VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 101330

Last change on this file since 101330 was 101304, checked in by vboxsync, 18 months ago

VMM/IEM: Emit native code for pure defer-CImpl instructions. Tested on linux.amd64 only and this doesn't cover cases with zero parameters. bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 274.9 KB
Line 
1/* $Id: IEMInternal.h 101304 2023-09-29 01:02:02Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEM_DO_LONGJMP
89 *
90 * Wrapper around longjmp / throw.
91 *
92 * @param a_pVCpu The CPU handle.
93 * @param a_rc The status code jump back with / throw.
94 */
95#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
96# ifdef IEM_WITH_THROW_CATCH
97# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
98# else
99# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
100# endif
101#endif
102
103/** For use with IEM function that may do a longjmp (when enabled).
104 *
105 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
106 * attribute. So, we indicate that function that may be part of a longjmp may
107 * throw "exceptions" and that the compiler should definitely not generate and
108 * std::terminate calling unwind code.
109 *
110 * Here is one example of this ending in std::terminate:
111 * @code{.txt}
11200 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
11301 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
11402 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
11503 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
11604 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
11705 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
11806 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
11907 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
12008 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
12109 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1220a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1230b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1240c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1250d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1260e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1270f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
12810 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
129 @endcode
130 *
131 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
132 */
133#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
134# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
135#else
136# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
137#endif
138
139#define IEM_IMPLEMENTS_TASKSWITCH
140
141/** @def IEM_WITH_3DNOW
142 * Includes the 3DNow decoding. */
143#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
144# define IEM_WITH_3DNOW
145#endif
146
147/** @def IEM_WITH_THREE_0F_38
148 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
149#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
150# define IEM_WITH_THREE_0F_38
151#endif
152
153/** @def IEM_WITH_THREE_0F_3A
154 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
155#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
156# define IEM_WITH_THREE_0F_3A
157#endif
158
159/** @def IEM_WITH_VEX
160 * Includes the VEX decoding. */
161#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
162# define IEM_WITH_VEX
163#endif
164
165/** @def IEM_CFG_TARGET_CPU
166 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
167 *
168 * By default we allow this to be configured by the user via the
169 * CPUM/GuestCpuName config string, but this comes at a slight cost during
170 * decoding. So, for applications of this code where there is no need to
171 * be dynamic wrt target CPU, just modify this define.
172 */
173#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
174# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
175#endif
176
177//#define IEM_WITH_CODE_TLB // - work in progress
178//#define IEM_WITH_DATA_TLB // - work in progress
179
180
181/** @def IEM_USE_UNALIGNED_DATA_ACCESS
182 * Use unaligned accesses instead of elaborate byte assembly. */
183#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
184# define IEM_USE_UNALIGNED_DATA_ACCESS
185#endif
186
187//#define IEM_LOG_MEMORY_WRITES
188
189#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
190/** Instruction statistics. */
191typedef struct IEMINSTRSTATS
192{
193# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
194# include "IEMInstructionStatisticsTmpl.h"
195# undef IEM_DO_INSTR_STAT
196} IEMINSTRSTATS;
197#else
198struct IEMINSTRSTATS;
199typedef struct IEMINSTRSTATS IEMINSTRSTATS;
200#endif
201/** Pointer to IEM instruction statistics. */
202typedef IEMINSTRSTATS *PIEMINSTRSTATS;
203
204
205/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
206 * @{ */
207#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
208#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
209#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
210#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
211#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
212/** Selects the right variant from a_aArray.
213 * pVCpu is implicit in the caller context. */
214#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
215 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
216/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
217 * be used because the host CPU does not support the operation. */
218#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
219 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
220/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
221 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
222 * into the two.
223 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
224#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
225# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
226 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
227#else
228# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
229 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
230#endif
231/** @} */
232
233/**
234 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
235 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
236 *
237 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
238 * indicator.
239 *
240 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
241 */
242#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
243# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
244 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
245#else
246# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
247#endif
248
249
250/**
251 * Extended operand mode that includes a representation of 8-bit.
252 *
253 * This is used for packing down modes when invoking some C instruction
254 * implementations.
255 */
256typedef enum IEMMODEX
257{
258 IEMMODEX_16BIT = IEMMODE_16BIT,
259 IEMMODEX_32BIT = IEMMODE_32BIT,
260 IEMMODEX_64BIT = IEMMODE_64BIT,
261 IEMMODEX_8BIT
262} IEMMODEX;
263AssertCompileSize(IEMMODEX, 4);
264
265
266/**
267 * Branch types.
268 */
269typedef enum IEMBRANCH
270{
271 IEMBRANCH_JUMP = 1,
272 IEMBRANCH_CALL,
273 IEMBRANCH_TRAP,
274 IEMBRANCH_SOFTWARE_INT,
275 IEMBRANCH_HARDWARE_INT
276} IEMBRANCH;
277AssertCompileSize(IEMBRANCH, 4);
278
279
280/**
281 * INT instruction types.
282 */
283typedef enum IEMINT
284{
285 /** INT n instruction (opcode 0xcd imm). */
286 IEMINT_INTN = 0,
287 /** Single byte INT3 instruction (opcode 0xcc). */
288 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
289 /** Single byte INTO instruction (opcode 0xce). */
290 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
291 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
292 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
293} IEMINT;
294AssertCompileSize(IEMINT, 4);
295
296
297/**
298 * A FPU result.
299 */
300typedef struct IEMFPURESULT
301{
302 /** The output value. */
303 RTFLOAT80U r80Result;
304 /** The output status. */
305 uint16_t FSW;
306} IEMFPURESULT;
307AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
308/** Pointer to a FPU result. */
309typedef IEMFPURESULT *PIEMFPURESULT;
310/** Pointer to a const FPU result. */
311typedef IEMFPURESULT const *PCIEMFPURESULT;
312
313
314/**
315 * A FPU result consisting of two output values and FSW.
316 */
317typedef struct IEMFPURESULTTWO
318{
319 /** The first output value. */
320 RTFLOAT80U r80Result1;
321 /** The output status. */
322 uint16_t FSW;
323 /** The second output value. */
324 RTFLOAT80U r80Result2;
325} IEMFPURESULTTWO;
326AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
327AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
328/** Pointer to a FPU result consisting of two output values and FSW. */
329typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
330/** Pointer to a const FPU result consisting of two output values and FSW. */
331typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
332
333
334/**
335 * IEM TLB entry.
336 *
337 * Lookup assembly:
338 * @code{.asm}
339 ; Calculate tag.
340 mov rax, [VA]
341 shl rax, 16
342 shr rax, 16 + X86_PAGE_SHIFT
343 or rax, [uTlbRevision]
344
345 ; Do indexing.
346 movzx ecx, al
347 lea rcx, [pTlbEntries + rcx]
348
349 ; Check tag.
350 cmp [rcx + IEMTLBENTRY.uTag], rax
351 jne .TlbMiss
352
353 ; Check access.
354 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
355 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
356 cmp rax, [uTlbPhysRev]
357 jne .TlbMiss
358
359 ; Calc address and we're done.
360 mov eax, X86_PAGE_OFFSET_MASK
361 and eax, [VA]
362 or rax, [rcx + IEMTLBENTRY.pMappingR3]
363 %ifdef VBOX_WITH_STATISTICS
364 inc qword [cTlbHits]
365 %endif
366 jmp .Done
367
368 .TlbMiss:
369 mov r8d, ACCESS_FLAGS
370 mov rdx, [VA]
371 mov rcx, [pVCpu]
372 call iemTlbTypeMiss
373 .Done:
374
375 @endcode
376 *
377 */
378typedef struct IEMTLBENTRY
379{
380 /** The TLB entry tag.
381 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
382 * is ASSUMING a virtual address width of 48 bits.
383 *
384 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
385 *
386 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
387 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
388 * revision wraps around though, the tags needs to be zeroed.
389 *
390 * @note Try use SHRD instruction? After seeing
391 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
392 *
393 * @todo This will need to be reorganized for 57-bit wide virtual address and
394 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
395 * have to move the TLB entry versioning entirely to the
396 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
397 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
398 * consumed by PCID and ASID (12 + 6 = 18).
399 */
400 uint64_t uTag;
401 /** Access flags and physical TLB revision.
402 *
403 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
404 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
405 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
406 * - Bit 3 - pgm phys/virt - not directly writable.
407 * - Bit 4 - pgm phys page - not directly readable.
408 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
409 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
410 * - Bit 7 - tlb entry - pMappingR3 member not valid.
411 * - Bits 63 thru 8 are used for the physical TLB revision number.
412 *
413 * We're using complemented bit meanings here because it makes it easy to check
414 * whether special action is required. For instance a user mode write access
415 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
416 * non-zero result would mean special handling needed because either it wasn't
417 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
418 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
419 * need to check any PTE flag.
420 */
421 uint64_t fFlagsAndPhysRev;
422 /** The guest physical page address. */
423 uint64_t GCPhys;
424 /** Pointer to the ring-3 mapping. */
425 R3PTRTYPE(uint8_t *) pbMappingR3;
426#if HC_ARCH_BITS == 32
427 uint32_t u32Padding1;
428#endif
429} IEMTLBENTRY;
430AssertCompileSize(IEMTLBENTRY, 32);
431/** Pointer to an IEM TLB entry. */
432typedef IEMTLBENTRY *PIEMTLBENTRY;
433
434/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
435 * @{ */
436#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
437#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
438#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
439#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
440#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
441#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
442#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
443#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
444#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
445#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
446#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
447/** @} */
448
449
450/**
451 * An IEM TLB.
452 *
453 * We've got two of these, one for data and one for instructions.
454 */
455typedef struct IEMTLB
456{
457 /** The TLB entries.
458 * We've choosen 256 because that way we can obtain the result directly from a
459 * 8-bit register without an additional AND instruction. */
460 IEMTLBENTRY aEntries[256];
461 /** The TLB revision.
462 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
463 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
464 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
465 * (The revision zero indicates an invalid TLB entry.)
466 *
467 * The initial value is choosen to cause an early wraparound. */
468 uint64_t uTlbRevision;
469 /** The TLB physical address revision - shadow of PGM variable.
470 *
471 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
472 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
473 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
474 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
475 *
476 * The initial value is choosen to cause an early wraparound. */
477 uint64_t volatile uTlbPhysRev;
478
479 /* Statistics: */
480
481 /** TLB hits (VBOX_WITH_STATISTICS only). */
482 uint64_t cTlbHits;
483 /** TLB misses. */
484 uint32_t cTlbMisses;
485 /** Slow read path. */
486 uint32_t cTlbSlowReadPath;
487 /** Safe read path. */
488 uint32_t cTlbSafeReadPath;
489 /** Safe write path. */
490 uint32_t cTlbSafeWritePath;
491#if 0
492 /** TLB misses because of tag mismatch. */
493 uint32_t cTlbMissesTag;
494 /** TLB misses because of virtual access violation. */
495 uint32_t cTlbMissesVirtAccess;
496 /** TLB misses because of dirty bit. */
497 uint32_t cTlbMissesDirty;
498 /** TLB misses because of MMIO */
499 uint32_t cTlbMissesMmio;
500 /** TLB misses because of write access handlers. */
501 uint32_t cTlbMissesWriteHandler;
502 /** TLB misses because no r3(/r0) mapping. */
503 uint32_t cTlbMissesMapping;
504#endif
505 /** Alignment padding. */
506 uint32_t au32Padding[6];
507} IEMTLB;
508AssertCompileSizeAlignment(IEMTLB, 64);
509/** IEMTLB::uTlbRevision increment. */
510#define IEMTLB_REVISION_INCR RT_BIT_64(36)
511/** IEMTLB::uTlbRevision mask. */
512#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
513/** IEMTLB::uTlbPhysRev increment.
514 * @sa IEMTLBE_F_PHYS_REV */
515#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
516/**
517 * Calculates the TLB tag for a virtual address.
518 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
519 * @param a_pTlb The TLB.
520 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
521 * the clearing of the top 16 bits won't work (if 32-bit
522 * we'll end up with mostly zeros).
523 */
524#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
525/**
526 * Calculates the TLB tag for a virtual address but without TLB revision.
527 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
528 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
529 * the clearing of the top 16 bits won't work (if 32-bit
530 * we'll end up with mostly zeros).
531 */
532#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
533/**
534 * Converts a TLB tag value into a TLB index.
535 * @returns Index into IEMTLB::aEntries.
536 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
537 */
538#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
539/**
540 * Converts a TLB tag value into a TLB index.
541 * @returns Index into IEMTLB::aEntries.
542 * @param a_pTlb The TLB.
543 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
544 */
545#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
546
547
548/** @name IEM_MC_F_XXX - MC block flags/clues.
549 * @{ */
550#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
551#define IEM_MC_F_MIN_186 RT_BIT_32(1)
552#define IEM_MC_F_MIN_286 RT_BIT_32(2)
553#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
554#define IEM_MC_F_MIN_386 RT_BIT_32(3)
555#define IEM_MC_F_MIN_486 RT_BIT_32(4)
556#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
557#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
558#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
559#define IEM_MC_F_64BIT RT_BIT_32(6)
560#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
561/** @} */
562
563
564/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
565 *
566 * These flags are set when entering IEM and adjusted as code is executed, such
567 * that they will always contain the current values as instructions are
568 * finished.
569 *
570 * In recompiled execution mode, (most of) these flags are included in the
571 * translation block selection key and stored in IEMTB::fFlags alongside the
572 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
573 * in IEMCPU::fExec.
574 *
575 * @{ */
576/** Mode: The block target mode mask. */
577#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
578/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
579#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
580/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
581 * conditional in EIP/IP updating), and flat wide open CS, SS DS, and ES in
582 * 32-bit mode (for simplifying most memory accesses). */
583#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
584/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
585#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
586/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
587#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
588
589/** X86 Mode: 16-bit on 386 or later. */
590#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
591/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
592#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
593/** X86 Mode: 16-bit protected mode on 386 or later. */
594#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
595/** X86 Mode: 16-bit protected mode on 386 or later. */
596#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
597/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
598#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
599
600/** X86 Mode: 32-bit on 386 or later. */
601#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
602/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
603#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
604/** X86 Mode: 32-bit protected mode. */
605#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
606/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
607#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
608
609/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
610#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
611
612
613/** Bypass access handlers when set. */
614#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
615/** Have pending hardware instruction breakpoints. */
616#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
617/** Have pending hardware data breakpoints. */
618#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
619
620/** X86: Have pending hardware I/O breakpoints. */
621#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
622/** X86: Disregard the lock prefix (implied or not) when set. */
623#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
624
625/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
626#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
627
628/** Caller configurable options. */
629#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
630
631/** X86: The current protection level (CPL) shift factor. */
632#define IEM_F_X86_CPL_SHIFT 8
633/** X86: The current protection level (CPL) mask. */
634#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
635/** X86: The current protection level (CPL) shifted mask. */
636#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
637
638/** X86 execution context.
639 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
640 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
641 * mode. */
642#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
643/** X86 context: Plain regular execution context. */
644#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
645/** X86 context: VT-x enabled. */
646#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
647/** X86 context: AMD-V enabled. */
648#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
649/** X86 context: In AMD-V or VT-x guest mode. */
650#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
651/** X86 context: System management mode (SMM). */
652#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
653
654/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
655 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
656 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
657 * alread). */
658
659/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
660 * iemRegFinishClearingRF() most for most situations
661 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
662 * the IEM_F_PENDING_BRK_XXX bits alread). */
663
664/** @} */
665
666
667/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
668 *
669 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
670 * translation block flags. The combined flag mask (subject to
671 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
672 *
673 * @{ */
674/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
675#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
676
677/** Type: The block type mask. */
678#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
679/** Type: Purly threaded recompiler (via tables). */
680#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
681/** Type: Native recompilation. */
682#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
683
684/** Set when we're starting the block in an "interrupt shadow".
685 * We don't need to distingish between the two types of this mask, thus the one.
686 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
687#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
688/** Set when we're currently inhibiting NMIs
689 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
690#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
691
692/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
693 * we're close the limit before starting a TB, as determined by
694 * iemGetTbFlagsForCurrentPc(). */
695#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
696
697/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
698 * @note We skip the CPL as we don't currently generate ring-specific code,
699 * that's all handled in CIMPL functions.
700 *
701 * For the same reasons, we skip all of IEM_F_X86_CTX_MASK, with the
702 * exception of SMM (which we don't implement). */
703#define IEMTB_F_KEY_MASK ( (UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEM_F_X86_CPL_MASK | IEMTB_F_TYPE_MASK)) \
704 | IEM_F_X86_CTX_SMM)
705/** @} */
706
707AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
708AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
709AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
710AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
711AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
712AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
713AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
714AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
715AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
716AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
717AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
718AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
719AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
720AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
721AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
722AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
723AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
724AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
725AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
726
727AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
728AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
729AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
730AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
731AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
732AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
733AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
734AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
735AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
736AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
737AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
738AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
739
740AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
741AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
742AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
743
744/** Native instruction type for use with the native code generator.
745 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
746#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
747typedef uint8_t IEMNATIVEINSTR;
748#else
749typedef uint32_t IEMNATIVEINSTR;
750#endif
751/** Pointer to a native instruction unit. */
752typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
753
754/**
755 * A call for the threaded call table.
756 */
757typedef struct IEMTHRDEDCALLENTRY
758{
759 /** The function to call (IEMTHREADEDFUNCS). */
760 uint16_t enmFunction;
761 /** Instruction number in the TB (for statistics). */
762 uint8_t idxInstr;
763 uint8_t uUnused0;
764
765 /** Offset into IEMTB::pabOpcodes. */
766 uint16_t offOpcode;
767 /** The opcode length. */
768 uint8_t cbOpcode;
769 /** Index in to IEMTB::aRanges. */
770 uint8_t idxRange;
771
772 /** Generic parameters. */
773 uint64_t auParams[3];
774} IEMTHRDEDCALLENTRY;
775AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
776/** Pointer to a threaded call entry. */
777typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
778/** Pointer to a const threaded call entry. */
779typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
780
781/** Native IEM TB 'function' typedef.
782 * This will throw/longjmp on occation. */
783#if RT_CPLUSPLUS_PREREQ(201700)
784typedef int FNIEMTBNATIVE(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
785#else
786typedef int FNIEMTBNATIVE(PVMCPUCC pVCpu);
787#endif
788/** Pointer to a native IEM TB entry point function.
789 * This will throw/longjmp on occation. */
790typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
791
792
793/**
794 * Translation block.
795 *
796 * The current plan is to just keep TBs and associated lookup hash table private
797 * to each VCpu as that simplifies TB removal greatly (no races) and generally
798 * avoids using expensive atomic primitives for updating lists and stuff.
799 */
800#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
801typedef struct IEMTB
802{
803 /** Next block with the same hash table entry. */
804 struct IEMTB *pNext;
805 /** Usage counter. */
806 uint32_t cUsed;
807 /** The IEMCPU::msRecompilerPollNow last time it was used. */
808 uint32_t msLastUsed;
809 /** The allocation chunk this TB belongs to. */
810 uint8_t idxAllocChunk;
811
812 uint8_t abUnused[3];
813 uint32_t uUnused;
814
815
816 /** @name What uniquely identifies the block.
817 * @{ */
818 RTGCPHYS GCPhysPc;
819 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
820 uint32_t fFlags;
821 union
822 {
823 struct
824 {
825 /**< Relevant CS X86DESCATTR_XXX bits. */
826 uint16_t fAttr;
827 } x86;
828 };
829 /** @} */
830
831 /** Number of opcode ranges. */
832 uint8_t cRanges;
833 /** Statistics: Number of instructions in the block. */
834 uint8_t cInstructions;
835
836 /** Type specific info. */
837 union
838 {
839 struct
840 {
841 /** The call sequence table. */
842 PIEMTHRDEDCALLENTRY paCalls;
843 /** Number of calls in paCalls. */
844 uint16_t cCalls;
845 /** Number of calls allocated. */
846 uint16_t cAllocated;
847 } Thrd;
848 struct
849 {
850 /** The native instructions (PFNIEMTBNATIVE). */
851 PIEMNATIVEINSTR paInstructions;
852 /** Number of instructions pointed to by paInstructions. */
853 uint32_t cInstructions;
854 } Native;
855 /** Generic view for zeroing when freeing. */
856 struct
857 {
858 uintptr_t uPtr;
859 uint32_t uData;
860 } Gen;
861 };
862
863 /** Number of bytes of opcodes stored in pabOpcodes. */
864 uint16_t cbOpcodes;
865 /** The max storage available in the pabOpcodes block. */
866 uint16_t cbOpcodesAllocated;
867 /** Pointer to the opcode bytes this block was recompiled from. */
868 uint8_t *pabOpcodes;
869
870 /* --- 64 byte cache line end --- */
871
872 /** Opcode ranges.
873 *
874 * The opcode checkers and maybe TLB loading functions will use this to figure
875 * out what to do. The parameter will specify an entry and the opcode offset to
876 * start at and the minimum number of bytes to verify (instruction length).
877 *
878 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
879 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
880 * code TLB (must have a valid entry for that address) and scan the ranges to
881 * locate the corresponding opcodes. Probably.
882 */
883 struct IEMTBOPCODERANGE
884 {
885 /** Offset within pabOpcodes. */
886 uint16_t offOpcodes;
887 /** Number of bytes. */
888 uint16_t cbOpcodes;
889 /** The page offset. */
890 RT_GCC_EXTENSION
891 uint16_t offPhysPage : 12;
892 /** Unused bits. */
893 RT_GCC_EXTENSION
894 uint16_t u2Unused : 2;
895 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
896 RT_GCC_EXTENSION
897 uint16_t idxPhysPage : 2;
898 } aRanges[8];
899
900 /** Physical pages that this TB covers.
901 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
902 RTGCPHYS aGCPhysPages[2];
903} IEMTB;
904#pragma pack()
905AssertCompileMemberOffset(IEMTB, x86, 36);
906AssertCompileMemberOffset(IEMTB, cRanges, 38);
907AssertCompileMemberOffset(IEMTB, Thrd, 40);
908AssertCompileMemberOffset(IEMTB, Thrd.cCalls, 48);
909AssertCompileMemberOffset(IEMTB, cbOpcodes, 52);
910AssertCompileMemberSize(IEMTB, aRanges[0], 6);
911#if 1
912AssertCompileSize(IEMTB, 128);
913# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
914#else
915AssertCompileSize(IEMTB, 168);
916# undef IEMTB_SIZE_IS_POWER_OF_TWO
917#endif
918
919/** Pointer to a translation block. */
920typedef IEMTB *PIEMTB;
921/** Pointer to a const translation block. */
922typedef IEMTB const *PCIEMTB;
923
924/**
925 * A chunk of memory in the TB allocator.
926 */
927typedef struct IEMTBCHUNK
928{
929 /** Pointer to the translation blocks in this chunk. */
930 PIEMTB paTbs;
931#ifdef IN_RING0
932 /** Allocation handle. */
933 RTR0MEMOBJ hMemObj;
934#endif
935} IEMTBCHUNK;
936
937/**
938 * A per-CPU translation block allocator.
939 *
940 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
941 * the length of the collision list, and of course also for cache line alignment
942 * reasons, the TBs must be allocated with at least 64-byte alignment.
943 * Memory is there therefore allocated using one of the page aligned allocators.
944 *
945 *
946 * To avoid wasting too much memory, it is allocated piecemeal as needed,
947 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
948 * that enables us to quickly calculate the allocation bitmap position when
949 * freeing the translation block.
950 */
951typedef struct IEMTBALLOCATOR
952{
953 /** Magic value (IEMTBALLOCATOR_MAGIC). */
954 uint32_t uMagic;
955
956#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
957 /** Mask corresponding to cTbsPerChunk - 1. */
958 uint32_t fChunkMask;
959 /** Shift count corresponding to cTbsPerChunk. */
960 uint8_t cChunkShift;
961#else
962 uint32_t uUnused;
963 uint8_t bUnused;
964#endif
965 /** Number of chunks we're allowed to allocate. */
966 uint8_t cMaxChunks;
967 /** Number of chunks currently populated. */
968 uint16_t cAllocatedChunks;
969 /** Number of translation blocks per chunk. */
970 uint32_t cTbsPerChunk;
971 /** Chunk size. */
972 uint32_t cbPerChunk;
973
974 /** The maximum number of TBs. */
975 uint32_t cMaxTbs;
976 /** Total number of TBs in the populated chunks.
977 * (cAllocatedChunks * cTbsPerChunk) */
978 uint32_t cTotalTbs;
979 /** The current number of TBs in use.
980 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
981 uint32_t cInUseTbs;
982 /** Statistics: Number of the cInUseTbs that are native ones. */
983 uint32_t cNativeTbs;
984 /** Statistics: Number of the cInUseTbs that are threaded ones. */
985 uint32_t cThreadedTbs;
986
987 /** Where to start pruning TBs from when we're out.
988 * See iemTbAllocatorAllocSlow for details. */
989 uint32_t iPruneFrom;
990 /** Hint about which bit to start scanning the bitmap from. */
991 uint32_t iStartHint;
992
993 /** Statistics: Number of TB allocation calls. */
994 STAMCOUNTER StatAllocs;
995 /** Statistics: Number of TB free calls. */
996 STAMCOUNTER StatFrees;
997 /** Statistics: Time spend pruning. */
998 STAMPROFILE StatPrune;
999
1000 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1001 PIEMTB pDelayedFreeHead;
1002
1003 /** Allocation chunks. */
1004 IEMTBCHUNK aChunks[256];
1005
1006 /** Allocation bitmap for all possible chunk chunks. */
1007 RT_FLEXIBLE_ARRAY_EXTENSION
1008 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1009} IEMTBALLOCATOR;
1010/** Pointer to a TB allocator. */
1011typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1012
1013/** Magic value for the TB allocator (Emmet Harley Cohen). */
1014#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1015
1016
1017/**
1018 * A per-CPU translation block cache (hash table).
1019 *
1020 * The hash table is allocated once during IEM initialization and size double
1021 * the max TB count, rounded up to the nearest power of two (so we can use and
1022 * AND mask rather than a rest division when hashing).
1023 */
1024typedef struct IEMTBCACHE
1025{
1026 /** Magic value (IEMTBCACHE_MAGIC). */
1027 uint32_t uMagic;
1028 /** Size of the hash table. This is a power of two. */
1029 uint32_t cHash;
1030 /** The mask corresponding to cHash. */
1031 uint32_t uHashMask;
1032 uint32_t uPadding;
1033
1034 /** @name Statistics
1035 * @{ */
1036 /** Number of collisions ever. */
1037 STAMCOUNTER cCollisions;
1038
1039 /** Statistics: Number of TB lookup misses. */
1040 STAMCOUNTER cLookupMisses;
1041 /** Statistics: Number of TB lookup hits (debug only). */
1042 STAMCOUNTER cLookupHits;
1043 STAMCOUNTER auPadding2[3];
1044 /** Statistics: Collision list length pruning. */
1045 STAMPROFILE StatPrune;
1046 /** @} */
1047
1048 /** The hash table itself.
1049 * @note The lower 6 bits of the pointer is used for keeping the collision
1050 * list length, so we can take action when it grows too long.
1051 * This works because TBs are allocated using a 64 byte (or
1052 * higher) alignment from page aligned chunks of memory, so the lower
1053 * 6 bits of the address will always be zero.
1054 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1055 */
1056 RT_FLEXIBLE_ARRAY_EXTENSION
1057 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1058} IEMTBCACHE;
1059/** Pointer to a per-CPU translation block cahce. */
1060typedef IEMTBCACHE *PIEMTBCACHE;
1061
1062/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1063#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1064
1065/** The collision count mask for IEMTBCACHE::apHash entries. */
1066#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1067/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1068#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1069/** Combine a TB pointer and a collision list length into a value for an
1070 * IEMTBCACHE::apHash entry. */
1071#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1072/** Combine a TB pointer and a collision list length into a value for an
1073 * IEMTBCACHE::apHash entry. */
1074#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1075/** Combine a TB pointer and a collision list length into a value for an
1076 * IEMTBCACHE::apHash entry. */
1077#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1078
1079/**
1080 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1081 */
1082#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1083 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1084
1085/**
1086 * Calculates the hash table slot for a TB from physical PC address and TB
1087 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1088 */
1089#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1090 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1091
1092
1093/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1094 *
1095 * These flags parallels IEM_CIMPL_F_BRANCH_XXX.
1096 *
1097 * @{ */
1098/** Value if no branching happened recently. */
1099#define IEMBRANCHED_F_NO UINT8_C(0x00)
1100/** Flag set if direct branch, clear if absolute or indirect. */
1101#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1102/** Flag set if indirect branch, clear if direct or relative. */
1103#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1104/** Flag set if relative branch, clear if absolute or indirect. */
1105#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1106/** Flag set if conditional branch, clear if unconditional. */
1107#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1108/** Flag set if it's a far branch. */
1109#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1110/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1111#define IEMBRANCHED_F_ZERO UINT8_C(0x20)
1112/** @} */
1113
1114
1115/**
1116 * The per-CPU IEM state.
1117 */
1118typedef struct IEMCPU
1119{
1120 /** Info status code that needs to be propagated to the IEM caller.
1121 * This cannot be passed internally, as it would complicate all success
1122 * checks within the interpreter making the code larger and almost impossible
1123 * to get right. Instead, we'll store status codes to pass on here. Each
1124 * source of these codes will perform appropriate sanity checks. */
1125 int32_t rcPassUp; /* 0x00 */
1126 /** Execution flag, IEM_F_XXX. */
1127 uint32_t fExec; /* 0x04 */
1128
1129 /** @name Decoder state.
1130 * @{ */
1131#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1132# ifdef IEM_WITH_CODE_TLB
1133 /** The offset of the next instruction byte. */
1134 uint32_t offInstrNextByte; /* 0x08 */
1135 /** The number of bytes available at pbInstrBuf for the current instruction.
1136 * This takes the max opcode length into account so that doesn't need to be
1137 * checked separately. */
1138 uint32_t cbInstrBuf; /* 0x0c */
1139 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1140 * This can be NULL if the page isn't mappable for some reason, in which
1141 * case we'll do fallback stuff.
1142 *
1143 * If we're executing an instruction from a user specified buffer,
1144 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1145 * aligned pointer but pointer to the user data.
1146 *
1147 * For instructions crossing pages, this will start on the first page and be
1148 * advanced to the next page by the time we've decoded the instruction. This
1149 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1150 */
1151 uint8_t const *pbInstrBuf; /* 0x10 */
1152# if ARCH_BITS == 32
1153 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1154# endif
1155 /** The program counter corresponding to pbInstrBuf.
1156 * This is set to a non-canonical address when we need to invalidate it. */
1157 uint64_t uInstrBufPc; /* 0x18 */
1158 /** The guest physical address corresponding to pbInstrBuf. */
1159 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1160 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1161 * This takes the CS segment limit into account. */
1162 uint16_t cbInstrBufTotal; /* 0x28 */
1163 /** Offset into pbInstrBuf of the first byte of the current instruction.
1164 * Can be negative to efficiently handle cross page instructions. */
1165 int16_t offCurInstrStart; /* 0x2a */
1166
1167 /** The prefix mask (IEM_OP_PRF_XXX). */
1168 uint32_t fPrefixes; /* 0x2c */
1169 /** The extra REX ModR/M register field bit (REX.R << 3). */
1170 uint8_t uRexReg; /* 0x30 */
1171 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1172 * (REX.B << 3). */
1173 uint8_t uRexB; /* 0x31 */
1174 /** The extra REX SIB index field bit (REX.X << 3). */
1175 uint8_t uRexIndex; /* 0x32 */
1176
1177 /** The effective segment register (X86_SREG_XXX). */
1178 uint8_t iEffSeg; /* 0x33 */
1179
1180 /** The offset of the ModR/M byte relative to the start of the instruction. */
1181 uint8_t offModRm; /* 0x34 */
1182
1183# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1184 /** The current offset into abOpcode. */
1185 uint8_t offOpcode; /* 0x35 */
1186# else
1187 uint8_t bUnused; /* 0x35 */
1188# endif
1189# else /* !IEM_WITH_CODE_TLB */
1190 /** The size of what has currently been fetched into abOpcode. */
1191 uint8_t cbOpcode; /* 0x08 */
1192 /** The current offset into abOpcode. */
1193 uint8_t offOpcode; /* 0x09 */
1194 /** The offset of the ModR/M byte relative to the start of the instruction. */
1195 uint8_t offModRm; /* 0x0a */
1196
1197 /** The effective segment register (X86_SREG_XXX). */
1198 uint8_t iEffSeg; /* 0x0b */
1199
1200 /** The prefix mask (IEM_OP_PRF_XXX). */
1201 uint32_t fPrefixes; /* 0x0c */
1202 /** The extra REX ModR/M register field bit (REX.R << 3). */
1203 uint8_t uRexReg; /* 0x10 */
1204 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1205 * (REX.B << 3). */
1206 uint8_t uRexB; /* 0x11 */
1207 /** The extra REX SIB index field bit (REX.X << 3). */
1208 uint8_t uRexIndex; /* 0x12 */
1209
1210# endif /* !IEM_WITH_CODE_TLB */
1211
1212 /** The effective operand mode. */
1213 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1214 /** The default addressing mode. */
1215 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1216 /** The effective addressing mode. */
1217 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1218 /** The default operand mode. */
1219 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1220
1221 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1222 uint8_t idxPrefix; /* 0x3a, 0x17 */
1223 /** 3rd VEX/EVEX/XOP register.
1224 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1225 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1226 /** The VEX/EVEX/XOP length field. */
1227 uint8_t uVexLength; /* 0x3c, 0x19 */
1228 /** Additional EVEX stuff. */
1229 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1230
1231# ifndef IEM_WITH_CODE_TLB
1232 /** Explicit alignment padding. */
1233 uint8_t abAlignment2a[1]; /* 0x1b */
1234# endif
1235 /** The FPU opcode (FOP). */
1236 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1237# ifndef IEM_WITH_CODE_TLB
1238 /** Explicit alignment padding. */
1239 uint8_t abAlignment2b[2]; /* 0x1e */
1240# endif
1241
1242 /** The opcode bytes. */
1243 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1244 /** Explicit alignment padding. */
1245# ifdef IEM_WITH_CODE_TLB
1246 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1247# else
1248 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1249# endif
1250#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1251 uint8_t abOpaqueDecoder[0x4f - 0x8];
1252#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1253 /** @} */
1254
1255
1256 /** The number of active guest memory mappings. */
1257 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1258
1259 /** Records for tracking guest memory mappings. */
1260 struct
1261 {
1262 /** The address of the mapped bytes. */
1263 R3R0PTRTYPE(void *) pv;
1264 /** The access flags (IEM_ACCESS_XXX).
1265 * IEM_ACCESS_INVALID if the entry is unused. */
1266 uint32_t fAccess;
1267#if HC_ARCH_BITS == 64
1268 uint32_t u32Alignment4; /**< Alignment padding. */
1269#endif
1270 } aMemMappings[3]; /* 0x50 LB 0x30 */
1271
1272 /** Locking records for the mapped memory. */
1273 union
1274 {
1275 PGMPAGEMAPLOCK Lock;
1276 uint64_t au64Padding[2];
1277 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1278
1279 /** Bounce buffer info.
1280 * This runs in parallel to aMemMappings. */
1281 struct
1282 {
1283 /** The physical address of the first byte. */
1284 RTGCPHYS GCPhysFirst;
1285 /** The physical address of the second page. */
1286 RTGCPHYS GCPhysSecond;
1287 /** The number of bytes in the first page. */
1288 uint16_t cbFirst;
1289 /** The number of bytes in the second page. */
1290 uint16_t cbSecond;
1291 /** Whether it's unassigned memory. */
1292 bool fUnassigned;
1293 /** Explicit alignment padding. */
1294 bool afAlignment5[3];
1295 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1296
1297 /** The flags of the current exception / interrupt. */
1298 uint32_t fCurXcpt; /* 0xf8 */
1299 /** The current exception / interrupt. */
1300 uint8_t uCurXcpt; /* 0xfc */
1301 /** Exception / interrupt recursion depth. */
1302 int8_t cXcptRecursions; /* 0xfb */
1303
1304 /** The next unused mapping index.
1305 * @todo try find room for this up with cActiveMappings. */
1306 uint8_t iNextMapping; /* 0xfd */
1307 uint8_t abAlignment7[1];
1308
1309 /** Bounce buffer storage.
1310 * This runs in parallel to aMemMappings and aMemBbMappings. */
1311 struct
1312 {
1313 uint8_t ab[512];
1314 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1315
1316
1317 /** Pointer set jump buffer - ring-3 context. */
1318 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1319 /** Pointer set jump buffer - ring-0 context. */
1320 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1321
1322 /** @todo Should move this near @a fCurXcpt later. */
1323 /** The CR2 for the current exception / interrupt. */
1324 uint64_t uCurXcptCr2;
1325 /** The error code for the current exception / interrupt. */
1326 uint32_t uCurXcptErr;
1327
1328 /** @name Statistics
1329 * @{ */
1330 /** The number of instructions we've executed. */
1331 uint32_t cInstructions;
1332 /** The number of potential exits. */
1333 uint32_t cPotentialExits;
1334 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1335 * This may contain uncommitted writes. */
1336 uint32_t cbWritten;
1337 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1338 uint32_t cRetInstrNotImplemented;
1339 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1340 uint32_t cRetAspectNotImplemented;
1341 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1342 uint32_t cRetInfStatuses;
1343 /** Counts other error statuses returned. */
1344 uint32_t cRetErrStatuses;
1345 /** Number of times rcPassUp has been used. */
1346 uint32_t cRetPassUpStatus;
1347 /** Number of times RZ left with instruction commit pending for ring-3. */
1348 uint32_t cPendingCommit;
1349 /** Number of long jumps. */
1350 uint32_t cLongJumps;
1351 /** @} */
1352
1353 /** @name Target CPU information.
1354 * @{ */
1355#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1356 /** The target CPU. */
1357 uint8_t uTargetCpu;
1358#else
1359 uint8_t bTargetCpuPadding;
1360#endif
1361 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1362 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1363 * native host support and the 2nd for when there is.
1364 *
1365 * The two values are typically indexed by a g_CpumHostFeatures bit.
1366 *
1367 * This is for instance used for the BSF & BSR instructions where AMD and
1368 * Intel CPUs produce different EFLAGS. */
1369 uint8_t aidxTargetCpuEflFlavour[2];
1370
1371 /** The CPU vendor. */
1372 CPUMCPUVENDOR enmCpuVendor;
1373 /** @} */
1374
1375 /** @name Host CPU information.
1376 * @{ */
1377 /** The CPU vendor. */
1378 CPUMCPUVENDOR enmHostCpuVendor;
1379 /** @} */
1380
1381 /** Counts RDMSR \#GP(0) LogRel(). */
1382 uint8_t cLogRelRdMsr;
1383 /** Counts WRMSR \#GP(0) LogRel(). */
1384 uint8_t cLogRelWrMsr;
1385 /** Alignment padding. */
1386 uint8_t abAlignment9[46];
1387
1388 /** @name Recompilation
1389 * @{ */
1390 /** Pointer to the current translation block.
1391 * This can either be one being executed or one being compiled. */
1392 R3PTRTYPE(PIEMTB) pCurTbR3;
1393 /** Fixed TB used for threaded recompilation.
1394 * This is allocated once with maxed-out sizes and re-used afterwards. */
1395 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1396 /** Pointer to the ring-3 TB cache for this EMT. */
1397 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1398 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1399 * The TBs are based on physical addresses, so this is needed to correleated
1400 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1401 uint64_t uCurTbStartPc;
1402 /** Number of threaded TBs executed. */
1403 uint64_t cTbExecThreaded;
1404 /** Number of native TBs executed. */
1405 uint64_t cTbExecNative;
1406 /** Whether we need to check the opcode bytes for the current instruction.
1407 * This is set by a previous instruction if it modified memory or similar. */
1408 bool fTbCheckOpcodes;
1409 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1410 uint8_t fTbBranched;
1411 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1412 bool fTbCrossedPage;
1413 /** Whether to end the current TB. */
1414 bool fEndTb;
1415 /** Number of instructions before we need emit an IRQ check call again.
1416 * This helps making sure we don't execute too long w/o checking for
1417 * interrupts and immediately following instructions that may enable
1418 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1419 * required to make sure we check following the next instruction as well, see
1420 * fTbCurInstrIsSti. */
1421 uint8_t cInstrTillIrqCheck;
1422 /** Indicates that the current instruction is an STI. This is set by the
1423 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1424 bool fTbCurInstrIsSti;
1425 /** Spaced reserved for recompiler data / alignment. */
1426 bool afRecompilerStuff1[2+4];
1427 /** The virtual sync time at the last timer poll call. */
1428 uint32_t msRecompilerPollNow;
1429 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1430 RTGCPHYS GCPhysInstrBufPrev;
1431 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1432 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1433 * whether a branch instruction jumps to a new page or stays within the
1434 * current one. */
1435 RTGCPHYS GCPhysTbBranchSrcBuf;
1436 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1437 uint64_t GCVirtTbBranchSrcBuf;
1438 /** Pointer to the ring-3 TB allocator for this EMT. */
1439 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1440 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1441 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1442 /** Pointer to the native recompiler state for ring-3. */
1443 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1444 /** Alignment padding. */
1445 uint64_t auAlignment10[5];
1446 /** Statistics: Times TB execution was broken off before reaching the end. */
1447 STAMCOUNTER StatTbExecBreaks;
1448 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1449 STAMCOUNTER StatCheckIrqBreaks;
1450 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1451 STAMCOUNTER StatCheckModeBreaks;
1452 /** Statistics: Times a post jump target check missed and had to find new TB. */
1453 STAMCOUNTER StatCheckBranchMisses;
1454 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1455 STAMCOUNTER StatCheckNeedCsLimChecking;
1456 /** Threaded TB statistics: Number of instructions per TB. */
1457 STAMPROFILE StatTbThreadedInstr;
1458 /** Threaded TB statistics: Number of calls per TB. */
1459 STAMPROFILE StatTbThreadedCalls;
1460 /** Native TB statistics: Native code size per TB. */
1461 STAMPROFILE StatTbNativeCode;
1462 /** Native TB statistics: Profiling native recompilation. */
1463 STAMPROFILE StatNativeRecompilation;
1464 /** @} */
1465
1466 /** Data TLB.
1467 * @remarks Must be 64-byte aligned. */
1468 IEMTLB DataTlb;
1469 /** Instruction TLB.
1470 * @remarks Must be 64-byte aligned. */
1471 IEMTLB CodeTlb;
1472
1473 /** Exception statistics. */
1474 STAMCOUNTER aStatXcpts[32];
1475 /** Interrupt statistics. */
1476 uint32_t aStatInts[256];
1477
1478#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1479 /** Instruction statistics for ring-0/raw-mode. */
1480 IEMINSTRSTATS StatsRZ;
1481 /** Instruction statistics for ring-3. */
1482 IEMINSTRSTATS StatsR3;
1483#endif
1484} IEMCPU;
1485AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1486AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1487AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1488AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1489AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1490AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1491
1492/** Pointer to the per-CPU IEM state. */
1493typedef IEMCPU *PIEMCPU;
1494/** Pointer to the const per-CPU IEM state. */
1495typedef IEMCPU const *PCIEMCPU;
1496
1497
1498/** @def IEM_GET_CTX
1499 * Gets the guest CPU context for the calling EMT.
1500 * @returns PCPUMCTX
1501 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1502 */
1503#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1504
1505/** @def IEM_CTX_ASSERT
1506 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1507 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1508 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1509 */
1510#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1511 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1512 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1513 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1514
1515/** @def IEM_CTX_IMPORT_RET
1516 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1517 *
1518 * Will call the keep to import the bits as needed.
1519 *
1520 * Returns on import failure.
1521 *
1522 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1523 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1524 */
1525#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1526 do { \
1527 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1528 { /* likely */ } \
1529 else \
1530 { \
1531 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1532 AssertRCReturn(rcCtxImport, rcCtxImport); \
1533 } \
1534 } while (0)
1535
1536/** @def IEM_CTX_IMPORT_NORET
1537 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1538 *
1539 * Will call the keep to import the bits as needed.
1540 *
1541 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1542 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1543 */
1544#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1545 do { \
1546 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1547 { /* likely */ } \
1548 else \
1549 { \
1550 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1551 AssertLogRelRC(rcCtxImport); \
1552 } \
1553 } while (0)
1554
1555/** @def IEM_CTX_IMPORT_JMP
1556 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1557 *
1558 * Will call the keep to import the bits as needed.
1559 *
1560 * Jumps on import failure.
1561 *
1562 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1563 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1564 */
1565#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
1566 do { \
1567 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1568 { /* likely */ } \
1569 else \
1570 { \
1571 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1572 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
1573 } \
1574 } while (0)
1575
1576
1577
1578/** @def IEM_GET_TARGET_CPU
1579 * Gets the current IEMTARGETCPU value.
1580 * @returns IEMTARGETCPU value.
1581 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1582 */
1583#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
1584# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
1585#else
1586# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
1587#endif
1588
1589/** @def IEM_GET_INSTR_LEN
1590 * Gets the instruction length. */
1591#ifdef IEM_WITH_CODE_TLB
1592# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
1593#else
1594# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
1595#endif
1596
1597/** @def IEM_TRY_SETJMP
1598 * Wrapper around setjmp / try, hiding all the ugly differences.
1599 *
1600 * @note Use with extreme care as this is a fragile macro.
1601 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1602 * @param a_rcTarget The variable that should receive the status code in case
1603 * of a longjmp/throw.
1604 */
1605/** @def IEM_TRY_SETJMP_AGAIN
1606 * For when setjmp / try is used again in the same variable scope as a previous
1607 * IEM_TRY_SETJMP invocation.
1608 */
1609/** @def IEM_CATCH_LONGJMP_BEGIN
1610 * Start wrapper for catch / setjmp-else.
1611 *
1612 * This will set up a scope.
1613 *
1614 * @note Use with extreme care as this is a fragile macro.
1615 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1616 * @param a_rcTarget The variable that should receive the status code in case
1617 * of a longjmp/throw.
1618 */
1619/** @def IEM_CATCH_LONGJMP_END
1620 * End wrapper for catch / setjmp-else.
1621 *
1622 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
1623 * state.
1624 *
1625 * @note Use with extreme care as this is a fragile macro.
1626 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1627 */
1628#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
1629# ifdef IEM_WITH_THROW_CATCH
1630# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1631 a_rcTarget = VINF_SUCCESS; \
1632 try
1633# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1634 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
1635# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1636 catch (int rcThrown) \
1637 { \
1638 a_rcTarget = rcThrown
1639# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1640 } \
1641 ((void)0)
1642# else /* !IEM_WITH_THROW_CATCH */
1643# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1644 jmp_buf JmpBuf; \
1645 jmp_buf * volatile pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1646 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1647 if ((rcStrict = setjmp(JmpBuf)) == 0)
1648# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1649 pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1650 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1651 if ((rcStrict = setjmp(JmpBuf)) == 0)
1652# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1653 else \
1654 { \
1655 ((void)0)
1656# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1657 } \
1658 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
1659# endif /* !IEM_WITH_THROW_CATCH */
1660#endif /* IEM_WITH_SETJMP */
1661
1662
1663/**
1664 * Shared per-VM IEM data.
1665 */
1666typedef struct IEM
1667{
1668 /** The VMX APIC-access page handler type. */
1669 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
1670#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
1671 /** Set if the CPUID host call functionality is enabled. */
1672 bool fCpuIdHostCall;
1673#endif
1674} IEM;
1675
1676
1677
1678/** @name IEM_ACCESS_XXX - Access details.
1679 * @{ */
1680#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
1681#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
1682#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
1683#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
1684#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
1685#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
1686#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
1687#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
1688#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
1689#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
1690/** The writes are partial, so if initialize the bounce buffer with the
1691 * orignal RAM content. */
1692#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
1693/** Used in aMemMappings to indicate that the entry is bounce buffered. */
1694#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
1695/** Bounce buffer with ring-3 write pending, first page. */
1696#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
1697/** Bounce buffer with ring-3 write pending, second page. */
1698#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
1699/** Not locked, accessed via the TLB. */
1700#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
1701/** Valid bit mask. */
1702#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
1703/** Shift count for the TLB flags (upper word). */
1704#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
1705
1706/** Read+write data alias. */
1707#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1708/** Write data alias. */
1709#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1710/** Read data alias. */
1711#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
1712/** Instruction fetch alias. */
1713#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
1714/** Stack write alias. */
1715#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1716/** Stack read alias. */
1717#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
1718/** Stack read+write alias. */
1719#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1720/** Read system table alias. */
1721#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
1722/** Read+write system table alias. */
1723#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
1724/** @} */
1725
1726/** @name Prefix constants (IEMCPU::fPrefixes)
1727 * @{ */
1728#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
1729#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
1730#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
1731#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
1732#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
1733#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
1734#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
1735
1736#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
1737#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
1738#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
1739
1740#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
1741#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
1742#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
1743
1744#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
1745#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
1746#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
1747#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
1748/** Mask with all the REX prefix flags.
1749 * This is generally for use when needing to undo the REX prefixes when they
1750 * are followed legacy prefixes and therefore does not immediately preceed
1751 * the first opcode byte.
1752 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
1753#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
1754
1755#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
1756#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
1757#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
1758/** @} */
1759
1760/** @name IEMOPFORM_XXX - Opcode forms
1761 * @note These are ORed together with IEMOPHINT_XXX.
1762 * @{ */
1763/** ModR/M: reg, r/m */
1764#define IEMOPFORM_RM 0
1765/** ModR/M: reg, r/m (register) */
1766#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1767/** ModR/M: reg, r/m (memory) */
1768#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1769/** ModR/M: reg, r/m */
1770#define IEMOPFORM_RMI 1
1771/** ModR/M: reg, r/m (register) */
1772#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1773/** ModR/M: reg, r/m (memory) */
1774#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1775/** ModR/M: r/m, reg */
1776#define IEMOPFORM_MR 2
1777/** ModR/M: r/m (register), reg */
1778#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1779/** ModR/M: r/m (memory), reg */
1780#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1781/** ModR/M: r/m, reg */
1782#define IEMOPFORM_MRI 3
1783/** ModR/M: r/m (register), reg */
1784#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1785/** ModR/M: r/m (memory), reg */
1786#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1787/** ModR/M: r/m only */
1788#define IEMOPFORM_M 4
1789/** ModR/M: r/m only (register). */
1790#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
1791/** ModR/M: r/m only (memory). */
1792#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
1793/** ModR/M: reg only */
1794#define IEMOPFORM_R 5
1795
1796/** VEX+ModR/M: reg, r/m */
1797#define IEMOPFORM_VEX_RM 8
1798/** VEX+ModR/M: reg, r/m (register) */
1799#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
1800/** VEX+ModR/M: reg, r/m (memory) */
1801#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
1802/** VEX+ModR/M: r/m, reg */
1803#define IEMOPFORM_VEX_MR 9
1804/** VEX+ModR/M: r/m (register), reg */
1805#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
1806/** VEX+ModR/M: r/m (memory), reg */
1807#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
1808/** VEX+ModR/M: r/m only */
1809#define IEMOPFORM_VEX_M 10
1810/** VEX+ModR/M: r/m only (register). */
1811#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
1812/** VEX+ModR/M: r/m only (memory). */
1813#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
1814/** VEX+ModR/M: reg only */
1815#define IEMOPFORM_VEX_R 11
1816/** VEX+ModR/M: reg, vvvv, r/m */
1817#define IEMOPFORM_VEX_RVM 12
1818/** VEX+ModR/M: reg, vvvv, r/m (register). */
1819#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
1820/** VEX+ModR/M: reg, vvvv, r/m (memory). */
1821#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
1822/** VEX+ModR/M: reg, r/m, vvvv */
1823#define IEMOPFORM_VEX_RMV 13
1824/** VEX+ModR/M: reg, r/m, vvvv (register). */
1825#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
1826/** VEX+ModR/M: reg, r/m, vvvv (memory). */
1827#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
1828/** VEX+ModR/M: reg, r/m, imm8 */
1829#define IEMOPFORM_VEX_RMI 14
1830/** VEX+ModR/M: reg, r/m, imm8 (register). */
1831#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
1832/** VEX+ModR/M: reg, r/m, imm8 (memory). */
1833#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
1834/** VEX+ModR/M: r/m, vvvv, reg */
1835#define IEMOPFORM_VEX_MVR 15
1836/** VEX+ModR/M: r/m, vvvv, reg (register) */
1837#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
1838/** VEX+ModR/M: r/m, vvvv, reg (memory) */
1839#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
1840/** VEX+ModR/M+/n: vvvv, r/m */
1841#define IEMOPFORM_VEX_VM 16
1842/** VEX+ModR/M+/n: vvvv, r/m (register) */
1843#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
1844/** VEX+ModR/M+/n: vvvv, r/m (memory) */
1845#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
1846
1847/** Fixed register instruction, no R/M. */
1848#define IEMOPFORM_FIXED 32
1849
1850/** The r/m is a register. */
1851#define IEMOPFORM_MOD3 RT_BIT_32(8)
1852/** The r/m is a memory access. */
1853#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
1854/** @} */
1855
1856/** @name IEMOPHINT_XXX - Additional Opcode Hints
1857 * @note These are ORed together with IEMOPFORM_XXX.
1858 * @{ */
1859/** Ignores the operand size prefix (66h). */
1860#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
1861/** Ignores REX.W (aka WIG). */
1862#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
1863/** Both the operand size prefixes (66h + REX.W) are ignored. */
1864#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
1865/** Allowed with the lock prefix. */
1866#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
1867/** The VEX.L value is ignored (aka LIG). */
1868#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
1869/** The VEX.L value must be zero (i.e. 128-bit width only). */
1870#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
1871/** The VEX.V value must be zero. */
1872#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
1873
1874/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
1875#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
1876/** @} */
1877
1878/**
1879 * Possible hardware task switch sources.
1880 */
1881typedef enum IEMTASKSWITCH
1882{
1883 /** Task switch caused by an interrupt/exception. */
1884 IEMTASKSWITCH_INT_XCPT = 1,
1885 /** Task switch caused by a far CALL. */
1886 IEMTASKSWITCH_CALL,
1887 /** Task switch caused by a far JMP. */
1888 IEMTASKSWITCH_JUMP,
1889 /** Task switch caused by an IRET. */
1890 IEMTASKSWITCH_IRET
1891} IEMTASKSWITCH;
1892AssertCompileSize(IEMTASKSWITCH, 4);
1893
1894/**
1895 * Possible CrX load (write) sources.
1896 */
1897typedef enum IEMACCESSCRX
1898{
1899 /** CrX access caused by 'mov crX' instruction. */
1900 IEMACCESSCRX_MOV_CRX,
1901 /** CrX (CR0) write caused by 'lmsw' instruction. */
1902 IEMACCESSCRX_LMSW,
1903 /** CrX (CR0) write caused by 'clts' instruction. */
1904 IEMACCESSCRX_CLTS,
1905 /** CrX (CR0) read caused by 'smsw' instruction. */
1906 IEMACCESSCRX_SMSW
1907} IEMACCESSCRX;
1908
1909#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1910/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
1911 *
1912 * These flags provide further context to SLAT page-walk failures that could not be
1913 * determined by PGM (e.g, PGM is not privy to memory access permissions).
1914 *
1915 * @{
1916 */
1917/** Translating a nested-guest linear address failed accessing a nested-guest
1918 * physical address. */
1919# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
1920/** Translating a nested-guest linear address failed accessing a
1921 * paging-structure entry or updating accessed/dirty bits. */
1922# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
1923/** @} */
1924
1925DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
1926# ifndef IN_RING3
1927DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
1928# endif
1929#endif
1930
1931/**
1932 * Indicates to the verifier that the given flag set is undefined.
1933 *
1934 * Can be invoked again to add more flags.
1935 *
1936 * This is a NOOP if the verifier isn't compiled in.
1937 *
1938 * @note We're temporarily keeping this until code is converted to new
1939 * disassembler style opcode handling.
1940 */
1941#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
1942
1943
1944/** @def IEM_DECL_IMPL_TYPE
1945 * For typedef'ing an instruction implementation function.
1946 *
1947 * @param a_RetType The return type.
1948 * @param a_Name The name of the type.
1949 * @param a_ArgList The argument list enclosed in parentheses.
1950 */
1951
1952/** @def IEM_DECL_IMPL_DEF
1953 * For defining an instruction implementation function.
1954 *
1955 * @param a_RetType The return type.
1956 * @param a_Name The name of the type.
1957 * @param a_ArgList The argument list enclosed in parentheses.
1958 */
1959
1960#if defined(__GNUC__) && defined(RT_ARCH_X86)
1961# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1962 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
1963# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1964 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
1965# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1966 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
1967
1968#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
1969# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1970 a_RetType (__fastcall a_Name) a_ArgList
1971# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1972 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1973# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1974 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1975
1976#elif __cplusplus >= 201700 /* P0012R1 support */
1977# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1978 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
1979# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1980 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1981# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1982 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1983
1984#else
1985# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1986 a_RetType (VBOXCALL a_Name) a_ArgList
1987# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1988 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
1989# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1990 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
1991
1992#endif
1993
1994/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
1995RT_C_DECLS_BEGIN
1996extern uint8_t const g_afParity[256];
1997RT_C_DECLS_END
1998
1999
2000/** @name Arithmetic assignment operations on bytes (binary).
2001 * @{ */
2002typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2003typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2004FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2005FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2006FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2007FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2008FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2009FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2010FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2011/** @} */
2012
2013/** @name Arithmetic assignment operations on words (binary).
2014 * @{ */
2015typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2016typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2017FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2018FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2019FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2020FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2021FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2022FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2023FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2024/** @} */
2025
2026/** @name Arithmetic assignment operations on double words (binary).
2027 * @{ */
2028typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2029typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2030FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2031FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2032FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2033FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2034FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2035FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2036FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2037FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2038FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2039FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2040/** @} */
2041
2042/** @name Arithmetic assignment operations on quad words (binary).
2043 * @{ */
2044typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2045typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2046FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2047FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2048FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2049FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2050FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2051FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2052FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2053FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2054FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2055FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2056/** @} */
2057
2058typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2059typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2060typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2061typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2062typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2063typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2064typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2065typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2066
2067/** @name Compare operations (thrown in with the binary ops).
2068 * @{ */
2069FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2070FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2071FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2072FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2073/** @} */
2074
2075/** @name Test operations (thrown in with the binary ops).
2076 * @{ */
2077FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2078FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2079FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2080FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2081/** @} */
2082
2083/** @name Bit operations operations (thrown in with the binary ops).
2084 * @{ */
2085FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2086FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2087FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2088FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2089FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2090FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2091FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2092FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2093FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2094FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2095FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2096FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2097/** @} */
2098
2099/** @name Arithmetic three operand operations on double words (binary).
2100 * @{ */
2101typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2102typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2103FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2104FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2105FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2106/** @} */
2107
2108/** @name Arithmetic three operand operations on quad words (binary).
2109 * @{ */
2110typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2111typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2112FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2113FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2114FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2115/** @} */
2116
2117/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2118 * @{ */
2119typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2120typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2121FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2122FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2123FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2124FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2125FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2126FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2127/** @} */
2128
2129/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2130 * @{ */
2131typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2132typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2133FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2134FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2135FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2136FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2137FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2138FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2139/** @} */
2140
2141/** @name MULX 32-bit and 64-bit.
2142 * @{ */
2143typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2144typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2145FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2146
2147typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2148typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2149FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2150/** @} */
2151
2152
2153/** @name Exchange memory with register operations.
2154 * @{ */
2155IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2156IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2157IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2158IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2159IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2160IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2161IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2162IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2163/** @} */
2164
2165/** @name Exchange and add operations.
2166 * @{ */
2167IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2168IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2169IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2170IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2171IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2172IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2173IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2174IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2175/** @} */
2176
2177/** @name Compare and exchange.
2178 * @{ */
2179IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2180IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2181IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2182IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2183IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2184IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2185#if ARCH_BITS == 32
2186IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2187IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2188#else
2189IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2190IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2191#endif
2192IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2193 uint32_t *pEFlags));
2194IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2195 uint32_t *pEFlags));
2196IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2197 uint32_t *pEFlags));
2198IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2199 uint32_t *pEFlags));
2200#ifndef RT_ARCH_ARM64
2201IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2202 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2203#endif
2204/** @} */
2205
2206/** @name Memory ordering
2207 * @{ */
2208typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2209typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2210IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2211IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2212IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2213#ifndef RT_ARCH_ARM64
2214IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2215#endif
2216/** @} */
2217
2218/** @name Double precision shifts
2219 * @{ */
2220typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2221typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2222typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2223typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2224typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2225typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2226FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2227FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2228FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2229FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2230FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2231FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2232/** @} */
2233
2234
2235/** @name Bit search operations (thrown in with the binary ops).
2236 * @{ */
2237FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2238FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2239FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2240FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2241FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2242FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2243FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2244FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2245FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2246FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2247FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2248FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2249FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2250FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2251FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2252/** @} */
2253
2254/** @name Signed multiplication operations (thrown in with the binary ops).
2255 * @{ */
2256FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2257FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2258FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2259/** @} */
2260
2261/** @name Arithmetic assignment operations on bytes (unary).
2262 * @{ */
2263typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2264typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2265FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2266FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2267FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2268FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2269/** @} */
2270
2271/** @name Arithmetic assignment operations on words (unary).
2272 * @{ */
2273typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2274typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2275FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2276FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2277FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2278FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2279/** @} */
2280
2281/** @name Arithmetic assignment operations on double words (unary).
2282 * @{ */
2283typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2284typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2285FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2286FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2287FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2288FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2289/** @} */
2290
2291/** @name Arithmetic assignment operations on quad words (unary).
2292 * @{ */
2293typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2294typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2295FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2296FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2297FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2298FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2299/** @} */
2300
2301
2302/** @name Shift operations on bytes (Group 2).
2303 * @{ */
2304typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2305typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2306FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2307FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2308FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2309FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2310FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2311FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2312FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2313/** @} */
2314
2315/** @name Shift operations on words (Group 2).
2316 * @{ */
2317typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2318typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2319FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2320FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2321FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2322FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2323FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2324FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2325FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2326/** @} */
2327
2328/** @name Shift operations on double words (Group 2).
2329 * @{ */
2330typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2331typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2332FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2333FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2334FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2335FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2336FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2337FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2338FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2339/** @} */
2340
2341/** @name Shift operations on words (Group 2).
2342 * @{ */
2343typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2344typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2345FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2346FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2347FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2348FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2349FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2350FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2351FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2352/** @} */
2353
2354/** @name Multiplication and division operations.
2355 * @{ */
2356typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2357typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2358FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2359FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2360FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2361FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2362
2363typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2364typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2365FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2366FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2367FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2368FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2369
2370typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2371typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2372FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2373FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2374FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2375FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2376
2377typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2378typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2379FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2380FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2381FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2382FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2383/** @} */
2384
2385/** @name Byte Swap.
2386 * @{ */
2387IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2388IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2389IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2390/** @} */
2391
2392/** @name Misc.
2393 * @{ */
2394FNIEMAIMPLBINU16 iemAImpl_arpl;
2395/** @} */
2396
2397/** @name RDRAND and RDSEED
2398 * @{ */
2399typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2400typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2401typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2402typedef FNIEMAIMPLRDRANDSEEDU16 *FNIEMAIMPLPRDRANDSEEDU16;
2403typedef FNIEMAIMPLRDRANDSEEDU32 *FNIEMAIMPLPRDRANDSEEDU32;
2404typedef FNIEMAIMPLRDRANDSEEDU64 *FNIEMAIMPLPRDRANDSEEDU64;
2405
2406FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2407FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2408FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2409FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2410FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2411FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2412/** @} */
2413
2414/** @name ADOX and ADCX
2415 * @{ */
2416typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU32,(uint32_t *puDst, uint32_t *pfEFlags, uint32_t uSrc));
2417typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU64,(uint64_t *puDst, uint32_t *pfEFlags, uint64_t uSrc));
2418typedef FNIEMAIMPLADXU32 *PFNIEMAIMPLADXU32;
2419typedef FNIEMAIMPLADXU64 *PFNIEMAIMPLADXU64;
2420
2421FNIEMAIMPLADXU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2422FNIEMAIMPLADXU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2423FNIEMAIMPLADXU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2424FNIEMAIMPLADXU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2425/** @} */
2426
2427/** @name FPU operations taking a 32-bit float argument
2428 * @{ */
2429typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2430 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2431typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2432
2433typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2434 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2435typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2436
2437FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2438FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2439FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2440FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2441FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2442FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2443FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2444
2445IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2446IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2447 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2448/** @} */
2449
2450/** @name FPU operations taking a 64-bit float argument
2451 * @{ */
2452typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2453 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2454typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2455
2456typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2457 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2458typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2459
2460FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2461FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2462FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2463FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2464FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2465FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2466FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2467
2468IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2469IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2470 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2471/** @} */
2472
2473/** @name FPU operations taking a 80-bit float argument
2474 * @{ */
2475typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2476 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2477typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2478FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2479FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2480FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2481FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2482FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2483FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2484FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2485FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2486FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2487
2488FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2489FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2490FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2491
2492typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2493 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2494typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2495FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2496FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2497
2498typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2499 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2500typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2501FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2502FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2503
2504typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2505typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2506FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2507FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2508FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2509FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2510FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2511FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2512FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2513
2514typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2515typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2516FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2517FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2518
2519typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2520typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2521FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2522FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2523FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2524FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2525FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2526FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2527FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2528
2529typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2530 PCRTFLOAT80U pr80Val));
2531typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
2532FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
2533FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
2534FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
2535
2536IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2537IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2538 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
2539
2540IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
2541IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2542 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
2543
2544/** @} */
2545
2546/** @name FPU operations taking a 16-bit signed integer argument
2547 * @{ */
2548typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2549 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2550typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
2551typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2552 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
2553typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
2554
2555FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
2556FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
2557FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
2558FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
2559FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
2560FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
2561
2562typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2563 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2564typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
2565FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
2566
2567IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
2568FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
2569FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
2570/** @} */
2571
2572/** @name FPU operations taking a 32-bit signed integer argument
2573 * @{ */
2574typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2575 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2576typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
2577typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2578 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
2579typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
2580
2581FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
2582FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
2583FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
2584FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
2585FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
2586FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
2587
2588typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2589 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2590typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
2591FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
2592
2593IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
2594FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
2595FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
2596/** @} */
2597
2598/** @name FPU operations taking a 64-bit signed integer argument
2599 * @{ */
2600typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2601 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
2602typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
2603
2604IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
2605FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
2606FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
2607/** @} */
2608
2609
2610/** Temporary type representing a 256-bit vector register. */
2611typedef struct { uint64_t au64[4]; } IEMVMM256;
2612/** Temporary type pointing to a 256-bit vector register. */
2613typedef IEMVMM256 *PIEMVMM256;
2614/** Temporary type pointing to a const 256-bit vector register. */
2615typedef IEMVMM256 *PCIEMVMM256;
2616
2617
2618/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
2619 * @{ */
2620typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
2621typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
2622typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
2623typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
2624typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2625typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
2626typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2627typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
2628typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
2629typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
2630typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
2631typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
2632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2633typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
2634typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2635typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
2636typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
2637typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
2638FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
2639FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
2640FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
2641FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
2642FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
2643FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
2644FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
2645FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
2646FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
2647FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
2648FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
2649FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
2650FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64;
2651FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
2652FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
2653FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
2654FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
2655FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
2656FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
2657FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
2658FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
2659FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
2660FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
2661FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
2662FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
2663FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
2664FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
2665FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
2666FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
2667FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
2668FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
2669FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
2670FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
2671FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
2672FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
2673FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
2674FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
2675FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
2676FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
2677
2678FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
2679FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
2680FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
2681FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
2682FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
2683FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
2684FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
2685FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
2686FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
2687FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
2688FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
2689FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
2690FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
2691FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
2692FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
2693FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
2694FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
2695FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128;
2696FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
2697FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
2698FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
2699FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
2700FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
2701FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
2702FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
2703FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
2704FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
2705FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
2706FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
2707FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
2708FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
2709FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
2710FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
2711FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
2712FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
2713FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
2714FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
2715FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
2716FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
2717FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
2718FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
2719FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
2720FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
2721FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
2722FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
2723FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
2724FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
2725FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
2726FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
2727FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
2728FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
2729FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
2730FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
2731FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
2732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
2733FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
2734FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
2735
2736FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
2737FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
2738FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
2739FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
2740FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
2741FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
2742FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
2743FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
2744FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
2745FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
2746FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
2747FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
2748FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
2749FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
2750FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
2751FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
2752FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
2753FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
2754FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
2755FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
2756FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
2757FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
2758FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
2759FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
2760FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
2761FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
2762FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
2763FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
2764FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
2765FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
2766FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
2767FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
2768FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
2769FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
2770FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
2771FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
2772FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
2773FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
2774FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
2775FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
2776FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
2777FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
2778FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
2779FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
2780FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
2781FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
2782FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
2783FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
2784FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
2785FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
2786FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
2787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
2788FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
2789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
2790FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
2791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
2792FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
2793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
2794FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
2795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
2796FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
2797FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
2798FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
2799FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
2800FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
2801
2802FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
2803FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
2804FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
2805FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
2806
2807FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
2808FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
2809FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
2810FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
2811FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
2812FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
2813FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
2814FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
2815FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
2816FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
2817FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
2818FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
2819FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
2820FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
2821FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
2822FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
2823FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
2824FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
2825FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
2826FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
2827FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
2828FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
2829FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
2830FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
2831FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
2832FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
2833FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
2834FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
2835FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
2836FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
2837FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
2838FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
2839FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
2840FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
2841FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
2842FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
2843FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
2844FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
2845FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
2846FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
2847FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
2848FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
2849FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
2850FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
2851FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
2852FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
2853FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
2854FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
2855FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
2856FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
2857FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
2858FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
2859FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
2860FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
2861FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
2862FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
2863FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
2864FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
2865FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
2866FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
2867FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
2868FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
2869FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
2870FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
2871FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
2872
2873FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
2874FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
2875FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
2876/** @} */
2877
2878/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
2879 * @{ */
2880FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
2881FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
2882FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
2883 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
2884 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
2885 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
2886 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
2887 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
2888 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
2889 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
2890
2891FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
2892 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
2893 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
2894 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
2895 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
2896 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
2897 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
2898 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
2899/** @} */
2900
2901/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
2902 * @{ */
2903FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
2904FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
2905FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
2906 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
2907 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
2908 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
2909FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
2910 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
2911 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
2912 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
2913/** @} */
2914
2915/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
2916 * @{ */
2917typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
2918typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
2919typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
2920typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
2921IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
2922FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
2923#ifndef IEM_WITHOUT_ASSEMBLY
2924FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
2925#endif
2926FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
2927/** @} */
2928
2929/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
2930 * @{ */
2931typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
2932typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
2933typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
2934typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
2935typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
2936typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
2937FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
2938FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
2939FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
2940FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
2941FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
2942FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
2943FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
2944/** @} */
2945
2946/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
2947 * @{ */
2948IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
2949IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
2950#ifndef IEM_WITHOUT_ASSEMBLY
2951IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
2952#endif
2953IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
2954/** @} */
2955
2956/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
2957 * @{ */
2958typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
2959typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
2960typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
2961typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
2962typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
2963typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
2964
2965FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
2966FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
2967FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
2968FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
2969FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
2970FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
2971
2972FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
2973FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
2974FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
2975FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
2976FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
2977FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
2978
2979FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
2980FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
2981FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
2982FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
2983FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
2984FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
2985/** @} */
2986
2987
2988/** @name Media (SSE/MMX/AVX) operation: Sort this later
2989 * @{ */
2990IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2991IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2992IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2993IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2994IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
2995IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
2996
2997IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
2998IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
2999IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3000IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3001IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3002
3003IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3004IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3005IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3006IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3007IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3008
3009IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3010IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3011IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3012IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3013IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3014
3015IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3016IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3017IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3018IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3019IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3020
3021IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3022IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3023IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3024IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3025IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3026
3027IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3028IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3029IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3030IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3031IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3032
3033IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3034IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3035IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3036IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3037IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3038
3039IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3040IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3041IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3042IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3043IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3044
3045IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3046IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3047IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3048IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3049IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3050
3051IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3052IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3053IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3054IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3055IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3056
3057IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3058IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3059IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3060IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3061IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3062
3063IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3064IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3065IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3066IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3067IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3068
3069IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3070IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3071IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3072IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3073IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3074
3075IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3076IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3077IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3078IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3079IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3080
3081IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3082IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3083
3084IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3085IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3086IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3087IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3088
3089IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
3090IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3091IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3092IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3093
3094IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3095IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3096IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3097IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3098IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3099
3100IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3101IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3102IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3103IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3104IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3105
3106
3107typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3108typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3109typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3110typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3111typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3112typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3113
3114FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3115FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3116FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3117FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3118
3119FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3120FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3121FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3122FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3123
3124FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3125FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3126FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3127FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3128FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3129FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3130
3131FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3132FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3133FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3134FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3135FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3136
3137FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3138FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3139FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3140FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3141FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3142
3143FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3144
3145FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3146
3147FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3148FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3149FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3150FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3151FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3152FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3153IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3154IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3155
3156typedef struct IEMPCMPISTRXSRC
3157{
3158 RTUINT128U uSrc1;
3159 RTUINT128U uSrc2;
3160} IEMPCMPISTRXSRC;
3161typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3162typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3163
3164typedef struct IEMPCMPESTRXSRC
3165{
3166 RTUINT128U uSrc1;
3167 RTUINT128U uSrc2;
3168 uint64_t u64Rax;
3169 uint64_t u64Rdx;
3170} IEMPCMPESTRXSRC;
3171typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3172typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3173
3174typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3175typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3176typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3177typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3178
3179typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3180typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3181typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3182typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3183
3184FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3185FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3186FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3187FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3188
3189FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3190FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3191
3192FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3193/** @} */
3194
3195/** @name Media Odds and Ends
3196 * @{ */
3197typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3198typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3199typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3200typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3201FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3202FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3203FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3204FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3205
3206typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3207typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3208FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3209FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3210
3211typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3212typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3213typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3214typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3215typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3216typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3217typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3218typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3219
3220FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3221FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3222
3223FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3224FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3225
3226FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3227FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3228
3229FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3230FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3231
3232typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3233typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3234typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3235typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3236
3237FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3238FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3239
3240typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3241typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3242typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3243typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3244
3245FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3246FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3247
3248
3249typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3250typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3251
3252FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3253FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3254
3255FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3256FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3257
3258FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3259FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3260
3261FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3262FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3263
3264
3265typedef struct IEMMEDIAF2XMMSRC
3266{
3267 X86XMMREG uSrc1;
3268 X86XMMREG uSrc2;
3269} IEMMEDIAF2XMMSRC;
3270typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3271typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3272
3273typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3274typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3275
3276FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3277FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3278FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3279FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3280FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3281FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3282
3283FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3284FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3285
3286FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3287FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3288
3289typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3290typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3291
3292FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3293FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3294
3295typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3296typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3297
3298FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3299FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3300
3301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3302typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3303
3304FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3305FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3306
3307/** @} */
3308
3309
3310/** @name Function tables.
3311 * @{
3312 */
3313
3314/**
3315 * Function table for a binary operator providing implementation based on
3316 * operand size.
3317 */
3318typedef struct IEMOPBINSIZES
3319{
3320 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3321 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3322 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3323 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3324} IEMOPBINSIZES;
3325/** Pointer to a binary operator function table. */
3326typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3327
3328
3329/**
3330 * Function table for a unary operator providing implementation based on
3331 * operand size.
3332 */
3333typedef struct IEMOPUNARYSIZES
3334{
3335 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3336 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3337 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3338 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3339} IEMOPUNARYSIZES;
3340/** Pointer to a unary operator function table. */
3341typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3342
3343
3344/**
3345 * Function table for a shift operator providing implementation based on
3346 * operand size.
3347 */
3348typedef struct IEMOPSHIFTSIZES
3349{
3350 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3351 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3352 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3353 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3354} IEMOPSHIFTSIZES;
3355/** Pointer to a shift operator function table. */
3356typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3357
3358
3359/**
3360 * Function table for a multiplication or division operation.
3361 */
3362typedef struct IEMOPMULDIVSIZES
3363{
3364 PFNIEMAIMPLMULDIVU8 pfnU8;
3365 PFNIEMAIMPLMULDIVU16 pfnU16;
3366 PFNIEMAIMPLMULDIVU32 pfnU32;
3367 PFNIEMAIMPLMULDIVU64 pfnU64;
3368} IEMOPMULDIVSIZES;
3369/** Pointer to a multiplication or division operation function table. */
3370typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3371
3372
3373/**
3374 * Function table for a double precision shift operator providing implementation
3375 * based on operand size.
3376 */
3377typedef struct IEMOPSHIFTDBLSIZES
3378{
3379 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3380 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3381 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3382} IEMOPSHIFTDBLSIZES;
3383/** Pointer to a double precision shift function table. */
3384typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3385
3386
3387/**
3388 * Function table for media instruction taking two full sized media source
3389 * registers and one full sized destination register (AVX).
3390 */
3391typedef struct IEMOPMEDIAF3
3392{
3393 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3394 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3395} IEMOPMEDIAF3;
3396/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3397typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3398
3399/** @def IEMOPMEDIAF3_INIT_VARS_EX
3400 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3401 * given functions as initializers. For use in AVX functions where a pair of
3402 * functions are only used once and the function table need not be public. */
3403#ifndef TST_IEM_CHECK_MC
3404# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3405# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3406 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3407 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3408# else
3409# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3410 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3411# endif
3412#else
3413# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3414#endif
3415/** @def IEMOPMEDIAF3_INIT_VARS
3416 * Generate AVX function tables for the @a a_InstrNm instruction.
3417 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3418#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3419 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3420 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3421
3422/**
3423 * Function table for media instruction taking two full sized media source
3424 * registers and one full sized destination register, but no additional state
3425 * (AVX).
3426 */
3427typedef struct IEMOPMEDIAOPTF3
3428{
3429 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3430 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3431} IEMOPMEDIAOPTF3;
3432/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3433typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3434
3435/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3436 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3437 * given functions as initializers. For use in AVX functions where a pair of
3438 * functions are only used once and the function table need not be public. */
3439#ifndef TST_IEM_CHECK_MC
3440# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3441# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3442 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3443 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3444# else
3445# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3446 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3447# endif
3448#else
3449# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3450#endif
3451/** @def IEMOPMEDIAOPTF3_INIT_VARS
3452 * Generate AVX function tables for the @a a_InstrNm instruction.
3453 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3454#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3455 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3456 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3457
3458/**
3459 * Function table for media instruction taking one full sized media source
3460 * registers and one full sized destination register, but no additional state
3461 * (AVX).
3462 */
3463typedef struct IEMOPMEDIAOPTF2
3464{
3465 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
3466 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
3467} IEMOPMEDIAOPTF2;
3468/** Pointer to a media operation function table for 2 full sized ops (AVX). */
3469typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
3470
3471/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
3472 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3473 * given functions as initializers. For use in AVX functions where a pair of
3474 * functions are only used once and the function table need not be public. */
3475#ifndef TST_IEM_CHECK_MC
3476# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3477# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3478 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3479 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3480# else
3481# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3482 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3483# endif
3484#else
3485# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3486#endif
3487/** @def IEMOPMEDIAOPTF2_INIT_VARS
3488 * Generate AVX function tables for the @a a_InstrNm instruction.
3489 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
3490#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
3491 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3492 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3493
3494/**
3495 * Function table for media instruction taking two full sized media source
3496 * registers and one full sized destination register and an 8-bit immediate, but no additional state
3497 * (AVX).
3498 */
3499typedef struct IEMOPMEDIAOPTF3IMM8
3500{
3501 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
3502 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
3503} IEMOPMEDIAOPTF3IMM8;
3504/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3505typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
3506
3507/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
3508 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3509 * given functions as initializers. For use in AVX functions where a pair of
3510 * functions are only used once and the function table need not be public. */
3511#ifndef TST_IEM_CHECK_MC
3512# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3513# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3514 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3515 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3516# else
3517# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3518 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3519# endif
3520#else
3521# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3522#endif
3523/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
3524 * Generate AVX function tables for the @a a_InstrNm instruction.
3525 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
3526#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
3527 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3528 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3529/** @} */
3530
3531
3532/**
3533 * Function table for blend type instruction taking three full sized media source
3534 * registers and one full sized destination register, but no additional state
3535 * (AVX).
3536 */
3537typedef struct IEMOPBLENDOP
3538{
3539 PFNIEMAIMPLAVXBLENDU128 pfnU128;
3540 PFNIEMAIMPLAVXBLENDU256 pfnU256;
3541} IEMOPBLENDOP;
3542/** Pointer to a media operation function table for 4 full sized ops (AVX). */
3543typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
3544
3545/** @def IEMOPBLENDOP_INIT_VARS_EX
3546 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3547 * given functions as initializers. For use in AVX functions where a pair of
3548 * functions are only used once and the function table need not be public. */
3549#ifndef TST_IEM_CHECK_MC
3550# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3551# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3552 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3553 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3554# else
3555# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3556 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3557# endif
3558#else
3559# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3560#endif
3561/** @def IEMOPBLENDOP_INIT_VARS
3562 * Generate AVX function tables for the @a a_InstrNm instruction.
3563 * @sa IEMOPBLENDOP_INIT_VARS_EX */
3564#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
3565 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3566 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3567
3568
3569/** @name SSE/AVX single/double precision floating point operations.
3570 * @{ */
3571/**
3572 * A SSE result.
3573 */
3574typedef struct IEMSSERESULT
3575{
3576 /** The output value. */
3577 X86XMMREG uResult;
3578 /** The output status. */
3579 uint32_t MXCSR;
3580} IEMSSERESULT;
3581AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
3582/** Pointer to a SSE result. */
3583typedef IEMSSERESULT *PIEMSSERESULT;
3584/** Pointer to a const SSE result. */
3585typedef IEMSSERESULT const *PCIEMSSERESULT;
3586
3587
3588/**
3589 * A AVX128 result.
3590 */
3591typedef struct IEMAVX128RESULT
3592{
3593 /** The output value. */
3594 X86XMMREG uResult;
3595 /** The output status. */
3596 uint32_t MXCSR;
3597} IEMAVX128RESULT;
3598AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
3599/** Pointer to a AVX128 result. */
3600typedef IEMAVX128RESULT *PIEMAVX128RESULT;
3601/** Pointer to a const AVX128 result. */
3602typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
3603
3604
3605/**
3606 * A AVX256 result.
3607 */
3608typedef struct IEMAVX256RESULT
3609{
3610 /** The output value. */
3611 X86YMMREG uResult;
3612 /** The output status. */
3613 uint32_t MXCSR;
3614} IEMAVX256RESULT;
3615AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
3616/** Pointer to a AVX256 result. */
3617typedef IEMAVX256RESULT *PIEMAVX256RESULT;
3618/** Pointer to a const AVX256 result. */
3619typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
3620
3621
3622typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3623typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
3624typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3625typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
3626typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3627typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
3628
3629typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3630typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
3631typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3632typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
3633typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3634typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
3635
3636typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3637typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
3638
3639FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
3640FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
3641FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
3642FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
3643FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
3644FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
3645FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
3646FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
3647FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
3648FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
3649FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
3650FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
3651FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
3652FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
3653FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
3654FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
3655FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
3656FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
3657FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
3658FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
3659FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
3660FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
3661FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
3662
3663FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
3664FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
3665FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
3666FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
3667FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
3668FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
3669
3670FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
3671FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
3672FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
3673FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
3674FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
3675FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
3676FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
3677FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
3678FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
3679FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
3680FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
3681FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
3682FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
3683FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
3684FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
3685FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
3686FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
3687
3688FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
3689FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
3690FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
3691FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
3692FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
3693FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
3694FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
3695FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
3696FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
3697FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
3698FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
3699FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
3700FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
3701FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
3702FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
3703FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
3704FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
3705FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
3706FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
3707FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
3708FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
3709FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
3710
3711FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
3712FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
3713FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
3714FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
3715FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
3716FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
3717FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
3718FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
3719FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
3720FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
3721FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
3722FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
3723FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
3724FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
3725
3726FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
3727FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
3728FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
3729FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
3730FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
3731FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
3732FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
3733FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
3734FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
3735FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
3736FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
3737FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
3738FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
3739FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
3740FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
3741FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
3742FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
3743FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
3744FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
3745FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
3746/** @} */
3747
3748/** @name C instruction implementations for anything slightly complicated.
3749 * @{ */
3750
3751/**
3752 * For typedef'ing or declaring a C instruction implementation function taking
3753 * no extra arguments.
3754 *
3755 * @param a_Name The name of the type.
3756 */
3757# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
3758 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3759/**
3760 * For defining a C instruction implementation function taking no extra
3761 * arguments.
3762 *
3763 * @param a_Name The name of the function
3764 */
3765# define IEM_CIMPL_DEF_0(a_Name) \
3766 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3767/**
3768 * Prototype version of IEM_CIMPL_DEF_0.
3769 */
3770# define IEM_CIMPL_PROTO_0(a_Name) \
3771 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3772/**
3773 * For calling a C instruction implementation function taking no extra
3774 * arguments.
3775 *
3776 * This special call macro adds default arguments to the call and allow us to
3777 * change these later.
3778 *
3779 * @param a_fn The name of the function.
3780 */
3781# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
3782
3783/** Type for a C instruction implementation function taking no extra
3784 * arguments. */
3785typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
3786/** Function pointer type for a C instruction implementation function taking
3787 * no extra arguments. */
3788typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
3789
3790/**
3791 * For typedef'ing or declaring a C instruction implementation function taking
3792 * one extra argument.
3793 *
3794 * @param a_Name The name of the type.
3795 * @param a_Type0 The argument type.
3796 * @param a_Arg0 The argument name.
3797 */
3798# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
3799 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3800/**
3801 * For defining a C instruction implementation function taking one extra
3802 * argument.
3803 *
3804 * @param a_Name The name of the function
3805 * @param a_Type0 The argument type.
3806 * @param a_Arg0 The argument name.
3807 */
3808# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
3809 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3810/**
3811 * Prototype version of IEM_CIMPL_DEF_1.
3812 */
3813# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
3814 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3815/**
3816 * For calling a C instruction implementation function taking one extra
3817 * argument.
3818 *
3819 * This special call macro adds default arguments to the call and allow us to
3820 * change these later.
3821 *
3822 * @param a_fn The name of the function.
3823 * @param a0 The name of the 1st argument.
3824 */
3825# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
3826
3827/**
3828 * For typedef'ing or declaring a C instruction implementation function taking
3829 * two extra arguments.
3830 *
3831 * @param a_Name The name of the type.
3832 * @param a_Type0 The type of the 1st argument
3833 * @param a_Arg0 The name of the 1st argument.
3834 * @param a_Type1 The type of the 2nd argument.
3835 * @param a_Arg1 The name of the 2nd argument.
3836 */
3837# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3838 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3839/**
3840 * For defining a C instruction implementation function taking two extra
3841 * arguments.
3842 *
3843 * @param a_Name The name of the function.
3844 * @param a_Type0 The type of the 1st argument
3845 * @param a_Arg0 The name of the 1st argument.
3846 * @param a_Type1 The type of the 2nd argument.
3847 * @param a_Arg1 The name of the 2nd argument.
3848 */
3849# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3850 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3851/**
3852 * Prototype version of IEM_CIMPL_DEF_2.
3853 */
3854# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3855 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3856/**
3857 * For calling a C instruction implementation function taking two extra
3858 * arguments.
3859 *
3860 * This special call macro adds default arguments to the call and allow us to
3861 * change these later.
3862 *
3863 * @param a_fn The name of the function.
3864 * @param a0 The name of the 1st argument.
3865 * @param a1 The name of the 2nd argument.
3866 */
3867# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
3868
3869/**
3870 * For typedef'ing or declaring a C instruction implementation function taking
3871 * three extra arguments.
3872 *
3873 * @param a_Name The name of the type.
3874 * @param a_Type0 The type of the 1st argument
3875 * @param a_Arg0 The name of the 1st argument.
3876 * @param a_Type1 The type of the 2nd argument.
3877 * @param a_Arg1 The name of the 2nd argument.
3878 * @param a_Type2 The type of the 3rd argument.
3879 * @param a_Arg2 The name of the 3rd argument.
3880 */
3881# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3882 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3883/**
3884 * For defining a C instruction implementation function taking three extra
3885 * arguments.
3886 *
3887 * @param a_Name The name of the function.
3888 * @param a_Type0 The type of the 1st argument
3889 * @param a_Arg0 The name of the 1st argument.
3890 * @param a_Type1 The type of the 2nd argument.
3891 * @param a_Arg1 The name of the 2nd argument.
3892 * @param a_Type2 The type of the 3rd argument.
3893 * @param a_Arg2 The name of the 3rd argument.
3894 */
3895# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3896 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3897/**
3898 * Prototype version of IEM_CIMPL_DEF_3.
3899 */
3900# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3901 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3902/**
3903 * For calling a C instruction implementation function taking three extra
3904 * arguments.
3905 *
3906 * This special call macro adds default arguments to the call and allow us to
3907 * change these later.
3908 *
3909 * @param a_fn The name of the function.
3910 * @param a0 The name of the 1st argument.
3911 * @param a1 The name of the 2nd argument.
3912 * @param a2 The name of the 3rd argument.
3913 */
3914# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
3915
3916
3917/**
3918 * For typedef'ing or declaring a C instruction implementation function taking
3919 * four extra arguments.
3920 *
3921 * @param a_Name The name of the type.
3922 * @param a_Type0 The type of the 1st argument
3923 * @param a_Arg0 The name of the 1st argument.
3924 * @param a_Type1 The type of the 2nd argument.
3925 * @param a_Arg1 The name of the 2nd argument.
3926 * @param a_Type2 The type of the 3rd argument.
3927 * @param a_Arg2 The name of the 3rd argument.
3928 * @param a_Type3 The type of the 4th argument.
3929 * @param a_Arg3 The name of the 4th argument.
3930 */
3931# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3932 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
3933/**
3934 * For defining a C instruction implementation function taking four extra
3935 * arguments.
3936 *
3937 * @param a_Name The name of the function.
3938 * @param a_Type0 The type of the 1st argument
3939 * @param a_Arg0 The name of the 1st argument.
3940 * @param a_Type1 The type of the 2nd argument.
3941 * @param a_Arg1 The name of the 2nd argument.
3942 * @param a_Type2 The type of the 3rd argument.
3943 * @param a_Arg2 The name of the 3rd argument.
3944 * @param a_Type3 The type of the 4th argument.
3945 * @param a_Arg3 The name of the 4th argument.
3946 */
3947# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3948 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3949 a_Type2 a_Arg2, a_Type3 a_Arg3))
3950/**
3951 * Prototype version of IEM_CIMPL_DEF_4.
3952 */
3953# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
3954 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
3955 a_Type2 a_Arg2, a_Type3 a_Arg3))
3956/**
3957 * For calling a C instruction implementation function taking four extra
3958 * arguments.
3959 *
3960 * This special call macro adds default arguments to the call and allow us to
3961 * change these later.
3962 *
3963 * @param a_fn The name of the function.
3964 * @param a0 The name of the 1st argument.
3965 * @param a1 The name of the 2nd argument.
3966 * @param a2 The name of the 3rd argument.
3967 * @param a3 The name of the 4th argument.
3968 */
3969# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
3970
3971
3972/**
3973 * For typedef'ing or declaring a C instruction implementation function taking
3974 * five extra arguments.
3975 *
3976 * @param a_Name The name of the type.
3977 * @param a_Type0 The type of the 1st argument
3978 * @param a_Arg0 The name of the 1st argument.
3979 * @param a_Type1 The type of the 2nd argument.
3980 * @param a_Arg1 The name of the 2nd argument.
3981 * @param a_Type2 The type of the 3rd argument.
3982 * @param a_Arg2 The name of the 3rd argument.
3983 * @param a_Type3 The type of the 4th argument.
3984 * @param a_Arg3 The name of the 4th argument.
3985 * @param a_Type4 The type of the 5th argument.
3986 * @param a_Arg4 The name of the 5th argument.
3987 */
3988# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
3989 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
3990 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
3991 a_Type3 a_Arg3, a_Type4 a_Arg4))
3992/**
3993 * For defining a C instruction implementation function taking five extra
3994 * arguments.
3995 *
3996 * @param a_Name The name of the function.
3997 * @param a_Type0 The type of the 1st argument
3998 * @param a_Arg0 The name of the 1st argument.
3999 * @param a_Type1 The type of the 2nd argument.
4000 * @param a_Arg1 The name of the 2nd argument.
4001 * @param a_Type2 The type of the 3rd argument.
4002 * @param a_Arg2 The name of the 3rd argument.
4003 * @param a_Type3 The type of the 4th argument.
4004 * @param a_Arg3 The name of the 4th argument.
4005 * @param a_Type4 The type of the 5th argument.
4006 * @param a_Arg4 The name of the 5th argument.
4007 */
4008# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4009 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4010 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4011/**
4012 * Prototype version of IEM_CIMPL_DEF_5.
4013 */
4014# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4015 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4016 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4017/**
4018 * For calling a C instruction implementation function taking five extra
4019 * arguments.
4020 *
4021 * This special call macro adds default arguments to the call and allow us to
4022 * change these later.
4023 *
4024 * @param a_fn The name of the function.
4025 * @param a0 The name of the 1st argument.
4026 * @param a1 The name of the 2nd argument.
4027 * @param a2 The name of the 3rd argument.
4028 * @param a3 The name of the 4th argument.
4029 * @param a4 The name of the 5th argument.
4030 */
4031# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4032
4033/** @} */
4034
4035
4036/** @name Opcode Decoder Function Types.
4037 * @{ */
4038
4039/** @typedef PFNIEMOP
4040 * Pointer to an opcode decoder function.
4041 */
4042
4043/** @def FNIEMOP_DEF
4044 * Define an opcode decoder function.
4045 *
4046 * We're using macors for this so that adding and removing parameters as well as
4047 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4048 *
4049 * @param a_Name The function name.
4050 */
4051
4052/** @typedef PFNIEMOPRM
4053 * Pointer to an opcode decoder function with RM byte.
4054 */
4055
4056/** @def FNIEMOPRM_DEF
4057 * Define an opcode decoder function with RM byte.
4058 *
4059 * We're using macors for this so that adding and removing parameters as well as
4060 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4061 *
4062 * @param a_Name The function name.
4063 */
4064
4065#if defined(__GNUC__) && defined(RT_ARCH_X86)
4066typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4067typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4068# define FNIEMOP_DEF(a_Name) \
4069 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4070# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4071 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4072# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4073 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4074
4075#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4076typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4077typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4078# define FNIEMOP_DEF(a_Name) \
4079 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4080# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4081 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4082# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4083 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4084
4085#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4086typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4087typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4088# define FNIEMOP_DEF(a_Name) \
4089 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4090# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4091 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4092# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4093 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4094
4095#else
4096typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4097typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4098# define FNIEMOP_DEF(a_Name) \
4099 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4100# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4101 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4102# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4103 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4104
4105#endif
4106#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4107
4108/**
4109 * Call an opcode decoder function.
4110 *
4111 * We're using macors for this so that adding and removing parameters can be
4112 * done as we please. See FNIEMOP_DEF.
4113 */
4114#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4115
4116/**
4117 * Call a common opcode decoder function taking one extra argument.
4118 *
4119 * We're using macors for this so that adding and removing parameters can be
4120 * done as we please. See FNIEMOP_DEF_1.
4121 */
4122#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4123
4124/**
4125 * Call a common opcode decoder function taking one extra argument.
4126 *
4127 * We're using macors for this so that adding and removing parameters can be
4128 * done as we please. See FNIEMOP_DEF_1.
4129 */
4130#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4131/** @} */
4132
4133
4134/** @name Misc Helpers
4135 * @{ */
4136
4137/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4138 * due to GCC lacking knowledge about the value range of a switch. */
4139#if RT_CPLUSPLUS_PREREQ(202000)
4140# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4141#else
4142# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4143#endif
4144
4145/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4146#if RT_CPLUSPLUS_PREREQ(202000)
4147# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4148#else
4149# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4150#endif
4151
4152/**
4153 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4154 * occation.
4155 */
4156#ifdef LOG_ENABLED
4157# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4158 do { \
4159 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4160 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4161 } while (0)
4162#else
4163# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4164 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4165#endif
4166
4167/**
4168 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4169 * occation using the supplied logger statement.
4170 *
4171 * @param a_LoggerArgs What to log on failure.
4172 */
4173#ifdef LOG_ENABLED
4174# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4175 do { \
4176 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4177 /*LogFunc(a_LoggerArgs);*/ \
4178 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4179 } while (0)
4180#else
4181# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4182 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4183#endif
4184
4185/**
4186 * Gets the CPU mode (from fExec) as a IEMMODE value.
4187 *
4188 * @returns IEMMODE
4189 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4190 */
4191#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4192
4193/**
4194 * Check if we're currently executing in real or virtual 8086 mode.
4195 *
4196 * @returns @c true if it is, @c false if not.
4197 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4198 */
4199#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4200 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4201
4202/**
4203 * Check if we're currently executing in virtual 8086 mode.
4204 *
4205 * @returns @c true if it is, @c false if not.
4206 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4207 */
4208#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4209
4210/**
4211 * Check if we're currently executing in long mode.
4212 *
4213 * @returns @c true if it is, @c false if not.
4214 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4215 */
4216#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4217
4218/**
4219 * Check if we're currently executing in a 16-bit code segment.
4220 *
4221 * @returns @c true if it is, @c false if not.
4222 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4223 */
4224#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4225
4226/**
4227 * Check if we're currently executing in a 32-bit code segment.
4228 *
4229 * @returns @c true if it is, @c false if not.
4230 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4231 */
4232#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4233
4234/**
4235 * Check if we're currently executing in a 64-bit code segment.
4236 *
4237 * @returns @c true if it is, @c false if not.
4238 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4239 */
4240#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4241
4242/**
4243 * Check if we're currently executing in real mode.
4244 *
4245 * @returns @c true if it is, @c false if not.
4246 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4247 */
4248#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4249
4250/**
4251 * Gets the current protection level (CPL).
4252 *
4253 * @returns 0..3
4254 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4255 */
4256#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4257
4258/**
4259 * Sets the current protection level (CPL).
4260 *
4261 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4262 */
4263#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4264 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4265
4266/**
4267 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4268 * @returns PCCPUMFEATURES
4269 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4270 */
4271#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4272
4273/**
4274 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4275 * @returns PCCPUMFEATURES
4276 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4277 */
4278#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4279
4280/**
4281 * Evaluates to true if we're presenting an Intel CPU to the guest.
4282 */
4283#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4284
4285/**
4286 * Evaluates to true if we're presenting an AMD CPU to the guest.
4287 */
4288#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4289
4290/**
4291 * Check if the address is canonical.
4292 */
4293#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4294
4295/** Checks if the ModR/M byte is in register mode or not. */
4296#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4297/** Checks if the ModR/M byte is in memory mode or not. */
4298#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4299
4300/**
4301 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4302 *
4303 * For use during decoding.
4304 */
4305#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4306/**
4307 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4308 *
4309 * For use during decoding.
4310 */
4311#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4312
4313/**
4314 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4315 *
4316 * For use during decoding.
4317 */
4318#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4319/**
4320 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4321 *
4322 * For use during decoding.
4323 */
4324#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4325
4326/**
4327 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4328 * register index, with REX.R added in.
4329 *
4330 * For use during decoding.
4331 *
4332 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4333 */
4334#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4335 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4336 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4337 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4338/**
4339 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4340 * with REX.B added in.
4341 *
4342 * For use during decoding.
4343 *
4344 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4345 */
4346#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4347 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4348 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4349 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4350
4351/**
4352 * Combines the prefix REX and ModR/M byte for passing to
4353 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4354 *
4355 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4356 * The two bits are part of the REG sub-field, which isn't needed in
4357 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4358 *
4359 * For use during decoding/recompiling.
4360 */
4361#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4362 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4363 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (26 - 3) ) )
4364AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(26));
4365AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(27));
4366
4367/**
4368 * Gets the effective VEX.VVVV value.
4369 *
4370 * The 4th bit is ignored if not 64-bit code.
4371 * @returns effective V-register value.
4372 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4373 */
4374#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4375 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4376
4377
4378/**
4379 * Checks if we're executing inside an AMD-V or VT-x guest.
4380 */
4381#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4382# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4383#else
4384# define IEM_IS_IN_GUEST(a_pVCpu) false
4385#endif
4386
4387
4388#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4389
4390/**
4391 * Check if the guest has entered VMX root operation.
4392 */
4393# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4394
4395/**
4396 * Check if the guest has entered VMX non-root operation.
4397 */
4398# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4399 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4400
4401/**
4402 * Check if the nested-guest has the given Pin-based VM-execution control set.
4403 */
4404# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4405
4406/**
4407 * Check if the nested-guest has the given Processor-based VM-execution control set.
4408 */
4409# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4410
4411/**
4412 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4413 * control set.
4414 */
4415# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4416
4417/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4418# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4419
4420/** Whether a shadow VMCS is present for the given VCPU. */
4421# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4422
4423/** Gets the VMXON region pointer. */
4424# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4425
4426/** Gets the guest-physical address of the current VMCS for the given VCPU. */
4427# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
4428
4429/** Whether a current VMCS is present for the given VCPU. */
4430# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4431
4432/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
4433# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
4434 do \
4435 { \
4436 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
4437 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
4438 } while (0)
4439
4440/** Clears any current VMCS for the given VCPU. */
4441# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
4442 do \
4443 { \
4444 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
4445 } while (0)
4446
4447/**
4448 * Invokes the VMX VM-exit handler for an instruction intercept.
4449 */
4450# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
4451 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
4452
4453/**
4454 * Invokes the VMX VM-exit handler for an instruction intercept where the
4455 * instruction provides additional VM-exit information.
4456 */
4457# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
4458 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
4459
4460/**
4461 * Invokes the VMX VM-exit handler for a task switch.
4462 */
4463# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
4464 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
4465
4466/**
4467 * Invokes the VMX VM-exit handler for MWAIT.
4468 */
4469# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
4470 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
4471
4472/**
4473 * Invokes the VMX VM-exit handler for EPT faults.
4474 */
4475# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
4476 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
4477
4478/**
4479 * Invokes the VMX VM-exit handler.
4480 */
4481# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
4482 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
4483
4484#else
4485# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
4486# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
4487# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
4488# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
4489# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
4490# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4491# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4492# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4493# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4494# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4495# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
4496
4497#endif
4498
4499#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4500/**
4501 * Checks if we're executing a guest using AMD-V.
4502 */
4503# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
4504 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
4505/**
4506 * Check if an SVM control/instruction intercept is set.
4507 */
4508# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
4509 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
4510
4511/**
4512 * Check if an SVM read CRx intercept is set.
4513 */
4514# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4515 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4516
4517/**
4518 * Check if an SVM write CRx intercept is set.
4519 */
4520# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4521 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4522
4523/**
4524 * Check if an SVM read DRx intercept is set.
4525 */
4526# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4527 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4528
4529/**
4530 * Check if an SVM write DRx intercept is set.
4531 */
4532# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4533 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4534
4535/**
4536 * Check if an SVM exception intercept is set.
4537 */
4538# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
4539 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
4540
4541/**
4542 * Invokes the SVM \#VMEXIT handler for the nested-guest.
4543 */
4544# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4545 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
4546
4547/**
4548 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
4549 * corresponding decode assist information.
4550 */
4551# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
4552 do \
4553 { \
4554 uint64_t uExitInfo1; \
4555 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
4556 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
4557 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
4558 else \
4559 uExitInfo1 = 0; \
4560 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
4561 } while (0)
4562
4563/** Check and handles SVM nested-guest instruction intercept and updates
4564 * NRIP if needed.
4565 */
4566# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4567 do \
4568 { \
4569 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
4570 { \
4571 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4572 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
4573 } \
4574 } while (0)
4575
4576/** Checks and handles SVM nested-guest CR0 read intercept. */
4577# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4578 do \
4579 { \
4580 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
4581 { /* probably likely */ } \
4582 else \
4583 { \
4584 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4585 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
4586 } \
4587 } while (0)
4588
4589/**
4590 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
4591 */
4592# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
4593 do { \
4594 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
4595 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
4596 } while (0)
4597
4598#else
4599# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
4600# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4601# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4602# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4603# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4604# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
4605# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
4606# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
4607# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
4608 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4609# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4610# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
4611
4612#endif
4613
4614/** @} */
4615
4616uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
4617VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
4618
4619
4620/**
4621 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
4622 */
4623typedef union IEMSELDESC
4624{
4625 /** The legacy view. */
4626 X86DESC Legacy;
4627 /** The long mode view. */
4628 X86DESC64 Long;
4629} IEMSELDESC;
4630/** Pointer to a selector descriptor table entry. */
4631typedef IEMSELDESC *PIEMSELDESC;
4632
4633/** @name Raising Exceptions.
4634 * @{ */
4635VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
4636 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
4637
4638VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
4639 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
4640#ifdef IEM_WITH_SETJMP
4641DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
4642 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
4643#endif
4644VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
4645VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4646VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
4647VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
4648VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
4649VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4650VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
4651VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4652VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4653/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
4654VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4655VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4656VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4657VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4658VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4659VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4660#ifdef IEM_WITH_SETJMP
4661DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4662#endif
4663VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4664VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
4665VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4666#ifdef IEM_WITH_SETJMP
4667DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4668#endif
4669VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4670#ifdef IEM_WITH_SETJMP
4671DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
4672#endif
4673VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4674#ifdef IEM_WITH_SETJMP
4675DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4676#endif
4677VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
4678#ifdef IEM_WITH_SETJMP
4679DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
4680#endif
4681VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4682VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4683#ifdef IEM_WITH_SETJMP
4684DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4685#endif
4686VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4687
4688void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
4689
4690IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
4691IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
4692IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
4693
4694/**
4695 * Macro for calling iemCImplRaiseDivideError().
4696 *
4697 * This is for things that will _always_ decode to an \#DE, taking the
4698 * recompiler into consideration and everything.
4699 *
4700 * @return Strict VBox status code.
4701 */
4702#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseDivideError)
4703
4704/**
4705 * Macro for calling iemCImplRaiseInvalidLockPrefix().
4706 *
4707 * This is for things that will _always_ decode to an \#UD, taking the
4708 * recompiler into consideration and everything.
4709 *
4710 * @return Strict VBox status code.
4711 */
4712#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidLockPrefix)
4713
4714/**
4715 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
4716 *
4717 * This is for things that will _always_ decode to an \#UD, taking the
4718 * recompiler into consideration and everything.
4719 *
4720 * @return Strict VBox status code.
4721 */
4722#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4723
4724/**
4725 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
4726 *
4727 * Using this macro means you've got _buggy_ _code_ and are doing things that
4728 * belongs exclusively in IEMAllCImpl.cpp during decoding.
4729 *
4730 * @return Strict VBox status code.
4731 * @see IEMOP_RAISE_INVALID_OPCODE_RET
4732 */
4733#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4734
4735/** @} */
4736
4737/** @name Register Access.
4738 * @{ */
4739VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
4740 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4741VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
4742VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
4743 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4744VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewRip) RT_NOEXCEPT;
4745VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewRip) RT_NOEXCEPT;
4746VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
4747/** @} */
4748
4749/** @name FPU access and helpers.
4750 * @{ */
4751void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4752void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4753void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4754void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4755void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4756void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4757 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4758void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4759 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4760void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4761void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4762void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4763void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4764void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4765void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4766void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4767void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4768void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4769void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4770void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4771void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4772void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4773void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4774void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4775/** @} */
4776
4777/** @name SSE+AVX SIMD access and helpers.
4778 * @{ */
4779void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
4780void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
4781/** @} */
4782
4783/** @name Memory access.
4784 * @{ */
4785
4786/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
4787#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
4788/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
4789 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
4790#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
4791/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
4792 * Users include FXSAVE & FXRSTOR. */
4793#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
4794
4795VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
4796 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
4797VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4798#ifndef IN_RING3
4799VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4800#endif
4801void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
4802VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
4803VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4804VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
4805
4806void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
4807void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
4808#ifdef IEM_WITH_CODE_TLB
4809void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
4810#else
4811VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
4812#endif
4813#ifdef IEM_WITH_SETJMP
4814uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4815uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4816uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4817uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4818#else
4819VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
4820VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4821VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4822VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4823VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4824VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4825VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4826VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4827VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4828VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4829VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4830#endif
4831
4832VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4833VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4834VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4835VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4836VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4837VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4838VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4839VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4840VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4841VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4842VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4843VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4844VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
4845 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
4846#ifdef IEM_WITH_SETJMP
4847uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4848uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4849uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4850uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4851uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4852uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4853void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4854void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4855void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4856void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4857void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4858void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4859# if 0 /* these are inlined now */
4860uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4861uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4862uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4863uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4864uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4865uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4866# endif
4867void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4868void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4869void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4870void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4871void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4872void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4873#endif
4874
4875VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4876VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4877VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4878VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4879VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
4880
4881VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
4882VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
4883VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
4884VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
4885VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4886VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4887VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4888VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4889VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4890#ifdef IEM_WITH_SETJMP
4891void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4892void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4893void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4894void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4895void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4896void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4897void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4898void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4899#if 0
4900void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4901void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4902void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4903void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4904#endif
4905void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4906void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4907void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4908void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4909#endif
4910
4911#ifdef IEM_WITH_SETJMP
4912uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4913uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4914uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4915uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4916uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4917uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4918uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4919uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4920uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4921uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4922uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4923uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4924
4925void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4926void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4927void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
4928#endif
4929
4930VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
4931 void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
4932VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
4933VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
4934VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
4935VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
4936VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4937VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4938VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4939VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
4940VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
4941 void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
4942VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
4943 void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT;
4944VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
4945VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
4946VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
4947VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
4948VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4949VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4950VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
4951
4952#ifdef IEM_WITH_SETJMP
4953void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4954void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4955void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4956void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4957uint16_t iemMemStackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4958uint32_t iemMemStackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4959uint64_t iemMemStackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4960
4961void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4962void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4963void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4964uint16_t iemMemFlat32StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4965uint32_t iemMemFlat32StackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4966
4967void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4968void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
4969uint16_t iemMemFlat64StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4970uint64_t iemMemFlat64StackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4971#endif
4972
4973/** @} */
4974
4975/** @name IEMAllCImpl.cpp
4976 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
4977 * @{ */
4978IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4979IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4980IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
4981IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
4982IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
4983IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
4984IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
4985IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
4986IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
4987IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
4988IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
4989IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
4990IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
4991IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
4992IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
4993IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
4994IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
4995typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
4996typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
4997IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
4998IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
4999IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5000IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5001IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5002IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5003IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5004IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5005IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5006IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5007IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5008IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5009IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5010IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5011IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5012IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5013IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5014IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5015IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5016IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5017IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5018IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5019IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5020IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5021IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5022IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5023IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5024IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5025IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5026IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5027IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5028IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5029IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5030IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5031IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5032IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5033IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5034IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5035IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5036IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5037IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5038IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5039IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5040IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5041IEM_CIMPL_PROTO_0(iemCImpl_clts);
5042IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5043IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5044IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5045IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5046IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5047IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5048IEM_CIMPL_PROTO_0(iemCImpl_invd);
5049IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5050IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5051IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5052IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5053IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5054IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5055IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5056IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5057IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5058IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5059IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5060IEM_CIMPL_PROTO_0(iemCImpl_cli);
5061IEM_CIMPL_PROTO_0(iemCImpl_sti);
5062IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5063IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5064IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5065IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5066IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5067IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5068IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5069IEM_CIMPL_PROTO_0(iemCImpl_daa);
5070IEM_CIMPL_PROTO_0(iemCImpl_das);
5071IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5072IEM_CIMPL_PROTO_0(iemCImpl_aas);
5073IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5074IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5075IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5076IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5077IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5078 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
5079IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5080IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5081IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5082IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5083IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5084IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5085IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5086IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5087IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5088IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5089IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5090IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5091IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5092IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5093IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5094IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5095/** @} */
5096
5097/** @name IEMAllCImplStrInstr.cpp.h
5098 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5099 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5100 * @{ */
5101IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5102IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5103IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5104IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5105IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5106IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5107IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5108IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5109IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5110IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5111IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5112
5113IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5114IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5115IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5116IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5117IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5118IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5119IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5120IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5121IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5122IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5123IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5124
5125IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5126IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5127IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5128IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5129IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5130IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5131IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5132IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5133IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5134IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5135IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5136
5137
5138IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5139IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5140IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5141IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5142IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5143IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5144IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5145IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5146IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5147IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5148IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5149
5150IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5151IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5152IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5153IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5154IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5155IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5156IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5157IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5158IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5159IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5160IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5161
5162IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5163IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5164IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5165IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5166IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5167IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5168IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5169IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5170IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5171IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5172IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5173
5174IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5175IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5176IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5177IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5178IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5179IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5180IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5181IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5182IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5183IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5184IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5185
5186
5187IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5188IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5189IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5190IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5191IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5192IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5193IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5194IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5195IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5196IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5197IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5198
5199IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5200IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5201IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5202IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5203IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5204IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5205IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5206IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5207IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5208IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5209IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5210
5211IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5212IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5213IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5214IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5215IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5216IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5217IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5218IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5219IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5220IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5221IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5222
5223IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5224IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5225IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5226IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5227IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5228IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5229IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5230IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5231IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5232IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5233IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5234/** @} */
5235
5236#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5237VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5238VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5239VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5240VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5241VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5242VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5243VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5244VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5245VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5246VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5247 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5248VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5249 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5250VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5251VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5252VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5253VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5254VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5255VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5256VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5257VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5258 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5259VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5260VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5261VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5262uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5263void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5264VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5265 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5266bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5267IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5268IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5269IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5270IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5271IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5272IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5273IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5274IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5275IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5276IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5277IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5278IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5279IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5280IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5281IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5282IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5283#endif
5284
5285#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5286VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5287VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5288VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5289 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5290VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5291IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5292IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5293IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5294IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5295IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5296IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5297IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5298IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5299#endif
5300
5301IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5302IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5303IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5304
5305extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5306extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5307extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5308extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5309extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5310extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5311extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5312
5313/*
5314 * Recompiler related stuff.
5315 */
5316extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5317extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5318extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5319extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5320extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5321extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5322extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5323
5324DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
5325 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
5326void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
5327void iemTbAllocatorProcessDelayedFrees(PVMCPU pVCpu, PIEMTBALLOCATOR pTbAllocator);
5328
5329
5330/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5331#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5332typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5333typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5334# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5335 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5336# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5337 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5338
5339#else
5340typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5341typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5342# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5343 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5344# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5345 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5346#endif
5347
5348
5349IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5350
5351IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5352IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5353IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5354IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5355
5356IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5357IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5358IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5359
5360/* Branching: */
5361IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5362IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5363IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5364
5365IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5366IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
5367IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
5368
5369/* Natural page crossing: */
5370IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
5371IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
5372IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
5373
5374IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
5375IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
5376IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
5377
5378IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
5379IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
5380IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
5381
5382bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
5383bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
5384
5385/* Native recompiler public bits: */
5386PIEMTB iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb);
5387int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
5388void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
5389
5390
5391/** @} */
5392
5393RT_C_DECLS_END
5394
5395#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
5396
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette