VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 101518

Last change on this file since 101518 was 101484, checked in by vboxsync, 16 months ago

VMM/IEM: Basic register allocator sketches that incorporates simple skipping of guest register value loads. Sketched out varable and argument managmenet. Start telling GDB our jitted code to help with backtraces. ++ bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 279.3 KB
Line 
1/* $Id: IEMInternal.h 101484 2023-10-18 01:32:17Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEM_DO_LONGJMP
89 *
90 * Wrapper around longjmp / throw.
91 *
92 * @param a_pVCpu The CPU handle.
93 * @param a_rc The status code jump back with / throw.
94 */
95#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
96# ifdef IEM_WITH_THROW_CATCH
97# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
98# else
99# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
100# endif
101#endif
102
103/** For use with IEM function that may do a longjmp (when enabled).
104 *
105 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
106 * attribute. So, we indicate that function that may be part of a longjmp may
107 * throw "exceptions" and that the compiler should definitely not generate and
108 * std::terminate calling unwind code.
109 *
110 * Here is one example of this ending in std::terminate:
111 * @code{.txt}
11200 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
11301 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
11402 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
11503 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
11604 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
11705 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
11806 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
11907 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
12008 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
12109 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1220a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1230b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1240c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1250d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1260e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1270f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
12810 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
129 @endcode
130 *
131 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
132 */
133#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
134# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
135#else
136# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
137#endif
138
139#define IEM_IMPLEMENTS_TASKSWITCH
140
141/** @def IEM_WITH_3DNOW
142 * Includes the 3DNow decoding. */
143#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
144# define IEM_WITH_3DNOW
145#endif
146
147/** @def IEM_WITH_THREE_0F_38
148 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
149#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
150# define IEM_WITH_THREE_0F_38
151#endif
152
153/** @def IEM_WITH_THREE_0F_3A
154 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
155#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
156# define IEM_WITH_THREE_0F_3A
157#endif
158
159/** @def IEM_WITH_VEX
160 * Includes the VEX decoding. */
161#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
162# define IEM_WITH_VEX
163#endif
164
165/** @def IEM_CFG_TARGET_CPU
166 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
167 *
168 * By default we allow this to be configured by the user via the
169 * CPUM/GuestCpuName config string, but this comes at a slight cost during
170 * decoding. So, for applications of this code where there is no need to
171 * be dynamic wrt target CPU, just modify this define.
172 */
173#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
174# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
175#endif
176
177//#define IEM_WITH_CODE_TLB // - work in progress
178//#define IEM_WITH_DATA_TLB // - work in progress
179
180
181/** @def IEM_USE_UNALIGNED_DATA_ACCESS
182 * Use unaligned accesses instead of elaborate byte assembly. */
183#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
184# define IEM_USE_UNALIGNED_DATA_ACCESS
185#endif
186
187//#define IEM_LOG_MEMORY_WRITES
188
189#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
190/** Instruction statistics. */
191typedef struct IEMINSTRSTATS
192{
193# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
194# include "IEMInstructionStatisticsTmpl.h"
195# undef IEM_DO_INSTR_STAT
196} IEMINSTRSTATS;
197#else
198struct IEMINSTRSTATS;
199typedef struct IEMINSTRSTATS IEMINSTRSTATS;
200#endif
201/** Pointer to IEM instruction statistics. */
202typedef IEMINSTRSTATS *PIEMINSTRSTATS;
203
204
205/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
206 * @{ */
207#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
208#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
209#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
210#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
211#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
212/** Selects the right variant from a_aArray.
213 * pVCpu is implicit in the caller context. */
214#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
215 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
216/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
217 * be used because the host CPU does not support the operation. */
218#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
219 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
220/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
221 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
222 * into the two.
223 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
224#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
225# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
226 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
227#else
228# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
229 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
230#endif
231/** @} */
232
233/**
234 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
235 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
236 *
237 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
238 * indicator.
239 *
240 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
241 */
242#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
243# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
244 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
245#else
246# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
247#endif
248
249
250/**
251 * Extended operand mode that includes a representation of 8-bit.
252 *
253 * This is used for packing down modes when invoking some C instruction
254 * implementations.
255 */
256typedef enum IEMMODEX
257{
258 IEMMODEX_16BIT = IEMMODE_16BIT,
259 IEMMODEX_32BIT = IEMMODE_32BIT,
260 IEMMODEX_64BIT = IEMMODE_64BIT,
261 IEMMODEX_8BIT
262} IEMMODEX;
263AssertCompileSize(IEMMODEX, 4);
264
265
266/**
267 * Branch types.
268 */
269typedef enum IEMBRANCH
270{
271 IEMBRANCH_JUMP = 1,
272 IEMBRANCH_CALL,
273 IEMBRANCH_TRAP,
274 IEMBRANCH_SOFTWARE_INT,
275 IEMBRANCH_HARDWARE_INT
276} IEMBRANCH;
277AssertCompileSize(IEMBRANCH, 4);
278
279
280/**
281 * INT instruction types.
282 */
283typedef enum IEMINT
284{
285 /** INT n instruction (opcode 0xcd imm). */
286 IEMINT_INTN = 0,
287 /** Single byte INT3 instruction (opcode 0xcc). */
288 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
289 /** Single byte INTO instruction (opcode 0xce). */
290 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
291 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
292 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
293} IEMINT;
294AssertCompileSize(IEMINT, 4);
295
296
297/**
298 * A FPU result.
299 */
300typedef struct IEMFPURESULT
301{
302 /** The output value. */
303 RTFLOAT80U r80Result;
304 /** The output status. */
305 uint16_t FSW;
306} IEMFPURESULT;
307AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
308/** Pointer to a FPU result. */
309typedef IEMFPURESULT *PIEMFPURESULT;
310/** Pointer to a const FPU result. */
311typedef IEMFPURESULT const *PCIEMFPURESULT;
312
313
314/**
315 * A FPU result consisting of two output values and FSW.
316 */
317typedef struct IEMFPURESULTTWO
318{
319 /** The first output value. */
320 RTFLOAT80U r80Result1;
321 /** The output status. */
322 uint16_t FSW;
323 /** The second output value. */
324 RTFLOAT80U r80Result2;
325} IEMFPURESULTTWO;
326AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
327AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
328/** Pointer to a FPU result consisting of two output values and FSW. */
329typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
330/** Pointer to a const FPU result consisting of two output values and FSW. */
331typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
332
333
334/**
335 * IEM TLB entry.
336 *
337 * Lookup assembly:
338 * @code{.asm}
339 ; Calculate tag.
340 mov rax, [VA]
341 shl rax, 16
342 shr rax, 16 + X86_PAGE_SHIFT
343 or rax, [uTlbRevision]
344
345 ; Do indexing.
346 movzx ecx, al
347 lea rcx, [pTlbEntries + rcx]
348
349 ; Check tag.
350 cmp [rcx + IEMTLBENTRY.uTag], rax
351 jne .TlbMiss
352
353 ; Check access.
354 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
355 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
356 cmp rax, [uTlbPhysRev]
357 jne .TlbMiss
358
359 ; Calc address and we're done.
360 mov eax, X86_PAGE_OFFSET_MASK
361 and eax, [VA]
362 or rax, [rcx + IEMTLBENTRY.pMappingR3]
363 %ifdef VBOX_WITH_STATISTICS
364 inc qword [cTlbHits]
365 %endif
366 jmp .Done
367
368 .TlbMiss:
369 mov r8d, ACCESS_FLAGS
370 mov rdx, [VA]
371 mov rcx, [pVCpu]
372 call iemTlbTypeMiss
373 .Done:
374
375 @endcode
376 *
377 */
378typedef struct IEMTLBENTRY
379{
380 /** The TLB entry tag.
381 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
382 * is ASSUMING a virtual address width of 48 bits.
383 *
384 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
385 *
386 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
387 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
388 * revision wraps around though, the tags needs to be zeroed.
389 *
390 * @note Try use SHRD instruction? After seeing
391 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
392 *
393 * @todo This will need to be reorganized for 57-bit wide virtual address and
394 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
395 * have to move the TLB entry versioning entirely to the
396 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
397 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
398 * consumed by PCID and ASID (12 + 6 = 18).
399 */
400 uint64_t uTag;
401 /** Access flags and physical TLB revision.
402 *
403 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
404 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
405 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
406 * - Bit 3 - pgm phys/virt - not directly writable.
407 * - Bit 4 - pgm phys page - not directly readable.
408 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
409 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
410 * - Bit 7 - tlb entry - pMappingR3 member not valid.
411 * - Bits 63 thru 8 are used for the physical TLB revision number.
412 *
413 * We're using complemented bit meanings here because it makes it easy to check
414 * whether special action is required. For instance a user mode write access
415 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
416 * non-zero result would mean special handling needed because either it wasn't
417 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
418 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
419 * need to check any PTE flag.
420 */
421 uint64_t fFlagsAndPhysRev;
422 /** The guest physical page address. */
423 uint64_t GCPhys;
424 /** Pointer to the ring-3 mapping. */
425 R3PTRTYPE(uint8_t *) pbMappingR3;
426#if HC_ARCH_BITS == 32
427 uint32_t u32Padding1;
428#endif
429} IEMTLBENTRY;
430AssertCompileSize(IEMTLBENTRY, 32);
431/** Pointer to an IEM TLB entry. */
432typedef IEMTLBENTRY *PIEMTLBENTRY;
433
434/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
435 * @{ */
436#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
437#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
438#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
439#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
440#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
441#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
442#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
443#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
444#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
445#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
446#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
447/** @} */
448
449
450/**
451 * An IEM TLB.
452 *
453 * We've got two of these, one for data and one for instructions.
454 */
455typedef struct IEMTLB
456{
457 /** The TLB entries.
458 * We've choosen 256 because that way we can obtain the result directly from a
459 * 8-bit register without an additional AND instruction. */
460 IEMTLBENTRY aEntries[256];
461 /** The TLB revision.
462 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
463 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
464 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
465 * (The revision zero indicates an invalid TLB entry.)
466 *
467 * The initial value is choosen to cause an early wraparound. */
468 uint64_t uTlbRevision;
469 /** The TLB physical address revision - shadow of PGM variable.
470 *
471 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
472 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
473 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
474 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
475 *
476 * The initial value is choosen to cause an early wraparound. */
477 uint64_t volatile uTlbPhysRev;
478
479 /* Statistics: */
480
481 /** TLB hits (VBOX_WITH_STATISTICS only). */
482 uint64_t cTlbHits;
483 /** TLB misses. */
484 uint32_t cTlbMisses;
485 /** Slow read path. */
486 uint32_t cTlbSlowReadPath;
487 /** Safe read path. */
488 uint32_t cTlbSafeReadPath;
489 /** Safe write path. */
490 uint32_t cTlbSafeWritePath;
491#if 0
492 /** TLB misses because of tag mismatch. */
493 uint32_t cTlbMissesTag;
494 /** TLB misses because of virtual access violation. */
495 uint32_t cTlbMissesVirtAccess;
496 /** TLB misses because of dirty bit. */
497 uint32_t cTlbMissesDirty;
498 /** TLB misses because of MMIO */
499 uint32_t cTlbMissesMmio;
500 /** TLB misses because of write access handlers. */
501 uint32_t cTlbMissesWriteHandler;
502 /** TLB misses because no r3(/r0) mapping. */
503 uint32_t cTlbMissesMapping;
504#endif
505 /** Alignment padding. */
506 uint32_t au32Padding[6];
507} IEMTLB;
508AssertCompileSizeAlignment(IEMTLB, 64);
509/** IEMTLB::uTlbRevision increment. */
510#define IEMTLB_REVISION_INCR RT_BIT_64(36)
511/** IEMTLB::uTlbRevision mask. */
512#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
513/** IEMTLB::uTlbPhysRev increment.
514 * @sa IEMTLBE_F_PHYS_REV */
515#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
516/**
517 * Calculates the TLB tag for a virtual address.
518 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
519 * @param a_pTlb The TLB.
520 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
521 * the clearing of the top 16 bits won't work (if 32-bit
522 * we'll end up with mostly zeros).
523 */
524#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
525/**
526 * Calculates the TLB tag for a virtual address but without TLB revision.
527 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
528 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
529 * the clearing of the top 16 bits won't work (if 32-bit
530 * we'll end up with mostly zeros).
531 */
532#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
533/**
534 * Converts a TLB tag value into a TLB index.
535 * @returns Index into IEMTLB::aEntries.
536 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
537 */
538#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
539/**
540 * Converts a TLB tag value into a TLB index.
541 * @returns Index into IEMTLB::aEntries.
542 * @param a_pTlb The TLB.
543 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
544 */
545#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
546
547
548/** @name IEM_MC_F_XXX - MC block flags/clues.
549 * @todo Merge with IEM_CIMPL_F_XXX
550 * @{ */
551#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
552#define IEM_MC_F_MIN_186 RT_BIT_32(1)
553#define IEM_MC_F_MIN_286 RT_BIT_32(2)
554#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
555#define IEM_MC_F_MIN_386 RT_BIT_32(3)
556#define IEM_MC_F_MIN_486 RT_BIT_32(4)
557#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
558#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
559#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
560#define IEM_MC_F_64BIT RT_BIT_32(6)
561#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
562/** @} */
563
564/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
565 *
566 * These clues are mainly for the recompiler, so that it can emit correct code.
567 *
568 * They are processed by the python script and which also automatically
569 * calculates flags for MC blocks based on the statements, extending the use of
570 * these flags to describe MC block behavior to the recompiler core. The python
571 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
572 * error checking purposes. The script emits the necessary fEndTb = true and
573 * similar statements as this reduces compile time a tiny bit.
574 *
575 * @{ */
576/** Flag set if direct branch, clear if absolute or indirect. */
577#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
578/** Flag set if indirect branch, clear if direct or relative.
579 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
580 * as well as for return instructions (RET, IRET, RETF). */
581#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
582/** Flag set if relative branch, clear if absolute or indirect. */
583#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
584/** Flag set if conditional branch, clear if unconditional. */
585#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
586/** Flag set if it's a far branch (changes CS). */
587#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
588/** Convenience: Testing any kind of branch. */
589#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
590
591/** Execution flags may change (IEMCPU::fExec). */
592#define IEM_CIMPL_F_MODE RT_BIT_32(5)
593/** May change significant portions of RFLAGS. */
594#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
595/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
596#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
597/** May trigger interrupt shadowing. */
598#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
599/** May enable interrupts, so recheck IRQ immediately afterwards executing
600 * the instruction. */
601#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
602/** May disable interrupts, so recheck IRQ immediately before executing the
603 * instruction. */
604#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
605/** Convenience: Check for IRQ both before and after an instruction. */
606#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
607/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
608#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
609/** May modify FPU state.
610 * @todo Not sure if this is useful yet. */
611#define IEM_CIMPL_F_FPU RT_BIT_32(12)
612/** REP prefixed instruction which may yield before updating PC.
613 * @todo Not sure if this is useful, REP functions now return non-zero
614 * status if they don't update the PC. */
615#define IEM_CIMPL_F_REP RT_BIT_32(13)
616/** I/O instruction.
617 * @todo Not sure if this is useful yet. */
618#define IEM_CIMPL_F_IO RT_BIT_32(14)
619/** Force end of TB after the instruction. */
620#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
621/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
622#define IEM_CIMPL_F_XCPT \
623 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
624/** @} */
625
626
627/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
628 *
629 * These flags are set when entering IEM and adjusted as code is executed, such
630 * that they will always contain the current values as instructions are
631 * finished.
632 *
633 * In recompiled execution mode, (most of) these flags are included in the
634 * translation block selection key and stored in IEMTB::fFlags alongside the
635 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
636 * in IEMCPU::fExec.
637 *
638 * @{ */
639/** Mode: The block target mode mask. */
640#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
641/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
642#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
643/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
644 * conditional in EIP/IP updating), and flat wide open CS, SS DS, and ES in
645 * 32-bit mode (for simplifying most memory accesses). */
646#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
647/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
648#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
649/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
650#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
651
652/** X86 Mode: 16-bit on 386 or later. */
653#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
654/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
655#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
656/** X86 Mode: 16-bit protected mode on 386 or later. */
657#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
658/** X86 Mode: 16-bit protected mode on 386 or later. */
659#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
660/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
661#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
662
663/** X86 Mode: 32-bit on 386 or later. */
664#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
665/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
666#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
667/** X86 Mode: 32-bit protected mode. */
668#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
669/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
670#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
671
672/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
673#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
674
675
676/** Bypass access handlers when set. */
677#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
678/** Have pending hardware instruction breakpoints. */
679#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
680/** Have pending hardware data breakpoints. */
681#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
682
683/** X86: Have pending hardware I/O breakpoints. */
684#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
685/** X86: Disregard the lock prefix (implied or not) when set. */
686#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
687
688/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
689#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
690
691/** Caller configurable options. */
692#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
693
694/** X86: The current protection level (CPL) shift factor. */
695#define IEM_F_X86_CPL_SHIFT 8
696/** X86: The current protection level (CPL) mask. */
697#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
698/** X86: The current protection level (CPL) shifted mask. */
699#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
700
701/** X86 execution context.
702 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
703 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
704 * mode. */
705#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
706/** X86 context: Plain regular execution context. */
707#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
708/** X86 context: VT-x enabled. */
709#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
710/** X86 context: AMD-V enabled. */
711#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
712/** X86 context: In AMD-V or VT-x guest mode. */
713#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
714/** X86 context: System management mode (SMM). */
715#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
716
717/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
718 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
719 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
720 * alread). */
721
722/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
723 * iemRegFinishClearingRF() most for most situations
724 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
725 * the IEM_F_PENDING_BRK_XXX bits alread). */
726
727/** @} */
728
729
730/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
731 *
732 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
733 * translation block flags. The combined flag mask (subject to
734 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
735 *
736 * @{ */
737/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
738#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
739
740/** Type: The block type mask. */
741#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
742/** Type: Purly threaded recompiler (via tables). */
743#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
744/** Type: Native recompilation. */
745#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
746
747/** Set when we're starting the block in an "interrupt shadow".
748 * We don't need to distingish between the two types of this mask, thus the one.
749 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
750#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
751/** Set when we're currently inhibiting NMIs
752 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
753#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
754
755/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
756 * we're close the limit before starting a TB, as determined by
757 * iemGetTbFlagsForCurrentPc(). */
758#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
759
760/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
761 * @note We skip the CPL as we don't currently generate ring-specific code,
762 * that's all handled in CIMPL functions.
763 *
764 * For the same reasons, we skip all of IEM_F_X86_CTX_MASK, with the
765 * exception of SMM (which we don't implement). */
766#define IEMTB_F_KEY_MASK ( (UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEM_F_X86_CPL_MASK | IEMTB_F_TYPE_MASK)) \
767 | IEM_F_X86_CTX_SMM)
768/** @} */
769
770AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
771AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
772AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
773AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
774AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
775AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
776AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
777AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
778AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
779AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
780AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
781AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
782AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
783AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
784AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
785AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
786AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
787AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
788AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
789
790AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
791AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
792AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
793AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
794AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
795AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
796AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
797AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
798AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
799AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
800AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
801AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
802
803AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
804AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
805AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
806
807/** Native instruction type for use with the native code generator.
808 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
809#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
810typedef uint8_t IEMNATIVEINSTR;
811#else
812typedef uint32_t IEMNATIVEINSTR;
813#endif
814/** Pointer to a native instruction unit. */
815typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
816
817/**
818 * A call for the threaded call table.
819 */
820typedef struct IEMTHRDEDCALLENTRY
821{
822 /** The function to call (IEMTHREADEDFUNCS). */
823 uint16_t enmFunction;
824 /** Instruction number in the TB (for statistics). */
825 uint8_t idxInstr;
826 uint8_t uUnused0;
827
828 /** Offset into IEMTB::pabOpcodes. */
829 uint16_t offOpcode;
830 /** The opcode length. */
831 uint8_t cbOpcode;
832 /** Index in to IEMTB::aRanges. */
833 uint8_t idxRange;
834
835 /** Generic parameters. */
836 uint64_t auParams[3];
837} IEMTHRDEDCALLENTRY;
838AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
839/** Pointer to a threaded call entry. */
840typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
841/** Pointer to a const threaded call entry. */
842typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
843
844/**
845 * Native IEM TB 'function' typedef.
846 *
847 * This will throw/longjmp on occation.
848 *
849 * @note AMD64 doesn't have that many non-volatile registers and does sport
850 * 32-bit address displacments, so we don't need pCtx.
851 *
852 * On ARM64 pCtx allows us to directly address the whole register
853 * context without requiring a separate indexing register holding the
854 * offset. This saves an instruction loading the offset for each guest
855 * CPU context access, at the cost of a non-volatile register.
856 * Fortunately, ARM64 has quite a lot more registers.
857 */
858typedef
859#ifdef RT_ARCH_AMD64
860int FNIEMTBNATIVE(PVMCPUCC pVCpu)
861#else
862int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
863#endif
864#if RT_CPLUSPLUS_PREREQ(201700)
865 IEM_NOEXCEPT_MAY_LONGJMP
866#endif
867 ;
868/** Pointer to a native IEM TB entry point function.
869 * This will throw/longjmp on occation. */
870typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
871
872
873/**
874 * Translation block.
875 *
876 * The current plan is to just keep TBs and associated lookup hash table private
877 * to each VCpu as that simplifies TB removal greatly (no races) and generally
878 * avoids using expensive atomic primitives for updating lists and stuff.
879 */
880#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
881typedef struct IEMTB
882{
883 /** Next block with the same hash table entry. */
884 struct IEMTB *pNext;
885 /** Usage counter. */
886 uint32_t cUsed;
887 /** The IEMCPU::msRecompilerPollNow last time it was used. */
888 uint32_t msLastUsed;
889 /** The allocation chunk this TB belongs to. */
890 uint8_t idxAllocChunk;
891
892 uint8_t abUnused[3];
893 uint32_t uUnused;
894
895
896 /** @name What uniquely identifies the block.
897 * @{ */
898 RTGCPHYS GCPhysPc;
899 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
900 uint32_t fFlags;
901 union
902 {
903 struct
904 {
905 /**< Relevant CS X86DESCATTR_XXX bits. */
906 uint16_t fAttr;
907 } x86;
908 };
909 /** @} */
910
911 /** Number of opcode ranges. */
912 uint8_t cRanges;
913 /** Statistics: Number of instructions in the block. */
914 uint8_t cInstructions;
915
916 /** Type specific info. */
917 union
918 {
919 struct
920 {
921 /** The call sequence table. */
922 PIEMTHRDEDCALLENTRY paCalls;
923 /** Number of calls in paCalls. */
924 uint16_t cCalls;
925 /** Number of calls allocated. */
926 uint16_t cAllocated;
927 } Thrd;
928 struct
929 {
930 /** The native instructions (PFNIEMTBNATIVE). */
931 PIEMNATIVEINSTR paInstructions;
932 /** Number of instructions pointed to by paInstructions. */
933 uint32_t cInstructions;
934 } Native;
935 /** Generic view for zeroing when freeing. */
936 struct
937 {
938 uintptr_t uPtr;
939 uint32_t uData;
940 } Gen;
941 };
942
943 /** Number of bytes of opcodes stored in pabOpcodes. */
944 uint16_t cbOpcodes;
945 /** The max storage available in the pabOpcodes block. */
946 uint16_t cbOpcodesAllocated;
947 /** Pointer to the opcode bytes this block was recompiled from. */
948 uint8_t *pabOpcodes;
949
950 /* --- 64 byte cache line end --- */
951
952 /** Opcode ranges.
953 *
954 * The opcode checkers and maybe TLB loading functions will use this to figure
955 * out what to do. The parameter will specify an entry and the opcode offset to
956 * start at and the minimum number of bytes to verify (instruction length).
957 *
958 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
959 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
960 * code TLB (must have a valid entry for that address) and scan the ranges to
961 * locate the corresponding opcodes. Probably.
962 */
963 struct IEMTBOPCODERANGE
964 {
965 /** Offset within pabOpcodes. */
966 uint16_t offOpcodes;
967 /** Number of bytes. */
968 uint16_t cbOpcodes;
969 /** The page offset. */
970 RT_GCC_EXTENSION
971 uint16_t offPhysPage : 12;
972 /** Unused bits. */
973 RT_GCC_EXTENSION
974 uint16_t u2Unused : 2;
975 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
976 RT_GCC_EXTENSION
977 uint16_t idxPhysPage : 2;
978 } aRanges[8];
979
980 /** Physical pages that this TB covers.
981 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
982 RTGCPHYS aGCPhysPages[2];
983} IEMTB;
984#pragma pack()
985AssertCompileMemberOffset(IEMTB, x86, 36);
986AssertCompileMemberOffset(IEMTB, cRanges, 38);
987AssertCompileMemberOffset(IEMTB, Thrd, 40);
988AssertCompileMemberOffset(IEMTB, Thrd.cCalls, 48);
989AssertCompileMemberOffset(IEMTB, cbOpcodes, 52);
990AssertCompileMemberSize(IEMTB, aRanges[0], 6);
991#if 1
992AssertCompileSize(IEMTB, 128);
993# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
994#else
995AssertCompileSize(IEMTB, 168);
996# undef IEMTB_SIZE_IS_POWER_OF_TWO
997#endif
998
999/** Pointer to a translation block. */
1000typedef IEMTB *PIEMTB;
1001/** Pointer to a const translation block. */
1002typedef IEMTB const *PCIEMTB;
1003
1004/**
1005 * A chunk of memory in the TB allocator.
1006 */
1007typedef struct IEMTBCHUNK
1008{
1009 /** Pointer to the translation blocks in this chunk. */
1010 PIEMTB paTbs;
1011#ifdef IN_RING0
1012 /** Allocation handle. */
1013 RTR0MEMOBJ hMemObj;
1014#endif
1015} IEMTBCHUNK;
1016
1017/**
1018 * A per-CPU translation block allocator.
1019 *
1020 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1021 * the length of the collision list, and of course also for cache line alignment
1022 * reasons, the TBs must be allocated with at least 64-byte alignment.
1023 * Memory is there therefore allocated using one of the page aligned allocators.
1024 *
1025 *
1026 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1027 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1028 * that enables us to quickly calculate the allocation bitmap position when
1029 * freeing the translation block.
1030 */
1031typedef struct IEMTBALLOCATOR
1032{
1033 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1034 uint32_t uMagic;
1035
1036#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1037 /** Mask corresponding to cTbsPerChunk - 1. */
1038 uint32_t fChunkMask;
1039 /** Shift count corresponding to cTbsPerChunk. */
1040 uint8_t cChunkShift;
1041#else
1042 uint32_t uUnused;
1043 uint8_t bUnused;
1044#endif
1045 /** Number of chunks we're allowed to allocate. */
1046 uint8_t cMaxChunks;
1047 /** Number of chunks currently populated. */
1048 uint16_t cAllocatedChunks;
1049 /** Number of translation blocks per chunk. */
1050 uint32_t cTbsPerChunk;
1051 /** Chunk size. */
1052 uint32_t cbPerChunk;
1053
1054 /** The maximum number of TBs. */
1055 uint32_t cMaxTbs;
1056 /** Total number of TBs in the populated chunks.
1057 * (cAllocatedChunks * cTbsPerChunk) */
1058 uint32_t cTotalTbs;
1059 /** The current number of TBs in use.
1060 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1061 uint32_t cInUseTbs;
1062 /** Statistics: Number of the cInUseTbs that are native ones. */
1063 uint32_t cNativeTbs;
1064 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1065 uint32_t cThreadedTbs;
1066
1067 /** Where to start pruning TBs from when we're out.
1068 * See iemTbAllocatorAllocSlow for details. */
1069 uint32_t iPruneFrom;
1070 /** Hint about which bit to start scanning the bitmap from. */
1071 uint32_t iStartHint;
1072
1073 /** Statistics: Number of TB allocation calls. */
1074 STAMCOUNTER StatAllocs;
1075 /** Statistics: Number of TB free calls. */
1076 STAMCOUNTER StatFrees;
1077 /** Statistics: Time spend pruning. */
1078 STAMPROFILE StatPrune;
1079
1080 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1081 PIEMTB pDelayedFreeHead;
1082
1083 /** Allocation chunks. */
1084 IEMTBCHUNK aChunks[256];
1085
1086 /** Allocation bitmap for all possible chunk chunks. */
1087 RT_FLEXIBLE_ARRAY_EXTENSION
1088 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1089} IEMTBALLOCATOR;
1090/** Pointer to a TB allocator. */
1091typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1092
1093/** Magic value for the TB allocator (Emmet Harley Cohen). */
1094#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1095
1096
1097/**
1098 * A per-CPU translation block cache (hash table).
1099 *
1100 * The hash table is allocated once during IEM initialization and size double
1101 * the max TB count, rounded up to the nearest power of two (so we can use and
1102 * AND mask rather than a rest division when hashing).
1103 */
1104typedef struct IEMTBCACHE
1105{
1106 /** Magic value (IEMTBCACHE_MAGIC). */
1107 uint32_t uMagic;
1108 /** Size of the hash table. This is a power of two. */
1109 uint32_t cHash;
1110 /** The mask corresponding to cHash. */
1111 uint32_t uHashMask;
1112 uint32_t uPadding;
1113
1114 /** @name Statistics
1115 * @{ */
1116 /** Number of collisions ever. */
1117 STAMCOUNTER cCollisions;
1118
1119 /** Statistics: Number of TB lookup misses. */
1120 STAMCOUNTER cLookupMisses;
1121 /** Statistics: Number of TB lookup hits (debug only). */
1122 STAMCOUNTER cLookupHits;
1123 STAMCOUNTER auPadding2[3];
1124 /** Statistics: Collision list length pruning. */
1125 STAMPROFILE StatPrune;
1126 /** @} */
1127
1128 /** The hash table itself.
1129 * @note The lower 6 bits of the pointer is used for keeping the collision
1130 * list length, so we can take action when it grows too long.
1131 * This works because TBs are allocated using a 64 byte (or
1132 * higher) alignment from page aligned chunks of memory, so the lower
1133 * 6 bits of the address will always be zero.
1134 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1135 */
1136 RT_FLEXIBLE_ARRAY_EXTENSION
1137 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1138} IEMTBCACHE;
1139/** Pointer to a per-CPU translation block cahce. */
1140typedef IEMTBCACHE *PIEMTBCACHE;
1141
1142/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1143#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1144
1145/** The collision count mask for IEMTBCACHE::apHash entries. */
1146#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1147/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1148#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1149/** Combine a TB pointer and a collision list length into a value for an
1150 * IEMTBCACHE::apHash entry. */
1151#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1152/** Combine a TB pointer and a collision list length into a value for an
1153 * IEMTBCACHE::apHash entry. */
1154#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1155/** Combine a TB pointer and a collision list length into a value for an
1156 * IEMTBCACHE::apHash entry. */
1157#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1158
1159/**
1160 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1161 */
1162#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1163 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1164
1165/**
1166 * Calculates the hash table slot for a TB from physical PC address and TB
1167 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1168 */
1169#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1170 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1171
1172
1173/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1174 *
1175 * These flags parallels IEM_CIMPL_F_BRANCH_XXX.
1176 *
1177 * @{ */
1178/** Value if no branching happened recently. */
1179#define IEMBRANCHED_F_NO UINT8_C(0x00)
1180/** Flag set if direct branch, clear if absolute or indirect. */
1181#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1182/** Flag set if indirect branch, clear if direct or relative. */
1183#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1184/** Flag set if relative branch, clear if absolute or indirect. */
1185#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1186/** Flag set if conditional branch, clear if unconditional. */
1187#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1188/** Flag set if it's a far branch. */
1189#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1190/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1191#define IEMBRANCHED_F_ZERO UINT8_C(0x20)
1192/** @} */
1193
1194
1195/**
1196 * The per-CPU IEM state.
1197 */
1198typedef struct IEMCPU
1199{
1200 /** Info status code that needs to be propagated to the IEM caller.
1201 * This cannot be passed internally, as it would complicate all success
1202 * checks within the interpreter making the code larger and almost impossible
1203 * to get right. Instead, we'll store status codes to pass on here. Each
1204 * source of these codes will perform appropriate sanity checks. */
1205 int32_t rcPassUp; /* 0x00 */
1206 /** Execution flag, IEM_F_XXX. */
1207 uint32_t fExec; /* 0x04 */
1208
1209 /** @name Decoder state.
1210 * @{ */
1211#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1212# ifdef IEM_WITH_CODE_TLB
1213 /** The offset of the next instruction byte. */
1214 uint32_t offInstrNextByte; /* 0x08 */
1215 /** The number of bytes available at pbInstrBuf for the current instruction.
1216 * This takes the max opcode length into account so that doesn't need to be
1217 * checked separately. */
1218 uint32_t cbInstrBuf; /* 0x0c */
1219 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1220 * This can be NULL if the page isn't mappable for some reason, in which
1221 * case we'll do fallback stuff.
1222 *
1223 * If we're executing an instruction from a user specified buffer,
1224 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1225 * aligned pointer but pointer to the user data.
1226 *
1227 * For instructions crossing pages, this will start on the first page and be
1228 * advanced to the next page by the time we've decoded the instruction. This
1229 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1230 */
1231 uint8_t const *pbInstrBuf; /* 0x10 */
1232# if ARCH_BITS == 32
1233 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1234# endif
1235 /** The program counter corresponding to pbInstrBuf.
1236 * This is set to a non-canonical address when we need to invalidate it. */
1237 uint64_t uInstrBufPc; /* 0x18 */
1238 /** The guest physical address corresponding to pbInstrBuf. */
1239 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1240 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1241 * This takes the CS segment limit into account. */
1242 uint16_t cbInstrBufTotal; /* 0x28 */
1243 /** Offset into pbInstrBuf of the first byte of the current instruction.
1244 * Can be negative to efficiently handle cross page instructions. */
1245 int16_t offCurInstrStart; /* 0x2a */
1246
1247 /** The prefix mask (IEM_OP_PRF_XXX). */
1248 uint32_t fPrefixes; /* 0x2c */
1249 /** The extra REX ModR/M register field bit (REX.R << 3). */
1250 uint8_t uRexReg; /* 0x30 */
1251 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1252 * (REX.B << 3). */
1253 uint8_t uRexB; /* 0x31 */
1254 /** The extra REX SIB index field bit (REX.X << 3). */
1255 uint8_t uRexIndex; /* 0x32 */
1256
1257 /** The effective segment register (X86_SREG_XXX). */
1258 uint8_t iEffSeg; /* 0x33 */
1259
1260 /** The offset of the ModR/M byte relative to the start of the instruction. */
1261 uint8_t offModRm; /* 0x34 */
1262
1263# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1264 /** The current offset into abOpcode. */
1265 uint8_t offOpcode; /* 0x35 */
1266# else
1267 uint8_t bUnused; /* 0x35 */
1268# endif
1269# else /* !IEM_WITH_CODE_TLB */
1270 /** The size of what has currently been fetched into abOpcode. */
1271 uint8_t cbOpcode; /* 0x08 */
1272 /** The current offset into abOpcode. */
1273 uint8_t offOpcode; /* 0x09 */
1274 /** The offset of the ModR/M byte relative to the start of the instruction. */
1275 uint8_t offModRm; /* 0x0a */
1276
1277 /** The effective segment register (X86_SREG_XXX). */
1278 uint8_t iEffSeg; /* 0x0b */
1279
1280 /** The prefix mask (IEM_OP_PRF_XXX). */
1281 uint32_t fPrefixes; /* 0x0c */
1282 /** The extra REX ModR/M register field bit (REX.R << 3). */
1283 uint8_t uRexReg; /* 0x10 */
1284 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1285 * (REX.B << 3). */
1286 uint8_t uRexB; /* 0x11 */
1287 /** The extra REX SIB index field bit (REX.X << 3). */
1288 uint8_t uRexIndex; /* 0x12 */
1289
1290# endif /* !IEM_WITH_CODE_TLB */
1291
1292 /** The effective operand mode. */
1293 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1294 /** The default addressing mode. */
1295 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1296 /** The effective addressing mode. */
1297 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1298 /** The default operand mode. */
1299 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1300
1301 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1302 uint8_t idxPrefix; /* 0x3a, 0x17 */
1303 /** 3rd VEX/EVEX/XOP register.
1304 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1305 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1306 /** The VEX/EVEX/XOP length field. */
1307 uint8_t uVexLength; /* 0x3c, 0x19 */
1308 /** Additional EVEX stuff. */
1309 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1310
1311# ifndef IEM_WITH_CODE_TLB
1312 /** Explicit alignment padding. */
1313 uint8_t abAlignment2a[1]; /* 0x1b */
1314# endif
1315 /** The FPU opcode (FOP). */
1316 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1317# ifndef IEM_WITH_CODE_TLB
1318 /** Explicit alignment padding. */
1319 uint8_t abAlignment2b[2]; /* 0x1e */
1320# endif
1321
1322 /** The opcode bytes. */
1323 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1324 /** Explicit alignment padding. */
1325# ifdef IEM_WITH_CODE_TLB
1326 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1327# else
1328 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1329# endif
1330#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1331 uint8_t abOpaqueDecoder[0x4f - 0x8];
1332#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1333 /** @} */
1334
1335
1336 /** The number of active guest memory mappings. */
1337 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1338
1339 /** Records for tracking guest memory mappings. */
1340 struct
1341 {
1342 /** The address of the mapped bytes. */
1343 R3R0PTRTYPE(void *) pv;
1344 /** The access flags (IEM_ACCESS_XXX).
1345 * IEM_ACCESS_INVALID if the entry is unused. */
1346 uint32_t fAccess;
1347#if HC_ARCH_BITS == 64
1348 uint32_t u32Alignment4; /**< Alignment padding. */
1349#endif
1350 } aMemMappings[3]; /* 0x50 LB 0x30 */
1351
1352 /** Locking records for the mapped memory. */
1353 union
1354 {
1355 PGMPAGEMAPLOCK Lock;
1356 uint64_t au64Padding[2];
1357 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1358
1359 /** Bounce buffer info.
1360 * This runs in parallel to aMemMappings. */
1361 struct
1362 {
1363 /** The physical address of the first byte. */
1364 RTGCPHYS GCPhysFirst;
1365 /** The physical address of the second page. */
1366 RTGCPHYS GCPhysSecond;
1367 /** The number of bytes in the first page. */
1368 uint16_t cbFirst;
1369 /** The number of bytes in the second page. */
1370 uint16_t cbSecond;
1371 /** Whether it's unassigned memory. */
1372 bool fUnassigned;
1373 /** Explicit alignment padding. */
1374 bool afAlignment5[3];
1375 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1376
1377 /** The flags of the current exception / interrupt. */
1378 uint32_t fCurXcpt; /* 0xf8 */
1379 /** The current exception / interrupt. */
1380 uint8_t uCurXcpt; /* 0xfc */
1381 /** Exception / interrupt recursion depth. */
1382 int8_t cXcptRecursions; /* 0xfb */
1383
1384 /** The next unused mapping index.
1385 * @todo try find room for this up with cActiveMappings. */
1386 uint8_t iNextMapping; /* 0xfd */
1387 uint8_t abAlignment7[1];
1388
1389 /** Bounce buffer storage.
1390 * This runs in parallel to aMemMappings and aMemBbMappings. */
1391 struct
1392 {
1393 uint8_t ab[512];
1394 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1395
1396
1397 /** Pointer set jump buffer - ring-3 context. */
1398 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1399 /** Pointer set jump buffer - ring-0 context. */
1400 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1401
1402 /** @todo Should move this near @a fCurXcpt later. */
1403 /** The CR2 for the current exception / interrupt. */
1404 uint64_t uCurXcptCr2;
1405 /** The error code for the current exception / interrupt. */
1406 uint32_t uCurXcptErr;
1407
1408 /** @name Statistics
1409 * @{ */
1410 /** The number of instructions we've executed. */
1411 uint32_t cInstructions;
1412 /** The number of potential exits. */
1413 uint32_t cPotentialExits;
1414 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1415 * This may contain uncommitted writes. */
1416 uint32_t cbWritten;
1417 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1418 uint32_t cRetInstrNotImplemented;
1419 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1420 uint32_t cRetAspectNotImplemented;
1421 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1422 uint32_t cRetInfStatuses;
1423 /** Counts other error statuses returned. */
1424 uint32_t cRetErrStatuses;
1425 /** Number of times rcPassUp has been used. */
1426 uint32_t cRetPassUpStatus;
1427 /** Number of times RZ left with instruction commit pending for ring-3. */
1428 uint32_t cPendingCommit;
1429 /** Number of long jumps. */
1430 uint32_t cLongJumps;
1431 /** @} */
1432
1433 /** @name Target CPU information.
1434 * @{ */
1435#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1436 /** The target CPU. */
1437 uint8_t uTargetCpu;
1438#else
1439 uint8_t bTargetCpuPadding;
1440#endif
1441 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1442 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1443 * native host support and the 2nd for when there is.
1444 *
1445 * The two values are typically indexed by a g_CpumHostFeatures bit.
1446 *
1447 * This is for instance used for the BSF & BSR instructions where AMD and
1448 * Intel CPUs produce different EFLAGS. */
1449 uint8_t aidxTargetCpuEflFlavour[2];
1450
1451 /** The CPU vendor. */
1452 CPUMCPUVENDOR enmCpuVendor;
1453 /** @} */
1454
1455 /** @name Host CPU information.
1456 * @{ */
1457 /** The CPU vendor. */
1458 CPUMCPUVENDOR enmHostCpuVendor;
1459 /** @} */
1460
1461 /** Counts RDMSR \#GP(0) LogRel(). */
1462 uint8_t cLogRelRdMsr;
1463 /** Counts WRMSR \#GP(0) LogRel(). */
1464 uint8_t cLogRelWrMsr;
1465 /** Alignment padding. */
1466 uint8_t abAlignment9[46];
1467
1468 /** @name Recompilation
1469 * @{ */
1470 /** Pointer to the current translation block.
1471 * This can either be one being executed or one being compiled. */
1472 R3PTRTYPE(PIEMTB) pCurTbR3;
1473 /** Fixed TB used for threaded recompilation.
1474 * This is allocated once with maxed-out sizes and re-used afterwards. */
1475 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1476 /** Pointer to the ring-3 TB cache for this EMT. */
1477 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1478 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1479 * The TBs are based on physical addresses, so this is needed to correleated
1480 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1481 uint64_t uCurTbStartPc;
1482 /** Number of threaded TBs executed. */
1483 uint64_t cTbExecThreaded;
1484 /** Number of native TBs executed. */
1485 uint64_t cTbExecNative;
1486 /** Whether we need to check the opcode bytes for the current instruction.
1487 * This is set by a previous instruction if it modified memory or similar. */
1488 bool fTbCheckOpcodes;
1489 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1490 uint8_t fTbBranched;
1491 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1492 bool fTbCrossedPage;
1493 /** Whether to end the current TB. */
1494 bool fEndTb;
1495 /** Number of instructions before we need emit an IRQ check call again.
1496 * This helps making sure we don't execute too long w/o checking for
1497 * interrupts and immediately following instructions that may enable
1498 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1499 * required to make sure we check following the next instruction as well, see
1500 * fTbCurInstrIsSti. */
1501 uint8_t cInstrTillIrqCheck;
1502 /** Indicates that the current instruction is an STI. This is set by the
1503 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1504 bool fTbCurInstrIsSti;
1505 /** Spaced reserved for recompiler data / alignment. */
1506 bool afRecompilerStuff1[2+4];
1507 /** The virtual sync time at the last timer poll call. */
1508 uint32_t msRecompilerPollNow;
1509 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1510 uint32_t fTbCurInstr;
1511 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1512 uint32_t fTbPrevInstr;
1513 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1514 RTGCPHYS GCPhysInstrBufPrev;
1515 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1516 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1517 * whether a branch instruction jumps to a new page or stays within the
1518 * current one. */
1519 RTGCPHYS GCPhysTbBranchSrcBuf;
1520 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1521 uint64_t GCVirtTbBranchSrcBuf;
1522 /** Pointer to the ring-3 TB allocator for this EMT. */
1523 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1524 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1525 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1526 /** Pointer to the native recompiler state for ring-3. */
1527 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1528 /** Alignment padding. */
1529 uint64_t auAlignment10[4];
1530 /** Statistics: Times TB execution was broken off before reaching the end. */
1531 STAMCOUNTER StatTbExecBreaks;
1532 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1533 STAMCOUNTER StatCheckIrqBreaks;
1534 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1535 STAMCOUNTER StatCheckModeBreaks;
1536 /** Statistics: Times a post jump target check missed and had to find new TB. */
1537 STAMCOUNTER StatCheckBranchMisses;
1538 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1539 STAMCOUNTER StatCheckNeedCsLimChecking;
1540 /** Threaded TB statistics: Number of instructions per TB. */
1541 STAMPROFILE StatTbThreadedInstr;
1542 /** Threaded TB statistics: Number of calls per TB. */
1543 STAMPROFILE StatTbThreadedCalls;
1544 /** Native TB statistics: Native code size per TB. */
1545 STAMPROFILE StatTbNativeCode;
1546 /** Native TB statistics: Profiling native recompilation. */
1547 STAMPROFILE StatNativeRecompilation;
1548 /** @} */
1549
1550 /** Data TLB.
1551 * @remarks Must be 64-byte aligned. */
1552 IEMTLB DataTlb;
1553 /** Instruction TLB.
1554 * @remarks Must be 64-byte aligned. */
1555 IEMTLB CodeTlb;
1556
1557 /** Exception statistics. */
1558 STAMCOUNTER aStatXcpts[32];
1559 /** Interrupt statistics. */
1560 uint32_t aStatInts[256];
1561
1562#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1563 /** Instruction statistics for ring-0/raw-mode. */
1564 IEMINSTRSTATS StatsRZ;
1565 /** Instruction statistics for ring-3. */
1566 IEMINSTRSTATS StatsR3;
1567#endif
1568} IEMCPU;
1569AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1570AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1571AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1572AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1573AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1574AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1575
1576/** Pointer to the per-CPU IEM state. */
1577typedef IEMCPU *PIEMCPU;
1578/** Pointer to the const per-CPU IEM state. */
1579typedef IEMCPU const *PCIEMCPU;
1580
1581
1582/** @def IEM_GET_CTX
1583 * Gets the guest CPU context for the calling EMT.
1584 * @returns PCPUMCTX
1585 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1586 */
1587#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1588
1589/** @def IEM_CTX_ASSERT
1590 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1591 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1592 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1593 */
1594#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1595 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1596 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1597 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1598
1599/** @def IEM_CTX_IMPORT_RET
1600 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1601 *
1602 * Will call the keep to import the bits as needed.
1603 *
1604 * Returns on import failure.
1605 *
1606 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1607 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1608 */
1609#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1610 do { \
1611 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1612 { /* likely */ } \
1613 else \
1614 { \
1615 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1616 AssertRCReturn(rcCtxImport, rcCtxImport); \
1617 } \
1618 } while (0)
1619
1620/** @def IEM_CTX_IMPORT_NORET
1621 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1622 *
1623 * Will call the keep to import the bits as needed.
1624 *
1625 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1626 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1627 */
1628#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1629 do { \
1630 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1631 { /* likely */ } \
1632 else \
1633 { \
1634 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1635 AssertLogRelRC(rcCtxImport); \
1636 } \
1637 } while (0)
1638
1639/** @def IEM_CTX_IMPORT_JMP
1640 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1641 *
1642 * Will call the keep to import the bits as needed.
1643 *
1644 * Jumps on import failure.
1645 *
1646 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1647 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1648 */
1649#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
1650 do { \
1651 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1652 { /* likely */ } \
1653 else \
1654 { \
1655 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1656 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
1657 } \
1658 } while (0)
1659
1660
1661
1662/** @def IEM_GET_TARGET_CPU
1663 * Gets the current IEMTARGETCPU value.
1664 * @returns IEMTARGETCPU value.
1665 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1666 */
1667#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
1668# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
1669#else
1670# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
1671#endif
1672
1673/** @def IEM_GET_INSTR_LEN
1674 * Gets the instruction length. */
1675#ifdef IEM_WITH_CODE_TLB
1676# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
1677#else
1678# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
1679#endif
1680
1681/** @def IEM_TRY_SETJMP
1682 * Wrapper around setjmp / try, hiding all the ugly differences.
1683 *
1684 * @note Use with extreme care as this is a fragile macro.
1685 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1686 * @param a_rcTarget The variable that should receive the status code in case
1687 * of a longjmp/throw.
1688 */
1689/** @def IEM_TRY_SETJMP_AGAIN
1690 * For when setjmp / try is used again in the same variable scope as a previous
1691 * IEM_TRY_SETJMP invocation.
1692 */
1693/** @def IEM_CATCH_LONGJMP_BEGIN
1694 * Start wrapper for catch / setjmp-else.
1695 *
1696 * This will set up a scope.
1697 *
1698 * @note Use with extreme care as this is a fragile macro.
1699 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1700 * @param a_rcTarget The variable that should receive the status code in case
1701 * of a longjmp/throw.
1702 */
1703/** @def IEM_CATCH_LONGJMP_END
1704 * End wrapper for catch / setjmp-else.
1705 *
1706 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
1707 * state.
1708 *
1709 * @note Use with extreme care as this is a fragile macro.
1710 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1711 */
1712#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
1713# ifdef IEM_WITH_THROW_CATCH
1714# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1715 a_rcTarget = VINF_SUCCESS; \
1716 try
1717# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1718 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
1719# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1720 catch (int rcThrown) \
1721 { \
1722 a_rcTarget = rcThrown
1723# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1724 } \
1725 ((void)0)
1726# else /* !IEM_WITH_THROW_CATCH */
1727# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1728 jmp_buf JmpBuf; \
1729 jmp_buf * volatile pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1730 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1731 if ((rcStrict = setjmp(JmpBuf)) == 0)
1732# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1733 pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf); \
1734 pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1735 if ((rcStrict = setjmp(JmpBuf)) == 0)
1736# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1737 else \
1738 { \
1739 ((void)0)
1740# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1741 } \
1742 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
1743# endif /* !IEM_WITH_THROW_CATCH */
1744#endif /* IEM_WITH_SETJMP */
1745
1746
1747/**
1748 * Shared per-VM IEM data.
1749 */
1750typedef struct IEM
1751{
1752 /** The VMX APIC-access page handler type. */
1753 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
1754#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
1755 /** Set if the CPUID host call functionality is enabled. */
1756 bool fCpuIdHostCall;
1757#endif
1758} IEM;
1759
1760
1761
1762/** @name IEM_ACCESS_XXX - Access details.
1763 * @{ */
1764#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
1765#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
1766#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
1767#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
1768#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
1769#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
1770#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
1771#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
1772#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
1773#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
1774/** The writes are partial, so if initialize the bounce buffer with the
1775 * orignal RAM content. */
1776#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
1777/** Used in aMemMappings to indicate that the entry is bounce buffered. */
1778#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
1779/** Bounce buffer with ring-3 write pending, first page. */
1780#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
1781/** Bounce buffer with ring-3 write pending, second page. */
1782#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
1783/** Not locked, accessed via the TLB. */
1784#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
1785/** Valid bit mask. */
1786#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
1787/** Shift count for the TLB flags (upper word). */
1788#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
1789
1790/** Read+write data alias. */
1791#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1792/** Write data alias. */
1793#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1794/** Read data alias. */
1795#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
1796/** Instruction fetch alias. */
1797#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
1798/** Stack write alias. */
1799#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1800/** Stack read alias. */
1801#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
1802/** Stack read+write alias. */
1803#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1804/** Read system table alias. */
1805#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
1806/** Read+write system table alias. */
1807#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
1808/** @} */
1809
1810/** @name Prefix constants (IEMCPU::fPrefixes)
1811 * @{ */
1812#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
1813#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
1814#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
1815#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
1816#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
1817#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
1818#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
1819
1820#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
1821#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
1822#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
1823
1824#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
1825#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
1826#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
1827
1828#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
1829#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
1830#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
1831#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
1832/** Mask with all the REX prefix flags.
1833 * This is generally for use when needing to undo the REX prefixes when they
1834 * are followed legacy prefixes and therefore does not immediately preceed
1835 * the first opcode byte.
1836 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
1837#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
1838
1839#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
1840#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
1841#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
1842/** @} */
1843
1844/** @name IEMOPFORM_XXX - Opcode forms
1845 * @note These are ORed together with IEMOPHINT_XXX.
1846 * @{ */
1847/** ModR/M: reg, r/m */
1848#define IEMOPFORM_RM 0
1849/** ModR/M: reg, r/m (register) */
1850#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1851/** ModR/M: reg, r/m (memory) */
1852#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1853/** ModR/M: reg, r/m */
1854#define IEMOPFORM_RMI 1
1855/** ModR/M: reg, r/m (register) */
1856#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1857/** ModR/M: reg, r/m (memory) */
1858#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1859/** ModR/M: r/m, reg */
1860#define IEMOPFORM_MR 2
1861/** ModR/M: r/m (register), reg */
1862#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1863/** ModR/M: r/m (memory), reg */
1864#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1865/** ModR/M: r/m, reg */
1866#define IEMOPFORM_MRI 3
1867/** ModR/M: r/m (register), reg */
1868#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
1869/** ModR/M: r/m (memory), reg */
1870#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
1871/** ModR/M: r/m only */
1872#define IEMOPFORM_M 4
1873/** ModR/M: r/m only (register). */
1874#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
1875/** ModR/M: r/m only (memory). */
1876#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
1877/** ModR/M: reg only */
1878#define IEMOPFORM_R 5
1879
1880/** VEX+ModR/M: reg, r/m */
1881#define IEMOPFORM_VEX_RM 8
1882/** VEX+ModR/M: reg, r/m (register) */
1883#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
1884/** VEX+ModR/M: reg, r/m (memory) */
1885#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
1886/** VEX+ModR/M: r/m, reg */
1887#define IEMOPFORM_VEX_MR 9
1888/** VEX+ModR/M: r/m (register), reg */
1889#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
1890/** VEX+ModR/M: r/m (memory), reg */
1891#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
1892/** VEX+ModR/M: r/m only */
1893#define IEMOPFORM_VEX_M 10
1894/** VEX+ModR/M: r/m only (register). */
1895#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
1896/** VEX+ModR/M: r/m only (memory). */
1897#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
1898/** VEX+ModR/M: reg only */
1899#define IEMOPFORM_VEX_R 11
1900/** VEX+ModR/M: reg, vvvv, r/m */
1901#define IEMOPFORM_VEX_RVM 12
1902/** VEX+ModR/M: reg, vvvv, r/m (register). */
1903#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
1904/** VEX+ModR/M: reg, vvvv, r/m (memory). */
1905#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
1906/** VEX+ModR/M: reg, r/m, vvvv */
1907#define IEMOPFORM_VEX_RMV 13
1908/** VEX+ModR/M: reg, r/m, vvvv (register). */
1909#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
1910/** VEX+ModR/M: reg, r/m, vvvv (memory). */
1911#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
1912/** VEX+ModR/M: reg, r/m, imm8 */
1913#define IEMOPFORM_VEX_RMI 14
1914/** VEX+ModR/M: reg, r/m, imm8 (register). */
1915#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
1916/** VEX+ModR/M: reg, r/m, imm8 (memory). */
1917#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
1918/** VEX+ModR/M: r/m, vvvv, reg */
1919#define IEMOPFORM_VEX_MVR 15
1920/** VEX+ModR/M: r/m, vvvv, reg (register) */
1921#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
1922/** VEX+ModR/M: r/m, vvvv, reg (memory) */
1923#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
1924/** VEX+ModR/M+/n: vvvv, r/m */
1925#define IEMOPFORM_VEX_VM 16
1926/** VEX+ModR/M+/n: vvvv, r/m (register) */
1927#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
1928/** VEX+ModR/M+/n: vvvv, r/m (memory) */
1929#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
1930
1931/** Fixed register instruction, no R/M. */
1932#define IEMOPFORM_FIXED 32
1933
1934/** The r/m is a register. */
1935#define IEMOPFORM_MOD3 RT_BIT_32(8)
1936/** The r/m is a memory access. */
1937#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
1938/** @} */
1939
1940/** @name IEMOPHINT_XXX - Additional Opcode Hints
1941 * @note These are ORed together with IEMOPFORM_XXX.
1942 * @{ */
1943/** Ignores the operand size prefix (66h). */
1944#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
1945/** Ignores REX.W (aka WIG). */
1946#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
1947/** Both the operand size prefixes (66h + REX.W) are ignored. */
1948#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
1949/** Allowed with the lock prefix. */
1950#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
1951/** The VEX.L value is ignored (aka LIG). */
1952#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
1953/** The VEX.L value must be zero (i.e. 128-bit width only). */
1954#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
1955/** The VEX.V value must be zero. */
1956#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
1957
1958/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
1959#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
1960/** @} */
1961
1962/**
1963 * Possible hardware task switch sources.
1964 */
1965typedef enum IEMTASKSWITCH
1966{
1967 /** Task switch caused by an interrupt/exception. */
1968 IEMTASKSWITCH_INT_XCPT = 1,
1969 /** Task switch caused by a far CALL. */
1970 IEMTASKSWITCH_CALL,
1971 /** Task switch caused by a far JMP. */
1972 IEMTASKSWITCH_JUMP,
1973 /** Task switch caused by an IRET. */
1974 IEMTASKSWITCH_IRET
1975} IEMTASKSWITCH;
1976AssertCompileSize(IEMTASKSWITCH, 4);
1977
1978/**
1979 * Possible CrX load (write) sources.
1980 */
1981typedef enum IEMACCESSCRX
1982{
1983 /** CrX access caused by 'mov crX' instruction. */
1984 IEMACCESSCRX_MOV_CRX,
1985 /** CrX (CR0) write caused by 'lmsw' instruction. */
1986 IEMACCESSCRX_LMSW,
1987 /** CrX (CR0) write caused by 'clts' instruction. */
1988 IEMACCESSCRX_CLTS,
1989 /** CrX (CR0) read caused by 'smsw' instruction. */
1990 IEMACCESSCRX_SMSW
1991} IEMACCESSCRX;
1992
1993#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1994/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
1995 *
1996 * These flags provide further context to SLAT page-walk failures that could not be
1997 * determined by PGM (e.g, PGM is not privy to memory access permissions).
1998 *
1999 * @{
2000 */
2001/** Translating a nested-guest linear address failed accessing a nested-guest
2002 * physical address. */
2003# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2004/** Translating a nested-guest linear address failed accessing a
2005 * paging-structure entry or updating accessed/dirty bits. */
2006# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2007/** @} */
2008
2009DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2010# ifndef IN_RING3
2011DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2012# endif
2013#endif
2014
2015/**
2016 * Indicates to the verifier that the given flag set is undefined.
2017 *
2018 * Can be invoked again to add more flags.
2019 *
2020 * This is a NOOP if the verifier isn't compiled in.
2021 *
2022 * @note We're temporarily keeping this until code is converted to new
2023 * disassembler style opcode handling.
2024 */
2025#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2026
2027
2028/** @def IEM_DECL_IMPL_TYPE
2029 * For typedef'ing an instruction implementation function.
2030 *
2031 * @param a_RetType The return type.
2032 * @param a_Name The name of the type.
2033 * @param a_ArgList The argument list enclosed in parentheses.
2034 */
2035
2036/** @def IEM_DECL_IMPL_DEF
2037 * For defining an instruction implementation function.
2038 *
2039 * @param a_RetType The return type.
2040 * @param a_Name The name of the type.
2041 * @param a_ArgList The argument list enclosed in parentheses.
2042 */
2043
2044#if defined(__GNUC__) && defined(RT_ARCH_X86)
2045# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2046 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2047# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2048 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2049# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2050 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2051
2052#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2053# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2054 a_RetType (__fastcall a_Name) a_ArgList
2055# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2056 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2057# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2058 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2059
2060#elif __cplusplus >= 201700 /* P0012R1 support */
2061# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2062 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2063# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2064 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2065# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2066 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2067
2068#else
2069# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2070 a_RetType (VBOXCALL a_Name) a_ArgList
2071# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2072 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2073# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2074 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2075
2076#endif
2077
2078/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2079RT_C_DECLS_BEGIN
2080extern uint8_t const g_afParity[256];
2081RT_C_DECLS_END
2082
2083
2084/** @name Arithmetic assignment operations on bytes (binary).
2085 * @{ */
2086typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2087typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2088FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2089FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2090FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2091FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2092FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2093FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2094FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2095/** @} */
2096
2097/** @name Arithmetic assignment operations on words (binary).
2098 * @{ */
2099typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2100typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2101FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2102FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2103FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2104FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2105FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2106FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2107FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2108/** @} */
2109
2110/** @name Arithmetic assignment operations on double words (binary).
2111 * @{ */
2112typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2113typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2114FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2115FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2116FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2117FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2118FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2119FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2120FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2121FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2122FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2123FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2124/** @} */
2125
2126/** @name Arithmetic assignment operations on quad words (binary).
2127 * @{ */
2128typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2129typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2130FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2131FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2132FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2133FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2134FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2135FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2136FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2137FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2138FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2139FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2140/** @} */
2141
2142typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2143typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2144typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2145typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2146typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2147typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2148typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2149typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2150
2151/** @name Compare operations (thrown in with the binary ops).
2152 * @{ */
2153FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2154FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2155FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2156FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2157/** @} */
2158
2159/** @name Test operations (thrown in with the binary ops).
2160 * @{ */
2161FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2162FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2163FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2164FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2165/** @} */
2166
2167/** @name Bit operations operations (thrown in with the binary ops).
2168 * @{ */
2169FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2170FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2171FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2172FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2173FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2174FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2175FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2176FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2177FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2178FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2179FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2180FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2181/** @} */
2182
2183/** @name Arithmetic three operand operations on double words (binary).
2184 * @{ */
2185typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2186typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2187FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2188FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2189FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2190/** @} */
2191
2192/** @name Arithmetic three operand operations on quad words (binary).
2193 * @{ */
2194typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2195typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2196FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2197FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2198FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2199/** @} */
2200
2201/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2202 * @{ */
2203typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2204typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2205FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2206FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2207FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2208FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2209FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2210FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2211/** @} */
2212
2213/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2214 * @{ */
2215typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2216typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2217FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2218FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2219FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2220FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2221FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2222FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2223/** @} */
2224
2225/** @name MULX 32-bit and 64-bit.
2226 * @{ */
2227typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2228typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2229FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2230
2231typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2232typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2233FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2234/** @} */
2235
2236
2237/** @name Exchange memory with register operations.
2238 * @{ */
2239IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2240IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2241IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2242IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2243IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2244IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2245IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2246IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2247/** @} */
2248
2249/** @name Exchange and add operations.
2250 * @{ */
2251IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2252IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2253IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2254IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2255IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2256IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2257IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2258IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2259/** @} */
2260
2261/** @name Compare and exchange.
2262 * @{ */
2263IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2264IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2265IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2266IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2267IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2268IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2269#if ARCH_BITS == 32
2270IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2271IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2272#else
2273IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2274IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2275#endif
2276IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2277 uint32_t *pEFlags));
2278IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2279 uint32_t *pEFlags));
2280IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2281 uint32_t *pEFlags));
2282IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2283 uint32_t *pEFlags));
2284#ifndef RT_ARCH_ARM64
2285IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2286 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2287#endif
2288/** @} */
2289
2290/** @name Memory ordering
2291 * @{ */
2292typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2293typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2294IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2295IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2296IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2297#ifndef RT_ARCH_ARM64
2298IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2299#endif
2300/** @} */
2301
2302/** @name Double precision shifts
2303 * @{ */
2304typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2305typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2306typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2307typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2308typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2309typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2310FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2311FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2312FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2313FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2314FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2315FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2316/** @} */
2317
2318
2319/** @name Bit search operations (thrown in with the binary ops).
2320 * @{ */
2321FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2322FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2323FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2324FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2325FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2326FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2327FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2328FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2329FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2330FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2331FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2332FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2333FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2334FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2335FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2336/** @} */
2337
2338/** @name Signed multiplication operations (thrown in with the binary ops).
2339 * @{ */
2340FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2341FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2342FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2343/** @} */
2344
2345/** @name Arithmetic assignment operations on bytes (unary).
2346 * @{ */
2347typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2348typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2349FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2350FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2351FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2352FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2353/** @} */
2354
2355/** @name Arithmetic assignment operations on words (unary).
2356 * @{ */
2357typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2358typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2359FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2360FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2361FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2362FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2363/** @} */
2364
2365/** @name Arithmetic assignment operations on double words (unary).
2366 * @{ */
2367typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2368typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2369FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2370FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2371FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2372FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2373/** @} */
2374
2375/** @name Arithmetic assignment operations on quad words (unary).
2376 * @{ */
2377typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2378typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2379FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2380FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2381FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2382FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2383/** @} */
2384
2385
2386/** @name Shift operations on bytes (Group 2).
2387 * @{ */
2388typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2389typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2390FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2391FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2392FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2393FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2394FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2395FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2396FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2397/** @} */
2398
2399/** @name Shift operations on words (Group 2).
2400 * @{ */
2401typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2402typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2403FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2404FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2405FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2406FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2407FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2408FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2409FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2410/** @} */
2411
2412/** @name Shift operations on double words (Group 2).
2413 * @{ */
2414typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2415typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2416FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2417FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2418FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2419FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2420FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2421FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2422FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2423/** @} */
2424
2425/** @name Shift operations on words (Group 2).
2426 * @{ */
2427typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2428typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2429FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2430FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2431FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2432FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2433FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2434FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2435FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2436/** @} */
2437
2438/** @name Multiplication and division operations.
2439 * @{ */
2440typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2441typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2442FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2443FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2444FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2445FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2446
2447typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2448typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2449FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2450FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2451FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2452FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2453
2454typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2455typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2456FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2457FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2458FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2459FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2460
2461typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2462typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2463FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2464FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2465FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2466FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2467/** @} */
2468
2469/** @name Byte Swap.
2470 * @{ */
2471IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2472IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2473IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2474/** @} */
2475
2476/** @name Misc.
2477 * @{ */
2478FNIEMAIMPLBINU16 iemAImpl_arpl;
2479/** @} */
2480
2481/** @name RDRAND and RDSEED
2482 * @{ */
2483typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2484typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2485typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2486typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
2487typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
2488typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
2489
2490FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2491FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2492FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2493FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2494FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2495FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2496/** @} */
2497
2498/** @name ADOX and ADCX
2499 * @{ */
2500typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU32,(uint32_t *puDst, uint32_t *pfEFlags, uint32_t uSrc));
2501typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU64,(uint64_t *puDst, uint32_t *pfEFlags, uint64_t uSrc));
2502typedef FNIEMAIMPLADXU32 *PFNIEMAIMPLADXU32;
2503typedef FNIEMAIMPLADXU64 *PFNIEMAIMPLADXU64;
2504
2505FNIEMAIMPLADXU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2506FNIEMAIMPLADXU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2507FNIEMAIMPLADXU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2508FNIEMAIMPLADXU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2509/** @} */
2510
2511/** @name FPU operations taking a 32-bit float argument
2512 * @{ */
2513typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2514 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2515typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2516
2517typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2518 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2519typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2520
2521FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2522FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2523FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2524FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2525FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2526FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2527FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2528
2529IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2530IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2531 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2532/** @} */
2533
2534/** @name FPU operations taking a 64-bit float argument
2535 * @{ */
2536typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2537 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2538typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2539
2540typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2541 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2542typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2543
2544FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2545FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2546FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2547FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2548FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2549FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2550FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2551
2552IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2553IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2554 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2555/** @} */
2556
2557/** @name FPU operations taking a 80-bit float argument
2558 * @{ */
2559typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2560 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2561typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2562FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2563FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2564FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2565FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2566FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2567FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2568FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2569FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2570FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2571
2572FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2573FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2574FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2575
2576typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2577 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2578typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2579FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2580FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2581
2582typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2583 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2584typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2585FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2586FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2587
2588typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2589typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2590FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2591FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2592FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2593FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2594FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2595FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2596FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2597
2598typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2599typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2600FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2601FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2602
2603typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2604typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2605FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2606FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2607FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2608FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2609FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2610FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2611FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2612
2613typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2614 PCRTFLOAT80U pr80Val));
2615typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
2616FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
2617FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
2618FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
2619
2620IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2621IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2622 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
2623
2624IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
2625IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2626 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
2627
2628/** @} */
2629
2630/** @name FPU operations taking a 16-bit signed integer argument
2631 * @{ */
2632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2633 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2634typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
2635typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2636 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
2637typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
2638
2639FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
2640FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
2641FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
2642FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
2643FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
2644FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
2645
2646typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2647 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2648typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
2649FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
2650
2651IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
2652FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
2653FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
2654/** @} */
2655
2656/** @name FPU operations taking a 32-bit signed integer argument
2657 * @{ */
2658typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2659 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2660typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
2661typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2662 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
2663typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
2664
2665FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
2666FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
2667FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
2668FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
2669FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
2670FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
2671
2672typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2673 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2674typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
2675FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
2676
2677IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
2678FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
2679FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
2680/** @} */
2681
2682/** @name FPU operations taking a 64-bit signed integer argument
2683 * @{ */
2684typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2685 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
2686typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
2687
2688IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
2689FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
2690FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
2691/** @} */
2692
2693
2694/** Temporary type representing a 256-bit vector register. */
2695typedef struct { uint64_t au64[4]; } IEMVMM256;
2696/** Temporary type pointing to a 256-bit vector register. */
2697typedef IEMVMM256 *PIEMVMM256;
2698/** Temporary type pointing to a const 256-bit vector register. */
2699typedef IEMVMM256 *PCIEMVMM256;
2700
2701
2702/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
2703 * @{ */
2704typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
2705typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
2706typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
2707typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
2708typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2709typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
2710typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2711typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
2712typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
2713typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
2714typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
2715typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
2716typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2717typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
2718typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2719typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
2720typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
2721typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
2722FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
2723FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
2724FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
2725FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
2726FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
2727FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
2728FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
2729FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
2730FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
2731FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
2732FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
2733FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
2734FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64;
2735FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
2736FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
2737FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
2738FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
2739FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
2740FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
2741FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
2742FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
2743FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
2744FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
2745FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
2746FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
2747FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
2748FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
2749FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
2750FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
2751FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
2752FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
2753FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
2754FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
2755FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
2756FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
2757FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
2758FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
2759FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
2760FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
2761
2762FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
2763FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
2764FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
2765FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
2766FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
2767FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
2768FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
2769FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
2770FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
2771FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
2772FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
2773FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
2774FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
2775FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
2776FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
2777FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
2778FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
2779FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128;
2780FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
2781FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
2782FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
2783FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
2784FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
2785FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
2786FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
2787FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
2788FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
2789FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
2790FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
2791FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
2792FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
2793FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
2794FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
2795FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
2796FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
2797FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
2798FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
2799FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
2800FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
2801FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
2802FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
2803FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
2804FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
2805FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
2806FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
2807FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
2808FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
2809FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
2810FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
2811FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
2812FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
2813FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
2814FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
2815FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
2816FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
2817FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
2818FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
2819
2820FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
2821FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
2822FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
2823FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
2824FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
2825FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
2826FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
2827FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
2828FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
2829FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
2830FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
2831FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
2832FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
2833FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
2834FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
2835FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
2836FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
2837FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
2838FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
2839FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
2840FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
2841FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
2842FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
2843FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
2844FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
2845FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
2846FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
2847FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
2848FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
2849FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
2850FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
2851FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
2852FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
2853FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
2854FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
2855FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
2856FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
2857FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
2858FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
2859FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
2860FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
2861FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
2862FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
2863FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
2864FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
2865FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
2866FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
2867FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
2868FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
2869FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
2870FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
2871FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
2872FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
2873FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
2874FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
2875FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
2876FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
2877FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
2878FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
2879FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
2880FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
2881FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
2882FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
2883FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
2884FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
2885
2886FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
2887FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
2888FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
2889FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
2890
2891FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
2892FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
2893FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
2894FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
2895FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
2896FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
2897FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
2898FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
2899FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
2900FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
2901FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
2902FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
2903FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
2904FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
2905FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
2906FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
2907FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
2908FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
2909FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
2910FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
2911FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
2912FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
2913FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
2914FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
2915FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
2916FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
2917FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
2918FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
2919FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
2920FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
2921FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
2922FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
2923FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
2924FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
2925FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
2926FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
2927FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
2928FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
2929FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
2930FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
2931FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
2932FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
2933FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
2934FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
2935FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
2936FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
2937FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
2938FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
2939FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
2940FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
2941FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
2942FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
2943FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
2944FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
2945FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
2946FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
2947FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
2948FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
2949FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
2950FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
2951FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
2952FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
2953FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
2954FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
2955FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
2956
2957FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
2958FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
2959FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
2960/** @} */
2961
2962/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
2963 * @{ */
2964FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
2965FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
2966FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
2967 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
2968 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
2969 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
2970 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
2971 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
2972 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
2973 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
2974
2975FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
2976 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
2977 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
2978 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
2979 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
2980 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
2981 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
2982 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
2983/** @} */
2984
2985/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
2986 * @{ */
2987FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
2988FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
2989FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
2990 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
2991 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
2992 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
2993FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
2994 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
2995 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
2996 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
2997/** @} */
2998
2999/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3000 * @{ */
3001typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3002typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3003typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3004typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3005IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3006FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3007#ifndef IEM_WITHOUT_ASSEMBLY
3008FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3009#endif
3010FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3011/** @} */
3012
3013/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3014 * @{ */
3015typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3016typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3017typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3018typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3019typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3020typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3021FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3022FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3023FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3024FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3025FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3026FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3027FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3028/** @} */
3029
3030/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3031 * @{ */
3032IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3033IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3034#ifndef IEM_WITHOUT_ASSEMBLY
3035IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3036#endif
3037IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3038/** @} */
3039
3040/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3041 * @{ */
3042typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3043typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3044typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3045typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3046typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3047typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3048
3049FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3050FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3051FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3052FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3053FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3054FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3055
3056FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3057FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3058FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3059FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3060FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3061FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3062
3063FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3064FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3065FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3066FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3067FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3068FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3069/** @} */
3070
3071
3072/** @name Media (SSE/MMX/AVX) operation: Sort this later
3073 * @{ */
3074IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3075IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3076IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3077IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3078IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3079IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3080
3081IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3082IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3083IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3084IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3085IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3086
3087IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3088IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3089IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3090IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3091IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3092
3093IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3094IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3095IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3096IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3097IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3098
3099IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3100IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3101IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3102IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3103IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3104
3105IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3106IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3107IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3108IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3109IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3110
3111IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3112IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3113IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3114IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3115IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3116
3117IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3118IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3119IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3120IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3121IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3122
3123IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3124IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3125IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3126IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3127IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3128
3129IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3130IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3131IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3132IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3133IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3134
3135IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3136IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3137IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3138IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3139IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3140
3141IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3142IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3143IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3144IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3145IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3146
3147IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3148IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3149IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3150IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3151IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3152
3153IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3154IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3155IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3156IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3157IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3158
3159IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3160IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3161IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3162IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3163IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3164
3165IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3166IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3167
3168IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3169IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3170IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3171IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3172
3173IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
3174IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3175IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3176IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3177
3178IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3179IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3180IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3181IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3182IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3183
3184IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3185IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3186IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3187IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3188IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3189
3190
3191typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3192typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3193typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3194typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3195typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3196typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3197
3198FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3199FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3200FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3201FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3202
3203FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3204FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3205FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3206FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3207
3208FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3209FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3210FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3211FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3212FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3213FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3214
3215FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3216FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3217FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3218FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3219FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3220
3221FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3222FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3223FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3224FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3225FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3226
3227FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3228
3229FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3230
3231FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3232FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3233FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3234FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3235FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3236FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3237IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3238IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3239
3240typedef struct IEMPCMPISTRXSRC
3241{
3242 RTUINT128U uSrc1;
3243 RTUINT128U uSrc2;
3244} IEMPCMPISTRXSRC;
3245typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3246typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3247
3248typedef struct IEMPCMPESTRXSRC
3249{
3250 RTUINT128U uSrc1;
3251 RTUINT128U uSrc2;
3252 uint64_t u64Rax;
3253 uint64_t u64Rdx;
3254} IEMPCMPESTRXSRC;
3255typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3256typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3257
3258typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3259typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3260typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3261typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3262
3263typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3264typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3265typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3266typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3267
3268FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3269FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3270FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3271FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3272
3273FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3274FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3275
3276FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3277FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3278FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3279/** @} */
3280
3281/** @name Media Odds and Ends
3282 * @{ */
3283typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3284typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3285typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3286typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3287FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3288FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3289FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3290FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3291
3292typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3293typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3294FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3295FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3296
3297typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3298typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3299typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3300typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3302typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3303typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3304typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3305
3306FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3307FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3308
3309FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3310FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3311
3312FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3313FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3314
3315FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3316FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3317
3318typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3319typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3320typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3321typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3322
3323FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3324FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3325
3326typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3327typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3328typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3329typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3330
3331FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3332FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3333
3334
3335typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3336typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3337
3338FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3339FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3340
3341FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3342FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3343
3344FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3345FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3346
3347FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3348FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3349
3350
3351typedef struct IEMMEDIAF2XMMSRC
3352{
3353 X86XMMREG uSrc1;
3354 X86XMMREG uSrc2;
3355} IEMMEDIAF2XMMSRC;
3356typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3357typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3358
3359typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3360typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3361
3362FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3363FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3364FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3365FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3366FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3367FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3368
3369FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3370FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3371
3372FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3373FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3374
3375typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3376typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3377
3378FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3379FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3380
3381typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3382typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3383
3384FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3385FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3386
3387typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3388typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3389
3390FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3391FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3392
3393/** @} */
3394
3395
3396/** @name Function tables.
3397 * @{
3398 */
3399
3400/**
3401 * Function table for a binary operator providing implementation based on
3402 * operand size.
3403 */
3404typedef struct IEMOPBINSIZES
3405{
3406 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3407 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3408 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3409 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3410} IEMOPBINSIZES;
3411/** Pointer to a binary operator function table. */
3412typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3413
3414
3415/**
3416 * Function table for a unary operator providing implementation based on
3417 * operand size.
3418 */
3419typedef struct IEMOPUNARYSIZES
3420{
3421 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3422 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3423 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3424 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3425} IEMOPUNARYSIZES;
3426/** Pointer to a unary operator function table. */
3427typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3428
3429
3430/**
3431 * Function table for a shift operator providing implementation based on
3432 * operand size.
3433 */
3434typedef struct IEMOPSHIFTSIZES
3435{
3436 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3437 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3438 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3439 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3440} IEMOPSHIFTSIZES;
3441/** Pointer to a shift operator function table. */
3442typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3443
3444
3445/**
3446 * Function table for a multiplication or division operation.
3447 */
3448typedef struct IEMOPMULDIVSIZES
3449{
3450 PFNIEMAIMPLMULDIVU8 pfnU8;
3451 PFNIEMAIMPLMULDIVU16 pfnU16;
3452 PFNIEMAIMPLMULDIVU32 pfnU32;
3453 PFNIEMAIMPLMULDIVU64 pfnU64;
3454} IEMOPMULDIVSIZES;
3455/** Pointer to a multiplication or division operation function table. */
3456typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3457
3458
3459/**
3460 * Function table for a double precision shift operator providing implementation
3461 * based on operand size.
3462 */
3463typedef struct IEMOPSHIFTDBLSIZES
3464{
3465 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3466 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3467 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3468} IEMOPSHIFTDBLSIZES;
3469/** Pointer to a double precision shift function table. */
3470typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3471
3472
3473/**
3474 * Function table for media instruction taking two full sized media source
3475 * registers and one full sized destination register (AVX).
3476 */
3477typedef struct IEMOPMEDIAF3
3478{
3479 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3480 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3481} IEMOPMEDIAF3;
3482/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3483typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3484
3485/** @def IEMOPMEDIAF3_INIT_VARS_EX
3486 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3487 * given functions as initializers. For use in AVX functions where a pair of
3488 * functions are only used once and the function table need not be public. */
3489#ifndef TST_IEM_CHECK_MC
3490# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3491# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3492 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3493 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3494# else
3495# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3496 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3497# endif
3498#else
3499# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3500#endif
3501/** @def IEMOPMEDIAF3_INIT_VARS
3502 * Generate AVX function tables for the @a a_InstrNm instruction.
3503 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3504#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3505 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3506 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3507
3508/**
3509 * Function table for media instruction taking two full sized media source
3510 * registers and one full sized destination register, but no additional state
3511 * (AVX).
3512 */
3513typedef struct IEMOPMEDIAOPTF3
3514{
3515 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3516 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3517} IEMOPMEDIAOPTF3;
3518/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3519typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3520
3521/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3522 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3523 * given functions as initializers. For use in AVX functions where a pair of
3524 * functions are only used once and the function table need not be public. */
3525#ifndef TST_IEM_CHECK_MC
3526# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3527# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3528 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3529 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3530# else
3531# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3532 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3533# endif
3534#else
3535# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3536#endif
3537/** @def IEMOPMEDIAOPTF3_INIT_VARS
3538 * Generate AVX function tables for the @a a_InstrNm instruction.
3539 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3540#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3541 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3542 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3543
3544/**
3545 * Function table for media instruction taking one full sized media source
3546 * registers and one full sized destination register, but no additional state
3547 * (AVX).
3548 */
3549typedef struct IEMOPMEDIAOPTF2
3550{
3551 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
3552 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
3553} IEMOPMEDIAOPTF2;
3554/** Pointer to a media operation function table for 2 full sized ops (AVX). */
3555typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
3556
3557/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
3558 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3559 * given functions as initializers. For use in AVX functions where a pair of
3560 * functions are only used once and the function table need not be public. */
3561#ifndef TST_IEM_CHECK_MC
3562# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3563# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3564 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3565 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3566# else
3567# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3568 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3569# endif
3570#else
3571# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3572#endif
3573/** @def IEMOPMEDIAOPTF2_INIT_VARS
3574 * Generate AVX function tables for the @a a_InstrNm instruction.
3575 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
3576#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
3577 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3578 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3579
3580/**
3581 * Function table for media instruction taking two full sized media source
3582 * registers and one full sized destination register and an 8-bit immediate, but no additional state
3583 * (AVX).
3584 */
3585typedef struct IEMOPMEDIAOPTF3IMM8
3586{
3587 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
3588 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
3589} IEMOPMEDIAOPTF3IMM8;
3590/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3591typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
3592
3593/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
3594 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3595 * given functions as initializers. For use in AVX functions where a pair of
3596 * functions are only used once and the function table need not be public. */
3597#ifndef TST_IEM_CHECK_MC
3598# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3599# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3600 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3601 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3602# else
3603# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3604 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3605# endif
3606#else
3607# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3608#endif
3609/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
3610 * Generate AVX function tables for the @a a_InstrNm instruction.
3611 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
3612#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
3613 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3614 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3615/** @} */
3616
3617
3618/**
3619 * Function table for blend type instruction taking three full sized media source
3620 * registers and one full sized destination register, but no additional state
3621 * (AVX).
3622 */
3623typedef struct IEMOPBLENDOP
3624{
3625 PFNIEMAIMPLAVXBLENDU128 pfnU128;
3626 PFNIEMAIMPLAVXBLENDU256 pfnU256;
3627} IEMOPBLENDOP;
3628/** Pointer to a media operation function table for 4 full sized ops (AVX). */
3629typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
3630
3631/** @def IEMOPBLENDOP_INIT_VARS_EX
3632 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3633 * given functions as initializers. For use in AVX functions where a pair of
3634 * functions are only used once and the function table need not be public. */
3635#ifndef TST_IEM_CHECK_MC
3636# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3637# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3638 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3639 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3640# else
3641# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3642 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3643# endif
3644#else
3645# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3646#endif
3647/** @def IEMOPBLENDOP_INIT_VARS
3648 * Generate AVX function tables for the @a a_InstrNm instruction.
3649 * @sa IEMOPBLENDOP_INIT_VARS_EX */
3650#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
3651 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3652 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3653
3654
3655/** @name SSE/AVX single/double precision floating point operations.
3656 * @{ */
3657/**
3658 * A SSE result.
3659 */
3660typedef struct IEMSSERESULT
3661{
3662 /** The output value. */
3663 X86XMMREG uResult;
3664 /** The output status. */
3665 uint32_t MXCSR;
3666} IEMSSERESULT;
3667AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
3668/** Pointer to a SSE result. */
3669typedef IEMSSERESULT *PIEMSSERESULT;
3670/** Pointer to a const SSE result. */
3671typedef IEMSSERESULT const *PCIEMSSERESULT;
3672
3673
3674/**
3675 * A AVX128 result.
3676 */
3677typedef struct IEMAVX128RESULT
3678{
3679 /** The output value. */
3680 X86XMMREG uResult;
3681 /** The output status. */
3682 uint32_t MXCSR;
3683} IEMAVX128RESULT;
3684AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
3685/** Pointer to a AVX128 result. */
3686typedef IEMAVX128RESULT *PIEMAVX128RESULT;
3687/** Pointer to a const AVX128 result. */
3688typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
3689
3690
3691/**
3692 * A AVX256 result.
3693 */
3694typedef struct IEMAVX256RESULT
3695{
3696 /** The output value. */
3697 X86YMMREG uResult;
3698 /** The output status. */
3699 uint32_t MXCSR;
3700} IEMAVX256RESULT;
3701AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
3702/** Pointer to a AVX256 result. */
3703typedef IEMAVX256RESULT *PIEMAVX256RESULT;
3704/** Pointer to a const AVX256 result. */
3705typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
3706
3707
3708typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3709typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
3710typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3711typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
3712typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3713typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
3714
3715typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3716typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
3717typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3718typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
3719typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3720typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
3721
3722typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3723typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
3724
3725FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
3726FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
3727FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
3728FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
3729FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
3730FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
3731FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
3732FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
3733FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
3734FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
3735FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
3736FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
3737FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
3738FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
3739FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
3740FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
3741FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
3742FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
3743FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
3744FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
3745FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
3746FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
3747FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
3748
3749FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
3750FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
3751FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
3752FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
3753FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
3754FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
3755
3756FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
3757FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
3758FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
3759FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
3760FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
3761FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
3762FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
3763FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
3764FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
3765FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
3766FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
3767FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
3768FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
3769FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
3770FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
3771FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
3772FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
3773
3774FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
3775FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
3776FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
3777FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
3778FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
3779FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
3780FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
3781FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
3782FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
3783FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
3784FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
3785FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
3786FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
3787FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
3788FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
3789FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
3790FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
3791FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
3792FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
3793FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
3794FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
3795FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
3796
3797FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
3798FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
3799FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
3800FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
3801FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
3802FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
3803FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
3804FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
3805FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
3806FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
3807FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
3808FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
3809FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
3810FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
3811
3812FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
3813FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
3814FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
3815FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
3816FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
3817FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
3818FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
3819FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
3820FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
3821FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
3822FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
3823FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
3824FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
3825FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
3826FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
3827FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
3828FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
3829FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
3830FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
3831FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
3832/** @} */
3833
3834/** @name C instruction implementations for anything slightly complicated.
3835 * @{ */
3836
3837/**
3838 * For typedef'ing or declaring a C instruction implementation function taking
3839 * no extra arguments.
3840 *
3841 * @param a_Name The name of the type.
3842 */
3843# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
3844 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3845/**
3846 * For defining a C instruction implementation function taking no extra
3847 * arguments.
3848 *
3849 * @param a_Name The name of the function
3850 */
3851# define IEM_CIMPL_DEF_0(a_Name) \
3852 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3853/**
3854 * Prototype version of IEM_CIMPL_DEF_0.
3855 */
3856# define IEM_CIMPL_PROTO_0(a_Name) \
3857 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3858/**
3859 * For calling a C instruction implementation function taking no extra
3860 * arguments.
3861 *
3862 * This special call macro adds default arguments to the call and allow us to
3863 * change these later.
3864 *
3865 * @param a_fn The name of the function.
3866 */
3867# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
3868
3869/** Type for a C instruction implementation function taking no extra
3870 * arguments. */
3871typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
3872/** Function pointer type for a C instruction implementation function taking
3873 * no extra arguments. */
3874typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
3875
3876/**
3877 * For typedef'ing or declaring a C instruction implementation function taking
3878 * one extra argument.
3879 *
3880 * @param a_Name The name of the type.
3881 * @param a_Type0 The argument type.
3882 * @param a_Arg0 The argument name.
3883 */
3884# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
3885 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3886/**
3887 * For defining a C instruction implementation function taking one extra
3888 * argument.
3889 *
3890 * @param a_Name The name of the function
3891 * @param a_Type0 The argument type.
3892 * @param a_Arg0 The argument name.
3893 */
3894# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
3895 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3896/**
3897 * Prototype version of IEM_CIMPL_DEF_1.
3898 */
3899# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
3900 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
3901/**
3902 * For calling a C instruction implementation function taking one extra
3903 * argument.
3904 *
3905 * This special call macro adds default arguments to the call and allow us to
3906 * change these later.
3907 *
3908 * @param a_fn The name of the function.
3909 * @param a0 The name of the 1st argument.
3910 */
3911# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
3912
3913/**
3914 * For typedef'ing or declaring a C instruction implementation function taking
3915 * two extra arguments.
3916 *
3917 * @param a_Name The name of the type.
3918 * @param a_Type0 The type of the 1st argument
3919 * @param a_Arg0 The name of the 1st argument.
3920 * @param a_Type1 The type of the 2nd argument.
3921 * @param a_Arg1 The name of the 2nd argument.
3922 */
3923# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3924 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3925/**
3926 * For defining a C instruction implementation function taking two extra
3927 * arguments.
3928 *
3929 * @param a_Name The name of the function.
3930 * @param a_Type0 The type of the 1st argument
3931 * @param a_Arg0 The name of the 1st argument.
3932 * @param a_Type1 The type of the 2nd argument.
3933 * @param a_Arg1 The name of the 2nd argument.
3934 */
3935# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3936 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3937/**
3938 * Prototype version of IEM_CIMPL_DEF_2.
3939 */
3940# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
3941 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
3942/**
3943 * For calling a C instruction implementation function taking two extra
3944 * arguments.
3945 *
3946 * This special call macro adds default arguments to the call and allow us to
3947 * change these later.
3948 *
3949 * @param a_fn The name of the function.
3950 * @param a0 The name of the 1st argument.
3951 * @param a1 The name of the 2nd argument.
3952 */
3953# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
3954
3955/**
3956 * For typedef'ing or declaring a C instruction implementation function taking
3957 * three extra arguments.
3958 *
3959 * @param a_Name The name of the type.
3960 * @param a_Type0 The type of the 1st argument
3961 * @param a_Arg0 The name of the 1st argument.
3962 * @param a_Type1 The type of the 2nd argument.
3963 * @param a_Arg1 The name of the 2nd argument.
3964 * @param a_Type2 The type of the 3rd argument.
3965 * @param a_Arg2 The name of the 3rd argument.
3966 */
3967# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3968 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3969/**
3970 * For defining a C instruction implementation function taking three extra
3971 * arguments.
3972 *
3973 * @param a_Name The name of the function.
3974 * @param a_Type0 The type of the 1st argument
3975 * @param a_Arg0 The name of the 1st argument.
3976 * @param a_Type1 The type of the 2nd argument.
3977 * @param a_Arg1 The name of the 2nd argument.
3978 * @param a_Type2 The type of the 3rd argument.
3979 * @param a_Arg2 The name of the 3rd argument.
3980 */
3981# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3982 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3983/**
3984 * Prototype version of IEM_CIMPL_DEF_3.
3985 */
3986# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
3987 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
3988/**
3989 * For calling a C instruction implementation function taking three extra
3990 * arguments.
3991 *
3992 * This special call macro adds default arguments to the call and allow us to
3993 * change these later.
3994 *
3995 * @param a_fn The name of the function.
3996 * @param a0 The name of the 1st argument.
3997 * @param a1 The name of the 2nd argument.
3998 * @param a2 The name of the 3rd argument.
3999 */
4000# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4001
4002
4003/**
4004 * For typedef'ing or declaring a C instruction implementation function taking
4005 * four extra arguments.
4006 *
4007 * @param a_Name The name of the type.
4008 * @param a_Type0 The type of the 1st argument
4009 * @param a_Arg0 The name of the 1st argument.
4010 * @param a_Type1 The type of the 2nd argument.
4011 * @param a_Arg1 The name of the 2nd argument.
4012 * @param a_Type2 The type of the 3rd argument.
4013 * @param a_Arg2 The name of the 3rd argument.
4014 * @param a_Type3 The type of the 4th argument.
4015 * @param a_Arg3 The name of the 4th argument.
4016 */
4017# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4018 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4019/**
4020 * For defining a C instruction implementation function taking four extra
4021 * arguments.
4022 *
4023 * @param a_Name The name of the function.
4024 * @param a_Type0 The type of the 1st argument
4025 * @param a_Arg0 The name of the 1st argument.
4026 * @param a_Type1 The type of the 2nd argument.
4027 * @param a_Arg1 The name of the 2nd argument.
4028 * @param a_Type2 The type of the 3rd argument.
4029 * @param a_Arg2 The name of the 3rd argument.
4030 * @param a_Type3 The type of the 4th argument.
4031 * @param a_Arg3 The name of the 4th argument.
4032 */
4033# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4034 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4035 a_Type2 a_Arg2, a_Type3 a_Arg3))
4036/**
4037 * Prototype version of IEM_CIMPL_DEF_4.
4038 */
4039# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4040 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4041 a_Type2 a_Arg2, a_Type3 a_Arg3))
4042/**
4043 * For calling a C instruction implementation function taking four extra
4044 * arguments.
4045 *
4046 * This special call macro adds default arguments to the call and allow us to
4047 * change these later.
4048 *
4049 * @param a_fn The name of the function.
4050 * @param a0 The name of the 1st argument.
4051 * @param a1 The name of the 2nd argument.
4052 * @param a2 The name of the 3rd argument.
4053 * @param a3 The name of the 4th argument.
4054 */
4055# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4056
4057
4058/**
4059 * For typedef'ing or declaring a C instruction implementation function taking
4060 * five extra arguments.
4061 *
4062 * @param a_Name The name of the type.
4063 * @param a_Type0 The type of the 1st argument
4064 * @param a_Arg0 The name of the 1st argument.
4065 * @param a_Type1 The type of the 2nd argument.
4066 * @param a_Arg1 The name of the 2nd argument.
4067 * @param a_Type2 The type of the 3rd argument.
4068 * @param a_Arg2 The name of the 3rd argument.
4069 * @param a_Type3 The type of the 4th argument.
4070 * @param a_Arg3 The name of the 4th argument.
4071 * @param a_Type4 The type of the 5th argument.
4072 * @param a_Arg4 The name of the 5th argument.
4073 */
4074# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4075 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4076 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4077 a_Type3 a_Arg3, a_Type4 a_Arg4))
4078/**
4079 * For defining a C instruction implementation function taking five extra
4080 * arguments.
4081 *
4082 * @param a_Name The name of the function.
4083 * @param a_Type0 The type of the 1st argument
4084 * @param a_Arg0 The name of the 1st argument.
4085 * @param a_Type1 The type of the 2nd argument.
4086 * @param a_Arg1 The name of the 2nd argument.
4087 * @param a_Type2 The type of the 3rd argument.
4088 * @param a_Arg2 The name of the 3rd argument.
4089 * @param a_Type3 The type of the 4th argument.
4090 * @param a_Arg3 The name of the 4th argument.
4091 * @param a_Type4 The type of the 5th argument.
4092 * @param a_Arg4 The name of the 5th argument.
4093 */
4094# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4095 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4096 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4097/**
4098 * Prototype version of IEM_CIMPL_DEF_5.
4099 */
4100# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4101 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4102 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4103/**
4104 * For calling a C instruction implementation function taking five extra
4105 * arguments.
4106 *
4107 * This special call macro adds default arguments to the call and allow us to
4108 * change these later.
4109 *
4110 * @param a_fn The name of the function.
4111 * @param a0 The name of the 1st argument.
4112 * @param a1 The name of the 2nd argument.
4113 * @param a2 The name of the 3rd argument.
4114 * @param a3 The name of the 4th argument.
4115 * @param a4 The name of the 5th argument.
4116 */
4117# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4118
4119/** @} */
4120
4121
4122/** @name Opcode Decoder Function Types.
4123 * @{ */
4124
4125/** @typedef PFNIEMOP
4126 * Pointer to an opcode decoder function.
4127 */
4128
4129/** @def FNIEMOP_DEF
4130 * Define an opcode decoder function.
4131 *
4132 * We're using macors for this so that adding and removing parameters as well as
4133 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4134 *
4135 * @param a_Name The function name.
4136 */
4137
4138/** @typedef PFNIEMOPRM
4139 * Pointer to an opcode decoder function with RM byte.
4140 */
4141
4142/** @def FNIEMOPRM_DEF
4143 * Define an opcode decoder function with RM byte.
4144 *
4145 * We're using macors for this so that adding and removing parameters as well as
4146 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4147 *
4148 * @param a_Name The function name.
4149 */
4150
4151#if defined(__GNUC__) && defined(RT_ARCH_X86)
4152typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4153typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4154# define FNIEMOP_DEF(a_Name) \
4155 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4156# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4157 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4158# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4159 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4160
4161#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4162typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4163typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4164# define FNIEMOP_DEF(a_Name) \
4165 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4166# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4167 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4168# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4169 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4170
4171#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4172typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4173typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4174# define FNIEMOP_DEF(a_Name) \
4175 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4176# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4177 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4178# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4179 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4180
4181#else
4182typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4183typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4184# define FNIEMOP_DEF(a_Name) \
4185 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4186# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4187 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4188# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4189 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4190
4191#endif
4192#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4193
4194/**
4195 * Call an opcode decoder function.
4196 *
4197 * We're using macors for this so that adding and removing parameters can be
4198 * done as we please. See FNIEMOP_DEF.
4199 */
4200#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4201
4202/**
4203 * Call a common opcode decoder function taking one extra argument.
4204 *
4205 * We're using macors for this so that adding and removing parameters can be
4206 * done as we please. See FNIEMOP_DEF_1.
4207 */
4208#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4209
4210/**
4211 * Call a common opcode decoder function taking one extra argument.
4212 *
4213 * We're using macors for this so that adding and removing parameters can be
4214 * done as we please. See FNIEMOP_DEF_1.
4215 */
4216#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4217/** @} */
4218
4219
4220/** @name Misc Helpers
4221 * @{ */
4222
4223/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4224 * due to GCC lacking knowledge about the value range of a switch. */
4225#if RT_CPLUSPLUS_PREREQ(202000)
4226# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4227#else
4228# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4229#endif
4230
4231/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4232#if RT_CPLUSPLUS_PREREQ(202000)
4233# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4234#else
4235# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4236#endif
4237
4238/**
4239 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4240 * occation.
4241 */
4242#ifdef LOG_ENABLED
4243# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4244 do { \
4245 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4246 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4247 } while (0)
4248#else
4249# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4250 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4251#endif
4252
4253/**
4254 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4255 * occation using the supplied logger statement.
4256 *
4257 * @param a_LoggerArgs What to log on failure.
4258 */
4259#ifdef LOG_ENABLED
4260# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4261 do { \
4262 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4263 /*LogFunc(a_LoggerArgs);*/ \
4264 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4265 } while (0)
4266#else
4267# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4268 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4269#endif
4270
4271/**
4272 * Gets the CPU mode (from fExec) as a IEMMODE value.
4273 *
4274 * @returns IEMMODE
4275 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4276 */
4277#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4278
4279/**
4280 * Check if we're currently executing in real or virtual 8086 mode.
4281 *
4282 * @returns @c true if it is, @c false if not.
4283 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4284 */
4285#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4286 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4287
4288/**
4289 * Check if we're currently executing in virtual 8086 mode.
4290 *
4291 * @returns @c true if it is, @c false if not.
4292 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4293 */
4294#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4295
4296/**
4297 * Check if we're currently executing in long mode.
4298 *
4299 * @returns @c true if it is, @c false if not.
4300 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4301 */
4302#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4303
4304/**
4305 * Check if we're currently executing in a 16-bit code segment.
4306 *
4307 * @returns @c true if it is, @c false if not.
4308 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4309 */
4310#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4311
4312/**
4313 * Check if we're currently executing in a 32-bit code segment.
4314 *
4315 * @returns @c true if it is, @c false if not.
4316 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4317 */
4318#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4319
4320/**
4321 * Check if we're currently executing in a 64-bit code segment.
4322 *
4323 * @returns @c true if it is, @c false if not.
4324 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4325 */
4326#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4327
4328/**
4329 * Check if we're currently executing in real mode.
4330 *
4331 * @returns @c true if it is, @c false if not.
4332 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4333 */
4334#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4335
4336/**
4337 * Gets the current protection level (CPL).
4338 *
4339 * @returns 0..3
4340 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4341 */
4342#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4343
4344/**
4345 * Sets the current protection level (CPL).
4346 *
4347 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4348 */
4349#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4350 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4351
4352/**
4353 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4354 * @returns PCCPUMFEATURES
4355 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4356 */
4357#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4358
4359/**
4360 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4361 * @returns PCCPUMFEATURES
4362 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4363 */
4364#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4365
4366/**
4367 * Evaluates to true if we're presenting an Intel CPU to the guest.
4368 */
4369#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4370
4371/**
4372 * Evaluates to true if we're presenting an AMD CPU to the guest.
4373 */
4374#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4375
4376/**
4377 * Check if the address is canonical.
4378 */
4379#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4380
4381/** Checks if the ModR/M byte is in register mode or not. */
4382#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4383/** Checks if the ModR/M byte is in memory mode or not. */
4384#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4385
4386/**
4387 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4388 *
4389 * For use during decoding.
4390 */
4391#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4392/**
4393 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4394 *
4395 * For use during decoding.
4396 */
4397#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4398
4399/**
4400 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4401 *
4402 * For use during decoding.
4403 */
4404#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4405/**
4406 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4407 *
4408 * For use during decoding.
4409 */
4410#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4411
4412/**
4413 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4414 * register index, with REX.R added in.
4415 *
4416 * For use during decoding.
4417 *
4418 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4419 */
4420#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4421 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4422 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4423 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4424/**
4425 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4426 * with REX.B added in.
4427 *
4428 * For use during decoding.
4429 *
4430 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4431 */
4432#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4433 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4434 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4435 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4436
4437/**
4438 * Combines the prefix REX and ModR/M byte for passing to
4439 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4440 *
4441 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4442 * The two bits are part of the REG sub-field, which isn't needed in
4443 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4444 *
4445 * For use during decoding/recompiling.
4446 */
4447#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4448 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4449 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (26 - 3) ) )
4450AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(26));
4451AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(27));
4452
4453/**
4454 * Gets the effective VEX.VVVV value.
4455 *
4456 * The 4th bit is ignored if not 64-bit code.
4457 * @returns effective V-register value.
4458 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4459 */
4460#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4461 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4462
4463
4464/**
4465 * Checks if we're executing inside an AMD-V or VT-x guest.
4466 */
4467#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4468# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4469#else
4470# define IEM_IS_IN_GUEST(a_pVCpu) false
4471#endif
4472
4473
4474#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4475
4476/**
4477 * Check if the guest has entered VMX root operation.
4478 */
4479# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4480
4481/**
4482 * Check if the guest has entered VMX non-root operation.
4483 */
4484# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4485 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4486
4487/**
4488 * Check if the nested-guest has the given Pin-based VM-execution control set.
4489 */
4490# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4491
4492/**
4493 * Check if the nested-guest has the given Processor-based VM-execution control set.
4494 */
4495# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4496
4497/**
4498 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4499 * control set.
4500 */
4501# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4502
4503/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4504# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4505
4506/** Whether a shadow VMCS is present for the given VCPU. */
4507# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4508
4509/** Gets the VMXON region pointer. */
4510# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4511
4512/** Gets the guest-physical address of the current VMCS for the given VCPU. */
4513# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
4514
4515/** Whether a current VMCS is present for the given VCPU. */
4516# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4517
4518/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
4519# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
4520 do \
4521 { \
4522 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
4523 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
4524 } while (0)
4525
4526/** Clears any current VMCS for the given VCPU. */
4527# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
4528 do \
4529 { \
4530 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
4531 } while (0)
4532
4533/**
4534 * Invokes the VMX VM-exit handler for an instruction intercept.
4535 */
4536# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
4537 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
4538
4539/**
4540 * Invokes the VMX VM-exit handler for an instruction intercept where the
4541 * instruction provides additional VM-exit information.
4542 */
4543# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
4544 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
4545
4546/**
4547 * Invokes the VMX VM-exit handler for a task switch.
4548 */
4549# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
4550 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
4551
4552/**
4553 * Invokes the VMX VM-exit handler for MWAIT.
4554 */
4555# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
4556 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
4557
4558/**
4559 * Invokes the VMX VM-exit handler for EPT faults.
4560 */
4561# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
4562 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
4563
4564/**
4565 * Invokes the VMX VM-exit handler.
4566 */
4567# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
4568 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
4569
4570#else
4571# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
4572# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
4573# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
4574# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
4575# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
4576# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4577# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4578# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4579# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4580# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4581# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
4582
4583#endif
4584
4585#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4586/**
4587 * Checks if we're executing a guest using AMD-V.
4588 */
4589# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
4590 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
4591/**
4592 * Check if an SVM control/instruction intercept is set.
4593 */
4594# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
4595 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
4596
4597/**
4598 * Check if an SVM read CRx intercept is set.
4599 */
4600# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4601 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4602
4603/**
4604 * Check if an SVM write CRx intercept is set.
4605 */
4606# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4607 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4608
4609/**
4610 * Check if an SVM read DRx intercept is set.
4611 */
4612# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4613 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4614
4615/**
4616 * Check if an SVM write DRx intercept is set.
4617 */
4618# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4619 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4620
4621/**
4622 * Check if an SVM exception intercept is set.
4623 */
4624# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
4625 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
4626
4627/**
4628 * Invokes the SVM \#VMEXIT handler for the nested-guest.
4629 */
4630# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4631 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
4632
4633/**
4634 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
4635 * corresponding decode assist information.
4636 */
4637# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
4638 do \
4639 { \
4640 uint64_t uExitInfo1; \
4641 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
4642 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
4643 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
4644 else \
4645 uExitInfo1 = 0; \
4646 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
4647 } while (0)
4648
4649/** Check and handles SVM nested-guest instruction intercept and updates
4650 * NRIP if needed.
4651 */
4652# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4653 do \
4654 { \
4655 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
4656 { \
4657 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4658 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
4659 } \
4660 } while (0)
4661
4662/** Checks and handles SVM nested-guest CR0 read intercept. */
4663# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4664 do \
4665 { \
4666 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
4667 { /* probably likely */ } \
4668 else \
4669 { \
4670 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4671 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
4672 } \
4673 } while (0)
4674
4675/**
4676 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
4677 */
4678# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
4679 do { \
4680 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
4681 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
4682 } while (0)
4683
4684#else
4685# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
4686# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4687# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4688# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4689# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4690# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
4691# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
4692# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
4693# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
4694 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4695# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4696# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
4697
4698#endif
4699
4700/** @} */
4701
4702uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
4703VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
4704
4705
4706/**
4707 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
4708 */
4709typedef union IEMSELDESC
4710{
4711 /** The legacy view. */
4712 X86DESC Legacy;
4713 /** The long mode view. */
4714 X86DESC64 Long;
4715} IEMSELDESC;
4716/** Pointer to a selector descriptor table entry. */
4717typedef IEMSELDESC *PIEMSELDESC;
4718
4719/** @name Raising Exceptions.
4720 * @{ */
4721VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
4722 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
4723
4724VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
4725 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
4726#ifdef IEM_WITH_SETJMP
4727DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
4728 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
4729#endif
4730VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
4731VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4732VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
4733VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
4734VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
4735VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4736VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
4737VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4738VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4739/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
4740VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4741VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4742VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4743VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4744VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4745VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4746#ifdef IEM_WITH_SETJMP
4747DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4748#endif
4749VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4750VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
4751VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4752#ifdef IEM_WITH_SETJMP
4753DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4754#endif
4755VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4756#ifdef IEM_WITH_SETJMP
4757DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
4758#endif
4759VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4760#ifdef IEM_WITH_SETJMP
4761DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4762#endif
4763VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
4764#ifdef IEM_WITH_SETJMP
4765DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
4766#endif
4767VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4768VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4769#ifdef IEM_WITH_SETJMP
4770DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4771#endif
4772VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4773
4774void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
4775
4776IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
4777IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
4778IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
4779
4780/**
4781 * Macro for calling iemCImplRaiseDivideError().
4782 *
4783 * This is for things that will _always_ decode to an \#DE, taking the
4784 * recompiler into consideration and everything.
4785 *
4786 * @return Strict VBox status code.
4787 */
4788#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseDivideError)
4789
4790/**
4791 * Macro for calling iemCImplRaiseInvalidLockPrefix().
4792 *
4793 * This is for things that will _always_ decode to an \#UD, taking the
4794 * recompiler into consideration and everything.
4795 *
4796 * @return Strict VBox status code.
4797 */
4798#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidLockPrefix)
4799
4800/**
4801 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
4802 *
4803 * This is for things that will _always_ decode to an \#UD, taking the
4804 * recompiler into consideration and everything.
4805 *
4806 * @return Strict VBox status code.
4807 */
4808#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4809
4810/**
4811 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
4812 *
4813 * Using this macro means you've got _buggy_ _code_ and are doing things that
4814 * belongs exclusively in IEMAllCImpl.cpp during decoding.
4815 *
4816 * @return Strict VBox status code.
4817 * @see IEMOP_RAISE_INVALID_OPCODE_RET
4818 */
4819#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, iemCImplRaiseInvalidOpcode)
4820
4821/** @} */
4822
4823/** @name Register Access.
4824 * @{ */
4825VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
4826 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4827VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
4828VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
4829 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4830VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewRip) RT_NOEXCEPT;
4831VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewRip) RT_NOEXCEPT;
4832VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
4833/** @} */
4834
4835/** @name FPU access and helpers.
4836 * @{ */
4837void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4838void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4839void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4840void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4841void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4842void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4843 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4844void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4845 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4846void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4847void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4848void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4849void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4850void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4851void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4852void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4853void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4854void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4855void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4856void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4857void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4858void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4859void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4860void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4861/** @} */
4862
4863/** @name SSE+AVX SIMD access and helpers.
4864 * @{ */
4865void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
4866void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
4867/** @} */
4868
4869/** @name Memory access.
4870 * @{ */
4871
4872/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
4873#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
4874/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
4875 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
4876#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
4877/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
4878 * Users include FXSAVE & FXRSTOR. */
4879#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
4880
4881VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
4882 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
4883VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4884#ifndef IN_RING3
4885VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
4886#endif
4887void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
4888VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
4889VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4890VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
4891
4892void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
4893void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
4894#ifdef IEM_WITH_CODE_TLB
4895void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
4896#else
4897VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
4898#endif
4899#ifdef IEM_WITH_SETJMP
4900uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4901uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4902uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4903uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4904#else
4905VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
4906VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4907VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4908VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4909VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
4910VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4911VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4912VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
4913VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4914VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4915VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
4916#endif
4917
4918VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4919VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4920VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4921VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4922VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4923VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4924VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4925VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4926VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4927VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4928VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4929VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4930VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
4931 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
4932#ifdef IEM_WITH_SETJMP
4933uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4934uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4935uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4936uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4937uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4938uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4939void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4940void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4941void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4942void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4943void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4944void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4945# if 0 /* these are inlined now */
4946uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4947uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4948uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4949uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4950uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4951uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4952# endif
4953void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4954void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4955void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4956void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4957void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4958void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4959#endif
4960
4961VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4962VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4963VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4964VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4965VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
4966
4967VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
4968VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
4969VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
4970VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
4971VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4972VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
4973VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4974VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
4975VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
4976#ifdef IEM_WITH_SETJMP
4977void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4978void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4979void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4980void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4981void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4982void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4983void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4984void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4985#if 0
4986void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
4987void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
4988void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
4989void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
4990#endif
4991void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4992void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
4993void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4994void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
4995#endif
4996
4997#ifdef IEM_WITH_SETJMP
4998uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
4999uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5000uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5001uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5002uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5003uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5004uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5005uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5006uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5007uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5008uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5009uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5010
5011void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5012void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5013void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5014#endif
5015
5016VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5017 void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
5018VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
5019VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5020VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5021VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5022VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5023VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5024VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5025VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5026VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5027 void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
5028VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5029 void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT;
5030VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
5031VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5032VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5033VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5034VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5035VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5036VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5037
5038#ifdef IEM_WITH_SETJMP
5039void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5040void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5041void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5042void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5043uint16_t iemMemStackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5044uint32_t iemMemStackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5045uint64_t iemMemStackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5046
5047void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5048void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5049void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5050uint16_t iemMemFlat32StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5051uint32_t iemMemFlat32StackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5052
5053void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5054void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5055uint16_t iemMemFlat64StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5056uint64_t iemMemFlat64StackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5057#endif
5058
5059/** @} */
5060
5061/** @name IEMAllCImpl.cpp
5062 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5063 * @{ */
5064IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5065IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5066IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5067IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5068IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5069IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5070IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5071IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5072IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5073IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5074IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5075IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5076IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5077IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5078IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5079IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5080IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5081typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5082typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5083IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5084IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5085IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5086IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5087IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5088IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5089IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5090IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5091IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5092IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5093IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5094IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5095IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5096IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5097IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5098IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5099IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5100IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5101IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5102IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5103IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5104IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5105IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5106IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5107IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5108IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5109IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5110IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5111IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5112IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5113IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5114IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5115IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5116IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5117IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5118IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5119IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5120IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5121IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5122IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5123IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5124IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5125IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5126IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5127IEM_CIMPL_PROTO_0(iemCImpl_clts);
5128IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5129IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5130IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5131IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5132IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5133IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5134IEM_CIMPL_PROTO_0(iemCImpl_invd);
5135IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5136IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5137IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5138IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5139IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5140IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5141IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5142IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5143IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5144IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5145IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5146IEM_CIMPL_PROTO_0(iemCImpl_cli);
5147IEM_CIMPL_PROTO_0(iemCImpl_sti);
5148IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5149IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5150IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5151IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5152IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5153IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5154IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5155IEM_CIMPL_PROTO_0(iemCImpl_daa);
5156IEM_CIMPL_PROTO_0(iemCImpl_das);
5157IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5158IEM_CIMPL_PROTO_0(iemCImpl_aas);
5159IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5160IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5161IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5162IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5163IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5164 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
5165IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5166IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5167IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5168IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5169IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5170IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5171IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5172IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5173IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5174IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5175IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5176IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5177IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5178IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5179IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5180IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5181IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5182IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5183/** @} */
5184
5185/** @name IEMAllCImplStrInstr.cpp.h
5186 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5187 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5188 * @{ */
5189IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5190IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5191IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5192IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5193IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5194IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5195IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5196IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5197IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5198IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5199IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5200
5201IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5202IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5203IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5204IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5205IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5206IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5207IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5208IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5209IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5210IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5211IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5212
5213IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5214IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5215IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5216IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5217IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5218IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5219IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5220IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5221IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5222IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5223IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5224
5225
5226IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5227IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5228IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5229IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5230IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5231IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5232IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5233IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5234IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5235IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5236IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5237
5238IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5239IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5240IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5241IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5242IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5243IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5244IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5245IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5246IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5247IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5248IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5249
5250IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5251IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5252IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5253IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5254IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5255IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5256IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5257IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5258IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5259IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5260IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5261
5262IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5263IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5264IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5265IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5266IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5267IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5268IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5269IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5270IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5271IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5272IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5273
5274
5275IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5276IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5277IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5278IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5279IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5280IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5281IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5282IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5283IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5284IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5285IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5286
5287IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5288IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5289IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5290IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5291IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5292IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5293IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5294IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5295IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5296IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5297IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5298
5299IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5300IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5301IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5302IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5303IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5304IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5305IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5306IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5307IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5308IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5309IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5310
5311IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5312IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5313IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5314IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5315IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5316IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5317IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5318IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5319IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5320IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5321IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5322/** @} */
5323
5324#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5325VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5326VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5327VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5328VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5329VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5330VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5331VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5332VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5333VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5334VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5335 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5336VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5337 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5338VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5339VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5340VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5341VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5342VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5343VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5344VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5345VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5346 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5347VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5348VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5349VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5350uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5351void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5352VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5353 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5354bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5355IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5356IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5357IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5358IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5359IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5360IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5361IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5362IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5363IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5364IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5365IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5366IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5367IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5368IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5369IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5370IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5371#endif
5372
5373#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5374VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5375VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5376VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5377 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5378VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5379IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5380IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5381IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5382IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5383IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5384IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5385IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5386IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5387#endif
5388
5389IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5390IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5391IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5392
5393extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5394extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5395extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5396extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5397extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5398extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5399extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5400
5401/*
5402 * Recompiler related stuff.
5403 */
5404extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5405extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5406extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5407extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5408extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5409extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5410extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5411
5412DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
5413 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
5414void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
5415void iemTbAllocatorProcessDelayedFrees(PVMCPU pVCpu, PIEMTBALLOCATOR pTbAllocator);
5416
5417
5418/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5419#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5420typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5421typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5422# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5423 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5424# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5425 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5426
5427#else
5428typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5429typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5430# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5431 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5432# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5433 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5434#endif
5435
5436
5437IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5438
5439IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5440IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5441IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5442IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5443
5444IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5445IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5446IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5447
5448/* Branching: */
5449IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5450IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5451IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5452
5453IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5454IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
5455IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
5456
5457/* Natural page crossing: */
5458IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
5459IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
5460IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
5461
5462IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
5463IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
5464IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
5465
5466IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
5467IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
5468IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
5469
5470bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
5471bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
5472
5473/* Native recompiler public bits: */
5474PIEMTB iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb);
5475int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
5476void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
5477
5478
5479/** @} */
5480
5481RT_C_DECLS_END
5482
5483#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
5484
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette