VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 100851

Last change on this file since 100851 was 100851, checked in by vboxsync, 20 months ago

VMM/IEM: Make the assembly helpers hidden to avoid calling via the plt or stubs. bugref:10369

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 263.5 KB
Line 
1/* $Id: IEMInternal.h 100851 2023-08-10 14:34:07Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEM_DO_LONGJMP
89 *
90 * Wrapper around longjmp / throw.
91 *
92 * @param a_pVCpu The CPU handle.
93 * @param a_rc The status code jump back with / throw.
94 */
95#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
96# ifdef IEM_WITH_THROW_CATCH
97# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
98# else
99# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
100# endif
101#endif
102
103/** For use with IEM function that may do a longjmp (when enabled).
104 *
105 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
106 * attribute. So, we indicate that function that may be part of a longjmp may
107 * throw "exceptions" and that the compiler should definitely not generate and
108 * std::terminate calling unwind code.
109 *
110 * Here is one example of this ending in std::terminate:
111 * @code{.txt}
11200 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
11301 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
11402 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
11503 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
11604 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
11705 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
11806 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
11907 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
12008 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
12109 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1220a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1230b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1240c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1250d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1260e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1270f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
12810 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
129 @endcode
130 *
131 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
132 */
133#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
134# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
135#else
136# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
137#endif
138
139#define IEM_IMPLEMENTS_TASKSWITCH
140
141/** @def IEM_WITH_3DNOW
142 * Includes the 3DNow decoding. */
143#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
144# define IEM_WITH_3DNOW
145#endif
146
147/** @def IEM_WITH_THREE_0F_38
148 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
149#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
150# define IEM_WITH_THREE_0F_38
151#endif
152
153/** @def IEM_WITH_THREE_0F_3A
154 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
155#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
156# define IEM_WITH_THREE_0F_3A
157#endif
158
159/** @def IEM_WITH_VEX
160 * Includes the VEX decoding. */
161#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
162# define IEM_WITH_VEX
163#endif
164
165/** @def IEM_CFG_TARGET_CPU
166 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
167 *
168 * By default we allow this to be configured by the user via the
169 * CPUM/GuestCpuName config string, but this comes at a slight cost during
170 * decoding. So, for applications of this code where there is no need to
171 * be dynamic wrt target CPU, just modify this define.
172 */
173#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
174# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
175#endif
176
177//#define IEM_WITH_CODE_TLB // - work in progress
178//#define IEM_WITH_DATA_TLB // - work in progress
179
180
181/** @def IEM_USE_UNALIGNED_DATA_ACCESS
182 * Use unaligned accesses instead of elaborate byte assembly. */
183#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
184# define IEM_USE_UNALIGNED_DATA_ACCESS
185#endif
186
187//#define IEM_LOG_MEMORY_WRITES
188
189#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
190/** Instruction statistics. */
191typedef struct IEMINSTRSTATS
192{
193# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
194# include "IEMInstructionStatisticsTmpl.h"
195# undef IEM_DO_INSTR_STAT
196} IEMINSTRSTATS;
197#else
198struct IEMINSTRSTATS;
199typedef struct IEMINSTRSTATS IEMINSTRSTATS;
200#endif
201/** Pointer to IEM instruction statistics. */
202typedef IEMINSTRSTATS *PIEMINSTRSTATS;
203
204
205/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
206 * @{ */
207#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
208#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
209#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
210#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
211#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
212/** Selects the right variant from a_aArray.
213 * pVCpu is implicit in the caller context. */
214#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
215 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
216/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
217 * be used because the host CPU does not support the operation. */
218#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
219 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
220/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
221 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
222 * into the two.
223 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
224#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
225# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
226 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
227#else
228# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
229 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
230#endif
231/** @} */
232
233/**
234 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
235 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
236 *
237 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
238 * indicator.
239 *
240 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
241 */
242#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
243# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
244 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
245#else
246# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
247#endif
248
249
250/**
251 * Extended operand mode that includes a representation of 8-bit.
252 *
253 * This is used for packing down modes when invoking some C instruction
254 * implementations.
255 */
256typedef enum IEMMODEX
257{
258 IEMMODEX_16BIT = IEMMODE_16BIT,
259 IEMMODEX_32BIT = IEMMODE_32BIT,
260 IEMMODEX_64BIT = IEMMODE_64BIT,
261 IEMMODEX_8BIT
262} IEMMODEX;
263AssertCompileSize(IEMMODEX, 4);
264
265
266/**
267 * Branch types.
268 */
269typedef enum IEMBRANCH
270{
271 IEMBRANCH_JUMP = 1,
272 IEMBRANCH_CALL,
273 IEMBRANCH_TRAP,
274 IEMBRANCH_SOFTWARE_INT,
275 IEMBRANCH_HARDWARE_INT
276} IEMBRANCH;
277AssertCompileSize(IEMBRANCH, 4);
278
279
280/**
281 * INT instruction types.
282 */
283typedef enum IEMINT
284{
285 /** INT n instruction (opcode 0xcd imm). */
286 IEMINT_INTN = 0,
287 /** Single byte INT3 instruction (opcode 0xcc). */
288 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
289 /** Single byte INTO instruction (opcode 0xce). */
290 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
291 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
292 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
293} IEMINT;
294AssertCompileSize(IEMINT, 4);
295
296
297/**
298 * A FPU result.
299 */
300typedef struct IEMFPURESULT
301{
302 /** The output value. */
303 RTFLOAT80U r80Result;
304 /** The output status. */
305 uint16_t FSW;
306} IEMFPURESULT;
307AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
308/** Pointer to a FPU result. */
309typedef IEMFPURESULT *PIEMFPURESULT;
310/** Pointer to a const FPU result. */
311typedef IEMFPURESULT const *PCIEMFPURESULT;
312
313
314/**
315 * A FPU result consisting of two output values and FSW.
316 */
317typedef struct IEMFPURESULTTWO
318{
319 /** The first output value. */
320 RTFLOAT80U r80Result1;
321 /** The output status. */
322 uint16_t FSW;
323 /** The second output value. */
324 RTFLOAT80U r80Result2;
325} IEMFPURESULTTWO;
326AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
327AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
328/** Pointer to a FPU result consisting of two output values and FSW. */
329typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
330/** Pointer to a const FPU result consisting of two output values and FSW. */
331typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
332
333
334/**
335 * IEM TLB entry.
336 *
337 * Lookup assembly:
338 * @code{.asm}
339 ; Calculate tag.
340 mov rax, [VA]
341 shl rax, 16
342 shr rax, 16 + X86_PAGE_SHIFT
343 or rax, [uTlbRevision]
344
345 ; Do indexing.
346 movzx ecx, al
347 lea rcx, [pTlbEntries + rcx]
348
349 ; Check tag.
350 cmp [rcx + IEMTLBENTRY.uTag], rax
351 jne .TlbMiss
352
353 ; Check access.
354 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
355 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
356 cmp rax, [uTlbPhysRev]
357 jne .TlbMiss
358
359 ; Calc address and we're done.
360 mov eax, X86_PAGE_OFFSET_MASK
361 and eax, [VA]
362 or rax, [rcx + IEMTLBENTRY.pMappingR3]
363 %ifdef VBOX_WITH_STATISTICS
364 inc qword [cTlbHits]
365 %endif
366 jmp .Done
367
368 .TlbMiss:
369 mov r8d, ACCESS_FLAGS
370 mov rdx, [VA]
371 mov rcx, [pVCpu]
372 call iemTlbTypeMiss
373 .Done:
374
375 @endcode
376 *
377 */
378typedef struct IEMTLBENTRY
379{
380 /** The TLB entry tag.
381 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
382 * is ASSUMING a virtual address width of 48 bits.
383 *
384 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
385 *
386 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
387 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
388 * revision wraps around though, the tags needs to be zeroed.
389 *
390 * @note Try use SHRD instruction? After seeing
391 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
392 *
393 * @todo This will need to be reorganized for 57-bit wide virtual address and
394 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
395 * have to move the TLB entry versioning entirely to the
396 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
397 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
398 * consumed by PCID and ASID (12 + 6 = 18).
399 */
400 uint64_t uTag;
401 /** Access flags and physical TLB revision.
402 *
403 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
404 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
405 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
406 * - Bit 3 - pgm phys/virt - not directly writable.
407 * - Bit 4 - pgm phys page - not directly readable.
408 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
409 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
410 * - Bit 7 - tlb entry - pMappingR3 member not valid.
411 * - Bits 63 thru 8 are used for the physical TLB revision number.
412 *
413 * We're using complemented bit meanings here because it makes it easy to check
414 * whether special action is required. For instance a user mode write access
415 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
416 * non-zero result would mean special handling needed because either it wasn't
417 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
418 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
419 * need to check any PTE flag.
420 */
421 uint64_t fFlagsAndPhysRev;
422 /** The guest physical page address. */
423 uint64_t GCPhys;
424 /** Pointer to the ring-3 mapping. */
425 R3PTRTYPE(uint8_t *) pbMappingR3;
426#if HC_ARCH_BITS == 32
427 uint32_t u32Padding1;
428#endif
429} IEMTLBENTRY;
430AssertCompileSize(IEMTLBENTRY, 32);
431/** Pointer to an IEM TLB entry. */
432typedef IEMTLBENTRY *PIEMTLBENTRY;
433
434/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
435 * @{ */
436#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
437#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
438#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
439#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
440#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
441#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
442#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
443#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
444#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
445#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffe00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
446/** @} */
447
448
449/**
450 * An IEM TLB.
451 *
452 * We've got two of these, one for data and one for instructions.
453 */
454typedef struct IEMTLB
455{
456 /** The TLB entries.
457 * We've choosen 256 because that way we can obtain the result directly from a
458 * 8-bit register without an additional AND instruction. */
459 IEMTLBENTRY aEntries[256];
460 /** The TLB revision.
461 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
462 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
463 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
464 * (The revision zero indicates an invalid TLB entry.)
465 *
466 * The initial value is choosen to cause an early wraparound. */
467 uint64_t uTlbRevision;
468 /** The TLB physical address revision - shadow of PGM variable.
469 *
470 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
471 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
472 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
473 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
474 *
475 * The initial value is choosen to cause an early wraparound. */
476 uint64_t volatile uTlbPhysRev;
477
478 /* Statistics: */
479
480 /** TLB hits (VBOX_WITH_STATISTICS only). */
481 uint64_t cTlbHits;
482 /** TLB misses. */
483 uint32_t cTlbMisses;
484 /** Slow read path. */
485 uint32_t cTlbSlowReadPath;
486 /** Safe read path. */
487 uint32_t cTlbSafeReadPath;
488 /** Safe write path. */
489 uint32_t cTlbSafeWritePath;
490#if 0
491 /** TLB misses because of tag mismatch. */
492 uint32_t cTlbMissesTag;
493 /** TLB misses because of virtual access violation. */
494 uint32_t cTlbMissesVirtAccess;
495 /** TLB misses because of dirty bit. */
496 uint32_t cTlbMissesDirty;
497 /** TLB misses because of MMIO */
498 uint32_t cTlbMissesMmio;
499 /** TLB misses because of write access handlers. */
500 uint32_t cTlbMissesWriteHandler;
501 /** TLB misses because no r3(/r0) mapping. */
502 uint32_t cTlbMissesMapping;
503#endif
504 /** Alignment padding. */
505 uint32_t au32Padding[6];
506} IEMTLB;
507AssertCompileSizeAlignment(IEMTLB, 64);
508/** IEMTLB::uTlbRevision increment. */
509#define IEMTLB_REVISION_INCR RT_BIT_64(36)
510/** IEMTLB::uTlbRevision mask. */
511#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
512/** IEMTLB::uTlbPhysRev increment.
513 * @sa IEMTLBE_F_PHYS_REV */
514#define IEMTLB_PHYS_REV_INCR RT_BIT_64(9)
515/**
516 * Calculates the TLB tag for a virtual address.
517 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
518 * @param a_pTlb The TLB.
519 * @param a_GCPtr The virtual address.
520 */
521#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
522/**
523 * Calculates the TLB tag for a virtual address but without TLB revision.
524 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
525 * @param a_GCPtr The virtual address.
526 */
527#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
528/**
529 * Converts a TLB tag value into a TLB index.
530 * @returns Index into IEMTLB::aEntries.
531 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
532 */
533#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
534/**
535 * Converts a TLB tag value into a TLB index.
536 * @returns Index into IEMTLB::aEntries.
537 * @param a_pTlb The TLB.
538 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
539 */
540#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
541
542
543/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
544 *
545 * These flags are set when entering IEM and adjusted as code is executed, such
546 * that they will always contain the current values as instructions are
547 * finished.
548 *
549 * In recompiled execution mode, (most of) these flags are included in the
550 * translation block selection key and stored in IEMTB::fFlags alongside the
551 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
552 * in IEMCPU::fExec.
553 *
554 * @{ */
555/** Mode: The block target mode mask. */
556#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
557/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
558#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
559/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
560 * conditional in EIP/IP updating), and flat wide open CS, SS DS, and ES in
561 * 32-bit mode (for simplifying most memory accesses). */
562#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
563/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
564#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
565/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
566#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
567
568/** X86 Mode: 16-bit on 386 or later. */
569#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
570/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
571#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
572/** X86 Mode: 16-bit protected mode on 386 or later. */
573#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
574/** X86 Mode: 16-bit protected mode on 386 or later. */
575#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
576/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
577#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
578
579/** X86 Mode: 32-bit on 386 or later. */
580#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
581/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
582#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
583/** X86 Mode: 32-bit protected mode. */
584#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
585/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
586#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
587
588/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
589#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
590
591
592/** Bypass access handlers when set. */
593#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
594/** Have pending hardware instruction breakpoints. */
595#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
596/** Have pending hardware data breakpoints. */
597#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
598
599/** X86: Have pending hardware I/O breakpoints. */
600#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
601/** X86: Disregard the lock prefix (implied or not) when set. */
602#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
603
604/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
605#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
606
607/** Caller configurable options. */
608#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
609
610/** X86: The current protection level (CPL) shift factor. */
611#define IEM_F_X86_CPL_SHIFT 8
612/** X86: The current protection level (CPL) mask. */
613#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
614/** X86: The current protection level (CPL) shifted mask. */
615#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
616
617/** X86 execution context.
618 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
619 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
620 * mode. */
621#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
622/** X86 context: Plain regular execution context. */
623#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
624/** X86 context: VT-x enabled. */
625#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
626/** X86 context: AMD-V enabled. */
627#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
628/** X86 context: In AMD-V or VT-x guest mode. */
629#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
630/** X86 context: System management mode (SMM). */
631#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
632
633/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
634 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
635 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
636 * alread). */
637
638/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
639 * iemRegFinishClearingRF() most for most situations
640 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
641 * the IEM_F_PENDING_BRK_XXX bits alread). */
642
643/** @} */
644
645
646/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
647 *
648 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
649 * translation block flags. The combined flag mask (subject to
650 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
651 *
652 * @{ */
653/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
654#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
655
656/** Type: The block type mask. */
657#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
658/** Type: Purly threaded recompiler (via tables). */
659#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
660/** Type: Native recompilation. */
661#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
662
663/** State mask. */
664#define IEMTB_F_STATE_MASK UINT32_C(0x0c000000)
665/** State shift count. */
666#define IEMTB_F_STATE_SHIFT 26
667/** State: Compiling. */
668#define IEMTB_F_STATE_COMPILING UINT32_C(0x04000000)
669/** State: Ready. */
670#define IEMTB_F_STATE_READY UINT32_C(0x08000000)
671/** State: Obsolete, can be deleted when we're sure it's not used any longer. */
672#define IEMTB_F_STATE_OBSOLETE UINT32_C(0x0c000000)
673
674/** Set when we're starting the block in an "interrupt shadow".
675 * We don't need to distingish between the two types of this mask, thus the one.
676 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
677#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x10000000)
678/** Set when we're currently inhibiting NMIs
679 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
680#define IEMTB_F_INHIBIT_NMI UINT32_C(0x20000000)
681
682/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
683 * we're close the limit before starting a TB, as determined by
684 * iemGetTbFlagsForCurrentPc(). */
685#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x40000000)
686
687/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
688 * @note We skip the CPL as we don't currently generate ring-specific code,
689 * that's all handled in CIMPL functions.
690 *
691 * For the same reasons, we skip all of IEM_F_X86_CTX_MASK, with the
692 * exception of SMM (which we don't implement). */
693#define IEMTB_F_KEY_MASK ((UINT32_C(0xffffffff) & ~(IEM_F_X86_CTX_MASK | IEM_F_X86_CPL_MASK)) | IEM_F_X86_CTX_SMM)
694/** @} */
695
696AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
697AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
698AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
699AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
700AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
701AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
702AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
703AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
704AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
705AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
706AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
707AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
708AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
709AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
710AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
711AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
712AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
713AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
714AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
715
716AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
717AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
718AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
719AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
720AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
721AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
722AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
723AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
724AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
725AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
726AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
727AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
728
729AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
730AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
731AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
732
733/**
734 * A call for the threaded call table.
735 */
736typedef struct IEMTHRDEDCALLENTRY
737{
738 /** The function to call (IEMTHREADEDFUNCS). */
739 uint16_t enmFunction;
740 /** Instruction number in the TB (for statistics). */
741 uint8_t idxInstr;
742 uint8_t uUnused0;
743
744 /** Offset into IEMTB::pabOpcodes. */
745 uint16_t offOpcode;
746 /** The opcode length. */
747 uint8_t cbOpcode;
748 /** Index in to IEMTB::aRanges. */
749 uint8_t idxRange;
750
751 /** Generic parameters. */
752 uint64_t auParams[3];
753} IEMTHRDEDCALLENTRY;
754AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
755/** Pointer to a threaded call entry. */
756typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
757/** Pointer to a const threaded call entry. */
758typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
759
760/**
761 * Translation block.
762 */
763#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
764typedef struct IEMTB
765{
766 /** Next block with the same hash table entry. */
767 struct IEMTB * volatile pNext;
768 /** List on the local VCPU for blocks. */
769 RTLISTNODE LocalList;
770
771 /** @name What uniquely identifies the block.
772 * @{ */
773 RTGCPHYS GCPhysPc;
774 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
775 uint32_t fFlags;
776 union
777 {
778 struct
779 {
780 /**< Relevant CS X86DESCATTR_XXX bits. */
781 uint16_t fAttr;
782 } x86;
783 };
784 /** @} */
785
786 /** Number of opcode ranges. */
787 uint8_t cRanges;
788 /** Statistics: Number of instructions in the block. */
789 uint8_t cInstructions;
790
791 /** Type specific info. */
792 union
793 {
794 struct
795 {
796 /** The call sequence table. */
797 PIEMTHRDEDCALLENTRY paCalls;
798 /** Number of calls in paCalls. */
799 uint16_t cCalls;
800 /** Number of calls allocated. */
801 uint16_t cAllocated;
802 } Thrd;
803 };
804
805 /** Number of bytes of opcodes stored in pabOpcodes. */
806 uint16_t cbOpcodes;
807 /** The max storage available in the pabOpcodes block. */
808 uint16_t cbOpcodesAllocated;
809 /** Pointer to the opcode bytes this block was recompiled from. */
810 uint8_t *pabOpcodes;
811
812 /* --- 64 byte cache line end --- */
813
814 /** Opcode ranges.
815 *
816 * The opcode checkers and maybe TLB loading functions will use this to figure
817 * out what to do. The parameter will specify an entry and the opcode offset to
818 * start at and the minimum number of bytes to verify (instruction length).
819 *
820 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
821 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
822 * code TLB (must have a valid entry for that address) and scan the ranges to
823 * locate the corresponding opcodes. Probably.
824 */
825 struct IEMTBOPCODERANGE
826 {
827 /** Offset within pabOpcodes. */
828 uint16_t offOpcodes;
829 /** Number of bytes. */
830 uint16_t cbOpcodes;
831 /** The page offset. */
832 RT_GCC_EXTENSION
833 uint16_t offPhysPage : 12;
834 /** Unused bits. */
835 RT_GCC_EXTENSION
836 uint16_t u2Unused : 2;
837 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
838 RT_GCC_EXTENSION
839 uint16_t idxPhysPage : 2;
840 } aRanges[8];
841
842 /** Physical pages that this TB covers.
843 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
844 RTGCPHYS aGCPhysPages[2];
845} IEMTB;
846#pragma pack()
847AssertCompileMemberOffset(IEMTB, x86, 36);
848AssertCompileMemberOffset(IEMTB, cRanges, 38);
849AssertCompileMemberOffset(IEMTB, Thrd, 40);
850AssertCompileMemberOffset(IEMTB, Thrd.cCalls, 48);
851AssertCompileMemberOffset(IEMTB, cbOpcodes, 52);
852AssertCompileMemberSize(IEMTB, aRanges[0], 6);
853AssertCompileSize(IEMTB, 128);
854/** Pointer to a translation block. */
855typedef IEMTB *PIEMTB;
856/** Pointer to a const translation block. */
857typedef IEMTB const *PCIEMTB;
858
859/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
860 *
861 * These flags parallels IEM_CIMPL_F_BRANCH_XXX.
862 *
863 * @{ */
864/** Value if no branching happened recently. */
865#define IEMBRANCHED_F_NO UINT8_C(0x00)
866/** Flag set if direct branch, clear if absolute or indirect. */
867#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
868/** Flag set if indirect branch, clear if direct or relative. */
869#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
870/** Flag set if relative branch, clear if absolute or indirect. */
871#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
872/** Flag set if conditional branch, clear if unconditional. */
873#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
874/** Flag set if it's a far branch. */
875#define IEMBRANCHED_F_FAR UINT8_C(0x10)
876/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
877#define IEMBRANCHED_F_ZERO UINT8_C(0x20)
878/** @} */
879
880
881/**
882 * The per-CPU IEM state.
883 */
884typedef struct IEMCPU
885{
886 /** Info status code that needs to be propagated to the IEM caller.
887 * This cannot be passed internally, as it would complicate all success
888 * checks within the interpreter making the code larger and almost impossible
889 * to get right. Instead, we'll store status codes to pass on here. Each
890 * source of these codes will perform appropriate sanity checks. */
891 int32_t rcPassUp; /* 0x00 */
892 /** Execution flag, IEM_F_XXX. */
893 uint32_t fExec; /* 0x04 */
894
895 /** @name Decoder state.
896 * @{ */
897#ifndef IEM_WITH_OPAQUE_DECODER_STATE
898# ifdef IEM_WITH_CODE_TLB
899 /** The offset of the next instruction byte. */
900 uint32_t offInstrNextByte; /* 0x08 */
901 /** The number of bytes available at pbInstrBuf for the current instruction.
902 * This takes the max opcode length into account so that doesn't need to be
903 * checked separately. */
904 uint32_t cbInstrBuf; /* 0x0c */
905 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
906 * This can be NULL if the page isn't mappable for some reason, in which
907 * case we'll do fallback stuff.
908 *
909 * If we're executing an instruction from a user specified buffer,
910 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
911 * aligned pointer but pointer to the user data.
912 *
913 * For instructions crossing pages, this will start on the first page and be
914 * advanced to the next page by the time we've decoded the instruction. This
915 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
916 */
917 uint8_t const *pbInstrBuf; /* 0x10 */
918# if ARCH_BITS == 32
919 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
920# endif
921 /** The program counter corresponding to pbInstrBuf.
922 * This is set to a non-canonical address when we need to invalidate it. */
923 uint64_t uInstrBufPc; /* 0x18 */
924 /** The guest physical address corresponding to pbInstrBuf. */
925 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
926 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
927 * This takes the CS segment limit into account. */
928 uint16_t cbInstrBufTotal; /* 0x28 */
929 /** Offset into pbInstrBuf of the first byte of the current instruction.
930 * Can be negative to efficiently handle cross page instructions. */
931 int16_t offCurInstrStart; /* 0x2a */
932
933 /** The prefix mask (IEM_OP_PRF_XXX). */
934 uint32_t fPrefixes; /* 0x2c */
935 /** The extra REX ModR/M register field bit (REX.R << 3). */
936 uint8_t uRexReg; /* 0x30 */
937 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
938 * (REX.B << 3). */
939 uint8_t uRexB; /* 0x31 */
940 /** The extra REX SIB index field bit (REX.X << 3). */
941 uint8_t uRexIndex; /* 0x32 */
942
943 /** The effective segment register (X86_SREG_XXX). */
944 uint8_t iEffSeg; /* 0x33 */
945
946 /** The offset of the ModR/M byte relative to the start of the instruction. */
947 uint8_t offModRm; /* 0x34 */
948
949# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
950 /** The current offset into abOpcode. */
951 uint8_t offOpcode; /* 0x35 */
952# else
953 uint8_t bUnused; /* 0x35 */
954# endif
955# else /* !IEM_WITH_CODE_TLB */
956 /** The size of what has currently been fetched into abOpcode. */
957 uint8_t cbOpcode; /* 0x08 */
958 /** The current offset into abOpcode. */
959 uint8_t offOpcode; /* 0x09 */
960 /** The offset of the ModR/M byte relative to the start of the instruction. */
961 uint8_t offModRm; /* 0x0a */
962
963 /** The effective segment register (X86_SREG_XXX). */
964 uint8_t iEffSeg; /* 0x0b */
965
966 /** The prefix mask (IEM_OP_PRF_XXX). */
967 uint32_t fPrefixes; /* 0x0c */
968 /** The extra REX ModR/M register field bit (REX.R << 3). */
969 uint8_t uRexReg; /* 0x10 */
970 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
971 * (REX.B << 3). */
972 uint8_t uRexB; /* 0x11 */
973 /** The extra REX SIB index field bit (REX.X << 3). */
974 uint8_t uRexIndex; /* 0x12 */
975
976# endif /* !IEM_WITH_CODE_TLB */
977
978 /** The effective operand mode. */
979 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
980 /** The default addressing mode. */
981 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
982 /** The effective addressing mode. */
983 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
984 /** The default operand mode. */
985 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
986
987 /** Prefix index (VEX.pp) for two byte and three byte tables. */
988 uint8_t idxPrefix; /* 0x3a, 0x17 */
989 /** 3rd VEX/EVEX/XOP register.
990 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
991 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
992 /** The VEX/EVEX/XOP length field. */
993 uint8_t uVexLength; /* 0x3c, 0x19 */
994 /** Additional EVEX stuff. */
995 uint8_t fEvexStuff; /* 0x3d, 0x1a */
996
997# ifndef IEM_WITH_CODE_TLB
998 /** Explicit alignment padding. */
999 uint8_t abAlignment2a[1]; /* 0x1b */
1000# endif
1001 /** The FPU opcode (FOP). */
1002 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1003# ifndef IEM_WITH_CODE_TLB
1004 /** Explicit alignment padding. */
1005 uint8_t abAlignment2b[2]; /* 0x1e */
1006# endif
1007
1008 /** The opcode bytes. */
1009 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1010 /** Explicit alignment padding. */
1011# ifdef IEM_WITH_CODE_TLB
1012 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1013# else
1014 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1015# endif
1016#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1017 uint8_t abOpaqueDecoder[0x4f - 0x8];
1018#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1019 /** @} */
1020
1021
1022 /** The number of active guest memory mappings. */
1023 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1024
1025 /** Records for tracking guest memory mappings. */
1026 struct
1027 {
1028 /** The address of the mapped bytes. */
1029 R3R0PTRTYPE(void *) pv;
1030 /** The access flags (IEM_ACCESS_XXX).
1031 * IEM_ACCESS_INVALID if the entry is unused. */
1032 uint32_t fAccess;
1033#if HC_ARCH_BITS == 64
1034 uint32_t u32Alignment4; /**< Alignment padding. */
1035#endif
1036 } aMemMappings[3]; /* 0x50 LB 0x30 */
1037
1038 /** Locking records for the mapped memory. */
1039 union
1040 {
1041 PGMPAGEMAPLOCK Lock;
1042 uint64_t au64Padding[2];
1043 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1044
1045 /** Bounce buffer info.
1046 * This runs in parallel to aMemMappings. */
1047 struct
1048 {
1049 /** The physical address of the first byte. */
1050 RTGCPHYS GCPhysFirst;
1051 /** The physical address of the second page. */
1052 RTGCPHYS GCPhysSecond;
1053 /** The number of bytes in the first page. */
1054 uint16_t cbFirst;
1055 /** The number of bytes in the second page. */
1056 uint16_t cbSecond;
1057 /** Whether it's unassigned memory. */
1058 bool fUnassigned;
1059 /** Explicit alignment padding. */
1060 bool afAlignment5[3];
1061 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1062
1063 /** The flags of the current exception / interrupt. */
1064 uint32_t fCurXcpt; /* 0xf8 */
1065 /** The current exception / interrupt. */
1066 uint8_t uCurXcpt; /* 0xfc */
1067 /** Exception / interrupt recursion depth. */
1068 int8_t cXcptRecursions; /* 0xfb */
1069
1070 /** The next unused mapping index.
1071 * @todo try find room for this up with cActiveMappings. */
1072 uint8_t iNextMapping; /* 0xfd */
1073 uint8_t abAlignment7[1];
1074
1075 /** Bounce buffer storage.
1076 * This runs in parallel to aMemMappings and aMemBbMappings. */
1077 struct
1078 {
1079 uint8_t ab[512];
1080 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1081
1082
1083 /** Pointer set jump buffer - ring-3 context. */
1084 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1085 /** Pointer set jump buffer - ring-0 context. */
1086 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1087
1088 /** @todo Should move this near @a fCurXcpt later. */
1089 /** The CR2 for the current exception / interrupt. */
1090 uint64_t uCurXcptCr2;
1091 /** The error code for the current exception / interrupt. */
1092 uint32_t uCurXcptErr;
1093
1094 /** @name Statistics
1095 * @{ */
1096 /** The number of instructions we've executed. */
1097 uint32_t cInstructions;
1098 /** The number of potential exits. */
1099 uint32_t cPotentialExits;
1100 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1101 * This may contain uncommitted writes. */
1102 uint32_t cbWritten;
1103 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1104 uint32_t cRetInstrNotImplemented;
1105 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1106 uint32_t cRetAspectNotImplemented;
1107 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1108 uint32_t cRetInfStatuses;
1109 /** Counts other error statuses returned. */
1110 uint32_t cRetErrStatuses;
1111 /** Number of times rcPassUp has been used. */
1112 uint32_t cRetPassUpStatus;
1113 /** Number of times RZ left with instruction commit pending for ring-3. */
1114 uint32_t cPendingCommit;
1115 /** Number of long jumps. */
1116 uint32_t cLongJumps;
1117 /** @} */
1118
1119 /** @name Target CPU information.
1120 * @{ */
1121#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1122 /** The target CPU. */
1123 uint8_t uTargetCpu;
1124#else
1125 uint8_t bTargetCpuPadding;
1126#endif
1127 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1128 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1129 * native host support and the 2nd for when there is.
1130 *
1131 * The two values are typically indexed by a g_CpumHostFeatures bit.
1132 *
1133 * This is for instance used for the BSF & BSR instructions where AMD and
1134 * Intel CPUs produce different EFLAGS. */
1135 uint8_t aidxTargetCpuEflFlavour[2];
1136
1137 /** The CPU vendor. */
1138 CPUMCPUVENDOR enmCpuVendor;
1139 /** @} */
1140
1141 /** @name Host CPU information.
1142 * @{ */
1143 /** The CPU vendor. */
1144 CPUMCPUVENDOR enmHostCpuVendor;
1145 /** @} */
1146
1147 /** Counts RDMSR \#GP(0) LogRel(). */
1148 uint8_t cLogRelRdMsr;
1149 /** Counts WRMSR \#GP(0) LogRel(). */
1150 uint8_t cLogRelWrMsr;
1151 /** Alignment padding. */
1152 uint8_t abAlignment9[46];
1153
1154 /** @name Recompilation
1155 * @{ */
1156 /** Pointer to the current translation block.
1157 * This can either be one being executed or one being compiled. */
1158 R3PTRTYPE(PIEMTB) pCurTbR3;
1159 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1160 * The TBs are based on physical addresses, so this is needed to correleated
1161 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1162 uint64_t uCurTbStartPc;
1163 /** Statistics: Number of TB allocation calls. */
1164 uint64_t cTbAllocs;
1165 /** Statistics: Number of TB free calls. */
1166 uint64_t cTbFrees;
1167 /** Statistics: Number of TB lookup misses. */
1168 uint64_t cTbLookupMisses;
1169 /** Statistics: Number of TB lookup hits (debug only). */
1170 uint64_t cTbLookupHits;
1171 /** Number of TBs executed. */
1172 uint64_t cTbExec;
1173 /** Whether we need to check the opcode bytes for the current instruction.
1174 * This is set by a previous instruction if it modified memory or similar. */
1175 bool fTbCheckOpcodes;
1176 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1177 uint8_t fTbBranched;
1178 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1179 bool fTbCrossedPage;
1180 /** Whether to end the current TB. */
1181 bool fEndTb;
1182 /** Number of instructions before we need emit an IRQ check call again.
1183 * This helps making sure we don't execute too long w/o checking for
1184 * interrupts and immediately following instructions that may enable
1185 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1186 * required to make sure we check following the next instruction as well, see
1187 * fTbCurInstrIsSti. */
1188 uint8_t cInstrTillIrqCheck;
1189 /** Indicates that the current instruction is an STI. This is set by the
1190 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1191 bool fTbCurInstrIsSti;
1192 /** Spaced reserved for recompiler data / alignment. */
1193 bool afRecompilerStuff1[2];
1194 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1195 RTGCPHYS GCPhysInstrBufPrev;
1196 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1197 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1198 * whether a branch instruction jumps to a new page or stays within the
1199 * current one. */
1200 RTGCPHYS GCPhysTbBranchSrcBuf;
1201 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1202 uint64_t GCVirtTbBranchSrcBuf;
1203 /* Alignment. */
1204 /** Statistics: Times TB execution was broken off before reaching the end. */
1205 STAMCOUNTER StatTbExecBreaks;
1206 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1207 STAMCOUNTER StatCheckIrqBreaks;
1208 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1209 STAMCOUNTER StatCheckModeBreaks;
1210 /** Statistics: Times a post jump target check missed and had to find new TB. */
1211 STAMCOUNTER StatCheckBranchMisses;
1212 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1213 STAMCOUNTER StatCheckNeedCsLimChecking;
1214 /** Threaded TB statistics: Number of instructions per TB. */
1215 STAMPROFILE StatTbThreadedInstr;
1216 /** Threaded TB statistics: Number of calls per TB. */
1217 STAMPROFILE StatTbThreadedCalls;
1218 /** @} */
1219
1220 /** Data TLB.
1221 * @remarks Must be 64-byte aligned. */
1222 IEMTLB DataTlb;
1223 /** Instruction TLB.
1224 * @remarks Must be 64-byte aligned. */
1225 IEMTLB CodeTlb;
1226
1227 /** Exception statistics. */
1228 STAMCOUNTER aStatXcpts[32];
1229 /** Interrupt statistics. */
1230 uint32_t aStatInts[256];
1231
1232#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1233 /** Instruction statistics for ring-0/raw-mode. */
1234 IEMINSTRSTATS StatsRZ;
1235 /** Instruction statistics for ring-3. */
1236 IEMINSTRSTATS StatsR3;
1237#endif
1238} IEMCPU;
1239AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1240AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1241AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1242AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1243AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1244AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1245
1246/** Pointer to the per-CPU IEM state. */
1247typedef IEMCPU *PIEMCPU;
1248/** Pointer to the const per-CPU IEM state. */
1249typedef IEMCPU const *PCIEMCPU;
1250
1251
1252/** @def IEM_GET_CTX
1253 * Gets the guest CPU context for the calling EMT.
1254 * @returns PCPUMCTX
1255 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1256 */
1257#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1258
1259/** @def IEM_CTX_ASSERT
1260 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1261 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1262 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1263 */
1264#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1265 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", (a_pVCpu)->cpum.GstCtx.fExtrn, \
1266 (a_fExtrnMbz)))
1267
1268/** @def IEM_CTX_IMPORT_RET
1269 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1270 *
1271 * Will call the keep to import the bits as needed.
1272 *
1273 * Returns on import failure.
1274 *
1275 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1276 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1277 */
1278#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1279 do { \
1280 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1281 { /* likely */ } \
1282 else \
1283 { \
1284 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1285 AssertRCReturn(rcCtxImport, rcCtxImport); \
1286 } \
1287 } while (0)
1288
1289/** @def IEM_CTX_IMPORT_NORET
1290 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1291 *
1292 * Will call the keep to import the bits as needed.
1293 *
1294 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1295 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1296 */
1297#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1298 do { \
1299 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1300 { /* likely */ } \
1301 else \
1302 { \
1303 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1304 AssertLogRelRC(rcCtxImport); \
1305 } \
1306 } while (0)
1307
1308/** @def IEM_CTX_IMPORT_JMP
1309 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1310 *
1311 * Will call the keep to import the bits as needed.
1312 *
1313 * Jumps on import failure.
1314 *
1315 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1316 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1317 */
1318#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
1319 do { \
1320 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1321 { /* likely */ } \
1322 else \
1323 { \
1324 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1325 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
1326 } \
1327 } while (0)
1328
1329
1330
1331/** @def IEM_GET_TARGET_CPU
1332 * Gets the current IEMTARGETCPU value.
1333 * @returns IEMTARGETCPU value.
1334 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1335 */
1336#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
1337# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
1338#else
1339# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
1340#endif
1341
1342/** @def IEM_GET_INSTR_LEN
1343 * Gets the instruction length. */
1344#ifdef IEM_WITH_CODE_TLB
1345# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
1346#else
1347# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
1348#endif
1349
1350/** @def IEM_TRY_SETJMP
1351 * Wrapper around setjmp / try, hiding all the ugly differences.
1352 *
1353 * @note Use with extreme care as this is a fragile macro.
1354 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1355 * @param a_rcTarget The variable that should receive the status code in case
1356 * of a longjmp/throw.
1357 */
1358/** @def IEM_TRY_SETJMP_AGAIN
1359 * For when setjmp / try is used again in the same variable scope as a previous
1360 * IEM_TRY_SETJMP invocation.
1361 */
1362/** @def IEM_CATCH_LONGJMP_BEGIN
1363 * Start wrapper for catch / setjmp-else.
1364 *
1365 * This will set up a scope.
1366 *
1367 * @note Use with extreme care as this is a fragile macro.
1368 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1369 * @param a_rcTarget The variable that should receive the status code in case
1370 * of a longjmp/throw.
1371 */
1372/** @def IEM_CATCH_LONGJMP_END
1373 * End wrapper for catch / setjmp-else.
1374 *
1375 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
1376 * state.
1377 *
1378 * @note Use with extreme care as this is a fragile macro.
1379 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1380 */
1381#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
1382# ifdef IEM_WITH_THROW_CATCH
1383# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1384 a_rcTarget = VINF_SUCCESS; \
1385 try
1386# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1387 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
1388# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1389 catch (int rcThrown) \
1390 { \
1391 a_rcTarget = rcThrown
1392# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1393 } \
1394 ((void)0)
1395# else /* !IEM_WITH_THROW_CATCH */
1396# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1397 jmp_buf JmpBuf; \
1398 jmp_buf * volatile pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1399 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1400 if ((rcStrict = setjmp(JmpBuf)) == 0)
1401# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1402 pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1403 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1404 if ((rcStrict = setjmp(JmpBuf)) == 0)
1405# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1406 else \
1407 { \
1408 ((void)0)
1409# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1410 } \
1411 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
1412# endif /* !IEM_WITH_THROW_CATCH */
1413#endif /* IEM_WITH_SETJMP */
1414
1415
1416/**
1417 * Shared per-VM IEM data.
1418 */
1419typedef struct IEM
1420{
1421 /** The VMX APIC-access page handler type. */
1422 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
1423#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
1424 /** Set if the CPUID host call functionality is enabled. */
1425 bool fCpuIdHostCall;
1426#endif
1427} IEM;
1428
1429
1430
1431/** @name IEM_ACCESS_XXX - Access details.
1432 * @{ */
1433#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
1434#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
1435#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
1436#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
1437#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
1438#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
1439#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
1440#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
1441#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
1442#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
1443/** The writes are partial, so if initialize the bounce buffer with the
1444 * orignal RAM content. */
1445#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
1446/** Used in aMemMappings to indicate that the entry is bounce buffered. */
1447#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
1448/** Bounce buffer with ring-3 write pending, first page. */
1449#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
1450/** Bounce buffer with ring-3 write pending, second page. */
1451#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
1452/** Not locked, accessed via the TLB. */
1453#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
1454/** Valid bit mask. */
1455#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
1456/** Shift count for the TLB flags (upper word). */
1457#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
1458
1459/** Read+write data alias. */
1460#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1461/** Write data alias. */
1462#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1463/** Read data alias. */
1464#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
1465/** Instruction fetch alias. */
1466#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
1467/** Stack write alias. */
1468#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1469/** Stack read alias. */
1470#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
1471/** Stack read+write alias. */
1472#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1473/** Read system table alias. */
1474#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
1475/** Read+write system table alias. */
1476#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
1477/** @} */
1478
1479/** @name Prefix constants (IEMCPU::fPrefixes)
1480 * @{ */
1481#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
1482#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
1483#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
1484#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
1485#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
1486#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
1487#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
1488
1489#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
1490#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
1491#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
1492
1493#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
1494#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
1495#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
1496
1497#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
1498#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
1499#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
1500#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
1501/** Mask with all the REX prefix flags.
1502 * This is generally for use when needing to undo the REX prefixes when they
1503 * are followed legacy prefixes and therefore does not immediately preceed
1504 * the first opcode byte.
1505 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
1506#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
1507
1508#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
1509#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
1510#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
1511/** @} */
1512
1513/** @name IEMOPFORM_XXX - Opcode forms
1514 * @note These are ORed together with IEMOPHINT_XXX.
1515 * @{ */
1516/** ModR/M: reg, r/m */
1517#define IEMOPFORM_RM 0
1518/** ModR/M: reg, r/m (register) */
1519#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1520/** ModR/M: reg, r/m (memory) */
1521#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1522/** ModR/M: reg, r/m */
1523#define IEMOPFORM_RMI 1
1524/** ModR/M: reg, r/m (register) */
1525#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1526/** ModR/M: reg, r/m (memory) */
1527#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1528/** ModR/M: r/m, reg */
1529#define IEMOPFORM_MR 2
1530/** ModR/M: r/m (register), reg */
1531#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1532/** ModR/M: r/m (memory), reg */
1533#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1534/** ModR/M: r/m, reg */
1535#define IEMOPFORM_MRI 3
1536/** ModR/M: r/m (register), reg */
1537#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1538/** ModR/M: r/m (memory), reg */
1539#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1540/** ModR/M: r/m only */
1541#define IEMOPFORM_M 4
1542/** ModR/M: r/m only (register). */
1543#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
1544/** ModR/M: r/m only (memory). */
1545#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
1546/** ModR/M: reg only */
1547#define IEMOPFORM_R 5
1548
1549/** VEX+ModR/M: reg, r/m */
1550#define IEMOPFORM_VEX_RM 8
1551/** VEX+ModR/M: reg, r/m (register) */
1552#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
1553/** VEX+ModR/M: reg, r/m (memory) */
1554#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
1555/** VEX+ModR/M: r/m, reg */
1556#define IEMOPFORM_VEX_MR 9
1557/** VEX+ModR/M: r/m (register), reg */
1558#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
1559/** VEX+ModR/M: r/m (memory), reg */
1560#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
1561/** VEX+ModR/M: r/m only */
1562#define IEMOPFORM_VEX_M 10
1563/** VEX+ModR/M: r/m only (register). */
1564#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
1565/** VEX+ModR/M: r/m only (memory). */
1566#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
1567/** VEX+ModR/M: reg only */
1568#define IEMOPFORM_VEX_R 11
1569/** VEX+ModR/M: reg, vvvv, r/m */
1570#define IEMOPFORM_VEX_RVM 12
1571/** VEX+ModR/M: reg, vvvv, r/m (register). */
1572#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
1573/** VEX+ModR/M: reg, vvvv, r/m (memory). */
1574#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
1575/** VEX+ModR/M: reg, r/m, vvvv */
1576#define IEMOPFORM_VEX_RMV 13
1577/** VEX+ModR/M: reg, r/m, vvvv (register). */
1578#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
1579/** VEX+ModR/M: reg, r/m, vvvv (memory). */
1580#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
1581/** VEX+ModR/M: reg, r/m, imm8 */
1582#define IEMOPFORM_VEX_RMI 14
1583/** VEX+ModR/M: reg, r/m, imm8 (register). */
1584#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
1585/** VEX+ModR/M: reg, r/m, imm8 (memory). */
1586#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
1587/** VEX+ModR/M: r/m, vvvv, reg */
1588#define IEMOPFORM_VEX_MVR 15
1589/** VEX+ModR/M: r/m, vvvv, reg (register) */
1590#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
1591/** VEX+ModR/M: r/m, vvvv, reg (memory) */
1592#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
1593/** VEX+ModR/M+/n: vvvv, r/m */
1594#define IEMOPFORM_VEX_VM 16
1595/** VEX+ModR/M+/n: vvvv, r/m (register) */
1596#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
1597/** VEX+ModR/M+/n: vvvv, r/m (memory) */
1598#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
1599
1600/** Fixed register instruction, no R/M. */
1601#define IEMOPFORM_FIXED 32
1602
1603/** The r/m is a register. */
1604#define IEMOPFORM_MOD3 RT_BIT_32(8)
1605/** The r/m is a memory access. */
1606#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
1607/** @} */
1608
1609/** @name IEMOPHINT_XXX - Additional Opcode Hints
1610 * @note These are ORed together with IEMOPFORM_XXX.
1611 * @{ */
1612/** Ignores the operand size prefix (66h). */
1613#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
1614/** Ignores REX.W (aka WIG). */
1615#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
1616/** Both the operand size prefixes (66h + REX.W) are ignored. */
1617#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
1618/** Allowed with the lock prefix. */
1619#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
1620/** The VEX.L value is ignored (aka LIG). */
1621#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
1622/** The VEX.L value must be zero (i.e. 128-bit width only). */
1623#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
1624/** The VEX.V value must be zero. */
1625#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
1626
1627/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
1628#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
1629/** @} */
1630
1631/**
1632 * Possible hardware task switch sources.
1633 */
1634typedef enum IEMTASKSWITCH
1635{
1636 /** Task switch caused by an interrupt/exception. */
1637 IEMTASKSWITCH_INT_XCPT = 1,
1638 /** Task switch caused by a far CALL. */
1639 IEMTASKSWITCH_CALL,
1640 /** Task switch caused by a far JMP. */
1641 IEMTASKSWITCH_JUMP,
1642 /** Task switch caused by an IRET. */
1643 IEMTASKSWITCH_IRET
1644} IEMTASKSWITCH;
1645AssertCompileSize(IEMTASKSWITCH, 4);
1646
1647/**
1648 * Possible CrX load (write) sources.
1649 */
1650typedef enum IEMACCESSCRX
1651{
1652 /** CrX access caused by 'mov crX' instruction. */
1653 IEMACCESSCRX_MOV_CRX,
1654 /** CrX (CR0) write caused by 'lmsw' instruction. */
1655 IEMACCESSCRX_LMSW,
1656 /** CrX (CR0) write caused by 'clts' instruction. */
1657 IEMACCESSCRX_CLTS,
1658 /** CrX (CR0) read caused by 'smsw' instruction. */
1659 IEMACCESSCRX_SMSW
1660} IEMACCESSCRX;
1661
1662#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1663/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
1664 *
1665 * These flags provide further context to SLAT page-walk failures that could not be
1666 * determined by PGM (e.g, PGM is not privy to memory access permissions).
1667 *
1668 * @{
1669 */
1670/** Translating a nested-guest linear address failed accessing a nested-guest
1671 * physical address. */
1672# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
1673/** Translating a nested-guest linear address failed accessing a
1674 * paging-structure entry or updating accessed/dirty bits. */
1675# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
1676/** @} */
1677
1678DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
1679# ifndef IN_RING3
1680DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
1681# endif
1682#endif
1683
1684/**
1685 * Indicates to the verifier that the given flag set is undefined.
1686 *
1687 * Can be invoked again to add more flags.
1688 *
1689 * This is a NOOP if the verifier isn't compiled in.
1690 *
1691 * @note We're temporarily keeping this until code is converted to new
1692 * disassembler style opcode handling.
1693 */
1694#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
1695
1696
1697/** @def IEM_DECL_IMPL_TYPE
1698 * For typedef'ing an instruction implementation function.
1699 *
1700 * @param a_RetType The return type.
1701 * @param a_Name The name of the type.
1702 * @param a_ArgList The argument list enclosed in parentheses.
1703 */
1704
1705/** @def IEM_DECL_IMPL_DEF
1706 * For defining an instruction implementation function.
1707 *
1708 * @param a_RetType The return type.
1709 * @param a_Name The name of the type.
1710 * @param a_ArgList The argument list enclosed in parentheses.
1711 */
1712
1713#if defined(__GNUC__) && defined(RT_ARCH_X86)
1714# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1715 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
1716# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1717 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
1718# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1719 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
1720
1721#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
1722# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1723 a_RetType (__fastcall a_Name) a_ArgList
1724# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1725 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1726# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1727 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1728
1729#elif __cplusplus >= 201700 /* P0012R1 support */
1730# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1731 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
1732# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1733 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1734# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1735 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1736
1737#else
1738# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1739 a_RetType (VBOXCALL a_Name) a_ArgList
1740# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1741 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
1742# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1743 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
1744
1745#endif
1746
1747/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
1748RT_C_DECLS_BEGIN
1749extern uint8_t const g_afParity[256];
1750RT_C_DECLS_END
1751
1752
1753/** @name Arithmetic assignment operations on bytes (binary).
1754 * @{ */
1755typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
1756typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
1757FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
1758FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
1759FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
1760FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
1761FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
1762FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
1763FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
1764/** @} */
1765
1766/** @name Arithmetic assignment operations on words (binary).
1767 * @{ */
1768typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
1769typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
1770FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
1771FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
1772FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
1773FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
1774FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
1775FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
1776FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
1777/** @} */
1778
1779/** @name Arithmetic assignment operations on double words (binary).
1780 * @{ */
1781typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
1782typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
1783FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
1784FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
1785FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
1786FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
1787FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
1788FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
1789FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
1790FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
1791FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
1792FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
1793/** @} */
1794
1795/** @name Arithmetic assignment operations on quad words (binary).
1796 * @{ */
1797typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
1798typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
1799FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
1800FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
1801FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
1802FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
1803FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
1804FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
1805FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
1806FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
1807FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
1808FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
1809/** @} */
1810
1811typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
1812typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
1813typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
1814typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
1815typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
1816typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
1817typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
1818typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
1819
1820/** @name Compare operations (thrown in with the binary ops).
1821 * @{ */
1822FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
1823FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
1824FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
1825FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
1826/** @} */
1827
1828/** @name Test operations (thrown in with the binary ops).
1829 * @{ */
1830FNIEMAIMPLBINROU8 iemAImpl_test_u8;
1831FNIEMAIMPLBINROU16 iemAImpl_test_u16;
1832FNIEMAIMPLBINROU32 iemAImpl_test_u32;
1833FNIEMAIMPLBINROU64 iemAImpl_test_u64;
1834/** @} */
1835
1836/** @name Bit operations operations (thrown in with the binary ops).
1837 * @{ */
1838FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
1839FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
1840FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
1841FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
1842FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
1843FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
1844FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
1845FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
1846FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
1847FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
1848FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
1849FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
1850/** @} */
1851
1852/** @name Arithmetic three operand operations on double words (binary).
1853 * @{ */
1854typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
1855typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
1856FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
1857FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
1858FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
1859/** @} */
1860
1861/** @name Arithmetic three operand operations on quad words (binary).
1862 * @{ */
1863typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
1864typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
1865FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
1866FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
1867FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
1868/** @} */
1869
1870/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
1871 * @{ */
1872typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
1873typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
1874FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
1875FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
1876FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
1877FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
1878FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
1879FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
1880/** @} */
1881
1882/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
1883 * @{ */
1884typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
1885typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
1886FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
1887FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
1888FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
1889FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
1890FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
1891FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
1892/** @} */
1893
1894/** @name MULX 32-bit and 64-bit.
1895 * @{ */
1896typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
1897typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
1898FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
1899
1900typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
1901typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
1902FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
1903/** @} */
1904
1905
1906/** @name Exchange memory with register operations.
1907 * @{ */
1908IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
1909IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
1910IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
1911IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
1912IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
1913IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
1914IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
1915IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
1916/** @} */
1917
1918/** @name Exchange and add operations.
1919 * @{ */
1920IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
1921IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
1922IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
1923IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
1924IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
1925IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
1926IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
1927IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
1928/** @} */
1929
1930/** @name Compare and exchange.
1931 * @{ */
1932IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
1933IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
1934IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
1935IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
1936IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
1937IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
1938#if ARCH_BITS == 32
1939IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
1940IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
1941#else
1942IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
1943IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
1944#endif
1945IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
1946 uint32_t *pEFlags));
1947IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
1948 uint32_t *pEFlags));
1949IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
1950 uint32_t *pEFlags));
1951IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
1952 uint32_t *pEFlags));
1953#ifndef RT_ARCH_ARM64
1954IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
1955 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
1956#endif
1957/** @} */
1958
1959/** @name Memory ordering
1960 * @{ */
1961typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
1962typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
1963IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
1964IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
1965IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
1966#ifndef RT_ARCH_ARM64
1967IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
1968#endif
1969/** @} */
1970
1971/** @name Double precision shifts
1972 * @{ */
1973typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
1974typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
1975typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
1976typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
1977typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
1978typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
1979FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
1980FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
1981FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
1982FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
1983FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
1984FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
1985/** @} */
1986
1987
1988/** @name Bit search operations (thrown in with the binary ops).
1989 * @{ */
1990FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
1991FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
1992FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
1993FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
1994FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
1995FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
1996FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
1997FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
1998FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
1999FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2000FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2001FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2002FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2003FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2004FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2005/** @} */
2006
2007/** @name Signed multiplication operations (thrown in with the binary ops).
2008 * @{ */
2009FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2010FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2011FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2012/** @} */
2013
2014/** @name Arithmetic assignment operations on bytes (unary).
2015 * @{ */
2016typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2017typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2018FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2019FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2020FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2021FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2022/** @} */
2023
2024/** @name Arithmetic assignment operations on words (unary).
2025 * @{ */
2026typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2027typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2028FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2029FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2030FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2031FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2032/** @} */
2033
2034/** @name Arithmetic assignment operations on double words (unary).
2035 * @{ */
2036typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2037typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2038FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2039FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2040FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2041FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2042/** @} */
2043
2044/** @name Arithmetic assignment operations on quad words (unary).
2045 * @{ */
2046typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2047typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2048FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2049FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2050FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2051FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2052/** @} */
2053
2054
2055/** @name Shift operations on bytes (Group 2).
2056 * @{ */
2057typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2058typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2059FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2060FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2061FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2062FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2063FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2064FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2065FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2066/** @} */
2067
2068/** @name Shift operations on words (Group 2).
2069 * @{ */
2070typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2071typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2072FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2073FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2074FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2075FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2076FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2077FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2078FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2079/** @} */
2080
2081/** @name Shift operations on double words (Group 2).
2082 * @{ */
2083typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2084typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2085FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2086FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2087FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2088FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2089FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2090FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2091FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2092/** @} */
2093
2094/** @name Shift operations on words (Group 2).
2095 * @{ */
2096typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2097typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2098FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2099FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2100FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2101FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2102FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2103FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2104FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2105/** @} */
2106
2107/** @name Multiplication and division operations.
2108 * @{ */
2109typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2110typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2111FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2112FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2113FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2114FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2115
2116typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2117typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2118FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2119FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2120FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2121FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2122
2123typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2124typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2125FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2126FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2127FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2128FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2129
2130typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2131typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2132FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2133FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2134FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2135FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2136/** @} */
2137
2138/** @name Byte Swap.
2139 * @{ */
2140IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2141IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2142IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2143/** @} */
2144
2145/** @name Misc.
2146 * @{ */
2147FNIEMAIMPLBINU16 iemAImpl_arpl;
2148/** @} */
2149
2150/** @name RDRAND and RDSEED
2151 * @{ */
2152typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2153typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2154typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2155typedef FNIEMAIMPLRDRANDSEEDU16 *FNIEMAIMPLPRDRANDSEEDU16;
2156typedef FNIEMAIMPLRDRANDSEEDU32 *FNIEMAIMPLPRDRANDSEEDU32;
2157typedef FNIEMAIMPLRDRANDSEEDU64 *FNIEMAIMPLPRDRANDSEEDU64;
2158
2159FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2160FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2161FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2162FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2163FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2164FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2165/** @} */
2166
2167/** @name ADOX and ADCX
2168 * @{ */
2169typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU32,(uint32_t *puDst, uint32_t *pfEFlags, uint32_t uSrc));
2170typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU64,(uint64_t *puDst, uint32_t *pfEFlags, uint64_t uSrc));
2171typedef FNIEMAIMPLADXU32 *PFNIEMAIMPLADXU32;
2172typedef FNIEMAIMPLADXU64 *PFNIEMAIMPLADXU64;
2173
2174FNIEMAIMPLADXU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2175FNIEMAIMPLADXU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2176FNIEMAIMPLADXU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2177FNIEMAIMPLADXU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2178/** @} */
2179
2180/** @name FPU operations taking a 32-bit float argument
2181 * @{ */
2182typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2183 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2184typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2185
2186typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2187 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2188typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2189
2190FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2191FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2192FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2193FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2194FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2195FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2196FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2197
2198IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2199IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2200 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2201/** @} */
2202
2203/** @name FPU operations taking a 64-bit float argument
2204 * @{ */
2205typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2206 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2207typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2208
2209typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2210 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2211typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2212
2213FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2214FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2215FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2216FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2217FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2218FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2219FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2220
2221IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2222IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2223 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2224/** @} */
2225
2226/** @name FPU operations taking a 80-bit float argument
2227 * @{ */
2228typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2229 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2230typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2231FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2232FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2233FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2234FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2235FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2236FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2237FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2238FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2239FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2240
2241FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2242FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2243FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2244
2245typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2246 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2247typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2248FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2249FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2250
2251typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2252 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2253typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2254FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2255FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2256
2257typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2258typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2259FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2260FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2261FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2262FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2263FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2264FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2265FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2266
2267typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2268typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2269FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2270FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2271
2272typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2273typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2274FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2275FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2276FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2277FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2278FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2279FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2280FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2281
2282typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2283 PCRTFLOAT80U pr80Val));
2284typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
2285FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
2286FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
2287FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
2288
2289IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2290IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2291 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
2292
2293IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
2294IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2295 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
2296
2297/** @} */
2298
2299/** @name FPU operations taking a 16-bit signed integer argument
2300 * @{ */
2301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2302 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2303typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
2304typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2305 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
2306typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
2307
2308FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
2309FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
2310FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
2311FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
2312FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
2313FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
2314
2315typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2316 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2317typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
2318FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
2319
2320IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
2321FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
2322FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
2323/** @} */
2324
2325/** @name FPU operations taking a 32-bit signed integer argument
2326 * @{ */
2327typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2328 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2329typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
2330typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2331 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
2332typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
2333
2334FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
2335FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
2336FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
2337FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
2338FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
2339FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
2340
2341typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2342 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2343typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
2344FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
2345
2346IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
2347FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
2348FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
2349/** @} */
2350
2351/** @name FPU operations taking a 64-bit signed integer argument
2352 * @{ */
2353typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2354 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
2355typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
2356
2357IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
2358FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
2359FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
2360/** @} */
2361
2362
2363/** Temporary type representing a 256-bit vector register. */
2364typedef struct { uint64_t au64[4]; } IEMVMM256;
2365/** Temporary type pointing to a 256-bit vector register. */
2366typedef IEMVMM256 *PIEMVMM256;
2367/** Temporary type pointing to a const 256-bit vector register. */
2368typedef IEMVMM256 *PCIEMVMM256;
2369
2370
2371/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
2372 * @{ */
2373typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
2374typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
2375typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
2376typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
2377typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2378typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
2379typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2380typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
2381typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
2382typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
2383typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
2384typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
2385typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2386typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
2387typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2388typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
2389typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
2390typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
2391FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
2392FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
2393FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
2394FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
2395FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
2396FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
2397FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
2398FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
2399FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
2400FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
2401FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
2402FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
2403FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64;
2404FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
2405FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
2406FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
2407FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
2408FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
2409FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
2410FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
2411FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
2412FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
2413FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
2414FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
2415FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
2416FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
2417FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
2418FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
2419FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
2420FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
2421FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
2422FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
2423FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
2424FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
2425FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
2426FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
2427FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
2428FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
2429FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
2430
2431FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
2432FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
2433FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
2434FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
2435FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
2436FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
2437FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
2438FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
2439FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
2440FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
2441FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
2442FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
2443FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
2444FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
2445FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
2446FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
2447FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
2448FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128;
2449FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
2450FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
2451FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
2452FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
2453FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
2454FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
2455FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
2456FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
2457FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
2458FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
2459FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
2460FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
2461FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
2462FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
2463FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
2464FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
2465FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
2466FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
2467FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
2468FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
2469FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
2470FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
2471FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
2472FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
2473FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
2474FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
2475FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
2476FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
2477FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
2478FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
2479FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
2480FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
2481FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
2482FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
2483FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
2484FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
2485FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
2486FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
2487FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
2488
2489FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
2490FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
2491FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
2492FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
2493FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
2494FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
2495FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
2496FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
2497FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
2498FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
2499FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
2500FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
2501FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
2502FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
2503FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
2504FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
2505FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
2506FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
2507FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
2508FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
2509FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
2510FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
2511FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
2512FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
2513FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
2514FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
2515FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
2516FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
2517FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
2518FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
2519FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
2520FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
2521FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
2522FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
2523FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
2524FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
2525FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
2526FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
2527FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
2528FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
2529FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
2530FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
2531FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
2532FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
2533FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
2534FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
2535FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
2536FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
2537FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
2538FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
2539FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
2540FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
2541FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
2542FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
2543FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
2544FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
2545FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
2546FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
2547FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
2548FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
2549FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
2550FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
2551FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
2552FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
2553FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
2554
2555FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
2556FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
2557FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
2558FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
2559
2560FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
2561FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
2562FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
2563FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
2564FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
2565FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
2566FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
2567FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
2568FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
2569FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
2570FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
2571FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
2572FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
2573FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
2574FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
2575FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
2576FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
2577FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
2578FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
2579FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
2580FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
2581FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
2582FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
2583FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
2584FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
2585FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
2586FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
2587FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
2588FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
2589FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
2590FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
2591FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
2592FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
2593FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
2594FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
2595FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
2596FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
2597FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
2598FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
2599FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
2600FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
2601FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
2602FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
2603FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
2604FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
2605FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
2606FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
2607FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
2608FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
2609FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
2610FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
2611FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
2612FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
2613FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
2614FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
2615FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
2616FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
2617FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
2618FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
2619FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
2620FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
2621FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
2622FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
2623FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
2624FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
2625
2626FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
2627FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
2628FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
2629/** @} */
2630
2631/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
2632 * @{ */
2633FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
2634FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
2635FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
2636 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
2637 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
2638 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
2639 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
2640 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
2641 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
2642 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
2643
2644FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
2645 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
2646 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
2647 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
2648 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
2649 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
2650 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
2651 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
2652/** @} */
2653
2654/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
2655 * @{ */
2656FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
2657FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
2658FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
2659 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
2660 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
2661 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
2662FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
2663 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
2664 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
2665 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
2666/** @} */
2667
2668/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
2669 * @{ */
2670typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
2671typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
2672typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
2673typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
2674IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
2675FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
2676#ifndef IEM_WITHOUT_ASSEMBLY
2677FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
2678#endif
2679FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
2680/** @} */
2681
2682/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
2683 * @{ */
2684typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
2685typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
2686typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
2687typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
2688typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
2689typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
2690FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
2691FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
2692FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
2693FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
2694FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
2695FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
2696FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
2697/** @} */
2698
2699/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
2700 * @{ */
2701IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
2702IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
2703#ifndef IEM_WITHOUT_ASSEMBLY
2704IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
2705#endif
2706IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
2707/** @} */
2708
2709/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
2710 * @{ */
2711typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
2712typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
2713typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
2714typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
2715typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
2716typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
2717
2718FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
2719FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
2720FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
2721FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
2722FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
2723FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
2724
2725FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
2726FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
2727FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
2728FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
2729FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
2730FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
2731
2732FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
2733FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
2734FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
2735FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
2736FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
2737FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
2738/** @} */
2739
2740
2741/** @name Media (SSE/MMX/AVX) operation: Sort this later
2742 * @{ */
2743IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2744IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2745IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2746IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2747IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2748IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2749
2750IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
2751IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
2752IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
2753IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2754IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2755
2756IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
2757IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
2758IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
2759IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2760IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2761
2762IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
2763IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
2764IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
2765IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2766IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2767
2768IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
2769IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
2770IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
2771IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2772IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2773
2774IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
2775IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
2776IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
2777IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2778IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2779
2780IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
2781IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
2782IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
2783IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2784IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2785
2786IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
2787IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
2788IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
2789IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2790IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2791
2792IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
2793IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
2794IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
2795IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2796IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2797
2798IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
2799IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
2800IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
2801IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2802IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2803
2804IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
2805IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
2806IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
2807IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2808IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2809
2810IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
2811IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
2812IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
2813IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2814IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2815
2816IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
2817IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
2818IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
2819IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2820IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
2821
2822IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
2823IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
2824IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
2825IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
2826IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
2827
2828IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
2829IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
2830IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
2831IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
2832IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
2833
2834IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
2835IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
2836
2837IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
2838IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
2839IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
2840IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
2841
2842IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
2843IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
2844IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
2845IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
2846
2847IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
2848IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
2849IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
2850IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
2851IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
2852
2853IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
2854IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
2855IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
2856IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
2857IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
2858
2859
2860typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
2861typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
2862typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
2863typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
2864typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
2865typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
2866
2867FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
2868FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
2869FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
2870FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
2871
2872FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
2873FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
2874FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
2875FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
2876
2877FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
2878FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
2879FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
2880FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
2881FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
2882FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
2883
2884FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
2885FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
2886FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
2887FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
2888FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
2889
2890FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
2891FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
2892FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
2893FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
2894FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
2895
2896FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
2897
2898FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
2899
2900FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
2901FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
2902FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
2903FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
2904FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
2905FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
2906IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
2907IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
2908
2909typedef struct IEMPCMPISTRXSRC
2910{
2911 RTUINT128U uSrc1;
2912 RTUINT128U uSrc2;
2913} IEMPCMPISTRXSRC;
2914typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
2915typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
2916
2917typedef struct IEMPCMPESTRXSRC
2918{
2919 RTUINT128U uSrc1;
2920 RTUINT128U uSrc2;
2921 uint64_t u64Rax;
2922 uint64_t u64Rdx;
2923} IEMPCMPESTRXSRC;
2924typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
2925typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
2926
2927typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
2928typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
2929typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
2930typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
2931
2932typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
2933typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
2934typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
2935typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
2936
2937FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
2938FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
2939FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
2940FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
2941
2942FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
2943FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
2944
2945FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
2946/** @} */
2947
2948/** @name Media Odds and Ends
2949 * @{ */
2950typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
2951typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
2952typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
2953typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
2954FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
2955FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
2956FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
2957FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
2958
2959typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
2960typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
2961FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
2962FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
2963
2964typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
2965typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
2966typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
2967typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
2968typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
2969typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
2970typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
2971typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
2972
2973FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
2974FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
2975
2976FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
2977FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
2978
2979FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
2980FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
2981
2982FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
2983FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
2984
2985typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
2986typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
2987typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
2988typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
2989
2990FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
2991FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
2992
2993typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
2994typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
2995typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
2996typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
2997
2998FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
2999FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3000
3001
3002typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3003typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3004
3005FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3006FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3007
3008FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3009FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3010
3011FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3012FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3013
3014FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3015FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3016
3017
3018typedef struct IEMMEDIAF2XMMSRC
3019{
3020 X86XMMREG uSrc1;
3021 X86XMMREG uSrc2;
3022} IEMMEDIAF2XMMSRC;
3023typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3024typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3025
3026typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3027typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3028
3029FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3030FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3031FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3032FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3033FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3034FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3035
3036FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3037FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3038
3039FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3040FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3041
3042typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3043typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3044
3045FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3046FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3047
3048typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3049typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3050
3051FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3052FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3053
3054typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3055typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3056
3057FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3058FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3059
3060/** @} */
3061
3062
3063/** @name Function tables.
3064 * @{
3065 */
3066
3067/**
3068 * Function table for a binary operator providing implementation based on
3069 * operand size.
3070 */
3071typedef struct IEMOPBINSIZES
3072{
3073 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3074 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3075 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3076 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3077} IEMOPBINSIZES;
3078/** Pointer to a binary operator function table. */
3079typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3080
3081
3082/**
3083 * Function table for a unary operator providing implementation based on
3084 * operand size.
3085 */
3086typedef struct IEMOPUNARYSIZES
3087{
3088 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3089 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3090 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3091 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3092} IEMOPUNARYSIZES;
3093/** Pointer to a unary operator function table. */
3094typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3095
3096
3097/**
3098 * Function table for a shift operator providing implementation based on
3099 * operand size.
3100 */
3101typedef struct IEMOPSHIFTSIZES
3102{
3103 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3104 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3105 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3106 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3107} IEMOPSHIFTSIZES;
3108/** Pointer to a shift operator function table. */
3109typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3110
3111
3112/**
3113 * Function table for a multiplication or division operation.
3114 */
3115typedef struct IEMOPMULDIVSIZES
3116{
3117 PFNIEMAIMPLMULDIVU8 pfnU8;
3118 PFNIEMAIMPLMULDIVU16 pfnU16;
3119 PFNIEMAIMPLMULDIVU32 pfnU32;
3120 PFNIEMAIMPLMULDIVU64 pfnU64;
3121} IEMOPMULDIVSIZES;
3122/** Pointer to a multiplication or division operation function table. */
3123typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3124
3125
3126/**
3127 * Function table for a double precision shift operator providing implementation
3128 * based on operand size.
3129 */
3130typedef struct IEMOPSHIFTDBLSIZES
3131{
3132 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3133 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3134 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3135} IEMOPSHIFTDBLSIZES;
3136/** Pointer to a double precision shift function table. */
3137typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3138
3139
3140/**
3141 * Function table for media instruction taking two full sized media source
3142 * registers and one full sized destination register (AVX).
3143 */
3144typedef struct IEMOPMEDIAF3
3145{
3146 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3147 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3148} IEMOPMEDIAF3;
3149/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3150typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3151
3152/** @def IEMOPMEDIAF3_INIT_VARS_EX
3153 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3154 * given functions as initializers. For use in AVX functions where a pair of
3155 * functions are only used once and the function table need not be public. */
3156#ifndef TST_IEM_CHECK_MC
3157# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3158# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3159 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3160 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3161# else
3162# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3163 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3164# endif
3165#else
3166# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3167#endif
3168/** @def IEMOPMEDIAF3_INIT_VARS
3169 * Generate AVX function tables for the @a a_InstrNm instruction.
3170 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3171#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3172 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3173 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3174
3175/**
3176 * Function table for media instruction taking two full sized media source
3177 * registers and one full sized destination register, but no additional state
3178 * (AVX).
3179 */
3180typedef struct IEMOPMEDIAOPTF3
3181{
3182 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3183 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3184} IEMOPMEDIAOPTF3;
3185/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3186typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3187
3188/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3189 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3190 * given functions as initializers. For use in AVX functions where a pair of
3191 * functions are only used once and the function table need not be public. */
3192#ifndef TST_IEM_CHECK_MC
3193# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3194# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3195 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3196 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3197# else
3198# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3199 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3200# endif
3201#else
3202# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3203#endif
3204/** @def IEMOPMEDIAOPTF3_INIT_VARS
3205 * Generate AVX function tables for the @a a_InstrNm instruction.
3206 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3207#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3208 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3209 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3210
3211/**
3212 * Function table for media instruction taking one full sized media source
3213 * registers and one full sized destination register, but no additional state
3214 * (AVX).
3215 */
3216typedef struct IEMOPMEDIAOPTF2
3217{
3218 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
3219 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
3220} IEMOPMEDIAOPTF2;
3221/** Pointer to a media operation function table for 2 full sized ops (AVX). */
3222typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
3223
3224/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
3225 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3226 * given functions as initializers. For use in AVX functions where a pair of
3227 * functions are only used once and the function table need not be public. */
3228#ifndef TST_IEM_CHECK_MC
3229# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3230# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3231 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3232 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3233# else
3234# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3235 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3236# endif
3237#else
3238# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3239#endif
3240/** @def IEMOPMEDIAOPTF2_INIT_VARS
3241 * Generate AVX function tables for the @a a_InstrNm instruction.
3242 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
3243#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
3244 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3245 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3246
3247/**
3248 * Function table for media instruction taking two full sized media source
3249 * registers and one full sized destination register and an 8-bit immediate, but no additional state
3250 * (AVX).
3251 */
3252typedef struct IEMOPMEDIAOPTF3IMM8
3253{
3254 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
3255 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
3256} IEMOPMEDIAOPTF3IMM8;
3257/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3258typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
3259
3260/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
3261 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3262 * given functions as initializers. For use in AVX functions where a pair of
3263 * functions are only used once and the function table need not be public. */
3264#ifndef TST_IEM_CHECK_MC
3265# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3266# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3267 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3268 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3269# else
3270# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3271 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3272# endif
3273#else
3274# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3275#endif
3276/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
3277 * Generate AVX function tables for the @a a_InstrNm instruction.
3278 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
3279#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
3280 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3281 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3282/** @} */
3283
3284
3285/**
3286 * Function table for blend type instruction taking three full sized media source
3287 * registers and one full sized destination register, but no additional state
3288 * (AVX).
3289 */
3290typedef struct IEMOPBLENDOP
3291{
3292 PFNIEMAIMPLAVXBLENDU128 pfnU128;
3293 PFNIEMAIMPLAVXBLENDU256 pfnU256;
3294} IEMOPBLENDOP;
3295/** Pointer to a media operation function table for 4 full sized ops (AVX). */
3296typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
3297
3298/** @def IEMOPBLENDOP_INIT_VARS_EX
3299 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3300 * given functions as initializers. For use in AVX functions where a pair of
3301 * functions are only used once and the function table need not be public. */
3302#ifndef TST_IEM_CHECK_MC
3303# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3304# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3305 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3306 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3307# else
3308# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3309 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3310# endif
3311#else
3312# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3313#endif
3314/** @def IEMOPBLENDOP_INIT_VARS
3315 * Generate AVX function tables for the @a a_InstrNm instruction.
3316 * @sa IEMOPBLENDOP_INIT_VARS_EX */
3317#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
3318 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3319 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3320
3321
3322/** @name SSE/AVX single/double precision floating point operations.
3323 * @{ */
3324/**
3325 * A SSE result.
3326 */
3327typedef struct IEMSSERESULT
3328{
3329 /** The output value. */
3330 X86XMMREG uResult;
3331 /** The output status. */
3332 uint32_t MXCSR;
3333} IEMSSERESULT;
3334AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
3335/** Pointer to a SSE result. */
3336typedef IEMSSERESULT *PIEMSSERESULT;
3337/** Pointer to a const SSE result. */
3338typedef IEMSSERESULT const *PCIEMSSERESULT;
3339
3340
3341/**
3342 * A AVX128 result.
3343 */
3344typedef struct IEMAVX128RESULT
3345{
3346 /** The output value. */
3347 X86XMMREG uResult;
3348 /** The output status. */
3349 uint32_t MXCSR;
3350} IEMAVX128RESULT;
3351AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
3352/** Pointer to a AVX128 result. */
3353typedef IEMAVX128RESULT *PIEMAVX128RESULT;
3354/** Pointer to a const AVX128 result. */
3355typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
3356
3357
3358/**
3359 * A AVX256 result.
3360 */
3361typedef struct IEMAVX256RESULT
3362{
3363 /** The output value. */
3364 X86YMMREG uResult;
3365 /** The output status. */
3366 uint32_t MXCSR;
3367} IEMAVX256RESULT;
3368AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
3369/** Pointer to a AVX256 result. */
3370typedef IEMAVX256RESULT *PIEMAVX256RESULT;
3371/** Pointer to a const AVX256 result. */
3372typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
3373
3374
3375typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3376typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
3377typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3378typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
3379typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3380typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
3381
3382typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3383typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
3384typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3385typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
3386typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3387typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
3388
3389typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3390typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
3391
3392FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
3393FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
3394FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
3395FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
3396FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
3397FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
3398FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
3399FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
3400FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
3401FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
3402FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
3403FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
3404FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
3405FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
3406FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
3407FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
3408FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
3409FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
3410FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
3411FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
3412FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
3413FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
3414FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
3415
3416FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
3417FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
3418FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
3419FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
3420FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
3421FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
3422
3423FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
3424FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
3425FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
3426FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
3427FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
3428FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
3429FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
3430FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
3431FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
3432FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
3433FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
3434FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
3435FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
3436FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
3437FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
3438FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
3439FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
3440
3441FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
3442FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
3443FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
3444FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
3445FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
3446FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
3447FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
3448FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
3449FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
3450FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
3451FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
3452FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
3453FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
3454FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
3455FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
3456FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
3457FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
3458FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
3459FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
3460FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
3461FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
3462FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
3463
3464FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
3465FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
3466FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
3467FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
3468FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
3469FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
3470FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
3471FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
3472FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
3473FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
3474FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
3475FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
3476FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
3477FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
3478
3479FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
3480FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
3481FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
3482FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
3483FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
3484FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
3485FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
3486FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
3487FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
3488FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
3489FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
3490FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
3491FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
3492FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
3493FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
3494FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
3495FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
3496FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
3497FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
3498FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
3499/** @} */
3500
3501/** @name C instruction implementations for anything slightly complicated.
3502 * @{ */
3503
3504/**
3505 * For typedef'ing or declaring a C instruction implementation function taking
3506 * no extra arguments.
3507 *
3508 * @param a_Name The name of the type.
3509 */
3510# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
3511 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3512/**
3513 * For defining a C instruction implementation function taking no extra
3514 * arguments.
3515 *
3516 * @param a_Name The name of the function
3517 */
3518# define IEM_CIMPL_DEF_0(a_Name) \
3519 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3520/**
3521 * Prototype version of IEM_CIMPL_DEF_0.
3522 */
3523# define IEM_CIMPL_PROTO_0(a_Name) \
3524 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3525/**
3526 * For calling a C instruction implementation function taking no extra
3527 * arguments.
3528 *
3529 * This special call macro adds default arguments to the call and allow us to
3530 * change these later.
3531 *
3532 * @param a_fn The name of the function.
3533 */
3534# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
3535
3536/** Type for a C instruction implementation function taking no extra
3537 * arguments. */
3538typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
3539/** Function pointer type for a C instruction implementation function taking
3540 * no extra arguments. */
3541typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
3542
3543/**
3544 * For typedef'ing or declaring a C instruction implementation function taking
3545 * one extra argument.
3546 *
3547 * @param a_Name The name of the type.
3548 * @param a_Type0 The argument type.
3549 * @param a_Arg0 The argument name.
3550 */
3551# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
3552 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3553/**
3554 * For defining a C instruction implementation function taking one extra
3555 * argument.
3556 *
3557 * @param a_Name The name of the function
3558 * @param a_Type0 The argument type.
3559 * @param a_Arg0 The argument name.
3560 */
3561# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
3562 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3563/**
3564 * Prototype version of IEM_CIMPL_DEF_1.
3565 */
3566# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
3567 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3568/**
3569 * For calling a C instruction implementation function taking one extra
3570 * argument.
3571 *
3572 * This special call macro adds default arguments to the call and allow us to
3573 * change these later.
3574 *
3575 * @param a_fn The name of the function.
3576 * @param a0 The name of the 1st argument.
3577 */
3578# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
3579
3580/**
3581 * For typedef'ing or declaring a C instruction implementation function taking
3582 * two extra arguments.
3583 *
3584 * @param a_Name The name of the type.
3585 * @param a_Type0 The type of the 1st argument
3586 * @param a_Arg0 The name of the 1st argument.
3587 * @param a_Type1 The type of the 2nd argument.
3588 * @param a_Arg1 The name of the 2nd argument.
3589 */
3590# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3591 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3592/**
3593 * For defining a C instruction implementation function taking two extra
3594 * arguments.
3595 *
3596 * @param a_Name The name of the function.
3597 * @param a_Type0 The type of the 1st argument
3598 * @param a_Arg0 The name of the 1st argument.
3599 * @param a_Type1 The type of the 2nd argument.
3600 * @param a_Arg1 The name of the 2nd argument.
3601 */
3602# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3603 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3604/**
3605 * Prototype version of IEM_CIMPL_DEF_2.
3606 */
3607# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3608 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3609/**
3610 * For calling a C instruction implementation function taking two extra
3611 * arguments.
3612 *
3613 * This special call macro adds default arguments to the call and allow us to
3614 * change these later.
3615 *
3616 * @param a_fn The name of the function.
3617 * @param a0 The name of the 1st argument.
3618 * @param a1 The name of the 2nd argument.
3619 */
3620# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
3621
3622/**
3623 * For typedef'ing or declaring a C instruction implementation function taking
3624 * three extra arguments.
3625 *
3626 * @param a_Name The name of the type.
3627 * @param a_Type0 The type of the 1st argument
3628 * @param a_Arg0 The name of the 1st argument.
3629 * @param a_Type1 The type of the 2nd argument.
3630 * @param a_Arg1 The name of the 2nd argument.
3631 * @param a_Type2 The type of the 3rd argument.
3632 * @param a_Arg2 The name of the 3rd argument.
3633 */
3634# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3635 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3636/**
3637 * For defining a C instruction implementation function taking three extra
3638 * arguments.
3639 *
3640 * @param a_Name The name of the function.
3641 * @param a_Type0 The type of the 1st argument
3642 * @param a_Arg0 The name of the 1st argument.
3643 * @param a_Type1 The type of the 2nd argument.
3644 * @param a_Arg1 The name of the 2nd argument.
3645 * @param a_Type2 The type of the 3rd argument.
3646 * @param a_Arg2 The name of the 3rd argument.
3647 */
3648# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3649 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3650/**
3651 * Prototype version of IEM_CIMPL_DEF_3.
3652 */
3653# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3654 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3655/**
3656 * For calling a C instruction implementation function taking three extra
3657 * arguments.
3658 *
3659 * This special call macro adds default arguments to the call and allow us to
3660 * change these later.
3661 *
3662 * @param a_fn The name of the function.
3663 * @param a0 The name of the 1st argument.
3664 * @param a1 The name of the 2nd argument.
3665 * @param a2 The name of the 3rd argument.
3666 */
3667# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
3668
3669
3670/**
3671 * For typedef'ing or declaring a C instruction implementation function taking
3672 * four extra arguments.
3673 *
3674 * @param a_Name The name of the type.
3675 * @param a_Type0 The type of the 1st argument
3676 * @param a_Arg0 The name of the 1st argument.
3677 * @param a_Type1 The type of the 2nd argument.
3678 * @param a_Arg1 The name of the 2nd argument.
3679 * @param a_Type2 The type of the 3rd argument.
3680 * @param a_Arg2 The name of the 3rd argument.
3681 * @param a_Type3 The type of the 4th argument.
3682 * @param a_Arg3 The name of the 4th argument.
3683 */
3684# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3685 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
3686/**
3687 * For defining a C instruction implementation function taking four extra
3688 * arguments.
3689 *
3690 * @param a_Name The name of the function.
3691 * @param a_Type0 The type of the 1st argument
3692 * @param a_Arg0 The name of the 1st argument.
3693 * @param a_Type1 The type of the 2nd argument.
3694 * @param a_Arg1 The name of the 2nd argument.
3695 * @param a_Type2 The type of the 3rd argument.
3696 * @param a_Arg2 The name of the 3rd argument.
3697 * @param a_Type3 The type of the 4th argument.
3698 * @param a_Arg3 The name of the 4th argument.
3699 */
3700# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3701 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3702 a_Type2 a_Arg2, a_Type3 a_Arg3))
3703/**
3704 * Prototype version of IEM_CIMPL_DEF_4.
3705 */
3706# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3707 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3708 a_Type2 a_Arg2, a_Type3 a_Arg3))
3709/**
3710 * For calling a C instruction implementation function taking four extra
3711 * arguments.
3712 *
3713 * This special call macro adds default arguments to the call and allow us to
3714 * change these later.
3715 *
3716 * @param a_fn The name of the function.
3717 * @param a0 The name of the 1st argument.
3718 * @param a1 The name of the 2nd argument.
3719 * @param a2 The name of the 3rd argument.
3720 * @param a3 The name of the 4th argument.
3721 */
3722# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
3723
3724
3725/**
3726 * For typedef'ing or declaring a C instruction implementation function taking
3727 * five extra arguments.
3728 *
3729 * @param a_Name The name of the type.
3730 * @param a_Type0 The type of the 1st argument
3731 * @param a_Arg0 The name of the 1st argument.
3732 * @param a_Type1 The type of the 2nd argument.
3733 * @param a_Arg1 The name of the 2nd argument.
3734 * @param a_Type2 The type of the 3rd argument.
3735 * @param a_Arg2 The name of the 3rd argument.
3736 * @param a_Type3 The type of the 4th argument.
3737 * @param a_Arg3 The name of the 4th argument.
3738 * @param a_Type4 The type of the 5th argument.
3739 * @param a_Arg4 The name of the 5th argument.
3740 */
3741# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
3742 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
3743 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
3744 a_Type3 a_Arg3, a_Type4 a_Arg4))
3745/**
3746 * For defining a C instruction implementation function taking five extra
3747 * arguments.
3748 *
3749 * @param a_Name The name of the function.
3750 * @param a_Type0 The type of the 1st argument
3751 * @param a_Arg0 The name of the 1st argument.
3752 * @param a_Type1 The type of the 2nd argument.
3753 * @param a_Arg1 The name of the 2nd argument.
3754 * @param a_Type2 The type of the 3rd argument.
3755 * @param a_Arg2 The name of the 3rd argument.
3756 * @param a_Type3 The type of the 4th argument.
3757 * @param a_Arg3 The name of the 4th argument.
3758 * @param a_Type4 The type of the 5th argument.
3759 * @param a_Arg4 The name of the 5th argument.
3760 */
3761# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
3762 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3763 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
3764/**
3765 * Prototype version of IEM_CIMPL_DEF_5.
3766 */
3767# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
3768 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3769 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
3770/**
3771 * For calling a C instruction implementation function taking five extra
3772 * arguments.
3773 *
3774 * This special call macro adds default arguments to the call and allow us to
3775 * change these later.
3776 *
3777 * @param a_fn The name of the function.
3778 * @param a0 The name of the 1st argument.
3779 * @param a1 The name of the 2nd argument.
3780 * @param a2 The name of the 3rd argument.
3781 * @param a3 The name of the 4th argument.
3782 * @param a4 The name of the 5th argument.
3783 */
3784# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
3785
3786/** @} */
3787
3788
3789/** @name Opcode Decoder Function Types.
3790 * @{ */
3791
3792/** @typedef PFNIEMOP
3793 * Pointer to an opcode decoder function.
3794 */
3795
3796/** @def FNIEMOP_DEF
3797 * Define an opcode decoder function.
3798 *
3799 * We're using macors for this so that adding and removing parameters as well as
3800 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
3801 *
3802 * @param a_Name The function name.
3803 */
3804
3805/** @typedef PFNIEMOPRM
3806 * Pointer to an opcode decoder function with RM byte.
3807 */
3808
3809/** @def FNIEMOPRM_DEF
3810 * Define an opcode decoder function with RM byte.
3811 *
3812 * We're using macors for this so that adding and removing parameters as well as
3813 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
3814 *
3815 * @param a_Name The function name.
3816 */
3817
3818#if defined(__GNUC__) && defined(RT_ARCH_X86)
3819typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
3820typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
3821# define FNIEMOP_DEF(a_Name) \
3822 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
3823# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
3824 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
3825# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
3826 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
3827
3828#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
3829typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
3830typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
3831# define FNIEMOP_DEF(a_Name) \
3832 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
3833# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
3834 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
3835# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
3836 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
3837
3838#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
3839typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
3840typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
3841# define FNIEMOP_DEF(a_Name) \
3842 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
3843# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
3844 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
3845# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
3846 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
3847
3848#else
3849typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
3850typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
3851# define FNIEMOP_DEF(a_Name) \
3852 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
3853# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
3854 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
3855# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
3856 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
3857
3858#endif
3859#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
3860
3861/**
3862 * Call an opcode decoder function.
3863 *
3864 * We're using macors for this so that adding and removing parameters can be
3865 * done as we please. See FNIEMOP_DEF.
3866 */
3867#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
3868
3869/**
3870 * Call a common opcode decoder function taking one extra argument.
3871 *
3872 * We're using macors for this so that adding and removing parameters can be
3873 * done as we please. See FNIEMOP_DEF_1.
3874 */
3875#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
3876
3877/**
3878 * Call a common opcode decoder function taking one extra argument.
3879 *
3880 * We're using macors for this so that adding and removing parameters can be
3881 * done as we please. See FNIEMOP_DEF_1.
3882 */
3883#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
3884/** @} */
3885
3886
3887/** @name Misc Helpers
3888 * @{ */
3889
3890/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
3891 * due to GCC lacking knowledge about the value range of a switch. */
3892#if RT_CPLUSPLUS_PREREQ(202000)
3893# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
3894#else
3895# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
3896#endif
3897
3898/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
3899#if RT_CPLUSPLUS_PREREQ(202000)
3900# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
3901#else
3902# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
3903#endif
3904
3905/**
3906 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
3907 * occation.
3908 */
3909#ifdef LOG_ENABLED
3910# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
3911 do { \
3912 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
3913 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
3914 } while (0)
3915#else
3916# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
3917 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
3918#endif
3919
3920/**
3921 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
3922 * occation using the supplied logger statement.
3923 *
3924 * @param a_LoggerArgs What to log on failure.
3925 */
3926#ifdef LOG_ENABLED
3927# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
3928 do { \
3929 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
3930 /*LogFunc(a_LoggerArgs);*/ \
3931 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
3932 } while (0)
3933#else
3934# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
3935 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
3936#endif
3937
3938/**
3939 * Gets the CPU mode (from fExec) as a IEMMODE value.
3940 *
3941 * @returns IEMMODE
3942 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3943 */
3944#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
3945
3946/**
3947 * Check if we're currently executing in real or virtual 8086 mode.
3948 *
3949 * @returns @c true if it is, @c false if not.
3950 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3951 */
3952#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
3953 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
3954
3955/**
3956 * Check if we're currently executing in virtual 8086 mode.
3957 *
3958 * @returns @c true if it is, @c false if not.
3959 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3960 */
3961#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
3962
3963/**
3964 * Check if we're currently executing in long mode.
3965 *
3966 * @returns @c true if it is, @c false if not.
3967 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3968 */
3969#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
3970
3971/**
3972 * Check if we're currently executing in a 16-bit code segment.
3973 *
3974 * @returns @c true if it is, @c false if not.
3975 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3976 */
3977#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
3978
3979/**
3980 * Check if we're currently executing in a 32-bit code segment.
3981 *
3982 * @returns @c true if it is, @c false if not.
3983 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3984 */
3985#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
3986
3987/**
3988 * Check if we're currently executing in a 64-bit code segment.
3989 *
3990 * @returns @c true if it is, @c false if not.
3991 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
3992 */
3993#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
3994
3995/**
3996 * Check if we're currently executing in real mode.
3997 *
3998 * @returns @c true if it is, @c false if not.
3999 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4000 */
4001#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4002
4003/**
4004 * Gets the current protection level (CPL).
4005 *
4006 * @returns 0..3
4007 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4008 */
4009#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4010
4011/**
4012 * Sets the current protection level (CPL).
4013 *
4014 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4015 */
4016#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4017 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4018
4019/**
4020 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4021 * @returns PCCPUMFEATURES
4022 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4023 */
4024#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4025
4026/**
4027 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4028 * @returns PCCPUMFEATURES
4029 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4030 */
4031#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4032
4033/**
4034 * Evaluates to true if we're presenting an Intel CPU to the guest.
4035 */
4036#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4037
4038/**
4039 * Evaluates to true if we're presenting an AMD CPU to the guest.
4040 */
4041#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4042
4043/**
4044 * Check if the address is canonical.
4045 */
4046#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4047
4048/** Checks if the ModR/M byte is in register mode or not. */
4049#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4050/** Checks if the ModR/M byte is in memory mode or not. */
4051#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4052
4053/**
4054 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4055 *
4056 * For use during decoding.
4057 */
4058#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4059/**
4060 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4061 *
4062 * For use during decoding.
4063 */
4064#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4065
4066/**
4067 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4068 *
4069 * For use during decoding.
4070 */
4071#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4072/**
4073 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4074 *
4075 * For use during decoding.
4076 */
4077#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4078
4079/**
4080 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4081 * register index, with REX.R added in.
4082 *
4083 * For use during decoding.
4084 *
4085 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4086 */
4087#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4088 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4089 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4090 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4091/**
4092 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4093 * with REX.B added in.
4094 *
4095 * For use during decoding.
4096 *
4097 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4098 */
4099#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4100 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4101 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4102 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4103
4104/**
4105 * Combines the prefix REX and ModR/M byte for passing to
4106 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4107 *
4108 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4109 * The two bits are part of the REG sub-field, which isn't needed in
4110 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4111 *
4112 * For use during decoding/recompiling.
4113 */
4114#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4115 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4116 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (26 - 3) ) )
4117AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(26));
4118AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(27));
4119
4120/**
4121 * Gets the effective VEX.VVVV value.
4122 *
4123 * The 4th bit is ignored if not 64-bit code.
4124 * @returns effective V-register value.
4125 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4126 */
4127#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4128 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4129
4130
4131/**
4132 * Checks if we're executing inside an AMD-V or VT-x guest.
4133 */
4134#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4135# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4136#else
4137# define IEM_IS_IN_GUEST(a_pVCpu) false
4138#endif
4139
4140
4141#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4142
4143/**
4144 * Check if the guest has entered VMX root operation.
4145 */
4146# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4147
4148/**
4149 * Check if the guest has entered VMX non-root operation.
4150 */
4151# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4152 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4153
4154/**
4155 * Check if the nested-guest has the given Pin-based VM-execution control set.
4156 */
4157# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4158
4159/**
4160 * Check if the nested-guest has the given Processor-based VM-execution control set.
4161 */
4162# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4163
4164/**
4165 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4166 * control set.
4167 */
4168# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4169
4170/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4171# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4172
4173/** Whether a shadow VMCS is present for the given VCPU. */
4174# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4175
4176/** Gets the VMXON region pointer. */
4177# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4178
4179/** Gets the guest-physical address of the current VMCS for the given VCPU. */
4180# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
4181
4182/** Whether a current VMCS is present for the given VCPU. */
4183# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4184
4185/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
4186# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
4187 do \
4188 { \
4189 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
4190 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
4191 } while (0)
4192
4193/** Clears any current VMCS for the given VCPU. */
4194# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
4195 do \
4196 { \
4197 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
4198 } while (0)
4199
4200/**
4201 * Invokes the VMX VM-exit handler for an instruction intercept.
4202 */
4203# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
4204 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
4205
4206/**
4207 * Invokes the VMX VM-exit handler for an instruction intercept where the
4208 * instruction provides additional VM-exit information.
4209 */
4210# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
4211 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
4212
4213/**
4214 * Invokes the VMX VM-exit handler for a task switch.
4215 */
4216# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
4217 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
4218
4219/**
4220 * Invokes the VMX VM-exit handler for MWAIT.
4221 */
4222# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
4223 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
4224
4225/**
4226 * Invokes the VMX VM-exit handler for EPT faults.
4227 */
4228# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
4229 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
4230
4231/**
4232 * Invokes the VMX VM-exit handler.
4233 */
4234# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
4235 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
4236
4237#else
4238# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
4239# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
4240# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
4241# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
4242# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
4243# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4244# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4245# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4246# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4247# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4248# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
4249
4250#endif
4251
4252#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4253/**
4254 * Checks if we're executing a guest using AMD-V.
4255 */
4256# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
4257 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
4258/**
4259 * Check if an SVM control/instruction intercept is set.
4260 */
4261# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
4262 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
4263
4264/**
4265 * Check if an SVM read CRx intercept is set.
4266 */
4267# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4268 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4269
4270/**
4271 * Check if an SVM write CRx intercept is set.
4272 */
4273# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4274 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4275
4276/**
4277 * Check if an SVM read DRx intercept is set.
4278 */
4279# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4280 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4281
4282/**
4283 * Check if an SVM write DRx intercept is set.
4284 */
4285# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4286 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4287
4288/**
4289 * Check if an SVM exception intercept is set.
4290 */
4291# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
4292 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
4293
4294/**
4295 * Invokes the SVM \#VMEXIT handler for the nested-guest.
4296 */
4297# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4298 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
4299
4300/**
4301 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
4302 * corresponding decode assist information.
4303 */
4304# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
4305 do \
4306 { \
4307 uint64_t uExitInfo1; \
4308 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
4309 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
4310 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
4311 else \
4312 uExitInfo1 = 0; \
4313 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
4314 } while (0)
4315
4316/** Check and handles SVM nested-guest instruction intercept and updates
4317 * NRIP if needed.
4318 */
4319# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4320 do \
4321 { \
4322 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
4323 { \
4324 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4325 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
4326 } \
4327 } while (0)
4328
4329/** Checks and handles SVM nested-guest CR0 read intercept. */
4330# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4331 do \
4332 { \
4333 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
4334 { /* probably likely */ } \
4335 else \
4336 { \
4337 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4338 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
4339 } \
4340 } while (0)
4341
4342/**
4343 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
4344 */
4345# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
4346 do { \
4347 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
4348 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
4349 } while (0)
4350
4351#else
4352# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
4353# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4354# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4355# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4356# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4357# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
4358# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
4359# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
4360# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
4361 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4362# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4363# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
4364
4365#endif
4366
4367/** @} */
4368
4369uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
4370VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
4371
4372
4373/**
4374 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
4375 */
4376typedef union IEMSELDESC
4377{
4378 /** The legacy view. */
4379 X86DESC Legacy;
4380 /** The long mode view. */
4381 X86DESC64 Long;
4382} IEMSELDESC;
4383/** Pointer to a selector descriptor table entry. */
4384typedef IEMSELDESC *PIEMSELDESC;
4385
4386/** @name Raising Exceptions.
4387 * @{ */
4388VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
4389 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
4390
4391VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
4392 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
4393#ifdef IEM_WITH_SETJMP
4394DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
4395 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
4396#endif
4397VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
4398VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4399VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
4400VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
4401VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
4402VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4403VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
4404VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4405VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4406/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
4407VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4408VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4409VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4410VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4411VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4412VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4413#ifdef IEM_WITH_SETJMP
4414DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4415#endif
4416VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4417VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
4418VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4419#ifdef IEM_WITH_SETJMP
4420DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4421#endif
4422VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4423#ifdef IEM_WITH_SETJMP
4424DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
4425#endif
4426VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4427#ifdef IEM_WITH_SETJMP
4428DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4429#endif
4430VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
4431#ifdef IEM_WITH_SETJMP
4432DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
4433#endif
4434VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4435VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4436#ifdef IEM_WITH_SETJMP
4437DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4438#endif
4439VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4440
4441void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
4442
4443IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
4444IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
4445IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
4446
4447/**
4448 * Macro for calling iemCImplRaiseDivideError().
4449 *
4450 * This is for things that will _always_ decode to an \#DE, taking the
4451 * recompiler into consideration and everything.
4452 *
4453 * @return Strict VBox status code.
4454 */
4455#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseDivideError)
4456
4457/**
4458 * Macro for calling iemCImplRaiseInvalidLockPrefix().
4459 *
4460 * This is for things that will _always_ decode to an \#UD, taking the
4461 * recompiler into consideration and everything.
4462 *
4463 * @return Strict VBox status code.
4464 */
4465#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidLockPrefix)
4466
4467/**
4468 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
4469 *
4470 * This is for things that will _always_ decode to an \#UD, taking the
4471 * recompiler into consideration and everything.
4472 *
4473 * @return Strict VBox status code.
4474 */
4475#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4476
4477/**
4478 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
4479 *
4480 * Using this macro means you've got _buggy_ _code_ and are doing things that
4481 * belongs exclusively in IEMAllCImpl.cpp during decoding.
4482 *
4483 * @return Strict VBox status code.
4484 * @see IEMOP_RAISE_INVALID_OPCODE_RET
4485 */
4486#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4487
4488/** @} */
4489
4490/** @name Register Access.
4491 * @{ */
4492VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
4493 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4494VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
4495VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
4496 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4497VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewRip) RT_NOEXCEPT;
4498VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewRip) RT_NOEXCEPT;
4499VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
4500/** @} */
4501
4502/** @name FPU access and helpers.
4503 * @{ */
4504void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4505void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4506void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4507void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4508void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4509void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4510 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4511void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4512 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4513void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4514void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4515void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4516void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4517void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4518void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4519void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4520void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4521void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4522void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4523void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4524void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4525void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4526void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4527void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4528/** @} */
4529
4530/** @name SSE+AVX SIMD access and helpers.
4531 * @{ */
4532void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
4533void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
4534/** @} */
4535
4536/** @name Memory access.
4537 * @{ */
4538
4539/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
4540#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
4541/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
4542 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
4543#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
4544/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
4545 * Users include FXSAVE & FXRSTOR. */
4546#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
4547
4548VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
4549 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
4550VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4551#ifndef IN_RING3
4552VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4553#endif
4554void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
4555VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
4556VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4557VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
4558
4559void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
4560void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
4561#ifdef IEM_WITH_CODE_TLB
4562void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
4563#else
4564VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
4565#endif
4566#ifdef IEM_WITH_SETJMP
4567uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4568uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4569uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4570uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4571#else
4572VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
4573VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4574VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4575VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4576VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4577VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4578VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4579VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4580VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4581VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4582VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4583#endif
4584
4585VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4586VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4587VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4588VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4589VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4590VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4591VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4592VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4593VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4594VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4595VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4596VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4597VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
4598 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
4599#ifdef IEM_WITH_SETJMP
4600uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4601uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4602uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4603uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4604uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4605uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4606void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4607void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4608void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4609void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4610void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4611void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4612# if 0 /* these are inlined now */
4613uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4614uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4615uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4616uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4617uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4618uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4619# endif
4620void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4621void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4622void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4623void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4624void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4625void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4626#endif
4627
4628VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4629VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4630VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4631VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4632VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
4633
4634VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
4635VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
4636VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
4637VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
4638VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4639VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4640VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4641VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4642VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4643#ifdef IEM_WITH_SETJMP
4644void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4645void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4646void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4647void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4648void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4649void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4650void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4651void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4652#if 0
4653void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4654void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4655void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4656void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4657#endif
4658void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4659void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4660void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4661void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4662#endif
4663
4664#ifdef IEM_WITH_SETJMP
4665uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4666uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4667uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4668uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4669uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4670uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4671uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4672uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4673uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4674uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4675uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4676uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4677
4678void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4679void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4680void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4681#endif
4682
4683VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
4684 void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
4685VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
4686VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
4687VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
4688VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
4689VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4690VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4691VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4692VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
4693VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
4694 void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
4695VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
4696 void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT;
4697VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
4698VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
4699VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
4700VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
4701VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4702VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4703VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4704/** @} */
4705
4706/** @name IEMAllCImpl.cpp
4707 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
4708 * @{ */
4709IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4710IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4711IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4712IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
4713IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
4714IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
4715IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
4716IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
4717IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
4718IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
4719IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
4720IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
4721IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
4722IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
4723IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
4724IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
4725IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
4726typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
4727typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
4728IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
4729IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
4730IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
4731IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
4732IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
4733IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
4734IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
4735IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
4736IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
4737IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
4738IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
4739IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
4740IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
4741IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
4742IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
4743IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
4744IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
4745IEM_CIMPL_PROTO_0(iemCImpl_syscall);
4746IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
4747IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
4748IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
4749IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
4750IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
4751IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
4752IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
4753IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
4754IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
4755IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
4756IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
4757IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4758IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
4759IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4760IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
4761IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
4762IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4763IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
4764IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
4765IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4766IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
4767IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
4768IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4769IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
4770IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
4771IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
4772IEM_CIMPL_PROTO_0(iemCImpl_clts);
4773IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
4774IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
4775IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
4776IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
4777IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
4778IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
4779IEM_CIMPL_PROTO_0(iemCImpl_invd);
4780IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
4781IEM_CIMPL_PROTO_0(iemCImpl_rsm);
4782IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
4783IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
4784IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
4785IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
4786IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
4787IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
4788IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
4789IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
4790IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
4791IEM_CIMPL_PROTO_0(iemCImpl_cli);
4792IEM_CIMPL_PROTO_0(iemCImpl_sti);
4793IEM_CIMPL_PROTO_0(iemCImpl_hlt);
4794IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
4795IEM_CIMPL_PROTO_0(iemCImpl_mwait);
4796IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
4797IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
4798IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
4799IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
4800IEM_CIMPL_PROTO_0(iemCImpl_daa);
4801IEM_CIMPL_PROTO_0(iemCImpl_das);
4802IEM_CIMPL_PROTO_0(iemCImpl_aaa);
4803IEM_CIMPL_PROTO_0(iemCImpl_aas);
4804IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
4805IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
4806IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
4807IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
4808IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
4809 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
4810IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
4811IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
4812IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
4813IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
4814IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
4815IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
4816IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
4817IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
4818IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
4819IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4820IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4821IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
4822IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
4823IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
4824IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
4825IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, uint32_t, uPopAndFpuOpcode);
4826/** @} */
4827
4828/** @name IEMAllCImplStrInstr.cpp.h
4829 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
4830 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
4831 * @{ */
4832IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
4833IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
4834IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
4835IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
4836IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
4837IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
4838IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
4839IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
4840IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
4841IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
4842IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
4843
4844IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
4845IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
4846IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
4847IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
4848IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
4849IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
4850IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
4851IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
4852IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
4853IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
4854IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
4855
4856IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
4857IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
4858IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
4859IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
4860IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
4861IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
4862IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
4863IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
4864IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
4865IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
4866IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
4867
4868
4869IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
4870IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
4871IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
4872IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
4873IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
4874IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
4875IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
4876IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
4877IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
4878IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4879IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4880
4881IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
4882IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
4883IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
4884IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
4885IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
4886IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
4887IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
4888IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
4889IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
4890IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4891IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4892
4893IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
4894IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
4895IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
4896IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
4897IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
4898IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
4899IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
4900IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
4901IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
4902IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4903IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4904
4905IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
4906IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
4907IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
4908IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
4909IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
4910IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
4911IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
4912IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
4913IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
4914IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4915IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
4916
4917
4918IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
4919IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
4920IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
4921IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
4922IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
4923IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
4924IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
4925IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
4926IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
4927IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4928IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4929
4930IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
4931IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
4932IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
4933IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
4934IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
4935IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
4936IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
4937IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
4938IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
4939IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4940IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4941
4942IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
4943IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
4944IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
4945IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
4946IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
4947IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
4948IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
4949IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
4950IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
4951IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4952IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4953
4954IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
4955IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
4956IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
4957IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
4958IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
4959IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
4960IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
4961IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
4962IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
4963IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4964IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
4965/** @} */
4966
4967#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4968VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
4969VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
4970VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
4971VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
4972VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
4973VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4974VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
4975VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
4976VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
4977VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
4978 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
4979VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
4980 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
4981VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
4982VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
4983VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
4984VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
4985VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
4986VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
4987VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
4988VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
4989 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
4990VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
4991VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
4992VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
4993uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
4994void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
4995VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
4996 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
4997bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
4998IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
4999IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5000IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5001IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5002IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5003IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5004IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5005IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5006IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5007IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5008IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5009IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5010IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5011IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5012IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5013IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5014#endif
5015
5016#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5017VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5018VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5019VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5020 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5021VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5022IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5023IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5024IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5025IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5026IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5027IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5028IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5029IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5030#endif
5031
5032IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5033IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5034IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5035
5036extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5037extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5038extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5039extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5040extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5041extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5042extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5043
5044/*
5045 * Recompiler related stuff.
5046 */
5047extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5048extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5049extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5050extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5051extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5052extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5053extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5054
5055void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb);
5056
5057/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5058#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5059typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5060typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5061# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5062 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5063# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5064 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5065
5066#else
5067typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5068typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5069# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5070 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5071# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5072 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5073#endif
5074
5075
5076IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5077
5078IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5079IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5080IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5081IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5082
5083IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5084IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5085IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5086
5087/* Branching: */
5088IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5089IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5090IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5091
5092IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5093IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
5094IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
5095
5096/* Natural page crossing: */
5097IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
5098IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
5099IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
5100
5101IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
5102IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
5103IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
5104
5105IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
5106IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
5107IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
5108
5109bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
5110bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
5111
5112
5113/** @} */
5114
5115RT_C_DECLS_END
5116
5117#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
5118
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette