615IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6616IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6617IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6618/** @} */
6619
6620#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6621VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6622VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6623VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6624VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6625VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6626VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6627VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6628VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6629VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6630VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6631 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6632VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6633 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6634VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6635VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6636VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6637VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6638VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6639VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6640VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6641VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6642 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6643VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6644VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6645VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6646uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6647void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6648VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6649 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6650bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6651IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6652IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6653IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6654IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6655IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6656IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6657IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6658IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6659IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6660IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6661IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6662IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6663IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6664IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6665IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6666IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6667#endif
6668
6669#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6670VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6671VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6672VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6673 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6674VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6675IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6676IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6677IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6678IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6679IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6680IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6681IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6682IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6683#endif
6684
6685IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6686IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6687IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6688
6689extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6690extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6691extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6692extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6693extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6694extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6695extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6696
6697/*
6698 * Recompiler related stuff.
6699 */
6700extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6701extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6702extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6703extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6704extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6705extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6706extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6707
6708DECLHIDDEN(int) iemPollTimers(PVMCC pVM, PVMCPUCC pVCpu) RT_NOEXCEPT;
6709
6710DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6711 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6712void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6713DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6714void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6715void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6716DECLHIDDEN(PIEMTBALLOCATOR) iemTbAllocatorFreeBulkStart(PVMCPUCC pVCpu);
6717DECLHIDDEN(void) iemTbAllocatorFreeBulk(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator, PIEMTB pTb);
6718DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6719DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6720#if defined(VBOX_WITH_IEM_NATIVE_RECOMPILER) && defined(VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING)
6721DECLHIDDEN(void) iemThreadedSaveTbForProfilingCleanup(PVMCPU pVCpu);
6722#endif
6723
6724
6725/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6726#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6727typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6728typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6729# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6730 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6731# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6732 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6733
6734#else
6735typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6736typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6737# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6738 IEM_DECL_MSC_GUARD_IGNORE VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6739# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6740 IEM_DECL_MSC_GUARD_IGNORE VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6741#endif
6742
6743
6744IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6745IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6746
6747IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6748
6749IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6750IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckTimers);
6751IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckTimersAndIrq);
6752IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6753IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6754IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6755
6756IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6757IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6758IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6759
6760/* Branching: */
6761IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6762IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6763IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6764
6765IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6766IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6767IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6768
6769/* Natural page crossing: */
6770IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6771IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6772IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6773
6774IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6775IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6776IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6777
6778IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6779IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6780IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6781
6782IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Jump);
6783
6784bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6785bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6786#ifdef IEM_WITH_INTRA_TB_JUMPS
6787DECLHIDDEN(int) iemThreadedCompileBackAtFirstInstruction(PVMCPU pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6788#endif
6789
6790/* Native recompiler public bits: */
6791
6792DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6793DECLHIDDEN(void) iemNativeDisassembleTb(PVMCPU pVCpu, PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6794int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6795DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, PIEMNATIVEINSTR *ppaExec,
6796 struct IEMNATIVEPERCHUNKCTX const **ppChunkCtx) RT_NOEXCEPT;
6797DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAllocFromChunk(PVMCPU pVCpu, uint32_t idxChunk, uint32_t cbReq,
6798 PIEMNATIVEINSTR *ppaExec);
6799DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6800void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6801DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6802DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemExecMemGetTbChunkCtx(PVMCPU pVCpu, PCIEMTB pTb);
6803DECLHIDDEN(int) iemNativeRecompileAttachExecMemChunkCtx(PVMCPU pVCpu, uint32_t idxChunk, struct IEMNATIVEPERCHUNKCTX const **ppCtx);
6804
6805/** Packed 32-bit argument for iemCImpl_vpgather_worker_xx. */
6806typedef union IEMGATHERARGS
6807{
6808 /** Integer view. */
6809 uint32_t u;
6810 /** Bitfield view. */
6811 struct
6812 {
6813 uint32_t iYRegDst : 4; /**< 0 - XMM or YMM register number (destination) */
6814 uint32_t iYRegIdc : 4; /**< 4 - XMM or YMM register number (indices) */
6815 uint32_t iYRegMsk : 4; /**< 8 - XMM or YMM register number (mask) */
6816 uint32_t iGRegBase : 4; /**< 12 - general register number (base ptr) */
6817 uint32_t iScale : 2; /**< 16 - scale factor (1/2/4/8) */
6818 uint32_t enmEffOpSize : 2; /**< 18 - operand size (16/32/64/--) */
6819 uint32_t enmEffAddrMode : 2; /**< 20 - addressing mode (16/32/64/--) */
6820 uint32_t iEffSeg : 3; /**< 22 - effective segment (ES/CS/SS/DS/FS/GS) */
6821 uint32_t fVex256 : 1; /**< 25 - overall instruction width (128/256 bits) */
6822 uint32_t fIdxQword : 1; /**< 26 - individual index width (4/8 bytes) */
6823 uint32_t fValQword : 1; /**< 27 - individual value width (4/8 bytes) */
6824 } s;
6825} IEMGATHERARGS;
6826AssertCompileSize(IEMGATHERARGS, sizeof(uint32_t));
6827
6828#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6829
6830
6831/** @} */
6832
6833RT_C_DECLS_END
6834
6835/* ASM-INC: %include "IEMInternalStruct.mac" */
6836
6837#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6838
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette