VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 103776

Last change on this file since 103776 was 103776, checked in by vboxsync, 11 months ago

VMM/IEM: Revert r162139 again (keeping fingers crossed that it works now), bugref:10641

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 309.3 KB
Line 
1/* $Id: IEMInternal.h 103776 2024-03-11 16:35:59Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
89 * Enables the delayed PC updating optimization (see @bugref{10373}).
90 */
91#if defined(DOXYGEN_RUNNING) || 1
92# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
93#endif
94
95/** Enables the SIMD register allocator @bugref{10614}. */
96#define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
97/** Enables access to even callee saved registers. */
98//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
99
100/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
101 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
102 * executing native translation blocks.
103 *
104 * This exploits the fact that we save all non-volatile registers in the TB
105 * prologue and thus just need to do the same as the TB epilogue to get the
106 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
107 * non-volatile (and does something even more crazy for ARM), this probably
108 * won't work reliably on Windows. */
109#if defined(DOXYGEN_RUNNING) || (!defined(RT_OS_WINDOWS) && (defined(RT_ARCH_ARM64) /*|| defined(_RT_ARCH_AMD64)*/))
110# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
111#endif
112#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
113# if !defined(IN_RING3) \
114 || !defined(VBOX_WITH_IEM_RECOMPILER) \
115 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
116# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
117# elif defined(RT_OS_WINDOWS)
118# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
119# endif
120#endif
121
122
123/** @def IEM_DO_LONGJMP
124 *
125 * Wrapper around longjmp / throw.
126 *
127 * @param a_pVCpu The CPU handle.
128 * @param a_rc The status code jump back with / throw.
129 */
130#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
131# ifdef IEM_WITH_THROW_CATCH
132# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
133# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
134 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
135 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
136 throw int(a_rc); \
137 } while (0)
138# else
139# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
140# endif
141# else
142# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
143# endif
144#endif
145
146/** For use with IEM function that may do a longjmp (when enabled).
147 *
148 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
149 * attribute. So, we indicate that function that may be part of a longjmp may
150 * throw "exceptions" and that the compiler should definitely not generate and
151 * std::terminate calling unwind code.
152 *
153 * Here is one example of this ending in std::terminate:
154 * @code{.txt}
15500 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
15601 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
15702 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
15803 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
15904 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
16005 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
16106 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
16207 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
16308 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
16409 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1650a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1660b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1670c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1680d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1690e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1700f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
17110 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
172 @endcode
173 *
174 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
175 */
176#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
177# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
178#else
179# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
180#endif
181
182#define IEM_IMPLEMENTS_TASKSWITCH
183
184/** @def IEM_WITH_3DNOW
185 * Includes the 3DNow decoding. */
186#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
187# define IEM_WITH_3DNOW
188#endif
189
190/** @def IEM_WITH_THREE_0F_38
191 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
192#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
193# define IEM_WITH_THREE_0F_38
194#endif
195
196/** @def IEM_WITH_THREE_0F_3A
197 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
198#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
199# define IEM_WITH_THREE_0F_3A
200#endif
201
202/** @def IEM_WITH_VEX
203 * Includes the VEX decoding. */
204#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
205# define IEM_WITH_VEX
206#endif
207
208/** @def IEM_CFG_TARGET_CPU
209 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
210 *
211 * By default we allow this to be configured by the user via the
212 * CPUM/GuestCpuName config string, but this comes at a slight cost during
213 * decoding. So, for applications of this code where there is no need to
214 * be dynamic wrt target CPU, just modify this define.
215 */
216#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
217# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
218#endif
219
220//#define IEM_WITH_CODE_TLB // - work in progress
221//#define IEM_WITH_DATA_TLB // - work in progress
222
223
224/** @def IEM_USE_UNALIGNED_DATA_ACCESS
225 * Use unaligned accesses instead of elaborate byte assembly. */
226#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
227# define IEM_USE_UNALIGNED_DATA_ACCESS
228#endif
229
230//#define IEM_LOG_MEMORY_WRITES
231
232#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
233/** Instruction statistics. */
234typedef struct IEMINSTRSTATS
235{
236# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
237# include "IEMInstructionStatisticsTmpl.h"
238# undef IEM_DO_INSTR_STAT
239} IEMINSTRSTATS;
240#else
241struct IEMINSTRSTATS;
242typedef struct IEMINSTRSTATS IEMINSTRSTATS;
243#endif
244/** Pointer to IEM instruction statistics. */
245typedef IEMINSTRSTATS *PIEMINSTRSTATS;
246
247
248/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
249 * @{ */
250#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
251#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
252#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
253#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
254#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
255/** Selects the right variant from a_aArray.
256 * pVCpu is implicit in the caller context. */
257#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
258 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
259/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
260 * be used because the host CPU does not support the operation. */
261#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
262 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
263/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
264 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
265 * into the two.
266 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
267#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
268# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
269 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
270#else
271# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
272 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
273#endif
274/** @} */
275
276/**
277 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
278 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
279 *
280 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
281 * indicator.
282 *
283 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
284 */
285#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
286# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
287 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
288#else
289# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
290#endif
291
292
293/**
294 * Extended operand mode that includes a representation of 8-bit.
295 *
296 * This is used for packing down modes when invoking some C instruction
297 * implementations.
298 */
299typedef enum IEMMODEX
300{
301 IEMMODEX_16BIT = IEMMODE_16BIT,
302 IEMMODEX_32BIT = IEMMODE_32BIT,
303 IEMMODEX_64BIT = IEMMODE_64BIT,
304 IEMMODEX_8BIT
305} IEMMODEX;
306AssertCompileSize(IEMMODEX, 4);
307
308
309/**
310 * Branch types.
311 */
312typedef enum IEMBRANCH
313{
314 IEMBRANCH_JUMP = 1,
315 IEMBRANCH_CALL,
316 IEMBRANCH_TRAP,
317 IEMBRANCH_SOFTWARE_INT,
318 IEMBRANCH_HARDWARE_INT
319} IEMBRANCH;
320AssertCompileSize(IEMBRANCH, 4);
321
322
323/**
324 * INT instruction types.
325 */
326typedef enum IEMINT
327{
328 /** INT n instruction (opcode 0xcd imm). */
329 IEMINT_INTN = 0,
330 /** Single byte INT3 instruction (opcode 0xcc). */
331 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
332 /** Single byte INTO instruction (opcode 0xce). */
333 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
334 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
335 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
336} IEMINT;
337AssertCompileSize(IEMINT, 4);
338
339
340/**
341 * A FPU result.
342 */
343typedef struct IEMFPURESULT
344{
345 /** The output value. */
346 RTFLOAT80U r80Result;
347 /** The output status. */
348 uint16_t FSW;
349} IEMFPURESULT;
350AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
351/** Pointer to a FPU result. */
352typedef IEMFPURESULT *PIEMFPURESULT;
353/** Pointer to a const FPU result. */
354typedef IEMFPURESULT const *PCIEMFPURESULT;
355
356
357/**
358 * A FPU result consisting of two output values and FSW.
359 */
360typedef struct IEMFPURESULTTWO
361{
362 /** The first output value. */
363 RTFLOAT80U r80Result1;
364 /** The output status. */
365 uint16_t FSW;
366 /** The second output value. */
367 RTFLOAT80U r80Result2;
368} IEMFPURESULTTWO;
369AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
370AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
371/** Pointer to a FPU result consisting of two output values and FSW. */
372typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
373/** Pointer to a const FPU result consisting of two output values and FSW. */
374typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
375
376
377/**
378 * IEM TLB entry.
379 *
380 * Lookup assembly:
381 * @code{.asm}
382 ; Calculate tag.
383 mov rax, [VA]
384 shl rax, 16
385 shr rax, 16 + X86_PAGE_SHIFT
386 or rax, [uTlbRevision]
387
388 ; Do indexing.
389 movzx ecx, al
390 lea rcx, [pTlbEntries + rcx]
391
392 ; Check tag.
393 cmp [rcx + IEMTLBENTRY.uTag], rax
394 jne .TlbMiss
395
396 ; Check access.
397 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
398 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
399 cmp rax, [uTlbPhysRev]
400 jne .TlbMiss
401
402 ; Calc address and we're done.
403 mov eax, X86_PAGE_OFFSET_MASK
404 and eax, [VA]
405 or rax, [rcx + IEMTLBENTRY.pMappingR3]
406 %ifdef VBOX_WITH_STATISTICS
407 inc qword [cTlbHits]
408 %endif
409 jmp .Done
410
411 .TlbMiss:
412 mov r8d, ACCESS_FLAGS
413 mov rdx, [VA]
414 mov rcx, [pVCpu]
415 call iemTlbTypeMiss
416 .Done:
417
418 @endcode
419 *
420 */
421typedef struct IEMTLBENTRY
422{
423 /** The TLB entry tag.
424 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
425 * is ASSUMING a virtual address width of 48 bits.
426 *
427 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
428 *
429 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
430 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
431 * revision wraps around though, the tags needs to be zeroed.
432 *
433 * @note Try use SHRD instruction? After seeing
434 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
435 *
436 * @todo This will need to be reorganized for 57-bit wide virtual address and
437 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
438 * have to move the TLB entry versioning entirely to the
439 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
440 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
441 * consumed by PCID and ASID (12 + 6 = 18).
442 */
443 uint64_t uTag;
444 /** Access flags and physical TLB revision.
445 *
446 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
447 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
448 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
449 * - Bit 3 - pgm phys/virt - not directly writable.
450 * - Bit 4 - pgm phys page - not directly readable.
451 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
452 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
453 * - Bit 7 - tlb entry - pMappingR3 member not valid.
454 * - Bits 63 thru 8 are used for the physical TLB revision number.
455 *
456 * We're using complemented bit meanings here because it makes it easy to check
457 * whether special action is required. For instance a user mode write access
458 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
459 * non-zero result would mean special handling needed because either it wasn't
460 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
461 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
462 * need to check any PTE flag.
463 */
464 uint64_t fFlagsAndPhysRev;
465 /** The guest physical page address. */
466 uint64_t GCPhys;
467 /** Pointer to the ring-3 mapping. */
468 R3PTRTYPE(uint8_t *) pbMappingR3;
469#if HC_ARCH_BITS == 32
470 uint32_t u32Padding1;
471#endif
472} IEMTLBENTRY;
473AssertCompileSize(IEMTLBENTRY, 32);
474/** Pointer to an IEM TLB entry. */
475typedef IEMTLBENTRY *PIEMTLBENTRY;
476
477/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
478 * @{ */
479#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
480#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
481#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
482#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
483#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
484#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
485#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
486#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
487#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
488#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
489#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
490/** @} */
491
492
493/**
494 * An IEM TLB.
495 *
496 * We've got two of these, one for data and one for instructions.
497 */
498typedef struct IEMTLB
499{
500 /** The TLB entries.
501 * We've choosen 256 because that way we can obtain the result directly from a
502 * 8-bit register without an additional AND instruction. */
503 IEMTLBENTRY aEntries[256];
504 /** The TLB revision.
505 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
506 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
507 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
508 * (The revision zero indicates an invalid TLB entry.)
509 *
510 * The initial value is choosen to cause an early wraparound. */
511 uint64_t uTlbRevision;
512 /** The TLB physical address revision - shadow of PGM variable.
513 *
514 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
515 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
516 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
517 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
518 *
519 * The initial value is choosen to cause an early wraparound. */
520 uint64_t volatile uTlbPhysRev;
521
522 /* Statistics: */
523
524 /** TLB hits (VBOX_WITH_STATISTICS only). */
525 uint64_t cTlbHits;
526 /** TLB misses. */
527 uint32_t cTlbMisses;
528 /** Slow read path. */
529 uint32_t cTlbSlowReadPath;
530 /** Safe read path. */
531 uint32_t cTlbSafeReadPath;
532 /** Safe write path. */
533 uint32_t cTlbSafeWritePath;
534#if 0
535 /** TLB misses because of tag mismatch. */
536 uint32_t cTlbMissesTag;
537 /** TLB misses because of virtual access violation. */
538 uint32_t cTlbMissesVirtAccess;
539 /** TLB misses because of dirty bit. */
540 uint32_t cTlbMissesDirty;
541 /** TLB misses because of MMIO */
542 uint32_t cTlbMissesMmio;
543 /** TLB misses because of write access handlers. */
544 uint32_t cTlbMissesWriteHandler;
545 /** TLB misses because no r3(/r0) mapping. */
546 uint32_t cTlbMissesMapping;
547#endif
548 /** Alignment padding. */
549 uint32_t au32Padding[6];
550} IEMTLB;
551AssertCompileSizeAlignment(IEMTLB, 64);
552/** IEMTLB::uTlbRevision increment. */
553#define IEMTLB_REVISION_INCR RT_BIT_64(36)
554/** IEMTLB::uTlbRevision mask. */
555#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
556/** IEMTLB::uTlbPhysRev increment.
557 * @sa IEMTLBE_F_PHYS_REV */
558#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
559/**
560 * Calculates the TLB tag for a virtual address.
561 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
562 * @param a_pTlb The TLB.
563 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
564 * the clearing of the top 16 bits won't work (if 32-bit
565 * we'll end up with mostly zeros).
566 */
567#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
568/**
569 * Calculates the TLB tag for a virtual address but without TLB revision.
570 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
571 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
572 * the clearing of the top 16 bits won't work (if 32-bit
573 * we'll end up with mostly zeros).
574 */
575#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
576/**
577 * Converts a TLB tag value into a TLB index.
578 * @returns Index into IEMTLB::aEntries.
579 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
580 */
581#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
582/**
583 * Converts a TLB tag value into a TLB index.
584 * @returns Index into IEMTLB::aEntries.
585 * @param a_pTlb The TLB.
586 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
587 */
588#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
589
590
591/** @name IEM_MC_F_XXX - MC block flags/clues.
592 * @todo Merge with IEM_CIMPL_F_XXX
593 * @{ */
594#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
595#define IEM_MC_F_MIN_186 RT_BIT_32(1)
596#define IEM_MC_F_MIN_286 RT_BIT_32(2)
597#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
598#define IEM_MC_F_MIN_386 RT_BIT_32(3)
599#define IEM_MC_F_MIN_486 RT_BIT_32(4)
600#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
601#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
602#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
603#define IEM_MC_F_64BIT RT_BIT_32(6)
604#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
605/** This is set by IEMAllN8vePython.py to indicate a variation without the
606 * flags-clearing-and-checking, when there is also a variation with that.
607 * @note Do not use this manully, it's only for python and for testing in
608 * the native recompiler! */
609#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
610/** @} */
611
612/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
613 *
614 * These clues are mainly for the recompiler, so that it can emit correct code.
615 *
616 * They are processed by the python script and which also automatically
617 * calculates flags for MC blocks based on the statements, extending the use of
618 * these flags to describe MC block behavior to the recompiler core. The python
619 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
620 * error checking purposes. The script emits the necessary fEndTb = true and
621 * similar statements as this reduces compile time a tiny bit.
622 *
623 * @{ */
624/** Flag set if direct branch, clear if absolute or indirect. */
625#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
626/** Flag set if indirect branch, clear if direct or relative.
627 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
628 * as well as for return instructions (RET, IRET, RETF). */
629#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
630/** Flag set if relative branch, clear if absolute or indirect. */
631#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
632/** Flag set if conditional branch, clear if unconditional. */
633#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
634/** Flag set if it's a far branch (changes CS). */
635#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
636/** Convenience: Testing any kind of branch. */
637#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
638
639/** Execution flags may change (IEMCPU::fExec). */
640#define IEM_CIMPL_F_MODE RT_BIT_32(5)
641/** May change significant portions of RFLAGS. */
642#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
643/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
644#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
645/** May trigger interrupt shadowing. */
646#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
647/** May enable interrupts, so recheck IRQ immediately afterwards executing
648 * the instruction. */
649#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
650/** May disable interrupts, so recheck IRQ immediately before executing the
651 * instruction. */
652#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
653/** Convenience: Check for IRQ both before and after an instruction. */
654#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
655/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
656#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
657/** May modify FPU state.
658 * @todo Not sure if this is useful yet. */
659#define IEM_CIMPL_F_FPU RT_BIT_32(12)
660/** REP prefixed instruction which may yield before updating PC.
661 * @todo Not sure if this is useful, REP functions now return non-zero
662 * status if they don't update the PC. */
663#define IEM_CIMPL_F_REP RT_BIT_32(13)
664/** I/O instruction.
665 * @todo Not sure if this is useful yet. */
666#define IEM_CIMPL_F_IO RT_BIT_32(14)
667/** Force end of TB after the instruction. */
668#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
669/** Flag set if a branch may also modify the stack (push/pop return address). */
670#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
671/** Flag set if a branch may also modify the stack (push/pop return address)
672 * and switch it (load/restore SS:RSP). */
673#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
674/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
675#define IEM_CIMPL_F_XCPT \
676 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
677 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
678
679/** The block calls a C-implementation instruction function with two implicit arguments.
680 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
681 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
682 * @note The python scripts will add this is missing. */
683#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
684/** The block calls an ASM-implementation instruction function.
685 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
686 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
687 * @note The python scripts will add this is missing. */
688#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
689/** The block calls an ASM-implementation instruction function with an implicit
690 * X86FXSTATE pointer argument.
691 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and IEM_CIMPL_F_CALLS_AIMPL.
692 * @note The python scripts will add this is missing. */
693#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
694/** @} */
695
696
697/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
698 *
699 * These flags are set when entering IEM and adjusted as code is executed, such
700 * that they will always contain the current values as instructions are
701 * finished.
702 *
703 * In recompiled execution mode, (most of) these flags are included in the
704 * translation block selection key and stored in IEMTB::fFlags alongside the
705 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
706 * in IEMCPU::fExec.
707 *
708 * @{ */
709/** Mode: The block target mode mask. */
710#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
711/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
712#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
713/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
714 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
715 * 32-bit mode (for simplifying most memory accesses). */
716#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
717/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
718#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
719/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
720#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
721
722/** X86 Mode: 16-bit on 386 or later. */
723#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
724/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
725#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
726/** X86 Mode: 16-bit protected mode on 386 or later. */
727#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
728/** X86 Mode: 16-bit protected mode on 386 or later. */
729#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
730/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
731#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
732
733/** X86 Mode: 32-bit on 386 or later. */
734#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
735/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
736#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
737/** X86 Mode: 32-bit protected mode. */
738#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
739/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
740#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
741
742/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
743#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
744
745/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
746#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
747 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
748 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
749
750/** Bypass access handlers when set. */
751#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
752/** Have pending hardware instruction breakpoints. */
753#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
754/** Have pending hardware data breakpoints. */
755#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
756
757/** X86: Have pending hardware I/O breakpoints. */
758#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
759/** X86: Disregard the lock prefix (implied or not) when set. */
760#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
761
762/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
763#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
764
765/** Caller configurable options. */
766#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
767
768/** X86: The current protection level (CPL) shift factor. */
769#define IEM_F_X86_CPL_SHIFT 8
770/** X86: The current protection level (CPL) mask. */
771#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
772/** X86: The current protection level (CPL) shifted mask. */
773#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
774
775/** X86 execution context.
776 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
777 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
778 * mode. */
779#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
780/** X86 context: Plain regular execution context. */
781#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
782/** X86 context: VT-x enabled. */
783#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
784/** X86 context: AMD-V enabled. */
785#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
786/** X86 context: In AMD-V or VT-x guest mode. */
787#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
788/** X86 context: System management mode (SMM). */
789#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
790
791/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
792 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
793 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
794 * alread). */
795
796/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
797 * iemRegFinishClearingRF() most for most situations
798 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
799 * the IEM_F_PENDING_BRK_XXX bits alread). */
800
801/** @} */
802
803
804/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
805 *
806 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
807 * translation block flags. The combined flag mask (subject to
808 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
809 *
810 * @{ */
811/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
812#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
813
814/** Type: The block type mask. */
815#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
816/** Type: Purly threaded recompiler (via tables). */
817#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
818/** Type: Native recompilation. */
819#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
820
821/** Set when we're starting the block in an "interrupt shadow".
822 * We don't need to distingish between the two types of this mask, thus the one.
823 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
824#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
825/** Set when we're currently inhibiting NMIs
826 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
827#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
828
829/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
830 * we're close the limit before starting a TB, as determined by
831 * iemGetTbFlagsForCurrentPc(). */
832#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
833
834/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
835 *
836 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
837 * don't implement), because we don't currently generate any context
838 * specific code - that's all handled in CIMPL functions.
839 *
840 * For the threaded recompiler we don't generate any CPL specific code
841 * either, but the native recompiler does for memory access (saves getting
842 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
843 * Since most OSes will not share code between rings, this shouldn't
844 * have any real effect on TB/memory/recompiling load.
845 */
846#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
847/** @} */
848
849AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
850AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
851AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
852AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
853AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
854AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
855AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
856AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
857AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
858AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
859AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
860AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
861AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
862AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
863AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
864AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
865AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
866AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
867AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
868
869AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
870AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
871AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
872AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
873AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
874AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
875AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
876AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
877AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
878AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
879AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
880AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
881
882AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
883AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
884AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
885
886/** Native instruction type for use with the native code generator.
887 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
888#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
889typedef uint8_t IEMNATIVEINSTR;
890#else
891typedef uint32_t IEMNATIVEINSTR;
892#endif
893/** Pointer to a native instruction unit. */
894typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
895/** Pointer to a const native instruction unit. */
896typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
897
898/**
899 * A call for the threaded call table.
900 */
901typedef struct IEMTHRDEDCALLENTRY
902{
903 /** The function to call (IEMTHREADEDFUNCS). */
904 uint16_t enmFunction;
905 /** Instruction number in the TB (for statistics). */
906 uint8_t idxInstr;
907 uint8_t uUnused0;
908
909 /** Offset into IEMTB::pabOpcodes. */
910 uint16_t offOpcode;
911 /** The opcode length. */
912 uint8_t cbOpcode;
913 /** Index in to IEMTB::aRanges. */
914 uint8_t idxRange;
915
916 /** Generic parameters. */
917 uint64_t auParams[3];
918} IEMTHRDEDCALLENTRY;
919AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
920/** Pointer to a threaded call entry. */
921typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
922/** Pointer to a const threaded call entry. */
923typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
924
925/**
926 * Native IEM TB 'function' typedef.
927 *
928 * This will throw/longjmp on occation.
929 *
930 * @note AMD64 doesn't have that many non-volatile registers and does sport
931 * 32-bit address displacments, so we don't need pCtx.
932 *
933 * On ARM64 pCtx allows us to directly address the whole register
934 * context without requiring a separate indexing register holding the
935 * offset. This saves an instruction loading the offset for each guest
936 * CPU context access, at the cost of a non-volatile register.
937 * Fortunately, ARM64 has quite a lot more registers.
938 */
939typedef
940#ifdef RT_ARCH_AMD64
941int FNIEMTBNATIVE(PVMCPUCC pVCpu)
942#else
943int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
944#endif
945#if RT_CPLUSPLUS_PREREQ(201700)
946 IEM_NOEXCEPT_MAY_LONGJMP
947#endif
948 ;
949/** Pointer to a native IEM TB entry point function.
950 * This will throw/longjmp on occation. */
951typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
952
953
954/**
955 * Translation block debug info entry type.
956 */
957typedef enum IEMTBDBGENTRYTYPE
958{
959 kIemTbDbgEntryType_Invalid = 0,
960 /** The entry is for marking a native code position.
961 * Entries following this all apply to this position. */
962 kIemTbDbgEntryType_NativeOffset,
963 /** The entry is for a new guest instruction. */
964 kIemTbDbgEntryType_GuestInstruction,
965 /** Marks the start of a threaded call. */
966 kIemTbDbgEntryType_ThreadedCall,
967 /** Marks the location of a label. */
968 kIemTbDbgEntryType_Label,
969 /** Info about a host register shadowing a guest register. */
970 kIemTbDbgEntryType_GuestRegShadowing,
971#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
972 /** Info about a host SIMD register shadowing a guest SIMD register. */
973 kIemTbDbgEntryType_GuestSimdRegShadowing,
974#endif
975#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
976 /** Info about a delayed RIP update. */
977 kIemTbDbgEntryType_DelayedPcUpdate,
978#endif
979 kIemTbDbgEntryType_End
980} IEMTBDBGENTRYTYPE;
981
982/**
983 * Translation block debug info entry.
984 */
985typedef union IEMTBDBGENTRY
986{
987 /** Plain 32-bit view. */
988 uint32_t u;
989
990 /** Generic view for getting at the type field. */
991 struct
992 {
993 /** IEMTBDBGENTRYTYPE */
994 uint32_t uType : 4;
995 uint32_t uTypeSpecific : 28;
996 } Gen;
997
998 struct
999 {
1000 /** kIemTbDbgEntryType_ThreadedCall1. */
1001 uint32_t uType : 4;
1002 /** Native code offset. */
1003 uint32_t offNative : 28;
1004 } NativeOffset;
1005
1006 struct
1007 {
1008 /** kIemTbDbgEntryType_GuestInstruction. */
1009 uint32_t uType : 4;
1010 uint32_t uUnused : 4;
1011 /** The IEM_F_XXX flags. */
1012 uint32_t fExec : 24;
1013 } GuestInstruction;
1014
1015 struct
1016 {
1017 /* kIemTbDbgEntryType_ThreadedCall. */
1018 uint32_t uType : 4;
1019 /** Set if the call was recompiled to native code, clear if just calling
1020 * threaded function. */
1021 uint32_t fRecompiled : 1;
1022 uint32_t uUnused : 11;
1023 /** The threaded call number (IEMTHREADEDFUNCS). */
1024 uint32_t enmCall : 16;
1025 } ThreadedCall;
1026
1027 struct
1028 {
1029 /* kIemTbDbgEntryType_Label. */
1030 uint32_t uType : 4;
1031 uint32_t uUnused : 4;
1032 /** The label type (IEMNATIVELABELTYPE). */
1033 uint32_t enmLabel : 8;
1034 /** The label data. */
1035 uint32_t uData : 16;
1036 } Label;
1037
1038 struct
1039 {
1040 /* kIemTbDbgEntryType_GuestRegShadowing. */
1041 uint32_t uType : 4;
1042 uint32_t uUnused : 4;
1043 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1044 uint32_t idxGstReg : 8;
1045 /** The host new register number, UINT8_MAX if dropped. */
1046 uint32_t idxHstReg : 8;
1047 /** The previous host register number, UINT8_MAX if new. */
1048 uint32_t idxHstRegPrev : 8;
1049 } GuestRegShadowing;
1050
1051#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1052 struct
1053 {
1054 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1055 uint32_t uType : 4;
1056 uint32_t uUnused : 4;
1057 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1058 uint32_t idxGstSimdReg : 8;
1059 /** The host new register number, UINT8_MAX if dropped. */
1060 uint32_t idxHstSimdReg : 8;
1061 /** The previous host register number, UINT8_MAX if new. */
1062 uint32_t idxHstSimdRegPrev : 8;
1063 } GuestSimdRegShadowing;
1064#endif
1065
1066#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1067 struct
1068 {
1069 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1070 uint32_t uType : 4;
1071 /* The instruction offset added to the program counter. */
1072 uint32_t offPc : 14;
1073 /** Number of instructions skipped. */
1074 uint32_t cInstrSkipped : 14;
1075 } DelayedPcUpdate;
1076#endif
1077
1078} IEMTBDBGENTRY;
1079AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1080/** Pointer to a debug info entry. */
1081typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1082/** Pointer to a const debug info entry. */
1083typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1084
1085/**
1086 * Translation block debug info.
1087 */
1088typedef struct IEMTBDBG
1089{
1090 /** Number of entries in aEntries. */
1091 uint32_t cEntries;
1092 /** Debug info entries. */
1093 RT_FLEXIBLE_ARRAY_EXTENSION
1094 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1095} IEMTBDBG;
1096/** Pointer to TB debug info. */
1097typedef IEMTBDBG *PIEMTBDBG;
1098/** Pointer to const TB debug info. */
1099typedef IEMTBDBG const *PCIEMTBDBG;
1100
1101
1102/**
1103 * Translation block.
1104 *
1105 * The current plan is to just keep TBs and associated lookup hash table private
1106 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1107 * avoids using expensive atomic primitives for updating lists and stuff.
1108 */
1109#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1110typedef struct IEMTB
1111{
1112 /** Next block with the same hash table entry. */
1113 struct IEMTB *pNext;
1114 /** Usage counter. */
1115 uint32_t cUsed;
1116 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1117 uint32_t msLastUsed;
1118
1119 /** @name What uniquely identifies the block.
1120 * @{ */
1121 RTGCPHYS GCPhysPc;
1122 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1123 uint32_t fFlags;
1124 union
1125 {
1126 struct
1127 {
1128 /**< Relevant CS X86DESCATTR_XXX bits. */
1129 uint16_t fAttr;
1130 } x86;
1131 };
1132 /** @} */
1133
1134 /** Number of opcode ranges. */
1135 uint8_t cRanges;
1136 /** Statistics: Number of instructions in the block. */
1137 uint8_t cInstructions;
1138
1139 /** Type specific info. */
1140 union
1141 {
1142 struct
1143 {
1144 /** The call sequence table. */
1145 PIEMTHRDEDCALLENTRY paCalls;
1146 /** Number of calls in paCalls. */
1147 uint16_t cCalls;
1148 /** Number of calls allocated. */
1149 uint16_t cAllocated;
1150 } Thrd;
1151 struct
1152 {
1153 /** The native instructions (PFNIEMTBNATIVE). */
1154 PIEMNATIVEINSTR paInstructions;
1155 /** Number of instructions pointed to by paInstructions. */
1156 uint32_t cInstructions;
1157 } Native;
1158 /** Generic view for zeroing when freeing. */
1159 struct
1160 {
1161 uintptr_t uPtr;
1162 uint32_t uData;
1163 } Gen;
1164 };
1165
1166 /** The allocation chunk this TB belongs to. */
1167 uint8_t idxAllocChunk;
1168 uint8_t bUnused;
1169
1170 /** Number of bytes of opcodes stored in pabOpcodes.
1171 * @todo this field isn't really needed, aRanges keeps the actual info. */
1172 uint16_t cbOpcodes;
1173 /** Pointer to the opcode bytes this block was recompiled from. */
1174 uint8_t *pabOpcodes;
1175
1176 /** Debug info if enabled.
1177 * This is only generated by the native recompiler. */
1178 PIEMTBDBG pDbgInfo;
1179
1180 /* --- 64 byte cache line end --- */
1181
1182 /** Opcode ranges.
1183 *
1184 * The opcode checkers and maybe TLB loading functions will use this to figure
1185 * out what to do. The parameter will specify an entry and the opcode offset to
1186 * start at and the minimum number of bytes to verify (instruction length).
1187 *
1188 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1189 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1190 * code TLB (must have a valid entry for that address) and scan the ranges to
1191 * locate the corresponding opcodes. Probably.
1192 */
1193 struct IEMTBOPCODERANGE
1194 {
1195 /** Offset within pabOpcodes. */
1196 uint16_t offOpcodes;
1197 /** Number of bytes. */
1198 uint16_t cbOpcodes;
1199 /** The page offset. */
1200 RT_GCC_EXTENSION
1201 uint16_t offPhysPage : 12;
1202 /** Unused bits. */
1203 RT_GCC_EXTENSION
1204 uint16_t u2Unused : 2;
1205 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1206 RT_GCC_EXTENSION
1207 uint16_t idxPhysPage : 2;
1208 } aRanges[8];
1209
1210 /** Physical pages that this TB covers.
1211 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1212 RTGCPHYS aGCPhysPages[2];
1213} IEMTB;
1214#pragma pack()
1215AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1216AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1217AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1218AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1219AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1220AssertCompileMemberOffset(IEMTB, aRanges, 64);
1221AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1222#if 1
1223AssertCompileSize(IEMTB, 128);
1224# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1225#else
1226AssertCompileSize(IEMTB, 168);
1227# undef IEMTB_SIZE_IS_POWER_OF_TWO
1228#endif
1229
1230/** Pointer to a translation block. */
1231typedef IEMTB *PIEMTB;
1232/** Pointer to a const translation block. */
1233typedef IEMTB const *PCIEMTB;
1234
1235/**
1236 * A chunk of memory in the TB allocator.
1237 */
1238typedef struct IEMTBCHUNK
1239{
1240 /** Pointer to the translation blocks in this chunk. */
1241 PIEMTB paTbs;
1242#ifdef IN_RING0
1243 /** Allocation handle. */
1244 RTR0MEMOBJ hMemObj;
1245#endif
1246} IEMTBCHUNK;
1247
1248/**
1249 * A per-CPU translation block allocator.
1250 *
1251 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1252 * the length of the collision list, and of course also for cache line alignment
1253 * reasons, the TBs must be allocated with at least 64-byte alignment.
1254 * Memory is there therefore allocated using one of the page aligned allocators.
1255 *
1256 *
1257 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1258 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1259 * that enables us to quickly calculate the allocation bitmap position when
1260 * freeing the translation block.
1261 */
1262typedef struct IEMTBALLOCATOR
1263{
1264 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1265 uint32_t uMagic;
1266
1267#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1268 /** Mask corresponding to cTbsPerChunk - 1. */
1269 uint32_t fChunkMask;
1270 /** Shift count corresponding to cTbsPerChunk. */
1271 uint8_t cChunkShift;
1272#else
1273 uint32_t uUnused;
1274 uint8_t bUnused;
1275#endif
1276 /** Number of chunks we're allowed to allocate. */
1277 uint8_t cMaxChunks;
1278 /** Number of chunks currently populated. */
1279 uint16_t cAllocatedChunks;
1280 /** Number of translation blocks per chunk. */
1281 uint32_t cTbsPerChunk;
1282 /** Chunk size. */
1283 uint32_t cbPerChunk;
1284
1285 /** The maximum number of TBs. */
1286 uint32_t cMaxTbs;
1287 /** Total number of TBs in the populated chunks.
1288 * (cAllocatedChunks * cTbsPerChunk) */
1289 uint32_t cTotalTbs;
1290 /** The current number of TBs in use.
1291 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1292 uint32_t cInUseTbs;
1293 /** Statistics: Number of the cInUseTbs that are native ones. */
1294 uint32_t cNativeTbs;
1295 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1296 uint32_t cThreadedTbs;
1297
1298 /** Where to start pruning TBs from when we're out.
1299 * See iemTbAllocatorAllocSlow for details. */
1300 uint32_t iPruneFrom;
1301 /** Hint about which bit to start scanning the bitmap from. */
1302 uint32_t iStartHint;
1303 /** Where to start pruning native TBs from when we're out of executable memory.
1304 * See iemTbAllocatorFreeupNativeSpace for details. */
1305 uint32_t iPruneNativeFrom;
1306 uint32_t uPadding;
1307
1308 /** Statistics: Number of TB allocation calls. */
1309 STAMCOUNTER StatAllocs;
1310 /** Statistics: Number of TB free calls. */
1311 STAMCOUNTER StatFrees;
1312 /** Statistics: Time spend pruning. */
1313 STAMPROFILE StatPrune;
1314 /** Statistics: Time spend pruning native TBs. */
1315 STAMPROFILE StatPruneNative;
1316
1317 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1318 PIEMTB pDelayedFreeHead;
1319
1320 /** Allocation chunks. */
1321 IEMTBCHUNK aChunks[256];
1322
1323 /** Allocation bitmap for all possible chunk chunks. */
1324 RT_FLEXIBLE_ARRAY_EXTENSION
1325 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1326} IEMTBALLOCATOR;
1327/** Pointer to a TB allocator. */
1328typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1329
1330/** Magic value for the TB allocator (Emmet Harley Cohen). */
1331#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1332
1333
1334/**
1335 * A per-CPU translation block cache (hash table).
1336 *
1337 * The hash table is allocated once during IEM initialization and size double
1338 * the max TB count, rounded up to the nearest power of two (so we can use and
1339 * AND mask rather than a rest division when hashing).
1340 */
1341typedef struct IEMTBCACHE
1342{
1343 /** Magic value (IEMTBCACHE_MAGIC). */
1344 uint32_t uMagic;
1345 /** Size of the hash table. This is a power of two. */
1346 uint32_t cHash;
1347 /** The mask corresponding to cHash. */
1348 uint32_t uHashMask;
1349 uint32_t uPadding;
1350
1351 /** @name Statistics
1352 * @{ */
1353 /** Number of collisions ever. */
1354 STAMCOUNTER cCollisions;
1355
1356 /** Statistics: Number of TB lookup misses. */
1357 STAMCOUNTER cLookupMisses;
1358 /** Statistics: Number of TB lookup hits (debug only). */
1359 STAMCOUNTER cLookupHits;
1360 STAMCOUNTER auPadding2[3];
1361 /** Statistics: Collision list length pruning. */
1362 STAMPROFILE StatPrune;
1363 /** @} */
1364
1365 /** The hash table itself.
1366 * @note The lower 6 bits of the pointer is used for keeping the collision
1367 * list length, so we can take action when it grows too long.
1368 * This works because TBs are allocated using a 64 byte (or
1369 * higher) alignment from page aligned chunks of memory, so the lower
1370 * 6 bits of the address will always be zero.
1371 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1372 */
1373 RT_FLEXIBLE_ARRAY_EXTENSION
1374 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1375} IEMTBCACHE;
1376/** Pointer to a per-CPU translation block cahce. */
1377typedef IEMTBCACHE *PIEMTBCACHE;
1378
1379/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1380#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1381
1382/** The collision count mask for IEMTBCACHE::apHash entries. */
1383#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1384/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1385#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1386/** Combine a TB pointer and a collision list length into a value for an
1387 * IEMTBCACHE::apHash entry. */
1388#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1389/** Combine a TB pointer and a collision list length into a value for an
1390 * IEMTBCACHE::apHash entry. */
1391#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1392/** Combine a TB pointer and a collision list length into a value for an
1393 * IEMTBCACHE::apHash entry. */
1394#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1395
1396/**
1397 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1398 */
1399#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1400 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1401
1402/**
1403 * Calculates the hash table slot for a TB from physical PC address and TB
1404 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1405 */
1406#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1407 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1408
1409
1410/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1411 *
1412 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1413 *
1414 * @{ */
1415/** Value if no branching happened recently. */
1416#define IEMBRANCHED_F_NO UINT8_C(0x00)
1417/** Flag set if direct branch, clear if absolute or indirect. */
1418#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1419/** Flag set if indirect branch, clear if direct or relative. */
1420#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1421/** Flag set if relative branch, clear if absolute or indirect. */
1422#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1423/** Flag set if conditional branch, clear if unconditional. */
1424#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1425/** Flag set if it's a far branch. */
1426#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1427/** Flag set if the stack pointer is modified. */
1428#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1429/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1430#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1431/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1432#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1433/** @} */
1434
1435
1436/**
1437 * The per-CPU IEM state.
1438 */
1439typedef struct IEMCPU
1440{
1441 /** Info status code that needs to be propagated to the IEM caller.
1442 * This cannot be passed internally, as it would complicate all success
1443 * checks within the interpreter making the code larger and almost impossible
1444 * to get right. Instead, we'll store status codes to pass on here. Each
1445 * source of these codes will perform appropriate sanity checks. */
1446 int32_t rcPassUp; /* 0x00 */
1447 /** Execution flag, IEM_F_XXX. */
1448 uint32_t fExec; /* 0x04 */
1449
1450 /** @name Decoder state.
1451 * @{ */
1452#ifdef IEM_WITH_CODE_TLB
1453 /** The offset of the next instruction byte. */
1454 uint32_t offInstrNextByte; /* 0x08 */
1455 /** The number of bytes available at pbInstrBuf for the current instruction.
1456 * This takes the max opcode length into account so that doesn't need to be
1457 * checked separately. */
1458 uint32_t cbInstrBuf; /* 0x0c */
1459 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1460 * This can be NULL if the page isn't mappable for some reason, in which
1461 * case we'll do fallback stuff.
1462 *
1463 * If we're executing an instruction from a user specified buffer,
1464 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1465 * aligned pointer but pointer to the user data.
1466 *
1467 * For instructions crossing pages, this will start on the first page and be
1468 * advanced to the next page by the time we've decoded the instruction. This
1469 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1470 */
1471 uint8_t const *pbInstrBuf; /* 0x10 */
1472# if ARCH_BITS == 32
1473 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1474# endif
1475 /** The program counter corresponding to pbInstrBuf.
1476 * This is set to a non-canonical address when we need to invalidate it. */
1477 uint64_t uInstrBufPc; /* 0x18 */
1478 /** The guest physical address corresponding to pbInstrBuf. */
1479 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1480 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1481 * This takes the CS segment limit into account.
1482 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1483 uint16_t cbInstrBufTotal; /* 0x28 */
1484# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1485 /** Offset into pbInstrBuf of the first byte of the current instruction.
1486 * Can be negative to efficiently handle cross page instructions. */
1487 int16_t offCurInstrStart; /* 0x2a */
1488
1489 /** The prefix mask (IEM_OP_PRF_XXX). */
1490 uint32_t fPrefixes; /* 0x2c */
1491 /** The extra REX ModR/M register field bit (REX.R << 3). */
1492 uint8_t uRexReg; /* 0x30 */
1493 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1494 * (REX.B << 3). */
1495 uint8_t uRexB; /* 0x31 */
1496 /** The extra REX SIB index field bit (REX.X << 3). */
1497 uint8_t uRexIndex; /* 0x32 */
1498
1499 /** The effective segment register (X86_SREG_XXX). */
1500 uint8_t iEffSeg; /* 0x33 */
1501
1502 /** The offset of the ModR/M byte relative to the start of the instruction. */
1503 uint8_t offModRm; /* 0x34 */
1504
1505# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1506 /** The current offset into abOpcode. */
1507 uint8_t offOpcode; /* 0x35 */
1508# else
1509 uint8_t bUnused; /* 0x35 */
1510# endif
1511# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1512 uint8_t abOpaqueDecoderPart1[0x36 - 0x2a];
1513# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1514
1515#else /* !IEM_WITH_CODE_TLB */
1516# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1517 /** The size of what has currently been fetched into abOpcode. */
1518 uint8_t cbOpcode; /* 0x08 */
1519 /** The current offset into abOpcode. */
1520 uint8_t offOpcode; /* 0x09 */
1521 /** The offset of the ModR/M byte relative to the start of the instruction. */
1522 uint8_t offModRm; /* 0x0a */
1523
1524 /** The effective segment register (X86_SREG_XXX). */
1525 uint8_t iEffSeg; /* 0x0b */
1526
1527 /** The prefix mask (IEM_OP_PRF_XXX). */
1528 uint32_t fPrefixes; /* 0x0c */
1529 /** The extra REX ModR/M register field bit (REX.R << 3). */
1530 uint8_t uRexReg; /* 0x10 */
1531 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1532 * (REX.B << 3). */
1533 uint8_t uRexB; /* 0x11 */
1534 /** The extra REX SIB index field bit (REX.X << 3). */
1535 uint8_t uRexIndex; /* 0x12 */
1536
1537# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1538 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1539# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1540#endif /* !IEM_WITH_CODE_TLB */
1541
1542#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1543 /** The effective operand mode. */
1544 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1545 /** The default addressing mode. */
1546 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1547 /** The effective addressing mode. */
1548 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1549 /** The default operand mode. */
1550 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1551
1552 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1553 uint8_t idxPrefix; /* 0x3a, 0x17 */
1554 /** 3rd VEX/EVEX/XOP register.
1555 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1556 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1557 /** The VEX/EVEX/XOP length field. */
1558 uint8_t uVexLength; /* 0x3c, 0x19 */
1559 /** Additional EVEX stuff. */
1560 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1561
1562# ifndef IEM_WITH_CODE_TLB
1563 /** Explicit alignment padding. */
1564 uint8_t abAlignment2a[1]; /* 0x1b */
1565# endif
1566 /** The FPU opcode (FOP). */
1567 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1568# ifndef IEM_WITH_CODE_TLB
1569 /** Explicit alignment padding. */
1570 uint8_t abAlignment2b[2]; /* 0x1e */
1571# endif
1572
1573 /** The opcode bytes. */
1574 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1575 /** Explicit alignment padding. */
1576# ifdef IEM_WITH_CODE_TLB
1577 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1578# else
1579 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1580# endif
1581
1582#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1583# ifdef IEM_WITH_CODE_TLB
1584 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1585# else
1586 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1587# endif
1588#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1589 /** @} */
1590
1591
1592 /** The number of active guest memory mappings. */
1593 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1594
1595 /** Records for tracking guest memory mappings. */
1596 struct
1597 {
1598 /** The address of the mapped bytes. */
1599 R3R0PTRTYPE(void *) pv;
1600 /** The access flags (IEM_ACCESS_XXX).
1601 * IEM_ACCESS_INVALID if the entry is unused. */
1602 uint32_t fAccess;
1603#if HC_ARCH_BITS == 64
1604 uint32_t u32Alignment4; /**< Alignment padding. */
1605#endif
1606 } aMemMappings[3]; /* 0x50 LB 0x30 */
1607
1608 /** Locking records for the mapped memory. */
1609 union
1610 {
1611 PGMPAGEMAPLOCK Lock;
1612 uint64_t au64Padding[2];
1613 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1614
1615 /** Bounce buffer info.
1616 * This runs in parallel to aMemMappings. */
1617 struct
1618 {
1619 /** The physical address of the first byte. */
1620 RTGCPHYS GCPhysFirst;
1621 /** The physical address of the second page. */
1622 RTGCPHYS GCPhysSecond;
1623 /** The number of bytes in the first page. */
1624 uint16_t cbFirst;
1625 /** The number of bytes in the second page. */
1626 uint16_t cbSecond;
1627 /** Whether it's unassigned memory. */
1628 bool fUnassigned;
1629 /** Explicit alignment padding. */
1630 bool afAlignment5[3];
1631 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1632
1633 /** The flags of the current exception / interrupt. */
1634 uint32_t fCurXcpt; /* 0xf8 */
1635 /** The current exception / interrupt. */
1636 uint8_t uCurXcpt; /* 0xfc */
1637 /** Exception / interrupt recursion depth. */
1638 int8_t cXcptRecursions; /* 0xfb */
1639
1640 /** The next unused mapping index.
1641 * @todo try find room for this up with cActiveMappings. */
1642 uint8_t iNextMapping; /* 0xfd */
1643 uint8_t abAlignment7[1];
1644
1645 /** Bounce buffer storage.
1646 * This runs in parallel to aMemMappings and aMemBbMappings. */
1647 struct
1648 {
1649 uint8_t ab[512];
1650 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1651
1652
1653 /** Pointer set jump buffer - ring-3 context. */
1654 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1655 /** Pointer set jump buffer - ring-0 context. */
1656 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1657
1658 /** @todo Should move this near @a fCurXcpt later. */
1659 /** The CR2 for the current exception / interrupt. */
1660 uint64_t uCurXcptCr2;
1661 /** The error code for the current exception / interrupt. */
1662 uint32_t uCurXcptErr;
1663
1664 /** @name Statistics
1665 * @{ */
1666 /** The number of instructions we've executed. */
1667 uint32_t cInstructions;
1668 /** The number of potential exits. */
1669 uint32_t cPotentialExits;
1670 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1671 * This may contain uncommitted writes. */
1672 uint32_t cbWritten;
1673 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1674 uint32_t cRetInstrNotImplemented;
1675 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1676 uint32_t cRetAspectNotImplemented;
1677 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1678 uint32_t cRetInfStatuses;
1679 /** Counts other error statuses returned. */
1680 uint32_t cRetErrStatuses;
1681 /** Number of times rcPassUp has been used. */
1682 uint32_t cRetPassUpStatus;
1683 /** Number of times RZ left with instruction commit pending for ring-3. */
1684 uint32_t cPendingCommit;
1685 /** Number of misaligned (host sense) atomic instruction accesses. */
1686 uint32_t cMisalignedAtomics;
1687 /** Number of long jumps. */
1688 uint32_t cLongJumps;
1689 /** @} */
1690
1691 /** @name Target CPU information.
1692 * @{ */
1693#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1694 /** The target CPU. */
1695 uint8_t uTargetCpu;
1696#else
1697 uint8_t bTargetCpuPadding;
1698#endif
1699 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1700 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1701 * native host support and the 2nd for when there is.
1702 *
1703 * The two values are typically indexed by a g_CpumHostFeatures bit.
1704 *
1705 * This is for instance used for the BSF & BSR instructions where AMD and
1706 * Intel CPUs produce different EFLAGS. */
1707 uint8_t aidxTargetCpuEflFlavour[2];
1708
1709 /** The CPU vendor. */
1710 CPUMCPUVENDOR enmCpuVendor;
1711 /** @} */
1712
1713 /** @name Host CPU information.
1714 * @{ */
1715 /** The CPU vendor. */
1716 CPUMCPUVENDOR enmHostCpuVendor;
1717 /** @} */
1718
1719 /** Counts RDMSR \#GP(0) LogRel(). */
1720 uint8_t cLogRelRdMsr;
1721 /** Counts WRMSR \#GP(0) LogRel(). */
1722 uint8_t cLogRelWrMsr;
1723 /** Alignment padding. */
1724 uint8_t abAlignment9[42];
1725
1726 /** @name Recompilation
1727 * @{ */
1728 /** Pointer to the current translation block.
1729 * This can either be one being executed or one being compiled. */
1730 R3PTRTYPE(PIEMTB) pCurTbR3;
1731#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1732 /** Frame pointer for the last native TB to execute. */
1733 R3PTRTYPE(void *) pvTbFramePointerR3;
1734#else
1735 R3PTRTYPE(void *) pvUnusedR3;
1736#endif
1737 /** Fixed TB used for threaded recompilation.
1738 * This is allocated once with maxed-out sizes and re-used afterwards. */
1739 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1740 /** Pointer to the ring-3 TB cache for this EMT. */
1741 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1742 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1743 * The TBs are based on physical addresses, so this is needed to correleated
1744 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1745 uint64_t uCurTbStartPc;
1746 /** Number of threaded TBs executed. */
1747 uint64_t cTbExecThreaded;
1748 /** Number of native TBs executed. */
1749 uint64_t cTbExecNative;
1750 /** Whether we need to check the opcode bytes for the current instruction.
1751 * This is set by a previous instruction if it modified memory or similar. */
1752 bool fTbCheckOpcodes;
1753 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1754 uint8_t fTbBranched;
1755 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1756 bool fTbCrossedPage;
1757 /** Whether to end the current TB. */
1758 bool fEndTb;
1759 /** Number of instructions before we need emit an IRQ check call again.
1760 * This helps making sure we don't execute too long w/o checking for
1761 * interrupts and immediately following instructions that may enable
1762 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1763 * required to make sure we check following the next instruction as well, see
1764 * fTbCurInstrIsSti. */
1765 uint8_t cInstrTillIrqCheck;
1766 /** Indicates that the current instruction is an STI. This is set by the
1767 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1768 bool fTbCurInstrIsSti;
1769 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1770 uint16_t cbOpcodesAllocated;
1771 /** The current instruction number in a native TB.
1772 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1773 * and will be picked up by the TB execution loop. Only used when
1774 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1775 uint8_t idxTbCurInstr;
1776 /** Spaced reserved for recompiler data / alignment. */
1777 bool afRecompilerStuff1[3];
1778 /** The virtual sync time at the last timer poll call. */
1779 uint32_t msRecompilerPollNow;
1780 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1781 uint32_t fTbCurInstr;
1782 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1783 uint32_t fTbPrevInstr;
1784 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1785 RTGCPHYS GCPhysInstrBufPrev;
1786 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1787 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1788 * whether a branch instruction jumps to a new page or stays within the
1789 * current one. */
1790 RTGCPHYS GCPhysTbBranchSrcBufUnused;
1791 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1792 uint64_t GCVirtTbBranchSrcBufUnused;
1793 /** Pointer to the ring-3 TB allocator for this EMT. */
1794 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1795 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1796 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1797 /** Pointer to the native recompiler state for ring-3. */
1798 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1799
1800 /** Statistics: Times TB execution was broken off before reaching the end. */
1801 STAMCOUNTER StatTbExecBreaks;
1802 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1803 STAMCOUNTER StatCheckIrqBreaks;
1804 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1805 STAMCOUNTER StatCheckModeBreaks;
1806 /** Statistics: Times a post jump target check missed and had to find new TB. */
1807 STAMCOUNTER StatCheckBranchMisses;
1808 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1809 STAMCOUNTER StatCheckNeedCsLimChecking;
1810 /** Native TB statistics: Number of fully recompiled TBs. */
1811 STAMCOUNTER StatNativeFullyRecompiledTbs;
1812 /** Threaded TB statistics: Number of instructions per TB. */
1813 STAMPROFILE StatTbThreadedInstr;
1814 /** Threaded TB statistics: Number of calls per TB. */
1815 STAMPROFILE StatTbThreadedCalls;
1816 /** Native TB statistics: Native code size per TB. */
1817 STAMPROFILE StatTbNativeCode;
1818 /** Native TB statistics: Profiling native recompilation. */
1819 STAMPROFILE StatNativeRecompilation;
1820 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1821 STAMPROFILE StatNativeCallsRecompiled;
1822 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1823 STAMPROFILE StatNativeCallsThreaded;
1824 /** Native recompiled execution: TLB hits for data fetches. */
1825 STAMCOUNTER StatNativeTlbHitsForFetch;
1826 /** Native recompiled execution: TLB hits for data stores. */
1827 STAMCOUNTER StatNativeTlbHitsForStore;
1828 /** Native recompiled execution: TLB hits for stack accesses. */
1829 STAMCOUNTER StatNativeTlbHitsForStack;
1830 /** Native recompiled execution: TLB hits for mapped accesses. */
1831 STAMCOUNTER StatNativeTlbHitsForMapped;
1832 /** Native recompiled execution: Code TLB misses for new page. */
1833 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
1834 /** Native recompiled execution: Code TLB hits for new page. */
1835 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
1836 /** Native recompiled execution: Code TLB misses for new page with offset. */
1837 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
1838 /** Native recompiled execution: Code TLB hits for new page with offset. */
1839 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
1840
1841 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
1842 STAMCOUNTER StatNativeRegFindFree;
1843 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
1844 * to free a variable. */
1845 STAMCOUNTER StatNativeRegFindFreeVar;
1846 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
1847 * not need to free any variables. */
1848 STAMCOUNTER StatNativeRegFindFreeNoVar;
1849 /** Native recompiler: Liveness info freed shadowed guest registers in
1850 * iemNativeRegAllocFindFree. */
1851 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
1852 /** Native recompiler: Liveness info helped with the allocation in
1853 * iemNativeRegAllocFindFree. */
1854 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
1855
1856 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
1857 STAMCOUNTER StatNativeLivenessEflCfSkippable;
1858 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
1859 STAMCOUNTER StatNativeLivenessEflPfSkippable;
1860 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
1861 STAMCOUNTER StatNativeLivenessEflAfSkippable;
1862 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
1863 STAMCOUNTER StatNativeLivenessEflZfSkippable;
1864 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
1865 STAMCOUNTER StatNativeLivenessEflSfSkippable;
1866 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
1867 STAMCOUNTER StatNativeLivenessEflOfSkippable;
1868 /** Native recompiler: Number of required EFLAGS.CF updates. */
1869 STAMCOUNTER StatNativeLivenessEflCfRequired;
1870 /** Native recompiler: Number of required EFLAGS.PF updates. */
1871 STAMCOUNTER StatNativeLivenessEflPfRequired;
1872 /** Native recompiler: Number of required EFLAGS.AF updates. */
1873 STAMCOUNTER StatNativeLivenessEflAfRequired;
1874 /** Native recompiler: Number of required EFLAGS.ZF updates. */
1875 STAMCOUNTER StatNativeLivenessEflZfRequired;
1876 /** Native recompiler: Number of required EFLAGS.SF updates. */
1877 STAMCOUNTER StatNativeLivenessEflSfRequired;
1878 /** Native recompiler: Number of required EFLAGS.OF updates. */
1879 STAMCOUNTER StatNativeLivenessEflOfRequired;
1880 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
1881 STAMCOUNTER StatNativeLivenessEflCfDelayable;
1882 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
1883 STAMCOUNTER StatNativeLivenessEflPfDelayable;
1884 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
1885 STAMCOUNTER StatNativeLivenessEflAfDelayable;
1886 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
1887 STAMCOUNTER StatNativeLivenessEflZfDelayable;
1888 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
1889 STAMCOUNTER StatNativeLivenessEflSfDelayable;
1890 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
1891 STAMCOUNTER StatNativeLivenessEflOfDelayable;
1892
1893 /** Native recompiler: Number of potential PC updates in total. */
1894 STAMCOUNTER StatNativePcUpdateTotal;
1895 /** Native recompiler: Number of PC updates which could be delayed. */
1896 STAMCOUNTER StatNativePcUpdateDelayed;
1897
1898
1899 uint64_t u64Padding;
1900 /** @} */
1901
1902 /** Data TLB.
1903 * @remarks Must be 64-byte aligned. */
1904 IEMTLB DataTlb;
1905 /** Instruction TLB.
1906 * @remarks Must be 64-byte aligned. */
1907 IEMTLB CodeTlb;
1908
1909 /** Exception statistics. */
1910 STAMCOUNTER aStatXcpts[32];
1911 /** Interrupt statistics. */
1912 uint32_t aStatInts[256];
1913
1914#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1915 /** Instruction statistics for ring-0/raw-mode. */
1916 IEMINSTRSTATS StatsRZ;
1917 /** Instruction statistics for ring-3. */
1918 IEMINSTRSTATS StatsR3;
1919# ifdef VBOX_WITH_IEM_RECOMPILER
1920 /** Statistics per threaded function call.
1921 * Updated by both the threaded and native recompilers. */
1922 uint32_t acThreadedFuncStats[0x5000 /*20480*/];
1923# endif
1924#endif
1925} IEMCPU;
1926AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1927AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1928AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1929AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1930AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1931AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1932
1933/** Pointer to the per-CPU IEM state. */
1934typedef IEMCPU *PIEMCPU;
1935/** Pointer to the const per-CPU IEM state. */
1936typedef IEMCPU const *PCIEMCPU;
1937
1938
1939/** @def IEM_GET_CTX
1940 * Gets the guest CPU context for the calling EMT.
1941 * @returns PCPUMCTX
1942 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1943 */
1944#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1945
1946/** @def IEM_CTX_ASSERT
1947 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1948 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1949 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1950 */
1951#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1952 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1953 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1954 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1955
1956/** @def IEM_CTX_IMPORT_RET
1957 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1958 *
1959 * Will call the keep to import the bits as needed.
1960 *
1961 * Returns on import failure.
1962 *
1963 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1964 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1965 */
1966#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1967 do { \
1968 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1969 { /* likely */ } \
1970 else \
1971 { \
1972 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1973 AssertRCReturn(rcCtxImport, rcCtxImport); \
1974 } \
1975 } while (0)
1976
1977/** @def IEM_CTX_IMPORT_NORET
1978 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1979 *
1980 * Will call the keep to import the bits as needed.
1981 *
1982 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1983 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1984 */
1985#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1986 do { \
1987 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1988 { /* likely */ } \
1989 else \
1990 { \
1991 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1992 AssertLogRelRC(rcCtxImport); \
1993 } \
1994 } while (0)
1995
1996/** @def IEM_CTX_IMPORT_JMP
1997 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1998 *
1999 * Will call the keep to import the bits as needed.
2000 *
2001 * Jumps on import failure.
2002 *
2003 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2004 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2005 */
2006#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2007 do { \
2008 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2009 { /* likely */ } \
2010 else \
2011 { \
2012 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2013 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2014 } \
2015 } while (0)
2016
2017
2018
2019/** @def IEM_GET_TARGET_CPU
2020 * Gets the current IEMTARGETCPU value.
2021 * @returns IEMTARGETCPU value.
2022 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2023 */
2024#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2025# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2026#else
2027# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2028#endif
2029
2030/** @def IEM_GET_INSTR_LEN
2031 * Gets the instruction length. */
2032#ifdef IEM_WITH_CODE_TLB
2033# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2034#else
2035# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2036#endif
2037
2038/** @def IEM_TRY_SETJMP
2039 * Wrapper around setjmp / try, hiding all the ugly differences.
2040 *
2041 * @note Use with extreme care as this is a fragile macro.
2042 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2043 * @param a_rcTarget The variable that should receive the status code in case
2044 * of a longjmp/throw.
2045 */
2046/** @def IEM_TRY_SETJMP_AGAIN
2047 * For when setjmp / try is used again in the same variable scope as a previous
2048 * IEM_TRY_SETJMP invocation.
2049 */
2050/** @def IEM_CATCH_LONGJMP_BEGIN
2051 * Start wrapper for catch / setjmp-else.
2052 *
2053 * This will set up a scope.
2054 *
2055 * @note Use with extreme care as this is a fragile macro.
2056 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2057 * @param a_rcTarget The variable that should receive the status code in case
2058 * of a longjmp/throw.
2059 */
2060/** @def IEM_CATCH_LONGJMP_END
2061 * End wrapper for catch / setjmp-else.
2062 *
2063 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2064 * state.
2065 *
2066 * @note Use with extreme care as this is a fragile macro.
2067 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2068 */
2069#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2070# ifdef IEM_WITH_THROW_CATCH
2071# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2072 a_rcTarget = VINF_SUCCESS; \
2073 try
2074# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2075 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2076# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2077 catch (int rcThrown) \
2078 { \
2079 a_rcTarget = rcThrown
2080# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2081 } \
2082 ((void)0)
2083# else /* !IEM_WITH_THROW_CATCH */
2084# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2085 jmp_buf JmpBuf; \
2086 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2087 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2088 if ((rcStrict = setjmp(JmpBuf)) == 0)
2089# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2090 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2091 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2092 if ((rcStrict = setjmp(JmpBuf)) == 0)
2093# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2094 else \
2095 { \
2096 ((void)0)
2097# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2098 } \
2099 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2100# endif /* !IEM_WITH_THROW_CATCH */
2101#endif /* IEM_WITH_SETJMP */
2102
2103
2104/**
2105 * Shared per-VM IEM data.
2106 */
2107typedef struct IEM
2108{
2109 /** The VMX APIC-access page handler type. */
2110 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2111#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2112 /** Set if the CPUID host call functionality is enabled. */
2113 bool fCpuIdHostCall;
2114#endif
2115} IEM;
2116
2117
2118
2119/** @name IEM_ACCESS_XXX - Access details.
2120 * @{ */
2121#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2122#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2123#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2124#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2125#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2126#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2127#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2128#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2129#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2130#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2131/** The writes are partial, so if initialize the bounce buffer with the
2132 * orignal RAM content. */
2133#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2134/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2135#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2136/** Bounce buffer with ring-3 write pending, first page. */
2137#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2138/** Bounce buffer with ring-3 write pending, second page. */
2139#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2140/** Not locked, accessed via the TLB. */
2141#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2142/** Atomic access.
2143 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2144 * fallback for misaligned stuff. See @bugref{10547}. */
2145#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2146/** Valid bit mask. */
2147#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2148/** Shift count for the TLB flags (upper word). */
2149#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2150
2151/** Atomic read+write data alias. */
2152#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2153/** Read+write data alias. */
2154#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2155/** Write data alias. */
2156#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2157/** Read data alias. */
2158#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2159/** Instruction fetch alias. */
2160#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2161/** Stack write alias. */
2162#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2163/** Stack read alias. */
2164#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2165/** Stack read+write alias. */
2166#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2167/** Read system table alias. */
2168#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2169/** Read+write system table alias. */
2170#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2171/** @} */
2172
2173/** @name Prefix constants (IEMCPU::fPrefixes)
2174 * @{ */
2175#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2176#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2177#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2178#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2179#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2180#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2181#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2182
2183#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2184#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2185#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2186
2187#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2188#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2189#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2190
2191#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2192#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2193#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2194#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2195/** Mask with all the REX prefix flags.
2196 * This is generally for use when needing to undo the REX prefixes when they
2197 * are followed legacy prefixes and therefore does not immediately preceed
2198 * the first opcode byte.
2199 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2200#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2201
2202#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2203#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2204#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2205/** @} */
2206
2207/** @name IEMOPFORM_XXX - Opcode forms
2208 * @note These are ORed together with IEMOPHINT_XXX.
2209 * @{ */
2210/** ModR/M: reg, r/m */
2211#define IEMOPFORM_RM 0
2212/** ModR/M: reg, r/m (register) */
2213#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2214/** ModR/M: reg, r/m (memory) */
2215#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2216/** ModR/M: reg, r/m, imm */
2217#define IEMOPFORM_RMI 1
2218/** ModR/M: reg, r/m (register), imm */
2219#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2220/** ModR/M: reg, r/m (memory), imm */
2221#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2222/** ModR/M: r/m, reg */
2223#define IEMOPFORM_MR 2
2224/** ModR/M: r/m (register), reg */
2225#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2226/** ModR/M: r/m (memory), reg */
2227#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2228/** ModR/M: r/m, reg, imm */
2229#define IEMOPFORM_MRI 3
2230/** ModR/M: r/m (register), reg, imm */
2231#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2232/** ModR/M: r/m (memory), reg, imm */
2233#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2234/** ModR/M: r/m only */
2235#define IEMOPFORM_M 4
2236/** ModR/M: r/m only (register). */
2237#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2238/** ModR/M: r/m only (memory). */
2239#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2240/** ModR/M: r/m, imm */
2241#define IEMOPFORM_MI 5
2242/** ModR/M: r/m (register), imm */
2243#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2244/** ModR/M: r/m (memory), imm */
2245#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2246/** ModR/M: r/m, 1 (shift and rotate instructions) */
2247#define IEMOPFORM_M1 6
2248/** ModR/M: r/m (register), 1. */
2249#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2250/** ModR/M: r/m (memory), 1. */
2251#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2252/** ModR/M: r/m, CL (shift and rotate instructions)
2253 * @todo This should just've been a generic fixed register. But the python
2254 * code doesn't needs more convincing. */
2255#define IEMOPFORM_M_CL 7
2256/** ModR/M: r/m (register), CL. */
2257#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2258/** ModR/M: r/m (memory), CL. */
2259#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2260/** ModR/M: reg only */
2261#define IEMOPFORM_R 8
2262
2263/** VEX+ModR/M: reg, r/m */
2264#define IEMOPFORM_VEX_RM 16
2265/** VEX+ModR/M: reg, r/m (register) */
2266#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2267/** VEX+ModR/M: reg, r/m (memory) */
2268#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2269/** VEX+ModR/M: r/m, reg */
2270#define IEMOPFORM_VEX_MR 17
2271/** VEX+ModR/M: r/m (register), reg */
2272#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2273/** VEX+ModR/M: r/m (memory), reg */
2274#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2275/** VEX+ModR/M: r/m only */
2276#define IEMOPFORM_VEX_M 18
2277/** VEX+ModR/M: r/m only (register). */
2278#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2279/** VEX+ModR/M: r/m only (memory). */
2280#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2281/** VEX+ModR/M: reg only */
2282#define IEMOPFORM_VEX_R 19
2283/** VEX+ModR/M: reg, vvvv, r/m */
2284#define IEMOPFORM_VEX_RVM 20
2285/** VEX+ModR/M: reg, vvvv, r/m (register). */
2286#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2287/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2288#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2289/** VEX+ModR/M: reg, r/m, vvvv */
2290#define IEMOPFORM_VEX_RMV 21
2291/** VEX+ModR/M: reg, r/m, vvvv (register). */
2292#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2293/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2294#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2295/** VEX+ModR/M: reg, r/m, imm8 */
2296#define IEMOPFORM_VEX_RMI 22
2297/** VEX+ModR/M: reg, r/m, imm8 (register). */
2298#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2299/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2300#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2301/** VEX+ModR/M: r/m, vvvv, reg */
2302#define IEMOPFORM_VEX_MVR 23
2303/** VEX+ModR/M: r/m, vvvv, reg (register) */
2304#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2305/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2306#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2307/** VEX+ModR/M+/n: vvvv, r/m */
2308#define IEMOPFORM_VEX_VM 24
2309/** VEX+ModR/M+/n: vvvv, r/m (register) */
2310#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2311/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2312#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2313/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2314#define IEMOPFORM_VEX_VMI 25
2315/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2316#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2317/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2318#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2319
2320/** Fixed register instruction, no R/M. */
2321#define IEMOPFORM_FIXED 32
2322
2323/** The r/m is a register. */
2324#define IEMOPFORM_MOD3 RT_BIT_32(8)
2325/** The r/m is a memory access. */
2326#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2327/** @} */
2328
2329/** @name IEMOPHINT_XXX - Additional Opcode Hints
2330 * @note These are ORed together with IEMOPFORM_XXX.
2331 * @{ */
2332/** Ignores the operand size prefix (66h). */
2333#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2334/** Ignores REX.W (aka WIG). */
2335#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2336/** Both the operand size prefixes (66h + REX.W) are ignored. */
2337#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2338/** Allowed with the lock prefix. */
2339#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2340/** The VEX.L value is ignored (aka LIG). */
2341#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2342/** The VEX.L value must be zero (i.e. 128-bit width only). */
2343#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2344/** The VEX.V value must be zero. */
2345#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
2346
2347/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2348#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2349/** @} */
2350
2351/**
2352 * Possible hardware task switch sources.
2353 */
2354typedef enum IEMTASKSWITCH
2355{
2356 /** Task switch caused by an interrupt/exception. */
2357 IEMTASKSWITCH_INT_XCPT = 1,
2358 /** Task switch caused by a far CALL. */
2359 IEMTASKSWITCH_CALL,
2360 /** Task switch caused by a far JMP. */
2361 IEMTASKSWITCH_JUMP,
2362 /** Task switch caused by an IRET. */
2363 IEMTASKSWITCH_IRET
2364} IEMTASKSWITCH;
2365AssertCompileSize(IEMTASKSWITCH, 4);
2366
2367/**
2368 * Possible CrX load (write) sources.
2369 */
2370typedef enum IEMACCESSCRX
2371{
2372 /** CrX access caused by 'mov crX' instruction. */
2373 IEMACCESSCRX_MOV_CRX,
2374 /** CrX (CR0) write caused by 'lmsw' instruction. */
2375 IEMACCESSCRX_LMSW,
2376 /** CrX (CR0) write caused by 'clts' instruction. */
2377 IEMACCESSCRX_CLTS,
2378 /** CrX (CR0) read caused by 'smsw' instruction. */
2379 IEMACCESSCRX_SMSW
2380} IEMACCESSCRX;
2381
2382#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2383/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2384 *
2385 * These flags provide further context to SLAT page-walk failures that could not be
2386 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2387 *
2388 * @{
2389 */
2390/** Translating a nested-guest linear address failed accessing a nested-guest
2391 * physical address. */
2392# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2393/** Translating a nested-guest linear address failed accessing a
2394 * paging-structure entry or updating accessed/dirty bits. */
2395# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2396/** @} */
2397
2398DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2399# ifndef IN_RING3
2400DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2401# endif
2402#endif
2403
2404/**
2405 * Indicates to the verifier that the given flag set is undefined.
2406 *
2407 * Can be invoked again to add more flags.
2408 *
2409 * This is a NOOP if the verifier isn't compiled in.
2410 *
2411 * @note We're temporarily keeping this until code is converted to new
2412 * disassembler style opcode handling.
2413 */
2414#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2415
2416
2417/** @def IEM_DECL_IMPL_TYPE
2418 * For typedef'ing an instruction implementation function.
2419 *
2420 * @param a_RetType The return type.
2421 * @param a_Name The name of the type.
2422 * @param a_ArgList The argument list enclosed in parentheses.
2423 */
2424
2425/** @def IEM_DECL_IMPL_DEF
2426 * For defining an instruction implementation function.
2427 *
2428 * @param a_RetType The return type.
2429 * @param a_Name The name of the type.
2430 * @param a_ArgList The argument list enclosed in parentheses.
2431 */
2432
2433#if defined(__GNUC__) && defined(RT_ARCH_X86)
2434# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2435 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2436# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2437 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2438# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2439 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2440
2441#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2442# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2443 a_RetType (__fastcall a_Name) a_ArgList
2444# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2445 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2446# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2447 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2448
2449#elif __cplusplus >= 201700 /* P0012R1 support */
2450# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2451 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2452# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2453 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2454# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2455 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2456
2457#else
2458# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2459 a_RetType (VBOXCALL a_Name) a_ArgList
2460# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2461 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2462# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2463 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2464
2465#endif
2466
2467/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2468RT_C_DECLS_BEGIN
2469extern uint8_t const g_afParity[256];
2470RT_C_DECLS_END
2471
2472
2473/** @name Arithmetic assignment operations on bytes (binary).
2474 * @{ */
2475typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2476typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2477FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2478FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2479FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2480FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2481FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2482FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2483FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2484/** @} */
2485
2486/** @name Arithmetic assignment operations on words (binary).
2487 * @{ */
2488typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2489typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2490FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2491FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2492FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2493FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2494FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2495FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2496FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2497/** @} */
2498
2499/** @name Arithmetic assignment operations on double words (binary).
2500 * @{ */
2501typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2502typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2503FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2504FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2505FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2506FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2507FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2508FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2509FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2510FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2511FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2512FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2513/** @} */
2514
2515/** @name Arithmetic assignment operations on quad words (binary).
2516 * @{ */
2517typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2518typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2519FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2520FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2521FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2522FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2523FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2524FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2525FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2526FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2527FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2528FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2529/** @} */
2530
2531typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2532typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2533typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2534typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2535typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2536typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2537typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2538typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2539
2540/** @name Compare operations (thrown in with the binary ops).
2541 * @{ */
2542FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2543FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2544FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2545FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2546/** @} */
2547
2548/** @name Test operations (thrown in with the binary ops).
2549 * @{ */
2550FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2551FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2552FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2553FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2554/** @} */
2555
2556/** @name Bit operations operations (thrown in with the binary ops).
2557 * @{ */
2558FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2559FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2560FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2561FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2562FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2563FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2564FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2565FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2566FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2567FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2568FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2569FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2570/** @} */
2571
2572/** @name Arithmetic three operand operations on double words (binary).
2573 * @{ */
2574typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2575typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2576FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2577FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2578FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2579/** @} */
2580
2581/** @name Arithmetic three operand operations on quad words (binary).
2582 * @{ */
2583typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2584typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2585FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2586FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2587FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2588/** @} */
2589
2590/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2591 * @{ */
2592typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2593typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2594FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2595FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2596FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2597FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2598FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2599FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2600/** @} */
2601
2602/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2603 * @{ */
2604typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2605typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2606FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2607FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2608FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2609FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2610FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2611FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2612/** @} */
2613
2614/** @name MULX 32-bit and 64-bit.
2615 * @{ */
2616typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2617typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2618FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2619
2620typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2621typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2622FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2623/** @} */
2624
2625
2626/** @name Exchange memory with register operations.
2627 * @{ */
2628IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2629IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2630IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2631IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2632IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2633IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2634IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2635IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2636/** @} */
2637
2638/** @name Exchange and add operations.
2639 * @{ */
2640IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2641IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2642IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2643IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2644IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2645IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2646IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2647IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2648/** @} */
2649
2650/** @name Compare and exchange.
2651 * @{ */
2652IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2653IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2654IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2655IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2656IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2657IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2658#if ARCH_BITS == 32
2659IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2660IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2661#else
2662IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2663IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2664#endif
2665IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2666 uint32_t *pEFlags));
2667IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2668 uint32_t *pEFlags));
2669IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2670 uint32_t *pEFlags));
2671IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2672 uint32_t *pEFlags));
2673#ifndef RT_ARCH_ARM64
2674IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2675 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2676#endif
2677/** @} */
2678
2679/** @name Memory ordering
2680 * @{ */
2681typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2682typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2683IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2684IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2685IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2686#ifndef RT_ARCH_ARM64
2687IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2688#endif
2689/** @} */
2690
2691/** @name Double precision shifts
2692 * @{ */
2693typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2694typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2695typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2696typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2697typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2698typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2699FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2700FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2701FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2702FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2703FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2704FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2705/** @} */
2706
2707
2708/** @name Bit search operations (thrown in with the binary ops).
2709 * @{ */
2710FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2711FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2712FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2713FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2714FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2715FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2716FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2717FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2718FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2719FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2720FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2721FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2722FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2723FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2724FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2725/** @} */
2726
2727/** @name Signed multiplication operations (thrown in with the binary ops).
2728 * @{ */
2729FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2730FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2731FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2732/** @} */
2733
2734/** @name Arithmetic assignment operations on bytes (unary).
2735 * @{ */
2736typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2737typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2738FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2739FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2740FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2741FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2742/** @} */
2743
2744/** @name Arithmetic assignment operations on words (unary).
2745 * @{ */
2746typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2747typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2748FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2749FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2750FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2751FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2752/** @} */
2753
2754/** @name Arithmetic assignment operations on double words (unary).
2755 * @{ */
2756typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2757typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2758FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2759FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2760FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2761FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2762/** @} */
2763
2764/** @name Arithmetic assignment operations on quad words (unary).
2765 * @{ */
2766typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2767typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2768FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2769FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2770FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2771FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2772/** @} */
2773
2774
2775/** @name Shift operations on bytes (Group 2).
2776 * @{ */
2777typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2778typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2779FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2780FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2781FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2782FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2783FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2784FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2785FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2786/** @} */
2787
2788/** @name Shift operations on words (Group 2).
2789 * @{ */
2790typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2791typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2792FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2793FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2794FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2795FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2796FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2797FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2798FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2799/** @} */
2800
2801/** @name Shift operations on double words (Group 2).
2802 * @{ */
2803typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2804typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2805FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2806FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2807FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2808FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2809FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2810FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2811FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2812/** @} */
2813
2814/** @name Shift operations on words (Group 2).
2815 * @{ */
2816typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2817typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2818FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2819FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2820FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2821FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2822FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2823FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2824FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2825/** @} */
2826
2827/** @name Multiplication and division operations.
2828 * @{ */
2829typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2830typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2831FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2832FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2833FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2834FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2835
2836typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2837typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2838FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2839FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2840FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2841FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2842
2843typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2844typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2845FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2846FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2847FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2848FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2849
2850typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2851typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2852FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2853FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2854FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2855FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2856/** @} */
2857
2858/** @name Byte Swap.
2859 * @{ */
2860IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2861IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2862IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2863/** @} */
2864
2865/** @name Misc.
2866 * @{ */
2867FNIEMAIMPLBINU16 iemAImpl_arpl;
2868/** @} */
2869
2870/** @name RDRAND and RDSEED
2871 * @{ */
2872typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2873typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2874typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2875typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
2876typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
2877typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
2878
2879FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2880FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2881FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2882FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2883FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2884FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2885/** @} */
2886
2887/** @name ADOX and ADCX
2888 * @{ */
2889FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2890FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2891FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2892FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2893/** @} */
2894
2895/** @name FPU operations taking a 32-bit float argument
2896 * @{ */
2897typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2898 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2899typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2900
2901typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2902 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2903typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2904
2905FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2906FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2907FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2908FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2909FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2910FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2911FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2912
2913IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2914IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2915 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2916/** @} */
2917
2918/** @name FPU operations taking a 64-bit float argument
2919 * @{ */
2920typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2921 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2922typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2923
2924typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2925 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2926typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2927
2928FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2929FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2930FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2931FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2932FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2933FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2934FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2935
2936IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2937IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2938 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2939/** @} */
2940
2941/** @name FPU operations taking a 80-bit float argument
2942 * @{ */
2943typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2944 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2945typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2946FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2947FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2948FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2949FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2950FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2951FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2952FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2953FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2954FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2955
2956FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2957FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2958FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2959
2960typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2961 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2962typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2963FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2964FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2965
2966typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2967 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2968typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2969FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2970FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2971
2972typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2973typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2974FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2975FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2976FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2977FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2978FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2979FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2980FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2981
2982typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2983typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2984FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2985FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2986
2987typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2988typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2989FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2990FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2991FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2992FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2993FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2994FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2995FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2996
2997typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2998 PCRTFLOAT80U pr80Val));
2999typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3000FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3001FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3002FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3003
3004IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3005IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3006 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3007
3008IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3009IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3010 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3011
3012/** @} */
3013
3014/** @name FPU operations taking a 16-bit signed integer argument
3015 * @{ */
3016typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3017 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3018typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3019typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3020 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3021typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3022
3023FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3024FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3025FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3026FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3027FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3028FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3029
3030typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3031 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3032typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3033FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3034
3035IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3036FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3037FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3038/** @} */
3039
3040/** @name FPU operations taking a 32-bit signed integer argument
3041 * @{ */
3042typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3043 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3044typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3045typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3046 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3047typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3048
3049FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3050FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3051FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3052FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3053FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3054FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3055
3056typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3057 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3058typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3059FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3060
3061IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3062FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3063FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3064/** @} */
3065
3066/** @name FPU operations taking a 64-bit signed integer argument
3067 * @{ */
3068typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3069 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3070typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3071
3072IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3073FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3074FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3075/** @} */
3076
3077
3078/** Temporary type representing a 256-bit vector register. */
3079typedef struct { uint64_t au64[4]; } IEMVMM256;
3080/** Temporary type pointing to a 256-bit vector register. */
3081typedef IEMVMM256 *PIEMVMM256;
3082/** Temporary type pointing to a const 256-bit vector register. */
3083typedef IEMVMM256 *PCIEMVMM256;
3084
3085
3086/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3087 * @{ */
3088typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3089typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3090typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3091typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3092typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3093typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3094typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3095typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3096typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3097typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3098typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3099typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3100typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3101typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3102typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3103typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3104typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3105typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3106FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3107FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3108FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3109FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3110FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3111FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3112FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
3113FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
3114FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3115FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3116FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
3117FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
3118FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3119FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3120FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3121FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3122FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3123FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3124FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3125FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3126FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3127FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3128FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3129FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3130FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3131FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3132FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3133FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3134FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3135FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3136FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
3137FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3138FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3139FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3140FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3141FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3142FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3143FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3144FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3145
3146FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3147FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3148FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3149FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3150FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3151FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3152FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3153FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3154FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
3155FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
3156FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3157FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3158FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
3159FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
3160FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3161FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
3162FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3163FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3164FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
3165FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3166FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3167FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3168FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3169FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3170FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
3171FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3172FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3173FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3174FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
3175FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3176FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3177FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3178FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3179FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3180FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3181FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3182FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3183FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3184FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3185FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3186FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3187FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3188FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3189FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3190FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
3191FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3192FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3193FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3194FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3195FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3196FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3197FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3198FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3199FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3200FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3201FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3202FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3203FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3204
3205FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3206FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3207FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3208FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3209FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3210FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3211FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3212FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3213FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3214FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3215FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3216FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3217FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3218FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3219FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3220FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3221FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3222FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3223FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3224FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3225FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3226FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3227FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3228FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3229FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3230FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3231FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3232FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3233FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3234FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3235FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3236FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3237FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3238FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3239FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3240FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3241FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3242FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3243FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3244FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3245FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3246FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3247FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3248FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3249FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3250FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3251FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3252FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3253FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3254FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3255FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3256FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3257FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3258FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3259FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3260FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3261FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3262FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3263FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3264FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3265FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3266FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3267FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3268FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3269FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3270FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3271FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3272FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3273FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3274FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3275FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3276FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3277FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3278FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3279
3280FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3281FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3282FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3283FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3284
3285FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3286FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3287FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3288FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3289FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3290FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3291FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3292FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3293FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3294FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3295FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3296FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3297FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3298FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3299FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3300FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3301FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3302FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3303FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3304FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3305FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3306FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3307FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3308FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3309FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3310FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3311FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3312FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3313FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3314FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3315FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3316FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3317FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3318FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3319FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3320FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3321FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3322FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3323FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3324FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3325FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3326FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3327FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3328FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3329FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3330FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3331FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3332FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3333FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3334FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3335FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3336FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3337FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3338FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3339FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3340FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3341FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3342FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3343FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3344FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3345FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3346FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3347FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3348FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3349FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3350FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3351FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3352FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3353FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3354FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3355FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3356FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3357FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3358FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3359
3360FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3361FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3362FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3363/** @} */
3364
3365/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3366 * @{ */
3367FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3368FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3369FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3370 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3371 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3372 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3373 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3374 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3375 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3376 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3377
3378FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3379 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3380 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3381 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3382 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3383 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3384 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3385 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3386/** @} */
3387
3388/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3389 * @{ */
3390FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3391FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3392FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3393 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3394 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3395 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3396FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3397 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3398 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3399 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3400/** @} */
3401
3402/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3403 * @{ */
3404typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3405typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3406typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3407typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3408IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3409FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3410#ifndef IEM_WITHOUT_ASSEMBLY
3411FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3412#endif
3413FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3414/** @} */
3415
3416/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3417 * @{ */
3418typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3419typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3420typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3421typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3422typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3423typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3424FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3425FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3426FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3427FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3428FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3429FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3430FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3431/** @} */
3432
3433/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3434 * @{ */
3435IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3436IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3437#ifndef IEM_WITHOUT_ASSEMBLY
3438IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3439#endif
3440IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3441/** @} */
3442
3443/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3444 * @{ */
3445typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3446typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3447typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3448typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3449typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3450typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3451
3452FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3453FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3454FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3455FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3456FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3457FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3458
3459FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3460FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3461FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3462FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3463FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3464FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3465
3466FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3467FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3468FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3469FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3470FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3471FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3472/** @} */
3473
3474
3475/** @name Media (SSE/MMX/AVX) operation: Sort this later
3476 * @{ */
3477IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3478IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3479IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3480IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3481IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3482IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3483
3484IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3485IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3486IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3487IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3488IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3489
3490IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3491IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3492IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3493IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3494IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3495
3496IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3497IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3498IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3499IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3500IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3501
3502IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3503IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3504IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3505IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3506IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3507
3508IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3509IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3510IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3511IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3512IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3513
3514IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3515IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3516IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3517IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3518IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3519
3520IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3521IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3522IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3523IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3524IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3525
3526IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3527IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3528IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3529IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3530IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3531
3532IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3533IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3534IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3535IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3536IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3537
3538IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3539IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3540IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3541IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3542IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3543
3544IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3545IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3546IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3547IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3548IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3549
3550IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3551IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3552IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3553IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3554IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3555
3556IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3557IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3558IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3559IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3560IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3561
3562IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3563IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3564IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3565IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3566IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3567
3568IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3569IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3570
3571IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3572IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3573IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3574IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3575
3576IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
3577IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3578IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3579IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3580
3581IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3582IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3583IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3584IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3585IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3586
3587IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3588IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3589IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3590IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3591IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3592
3593
3594typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3595typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3596typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3597typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3598typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3599typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3600typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3601typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3602
3603FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3604FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3605FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3606FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3607
3608FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3609FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3610FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3611FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3612FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3613
3614FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3615FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3616FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3617FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3618FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3619FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3620FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3621
3622FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3623FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3624FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3625FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3626FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3627
3628FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3629FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3630FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3631FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3632FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3633
3634FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3635
3636FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3637
3638FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3639FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3640FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3641FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3642FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3643FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3644IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3645IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3646
3647typedef struct IEMPCMPISTRXSRC
3648{
3649 RTUINT128U uSrc1;
3650 RTUINT128U uSrc2;
3651} IEMPCMPISTRXSRC;
3652typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3653typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3654
3655typedef struct IEMPCMPESTRXSRC
3656{
3657 RTUINT128U uSrc1;
3658 RTUINT128U uSrc2;
3659 uint64_t u64Rax;
3660 uint64_t u64Rdx;
3661} IEMPCMPESTRXSRC;
3662typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3663typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3664
3665typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3666typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3667typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3668typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3669
3670typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3671typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3672typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3673typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3674
3675FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3676FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3677FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3678FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3679
3680FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3681FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3682
3683FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3684FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3685FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3686
3687FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3688FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3689FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3690FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3691FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3692FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3693
3694FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
3695FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
3696FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
3697FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
3698
3699FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
3700FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
3701FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
3702FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
3703FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
3704FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
3705FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrldq_imm_u128, iemAImpl_vpsrldq_imm_u128_fallback;
3706FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrldq_imm_u256, iemAImpl_vpsrldq_imm_u256_fallback;
3707
3708FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
3709FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
3710FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
3711FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
3712
3713FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
3714FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
3715FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
3716FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
3717
3718FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
3719FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
3720FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
3721FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
3722FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
3723FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
3724FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
3725FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
3726FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
3727FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
3728/** @} */
3729
3730/** @name Media Odds and Ends
3731 * @{ */
3732typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3733typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3734typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3735typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3736FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3737FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3738FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3739FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3740
3741typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3742typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3743FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3744FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3745
3746typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3747typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3748typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3749typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3750typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3751typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3752typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3753typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3754
3755FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3756FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3757
3758FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3759FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3760
3761FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3762FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3763
3764FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3765FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3766
3767typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3768typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3769typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3770typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3771
3772FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3773FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3774
3775typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3776typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3777typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3778typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3779
3780FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3781FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3782
3783
3784typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3785typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3786
3787FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3788FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3789
3790FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3791FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3792
3793FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3794FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3795
3796FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3797FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3798
3799
3800typedef struct IEMMEDIAF2XMMSRC
3801{
3802 X86XMMREG uSrc1;
3803 X86XMMREG uSrc2;
3804} IEMMEDIAF2XMMSRC;
3805typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3806typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3807
3808typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3809typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3810
3811FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3812FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3813FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3814FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3815FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3816FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3817
3818FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3819FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3820
3821FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3822FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3823
3824typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3825typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3826
3827FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3828FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3829
3830typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3831typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3832
3833FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3834FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3835
3836typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3837typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3838
3839FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3840FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3841
3842/** @} */
3843
3844
3845/** @name Function tables.
3846 * @{
3847 */
3848
3849/**
3850 * Function table for a binary operator providing implementation based on
3851 * operand size.
3852 */
3853typedef struct IEMOPBINSIZES
3854{
3855 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3856 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3857 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3858 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3859} IEMOPBINSIZES;
3860/** Pointer to a binary operator function table. */
3861typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3862
3863
3864/**
3865 * Function table for a unary operator providing implementation based on
3866 * operand size.
3867 */
3868typedef struct IEMOPUNARYSIZES
3869{
3870 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3871 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3872 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3873 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3874} IEMOPUNARYSIZES;
3875/** Pointer to a unary operator function table. */
3876typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3877
3878
3879/**
3880 * Function table for a shift operator providing implementation based on
3881 * operand size.
3882 */
3883typedef struct IEMOPSHIFTSIZES
3884{
3885 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3886 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3887 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3888 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3889} IEMOPSHIFTSIZES;
3890/** Pointer to a shift operator function table. */
3891typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3892
3893
3894/**
3895 * Function table for a multiplication or division operation.
3896 */
3897typedef struct IEMOPMULDIVSIZES
3898{
3899 PFNIEMAIMPLMULDIVU8 pfnU8;
3900 PFNIEMAIMPLMULDIVU16 pfnU16;
3901 PFNIEMAIMPLMULDIVU32 pfnU32;
3902 PFNIEMAIMPLMULDIVU64 pfnU64;
3903} IEMOPMULDIVSIZES;
3904/** Pointer to a multiplication or division operation function table. */
3905typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3906
3907
3908/**
3909 * Function table for a double precision shift operator providing implementation
3910 * based on operand size.
3911 */
3912typedef struct IEMOPSHIFTDBLSIZES
3913{
3914 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3915 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3916 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3917} IEMOPSHIFTDBLSIZES;
3918/** Pointer to a double precision shift function table. */
3919typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3920
3921
3922/**
3923 * Function table for media instruction taking two full sized media source
3924 * registers and one full sized destination register (AVX).
3925 */
3926typedef struct IEMOPMEDIAF3
3927{
3928 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3929 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3930} IEMOPMEDIAF3;
3931/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3932typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3933
3934/** @def IEMOPMEDIAF3_INIT_VARS_EX
3935 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3936 * given functions as initializers. For use in AVX functions where a pair of
3937 * functions are only used once and the function table need not be public. */
3938#ifndef TST_IEM_CHECK_MC
3939# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3940# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3941 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3942 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3943# else
3944# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3945 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3946# endif
3947#else
3948# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3949#endif
3950/** @def IEMOPMEDIAF3_INIT_VARS
3951 * Generate AVX function tables for the @a a_InstrNm instruction.
3952 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3953#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3954 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3955 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3956
3957/**
3958 * Function table for media instruction taking two full sized media source
3959 * registers and one full sized destination register, but no additional state
3960 * (AVX).
3961 */
3962typedef struct IEMOPMEDIAOPTF3
3963{
3964 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3965 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3966} IEMOPMEDIAOPTF3;
3967/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3968typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3969
3970/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3971 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3972 * given functions as initializers. For use in AVX functions where a pair of
3973 * functions are only used once and the function table need not be public. */
3974#ifndef TST_IEM_CHECK_MC
3975# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3976# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3977 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3978 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3979# else
3980# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3981 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3982# endif
3983#else
3984# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3985#endif
3986/** @def IEMOPMEDIAOPTF3_INIT_VARS
3987 * Generate AVX function tables for the @a a_InstrNm instruction.
3988 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3989#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3990 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3991 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3992
3993/**
3994 * Function table for media instruction taking one full sized media source
3995 * registers and one full sized destination register, but no additional state
3996 * (AVX).
3997 */
3998typedef struct IEMOPMEDIAOPTF2
3999{
4000 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4001 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4002} IEMOPMEDIAOPTF2;
4003/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4004typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4005
4006/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4007 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4008 * given functions as initializers. For use in AVX functions where a pair of
4009 * functions are only used once and the function table need not be public. */
4010#ifndef TST_IEM_CHECK_MC
4011# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4012# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4013 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4014 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4015# else
4016# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4017 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4018# endif
4019#else
4020# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4021#endif
4022/** @def IEMOPMEDIAOPTF2_INIT_VARS
4023 * Generate AVX function tables for the @a a_InstrNm instruction.
4024 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4025#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4026 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4027 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4028
4029/**
4030 * Function table for media instruction taking one full sized media source
4031 * register and one full sized destination register and an 8-bit immediate, but no additional state
4032 * (AVX).
4033 */
4034typedef struct IEMOPMEDIAOPTF2IMM8
4035{
4036 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4037 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4038} IEMOPMEDIAOPTF2IMM8;
4039/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4040typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4041
4042/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4043 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4044 * given functions as initializers. For use in AVX functions where a pair of
4045 * functions are only used once and the function table need not be public. */
4046#ifndef TST_IEM_CHECK_MC
4047# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4048# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4049 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4050 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4051# else
4052# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4053 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4054# endif
4055#else
4056# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4057#endif
4058/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4059 * Generate AVX function tables for the @a a_InstrNm instruction.
4060 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4061#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4062 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4063 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4064
4065/**
4066 * Function table for media instruction taking two full sized media source
4067 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4068 * (AVX).
4069 */
4070typedef struct IEMOPMEDIAOPTF3IMM8
4071{
4072 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4073 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4074} IEMOPMEDIAOPTF3IMM8;
4075/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4076typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4077
4078/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4079 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4080 * given functions as initializers. For use in AVX functions where a pair of
4081 * functions are only used once and the function table need not be public. */
4082#ifndef TST_IEM_CHECK_MC
4083# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4084# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4085 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4086 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4087# else
4088# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4089 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4090# endif
4091#else
4092# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4093#endif
4094/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4095 * Generate AVX function tables for the @a a_InstrNm instruction.
4096 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4097#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4098 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4099 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4100/** @} */
4101
4102
4103/**
4104 * Function table for blend type instruction taking three full sized media source
4105 * registers and one full sized destination register, but no additional state
4106 * (AVX).
4107 */
4108typedef struct IEMOPBLENDOP
4109{
4110 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4111 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4112} IEMOPBLENDOP;
4113/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4114typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4115
4116/** @def IEMOPBLENDOP_INIT_VARS_EX
4117 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4118 * given functions as initializers. For use in AVX functions where a pair of
4119 * functions are only used once and the function table need not be public. */
4120#ifndef TST_IEM_CHECK_MC
4121# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4122# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4123 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4124 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4125# else
4126# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4127 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4128# endif
4129#else
4130# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4131#endif
4132/** @def IEMOPBLENDOP_INIT_VARS
4133 * Generate AVX function tables for the @a a_InstrNm instruction.
4134 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4135#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4136 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4137 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4138
4139
4140/** @name SSE/AVX single/double precision floating point operations.
4141 * @{ */
4142/**
4143 * A SSE result.
4144 */
4145typedef struct IEMSSERESULT
4146{
4147 /** The output value. */
4148 X86XMMREG uResult;
4149 /** The output status. */
4150 uint32_t MXCSR;
4151} IEMSSERESULT;
4152AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
4153/** Pointer to a SSE result. */
4154typedef IEMSSERESULT *PIEMSSERESULT;
4155/** Pointer to a const SSE result. */
4156typedef IEMSSERESULT const *PCIEMSSERESULT;
4157
4158
4159/**
4160 * A AVX128 result.
4161 */
4162typedef struct IEMAVX128RESULT
4163{
4164 /** The output value. */
4165 X86XMMREG uResult;
4166 /** The output status. */
4167 uint32_t MXCSR;
4168} IEMAVX128RESULT;
4169AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
4170/** Pointer to a AVX128 result. */
4171typedef IEMAVX128RESULT *PIEMAVX128RESULT;
4172/** Pointer to a const AVX128 result. */
4173typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
4174
4175
4176/**
4177 * A AVX256 result.
4178 */
4179typedef struct IEMAVX256RESULT
4180{
4181 /** The output value. */
4182 X86YMMREG uResult;
4183 /** The output status. */
4184 uint32_t MXCSR;
4185} IEMAVX256RESULT;
4186AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
4187/** Pointer to a AVX256 result. */
4188typedef IEMAVX256RESULT *PIEMAVX256RESULT;
4189/** Pointer to a const AVX256 result. */
4190typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
4191
4192
4193typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4194typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4195typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4196typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4197typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4198typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4199
4200typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4201typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4202typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4203typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4204typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4205typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4206
4207typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4208typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4209
4210FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4211FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4212FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4213FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4214FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4215FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4216FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4217FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4218FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4219FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4220FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4221FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4222FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4223FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4224FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4225FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4226FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4227FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4228FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4229FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4230FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4231FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4232FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4233FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
4234
4235FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4236FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4237FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4238FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4239FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4240FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4241
4242FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4243FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4244FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4245FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4246FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4247FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4248FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4249FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4250FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4251FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4252FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4253FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4254FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4255FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4256FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4257FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4258FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4259FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4260
4261FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4262FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4263FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4264FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4265FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4266FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4267FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4268FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4269FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4270FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4271FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4272FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4273FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4274FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4275FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4276FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4277FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4278FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4279FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4280FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4281FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4282FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4283
4284FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4285FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4286FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4287FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4288FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4289FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4290FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4291FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4292FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4293FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4294FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4295FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4296FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4297FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4298
4299FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4300FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4301FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4302FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4303FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4304FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4305FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4306FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4307FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4308FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4309FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4310FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4311FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4312FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4313FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4314FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4315FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4316FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4317FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4318FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4319/** @} */
4320
4321/** @name C instruction implementations for anything slightly complicated.
4322 * @{ */
4323
4324/**
4325 * For typedef'ing or declaring a C instruction implementation function taking
4326 * no extra arguments.
4327 *
4328 * @param a_Name The name of the type.
4329 */
4330# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4331 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4332/**
4333 * For defining a C instruction implementation function taking no extra
4334 * arguments.
4335 *
4336 * @param a_Name The name of the function
4337 */
4338# define IEM_CIMPL_DEF_0(a_Name) \
4339 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4340/**
4341 * Prototype version of IEM_CIMPL_DEF_0.
4342 */
4343# define IEM_CIMPL_PROTO_0(a_Name) \
4344 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4345/**
4346 * For calling a C instruction implementation function taking no extra
4347 * arguments.
4348 *
4349 * This special call macro adds default arguments to the call and allow us to
4350 * change these later.
4351 *
4352 * @param a_fn The name of the function.
4353 */
4354# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4355
4356/** Type for a C instruction implementation function taking no extra
4357 * arguments. */
4358typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4359/** Function pointer type for a C instruction implementation function taking
4360 * no extra arguments. */
4361typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4362
4363/**
4364 * For typedef'ing or declaring a C instruction implementation function taking
4365 * one extra argument.
4366 *
4367 * @param a_Name The name of the type.
4368 * @param a_Type0 The argument type.
4369 * @param a_Arg0 The argument name.
4370 */
4371# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4372 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4373/**
4374 * For defining a C instruction implementation function taking one extra
4375 * argument.
4376 *
4377 * @param a_Name The name of the function
4378 * @param a_Type0 The argument type.
4379 * @param a_Arg0 The argument name.
4380 */
4381# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4382 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4383/**
4384 * Prototype version of IEM_CIMPL_DEF_1.
4385 */
4386# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4387 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4388/**
4389 * For calling a C instruction implementation function taking one extra
4390 * argument.
4391 *
4392 * This special call macro adds default arguments to the call and allow us to
4393 * change these later.
4394 *
4395 * @param a_fn The name of the function.
4396 * @param a0 The name of the 1st argument.
4397 */
4398# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4399
4400/**
4401 * For typedef'ing or declaring a C instruction implementation function taking
4402 * two extra arguments.
4403 *
4404 * @param a_Name The name of the type.
4405 * @param a_Type0 The type of the 1st argument
4406 * @param a_Arg0 The name of the 1st argument.
4407 * @param a_Type1 The type of the 2nd argument.
4408 * @param a_Arg1 The name of the 2nd argument.
4409 */
4410# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4411 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4412/**
4413 * For defining a C instruction implementation function taking two extra
4414 * arguments.
4415 *
4416 * @param a_Name The name of the function.
4417 * @param a_Type0 The type of the 1st argument
4418 * @param a_Arg0 The name of the 1st argument.
4419 * @param a_Type1 The type of the 2nd argument.
4420 * @param a_Arg1 The name of the 2nd argument.
4421 */
4422# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4423 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4424/**
4425 * Prototype version of IEM_CIMPL_DEF_2.
4426 */
4427# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4428 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4429/**
4430 * For calling a C instruction implementation function taking two extra
4431 * arguments.
4432 *
4433 * This special call macro adds default arguments to the call and allow us to
4434 * change these later.
4435 *
4436 * @param a_fn The name of the function.
4437 * @param a0 The name of the 1st argument.
4438 * @param a1 The name of the 2nd argument.
4439 */
4440# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4441
4442/**
4443 * For typedef'ing or declaring a C instruction implementation function taking
4444 * three extra arguments.
4445 *
4446 * @param a_Name The name of the type.
4447 * @param a_Type0 The type of the 1st argument
4448 * @param a_Arg0 The name of the 1st argument.
4449 * @param a_Type1 The type of the 2nd argument.
4450 * @param a_Arg1 The name of the 2nd argument.
4451 * @param a_Type2 The type of the 3rd argument.
4452 * @param a_Arg2 The name of the 3rd argument.
4453 */
4454# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4455 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4456/**
4457 * For defining a C instruction implementation function taking three extra
4458 * arguments.
4459 *
4460 * @param a_Name The name of the function.
4461 * @param a_Type0 The type of the 1st argument
4462 * @param a_Arg0 The name of the 1st argument.
4463 * @param a_Type1 The type of the 2nd argument.
4464 * @param a_Arg1 The name of the 2nd argument.
4465 * @param a_Type2 The type of the 3rd argument.
4466 * @param a_Arg2 The name of the 3rd argument.
4467 */
4468# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4469 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4470/**
4471 * Prototype version of IEM_CIMPL_DEF_3.
4472 */
4473# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4474 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4475/**
4476 * For calling a C instruction implementation function taking three extra
4477 * arguments.
4478 *
4479 * This special call macro adds default arguments to the call and allow us to
4480 * change these later.
4481 *
4482 * @param a_fn The name of the function.
4483 * @param a0 The name of the 1st argument.
4484 * @param a1 The name of the 2nd argument.
4485 * @param a2 The name of the 3rd argument.
4486 */
4487# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4488
4489
4490/**
4491 * For typedef'ing or declaring a C instruction implementation function taking
4492 * four extra arguments.
4493 *
4494 * @param a_Name The name of the type.
4495 * @param a_Type0 The type of the 1st argument
4496 * @param a_Arg0 The name of the 1st argument.
4497 * @param a_Type1 The type of the 2nd argument.
4498 * @param a_Arg1 The name of the 2nd argument.
4499 * @param a_Type2 The type of the 3rd argument.
4500 * @param a_Arg2 The name of the 3rd argument.
4501 * @param a_Type3 The type of the 4th argument.
4502 * @param a_Arg3 The name of the 4th argument.
4503 */
4504# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4505 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4506/**
4507 * For defining a C instruction implementation function taking four extra
4508 * arguments.
4509 *
4510 * @param a_Name The name of the function.
4511 * @param a_Type0 The type of the 1st argument
4512 * @param a_Arg0 The name of the 1st argument.
4513 * @param a_Type1 The type of the 2nd argument.
4514 * @param a_Arg1 The name of the 2nd argument.
4515 * @param a_Type2 The type of the 3rd argument.
4516 * @param a_Arg2 The name of the 3rd argument.
4517 * @param a_Type3 The type of the 4th argument.
4518 * @param a_Arg3 The name of the 4th argument.
4519 */
4520# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4521 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4522 a_Type2 a_Arg2, a_Type3 a_Arg3))
4523/**
4524 * Prototype version of IEM_CIMPL_DEF_4.
4525 */
4526# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4527 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4528 a_Type2 a_Arg2, a_Type3 a_Arg3))
4529/**
4530 * For calling a C instruction implementation function taking four extra
4531 * arguments.
4532 *
4533 * This special call macro adds default arguments to the call and allow us to
4534 * change these later.
4535 *
4536 * @param a_fn The name of the function.
4537 * @param a0 The name of the 1st argument.
4538 * @param a1 The name of the 2nd argument.
4539 * @param a2 The name of the 3rd argument.
4540 * @param a3 The name of the 4th argument.
4541 */
4542# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4543
4544
4545/**
4546 * For typedef'ing or declaring a C instruction implementation function taking
4547 * five extra arguments.
4548 *
4549 * @param a_Name The name of the type.
4550 * @param a_Type0 The type of the 1st argument
4551 * @param a_Arg0 The name of the 1st argument.
4552 * @param a_Type1 The type of the 2nd argument.
4553 * @param a_Arg1 The name of the 2nd argument.
4554 * @param a_Type2 The type of the 3rd argument.
4555 * @param a_Arg2 The name of the 3rd argument.
4556 * @param a_Type3 The type of the 4th argument.
4557 * @param a_Arg3 The name of the 4th argument.
4558 * @param a_Type4 The type of the 5th argument.
4559 * @param a_Arg4 The name of the 5th argument.
4560 */
4561# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4562 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4563 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4564 a_Type3 a_Arg3, a_Type4 a_Arg4))
4565/**
4566 * For defining a C instruction implementation function taking five extra
4567 * arguments.
4568 *
4569 * @param a_Name The name of the function.
4570 * @param a_Type0 The type of the 1st argument
4571 * @param a_Arg0 The name of the 1st argument.
4572 * @param a_Type1 The type of the 2nd argument.
4573 * @param a_Arg1 The name of the 2nd argument.
4574 * @param a_Type2 The type of the 3rd argument.
4575 * @param a_Arg2 The name of the 3rd argument.
4576 * @param a_Type3 The type of the 4th argument.
4577 * @param a_Arg3 The name of the 4th argument.
4578 * @param a_Type4 The type of the 5th argument.
4579 * @param a_Arg4 The name of the 5th argument.
4580 */
4581# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4582 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4583 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4584/**
4585 * Prototype version of IEM_CIMPL_DEF_5.
4586 */
4587# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4588 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4589 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4590/**
4591 * For calling a C instruction implementation function taking five extra
4592 * arguments.
4593 *
4594 * This special call macro adds default arguments to the call and allow us to
4595 * change these later.
4596 *
4597 * @param a_fn The name of the function.
4598 * @param a0 The name of the 1st argument.
4599 * @param a1 The name of the 2nd argument.
4600 * @param a2 The name of the 3rd argument.
4601 * @param a3 The name of the 4th argument.
4602 * @param a4 The name of the 5th argument.
4603 */
4604# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4605
4606/** @} */
4607
4608
4609/** @name Opcode Decoder Function Types.
4610 * @{ */
4611
4612/** @typedef PFNIEMOP
4613 * Pointer to an opcode decoder function.
4614 */
4615
4616/** @def FNIEMOP_DEF
4617 * Define an opcode decoder function.
4618 *
4619 * We're using macors for this so that adding and removing parameters as well as
4620 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4621 *
4622 * @param a_Name The function name.
4623 */
4624
4625/** @typedef PFNIEMOPRM
4626 * Pointer to an opcode decoder function with RM byte.
4627 */
4628
4629/** @def FNIEMOPRM_DEF
4630 * Define an opcode decoder function with RM byte.
4631 *
4632 * We're using macors for this so that adding and removing parameters as well as
4633 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4634 *
4635 * @param a_Name The function name.
4636 */
4637
4638#if defined(__GNUC__) && defined(RT_ARCH_X86)
4639typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4640typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4641# define FNIEMOP_DEF(a_Name) \
4642 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4643# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4644 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4645# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4646 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4647
4648#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4649typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4650typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4651# define FNIEMOP_DEF(a_Name) \
4652 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4653# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4654 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4655# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4656 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4657
4658#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4659typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4660typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4661# define FNIEMOP_DEF(a_Name) \
4662 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4663# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4664 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4665# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4666 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4667
4668#else
4669typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4670typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4671# define FNIEMOP_DEF(a_Name) \
4672 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4673# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4674 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4675# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4676 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4677
4678#endif
4679#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4680
4681/**
4682 * Call an opcode decoder function.
4683 *
4684 * We're using macors for this so that adding and removing parameters can be
4685 * done as we please. See FNIEMOP_DEF.
4686 */
4687#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4688
4689/**
4690 * Call a common opcode decoder function taking one extra argument.
4691 *
4692 * We're using macors for this so that adding and removing parameters can be
4693 * done as we please. See FNIEMOP_DEF_1.
4694 */
4695#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4696
4697/**
4698 * Call a common opcode decoder function taking one extra argument.
4699 *
4700 * We're using macors for this so that adding and removing parameters can be
4701 * done as we please. See FNIEMOP_DEF_1.
4702 */
4703#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4704/** @} */
4705
4706
4707/** @name Misc Helpers
4708 * @{ */
4709
4710/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4711 * due to GCC lacking knowledge about the value range of a switch. */
4712#if RT_CPLUSPLUS_PREREQ(202000)
4713# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4714#else
4715# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4716#endif
4717
4718/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4719#if RT_CPLUSPLUS_PREREQ(202000)
4720# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4721#else
4722# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4723#endif
4724
4725/**
4726 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4727 * occation.
4728 */
4729#ifdef LOG_ENABLED
4730# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4731 do { \
4732 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4733 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4734 } while (0)
4735#else
4736# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4737 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4738#endif
4739
4740/**
4741 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4742 * occation using the supplied logger statement.
4743 *
4744 * @param a_LoggerArgs What to log on failure.
4745 */
4746#ifdef LOG_ENABLED
4747# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4748 do { \
4749 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4750 /*LogFunc(a_LoggerArgs);*/ \
4751 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4752 } while (0)
4753#else
4754# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4755 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4756#endif
4757
4758/**
4759 * Gets the CPU mode (from fExec) as a IEMMODE value.
4760 *
4761 * @returns IEMMODE
4762 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4763 */
4764#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4765
4766/**
4767 * Check if we're currently executing in real or virtual 8086 mode.
4768 *
4769 * @returns @c true if it is, @c false if not.
4770 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4771 */
4772#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4773 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4774
4775/**
4776 * Check if we're currently executing in virtual 8086 mode.
4777 *
4778 * @returns @c true if it is, @c false if not.
4779 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4780 */
4781#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4782
4783/**
4784 * Check if we're currently executing in long mode.
4785 *
4786 * @returns @c true if it is, @c false if not.
4787 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4788 */
4789#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4790
4791/**
4792 * Check if we're currently executing in a 16-bit code segment.
4793 *
4794 * @returns @c true if it is, @c false if not.
4795 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4796 */
4797#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4798
4799/**
4800 * Check if we're currently executing in a 32-bit code segment.
4801 *
4802 * @returns @c true if it is, @c false if not.
4803 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4804 */
4805#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4806
4807/**
4808 * Check if we're currently executing in a 64-bit code segment.
4809 *
4810 * @returns @c true if it is, @c false if not.
4811 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4812 */
4813#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4814
4815/**
4816 * Check if we're currently executing in real mode.
4817 *
4818 * @returns @c true if it is, @c false if not.
4819 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4820 */
4821#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4822
4823/**
4824 * Gets the current protection level (CPL).
4825 *
4826 * @returns 0..3
4827 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4828 */
4829#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4830
4831/**
4832 * Sets the current protection level (CPL).
4833 *
4834 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4835 */
4836#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4837 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4838
4839/**
4840 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4841 * @returns PCCPUMFEATURES
4842 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4843 */
4844#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4845
4846/**
4847 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4848 * @returns PCCPUMFEATURES
4849 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4850 */
4851#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4852
4853/**
4854 * Evaluates to true if we're presenting an Intel CPU to the guest.
4855 */
4856#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4857
4858/**
4859 * Evaluates to true if we're presenting an AMD CPU to the guest.
4860 */
4861#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4862
4863/**
4864 * Check if the address is canonical.
4865 */
4866#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4867
4868/** Checks if the ModR/M byte is in register mode or not. */
4869#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4870/** Checks if the ModR/M byte is in memory mode or not. */
4871#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4872
4873/**
4874 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4875 *
4876 * For use during decoding.
4877 */
4878#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4879/**
4880 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4881 *
4882 * For use during decoding.
4883 */
4884#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4885
4886/**
4887 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4888 *
4889 * For use during decoding.
4890 */
4891#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4892/**
4893 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4894 *
4895 * For use during decoding.
4896 */
4897#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4898
4899/**
4900 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4901 * register index, with REX.R added in.
4902 *
4903 * For use during decoding.
4904 *
4905 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4906 */
4907#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4908 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4909 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4910 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4911/**
4912 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4913 * with REX.B added in.
4914 *
4915 * For use during decoding.
4916 *
4917 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4918 */
4919#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4920 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4921 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4922 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4923
4924/**
4925 * Combines the prefix REX and ModR/M byte for passing to
4926 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4927 *
4928 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4929 * The two bits are part of the REG sub-field, which isn't needed in
4930 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4931 *
4932 * For use during decoding/recompiling.
4933 */
4934#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4935 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4936 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
4937AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
4938AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
4939
4940/**
4941 * Gets the effective VEX.VVVV value.
4942 *
4943 * The 4th bit is ignored if not 64-bit code.
4944 * @returns effective V-register value.
4945 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4946 */
4947#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4948 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4949
4950
4951/**
4952 * Checks if we're executing inside an AMD-V or VT-x guest.
4953 */
4954#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4955# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4956#else
4957# define IEM_IS_IN_GUEST(a_pVCpu) false
4958#endif
4959
4960
4961#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4962
4963/**
4964 * Check if the guest has entered VMX root operation.
4965 */
4966# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4967
4968/**
4969 * Check if the guest has entered VMX non-root operation.
4970 */
4971# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4972 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4973
4974/**
4975 * Check if the nested-guest has the given Pin-based VM-execution control set.
4976 */
4977# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4978
4979/**
4980 * Check if the nested-guest has the given Processor-based VM-execution control set.
4981 */
4982# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4983
4984/**
4985 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4986 * control set.
4987 */
4988# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4989
4990/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4991# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4992
4993/** Whether a shadow VMCS is present for the given VCPU. */
4994# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4995
4996/** Gets the VMXON region pointer. */
4997# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4998
4999/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5000# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5001
5002/** Whether a current VMCS is present for the given VCPU. */
5003# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5004
5005/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5006# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5007 do \
5008 { \
5009 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5010 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5011 } while (0)
5012
5013/** Clears any current VMCS for the given VCPU. */
5014# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5015 do \
5016 { \
5017 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5018 } while (0)
5019
5020/**
5021 * Invokes the VMX VM-exit handler for an instruction intercept.
5022 */
5023# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5024 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5025
5026/**
5027 * Invokes the VMX VM-exit handler for an instruction intercept where the
5028 * instruction provides additional VM-exit information.
5029 */
5030# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5031 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5032
5033/**
5034 * Invokes the VMX VM-exit handler for a task switch.
5035 */
5036# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5037 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5038
5039/**
5040 * Invokes the VMX VM-exit handler for MWAIT.
5041 */
5042# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5043 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5044
5045/**
5046 * Invokes the VMX VM-exit handler for EPT faults.
5047 */
5048# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5049 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5050
5051/**
5052 * Invokes the VMX VM-exit handler.
5053 */
5054# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5055 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5056
5057#else
5058# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5059# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5060# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5061# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5062# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5063# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5064# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5065# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5066# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5067# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5068# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5069
5070#endif
5071
5072#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5073/**
5074 * Checks if we're executing a guest using AMD-V.
5075 */
5076# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5077 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5078/**
5079 * Check if an SVM control/instruction intercept is set.
5080 */
5081# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5082 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5083
5084/**
5085 * Check if an SVM read CRx intercept is set.
5086 */
5087# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5088 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5089
5090/**
5091 * Check if an SVM write CRx intercept is set.
5092 */
5093# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5094 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5095
5096/**
5097 * Check if an SVM read DRx intercept is set.
5098 */
5099# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5100 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5101
5102/**
5103 * Check if an SVM write DRx intercept is set.
5104 */
5105# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5106 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5107
5108/**
5109 * Check if an SVM exception intercept is set.
5110 */
5111# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5112 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5113
5114/**
5115 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5116 */
5117# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5118 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5119
5120/**
5121 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5122 * corresponding decode assist information.
5123 */
5124# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5125 do \
5126 { \
5127 uint64_t uExitInfo1; \
5128 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5129 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5130 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5131 else \
5132 uExitInfo1 = 0; \
5133 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5134 } while (0)
5135
5136/** Check and handles SVM nested-guest instruction intercept and updates
5137 * NRIP if needed.
5138 */
5139# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5140 do \
5141 { \
5142 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5143 { \
5144 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5145 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5146 } \
5147 } while (0)
5148
5149/** Checks and handles SVM nested-guest CR0 read intercept. */
5150# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5151 do \
5152 { \
5153 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5154 { /* probably likely */ } \
5155 else \
5156 { \
5157 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5158 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5159 } \
5160 } while (0)
5161
5162/**
5163 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5164 */
5165# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5166 do { \
5167 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5168 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5169 } while (0)
5170
5171#else
5172# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5173# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5174# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5175# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5176# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5177# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5178# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5179# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5180# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5181 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5182# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5183# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5184
5185#endif
5186
5187/** @} */
5188
5189uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5190VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5191
5192
5193/**
5194 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5195 */
5196typedef union IEMSELDESC
5197{
5198 /** The legacy view. */
5199 X86DESC Legacy;
5200 /** The long mode view. */
5201 X86DESC64 Long;
5202} IEMSELDESC;
5203/** Pointer to a selector descriptor table entry. */
5204typedef IEMSELDESC *PIEMSELDESC;
5205
5206/** @name Raising Exceptions.
5207 * @{ */
5208VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5209 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5210
5211VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5212 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5213#ifdef IEM_WITH_SETJMP
5214DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5215 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5216#endif
5217VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5218VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5219VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5220VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5221#ifdef IEM_WITH_SETJMP
5222DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5223#endif
5224VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5225#ifdef IEM_WITH_SETJMP
5226DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5227#endif
5228VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5229VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5230VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5231VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5232/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5233VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5234VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5235VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5236VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5237VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5238VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5239#ifdef IEM_WITH_SETJMP
5240DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5241#endif
5242VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5243VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5244VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5245#ifdef IEM_WITH_SETJMP
5246DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5247#endif
5248VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5249#ifdef IEM_WITH_SETJMP
5250DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5251#endif
5252VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5253#ifdef IEM_WITH_SETJMP
5254DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5255#endif
5256VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5257#ifdef IEM_WITH_SETJMP
5258DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5259#endif
5260VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5261#ifdef IEM_WITH_SETJMP
5262DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5263#endif
5264VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5265#ifdef IEM_WITH_SETJMP
5266DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5267#endif
5268VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5269#ifdef IEM_WITH_SETJMP
5270DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5271#endif
5272
5273void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5274void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5275
5276IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5277IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5278IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5279
5280/**
5281 * Macro for calling iemCImplRaiseDivideError().
5282 *
5283 * This is for things that will _always_ decode to an \#DE, taking the
5284 * recompiler into consideration and everything.
5285 *
5286 * @return Strict VBox status code.
5287 */
5288#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5289
5290/**
5291 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5292 *
5293 * This is for things that will _always_ decode to an \#UD, taking the
5294 * recompiler into consideration and everything.
5295 *
5296 * @return Strict VBox status code.
5297 */
5298#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5299
5300/**
5301 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5302 *
5303 * This is for things that will _always_ decode to an \#UD, taking the
5304 * recompiler into consideration and everything.
5305 *
5306 * @return Strict VBox status code.
5307 */
5308#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5309
5310/**
5311 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5312 *
5313 * Using this macro means you've got _buggy_ _code_ and are doing things that
5314 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5315 *
5316 * @return Strict VBox status code.
5317 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5318 */
5319#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5320
5321/** @} */
5322
5323/** @name Register Access.
5324 * @{ */
5325VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5326 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5327VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5328VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5329 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5330/** @} */
5331
5332/** @name FPU access and helpers.
5333 * @{ */
5334void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5335void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5336void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5337void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5338void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5339void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5340 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5341void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5342 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5343void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5344void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5345void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5346void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5347void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5348void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5349void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5350void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5351void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5352void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5353void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5354void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5355void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5356void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5357void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5358/** @} */
5359
5360/** @name SSE+AVX SIMD access and helpers.
5361 * @{ */
5362void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
5363void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5364/** @} */
5365
5366/** @name Memory access.
5367 * @{ */
5368
5369/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5370#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5371/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5372 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5373#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5374/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5375 * Users include FXSAVE & FXRSTOR. */
5376#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5377
5378VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5379 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5380VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5381#ifndef IN_RING3
5382VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5383#endif
5384void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5385void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5386VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5387VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5388VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5389
5390void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5391void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5392#ifdef IEM_WITH_CODE_TLB
5393void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5394#else
5395VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5396#endif
5397#ifdef IEM_WITH_SETJMP
5398uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5399uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5400uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5401uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5402#else
5403VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5404VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5405VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5406VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5407VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5408VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5409VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5410VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5411VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5412VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5413VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5414#endif
5415
5416VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5417VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5418VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5419VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5420VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5421VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5422VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5423VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5424VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5425VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5426VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5427VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5428VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5429VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5430VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5431 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5432#ifdef IEM_WITH_SETJMP
5433uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5434uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5435uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5436uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5437uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5438uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5439void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5440void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5441void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5442void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5443void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5444void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5445void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5446void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5447# if 0 /* these are inlined now */
5448uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5449uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5450uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5451uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5452uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5453uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5454void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5455void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5456void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5457void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5458# endif
5459void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5460void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5461void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5462void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5463#endif
5464
5465VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5466VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5467VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5468VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5469VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5470
5471VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5472VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5473VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5474VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5475VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5476VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5477VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5478VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5479VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5480VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5481VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5482#ifdef IEM_WITH_SETJMP
5483void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5484void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5485void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5486void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5487void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5488void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5489void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5490void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5491void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5492void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5493void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5494void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5495#if 0
5496void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5497void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5498void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5499void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5500void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5501void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5502#endif
5503void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5504void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5505void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5506void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5507#endif
5508
5509#ifdef IEM_WITH_SETJMP
5510uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5511uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5512uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5513uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5514uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5515uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5516uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5517uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5518uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5519uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5520uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5521uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5522uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5523uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5524uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5525uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5526PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5527PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5528PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5529PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5530PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5531PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5532PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5533PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5534PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5535PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5536
5537void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5538void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5539void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5540void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5541void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5542void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5543#endif
5544
5545VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5546 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5547VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5548VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5549VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5550VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5551VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5552VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5553VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5554VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5555VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5556 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5557VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5558 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5559VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5560VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5561VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5562VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5563VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5564VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5565VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5566
5567#ifdef IEM_WITH_SETJMP
5568void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5569void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5570void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5571void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5572void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5573void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5574void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5575
5576void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5577void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5578void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5579void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5580void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5581
5582void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5583void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5584void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5585void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5586
5587void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5588void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5589void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5590void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5591
5592uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5593uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5594uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5595
5596#endif
5597
5598/** @} */
5599
5600/** @name IEMAllCImpl.cpp
5601 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5602 * @{ */
5603IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5604IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5605IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5606IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5607IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5608IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5609IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5610IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5611IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5612IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5613IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5614IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5615IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5616IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5617IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5618IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5619IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5620typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5621typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5622IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5623IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5624IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5625IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5626IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5627IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5628IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5629IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5630IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5631IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5632IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5633IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5634IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5635IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5636IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5637IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5638IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5639IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5640IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5641IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5642IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5643IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5644IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5645IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5646IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5647IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5648IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5649IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5650IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5651IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5652IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5653IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5654IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5655IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5656IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5657IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5658IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5659IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5660IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5661IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5662IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5663IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5664IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5665IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5666IEM_CIMPL_PROTO_0(iemCImpl_clts);
5667IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5668IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5669IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5670IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5671IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5672IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5673IEM_CIMPL_PROTO_0(iemCImpl_invd);
5674IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5675IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5676IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5677IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5678IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5679IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5680IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5681IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5682IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5683IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5684IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5685IEM_CIMPL_PROTO_0(iemCImpl_cli);
5686IEM_CIMPL_PROTO_0(iemCImpl_sti);
5687IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5688IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5689IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5690IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5691IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5692IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5693IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5694IEM_CIMPL_PROTO_0(iemCImpl_daa);
5695IEM_CIMPL_PROTO_0(iemCImpl_das);
5696IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5697IEM_CIMPL_PROTO_0(iemCImpl_aas);
5698IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5699IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5700IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5701IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5702IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5703 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5704IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5705IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5706IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5707IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5708IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5709IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5710IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5711IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5712IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5713IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5714IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5715IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5716IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5717IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5718IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5719IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5720IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5721IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5722/** @} */
5723
5724/** @name IEMAllCImplStrInstr.cpp.h
5725 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5726 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5727 * @{ */
5728IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5729IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5730IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5731IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5732IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5733IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5734IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5735IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5736IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5737IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5738IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5739
5740IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5741IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5742IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5743IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5744IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5745IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5746IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5747IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5748IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5749IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5750IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5751
5752IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5753IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5754IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5755IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5756IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5757IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5758IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5759IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5760IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5761IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5762IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5763
5764
5765IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5766IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5767IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5768IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5769IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5770IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5771IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5772IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5773IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5774IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5775IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5776
5777IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5778IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5779IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5780IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5781IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5782IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5783IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5784IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5785IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5786IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5787IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5788
5789IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5790IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5791IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5792IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5793IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5794IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5795IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5796IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5797IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5798IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5799IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5800
5801IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5802IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5803IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5804IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5805IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5806IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5807IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5808IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5809IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5810IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5811IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5812
5813
5814IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5815IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5816IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5817IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5818IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5819IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5820IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5821IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5822IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5823IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5824IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5825
5826IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5827IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5828IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5829IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5830IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5831IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5832IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5833IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5834IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5835IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5836IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5837
5838IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5839IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5840IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5841IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5842IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5843IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5844IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5845IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5846IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5847IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5848IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5849
5850IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5851IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5852IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5853IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5854IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5855IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5856IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5857IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5858IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5859IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5860IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5861/** @} */
5862
5863#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5864VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5865VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5866VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5867VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5868VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5869VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5870VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5871VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5872VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5873VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5874 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5875VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5876 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5877VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5878VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5879VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5880VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5881VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5882VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5883VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5884VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5885 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5886VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5887VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5888VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5889uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5890void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5891VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5892 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5893bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5894IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5895IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5896IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5897IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5898IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5899IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5900IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5901IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5902IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5903IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5904IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5905IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5906IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5907IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5908IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5909IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5910#endif
5911
5912#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5913VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5914VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5915VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5916 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5917VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5918IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5919IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5920IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5921IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5922IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5923IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5924IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5925IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5926#endif
5927
5928IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5929IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5930IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5931
5932extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5933extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5934extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5935extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5936extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5937extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5938extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5939
5940/*
5941 * Recompiler related stuff.
5942 */
5943extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5944extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5945extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5946extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5947extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5948extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5949extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5950
5951DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
5952 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
5953void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
5954void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
5955void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
5956DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
5957DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
5958
5959
5960/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5961#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5962typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5963typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5964# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5965 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5966# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5967 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5968
5969#else
5970typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5971typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5972# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5973 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5974# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5975 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5976#endif
5977
5978
5979IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
5980IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
5981
5982IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5983
5984IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5985IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5986IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5987IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5988
5989IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5990IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5991IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5992
5993/* Branching: */
5994IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5995IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5996IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5997
5998IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5999IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6000IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6001
6002/* Natural page crossing: */
6003IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6004IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6005IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6006
6007IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6008IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6009IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6010
6011IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6012IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6013IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6014
6015bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6016bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6017
6018/* Native recompiler public bits: */
6019DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6020DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6021int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
6022void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
6023DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6024
6025
6026/** @} */
6027
6028RT_C_DECLS_END
6029
6030#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6031
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette