VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 104019

Last change on this file since 104019 was 104019, checked in by vboxsync, 11 months ago

VMM/IEM: Made IEM_MC_CALL_AVX_AIMPL_[34] deal with its hidden parameter the same way as the FPU, MMX and SSE AIMPL calls. Made IEM_MC_BEGIN_EX get a parameter count including hidden paramenters, saving a call to iemNativeArgGetHiddenArgCount for every block. The count is only used by iemNativeVarRegisterAcquire. bugref:10370 bugref:10614

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 313.3 KB
Line 
1/* $Id: IEMInternal.h 104019 2024-03-24 01:07:36Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
89 * Enables the delayed PC updating optimization (see @bugref{10373}).
90 */
91#if defined(DOXYGEN_RUNNING) || 1
92# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
93#endif
94
95/** Enables the SIMD register allocator @bugref{10614}. */
96#if defined(DOXYGEN_RUNNING) || 1
97# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
98#endif
99/** Enables access to even callee saved registers. */
100//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
101
102/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
103 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
104 * executing native translation blocks.
105 *
106 * This exploits the fact that we save all non-volatile registers in the TB
107 * prologue and thus just need to do the same as the TB epilogue to get the
108 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
109 * non-volatile (and does something even more crazy for ARM), this probably
110 * won't work reliably on Windows. */
111#if defined(DOXYGEN_RUNNING) || (!defined(RT_OS_WINDOWS) && (defined(RT_ARCH_ARM64) /*|| defined(_RT_ARCH_AMD64)*/))
112# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
113#endif
114#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
115# if !defined(IN_RING3) \
116 || !defined(VBOX_WITH_IEM_RECOMPILER) \
117 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
118# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
119# elif defined(RT_OS_WINDOWS)
120# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
121# endif
122#endif
123
124
125/** @def IEM_DO_LONGJMP
126 *
127 * Wrapper around longjmp / throw.
128 *
129 * @param a_pVCpu The CPU handle.
130 * @param a_rc The status code jump back with / throw.
131 */
132#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
133# ifdef IEM_WITH_THROW_CATCH
134# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
135# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
136 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
137 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
138 throw int(a_rc); \
139 } while (0)
140# else
141# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
142# endif
143# else
144# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
145# endif
146#endif
147
148/** For use with IEM function that may do a longjmp (when enabled).
149 *
150 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
151 * attribute. So, we indicate that function that may be part of a longjmp may
152 * throw "exceptions" and that the compiler should definitely not generate and
153 * std::terminate calling unwind code.
154 *
155 * Here is one example of this ending in std::terminate:
156 * @code{.txt}
15700 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
15801 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
15902 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
16003 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
16104 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
16205 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
16306 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
16407 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
16508 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
16609 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1670a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1680b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1690c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1700d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1710e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1720f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
17310 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
174 @endcode
175 *
176 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
177 */
178#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
179# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
180#else
181# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
182#endif
183
184#define IEM_IMPLEMENTS_TASKSWITCH
185
186/** @def IEM_WITH_3DNOW
187 * Includes the 3DNow decoding. */
188#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
189# define IEM_WITH_3DNOW
190#endif
191
192/** @def IEM_WITH_THREE_0F_38
193 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
194#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
195# define IEM_WITH_THREE_0F_38
196#endif
197
198/** @def IEM_WITH_THREE_0F_3A
199 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
200#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
201# define IEM_WITH_THREE_0F_3A
202#endif
203
204/** @def IEM_WITH_VEX
205 * Includes the VEX decoding. */
206#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
207# define IEM_WITH_VEX
208#endif
209
210/** @def IEM_CFG_TARGET_CPU
211 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
212 *
213 * By default we allow this to be configured by the user via the
214 * CPUM/GuestCpuName config string, but this comes at a slight cost during
215 * decoding. So, for applications of this code where there is no need to
216 * be dynamic wrt target CPU, just modify this define.
217 */
218#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
219# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
220#endif
221
222//#define IEM_WITH_CODE_TLB // - work in progress
223//#define IEM_WITH_DATA_TLB // - work in progress
224
225
226/** @def IEM_USE_UNALIGNED_DATA_ACCESS
227 * Use unaligned accesses instead of elaborate byte assembly. */
228#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
229# define IEM_USE_UNALIGNED_DATA_ACCESS
230#endif
231
232//#define IEM_LOG_MEMORY_WRITES
233
234#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
235/** Instruction statistics. */
236typedef struct IEMINSTRSTATS
237{
238# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
239# include "IEMInstructionStatisticsTmpl.h"
240# undef IEM_DO_INSTR_STAT
241} IEMINSTRSTATS;
242#else
243struct IEMINSTRSTATS;
244typedef struct IEMINSTRSTATS IEMINSTRSTATS;
245#endif
246/** Pointer to IEM instruction statistics. */
247typedef IEMINSTRSTATS *PIEMINSTRSTATS;
248
249
250/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
251 * @{ */
252#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
253#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
254#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
255#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
256#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
257/** Selects the right variant from a_aArray.
258 * pVCpu is implicit in the caller context. */
259#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
260 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
261/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
262 * be used because the host CPU does not support the operation. */
263#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
264 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
265/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
266 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
267 * into the two.
268 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
269#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
270# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
271 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
272#else
273# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
274 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
275#endif
276/** @} */
277
278/**
279 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
280 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
281 *
282 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
283 * indicator.
284 *
285 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
286 */
287#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
288# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
289 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
290#else
291# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
292#endif
293
294
295/**
296 * Extended operand mode that includes a representation of 8-bit.
297 *
298 * This is used for packing down modes when invoking some C instruction
299 * implementations.
300 */
301typedef enum IEMMODEX
302{
303 IEMMODEX_16BIT = IEMMODE_16BIT,
304 IEMMODEX_32BIT = IEMMODE_32BIT,
305 IEMMODEX_64BIT = IEMMODE_64BIT,
306 IEMMODEX_8BIT
307} IEMMODEX;
308AssertCompileSize(IEMMODEX, 4);
309
310
311/**
312 * Branch types.
313 */
314typedef enum IEMBRANCH
315{
316 IEMBRANCH_JUMP = 1,
317 IEMBRANCH_CALL,
318 IEMBRANCH_TRAP,
319 IEMBRANCH_SOFTWARE_INT,
320 IEMBRANCH_HARDWARE_INT
321} IEMBRANCH;
322AssertCompileSize(IEMBRANCH, 4);
323
324
325/**
326 * INT instruction types.
327 */
328typedef enum IEMINT
329{
330 /** INT n instruction (opcode 0xcd imm). */
331 IEMINT_INTN = 0,
332 /** Single byte INT3 instruction (opcode 0xcc). */
333 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
334 /** Single byte INTO instruction (opcode 0xce). */
335 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
336 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
337 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
338} IEMINT;
339AssertCompileSize(IEMINT, 4);
340
341
342/**
343 * A FPU result.
344 */
345typedef struct IEMFPURESULT
346{
347 /** The output value. */
348 RTFLOAT80U r80Result;
349 /** The output status. */
350 uint16_t FSW;
351} IEMFPURESULT;
352AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
353/** Pointer to a FPU result. */
354typedef IEMFPURESULT *PIEMFPURESULT;
355/** Pointer to a const FPU result. */
356typedef IEMFPURESULT const *PCIEMFPURESULT;
357
358
359/**
360 * A FPU result consisting of two output values and FSW.
361 */
362typedef struct IEMFPURESULTTWO
363{
364 /** The first output value. */
365 RTFLOAT80U r80Result1;
366 /** The output status. */
367 uint16_t FSW;
368 /** The second output value. */
369 RTFLOAT80U r80Result2;
370} IEMFPURESULTTWO;
371AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
372AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
373/** Pointer to a FPU result consisting of two output values and FSW. */
374typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
375/** Pointer to a const FPU result consisting of two output values and FSW. */
376typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
377
378
379/**
380 * IEM TLB entry.
381 *
382 * Lookup assembly:
383 * @code{.asm}
384 ; Calculate tag.
385 mov rax, [VA]
386 shl rax, 16
387 shr rax, 16 + X86_PAGE_SHIFT
388 or rax, [uTlbRevision]
389
390 ; Do indexing.
391 movzx ecx, al
392 lea rcx, [pTlbEntries + rcx]
393
394 ; Check tag.
395 cmp [rcx + IEMTLBENTRY.uTag], rax
396 jne .TlbMiss
397
398 ; Check access.
399 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
400 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
401 cmp rax, [uTlbPhysRev]
402 jne .TlbMiss
403
404 ; Calc address and we're done.
405 mov eax, X86_PAGE_OFFSET_MASK
406 and eax, [VA]
407 or rax, [rcx + IEMTLBENTRY.pMappingR3]
408 %ifdef VBOX_WITH_STATISTICS
409 inc qword [cTlbHits]
410 %endif
411 jmp .Done
412
413 .TlbMiss:
414 mov r8d, ACCESS_FLAGS
415 mov rdx, [VA]
416 mov rcx, [pVCpu]
417 call iemTlbTypeMiss
418 .Done:
419
420 @endcode
421 *
422 */
423typedef struct IEMTLBENTRY
424{
425 /** The TLB entry tag.
426 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
427 * is ASSUMING a virtual address width of 48 bits.
428 *
429 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
430 *
431 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
432 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
433 * revision wraps around though, the tags needs to be zeroed.
434 *
435 * @note Try use SHRD instruction? After seeing
436 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
437 *
438 * @todo This will need to be reorganized for 57-bit wide virtual address and
439 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
440 * have to move the TLB entry versioning entirely to the
441 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
442 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
443 * consumed by PCID and ASID (12 + 6 = 18).
444 */
445 uint64_t uTag;
446 /** Access flags and physical TLB revision.
447 *
448 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
449 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
450 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
451 * - Bit 3 - pgm phys/virt - not directly writable.
452 * - Bit 4 - pgm phys page - not directly readable.
453 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
454 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
455 * - Bit 7 - tlb entry - pMappingR3 member not valid.
456 * - Bits 63 thru 8 are used for the physical TLB revision number.
457 *
458 * We're using complemented bit meanings here because it makes it easy to check
459 * whether special action is required. For instance a user mode write access
460 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
461 * non-zero result would mean special handling needed because either it wasn't
462 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
463 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
464 * need to check any PTE flag.
465 */
466 uint64_t fFlagsAndPhysRev;
467 /** The guest physical page address. */
468 uint64_t GCPhys;
469 /** Pointer to the ring-3 mapping. */
470 R3PTRTYPE(uint8_t *) pbMappingR3;
471#if HC_ARCH_BITS == 32
472 uint32_t u32Padding1;
473#endif
474} IEMTLBENTRY;
475AssertCompileSize(IEMTLBENTRY, 32);
476/** Pointer to an IEM TLB entry. */
477typedef IEMTLBENTRY *PIEMTLBENTRY;
478
479/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
480 * @{ */
481#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
482#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
483#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
484#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
485#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
486#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
487#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
488#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
489#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
490#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
491#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
492/** @} */
493
494
495/**
496 * An IEM TLB.
497 *
498 * We've got two of these, one for data and one for instructions.
499 */
500typedef struct IEMTLB
501{
502 /** The TLB entries.
503 * We've choosen 256 because that way we can obtain the result directly from a
504 * 8-bit register without an additional AND instruction. */
505 IEMTLBENTRY aEntries[256];
506 /** The TLB revision.
507 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
508 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
509 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
510 * (The revision zero indicates an invalid TLB entry.)
511 *
512 * The initial value is choosen to cause an early wraparound. */
513 uint64_t uTlbRevision;
514 /** The TLB physical address revision - shadow of PGM variable.
515 *
516 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
517 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
518 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
519 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
520 *
521 * The initial value is choosen to cause an early wraparound. */
522 uint64_t volatile uTlbPhysRev;
523
524 /* Statistics: */
525
526 /** TLB hits (VBOX_WITH_STATISTICS only). */
527 uint64_t cTlbHits;
528 /** TLB misses. */
529 uint32_t cTlbMisses;
530 /** Slow read path. */
531 uint32_t cTlbSlowReadPath;
532 /** Safe read path. */
533 uint32_t cTlbSafeReadPath;
534 /** Safe write path. */
535 uint32_t cTlbSafeWritePath;
536#if 0
537 /** TLB misses because of tag mismatch. */
538 uint32_t cTlbMissesTag;
539 /** TLB misses because of virtual access violation. */
540 uint32_t cTlbMissesVirtAccess;
541 /** TLB misses because of dirty bit. */
542 uint32_t cTlbMissesDirty;
543 /** TLB misses because of MMIO */
544 uint32_t cTlbMissesMmio;
545 /** TLB misses because of write access handlers. */
546 uint32_t cTlbMissesWriteHandler;
547 /** TLB misses because no r3(/r0) mapping. */
548 uint32_t cTlbMissesMapping;
549#endif
550 /** Alignment padding. */
551 uint32_t au32Padding[6];
552} IEMTLB;
553AssertCompileSizeAlignment(IEMTLB, 64);
554/** IEMTLB::uTlbRevision increment. */
555#define IEMTLB_REVISION_INCR RT_BIT_64(36)
556/** IEMTLB::uTlbRevision mask. */
557#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
558/** IEMTLB::uTlbPhysRev increment.
559 * @sa IEMTLBE_F_PHYS_REV */
560#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
561/**
562 * Calculates the TLB tag for a virtual address.
563 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
564 * @param a_pTlb The TLB.
565 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
566 * the clearing of the top 16 bits won't work (if 32-bit
567 * we'll end up with mostly zeros).
568 */
569#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
570/**
571 * Calculates the TLB tag for a virtual address but without TLB revision.
572 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
573 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
574 * the clearing of the top 16 bits won't work (if 32-bit
575 * we'll end up with mostly zeros).
576 */
577#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
578/**
579 * Converts a TLB tag value into a TLB index.
580 * @returns Index into IEMTLB::aEntries.
581 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
582 */
583#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
584/**
585 * Converts a TLB tag value into a TLB index.
586 * @returns Index into IEMTLB::aEntries.
587 * @param a_pTlb The TLB.
588 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
589 */
590#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
591
592
593/** @name IEM_MC_F_XXX - MC block flags/clues.
594 * @todo Merge with IEM_CIMPL_F_XXX
595 * @{ */
596#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
597#define IEM_MC_F_MIN_186 RT_BIT_32(1)
598#define IEM_MC_F_MIN_286 RT_BIT_32(2)
599#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
600#define IEM_MC_F_MIN_386 RT_BIT_32(3)
601#define IEM_MC_F_MIN_486 RT_BIT_32(4)
602#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
603#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
604#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
605#define IEM_MC_F_64BIT RT_BIT_32(6)
606#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
607/** This is set by IEMAllN8vePython.py to indicate a variation without the
608 * flags-clearing-and-checking, when there is also a variation with that.
609 * @note Do not use this manully, it's only for python and for testing in
610 * the native recompiler! */
611#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
612/** @} */
613
614/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
615 *
616 * These clues are mainly for the recompiler, so that it can emit correct code.
617 *
618 * They are processed by the python script and which also automatically
619 * calculates flags for MC blocks based on the statements, extending the use of
620 * these flags to describe MC block behavior to the recompiler core. The python
621 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
622 * error checking purposes. The script emits the necessary fEndTb = true and
623 * similar statements as this reduces compile time a tiny bit.
624 *
625 * @{ */
626/** Flag set if direct branch, clear if absolute or indirect. */
627#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
628/** Flag set if indirect branch, clear if direct or relative.
629 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
630 * as well as for return instructions (RET, IRET, RETF). */
631#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
632/** Flag set if relative branch, clear if absolute or indirect. */
633#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
634/** Flag set if conditional branch, clear if unconditional. */
635#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
636/** Flag set if it's a far branch (changes CS). */
637#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
638/** Convenience: Testing any kind of branch. */
639#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
640
641/** Execution flags may change (IEMCPU::fExec). */
642#define IEM_CIMPL_F_MODE RT_BIT_32(5)
643/** May change significant portions of RFLAGS. */
644#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
645/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
646#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
647/** May trigger interrupt shadowing. */
648#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
649/** May enable interrupts, so recheck IRQ immediately afterwards executing
650 * the instruction. */
651#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
652/** May disable interrupts, so recheck IRQ immediately before executing the
653 * instruction. */
654#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
655/** Convenience: Check for IRQ both before and after an instruction. */
656#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
657/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
658#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
659/** May modify FPU state.
660 * @todo Not sure if this is useful yet. */
661#define IEM_CIMPL_F_FPU RT_BIT_32(12)
662/** REP prefixed instruction which may yield before updating PC.
663 * @todo Not sure if this is useful, REP functions now return non-zero
664 * status if they don't update the PC. */
665#define IEM_CIMPL_F_REP RT_BIT_32(13)
666/** I/O instruction.
667 * @todo Not sure if this is useful yet. */
668#define IEM_CIMPL_F_IO RT_BIT_32(14)
669/** Force end of TB after the instruction. */
670#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
671/** Flag set if a branch may also modify the stack (push/pop return address). */
672#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
673/** Flag set if a branch may also modify the stack (push/pop return address)
674 * and switch it (load/restore SS:RSP). */
675#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
676/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
677#define IEM_CIMPL_F_XCPT \
678 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
679 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
680
681/** The block calls a C-implementation instruction function with two implicit arguments.
682 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
683 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
684 * @note The python scripts will add this if missing. */
685#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
686/** The block calls an ASM-implementation instruction function.
687 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
688 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
689 * @note The python scripts will add this if missing. */
690#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
691/** The block calls an ASM-implementation instruction function with an implicit
692 * X86FXSTATE pointer argument.
693 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
694 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
695 * @note The python scripts will add this if missing. */
696#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
697/** The block calls an ASM-implementation instruction function with an implicit
698 * X86XSAVEAREA pointer argument.
699 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
700 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
701 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
702 * @note The python scripts will add this if missing. */
703#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
704/** @} */
705
706
707/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
708 *
709 * These flags are set when entering IEM and adjusted as code is executed, such
710 * that they will always contain the current values as instructions are
711 * finished.
712 *
713 * In recompiled execution mode, (most of) these flags are included in the
714 * translation block selection key and stored in IEMTB::fFlags alongside the
715 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
716 * in IEMCPU::fExec.
717 *
718 * @{ */
719/** Mode: The block target mode mask. */
720#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
721/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
722#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
723/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
724 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
725 * 32-bit mode (for simplifying most memory accesses). */
726#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
727/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
728#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
729/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
730#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
731
732/** X86 Mode: 16-bit on 386 or later. */
733#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
734/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
735#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
736/** X86 Mode: 16-bit protected mode on 386 or later. */
737#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
738/** X86 Mode: 16-bit protected mode on 386 or later. */
739#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
740/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
741#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
742
743/** X86 Mode: 32-bit on 386 or later. */
744#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
745/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
746#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
747/** X86 Mode: 32-bit protected mode. */
748#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
749/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
750#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
751
752/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
753#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
754
755/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
756#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
757 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
758 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
759
760/** Bypass access handlers when set. */
761#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
762/** Have pending hardware instruction breakpoints. */
763#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
764/** Have pending hardware data breakpoints. */
765#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
766
767/** X86: Have pending hardware I/O breakpoints. */
768#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
769/** X86: Disregard the lock prefix (implied or not) when set. */
770#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
771
772/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
773#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
774
775/** Caller configurable options. */
776#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
777
778/** X86: The current protection level (CPL) shift factor. */
779#define IEM_F_X86_CPL_SHIFT 8
780/** X86: The current protection level (CPL) mask. */
781#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
782/** X86: The current protection level (CPL) shifted mask. */
783#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
784
785/** X86 execution context.
786 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
787 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
788 * mode. */
789#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
790/** X86 context: Plain regular execution context. */
791#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
792/** X86 context: VT-x enabled. */
793#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
794/** X86 context: AMD-V enabled. */
795#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
796/** X86 context: In AMD-V or VT-x guest mode. */
797#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
798/** X86 context: System management mode (SMM). */
799#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
800
801/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
802 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
803 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
804 * alread). */
805
806/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
807 * iemRegFinishClearingRF() most for most situations
808 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
809 * the IEM_F_PENDING_BRK_XXX bits alread). */
810
811/** @} */
812
813
814/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
815 *
816 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
817 * translation block flags. The combined flag mask (subject to
818 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
819 *
820 * @{ */
821/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
822#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
823
824/** Type: The block type mask. */
825#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
826/** Type: Purly threaded recompiler (via tables). */
827#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
828/** Type: Native recompilation. */
829#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
830
831/** Set when we're starting the block in an "interrupt shadow".
832 * We don't need to distingish between the two types of this mask, thus the one.
833 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
834#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
835/** Set when we're currently inhibiting NMIs
836 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
837#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
838
839/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
840 * we're close the limit before starting a TB, as determined by
841 * iemGetTbFlagsForCurrentPc(). */
842#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
843
844/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
845 *
846 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
847 * don't implement), because we don't currently generate any context
848 * specific code - that's all handled in CIMPL functions.
849 *
850 * For the threaded recompiler we don't generate any CPL specific code
851 * either, but the native recompiler does for memory access (saves getting
852 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
853 * Since most OSes will not share code between rings, this shouldn't
854 * have any real effect on TB/memory/recompiling load.
855 */
856#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
857/** @} */
858
859AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
860AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
861AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
862AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
863AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
864AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
865AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
866AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
867AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
868AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
869AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
870AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
871AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
872AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
873AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
874AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
875AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
876AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
877AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
878
879AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
880AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
881AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
882AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
883AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
884AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
885AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
886AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
887AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
888AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
889AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
890AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
891
892AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
893AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
894AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
895
896/** Native instruction type for use with the native code generator.
897 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
898#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
899typedef uint8_t IEMNATIVEINSTR;
900#else
901typedef uint32_t IEMNATIVEINSTR;
902#endif
903/** Pointer to a native instruction unit. */
904typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
905/** Pointer to a const native instruction unit. */
906typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
907
908/**
909 * A call for the threaded call table.
910 */
911typedef struct IEMTHRDEDCALLENTRY
912{
913 /** The function to call (IEMTHREADEDFUNCS). */
914 uint16_t enmFunction;
915 /** Instruction number in the TB (for statistics). */
916 uint8_t idxInstr;
917 uint8_t uUnused0;
918
919 /** Offset into IEMTB::pabOpcodes. */
920 uint16_t offOpcode;
921 /** The opcode length. */
922 uint8_t cbOpcode;
923 /** Index in to IEMTB::aRanges. */
924 uint8_t idxRange;
925
926 /** Generic parameters. */
927 uint64_t auParams[3];
928} IEMTHRDEDCALLENTRY;
929AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
930/** Pointer to a threaded call entry. */
931typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
932/** Pointer to a const threaded call entry. */
933typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
934
935/**
936 * Native IEM TB 'function' typedef.
937 *
938 * This will throw/longjmp on occation.
939 *
940 * @note AMD64 doesn't have that many non-volatile registers and does sport
941 * 32-bit address displacments, so we don't need pCtx.
942 *
943 * On ARM64 pCtx allows us to directly address the whole register
944 * context without requiring a separate indexing register holding the
945 * offset. This saves an instruction loading the offset for each guest
946 * CPU context access, at the cost of a non-volatile register.
947 * Fortunately, ARM64 has quite a lot more registers.
948 */
949typedef
950#ifdef RT_ARCH_AMD64
951int FNIEMTBNATIVE(PVMCPUCC pVCpu)
952#else
953int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
954#endif
955#if RT_CPLUSPLUS_PREREQ(201700)
956 IEM_NOEXCEPT_MAY_LONGJMP
957#endif
958 ;
959/** Pointer to a native IEM TB entry point function.
960 * This will throw/longjmp on occation. */
961typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
962
963
964/**
965 * Translation block debug info entry type.
966 */
967typedef enum IEMTBDBGENTRYTYPE
968{
969 kIemTbDbgEntryType_Invalid = 0,
970 /** The entry is for marking a native code position.
971 * Entries following this all apply to this position. */
972 kIemTbDbgEntryType_NativeOffset,
973 /** The entry is for a new guest instruction. */
974 kIemTbDbgEntryType_GuestInstruction,
975 /** Marks the start of a threaded call. */
976 kIemTbDbgEntryType_ThreadedCall,
977 /** Marks the location of a label. */
978 kIemTbDbgEntryType_Label,
979 /** Info about a host register shadowing a guest register. */
980 kIemTbDbgEntryType_GuestRegShadowing,
981#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
982 /** Info about a host SIMD register shadowing a guest SIMD register. */
983 kIemTbDbgEntryType_GuestSimdRegShadowing,
984#endif
985#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
986 /** Info about a delayed RIP update. */
987 kIemTbDbgEntryType_DelayedPcUpdate,
988#endif
989 kIemTbDbgEntryType_End
990} IEMTBDBGENTRYTYPE;
991
992/**
993 * Translation block debug info entry.
994 */
995typedef union IEMTBDBGENTRY
996{
997 /** Plain 32-bit view. */
998 uint32_t u;
999
1000 /** Generic view for getting at the type field. */
1001 struct
1002 {
1003 /** IEMTBDBGENTRYTYPE */
1004 uint32_t uType : 4;
1005 uint32_t uTypeSpecific : 28;
1006 } Gen;
1007
1008 struct
1009 {
1010 /** kIemTbDbgEntryType_ThreadedCall1. */
1011 uint32_t uType : 4;
1012 /** Native code offset. */
1013 uint32_t offNative : 28;
1014 } NativeOffset;
1015
1016 struct
1017 {
1018 /** kIemTbDbgEntryType_GuestInstruction. */
1019 uint32_t uType : 4;
1020 uint32_t uUnused : 4;
1021 /** The IEM_F_XXX flags. */
1022 uint32_t fExec : 24;
1023 } GuestInstruction;
1024
1025 struct
1026 {
1027 /* kIemTbDbgEntryType_ThreadedCall. */
1028 uint32_t uType : 4;
1029 /** Set if the call was recompiled to native code, clear if just calling
1030 * threaded function. */
1031 uint32_t fRecompiled : 1;
1032 uint32_t uUnused : 11;
1033 /** The threaded call number (IEMTHREADEDFUNCS). */
1034 uint32_t enmCall : 16;
1035 } ThreadedCall;
1036
1037 struct
1038 {
1039 /* kIemTbDbgEntryType_Label. */
1040 uint32_t uType : 4;
1041 uint32_t uUnused : 4;
1042 /** The label type (IEMNATIVELABELTYPE). */
1043 uint32_t enmLabel : 8;
1044 /** The label data. */
1045 uint32_t uData : 16;
1046 } Label;
1047
1048 struct
1049 {
1050 /* kIemTbDbgEntryType_GuestRegShadowing. */
1051 uint32_t uType : 4;
1052 uint32_t uUnused : 4;
1053 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1054 uint32_t idxGstReg : 8;
1055 /** The host new register number, UINT8_MAX if dropped. */
1056 uint32_t idxHstReg : 8;
1057 /** The previous host register number, UINT8_MAX if new. */
1058 uint32_t idxHstRegPrev : 8;
1059 } GuestRegShadowing;
1060
1061#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1062 struct
1063 {
1064 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1065 uint32_t uType : 4;
1066 uint32_t uUnused : 4;
1067 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1068 uint32_t idxGstSimdReg : 8;
1069 /** The host new register number, UINT8_MAX if dropped. */
1070 uint32_t idxHstSimdReg : 8;
1071 /** The previous host register number, UINT8_MAX if new. */
1072 uint32_t idxHstSimdRegPrev : 8;
1073 } GuestSimdRegShadowing;
1074#endif
1075
1076#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1077 struct
1078 {
1079 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1080 uint32_t uType : 4;
1081 /* The instruction offset added to the program counter. */
1082 uint32_t offPc : 14;
1083 /** Number of instructions skipped. */
1084 uint32_t cInstrSkipped : 14;
1085 } DelayedPcUpdate;
1086#endif
1087
1088} IEMTBDBGENTRY;
1089AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1090/** Pointer to a debug info entry. */
1091typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1092/** Pointer to a const debug info entry. */
1093typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1094
1095/**
1096 * Translation block debug info.
1097 */
1098typedef struct IEMTBDBG
1099{
1100 /** Number of entries in aEntries. */
1101 uint32_t cEntries;
1102 /** Debug info entries. */
1103 RT_FLEXIBLE_ARRAY_EXTENSION
1104 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1105} IEMTBDBG;
1106/** Pointer to TB debug info. */
1107typedef IEMTBDBG *PIEMTBDBG;
1108/** Pointer to const TB debug info. */
1109typedef IEMTBDBG const *PCIEMTBDBG;
1110
1111
1112/**
1113 * Translation block.
1114 *
1115 * The current plan is to just keep TBs and associated lookup hash table private
1116 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1117 * avoids using expensive atomic primitives for updating lists and stuff.
1118 */
1119#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1120typedef struct IEMTB
1121{
1122 /** Next block with the same hash table entry. */
1123 struct IEMTB *pNext;
1124 /** Usage counter. */
1125 uint32_t cUsed;
1126 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1127 uint32_t msLastUsed;
1128
1129 /** @name What uniquely identifies the block.
1130 * @{ */
1131 RTGCPHYS GCPhysPc;
1132 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1133 uint32_t fFlags;
1134 union
1135 {
1136 struct
1137 {
1138 /**< Relevant CS X86DESCATTR_XXX bits. */
1139 uint16_t fAttr;
1140 } x86;
1141 };
1142 /** @} */
1143
1144 /** Number of opcode ranges. */
1145 uint8_t cRanges;
1146 /** Statistics: Number of instructions in the block. */
1147 uint8_t cInstructions;
1148
1149 /** Type specific info. */
1150 union
1151 {
1152 struct
1153 {
1154 /** The call sequence table. */
1155 PIEMTHRDEDCALLENTRY paCalls;
1156 /** Number of calls in paCalls. */
1157 uint16_t cCalls;
1158 /** Number of calls allocated. */
1159 uint16_t cAllocated;
1160 } Thrd;
1161 struct
1162 {
1163 /** The native instructions (PFNIEMTBNATIVE). */
1164 PIEMNATIVEINSTR paInstructions;
1165 /** Number of instructions pointed to by paInstructions. */
1166 uint32_t cInstructions;
1167 } Native;
1168 /** Generic view for zeroing when freeing. */
1169 struct
1170 {
1171 uintptr_t uPtr;
1172 uint32_t uData;
1173 } Gen;
1174 };
1175
1176 /** The allocation chunk this TB belongs to. */
1177 uint8_t idxAllocChunk;
1178 uint8_t bUnused;
1179
1180 /** Number of bytes of opcodes stored in pabOpcodes.
1181 * @todo this field isn't really needed, aRanges keeps the actual info. */
1182 uint16_t cbOpcodes;
1183 /** Pointer to the opcode bytes this block was recompiled from. */
1184 uint8_t *pabOpcodes;
1185
1186 /** Debug info if enabled.
1187 * This is only generated by the native recompiler. */
1188 PIEMTBDBG pDbgInfo;
1189
1190 /* --- 64 byte cache line end --- */
1191
1192 /** Opcode ranges.
1193 *
1194 * The opcode checkers and maybe TLB loading functions will use this to figure
1195 * out what to do. The parameter will specify an entry and the opcode offset to
1196 * start at and the minimum number of bytes to verify (instruction length).
1197 *
1198 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1199 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1200 * code TLB (must have a valid entry for that address) and scan the ranges to
1201 * locate the corresponding opcodes. Probably.
1202 */
1203 struct IEMTBOPCODERANGE
1204 {
1205 /** Offset within pabOpcodes. */
1206 uint16_t offOpcodes;
1207 /** Number of bytes. */
1208 uint16_t cbOpcodes;
1209 /** The page offset. */
1210 RT_GCC_EXTENSION
1211 uint16_t offPhysPage : 12;
1212 /** Unused bits. */
1213 RT_GCC_EXTENSION
1214 uint16_t u2Unused : 2;
1215 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1216 RT_GCC_EXTENSION
1217 uint16_t idxPhysPage : 2;
1218 } aRanges[8];
1219
1220 /** Physical pages that this TB covers.
1221 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1222 RTGCPHYS aGCPhysPages[2];
1223} IEMTB;
1224#pragma pack()
1225AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1226AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1227AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1228AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1229AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1230AssertCompileMemberOffset(IEMTB, aRanges, 64);
1231AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1232#if 1
1233AssertCompileSize(IEMTB, 128);
1234# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1235#else
1236AssertCompileSize(IEMTB, 168);
1237# undef IEMTB_SIZE_IS_POWER_OF_TWO
1238#endif
1239
1240/** Pointer to a translation block. */
1241typedef IEMTB *PIEMTB;
1242/** Pointer to a const translation block. */
1243typedef IEMTB const *PCIEMTB;
1244
1245/**
1246 * A chunk of memory in the TB allocator.
1247 */
1248typedef struct IEMTBCHUNK
1249{
1250 /** Pointer to the translation blocks in this chunk. */
1251 PIEMTB paTbs;
1252#ifdef IN_RING0
1253 /** Allocation handle. */
1254 RTR0MEMOBJ hMemObj;
1255#endif
1256} IEMTBCHUNK;
1257
1258/**
1259 * A per-CPU translation block allocator.
1260 *
1261 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1262 * the length of the collision list, and of course also for cache line alignment
1263 * reasons, the TBs must be allocated with at least 64-byte alignment.
1264 * Memory is there therefore allocated using one of the page aligned allocators.
1265 *
1266 *
1267 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1268 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1269 * that enables us to quickly calculate the allocation bitmap position when
1270 * freeing the translation block.
1271 */
1272typedef struct IEMTBALLOCATOR
1273{
1274 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1275 uint32_t uMagic;
1276
1277#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1278 /** Mask corresponding to cTbsPerChunk - 1. */
1279 uint32_t fChunkMask;
1280 /** Shift count corresponding to cTbsPerChunk. */
1281 uint8_t cChunkShift;
1282#else
1283 uint32_t uUnused;
1284 uint8_t bUnused;
1285#endif
1286 /** Number of chunks we're allowed to allocate. */
1287 uint8_t cMaxChunks;
1288 /** Number of chunks currently populated. */
1289 uint16_t cAllocatedChunks;
1290 /** Number of translation blocks per chunk. */
1291 uint32_t cTbsPerChunk;
1292 /** Chunk size. */
1293 uint32_t cbPerChunk;
1294
1295 /** The maximum number of TBs. */
1296 uint32_t cMaxTbs;
1297 /** Total number of TBs in the populated chunks.
1298 * (cAllocatedChunks * cTbsPerChunk) */
1299 uint32_t cTotalTbs;
1300 /** The current number of TBs in use.
1301 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1302 uint32_t cInUseTbs;
1303 /** Statistics: Number of the cInUseTbs that are native ones. */
1304 uint32_t cNativeTbs;
1305 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1306 uint32_t cThreadedTbs;
1307
1308 /** Where to start pruning TBs from when we're out.
1309 * See iemTbAllocatorAllocSlow for details. */
1310 uint32_t iPruneFrom;
1311 /** Hint about which bit to start scanning the bitmap from. */
1312 uint32_t iStartHint;
1313 /** Where to start pruning native TBs from when we're out of executable memory.
1314 * See iemTbAllocatorFreeupNativeSpace for details. */
1315 uint32_t iPruneNativeFrom;
1316 uint32_t uPadding;
1317
1318 /** Statistics: Number of TB allocation calls. */
1319 STAMCOUNTER StatAllocs;
1320 /** Statistics: Number of TB free calls. */
1321 STAMCOUNTER StatFrees;
1322 /** Statistics: Time spend pruning. */
1323 STAMPROFILE StatPrune;
1324 /** Statistics: Time spend pruning native TBs. */
1325 STAMPROFILE StatPruneNative;
1326
1327 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1328 PIEMTB pDelayedFreeHead;
1329
1330 /** Allocation chunks. */
1331 IEMTBCHUNK aChunks[256];
1332
1333 /** Allocation bitmap for all possible chunk chunks. */
1334 RT_FLEXIBLE_ARRAY_EXTENSION
1335 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1336} IEMTBALLOCATOR;
1337/** Pointer to a TB allocator. */
1338typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1339
1340/** Magic value for the TB allocator (Emmet Harley Cohen). */
1341#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1342
1343
1344/**
1345 * A per-CPU translation block cache (hash table).
1346 *
1347 * The hash table is allocated once during IEM initialization and size double
1348 * the max TB count, rounded up to the nearest power of two (so we can use and
1349 * AND mask rather than a rest division when hashing).
1350 */
1351typedef struct IEMTBCACHE
1352{
1353 /** Magic value (IEMTBCACHE_MAGIC). */
1354 uint32_t uMagic;
1355 /** Size of the hash table. This is a power of two. */
1356 uint32_t cHash;
1357 /** The mask corresponding to cHash. */
1358 uint32_t uHashMask;
1359 uint32_t uPadding;
1360
1361 /** @name Statistics
1362 * @{ */
1363 /** Number of collisions ever. */
1364 STAMCOUNTER cCollisions;
1365
1366 /** Statistics: Number of TB lookup misses. */
1367 STAMCOUNTER cLookupMisses;
1368 /** Statistics: Number of TB lookup hits (debug only). */
1369 STAMCOUNTER cLookupHits;
1370 STAMCOUNTER auPadding2[3];
1371 /** Statistics: Collision list length pruning. */
1372 STAMPROFILE StatPrune;
1373 /** @} */
1374
1375 /** The hash table itself.
1376 * @note The lower 6 bits of the pointer is used for keeping the collision
1377 * list length, so we can take action when it grows too long.
1378 * This works because TBs are allocated using a 64 byte (or
1379 * higher) alignment from page aligned chunks of memory, so the lower
1380 * 6 bits of the address will always be zero.
1381 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1382 */
1383 RT_FLEXIBLE_ARRAY_EXTENSION
1384 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1385} IEMTBCACHE;
1386/** Pointer to a per-CPU translation block cahce. */
1387typedef IEMTBCACHE *PIEMTBCACHE;
1388
1389/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1390#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1391
1392/** The collision count mask for IEMTBCACHE::apHash entries. */
1393#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1394/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1395#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1396/** Combine a TB pointer and a collision list length into a value for an
1397 * IEMTBCACHE::apHash entry. */
1398#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1399/** Combine a TB pointer and a collision list length into a value for an
1400 * IEMTBCACHE::apHash entry. */
1401#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1402/** Combine a TB pointer and a collision list length into a value for an
1403 * IEMTBCACHE::apHash entry. */
1404#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1405
1406/**
1407 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1408 */
1409#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1410 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1411
1412/**
1413 * Calculates the hash table slot for a TB from physical PC address and TB
1414 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1415 */
1416#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1417 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1418
1419
1420/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1421 *
1422 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1423 *
1424 * @{ */
1425/** Value if no branching happened recently. */
1426#define IEMBRANCHED_F_NO UINT8_C(0x00)
1427/** Flag set if direct branch, clear if absolute or indirect. */
1428#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1429/** Flag set if indirect branch, clear if direct or relative. */
1430#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1431/** Flag set if relative branch, clear if absolute or indirect. */
1432#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1433/** Flag set if conditional branch, clear if unconditional. */
1434#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1435/** Flag set if it's a far branch. */
1436#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1437/** Flag set if the stack pointer is modified. */
1438#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1439/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1440#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1441/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1442#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1443/** @} */
1444
1445
1446/**
1447 * The per-CPU IEM state.
1448 */
1449typedef struct IEMCPU
1450{
1451 /** Info status code that needs to be propagated to the IEM caller.
1452 * This cannot be passed internally, as it would complicate all success
1453 * checks within the interpreter making the code larger and almost impossible
1454 * to get right. Instead, we'll store status codes to pass on here. Each
1455 * source of these codes will perform appropriate sanity checks. */
1456 int32_t rcPassUp; /* 0x00 */
1457 /** Execution flag, IEM_F_XXX. */
1458 uint32_t fExec; /* 0x04 */
1459
1460 /** @name Decoder state.
1461 * @{ */
1462#ifdef IEM_WITH_CODE_TLB
1463 /** The offset of the next instruction byte. */
1464 uint32_t offInstrNextByte; /* 0x08 */
1465 /** The number of bytes available at pbInstrBuf for the current instruction.
1466 * This takes the max opcode length into account so that doesn't need to be
1467 * checked separately. */
1468 uint32_t cbInstrBuf; /* 0x0c */
1469 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1470 * This can be NULL if the page isn't mappable for some reason, in which
1471 * case we'll do fallback stuff.
1472 *
1473 * If we're executing an instruction from a user specified buffer,
1474 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1475 * aligned pointer but pointer to the user data.
1476 *
1477 * For instructions crossing pages, this will start on the first page and be
1478 * advanced to the next page by the time we've decoded the instruction. This
1479 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1480 */
1481 uint8_t const *pbInstrBuf; /* 0x10 */
1482# if ARCH_BITS == 32
1483 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1484# endif
1485 /** The program counter corresponding to pbInstrBuf.
1486 * This is set to a non-canonical address when we need to invalidate it. */
1487 uint64_t uInstrBufPc; /* 0x18 */
1488 /** The guest physical address corresponding to pbInstrBuf. */
1489 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1490 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1491 * This takes the CS segment limit into account.
1492 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1493 uint16_t cbInstrBufTotal; /* 0x28 */
1494# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1495 /** Offset into pbInstrBuf of the first byte of the current instruction.
1496 * Can be negative to efficiently handle cross page instructions. */
1497 int16_t offCurInstrStart; /* 0x2a */
1498
1499 /** The prefix mask (IEM_OP_PRF_XXX). */
1500 uint32_t fPrefixes; /* 0x2c */
1501 /** The extra REX ModR/M register field bit (REX.R << 3). */
1502 uint8_t uRexReg; /* 0x30 */
1503 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1504 * (REX.B << 3). */
1505 uint8_t uRexB; /* 0x31 */
1506 /** The extra REX SIB index field bit (REX.X << 3). */
1507 uint8_t uRexIndex; /* 0x32 */
1508
1509 /** The effective segment register (X86_SREG_XXX). */
1510 uint8_t iEffSeg; /* 0x33 */
1511
1512 /** The offset of the ModR/M byte relative to the start of the instruction. */
1513 uint8_t offModRm; /* 0x34 */
1514
1515# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1516 /** The current offset into abOpcode. */
1517 uint8_t offOpcode; /* 0x35 */
1518# else
1519 uint8_t bUnused; /* 0x35 */
1520# endif
1521# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1522 uint8_t abOpaqueDecoderPart1[0x36 - 0x2a];
1523# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1524
1525#else /* !IEM_WITH_CODE_TLB */
1526# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1527 /** The size of what has currently been fetched into abOpcode. */
1528 uint8_t cbOpcode; /* 0x08 */
1529 /** The current offset into abOpcode. */
1530 uint8_t offOpcode; /* 0x09 */
1531 /** The offset of the ModR/M byte relative to the start of the instruction. */
1532 uint8_t offModRm; /* 0x0a */
1533
1534 /** The effective segment register (X86_SREG_XXX). */
1535 uint8_t iEffSeg; /* 0x0b */
1536
1537 /** The prefix mask (IEM_OP_PRF_XXX). */
1538 uint32_t fPrefixes; /* 0x0c */
1539 /** The extra REX ModR/M register field bit (REX.R << 3). */
1540 uint8_t uRexReg; /* 0x10 */
1541 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1542 * (REX.B << 3). */
1543 uint8_t uRexB; /* 0x11 */
1544 /** The extra REX SIB index field bit (REX.X << 3). */
1545 uint8_t uRexIndex; /* 0x12 */
1546
1547# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1548 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1549# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1550#endif /* !IEM_WITH_CODE_TLB */
1551
1552#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1553 /** The effective operand mode. */
1554 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1555 /** The default addressing mode. */
1556 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1557 /** The effective addressing mode. */
1558 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1559 /** The default operand mode. */
1560 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1561
1562 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1563 uint8_t idxPrefix; /* 0x3a, 0x17 */
1564 /** 3rd VEX/EVEX/XOP register.
1565 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1566 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1567 /** The VEX/EVEX/XOP length field. */
1568 uint8_t uVexLength; /* 0x3c, 0x19 */
1569 /** Additional EVEX stuff. */
1570 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1571
1572# ifndef IEM_WITH_CODE_TLB
1573 /** Explicit alignment padding. */
1574 uint8_t abAlignment2a[1]; /* 0x1b */
1575# endif
1576 /** The FPU opcode (FOP). */
1577 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1578# ifndef IEM_WITH_CODE_TLB
1579 /** Explicit alignment padding. */
1580 uint8_t abAlignment2b[2]; /* 0x1e */
1581# endif
1582
1583 /** The opcode bytes. */
1584 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1585 /** Explicit alignment padding. */
1586# ifdef IEM_WITH_CODE_TLB
1587 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1588# else
1589 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1590# endif
1591
1592#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1593# ifdef IEM_WITH_CODE_TLB
1594 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1595# else
1596 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1597# endif
1598#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1599 /** @} */
1600
1601
1602 /** The number of active guest memory mappings. */
1603 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1604
1605 /** Records for tracking guest memory mappings. */
1606 struct
1607 {
1608 /** The address of the mapped bytes. */
1609 R3R0PTRTYPE(void *) pv;
1610 /** The access flags (IEM_ACCESS_XXX).
1611 * IEM_ACCESS_INVALID if the entry is unused. */
1612 uint32_t fAccess;
1613#if HC_ARCH_BITS == 64
1614 uint32_t u32Alignment4; /**< Alignment padding. */
1615#endif
1616 } aMemMappings[3]; /* 0x50 LB 0x30 */
1617
1618 /** Locking records for the mapped memory. */
1619 union
1620 {
1621 PGMPAGEMAPLOCK Lock;
1622 uint64_t au64Padding[2];
1623 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1624
1625 /** Bounce buffer info.
1626 * This runs in parallel to aMemMappings. */
1627 struct
1628 {
1629 /** The physical address of the first byte. */
1630 RTGCPHYS GCPhysFirst;
1631 /** The physical address of the second page. */
1632 RTGCPHYS GCPhysSecond;
1633 /** The number of bytes in the first page. */
1634 uint16_t cbFirst;
1635 /** The number of bytes in the second page. */
1636 uint16_t cbSecond;
1637 /** Whether it's unassigned memory. */
1638 bool fUnassigned;
1639 /** Explicit alignment padding. */
1640 bool afAlignment5[3];
1641 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1642
1643 /** The flags of the current exception / interrupt. */
1644 uint32_t fCurXcpt; /* 0xf8 */
1645 /** The current exception / interrupt. */
1646 uint8_t uCurXcpt; /* 0xfc */
1647 /** Exception / interrupt recursion depth. */
1648 int8_t cXcptRecursions; /* 0xfb */
1649
1650 /** The next unused mapping index.
1651 * @todo try find room for this up with cActiveMappings. */
1652 uint8_t iNextMapping; /* 0xfd */
1653 uint8_t abAlignment7[1];
1654
1655 /** Bounce buffer storage.
1656 * This runs in parallel to aMemMappings and aMemBbMappings. */
1657 struct
1658 {
1659 uint8_t ab[512];
1660 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1661
1662
1663 /** Pointer set jump buffer - ring-3 context. */
1664 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1665 /** Pointer set jump buffer - ring-0 context. */
1666 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1667
1668 /** @todo Should move this near @a fCurXcpt later. */
1669 /** The CR2 for the current exception / interrupt. */
1670 uint64_t uCurXcptCr2;
1671 /** The error code for the current exception / interrupt. */
1672 uint32_t uCurXcptErr;
1673
1674 /** @name Statistics
1675 * @{ */
1676 /** The number of instructions we've executed. */
1677 uint32_t cInstructions;
1678 /** The number of potential exits. */
1679 uint32_t cPotentialExits;
1680 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1681 * This may contain uncommitted writes. */
1682 uint32_t cbWritten;
1683 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1684 uint32_t cRetInstrNotImplemented;
1685 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1686 uint32_t cRetAspectNotImplemented;
1687 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1688 uint32_t cRetInfStatuses;
1689 /** Counts other error statuses returned. */
1690 uint32_t cRetErrStatuses;
1691 /** Number of times rcPassUp has been used. */
1692 uint32_t cRetPassUpStatus;
1693 /** Number of times RZ left with instruction commit pending for ring-3. */
1694 uint32_t cPendingCommit;
1695 /** Number of misaligned (host sense) atomic instruction accesses. */
1696 uint32_t cMisalignedAtomics;
1697 /** Number of long jumps. */
1698 uint32_t cLongJumps;
1699 /** @} */
1700
1701 /** @name Target CPU information.
1702 * @{ */
1703#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1704 /** The target CPU. */
1705 uint8_t uTargetCpu;
1706#else
1707 uint8_t bTargetCpuPadding;
1708#endif
1709 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1710 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1711 * native host support and the 2nd for when there is.
1712 *
1713 * The two values are typically indexed by a g_CpumHostFeatures bit.
1714 *
1715 * This is for instance used for the BSF & BSR instructions where AMD and
1716 * Intel CPUs produce different EFLAGS. */
1717 uint8_t aidxTargetCpuEflFlavour[2];
1718
1719 /** The CPU vendor. */
1720 CPUMCPUVENDOR enmCpuVendor;
1721 /** @} */
1722
1723 /** @name Host CPU information.
1724 * @{ */
1725 /** The CPU vendor. */
1726 CPUMCPUVENDOR enmHostCpuVendor;
1727 /** @} */
1728
1729 /** Counts RDMSR \#GP(0) LogRel(). */
1730 uint8_t cLogRelRdMsr;
1731 /** Counts WRMSR \#GP(0) LogRel(). */
1732 uint8_t cLogRelWrMsr;
1733 /** Alignment padding. */
1734 uint8_t abAlignment9[42];
1735
1736 /** @name Recompilation
1737 * @{ */
1738 /** Pointer to the current translation block.
1739 * This can either be one being executed or one being compiled. */
1740 R3PTRTYPE(PIEMTB) pCurTbR3;
1741#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1742 /** Frame pointer for the last native TB to execute. */
1743 R3PTRTYPE(void *) pvTbFramePointerR3;
1744#else
1745 R3PTRTYPE(void *) pvUnusedR3;
1746#endif
1747 /** Fixed TB used for threaded recompilation.
1748 * This is allocated once with maxed-out sizes and re-used afterwards. */
1749 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1750 /** Pointer to the ring-3 TB cache for this EMT. */
1751 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1752 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1753 * The TBs are based on physical addresses, so this is needed to correleated
1754 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1755 uint64_t uCurTbStartPc;
1756 /** Number of threaded TBs executed. */
1757 uint64_t cTbExecThreaded;
1758 /** Number of native TBs executed. */
1759 uint64_t cTbExecNative;
1760 /** Whether we need to check the opcode bytes for the current instruction.
1761 * This is set by a previous instruction if it modified memory or similar. */
1762 bool fTbCheckOpcodes;
1763 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1764 uint8_t fTbBranched;
1765 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1766 bool fTbCrossedPage;
1767 /** Whether to end the current TB. */
1768 bool fEndTb;
1769 /** Number of instructions before we need emit an IRQ check call again.
1770 * This helps making sure we don't execute too long w/o checking for
1771 * interrupts and immediately following instructions that may enable
1772 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1773 * required to make sure we check following the next instruction as well, see
1774 * fTbCurInstrIsSti. */
1775 uint8_t cInstrTillIrqCheck;
1776 /** Indicates that the current instruction is an STI. This is set by the
1777 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1778 bool fTbCurInstrIsSti;
1779 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1780 uint16_t cbOpcodesAllocated;
1781 /** The current instruction number in a native TB.
1782 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1783 * and will be picked up by the TB execution loop. Only used when
1784 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1785 uint8_t idxTbCurInstr;
1786 /** Spaced reserved for recompiler data / alignment. */
1787 bool afRecompilerStuff1[3];
1788 /** The virtual sync time at the last timer poll call. */
1789 uint32_t msRecompilerPollNow;
1790 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1791 uint32_t fTbCurInstr;
1792 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1793 uint32_t fTbPrevInstr;
1794 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1795 RTGCPHYS GCPhysInstrBufPrev;
1796 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1797 * currently not up to date in EFLAGS. */
1798 uint32_t fSkippingEFlags;
1799 uint32_t au32Padding[1];
1800 /** Pointer to the ring-3 TB allocator for this EMT. */
1801 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1802 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1803 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1804 /** Pointer to the native recompiler state for ring-3. */
1805 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1806
1807 /** Statistics: Times TB execution was broken off before reaching the end. */
1808 STAMCOUNTER StatTbExecBreaks;
1809 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1810 STAMCOUNTER StatCheckIrqBreaks;
1811 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1812 STAMCOUNTER StatCheckModeBreaks;
1813 /** Statistics: Times a post jump target check missed and had to find new TB. */
1814 STAMCOUNTER StatCheckBranchMisses;
1815 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1816 STAMCOUNTER StatCheckNeedCsLimChecking;
1817 /** Native TB statistics: Number of fully recompiled TBs. */
1818 STAMCOUNTER StatNativeFullyRecompiledTbs;
1819 /** Threaded TB statistics: Number of instructions per TB. */
1820 STAMPROFILE StatTbThreadedInstr;
1821 /** Threaded TB statistics: Number of calls per TB. */
1822 STAMPROFILE StatTbThreadedCalls;
1823 /** Native TB statistics: Native code size per TB. */
1824 STAMPROFILE StatTbNativeCode;
1825 /** Native TB statistics: Profiling native recompilation. */
1826 STAMPROFILE StatNativeRecompilation;
1827 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1828 STAMPROFILE StatNativeCallsRecompiled;
1829 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1830 STAMPROFILE StatNativeCallsThreaded;
1831 /** Native recompiled execution: TLB hits for data fetches. */
1832 STAMCOUNTER StatNativeTlbHitsForFetch;
1833 /** Native recompiled execution: TLB hits for data stores. */
1834 STAMCOUNTER StatNativeTlbHitsForStore;
1835 /** Native recompiled execution: TLB hits for stack accesses. */
1836 STAMCOUNTER StatNativeTlbHitsForStack;
1837 /** Native recompiled execution: TLB hits for mapped accesses. */
1838 STAMCOUNTER StatNativeTlbHitsForMapped;
1839 /** Native recompiled execution: Code TLB misses for new page. */
1840 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
1841 /** Native recompiled execution: Code TLB hits for new page. */
1842 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
1843 /** Native recompiled execution: Code TLB misses for new page with offset. */
1844 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
1845 /** Native recompiled execution: Code TLB hits for new page with offset. */
1846 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
1847
1848 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
1849 STAMCOUNTER StatNativeRegFindFree;
1850 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
1851 * to free a variable. */
1852 STAMCOUNTER StatNativeRegFindFreeVar;
1853 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
1854 * not need to free any variables. */
1855 STAMCOUNTER StatNativeRegFindFreeNoVar;
1856 /** Native recompiler: Liveness info freed shadowed guest registers in
1857 * iemNativeRegAllocFindFree. */
1858 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
1859 /** Native recompiler: Liveness info helped with the allocation in
1860 * iemNativeRegAllocFindFree. */
1861 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
1862
1863 /** Native recompiler: Number of times status flags calc has been skipped. */
1864 STAMCOUNTER StatNativeEflSkippedArithmetic;
1865 /** Native recompiler: Number of times status flags calc has been skipped. */
1866 STAMCOUNTER StatNativeEflSkippedLogical;
1867
1868 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
1869 STAMCOUNTER StatNativeLivenessEflCfSkippable;
1870 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
1871 STAMCOUNTER StatNativeLivenessEflPfSkippable;
1872 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
1873 STAMCOUNTER StatNativeLivenessEflAfSkippable;
1874 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
1875 STAMCOUNTER StatNativeLivenessEflZfSkippable;
1876 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
1877 STAMCOUNTER StatNativeLivenessEflSfSkippable;
1878 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
1879 STAMCOUNTER StatNativeLivenessEflOfSkippable;
1880 /** Native recompiler: Number of required EFLAGS.CF updates. */
1881 STAMCOUNTER StatNativeLivenessEflCfRequired;
1882 /** Native recompiler: Number of required EFLAGS.PF updates. */
1883 STAMCOUNTER StatNativeLivenessEflPfRequired;
1884 /** Native recompiler: Number of required EFLAGS.AF updates. */
1885 STAMCOUNTER StatNativeLivenessEflAfRequired;
1886 /** Native recompiler: Number of required EFLAGS.ZF updates. */
1887 STAMCOUNTER StatNativeLivenessEflZfRequired;
1888 /** Native recompiler: Number of required EFLAGS.SF updates. */
1889 STAMCOUNTER StatNativeLivenessEflSfRequired;
1890 /** Native recompiler: Number of required EFLAGS.OF updates. */
1891 STAMCOUNTER StatNativeLivenessEflOfRequired;
1892 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
1893 STAMCOUNTER StatNativeLivenessEflCfDelayable;
1894 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
1895 STAMCOUNTER StatNativeLivenessEflPfDelayable;
1896 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
1897 STAMCOUNTER StatNativeLivenessEflAfDelayable;
1898 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
1899 STAMCOUNTER StatNativeLivenessEflZfDelayable;
1900 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
1901 STAMCOUNTER StatNativeLivenessEflSfDelayable;
1902 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
1903 STAMCOUNTER StatNativeLivenessEflOfDelayable;
1904
1905 /** Native recompiler: Number of potential PC updates in total. */
1906 STAMCOUNTER StatNativePcUpdateTotal;
1907 /** Native recompiler: Number of PC updates which could be delayed. */
1908 STAMCOUNTER StatNativePcUpdateDelayed;
1909
1910#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1911 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
1912 STAMCOUNTER StatNativeSimdRegFindFree;
1913 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
1914 * to free a variable. */
1915 STAMCOUNTER StatNativeSimdRegFindFreeVar;
1916 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
1917 * not need to free any variables. */
1918 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
1919 /** Native recompiler: Liveness info freed shadowed guest registers in
1920 * iemNativeSimdRegAllocFindFree. */
1921 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
1922 /** Native recompiler: Liveness info helped with the allocation in
1923 * iemNativeSimdRegAllocFindFree. */
1924 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
1925
1926 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
1927 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
1928 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
1929 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
1930 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
1931 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
1932
1933 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
1934 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
1935 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
1936 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
1937 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
1938 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
1939#endif
1940
1941 uint64_t au64Padding[5];
1942 /** @} */
1943
1944 /** Data TLB.
1945 * @remarks Must be 64-byte aligned. */
1946 IEMTLB DataTlb;
1947 /** Instruction TLB.
1948 * @remarks Must be 64-byte aligned. */
1949 IEMTLB CodeTlb;
1950
1951 /** Exception statistics. */
1952 STAMCOUNTER aStatXcpts[32];
1953 /** Interrupt statistics. */
1954 uint32_t aStatInts[256];
1955
1956#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1957 /** Instruction statistics for ring-0/raw-mode. */
1958 IEMINSTRSTATS StatsRZ;
1959 /** Instruction statistics for ring-3. */
1960 IEMINSTRSTATS StatsR3;
1961# ifdef VBOX_WITH_IEM_RECOMPILER
1962 /** Statistics per threaded function call.
1963 * Updated by both the threaded and native recompilers. */
1964 uint32_t acThreadedFuncStats[0x5000 /*20480*/];
1965# endif
1966#endif
1967} IEMCPU;
1968AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1969AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1970AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1971AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1972AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1973AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1974
1975/** Pointer to the per-CPU IEM state. */
1976typedef IEMCPU *PIEMCPU;
1977/** Pointer to the const per-CPU IEM state. */
1978typedef IEMCPU const *PCIEMCPU;
1979
1980
1981/** @def IEM_GET_CTX
1982 * Gets the guest CPU context for the calling EMT.
1983 * @returns PCPUMCTX
1984 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1985 */
1986#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1987
1988/** @def IEM_CTX_ASSERT
1989 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1990 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1991 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1992 */
1993#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1994 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1995 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1996 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1997
1998/** @def IEM_CTX_IMPORT_RET
1999 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2000 *
2001 * Will call the keep to import the bits as needed.
2002 *
2003 * Returns on import failure.
2004 *
2005 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2006 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2007 */
2008#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2009 do { \
2010 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2011 { /* likely */ } \
2012 else \
2013 { \
2014 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2015 AssertRCReturn(rcCtxImport, rcCtxImport); \
2016 } \
2017 } while (0)
2018
2019/** @def IEM_CTX_IMPORT_NORET
2020 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2021 *
2022 * Will call the keep to import the bits as needed.
2023 *
2024 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2025 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2026 */
2027#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2028 do { \
2029 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2030 { /* likely */ } \
2031 else \
2032 { \
2033 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2034 AssertLogRelRC(rcCtxImport); \
2035 } \
2036 } while (0)
2037
2038/** @def IEM_CTX_IMPORT_JMP
2039 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2040 *
2041 * Will call the keep to import the bits as needed.
2042 *
2043 * Jumps on import failure.
2044 *
2045 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2046 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2047 */
2048#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2049 do { \
2050 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2051 { /* likely */ } \
2052 else \
2053 { \
2054 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2055 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2056 } \
2057 } while (0)
2058
2059
2060
2061/** @def IEM_GET_TARGET_CPU
2062 * Gets the current IEMTARGETCPU value.
2063 * @returns IEMTARGETCPU value.
2064 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2065 */
2066#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2067# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2068#else
2069# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2070#endif
2071
2072/** @def IEM_GET_INSTR_LEN
2073 * Gets the instruction length. */
2074#ifdef IEM_WITH_CODE_TLB
2075# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2076#else
2077# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2078#endif
2079
2080/** @def IEM_TRY_SETJMP
2081 * Wrapper around setjmp / try, hiding all the ugly differences.
2082 *
2083 * @note Use with extreme care as this is a fragile macro.
2084 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2085 * @param a_rcTarget The variable that should receive the status code in case
2086 * of a longjmp/throw.
2087 */
2088/** @def IEM_TRY_SETJMP_AGAIN
2089 * For when setjmp / try is used again in the same variable scope as a previous
2090 * IEM_TRY_SETJMP invocation.
2091 */
2092/** @def IEM_CATCH_LONGJMP_BEGIN
2093 * Start wrapper for catch / setjmp-else.
2094 *
2095 * This will set up a scope.
2096 *
2097 * @note Use with extreme care as this is a fragile macro.
2098 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2099 * @param a_rcTarget The variable that should receive the status code in case
2100 * of a longjmp/throw.
2101 */
2102/** @def IEM_CATCH_LONGJMP_END
2103 * End wrapper for catch / setjmp-else.
2104 *
2105 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2106 * state.
2107 *
2108 * @note Use with extreme care as this is a fragile macro.
2109 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2110 */
2111#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2112# ifdef IEM_WITH_THROW_CATCH
2113# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2114 a_rcTarget = VINF_SUCCESS; \
2115 try
2116# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2117 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2118# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2119 catch (int rcThrown) \
2120 { \
2121 a_rcTarget = rcThrown
2122# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2123 } \
2124 ((void)0)
2125# else /* !IEM_WITH_THROW_CATCH */
2126# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2127 jmp_buf JmpBuf; \
2128 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2129 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2130 if ((rcStrict = setjmp(JmpBuf)) == 0)
2131# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2132 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2133 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2134 if ((rcStrict = setjmp(JmpBuf)) == 0)
2135# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2136 else \
2137 { \
2138 ((void)0)
2139# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2140 } \
2141 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2142# endif /* !IEM_WITH_THROW_CATCH */
2143#endif /* IEM_WITH_SETJMP */
2144
2145
2146/**
2147 * Shared per-VM IEM data.
2148 */
2149typedef struct IEM
2150{
2151 /** The VMX APIC-access page handler type. */
2152 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2153#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2154 /** Set if the CPUID host call functionality is enabled. */
2155 bool fCpuIdHostCall;
2156#endif
2157} IEM;
2158
2159
2160
2161/** @name IEM_ACCESS_XXX - Access details.
2162 * @{ */
2163#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2164#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2165#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2166#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2167#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2168#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2169#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2170#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2171#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2172#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2173/** The writes are partial, so if initialize the bounce buffer with the
2174 * orignal RAM content. */
2175#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2176/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2177#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2178/** Bounce buffer with ring-3 write pending, first page. */
2179#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2180/** Bounce buffer with ring-3 write pending, second page. */
2181#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2182/** Not locked, accessed via the TLB. */
2183#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2184/** Atomic access.
2185 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2186 * fallback for misaligned stuff. See @bugref{10547}. */
2187#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2188/** Valid bit mask. */
2189#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2190/** Shift count for the TLB flags (upper word). */
2191#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2192
2193/** Atomic read+write data alias. */
2194#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2195/** Read+write data alias. */
2196#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2197/** Write data alias. */
2198#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2199/** Read data alias. */
2200#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2201/** Instruction fetch alias. */
2202#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2203/** Stack write alias. */
2204#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2205/** Stack read alias. */
2206#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2207/** Stack read+write alias. */
2208#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2209/** Read system table alias. */
2210#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2211/** Read+write system table alias. */
2212#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2213/** @} */
2214
2215/** @name Prefix constants (IEMCPU::fPrefixes)
2216 * @{ */
2217#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2218#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2219#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2220#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2221#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2222#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2223#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2224
2225#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2226#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2227#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2228
2229#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2230#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2231#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2232
2233#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2234#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2235#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2236#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2237/** Mask with all the REX prefix flags.
2238 * This is generally for use when needing to undo the REX prefixes when they
2239 * are followed legacy prefixes and therefore does not immediately preceed
2240 * the first opcode byte.
2241 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2242#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2243
2244#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2245#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2246#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2247/** @} */
2248
2249/** @name IEMOPFORM_XXX - Opcode forms
2250 * @note These are ORed together with IEMOPHINT_XXX.
2251 * @{ */
2252/** ModR/M: reg, r/m */
2253#define IEMOPFORM_RM 0
2254/** ModR/M: reg, r/m (register) */
2255#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2256/** ModR/M: reg, r/m (memory) */
2257#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2258/** ModR/M: reg, r/m, imm */
2259#define IEMOPFORM_RMI 1
2260/** ModR/M: reg, r/m (register), imm */
2261#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2262/** ModR/M: reg, r/m (memory), imm */
2263#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2264/** ModR/M: reg, r/m, xmm0 */
2265#define IEMOPFORM_RM0 2
2266/** ModR/M: reg, r/m (register), xmm0 */
2267#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2268/** ModR/M: reg, r/m (memory), xmm0 */
2269#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2270/** ModR/M: r/m, reg */
2271#define IEMOPFORM_MR 3
2272/** ModR/M: r/m (register), reg */
2273#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2274/** ModR/M: r/m (memory), reg */
2275#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2276/** ModR/M: r/m, reg, imm */
2277#define IEMOPFORM_MRI 4
2278/** ModR/M: r/m (register), reg, imm */
2279#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2280/** ModR/M: r/m (memory), reg, imm */
2281#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2282/** ModR/M: r/m only */
2283#define IEMOPFORM_M 5
2284/** ModR/M: r/m only (register). */
2285#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2286/** ModR/M: r/m only (memory). */
2287#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2288/** ModR/M: r/m, imm */
2289#define IEMOPFORM_MI 6
2290/** ModR/M: r/m (register), imm */
2291#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2292/** ModR/M: r/m (memory), imm */
2293#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2294/** ModR/M: r/m, 1 (shift and rotate instructions) */
2295#define IEMOPFORM_M1 7
2296/** ModR/M: r/m (register), 1. */
2297#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2298/** ModR/M: r/m (memory), 1. */
2299#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2300/** ModR/M: r/m, CL (shift and rotate instructions)
2301 * @todo This should just've been a generic fixed register. But the python
2302 * code doesn't needs more convincing. */
2303#define IEMOPFORM_M_CL 8
2304/** ModR/M: r/m (register), CL. */
2305#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2306/** ModR/M: r/m (memory), CL. */
2307#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2308/** ModR/M: reg only */
2309#define IEMOPFORM_R 9
2310
2311/** VEX+ModR/M: reg, r/m */
2312#define IEMOPFORM_VEX_RM 16
2313/** VEX+ModR/M: reg, r/m (register) */
2314#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2315/** VEX+ModR/M: reg, r/m (memory) */
2316#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2317/** VEX+ModR/M: r/m, reg */
2318#define IEMOPFORM_VEX_MR 17
2319/** VEX+ModR/M: r/m (register), reg */
2320#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2321/** VEX+ModR/M: r/m (memory), reg */
2322#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2323/** VEX+ModR/M: r/m, reg, imm8 */
2324#define IEMOPFORM_VEX_MRI 18
2325/** VEX+ModR/M: r/m (register), reg, imm8 */
2326#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2327/** VEX+ModR/M: r/m (memory), reg, imm8 */
2328#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2329/** VEX+ModR/M: r/m only */
2330#define IEMOPFORM_VEX_M 19
2331/** VEX+ModR/M: r/m only (register). */
2332#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2333/** VEX+ModR/M: r/m only (memory). */
2334#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2335/** VEX+ModR/M: reg only */
2336#define IEMOPFORM_VEX_R 20
2337/** VEX+ModR/M: reg, vvvv, r/m */
2338#define IEMOPFORM_VEX_RVM 21
2339/** VEX+ModR/M: reg, vvvv, r/m (register). */
2340#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2341/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2342#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2343/** VEX+ModR/M: reg, vvvv, r/m, imm */
2344#define IEMOPFORM_VEX_RVMI 22
2345/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2346#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2347/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2348#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2349/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2350#define IEMOPFORM_VEX_RVMR 23
2351/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2352#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2353/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2354#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2355/** VEX+ModR/M: reg, r/m, vvvv */
2356#define IEMOPFORM_VEX_RMV 24
2357/** VEX+ModR/M: reg, r/m, vvvv (register). */
2358#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2359/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2360#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2361/** VEX+ModR/M: reg, r/m, imm8 */
2362#define IEMOPFORM_VEX_RMI 25
2363/** VEX+ModR/M: reg, r/m, imm8 (register). */
2364#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2365/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2366#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2367/** VEX+ModR/M: r/m, vvvv, reg */
2368#define IEMOPFORM_VEX_MVR 26
2369/** VEX+ModR/M: r/m, vvvv, reg (register) */
2370#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2371/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2372#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2373/** VEX+ModR/M+/n: vvvv, r/m */
2374#define IEMOPFORM_VEX_VM 27
2375/** VEX+ModR/M+/n: vvvv, r/m (register) */
2376#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2377/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2378#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2379/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2380#define IEMOPFORM_VEX_VMI 28
2381/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2382#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2383/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2384#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2385
2386/** Fixed register instruction, no R/M. */
2387#define IEMOPFORM_FIXED 32
2388
2389/** The r/m is a register. */
2390#define IEMOPFORM_MOD3 RT_BIT_32(8)
2391/** The r/m is a memory access. */
2392#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2393/** @} */
2394
2395/** @name IEMOPHINT_XXX - Additional Opcode Hints
2396 * @note These are ORed together with IEMOPFORM_XXX.
2397 * @{ */
2398/** Ignores the operand size prefix (66h). */
2399#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2400/** Ignores REX.W (aka WIG). */
2401#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2402/** Both the operand size prefixes (66h + REX.W) are ignored. */
2403#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2404/** Allowed with the lock prefix. */
2405#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2406/** The VEX.L value is ignored (aka LIG). */
2407#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2408/** The VEX.L value must be zero (i.e. 128-bit width only). */
2409#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2410/** The VEX.L value must be one (i.e. 256-bit width only). */
2411#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2412/** The VEX.V value must be zero. */
2413#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2414/** The REX.W/VEX.V value must be zero. */
2415#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2416#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2417/** The REX.W/VEX.V value must be one. */
2418#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2419#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2420
2421/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2422#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2423/** @} */
2424
2425/**
2426 * Possible hardware task switch sources.
2427 */
2428typedef enum IEMTASKSWITCH
2429{
2430 /** Task switch caused by an interrupt/exception. */
2431 IEMTASKSWITCH_INT_XCPT = 1,
2432 /** Task switch caused by a far CALL. */
2433 IEMTASKSWITCH_CALL,
2434 /** Task switch caused by a far JMP. */
2435 IEMTASKSWITCH_JUMP,
2436 /** Task switch caused by an IRET. */
2437 IEMTASKSWITCH_IRET
2438} IEMTASKSWITCH;
2439AssertCompileSize(IEMTASKSWITCH, 4);
2440
2441/**
2442 * Possible CrX load (write) sources.
2443 */
2444typedef enum IEMACCESSCRX
2445{
2446 /** CrX access caused by 'mov crX' instruction. */
2447 IEMACCESSCRX_MOV_CRX,
2448 /** CrX (CR0) write caused by 'lmsw' instruction. */
2449 IEMACCESSCRX_LMSW,
2450 /** CrX (CR0) write caused by 'clts' instruction. */
2451 IEMACCESSCRX_CLTS,
2452 /** CrX (CR0) read caused by 'smsw' instruction. */
2453 IEMACCESSCRX_SMSW
2454} IEMACCESSCRX;
2455
2456#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2457/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2458 *
2459 * These flags provide further context to SLAT page-walk failures that could not be
2460 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2461 *
2462 * @{
2463 */
2464/** Translating a nested-guest linear address failed accessing a nested-guest
2465 * physical address. */
2466# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2467/** Translating a nested-guest linear address failed accessing a
2468 * paging-structure entry or updating accessed/dirty bits. */
2469# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2470/** @} */
2471
2472DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2473# ifndef IN_RING3
2474DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2475# endif
2476#endif
2477
2478/**
2479 * Indicates to the verifier that the given flag set is undefined.
2480 *
2481 * Can be invoked again to add more flags.
2482 *
2483 * This is a NOOP if the verifier isn't compiled in.
2484 *
2485 * @note We're temporarily keeping this until code is converted to new
2486 * disassembler style opcode handling.
2487 */
2488#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2489
2490
2491/** @def IEM_DECL_IMPL_TYPE
2492 * For typedef'ing an instruction implementation function.
2493 *
2494 * @param a_RetType The return type.
2495 * @param a_Name The name of the type.
2496 * @param a_ArgList The argument list enclosed in parentheses.
2497 */
2498
2499/** @def IEM_DECL_IMPL_DEF
2500 * For defining an instruction implementation function.
2501 *
2502 * @param a_RetType The return type.
2503 * @param a_Name The name of the type.
2504 * @param a_ArgList The argument list enclosed in parentheses.
2505 */
2506
2507#if defined(__GNUC__) && defined(RT_ARCH_X86)
2508# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2509 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2510# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2511 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2512# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2513 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2514
2515#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2516# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2517 a_RetType (__fastcall a_Name) a_ArgList
2518# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2519 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2520# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2521 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2522
2523#elif __cplusplus >= 201700 /* P0012R1 support */
2524# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2525 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2526# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2527 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2528# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2529 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2530
2531#else
2532# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2533 a_RetType (VBOXCALL a_Name) a_ArgList
2534# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2535 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2536# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2537 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2538
2539#endif
2540
2541/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2542RT_C_DECLS_BEGIN
2543extern uint8_t const g_afParity[256];
2544RT_C_DECLS_END
2545
2546
2547/** @name Arithmetic assignment operations on bytes (binary).
2548 * @{ */
2549typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2550typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2551FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2552FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2553FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2554FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2555FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2556FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2557FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2558/** @} */
2559
2560/** @name Arithmetic assignment operations on words (binary).
2561 * @{ */
2562typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2563typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2564FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2565FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2566FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2567FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2568FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2569FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2570FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2571/** @} */
2572
2573/** @name Arithmetic assignment operations on double words (binary).
2574 * @{ */
2575typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2576typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2577FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2578FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2579FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2580FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2581FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2582FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2583FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2584FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2585FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2586FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2587/** @} */
2588
2589/** @name Arithmetic assignment operations on quad words (binary).
2590 * @{ */
2591typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2592typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2593FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2594FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2595FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2596FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2597FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2598FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2599FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2600FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2601FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2602FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2603/** @} */
2604
2605typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2606typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2607typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2608typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2609typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2610typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2611typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2612typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2613
2614/** @name Compare operations (thrown in with the binary ops).
2615 * @{ */
2616FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2617FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2618FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2619FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2620/** @} */
2621
2622/** @name Test operations (thrown in with the binary ops).
2623 * @{ */
2624FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2625FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2626FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2627FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2628/** @} */
2629
2630/** @name Bit operations operations (thrown in with the binary ops).
2631 * @{ */
2632FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2633FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2634FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2635FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2636FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2637FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2638FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2639FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2640FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2641FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2642FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2643FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2644/** @} */
2645
2646/** @name Arithmetic three operand operations on double words (binary).
2647 * @{ */
2648typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2649typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2650FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2651FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2652FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2653/** @} */
2654
2655/** @name Arithmetic three operand operations on quad words (binary).
2656 * @{ */
2657typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2658typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2659FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2660FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2661FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2662/** @} */
2663
2664/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2665 * @{ */
2666typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2667typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2668FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2669FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2670FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2671FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2672FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2673FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2674/** @} */
2675
2676/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2677 * @{ */
2678typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2679typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2680FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2681FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2682FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2683FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2684FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2685FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2686/** @} */
2687
2688/** @name MULX 32-bit and 64-bit.
2689 * @{ */
2690typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2691typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2692FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2693
2694typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2695typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2696FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2697/** @} */
2698
2699
2700/** @name Exchange memory with register operations.
2701 * @{ */
2702IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2703IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2704IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2705IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2706IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2707IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2708IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2709IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2710/** @} */
2711
2712/** @name Exchange and add operations.
2713 * @{ */
2714IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2715IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2716IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2717IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2718IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2719IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2720IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2721IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2722/** @} */
2723
2724/** @name Compare and exchange.
2725 * @{ */
2726IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2727IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2728IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2729IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2730IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2731IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2732#if ARCH_BITS == 32
2733IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2734IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2735#else
2736IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2737IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2738#endif
2739IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2740 uint32_t *pEFlags));
2741IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2742 uint32_t *pEFlags));
2743IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2744 uint32_t *pEFlags));
2745IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2746 uint32_t *pEFlags));
2747#ifndef RT_ARCH_ARM64
2748IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2749 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2750#endif
2751/** @} */
2752
2753/** @name Memory ordering
2754 * @{ */
2755typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2756typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2757IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2758IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2759IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2760#ifndef RT_ARCH_ARM64
2761IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2762#endif
2763/** @} */
2764
2765/** @name Double precision shifts
2766 * @{ */
2767typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2768typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2769typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2770typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2771typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2772typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2773FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2774FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2775FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2776FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2777FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2778FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2779/** @} */
2780
2781
2782/** @name Bit search operations (thrown in with the binary ops).
2783 * @{ */
2784FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2785FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2786FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2787FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2788FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2789FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2790FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2791FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2792FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2793FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2794FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2795FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2796FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2797FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2798FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2799/** @} */
2800
2801/** @name Signed multiplication operations (thrown in with the binary ops).
2802 * @{ */
2803FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2804FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2805FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2806/** @} */
2807
2808/** @name Arithmetic assignment operations on bytes (unary).
2809 * @{ */
2810typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2811typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2812FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2813FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2814FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2815FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2816/** @} */
2817
2818/** @name Arithmetic assignment operations on words (unary).
2819 * @{ */
2820typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2821typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2822FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2823FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2824FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2825FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2826/** @} */
2827
2828/** @name Arithmetic assignment operations on double words (unary).
2829 * @{ */
2830typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2831typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2832FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2833FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2834FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2835FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2836/** @} */
2837
2838/** @name Arithmetic assignment operations on quad words (unary).
2839 * @{ */
2840typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2841typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2842FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2843FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2844FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2845FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2846/** @} */
2847
2848
2849/** @name Shift operations on bytes (Group 2).
2850 * @{ */
2851typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2852typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2853FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2854FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2855FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2856FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2857FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2858FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2859FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2860/** @} */
2861
2862/** @name Shift operations on words (Group 2).
2863 * @{ */
2864typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2865typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2866FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2867FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2868FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2869FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2870FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2871FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2872FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2873/** @} */
2874
2875/** @name Shift operations on double words (Group 2).
2876 * @{ */
2877typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2878typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2879FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2880FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2881FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2882FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2883FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2884FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2885FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2886/** @} */
2887
2888/** @name Shift operations on words (Group 2).
2889 * @{ */
2890typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2891typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2892FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2893FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2894FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2895FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2896FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2897FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2898FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2899/** @} */
2900
2901/** @name Multiplication and division operations.
2902 * @{ */
2903typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2904typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2905FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2906FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2907FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2908FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2909
2910typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2911typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2912FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2913FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2914FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2915FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2916
2917typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2918typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2919FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2920FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2921FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2922FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2923
2924typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2925typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2926FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2927FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2928FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2929FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2930/** @} */
2931
2932/** @name Byte Swap.
2933 * @{ */
2934IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2935IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2936IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2937/** @} */
2938
2939/** @name Misc.
2940 * @{ */
2941FNIEMAIMPLBINU16 iemAImpl_arpl;
2942/** @} */
2943
2944/** @name RDRAND and RDSEED
2945 * @{ */
2946typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2947typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2948typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2949typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
2950typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
2951typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
2952
2953FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2954FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2955FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2956FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2957FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2958FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2959/** @} */
2960
2961/** @name ADOX and ADCX
2962 * @{ */
2963FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2964FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2965FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2966FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2967/** @} */
2968
2969/** @name FPU operations taking a 32-bit float argument
2970 * @{ */
2971typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2972 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2973typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2974
2975typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2976 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2977typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2978
2979FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2980FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2981FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2982FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2983FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2984FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2985FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2986
2987IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2988IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2989 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2990/** @} */
2991
2992/** @name FPU operations taking a 64-bit float argument
2993 * @{ */
2994typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2995 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2996typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2997
2998typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2999 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3000typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3001
3002FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3003FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3004FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3005FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3006FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3007FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3008FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3009
3010IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3011IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3012 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3013/** @} */
3014
3015/** @name FPU operations taking a 80-bit float argument
3016 * @{ */
3017typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3018 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3019typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3020FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3021FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3022FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3023FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3024FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3025FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3026FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3027FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3028FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3029
3030FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3031FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3032FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3033
3034typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3035 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3036typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3037FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3038FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3039
3040typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3041 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3042typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3043FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3044FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3045
3046typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3047typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3048FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3049FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3050FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3051FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3052FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3053FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3054FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3055
3056typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3057typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3058FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3059FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3060
3061typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3062typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3063FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3064FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3065FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3066FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3067FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3068FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3069FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3070
3071typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3072 PCRTFLOAT80U pr80Val));
3073typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3074FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3075FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3076FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3077
3078IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3079IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3080 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3081
3082IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3083IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3084 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3085
3086/** @} */
3087
3088/** @name FPU operations taking a 16-bit signed integer argument
3089 * @{ */
3090typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3091 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3092typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3093typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3094 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3095typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3096
3097FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3098FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3099FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3100FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3101FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3102FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3103
3104typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3105 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3106typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3107FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3108
3109IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3110FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3111FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3112/** @} */
3113
3114/** @name FPU operations taking a 32-bit signed integer argument
3115 * @{ */
3116typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3117 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3118typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3119typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3120 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3121typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3122
3123FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3124FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3125FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3126FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3127FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3128FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3129
3130typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3131 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3132typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3133FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3134
3135IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3136FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3137FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3138/** @} */
3139
3140/** @name FPU operations taking a 64-bit signed integer argument
3141 * @{ */
3142typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3143 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3144typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3145
3146IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3147FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3148FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3149/** @} */
3150
3151
3152/** Temporary type representing a 256-bit vector register. */
3153typedef struct { uint64_t au64[4]; } IEMVMM256;
3154/** Temporary type pointing to a 256-bit vector register. */
3155typedef IEMVMM256 *PIEMVMM256;
3156/** Temporary type pointing to a const 256-bit vector register. */
3157typedef IEMVMM256 *PCIEMVMM256;
3158
3159
3160/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3161 * @{ */
3162typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3163typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3164typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3165typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3166typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3167typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3168typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3169typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3170typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3171typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3172typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3173typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3174typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3175typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3176typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3177typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3178typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3179typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3180FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3181FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3182FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3183FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3184FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3185FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3186FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
3187FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
3188FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3189FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3190FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
3191FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
3192FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3193FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3194FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3195FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3196FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3197FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3198FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3199FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3200FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3201FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3202FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3203FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3204FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3205FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3206FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3207FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3208FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3209FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3210FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
3211FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3212FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3213FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3214FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3215FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3216FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3217FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3218FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3219
3220FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3221FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3222FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3223FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3224FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3225FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3226FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3227FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3228FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
3229FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
3230FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3231FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3232FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
3233FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
3234FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3235FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
3236FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3237FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3238FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
3239FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3240FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3241FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3242FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3243FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3244FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
3245FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3246FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3247FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3248FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
3249FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3250FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3251FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3252FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3253FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3254FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3255FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3256FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3257FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3258FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3259FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3260FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3261FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3262FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3263FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3264FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
3265FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3266FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3267FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3268FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3269FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3270FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3271FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3272FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3273FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3274FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3275FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3276FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3277FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3278
3279FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3280FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3281FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3282FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3283FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3284FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3285FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3286FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3287FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3288FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3289FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3290FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3291FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3292FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3293FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3294FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3295FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3296FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3297FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3298FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3299FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3300FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3301FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3302FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3303FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3304FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3305FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3306FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3307FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3308FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3309FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3310FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3311FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3312FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3313FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3314FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3315FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3316FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3317FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3318FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3319FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3320FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3321FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3322FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3323FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3324FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3325FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3326FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3327FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3328FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3329FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3330FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3331FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3332FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3333FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3334FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3335FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3336FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3337FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3338FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3339FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3340FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3341FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3342FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3343FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3344FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3345FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3346FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3347FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3348FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3349FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3350FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3351FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3352FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3353
3354FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3355FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3356FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3357FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3358
3359FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3360FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3361FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3362FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3363FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3364FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3365FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3366FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3367FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3368FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3369FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3370FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3371FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3372FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3373FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3374FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3375FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3376FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3377FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3378FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3379FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3380FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3381FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3382FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3383FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3384FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3385FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3386FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3387FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3388FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3389FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3390FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3391FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3392FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3393FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3394FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3395FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3396FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3397FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3398FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3399FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3400FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3401FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3402FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3403FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3404FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3405FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3406FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3407FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3408FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3409FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3410FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3411FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3412FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3413FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3414FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3415FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3416FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3417FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3418FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3419FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3420FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3421FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3422FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3423FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3424FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3425FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3426FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3427FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3428FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3429FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3430FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3431FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3432FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3433
3434FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3435FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3436FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3437/** @} */
3438
3439/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3440 * @{ */
3441FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3442FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3443FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3444 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3445 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3446 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3447 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3448 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3449 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3450 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3451
3452FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3453 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3454 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3455 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3456 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3457 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3458 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3459 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3460/** @} */
3461
3462/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3463 * @{ */
3464FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3465FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3466FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3467 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3468 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3469 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3470FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3471 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3472 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3473 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3474/** @} */
3475
3476/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3477 * @{ */
3478typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3479typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3480typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3481typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3482IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3483FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3484#ifndef IEM_WITHOUT_ASSEMBLY
3485FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3486#endif
3487FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3488/** @} */
3489
3490/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3491 * @{ */
3492typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3493typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3494typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3495typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3496typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3497typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3498FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3499FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3500FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3501FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3502FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3503FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3504FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3505/** @} */
3506
3507/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3508 * @{ */
3509IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3510IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3511#ifndef IEM_WITHOUT_ASSEMBLY
3512IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3513#endif
3514IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3515/** @} */
3516
3517/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3518 * @{ */
3519typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3520typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3521typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3522typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3523typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3524typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3525
3526FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3527FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3528FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3529FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3530FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3531FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3532
3533FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3534FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3535FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3536FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3537FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3538FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3539
3540FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3541FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3542FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3543FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3544FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3545FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3546/** @} */
3547
3548
3549/** @name Media (SSE/MMX/AVX) operation: Sort this later
3550 * @{ */
3551IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3552IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3553IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3554IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3555IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3556IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3557
3558IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3559IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3560IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3561IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3562IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3563
3564IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3565IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3566IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3567IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3568IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3569
3570IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3571IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3572IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3573IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3574IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3575
3576IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3577IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3578IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3579IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3580IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3581
3582IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3583IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3584IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3585IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3586IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3587
3588IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3589IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3590IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3591IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3592IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3593
3594IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3595IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3596IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3597IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3598IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3599
3600IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3601IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3602IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3603IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3604IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3605
3606IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3607IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3608IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3609IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3610IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3611
3612IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3613IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3614IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3615IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3616IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3617
3618IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3619IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3620IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3621IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3622IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3623
3624IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3625IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3626IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3627IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3628IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3629
3630IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3631IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3632IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3633IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3634IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3635
3636IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3637IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3638IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3639IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3640IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3641
3642IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3643IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3644
3645IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3646IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3647IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3648IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3649
3650IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3651IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3652IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3653IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3654IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3655
3656IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3657IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3658IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3659IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3660IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3661
3662
3663typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3664typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3665typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3666typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3667typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3668typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3669typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3670typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3671
3672FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3673FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3674FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3675FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3676
3677FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3678FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3679FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3680FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3681FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3682
3683FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3684FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3685FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3686FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3687FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3688FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3689FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3690
3691FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3692FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3693FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3694FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3695FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3696
3697FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3698FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3699FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3700FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3701FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3702
3703FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3704
3705FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3706
3707FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3708FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3709FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3710FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3711FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3712FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3713IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3714IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3715
3716typedef struct IEMPCMPISTRXSRC
3717{
3718 RTUINT128U uSrc1;
3719 RTUINT128U uSrc2;
3720} IEMPCMPISTRXSRC;
3721typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3722typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3723
3724typedef struct IEMPCMPESTRXSRC
3725{
3726 RTUINT128U uSrc1;
3727 RTUINT128U uSrc2;
3728 uint64_t u64Rax;
3729 uint64_t u64Rdx;
3730} IEMPCMPESTRXSRC;
3731typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3732typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3733
3734typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3735typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3736typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3737typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3738
3739typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3740typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3741typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3742typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3743
3744FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3745FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3746FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3747FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3748
3749FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3750FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3751
3752FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3753FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3754FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3755
3756FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3757FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3758FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3759FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3760FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3761FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3762
3763FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
3764FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
3765FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
3766FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
3767
3768FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
3769FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
3770FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
3771FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
3772FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
3773FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
3774FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrldq_imm_u128, iemAImpl_vpsrldq_imm_u128_fallback;
3775FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrldq_imm_u256, iemAImpl_vpsrldq_imm_u256_fallback;
3776
3777FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
3778FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
3779FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
3780FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
3781
3782FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
3783FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
3784FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
3785FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
3786
3787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
3788FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
3789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
3790FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
3791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
3792FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
3793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
3794FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
3795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
3796FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
3797/** @} */
3798
3799/** @name Media Odds and Ends
3800 * @{ */
3801typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3802typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3803typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3804typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3805FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3806FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3807FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3808FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3809
3810typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3811typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3812FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3813FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3814
3815typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3816typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3817typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3818typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3819typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3820typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3821typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3822typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3823
3824FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3825FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3826
3827FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3828FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3829
3830FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3831FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3832
3833FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3834FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3835
3836typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3837typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3838typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3839typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3840
3841FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3842FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3843
3844typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3845typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3846typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3847typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3848
3849FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3850FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3851
3852
3853typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3854typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3855
3856FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3857FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3858
3859FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3860FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3861
3862FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3863FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3864
3865FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3866FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3867
3868
3869typedef struct IEMMEDIAF2XMMSRC
3870{
3871 X86XMMREG uSrc1;
3872 X86XMMREG uSrc2;
3873} IEMMEDIAF2XMMSRC;
3874typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3875typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3876
3877typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3878typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3879
3880FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3881FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3882FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3883FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3884FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3885FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3886
3887FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3888FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3889
3890FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3891FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3892
3893typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3894typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3895
3896FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3897FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3898
3899typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3900typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3901
3902FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3903FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3904
3905typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3906typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3907
3908FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3909FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3910
3911/** @} */
3912
3913
3914/** @name Function tables.
3915 * @{
3916 */
3917
3918/**
3919 * Function table for a binary operator providing implementation based on
3920 * operand size.
3921 */
3922typedef struct IEMOPBINSIZES
3923{
3924 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3925 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3926 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3927 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3928} IEMOPBINSIZES;
3929/** Pointer to a binary operator function table. */
3930typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3931
3932
3933/**
3934 * Function table for a unary operator providing implementation based on
3935 * operand size.
3936 */
3937typedef struct IEMOPUNARYSIZES
3938{
3939 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3940 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3941 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3942 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3943} IEMOPUNARYSIZES;
3944/** Pointer to a unary operator function table. */
3945typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3946
3947
3948/**
3949 * Function table for a shift operator providing implementation based on
3950 * operand size.
3951 */
3952typedef struct IEMOPSHIFTSIZES
3953{
3954 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3955 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3956 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3957 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3958} IEMOPSHIFTSIZES;
3959/** Pointer to a shift operator function table. */
3960typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3961
3962
3963/**
3964 * Function table for a multiplication or division operation.
3965 */
3966typedef struct IEMOPMULDIVSIZES
3967{
3968 PFNIEMAIMPLMULDIVU8 pfnU8;
3969 PFNIEMAIMPLMULDIVU16 pfnU16;
3970 PFNIEMAIMPLMULDIVU32 pfnU32;
3971 PFNIEMAIMPLMULDIVU64 pfnU64;
3972} IEMOPMULDIVSIZES;
3973/** Pointer to a multiplication or division operation function table. */
3974typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3975
3976
3977/**
3978 * Function table for a double precision shift operator providing implementation
3979 * based on operand size.
3980 */
3981typedef struct IEMOPSHIFTDBLSIZES
3982{
3983 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3984 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3985 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3986} IEMOPSHIFTDBLSIZES;
3987/** Pointer to a double precision shift function table. */
3988typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3989
3990
3991/**
3992 * Function table for media instruction taking two full sized media source
3993 * registers and one full sized destination register (AVX).
3994 */
3995typedef struct IEMOPMEDIAF3
3996{
3997 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3998 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3999} IEMOPMEDIAF3;
4000/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4001typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4002
4003/** @def IEMOPMEDIAF3_INIT_VARS_EX
4004 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4005 * given functions as initializers. For use in AVX functions where a pair of
4006 * functions are only used once and the function table need not be public. */
4007#ifndef TST_IEM_CHECK_MC
4008# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4009# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4010 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4011 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4012# else
4013# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4014 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4015# endif
4016#else
4017# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4018#endif
4019/** @def IEMOPMEDIAF3_INIT_VARS
4020 * Generate AVX function tables for the @a a_InstrNm instruction.
4021 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4022#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4023 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4024 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4025
4026/**
4027 * Function table for media instruction taking two full sized media source
4028 * registers and one full sized destination register, but no additional state
4029 * (AVX).
4030 */
4031typedef struct IEMOPMEDIAOPTF3
4032{
4033 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4034 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4035} IEMOPMEDIAOPTF3;
4036/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4037typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4038
4039/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4040 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4041 * given functions as initializers. For use in AVX functions where a pair of
4042 * functions are only used once and the function table need not be public. */
4043#ifndef TST_IEM_CHECK_MC
4044# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4045# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4046 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4047 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4048# else
4049# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4050 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4051# endif
4052#else
4053# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4054#endif
4055/** @def IEMOPMEDIAOPTF3_INIT_VARS
4056 * Generate AVX function tables for the @a a_InstrNm instruction.
4057 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4058#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4059 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4060 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4061
4062/**
4063 * Function table for media instruction taking one full sized media source
4064 * registers and one full sized destination register, but no additional state
4065 * (AVX).
4066 */
4067typedef struct IEMOPMEDIAOPTF2
4068{
4069 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4070 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4071} IEMOPMEDIAOPTF2;
4072/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4073typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4074
4075/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4076 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4077 * given functions as initializers. For use in AVX functions where a pair of
4078 * functions are only used once and the function table need not be public. */
4079#ifndef TST_IEM_CHECK_MC
4080# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4081# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4082 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4083 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4084# else
4085# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4086 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4087# endif
4088#else
4089# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4090#endif
4091/** @def IEMOPMEDIAOPTF2_INIT_VARS
4092 * Generate AVX function tables for the @a a_InstrNm instruction.
4093 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4094#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4095 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4096 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4097
4098/**
4099 * Function table for media instruction taking one full sized media source
4100 * register and one full sized destination register and an 8-bit immediate, but no additional state
4101 * (AVX).
4102 */
4103typedef struct IEMOPMEDIAOPTF2IMM8
4104{
4105 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4106 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4107} IEMOPMEDIAOPTF2IMM8;
4108/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4109typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4110
4111/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4112 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4113 * given functions as initializers. For use in AVX functions where a pair of
4114 * functions are only used once and the function table need not be public. */
4115#ifndef TST_IEM_CHECK_MC
4116# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4117# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4118 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4119 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4120# else
4121# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4122 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4123# endif
4124#else
4125# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4126#endif
4127/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4128 * Generate AVX function tables for the @a a_InstrNm instruction.
4129 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4130#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4131 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4132 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4133
4134/**
4135 * Function table for media instruction taking two full sized media source
4136 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4137 * (AVX).
4138 */
4139typedef struct IEMOPMEDIAOPTF3IMM8
4140{
4141 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4142 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4143} IEMOPMEDIAOPTF3IMM8;
4144/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4145typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4146
4147/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4148 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4149 * given functions as initializers. For use in AVX functions where a pair of
4150 * functions are only used once and the function table need not be public. */
4151#ifndef TST_IEM_CHECK_MC
4152# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4153# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4154 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4155 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4156# else
4157# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4158 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4159# endif
4160#else
4161# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4162#endif
4163/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4164 * Generate AVX function tables for the @a a_InstrNm instruction.
4165 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4166#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4167 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4168 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4169/** @} */
4170
4171
4172/**
4173 * Function table for blend type instruction taking three full sized media source
4174 * registers and one full sized destination register, but no additional state
4175 * (AVX).
4176 */
4177typedef struct IEMOPBLENDOP
4178{
4179 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4180 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4181} IEMOPBLENDOP;
4182/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4183typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4184
4185/** @def IEMOPBLENDOP_INIT_VARS_EX
4186 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4187 * given functions as initializers. For use in AVX functions where a pair of
4188 * functions are only used once and the function table need not be public. */
4189#ifndef TST_IEM_CHECK_MC
4190# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4191# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4192 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4193 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4194# else
4195# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4196 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4197# endif
4198#else
4199# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4200#endif
4201/** @def IEMOPBLENDOP_INIT_VARS
4202 * Generate AVX function tables for the @a a_InstrNm instruction.
4203 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4204#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4205 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4206 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4207
4208
4209/** @name SSE/AVX single/double precision floating point operations.
4210 * @{ */
4211/**
4212 * A SSE result.
4213 */
4214typedef struct IEMSSERESULT
4215{
4216 /** The output value. */
4217 X86XMMREG uResult;
4218 /** The output status. */
4219 uint32_t MXCSR;
4220} IEMSSERESULT;
4221AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
4222/** Pointer to a SSE result. */
4223typedef IEMSSERESULT *PIEMSSERESULT;
4224/** Pointer to a const SSE result. */
4225typedef IEMSSERESULT const *PCIEMSSERESULT;
4226
4227
4228/**
4229 * A AVX128 result.
4230 */
4231typedef struct IEMAVX128RESULT
4232{
4233 /** The output value. */
4234 X86XMMREG uResult;
4235 /** The output status. */
4236 uint32_t MXCSR;
4237} IEMAVX128RESULT;
4238AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
4239/** Pointer to a AVX128 result. */
4240typedef IEMAVX128RESULT *PIEMAVX128RESULT;
4241/** Pointer to a const AVX128 result. */
4242typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
4243
4244
4245/**
4246 * A AVX256 result.
4247 */
4248typedef struct IEMAVX256RESULT
4249{
4250 /** The output value. */
4251 X86YMMREG uResult;
4252 /** The output status. */
4253 uint32_t MXCSR;
4254} IEMAVX256RESULT;
4255AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
4256/** Pointer to a AVX256 result. */
4257typedef IEMAVX256RESULT *PIEMAVX256RESULT;
4258/** Pointer to a const AVX256 result. */
4259typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
4260
4261
4262typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4263typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4264typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4265typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4266typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4267typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4268
4269typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4270typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4271typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4272typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4273typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4274typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4275
4276typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4277typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4278
4279FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4280FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4281FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4282FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4283FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4284FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4285FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4286FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4287FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4288FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4289FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4290FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4291FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4292FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4293FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4294FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4295FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4296FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4297FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4298FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4299FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4300FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4301FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4302FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
4303
4304FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4305FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4306FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4307FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4308FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4309FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4310
4311FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4312FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4313FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4314FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4315FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4316FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4317FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4318FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4319FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4320FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4321FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4322FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4323FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4324FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4325FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4326FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4327FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4328FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4329
4330FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4331FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4332FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4333FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4334FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4335FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4336FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4337FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4338FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4339FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4340FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4341FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4342FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4343FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4344FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4345FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4346FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4347FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4348FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4349FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4350FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4351FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4352
4353FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4354FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4355FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4356FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4357FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4358FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4359FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4360FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4361FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4362FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4363FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4364FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4365FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4366FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4367
4368FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4369FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4370FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4371FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4372FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4373FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4374FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4375FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4376FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4377FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4378FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4379FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4380FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4381FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4382FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4383FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4384FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4385FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4386FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4387FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4388/** @} */
4389
4390/** @name C instruction implementations for anything slightly complicated.
4391 * @{ */
4392
4393/**
4394 * For typedef'ing or declaring a C instruction implementation function taking
4395 * no extra arguments.
4396 *
4397 * @param a_Name The name of the type.
4398 */
4399# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4400 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4401/**
4402 * For defining a C instruction implementation function taking no extra
4403 * arguments.
4404 *
4405 * @param a_Name The name of the function
4406 */
4407# define IEM_CIMPL_DEF_0(a_Name) \
4408 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4409/**
4410 * Prototype version of IEM_CIMPL_DEF_0.
4411 */
4412# define IEM_CIMPL_PROTO_0(a_Name) \
4413 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4414/**
4415 * For calling a C instruction implementation function taking no extra
4416 * arguments.
4417 *
4418 * This special call macro adds default arguments to the call and allow us to
4419 * change these later.
4420 *
4421 * @param a_fn The name of the function.
4422 */
4423# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4424
4425/** Type for a C instruction implementation function taking no extra
4426 * arguments. */
4427typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4428/** Function pointer type for a C instruction implementation function taking
4429 * no extra arguments. */
4430typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4431
4432/**
4433 * For typedef'ing or declaring a C instruction implementation function taking
4434 * one extra argument.
4435 *
4436 * @param a_Name The name of the type.
4437 * @param a_Type0 The argument type.
4438 * @param a_Arg0 The argument name.
4439 */
4440# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4441 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4442/**
4443 * For defining a C instruction implementation function taking one extra
4444 * argument.
4445 *
4446 * @param a_Name The name of the function
4447 * @param a_Type0 The argument type.
4448 * @param a_Arg0 The argument name.
4449 */
4450# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4451 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4452/**
4453 * Prototype version of IEM_CIMPL_DEF_1.
4454 */
4455# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4456 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4457/**
4458 * For calling a C instruction implementation function taking one extra
4459 * argument.
4460 *
4461 * This special call macro adds default arguments to the call and allow us to
4462 * change these later.
4463 *
4464 * @param a_fn The name of the function.
4465 * @param a0 The name of the 1st argument.
4466 */
4467# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4468
4469/**
4470 * For typedef'ing or declaring a C instruction implementation function taking
4471 * two extra arguments.
4472 *
4473 * @param a_Name The name of the type.
4474 * @param a_Type0 The type of the 1st argument
4475 * @param a_Arg0 The name of the 1st argument.
4476 * @param a_Type1 The type of the 2nd argument.
4477 * @param a_Arg1 The name of the 2nd argument.
4478 */
4479# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4480 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4481/**
4482 * For defining a C instruction implementation function taking two extra
4483 * arguments.
4484 *
4485 * @param a_Name The name of the function.
4486 * @param a_Type0 The type of the 1st argument
4487 * @param a_Arg0 The name of the 1st argument.
4488 * @param a_Type1 The type of the 2nd argument.
4489 * @param a_Arg1 The name of the 2nd argument.
4490 */
4491# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4492 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4493/**
4494 * Prototype version of IEM_CIMPL_DEF_2.
4495 */
4496# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4497 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4498/**
4499 * For calling a C instruction implementation function taking two extra
4500 * arguments.
4501 *
4502 * This special call macro adds default arguments to the call and allow us to
4503 * change these later.
4504 *
4505 * @param a_fn The name of the function.
4506 * @param a0 The name of the 1st argument.
4507 * @param a1 The name of the 2nd argument.
4508 */
4509# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4510
4511/**
4512 * For typedef'ing or declaring a C instruction implementation function taking
4513 * three extra arguments.
4514 *
4515 * @param a_Name The name of the type.
4516 * @param a_Type0 The type of the 1st argument
4517 * @param a_Arg0 The name of the 1st argument.
4518 * @param a_Type1 The type of the 2nd argument.
4519 * @param a_Arg1 The name of the 2nd argument.
4520 * @param a_Type2 The type of the 3rd argument.
4521 * @param a_Arg2 The name of the 3rd argument.
4522 */
4523# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4524 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4525/**
4526 * For defining a C instruction implementation function taking three extra
4527 * arguments.
4528 *
4529 * @param a_Name The name of the function.
4530 * @param a_Type0 The type of the 1st argument
4531 * @param a_Arg0 The name of the 1st argument.
4532 * @param a_Type1 The type of the 2nd argument.
4533 * @param a_Arg1 The name of the 2nd argument.
4534 * @param a_Type2 The type of the 3rd argument.
4535 * @param a_Arg2 The name of the 3rd argument.
4536 */
4537# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4538 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4539/**
4540 * Prototype version of IEM_CIMPL_DEF_3.
4541 */
4542# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4543 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4544/**
4545 * For calling a C instruction implementation function taking three extra
4546 * arguments.
4547 *
4548 * This special call macro adds default arguments to the call and allow us to
4549 * change these later.
4550 *
4551 * @param a_fn The name of the function.
4552 * @param a0 The name of the 1st argument.
4553 * @param a1 The name of the 2nd argument.
4554 * @param a2 The name of the 3rd argument.
4555 */
4556# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4557
4558
4559/**
4560 * For typedef'ing or declaring a C instruction implementation function taking
4561 * four extra arguments.
4562 *
4563 * @param a_Name The name of the type.
4564 * @param a_Type0 The type of the 1st argument
4565 * @param a_Arg0 The name of the 1st argument.
4566 * @param a_Type1 The type of the 2nd argument.
4567 * @param a_Arg1 The name of the 2nd argument.
4568 * @param a_Type2 The type of the 3rd argument.
4569 * @param a_Arg2 The name of the 3rd argument.
4570 * @param a_Type3 The type of the 4th argument.
4571 * @param a_Arg3 The name of the 4th argument.
4572 */
4573# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4574 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4575/**
4576 * For defining a C instruction implementation function taking four extra
4577 * arguments.
4578 *
4579 * @param a_Name The name of the function.
4580 * @param a_Type0 The type of the 1st argument
4581 * @param a_Arg0 The name of the 1st argument.
4582 * @param a_Type1 The type of the 2nd argument.
4583 * @param a_Arg1 The name of the 2nd argument.
4584 * @param a_Type2 The type of the 3rd argument.
4585 * @param a_Arg2 The name of the 3rd argument.
4586 * @param a_Type3 The type of the 4th argument.
4587 * @param a_Arg3 The name of the 4th argument.
4588 */
4589# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4590 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4591 a_Type2 a_Arg2, a_Type3 a_Arg3))
4592/**
4593 * Prototype version of IEM_CIMPL_DEF_4.
4594 */
4595# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4596 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4597 a_Type2 a_Arg2, a_Type3 a_Arg3))
4598/**
4599 * For calling a C instruction implementation function taking four extra
4600 * arguments.
4601 *
4602 * This special call macro adds default arguments to the call and allow us to
4603 * change these later.
4604 *
4605 * @param a_fn The name of the function.
4606 * @param a0 The name of the 1st argument.
4607 * @param a1 The name of the 2nd argument.
4608 * @param a2 The name of the 3rd argument.
4609 * @param a3 The name of the 4th argument.
4610 */
4611# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4612
4613
4614/**
4615 * For typedef'ing or declaring a C instruction implementation function taking
4616 * five extra arguments.
4617 *
4618 * @param a_Name The name of the type.
4619 * @param a_Type0 The type of the 1st argument
4620 * @param a_Arg0 The name of the 1st argument.
4621 * @param a_Type1 The type of the 2nd argument.
4622 * @param a_Arg1 The name of the 2nd argument.
4623 * @param a_Type2 The type of the 3rd argument.
4624 * @param a_Arg2 The name of the 3rd argument.
4625 * @param a_Type3 The type of the 4th argument.
4626 * @param a_Arg3 The name of the 4th argument.
4627 * @param a_Type4 The type of the 5th argument.
4628 * @param a_Arg4 The name of the 5th argument.
4629 */
4630# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4631 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4632 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4633 a_Type3 a_Arg3, a_Type4 a_Arg4))
4634/**
4635 * For defining a C instruction implementation function taking five extra
4636 * arguments.
4637 *
4638 * @param a_Name The name of the function.
4639 * @param a_Type0 The type of the 1st argument
4640 * @param a_Arg0 The name of the 1st argument.
4641 * @param a_Type1 The type of the 2nd argument.
4642 * @param a_Arg1 The name of the 2nd argument.
4643 * @param a_Type2 The type of the 3rd argument.
4644 * @param a_Arg2 The name of the 3rd argument.
4645 * @param a_Type3 The type of the 4th argument.
4646 * @param a_Arg3 The name of the 4th argument.
4647 * @param a_Type4 The type of the 5th argument.
4648 * @param a_Arg4 The name of the 5th argument.
4649 */
4650# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4651 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4652 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4653/**
4654 * Prototype version of IEM_CIMPL_DEF_5.
4655 */
4656# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4657 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4658 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4659/**
4660 * For calling a C instruction implementation function taking five extra
4661 * arguments.
4662 *
4663 * This special call macro adds default arguments to the call and allow us to
4664 * change these later.
4665 *
4666 * @param a_fn The name of the function.
4667 * @param a0 The name of the 1st argument.
4668 * @param a1 The name of the 2nd argument.
4669 * @param a2 The name of the 3rd argument.
4670 * @param a3 The name of the 4th argument.
4671 * @param a4 The name of the 5th argument.
4672 */
4673# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4674
4675/** @} */
4676
4677
4678/** @name Opcode Decoder Function Types.
4679 * @{ */
4680
4681/** @typedef PFNIEMOP
4682 * Pointer to an opcode decoder function.
4683 */
4684
4685/** @def FNIEMOP_DEF
4686 * Define an opcode decoder function.
4687 *
4688 * We're using macors for this so that adding and removing parameters as well as
4689 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4690 *
4691 * @param a_Name The function name.
4692 */
4693
4694/** @typedef PFNIEMOPRM
4695 * Pointer to an opcode decoder function with RM byte.
4696 */
4697
4698/** @def FNIEMOPRM_DEF
4699 * Define an opcode decoder function with RM byte.
4700 *
4701 * We're using macors for this so that adding and removing parameters as well as
4702 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4703 *
4704 * @param a_Name The function name.
4705 */
4706
4707#if defined(__GNUC__) && defined(RT_ARCH_X86)
4708typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4709typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4710# define FNIEMOP_DEF(a_Name) \
4711 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4712# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4713 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4714# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4715 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4716
4717#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4718typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4719typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4720# define FNIEMOP_DEF(a_Name) \
4721 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4722# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4723 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4724# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4725 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4726
4727#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4728typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4729typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4730# define FNIEMOP_DEF(a_Name) \
4731 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4732# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4733 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4734# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4735 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4736
4737#else
4738typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4739typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4740# define FNIEMOP_DEF(a_Name) \
4741 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4742# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4743 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4744# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4745 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4746
4747#endif
4748#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4749
4750/**
4751 * Call an opcode decoder function.
4752 *
4753 * We're using macors for this so that adding and removing parameters can be
4754 * done as we please. See FNIEMOP_DEF.
4755 */
4756#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4757
4758/**
4759 * Call a common opcode decoder function taking one extra argument.
4760 *
4761 * We're using macors for this so that adding and removing parameters can be
4762 * done as we please. See FNIEMOP_DEF_1.
4763 */
4764#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4765
4766/**
4767 * Call a common opcode decoder function taking one extra argument.
4768 *
4769 * We're using macors for this so that adding and removing parameters can be
4770 * done as we please. See FNIEMOP_DEF_1.
4771 */
4772#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4773/** @} */
4774
4775
4776/** @name Misc Helpers
4777 * @{ */
4778
4779/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4780 * due to GCC lacking knowledge about the value range of a switch. */
4781#if RT_CPLUSPLUS_PREREQ(202000)
4782# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4783#else
4784# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4785#endif
4786
4787/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4788#if RT_CPLUSPLUS_PREREQ(202000)
4789# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4790#else
4791# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4792#endif
4793
4794/**
4795 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4796 * occation.
4797 */
4798#ifdef LOG_ENABLED
4799# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4800 do { \
4801 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4802 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4803 } while (0)
4804#else
4805# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4806 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4807#endif
4808
4809/**
4810 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4811 * occation using the supplied logger statement.
4812 *
4813 * @param a_LoggerArgs What to log on failure.
4814 */
4815#ifdef LOG_ENABLED
4816# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4817 do { \
4818 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4819 /*LogFunc(a_LoggerArgs);*/ \
4820 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4821 } while (0)
4822#else
4823# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4824 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4825#endif
4826
4827/**
4828 * Gets the CPU mode (from fExec) as a IEMMODE value.
4829 *
4830 * @returns IEMMODE
4831 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4832 */
4833#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4834
4835/**
4836 * Check if we're currently executing in real or virtual 8086 mode.
4837 *
4838 * @returns @c true if it is, @c false if not.
4839 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4840 */
4841#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4842 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4843
4844/**
4845 * Check if we're currently executing in virtual 8086 mode.
4846 *
4847 * @returns @c true if it is, @c false if not.
4848 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4849 */
4850#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4851
4852/**
4853 * Check if we're currently executing in long mode.
4854 *
4855 * @returns @c true if it is, @c false if not.
4856 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4857 */
4858#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4859
4860/**
4861 * Check if we're currently executing in a 16-bit code segment.
4862 *
4863 * @returns @c true if it is, @c false if not.
4864 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4865 */
4866#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4867
4868/**
4869 * Check if we're currently executing in a 32-bit code segment.
4870 *
4871 * @returns @c true if it is, @c false if not.
4872 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4873 */
4874#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4875
4876/**
4877 * Check if we're currently executing in a 64-bit code segment.
4878 *
4879 * @returns @c true if it is, @c false if not.
4880 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4881 */
4882#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4883
4884/**
4885 * Check if we're currently executing in real mode.
4886 *
4887 * @returns @c true if it is, @c false if not.
4888 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4889 */
4890#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4891
4892/**
4893 * Gets the current protection level (CPL).
4894 *
4895 * @returns 0..3
4896 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4897 */
4898#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4899
4900/**
4901 * Sets the current protection level (CPL).
4902 *
4903 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4904 */
4905#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4906 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4907
4908/**
4909 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4910 * @returns PCCPUMFEATURES
4911 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4912 */
4913#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4914
4915/**
4916 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4917 * @returns PCCPUMFEATURES
4918 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4919 */
4920#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4921
4922/**
4923 * Evaluates to true if we're presenting an Intel CPU to the guest.
4924 */
4925#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4926
4927/**
4928 * Evaluates to true if we're presenting an AMD CPU to the guest.
4929 */
4930#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4931
4932/**
4933 * Check if the address is canonical.
4934 */
4935#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4936
4937/** Checks if the ModR/M byte is in register mode or not. */
4938#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4939/** Checks if the ModR/M byte is in memory mode or not. */
4940#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4941
4942/**
4943 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4944 *
4945 * For use during decoding.
4946 */
4947#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4948/**
4949 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4950 *
4951 * For use during decoding.
4952 */
4953#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4954
4955/**
4956 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4957 *
4958 * For use during decoding.
4959 */
4960#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4961/**
4962 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4963 *
4964 * For use during decoding.
4965 */
4966#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4967
4968/**
4969 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4970 * register index, with REX.R added in.
4971 *
4972 * For use during decoding.
4973 *
4974 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4975 */
4976#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4977 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4978 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4979 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4980/**
4981 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4982 * with REX.B added in.
4983 *
4984 * For use during decoding.
4985 *
4986 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4987 */
4988#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4989 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4990 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4991 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4992
4993/**
4994 * Combines the prefix REX and ModR/M byte for passing to
4995 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4996 *
4997 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4998 * The two bits are part of the REG sub-field, which isn't needed in
4999 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5000 *
5001 * For use during decoding/recompiling.
5002 */
5003#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5004 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5005 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5006AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5007AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5008
5009/**
5010 * Gets the effective VEX.VVVV value.
5011 *
5012 * The 4th bit is ignored if not 64-bit code.
5013 * @returns effective V-register value.
5014 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5015 */
5016#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5017 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5018
5019
5020/**
5021 * Gets the register (reg) part of a the special 4th register byte used by
5022 * vblendvps and vblendvpd.
5023 *
5024 * For use during decoding.
5025 */
5026#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5027 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5028
5029
5030/**
5031 * Checks if we're executing inside an AMD-V or VT-x guest.
5032 */
5033#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5034# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5035#else
5036# define IEM_IS_IN_GUEST(a_pVCpu) false
5037#endif
5038
5039
5040#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5041
5042/**
5043 * Check if the guest has entered VMX root operation.
5044 */
5045# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5046
5047/**
5048 * Check if the guest has entered VMX non-root operation.
5049 */
5050# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5051 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5052
5053/**
5054 * Check if the nested-guest has the given Pin-based VM-execution control set.
5055 */
5056# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5057
5058/**
5059 * Check if the nested-guest has the given Processor-based VM-execution control set.
5060 */
5061# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5062
5063/**
5064 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5065 * control set.
5066 */
5067# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5068
5069/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5070# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5071
5072/** Whether a shadow VMCS is present for the given VCPU. */
5073# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5074
5075/** Gets the VMXON region pointer. */
5076# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5077
5078/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5079# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5080
5081/** Whether a current VMCS is present for the given VCPU. */
5082# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5083
5084/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5085# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5086 do \
5087 { \
5088 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5089 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5090 } while (0)
5091
5092/** Clears any current VMCS for the given VCPU. */
5093# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5094 do \
5095 { \
5096 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5097 } while (0)
5098
5099/**
5100 * Invokes the VMX VM-exit handler for an instruction intercept.
5101 */
5102# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5103 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5104
5105/**
5106 * Invokes the VMX VM-exit handler for an instruction intercept where the
5107 * instruction provides additional VM-exit information.
5108 */
5109# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5110 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5111
5112/**
5113 * Invokes the VMX VM-exit handler for a task switch.
5114 */
5115# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5116 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5117
5118/**
5119 * Invokes the VMX VM-exit handler for MWAIT.
5120 */
5121# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5122 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5123
5124/**
5125 * Invokes the VMX VM-exit handler for EPT faults.
5126 */
5127# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5128 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5129
5130/**
5131 * Invokes the VMX VM-exit handler.
5132 */
5133# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5134 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5135
5136#else
5137# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5138# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5139# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5140# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5141# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5142# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5143# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5144# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5145# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5146# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5147# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5148
5149#endif
5150
5151#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5152/**
5153 * Checks if we're executing a guest using AMD-V.
5154 */
5155# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5156 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5157/**
5158 * Check if an SVM control/instruction intercept is set.
5159 */
5160# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5161 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5162
5163/**
5164 * Check if an SVM read CRx intercept is set.
5165 */
5166# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5167 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5168
5169/**
5170 * Check if an SVM write CRx intercept is set.
5171 */
5172# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5173 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5174
5175/**
5176 * Check if an SVM read DRx intercept is set.
5177 */
5178# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5179 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5180
5181/**
5182 * Check if an SVM write DRx intercept is set.
5183 */
5184# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5185 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5186
5187/**
5188 * Check if an SVM exception intercept is set.
5189 */
5190# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5191 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5192
5193/**
5194 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5195 */
5196# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5197 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5198
5199/**
5200 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5201 * corresponding decode assist information.
5202 */
5203# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5204 do \
5205 { \
5206 uint64_t uExitInfo1; \
5207 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5208 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5209 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5210 else \
5211 uExitInfo1 = 0; \
5212 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5213 } while (0)
5214
5215/** Check and handles SVM nested-guest instruction intercept and updates
5216 * NRIP if needed.
5217 */
5218# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5219 do \
5220 { \
5221 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5222 { \
5223 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5224 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5225 } \
5226 } while (0)
5227
5228/** Checks and handles SVM nested-guest CR0 read intercept. */
5229# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5230 do \
5231 { \
5232 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5233 { /* probably likely */ } \
5234 else \
5235 { \
5236 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5237 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5238 } \
5239 } while (0)
5240
5241/**
5242 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5243 */
5244# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5245 do { \
5246 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5247 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5248 } while (0)
5249
5250#else
5251# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5252# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5253# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5254# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5255# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5256# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5257# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5258# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5259# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5260 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5261# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5262# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5263
5264#endif
5265
5266/** @} */
5267
5268uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5269VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5270
5271
5272/**
5273 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5274 */
5275typedef union IEMSELDESC
5276{
5277 /** The legacy view. */
5278 X86DESC Legacy;
5279 /** The long mode view. */
5280 X86DESC64 Long;
5281} IEMSELDESC;
5282/** Pointer to a selector descriptor table entry. */
5283typedef IEMSELDESC *PIEMSELDESC;
5284
5285/** @name Raising Exceptions.
5286 * @{ */
5287VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5288 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5289
5290VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5291 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5292#ifdef IEM_WITH_SETJMP
5293DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5294 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5295#endif
5296VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5297#ifdef IEM_WITH_SETJMP
5298DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5299#endif
5300VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5301VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5302VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5303#ifdef IEM_WITH_SETJMP
5304DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5305#endif
5306VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5307#ifdef IEM_WITH_SETJMP
5308DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5309#endif
5310VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5311VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5312VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5313VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5314/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5315VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5316VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5317VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5318VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5319VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5320VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5321#ifdef IEM_WITH_SETJMP
5322DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5323#endif
5324VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5325VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5326VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5327#ifdef IEM_WITH_SETJMP
5328DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5329#endif
5330VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5331#ifdef IEM_WITH_SETJMP
5332DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5333#endif
5334VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5335#ifdef IEM_WITH_SETJMP
5336DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5337#endif
5338VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5339#ifdef IEM_WITH_SETJMP
5340DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5341#endif
5342VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5343#ifdef IEM_WITH_SETJMP
5344DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5345#endif
5346VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5347#ifdef IEM_WITH_SETJMP
5348DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5349#endif
5350VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5351#ifdef IEM_WITH_SETJMP
5352DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5353#endif
5354
5355void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5356void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5357
5358IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5359IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5360IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5361
5362/**
5363 * Macro for calling iemCImplRaiseDivideError().
5364 *
5365 * This is for things that will _always_ decode to an \#DE, taking the
5366 * recompiler into consideration and everything.
5367 *
5368 * @return Strict VBox status code.
5369 */
5370#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5371
5372/**
5373 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5374 *
5375 * This is for things that will _always_ decode to an \#UD, taking the
5376 * recompiler into consideration and everything.
5377 *
5378 * @return Strict VBox status code.
5379 */
5380#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5381
5382/**
5383 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5384 *
5385 * This is for things that will _always_ decode to an \#UD, taking the
5386 * recompiler into consideration and everything.
5387 *
5388 * @return Strict VBox status code.
5389 */
5390#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5391
5392/**
5393 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5394 *
5395 * Using this macro means you've got _buggy_ _code_ and are doing things that
5396 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5397 *
5398 * @return Strict VBox status code.
5399 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5400 */
5401#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5402
5403/** @} */
5404
5405/** @name Register Access.
5406 * @{ */
5407VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5408 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5409VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5410VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5411 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5412/** @} */
5413
5414/** @name FPU access and helpers.
5415 * @{ */
5416void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5417void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5418void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5419void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5420void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5421void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5422 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5423void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5424 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5425void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5426void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5427void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5428void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5429void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5430void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5431void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5432void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5433void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5434void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5435void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5436void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5437void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5438void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5439void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5440/** @} */
5441
5442/** @name SSE+AVX SIMD access and helpers.
5443 * @{ */
5444void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
5445void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5446/** @} */
5447
5448/** @name Memory access.
5449 * @{ */
5450
5451/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5452#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5453/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5454 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5455#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5456/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5457 * Users include FXSAVE & FXRSTOR. */
5458#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5459
5460VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5461 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5462VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5463#ifndef IN_RING3
5464VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5465#endif
5466void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5467void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5468VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5469VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5470VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5471
5472void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5473void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5474#ifdef IEM_WITH_CODE_TLB
5475void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5476#else
5477VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5478#endif
5479#ifdef IEM_WITH_SETJMP
5480uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5481uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5482uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5483uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5484#else
5485VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5486VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5487VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5488VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5489VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5490VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5491VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5492VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5493VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5494VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5495VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5496#endif
5497
5498VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5499VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5500VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5501VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5502VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5503VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5504VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5505VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5506VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5507VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5508VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5509VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5510VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5511VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5512VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5513 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5514#ifdef IEM_WITH_SETJMP
5515uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5516uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5517uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5518uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5519uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5520uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5521void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5522void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5523void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5524void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5525void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5526void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5527void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5528void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5529# if 0 /* these are inlined now */
5530uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5531uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5532uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5533uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5534uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5535uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5536void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5537void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5538void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5539void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5540void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5541void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5542void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5543# endif
5544void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5545#endif
5546
5547VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5548VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5549VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5550VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5551VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5552
5553VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5554VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5555VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5556VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5557VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5558VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5559VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5560VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5561VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5562VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5563VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5564#ifdef IEM_WITH_SETJMP
5565void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5566void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5567void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5568void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5569void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5570void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5571void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5572void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5573void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5574void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5575void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5576void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5577#if 0
5578void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5579void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5580void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5581void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5582void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5583void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5584void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5585void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5586#endif
5587void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5588void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5589#endif
5590
5591#ifdef IEM_WITH_SETJMP
5592uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5593uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5594uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5595uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5596uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5597uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5598uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5599uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5600uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5601uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5602uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5603uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5604uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5605uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5606uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5607uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5608PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5609PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5610PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5611PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5612PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5613PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5614PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5615PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5616PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5617PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5618
5619void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5620void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5621void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5622void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5623void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5624void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5625#endif
5626
5627VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5628 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5629VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5630VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5631VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5632VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5633VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5634VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5635VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5636VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5637VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5638 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5639VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5640 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5641VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5642VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5643VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5644VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5645VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5646VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5647VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5648
5649#ifdef IEM_WITH_SETJMP
5650void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5651void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5652void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5653void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5654void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5655void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5656void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5657
5658void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5659void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5660void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5661void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5662void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5663
5664void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5665void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5666void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5667void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5668
5669void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5670void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5671void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5672void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5673
5674uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5675uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5676uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5677
5678#endif
5679
5680/** @} */
5681
5682/** @name IEMAllCImpl.cpp
5683 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5684 * @{ */
5685IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5686IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5687IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5688IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5689IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5690IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5691IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5692IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5693IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5694IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5695IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5696IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5697IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5698IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5699IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5700IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5701IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5702typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5703typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5704IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5705IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5706IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5707IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5708IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5709IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5710IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5711IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5712IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5713IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5714IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5715IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5716IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5717IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5718IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5719IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5720IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5721IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5722IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5723IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5724IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5725IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5726IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5727IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5728IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5729IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5730IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5731IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5732IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5733IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5734IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5735IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5736IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5737IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5738IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5739IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5740IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5741IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5742IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5743IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5744IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5745IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5746IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5747IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5748IEM_CIMPL_PROTO_0(iemCImpl_clts);
5749IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5750IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5751IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5752IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5753IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5754IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5755IEM_CIMPL_PROTO_0(iemCImpl_invd);
5756IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5757IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5758IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5759IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5760IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5761IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5762IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5763IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5764IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5765IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5766IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5767IEM_CIMPL_PROTO_0(iemCImpl_cli);
5768IEM_CIMPL_PROTO_0(iemCImpl_sti);
5769IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5770IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5771IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5772IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5773IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5774IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5775IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5776IEM_CIMPL_PROTO_0(iemCImpl_daa);
5777IEM_CIMPL_PROTO_0(iemCImpl_das);
5778IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5779IEM_CIMPL_PROTO_0(iemCImpl_aas);
5780IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5781IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5782IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5783IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5784IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5785 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5786IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5787IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5788IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5789IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5790IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5791IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5792IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5793IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5794IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5795IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5796IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5797IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5798IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5799IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5800IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5801IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5802IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5803IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5804/** @} */
5805
5806/** @name IEMAllCImplStrInstr.cpp.h
5807 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5808 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5809 * @{ */
5810IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5811IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5812IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5813IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5814IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5815IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5816IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5817IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5818IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5819IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5820IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5821
5822IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5823IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5824IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5825IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5826IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5827IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5828IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5829IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5830IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5831IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5832IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5833
5834IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5835IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5836IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5837IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5838IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5839IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5840IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5841IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5842IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5843IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5844IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5845
5846
5847IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5848IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5849IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5850IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5851IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5852IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5853IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5854IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5855IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5856IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5857IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5858
5859IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5860IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5861IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5862IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5863IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5864IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5865IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5866IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5867IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5868IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5869IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5870
5871IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5872IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5873IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5874IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5875IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5876IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5877IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5878IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5879IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5880IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5881IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5882
5883IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5884IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5885IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5886IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5887IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5888IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5889IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5890IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5891IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5892IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5893IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5894
5895
5896IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5897IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5898IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5899IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5900IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5901IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5902IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5903IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5904IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5905IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5906IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5907
5908IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5909IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5910IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5911IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5912IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5913IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5914IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5915IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5916IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5917IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5918IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5919
5920IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5921IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5922IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5923IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5924IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5925IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5926IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5927IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5928IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5929IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5930IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5931
5932IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5933IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5934IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5935IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5936IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5937IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5938IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5939IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5940IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5941IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5942IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5943/** @} */
5944
5945#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5946VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5947VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5948VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5949VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5950VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5951VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5952VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5953VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5954VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5955VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5956 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5957VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5958 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5959VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5960VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5961VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5962VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5963VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5964VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5965VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5966VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5967 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5968VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5969VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5970VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5971uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5972void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5973VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5974 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5975bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5976IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5977IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5978IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5979IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5980IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5981IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5982IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5983IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5984IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5985IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5986IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5987IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5988IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5989IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5990IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5991IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5992#endif
5993
5994#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5995VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5996VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5997VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5998 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5999VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6000IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6001IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6002IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6003IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6004IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6005IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6006IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6007IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6008#endif
6009
6010IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6011IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6012IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6013
6014extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6015extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6016extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6017extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6018extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6019extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6020extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6021
6022/*
6023 * Recompiler related stuff.
6024 */
6025extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6026extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6027extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6028extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6029extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6030extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6031extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6032
6033DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6034 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6035void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6036void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6037void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6038DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6039DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6040
6041
6042/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6043#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6044typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6045typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6046# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6047 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6048# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6049 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6050
6051#else
6052typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6053typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6054# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6055 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6056# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6057 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6058#endif
6059
6060
6061IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6062IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6063
6064IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6065
6066IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6067IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6068IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6069IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6070
6071IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6072IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6073IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6074
6075/* Branching: */
6076IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6077IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6078IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6079
6080IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6081IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6082IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6083
6084/* Natural page crossing: */
6085IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6086IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6087IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6088
6089IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6090IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6091IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6092
6093IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6094IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6095IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6096
6097bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6098bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6099
6100/* Native recompiler public bits: */
6101DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6102DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6103int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
6104void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
6105DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6106
6107
6108/** @} */
6109
6110RT_C_DECLS_END
6111
6112#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6113
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette