VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 104386

Last change on this file since 104386 was 104383, checked in by vboxsync, 8 months ago

VMM/IEM: Automtically convert IEMInternal.h & IEMN8veRecompiler.h into nasm/yasm include files so IEMAllN8veHlpA.asm can make use of some of the constants define in them for the prolog code. [doxygen] bugref:10653 bugref:10370

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 319.7 KB
Line 
1/* $Id: IEMInternal.h 104383 2024-04-19 20:00:51Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
116 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
117 * executing native translation blocks.
118 *
119 * This exploits the fact that we save all non-volatile registers in the TB
120 * prologue and thus just need to do the same as the TB epilogue to get the
121 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
122 * non-volatile (and does something even more crazy for ARM), this probably
123 * won't work reliably on Windows. */
124#ifdef RT_ARCH_ARM64
125# ifndef RT_OS_WINDOWS
126# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
127# endif
128#endif
129/* ASM-NOINC-START */
130#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
131# if !defined(IN_RING3) \
132 || !defined(VBOX_WITH_IEM_RECOMPILER) \
133 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
134# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
135# elif defined(RT_OS_WINDOWS)
136# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
137# endif
138#endif
139
140
141/** @def IEM_DO_LONGJMP
142 *
143 * Wrapper around longjmp / throw.
144 *
145 * @param a_pVCpu The CPU handle.
146 * @param a_rc The status code jump back with / throw.
147 */
148#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
149# ifdef IEM_WITH_THROW_CATCH
150# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
151# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
152 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
153 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
154 throw int(a_rc); \
155 } while (0)
156# else
157# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
158# endif
159# else
160# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
161# endif
162#endif
163
164/** For use with IEM function that may do a longjmp (when enabled).
165 *
166 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
167 * attribute. So, we indicate that function that may be part of a longjmp may
168 * throw "exceptions" and that the compiler should definitely not generate and
169 * std::terminate calling unwind code.
170 *
171 * Here is one example of this ending in std::terminate:
172 * @code{.txt}
17300 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
17401 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
17502 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
17603 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
17704 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
17805 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
17906 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
18007 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
18108 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
18209 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1830a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1840b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1850c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1860d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1870e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1880f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
18910 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
190 @endcode
191 *
192 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
193 */
194#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
195# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
196#else
197# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
198#endif
199/* ASM-NOINC-END */
200
201#define IEM_IMPLEMENTS_TASKSWITCH
202
203/** @def IEM_WITH_3DNOW
204 * Includes the 3DNow decoding. */
205#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
206# ifndef IEM_WITHOUT_3DNOW
207# define IEM_WITH_3DNOW
208# endif
209#endif
210
211/** @def IEM_WITH_THREE_0F_38
212 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
213#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
214# ifndef IEM_WITHOUT_THREE_0F_38
215# define IEM_WITH_THREE_0F_38
216# endif
217#endif
218
219/** @def IEM_WITH_THREE_0F_3A
220 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
221#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
222# ifndef IEM_WITHOUT_THREE_0F_3A
223# define IEM_WITH_THREE_0F_3A
224# endif
225#endif
226
227/** @def IEM_WITH_VEX
228 * Includes the VEX decoding. */
229#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
230# ifndef IEM_WITHOUT_VEX
231# define IEM_WITH_VEX
232# endif
233#endif
234
235/** @def IEM_CFG_TARGET_CPU
236 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
237 *
238 * By default we allow this to be configured by the user via the
239 * CPUM/GuestCpuName config string, but this comes at a slight cost during
240 * decoding. So, for applications of this code where there is no need to
241 * be dynamic wrt target CPU, just modify this define.
242 */
243#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
244# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
245#endif
246
247//#define IEM_WITH_CODE_TLB // - work in progress
248//#define IEM_WITH_DATA_TLB // - work in progress
249
250
251/** @def IEM_USE_UNALIGNED_DATA_ACCESS
252 * Use unaligned accesses instead of elaborate byte assembly. */
253#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
254# define IEM_USE_UNALIGNED_DATA_ACCESS
255#endif /*ASM-NOINC*/
256
257//#define IEM_LOG_MEMORY_WRITES
258
259
260
261#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
262
263# if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
264/** Instruction statistics. */
265typedef struct IEMINSTRSTATS
266{
267# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
268# include "IEMInstructionStatisticsTmpl.h"
269# undef IEM_DO_INSTR_STAT
270} IEMINSTRSTATS;
271#else
272struct IEMINSTRSTATS;
273typedef struct IEMINSTRSTATS IEMINSTRSTATS;
274#endif
275/** Pointer to IEM instruction statistics. */
276typedef IEMINSTRSTATS *PIEMINSTRSTATS;
277
278
279/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
280 * @{ */
281#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
282#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
283#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
284#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
285#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
286/** Selects the right variant from a_aArray.
287 * pVCpu is implicit in the caller context. */
288#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
289 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
290/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
291 * be used because the host CPU does not support the operation. */
292#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
293 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
294/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
295 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
296 * into the two.
297 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
298#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
299# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
300 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
301#else
302# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
303 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
304#endif
305/** @} */
306
307/**
308 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
309 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
310 *
311 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
312 * indicator.
313 *
314 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
315 */
316#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
317# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
318 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
319#else
320# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
321#endif
322
323
324/**
325 * Branch types.
326 */
327typedef enum IEMBRANCH
328{
329 IEMBRANCH_JUMP = 1,
330 IEMBRANCH_CALL,
331 IEMBRANCH_TRAP,
332 IEMBRANCH_SOFTWARE_INT,
333 IEMBRANCH_HARDWARE_INT
334} IEMBRANCH;
335AssertCompileSize(IEMBRANCH, 4);
336
337
338/**
339 * INT instruction types.
340 */
341typedef enum IEMINT
342{
343 /** INT n instruction (opcode 0xcd imm). */
344 IEMINT_INTN = 0,
345 /** Single byte INT3 instruction (opcode 0xcc). */
346 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
347 /** Single byte INTO instruction (opcode 0xce). */
348 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
349 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
350 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
351} IEMINT;
352AssertCompileSize(IEMINT, 4);
353
354
355/**
356 * A FPU result.
357 */
358typedef struct IEMFPURESULT
359{
360 /** The output value. */
361 RTFLOAT80U r80Result;
362 /** The output status. */
363 uint16_t FSW;
364} IEMFPURESULT;
365AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
366/** Pointer to a FPU result. */
367typedef IEMFPURESULT *PIEMFPURESULT;
368/** Pointer to a const FPU result. */
369typedef IEMFPURESULT const *PCIEMFPURESULT;
370
371
372/**
373 * A FPU result consisting of two output values and FSW.
374 */
375typedef struct IEMFPURESULTTWO
376{
377 /** The first output value. */
378 RTFLOAT80U r80Result1;
379 /** The output status. */
380 uint16_t FSW;
381 /** The second output value. */
382 RTFLOAT80U r80Result2;
383} IEMFPURESULTTWO;
384AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
385AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
386/** Pointer to a FPU result consisting of two output values and FSW. */
387typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
388/** Pointer to a const FPU result consisting of two output values and FSW. */
389typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
390
391
392/**
393 * IEM TLB entry.
394 *
395 * Lookup assembly:
396 * @code{.asm}
397 ; Calculate tag.
398 mov rax, [VA]
399 shl rax, 16
400 shr rax, 16 + X86_PAGE_SHIFT
401 or rax, [uTlbRevision]
402
403 ; Do indexing.
404 movzx ecx, al
405 lea rcx, [pTlbEntries + rcx]
406
407 ; Check tag.
408 cmp [rcx + IEMTLBENTRY.uTag], rax
409 jne .TlbMiss
410
411 ; Check access.
412 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
413 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
414 cmp rax, [uTlbPhysRev]
415 jne .TlbMiss
416
417 ; Calc address and we're done.
418 mov eax, X86_PAGE_OFFSET_MASK
419 and eax, [VA]
420 or rax, [rcx + IEMTLBENTRY.pMappingR3]
421 %ifdef VBOX_WITH_STATISTICS
422 inc qword [cTlbHits]
423 %endif
424 jmp .Done
425
426 .TlbMiss:
427 mov r8d, ACCESS_FLAGS
428 mov rdx, [VA]
429 mov rcx, [pVCpu]
430 call iemTlbTypeMiss
431 .Done:
432
433 @endcode
434 *
435 */
436typedef struct IEMTLBENTRY
437{
438 /** The TLB entry tag.
439 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
440 * is ASSUMING a virtual address width of 48 bits.
441 *
442 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
443 *
444 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
445 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
446 * revision wraps around though, the tags needs to be zeroed.
447 *
448 * @note Try use SHRD instruction? After seeing
449 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
450 *
451 * @todo This will need to be reorganized for 57-bit wide virtual address and
452 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
453 * have to move the TLB entry versioning entirely to the
454 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
455 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
456 * consumed by PCID and ASID (12 + 6 = 18).
457 */
458 uint64_t uTag;
459 /** Access flags and physical TLB revision.
460 *
461 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
462 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
463 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
464 * - Bit 3 - pgm phys/virt - not directly writable.
465 * - Bit 4 - pgm phys page - not directly readable.
466 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
467 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
468 * - Bit 7 - tlb entry - pMappingR3 member not valid.
469 * - Bits 63 thru 8 are used for the physical TLB revision number.
470 *
471 * We're using complemented bit meanings here because it makes it easy to check
472 * whether special action is required. For instance a user mode write access
473 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
474 * non-zero result would mean special handling needed because either it wasn't
475 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
476 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
477 * need to check any PTE flag.
478 */
479 uint64_t fFlagsAndPhysRev;
480 /** The guest physical page address. */
481 uint64_t GCPhys;
482 /** Pointer to the ring-3 mapping. */
483 R3PTRTYPE(uint8_t *) pbMappingR3;
484#if HC_ARCH_BITS == 32
485 uint32_t u32Padding1;
486#endif
487} IEMTLBENTRY;
488AssertCompileSize(IEMTLBENTRY, 32);
489/** Pointer to an IEM TLB entry. */
490typedef IEMTLBENTRY *PIEMTLBENTRY;
491
492/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
493 * @{ */
494#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
495#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
496#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
497#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
498#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
499#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
500#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
501#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
502#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
503#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
504#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
505/** @} */
506
507
508/**
509 * An IEM TLB.
510 *
511 * We've got two of these, one for data and one for instructions.
512 */
513typedef struct IEMTLB
514{
515 /** The TLB revision.
516 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
517 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
518 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
519 * (The revision zero indicates an invalid TLB entry.)
520 *
521 * The initial value is choosen to cause an early wraparound. */
522 uint64_t uTlbRevision;
523 /** The TLB physical address revision - shadow of PGM variable.
524 *
525 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
526 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
527 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
528 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
529 *
530 * The initial value is choosen to cause an early wraparound. */
531 uint64_t volatile uTlbPhysRev;
532
533 /* Statistics: */
534
535 /** TLB hits (VBOX_WITH_STATISTICS only). */
536 uint64_t cTlbHits;
537 /** TLB misses. */
538 uint32_t cTlbMisses;
539 /** Slow read path. */
540 uint32_t cTlbSlowReadPath;
541 /** Safe read path. */
542 uint32_t cTlbSafeReadPath;
543 /** Safe write path. */
544 uint32_t cTlbSafeWritePath;
545#if 0
546 /** TLB misses because of tag mismatch. */
547 uint32_t cTlbMissesTag;
548 /** TLB misses because of virtual access violation. */
549 uint32_t cTlbMissesVirtAccess;
550 /** TLB misses because of dirty bit. */
551 uint32_t cTlbMissesDirty;
552 /** TLB misses because of MMIO */
553 uint32_t cTlbMissesMmio;
554 /** TLB misses because of write access handlers. */
555 uint32_t cTlbMissesWriteHandler;
556 /** TLB misses because no r3(/r0) mapping. */
557 uint32_t cTlbMissesMapping;
558#endif
559 /** Alignment padding. */
560 uint32_t au32Padding[6];
561
562 /** The TLB entries.
563 * We've choosen 256 because that way we can obtain the result directly from a
564 * 8-bit register without an additional AND instruction. */
565 IEMTLBENTRY aEntries[256];
566} IEMTLB;
567AssertCompileSizeAlignment(IEMTLB, 64);
568/** IEMTLB::uTlbRevision increment. */
569#define IEMTLB_REVISION_INCR RT_BIT_64(36)
570/** IEMTLB::uTlbRevision mask. */
571#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
572/** IEMTLB::uTlbPhysRev increment.
573 * @sa IEMTLBE_F_PHYS_REV */
574#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
575/**
576 * Calculates the TLB tag for a virtual address.
577 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
578 * @param a_pTlb The TLB.
579 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
580 * the clearing of the top 16 bits won't work (if 32-bit
581 * we'll end up with mostly zeros).
582 */
583#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
584/**
585 * Calculates the TLB tag for a virtual address but without TLB revision.
586 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
587 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
588 * the clearing of the top 16 bits won't work (if 32-bit
589 * we'll end up with mostly zeros).
590 */
591#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
592/**
593 * Converts a TLB tag value into a TLB index.
594 * @returns Index into IEMTLB::aEntries.
595 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
596 */
597#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
598/**
599 * Converts a TLB tag value into a TLB index.
600 * @returns Index into IEMTLB::aEntries.
601 * @param a_pTlb The TLB.
602 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
603 */
604#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
605
606
607/** @name IEM_MC_F_XXX - MC block flags/clues.
608 * @todo Merge with IEM_CIMPL_F_XXX
609 * @{ */
610#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
611#define IEM_MC_F_MIN_186 RT_BIT_32(1)
612#define IEM_MC_F_MIN_286 RT_BIT_32(2)
613#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
614#define IEM_MC_F_MIN_386 RT_BIT_32(3)
615#define IEM_MC_F_MIN_486 RT_BIT_32(4)
616#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
617#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
618#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
619#define IEM_MC_F_64BIT RT_BIT_32(6)
620#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
621/** This is set by IEMAllN8vePython.py to indicate a variation without the
622 * flags-clearing-and-checking, when there is also a variation with that.
623 * @note Do not use this manully, it's only for python and for testing in
624 * the native recompiler! */
625#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
626/** @} */
627
628/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
629 *
630 * These clues are mainly for the recompiler, so that it can emit correct code.
631 *
632 * They are processed by the python script and which also automatically
633 * calculates flags for MC blocks based on the statements, extending the use of
634 * these flags to describe MC block behavior to the recompiler core. The python
635 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
636 * error checking purposes. The script emits the necessary fEndTb = true and
637 * similar statements as this reduces compile time a tiny bit.
638 *
639 * @{ */
640/** Flag set if direct branch, clear if absolute or indirect. */
641#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
642/** Flag set if indirect branch, clear if direct or relative.
643 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
644 * as well as for return instructions (RET, IRET, RETF). */
645#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
646/** Flag set if relative branch, clear if absolute or indirect. */
647#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
648/** Flag set if conditional branch, clear if unconditional. */
649#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
650/** Flag set if it's a far branch (changes CS). */
651#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
652/** Convenience: Testing any kind of branch. */
653#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
654
655/** Execution flags may change (IEMCPU::fExec). */
656#define IEM_CIMPL_F_MODE RT_BIT_32(5)
657/** May change significant portions of RFLAGS. */
658#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
659/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
660#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
661/** May trigger interrupt shadowing. */
662#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
663/** May enable interrupts, so recheck IRQ immediately afterwards executing
664 * the instruction. */
665#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
666/** May disable interrupts, so recheck IRQ immediately before executing the
667 * instruction. */
668#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
669/** Convenience: Check for IRQ both before and after an instruction. */
670#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
671/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
672#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
673/** May modify FPU state.
674 * @todo Not sure if this is useful yet. */
675#define IEM_CIMPL_F_FPU RT_BIT_32(12)
676/** REP prefixed instruction which may yield before updating PC.
677 * @todo Not sure if this is useful, REP functions now return non-zero
678 * status if they don't update the PC. */
679#define IEM_CIMPL_F_REP RT_BIT_32(13)
680/** I/O instruction.
681 * @todo Not sure if this is useful yet. */
682#define IEM_CIMPL_F_IO RT_BIT_32(14)
683/** Force end of TB after the instruction. */
684#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
685/** Flag set if a branch may also modify the stack (push/pop return address). */
686#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
687/** Flag set if a branch may also modify the stack (push/pop return address)
688 * and switch it (load/restore SS:RSP). */
689#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
690/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
691#define IEM_CIMPL_F_XCPT \
692 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
693 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
694
695/** The block calls a C-implementation instruction function with two implicit arguments.
696 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
697 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
698 * @note The python scripts will add this if missing. */
699#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
700/** The block calls an ASM-implementation instruction function.
701 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
702 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
703 * @note The python scripts will add this if missing. */
704#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
705/** The block calls an ASM-implementation instruction function with an implicit
706 * X86FXSTATE pointer argument.
707 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
708 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
709 * @note The python scripts will add this if missing. */
710#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
711/** The block calls an ASM-implementation instruction function with an implicit
712 * X86XSAVEAREA pointer argument.
713 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
714 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
715 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
716 * @note The python scripts will add this if missing. */
717#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
718/** @} */
719
720
721/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
722 *
723 * These flags are set when entering IEM and adjusted as code is executed, such
724 * that they will always contain the current values as instructions are
725 * finished.
726 *
727 * In recompiled execution mode, (most of) these flags are included in the
728 * translation block selection key and stored in IEMTB::fFlags alongside the
729 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
730 * in IEMCPU::fExec.
731 *
732 * @{ */
733/** Mode: The block target mode mask. */
734#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
735/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
736#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
737/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
738 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
739 * 32-bit mode (for simplifying most memory accesses). */
740#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
741/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
742#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
743/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
744#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
745
746/** X86 Mode: 16-bit on 386 or later. */
747#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
748/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
749#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
750/** X86 Mode: 16-bit protected mode on 386 or later. */
751#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
752/** X86 Mode: 16-bit protected mode on 386 or later. */
753#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
754/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
755#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
756
757/** X86 Mode: 32-bit on 386 or later. */
758#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
759/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
760#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
761/** X86 Mode: 32-bit protected mode. */
762#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
763/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
764#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
765
766/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
767#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
768
769/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
770#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
771 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
772 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
773
774/** Bypass access handlers when set. */
775#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
776/** Have pending hardware instruction breakpoints. */
777#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
778/** Have pending hardware data breakpoints. */
779#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
780
781/** X86: Have pending hardware I/O breakpoints. */
782#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
783/** X86: Disregard the lock prefix (implied or not) when set. */
784#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
785
786/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
787#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
788
789/** Caller configurable options. */
790#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
791
792/** X86: The current protection level (CPL) shift factor. */
793#define IEM_F_X86_CPL_SHIFT 8
794/** X86: The current protection level (CPL) mask. */
795#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
796/** X86: The current protection level (CPL) shifted mask. */
797#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
798
799/** X86 execution context.
800 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
801 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
802 * mode. */
803#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
804/** X86 context: Plain regular execution context. */
805#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
806/** X86 context: VT-x enabled. */
807#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
808/** X86 context: AMD-V enabled. */
809#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
810/** X86 context: In AMD-V or VT-x guest mode. */
811#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
812/** X86 context: System management mode (SMM). */
813#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
814
815/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
816 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
817 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
818 * alread). */
819
820/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
821 * iemRegFinishClearingRF() most for most situations
822 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
823 * the IEM_F_PENDING_BRK_XXX bits alread). */
824
825/** @} */
826
827
828/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
829 *
830 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
831 * translation block flags. The combined flag mask (subject to
832 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
833 *
834 * @{ */
835/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
836#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
837
838/** Type: The block type mask. */
839#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
840/** Type: Purly threaded recompiler (via tables). */
841#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
842/** Type: Native recompilation. */
843#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
844
845/** Set when we're starting the block in an "interrupt shadow".
846 * We don't need to distingish between the two types of this mask, thus the one.
847 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
848#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
849/** Set when we're currently inhibiting NMIs
850 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
851#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
852
853/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
854 * we're close the limit before starting a TB, as determined by
855 * iemGetTbFlagsForCurrentPc(). */
856#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
857
858/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
859 *
860 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
861 * don't implement), because we don't currently generate any context
862 * specific code - that's all handled in CIMPL functions.
863 *
864 * For the threaded recompiler we don't generate any CPL specific code
865 * either, but the native recompiler does for memory access (saves getting
866 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
867 * Since most OSes will not share code between rings, this shouldn't
868 * have any real effect on TB/memory/recompiling load.
869 */
870#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
871/** @} */
872
873AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
874AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
875AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
876AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
877AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
878AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
879AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
880AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
881AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
882AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
883AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
884AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
885AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
886AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
887AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
888AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
889AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
890AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
891AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
892
893AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
894AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
895AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
896AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
897AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
898AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
899AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
900AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
901AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
902AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
903AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
904AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
905
906AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
907AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
908AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
909
910/** Native instruction type for use with the native code generator.
911 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
912#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
913typedef uint8_t IEMNATIVEINSTR;
914#else
915typedef uint32_t IEMNATIVEINSTR;
916#endif
917/** Pointer to a native instruction unit. */
918typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
919/** Pointer to a const native instruction unit. */
920typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
921
922/**
923 * A call for the threaded call table.
924 */
925typedef struct IEMTHRDEDCALLENTRY
926{
927 /** The function to call (IEMTHREADEDFUNCS). */
928 uint16_t enmFunction;
929
930 /** Instruction number in the TB (for statistics). */
931 uint8_t idxInstr;
932 /** The opcode length. */
933 uint8_t cbOpcode;
934 /** Offset into IEMTB::pabOpcodes. */
935 uint16_t offOpcode;
936
937 /** TB lookup table index (7 bits) and large size (1 bits).
938 *
939 * The default size is 1 entry, but for indirect calls and returns we set the
940 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
941 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
942 * lookup isn't that slow compared to sequentially trying out 4 TBs.
943 *
944 * By default lookup table entry 0 for a TB is reserved as a fallback for
945 * calltable entries w/o explicit entreis, so this member will be non-zero if
946 * there is a lookup entry associated with this call.
947 *
948 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
949 */
950 uint8_t uTbLookup;
951
952 /** Unused atm. */
953 uint8_t uUnused0;
954
955 /** Generic parameters. */
956 uint64_t auParams[3];
957} IEMTHRDEDCALLENTRY;
958AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
959/** Pointer to a threaded call entry. */
960typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
961/** Pointer to a const threaded call entry. */
962typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
963
964/** The number of TB lookup table entries for a large allocation
965 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
966#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
967/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
968#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
969/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
970#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
971/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
972#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
973 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
974
975/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
976#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
977
978/**
979 * Native IEM TB 'function' typedef.
980 *
981 * This will throw/longjmp on occation.
982 *
983 * @note AMD64 doesn't have that many non-volatile registers and does sport
984 * 32-bit address displacments, so we don't need pCtx.
985 *
986 * On ARM64 pCtx allows us to directly address the whole register
987 * context without requiring a separate indexing register holding the
988 * offset. This saves an instruction loading the offset for each guest
989 * CPU context access, at the cost of a non-volatile register.
990 * Fortunately, ARM64 has quite a lot more registers.
991 */
992typedef
993#ifdef RT_ARCH_AMD64
994int FNIEMTBNATIVE(PVMCPUCC pVCpu)
995#else
996int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
997#endif
998#if RT_CPLUSPLUS_PREREQ(201700)
999 IEM_NOEXCEPT_MAY_LONGJMP
1000#endif
1001 ;
1002/** Pointer to a native IEM TB entry point function.
1003 * This will throw/longjmp on occation. */
1004typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1005
1006
1007/**
1008 * Translation block debug info entry type.
1009 */
1010typedef enum IEMTBDBGENTRYTYPE
1011{
1012 kIemTbDbgEntryType_Invalid = 0,
1013 /** The entry is for marking a native code position.
1014 * Entries following this all apply to this position. */
1015 kIemTbDbgEntryType_NativeOffset,
1016 /** The entry is for a new guest instruction. */
1017 kIemTbDbgEntryType_GuestInstruction,
1018 /** Marks the start of a threaded call. */
1019 kIemTbDbgEntryType_ThreadedCall,
1020 /** Marks the location of a label. */
1021 kIemTbDbgEntryType_Label,
1022 /** Info about a host register shadowing a guest register. */
1023 kIemTbDbgEntryType_GuestRegShadowing,
1024#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1025 /** Info about a host SIMD register shadowing a guest SIMD register. */
1026 kIemTbDbgEntryType_GuestSimdRegShadowing,
1027#endif
1028#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1029 /** Info about a delayed RIP update. */
1030 kIemTbDbgEntryType_DelayedPcUpdate,
1031#endif
1032#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1033 /** Info about a shadowed guest register becoming dirty. */
1034 kIemTbDbgEntryType_GuestRegDirty,
1035 /** Info about register writeback/flush oepration. */
1036 kIemTbDbgEntryType_GuestRegWriteback,
1037#endif
1038 kIemTbDbgEntryType_End
1039} IEMTBDBGENTRYTYPE;
1040
1041/**
1042 * Translation block debug info entry.
1043 */
1044typedef union IEMTBDBGENTRY
1045{
1046 /** Plain 32-bit view. */
1047 uint32_t u;
1048
1049 /** Generic view for getting at the type field. */
1050 struct
1051 {
1052 /** IEMTBDBGENTRYTYPE */
1053 uint32_t uType : 4;
1054 uint32_t uTypeSpecific : 28;
1055 } Gen;
1056
1057 struct
1058 {
1059 /** kIemTbDbgEntryType_ThreadedCall1. */
1060 uint32_t uType : 4;
1061 /** Native code offset. */
1062 uint32_t offNative : 28;
1063 } NativeOffset;
1064
1065 struct
1066 {
1067 /** kIemTbDbgEntryType_GuestInstruction. */
1068 uint32_t uType : 4;
1069 uint32_t uUnused : 4;
1070 /** The IEM_F_XXX flags. */
1071 uint32_t fExec : 24;
1072 } GuestInstruction;
1073
1074 struct
1075 {
1076 /* kIemTbDbgEntryType_ThreadedCall. */
1077 uint32_t uType : 4;
1078 /** Set if the call was recompiled to native code, clear if just calling
1079 * threaded function. */
1080 uint32_t fRecompiled : 1;
1081 uint32_t uUnused : 11;
1082 /** The threaded call number (IEMTHREADEDFUNCS). */
1083 uint32_t enmCall : 16;
1084 } ThreadedCall;
1085
1086 struct
1087 {
1088 /* kIemTbDbgEntryType_Label. */
1089 uint32_t uType : 4;
1090 uint32_t uUnused : 4;
1091 /** The label type (IEMNATIVELABELTYPE). */
1092 uint32_t enmLabel : 8;
1093 /** The label data. */
1094 uint32_t uData : 16;
1095 } Label;
1096
1097 struct
1098 {
1099 /* kIemTbDbgEntryType_GuestRegShadowing. */
1100 uint32_t uType : 4;
1101 uint32_t uUnused : 4;
1102 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1103 uint32_t idxGstReg : 8;
1104 /** The host new register number, UINT8_MAX if dropped. */
1105 uint32_t idxHstReg : 8;
1106 /** The previous host register number, UINT8_MAX if new. */
1107 uint32_t idxHstRegPrev : 8;
1108 } GuestRegShadowing;
1109
1110#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1111 struct
1112 {
1113 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1114 uint32_t uType : 4;
1115 uint32_t uUnused : 4;
1116 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1117 uint32_t idxGstSimdReg : 8;
1118 /** The host new register number, UINT8_MAX if dropped. */
1119 uint32_t idxHstSimdReg : 8;
1120 /** The previous host register number, UINT8_MAX if new. */
1121 uint32_t idxHstSimdRegPrev : 8;
1122 } GuestSimdRegShadowing;
1123#endif
1124
1125#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1126 struct
1127 {
1128 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1129 uint32_t uType : 4;
1130 /* The instruction offset added to the program counter. */
1131 uint32_t offPc : 14;
1132 /** Number of instructions skipped. */
1133 uint32_t cInstrSkipped : 14;
1134 } DelayedPcUpdate;
1135#endif
1136
1137#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1138 struct
1139 {
1140 /* kIemTbDbgEntryType_GuestRegDirty. */
1141 uint32_t uType : 4;
1142 uint32_t uUnused : 11;
1143 /** Flag whether this is about a SIMD (true) or general (false) register. */
1144 uint32_t fSimdReg : 1;
1145 /** The guest register index being marked as dirty. */
1146 uint32_t idxGstReg : 8;
1147 /** The host register number this register is shadowed in .*/
1148 uint32_t idxHstReg : 8;
1149 } GuestRegDirty;
1150
1151 struct
1152 {
1153 /* kIemTbDbgEntryType_GuestRegWriteback. */
1154 uint32_t uType : 4;
1155 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1156 uint32_t fSimdReg : 1;
1157 /** The mask shift. */
1158 uint32_t cShift : 2;
1159 /** The guest register mask being written back. */
1160 uint32_t fGstReg : 25;
1161 } GuestRegWriteback;
1162#endif
1163
1164} IEMTBDBGENTRY;
1165AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1166/** Pointer to a debug info entry. */
1167typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1168/** Pointer to a const debug info entry. */
1169typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1170
1171/**
1172 * Translation block debug info.
1173 */
1174typedef struct IEMTBDBG
1175{
1176 /** Number of entries in aEntries. */
1177 uint32_t cEntries;
1178 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1179 uint32_t offNativeLast;
1180 /** Debug info entries. */
1181 RT_FLEXIBLE_ARRAY_EXTENSION
1182 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1183} IEMTBDBG;
1184/** Pointer to TB debug info. */
1185typedef IEMTBDBG *PIEMTBDBG;
1186/** Pointer to const TB debug info. */
1187typedef IEMTBDBG const *PCIEMTBDBG;
1188
1189
1190/**
1191 * Translation block.
1192 *
1193 * The current plan is to just keep TBs and associated lookup hash table private
1194 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1195 * avoids using expensive atomic primitives for updating lists and stuff.
1196 */
1197#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1198typedef struct IEMTB
1199{
1200 /** Next block with the same hash table entry. */
1201 struct IEMTB *pNext;
1202 /** Usage counter. */
1203 uint32_t cUsed;
1204 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1205 uint32_t msLastUsed;
1206
1207 /** @name What uniquely identifies the block.
1208 * @{ */
1209 RTGCPHYS GCPhysPc;
1210 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1211 uint32_t fFlags;
1212 union
1213 {
1214 struct
1215 {
1216 /**< Relevant CS X86DESCATTR_XXX bits. */
1217 uint16_t fAttr;
1218 } x86;
1219 };
1220 /** @} */
1221
1222 /** Number of opcode ranges. */
1223 uint8_t cRanges;
1224 /** Statistics: Number of instructions in the block. */
1225 uint8_t cInstructions;
1226
1227 /** Type specific info. */
1228 union
1229 {
1230 struct
1231 {
1232 /** The call sequence table. */
1233 PIEMTHRDEDCALLENTRY paCalls;
1234 /** Number of calls in paCalls. */
1235 uint16_t cCalls;
1236 /** Number of calls allocated. */
1237 uint16_t cAllocated;
1238 } Thrd;
1239 struct
1240 {
1241 /** The native instructions (PFNIEMTBNATIVE). */
1242 PIEMNATIVEINSTR paInstructions;
1243 /** Number of instructions pointed to by paInstructions. */
1244 uint32_t cInstructions;
1245 } Native;
1246 /** Generic view for zeroing when freeing. */
1247 struct
1248 {
1249 uintptr_t uPtr;
1250 uint32_t uData;
1251 } Gen;
1252 };
1253
1254 /** The allocation chunk this TB belongs to. */
1255 uint8_t idxAllocChunk;
1256 /** The number of entries in the lookup table.
1257 * Because we're out of space, the TB lookup table is located before the
1258 * opcodes pointed to by pabOpcodes. */
1259 uint8_t cTbLookupEntries;
1260
1261 /** Number of bytes of opcodes stored in pabOpcodes.
1262 * @todo this field isn't really needed, aRanges keeps the actual info. */
1263 uint16_t cbOpcodes;
1264 /** Pointer to the opcode bytes this block was recompiled from.
1265 * This also points to the TB lookup table, which starts cTbLookupEntries
1266 * entries before the opcodes (we don't have room atm for another point). */
1267 uint8_t *pabOpcodes;
1268
1269 /** Debug info if enabled.
1270 * This is only generated by the native recompiler. */
1271 PIEMTBDBG pDbgInfo;
1272
1273 /* --- 64 byte cache line end --- */
1274
1275 /** Opcode ranges.
1276 *
1277 * The opcode checkers and maybe TLB loading functions will use this to figure
1278 * out what to do. The parameter will specify an entry and the opcode offset to
1279 * start at and the minimum number of bytes to verify (instruction length).
1280 *
1281 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1282 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1283 * code TLB (must have a valid entry for that address) and scan the ranges to
1284 * locate the corresponding opcodes. Probably.
1285 */
1286 struct IEMTBOPCODERANGE
1287 {
1288 /** Offset within pabOpcodes. */
1289 uint16_t offOpcodes;
1290 /** Number of bytes. */
1291 uint16_t cbOpcodes;
1292 /** The page offset. */
1293 RT_GCC_EXTENSION
1294 uint16_t offPhysPage : 12;
1295 /** Unused bits. */
1296 RT_GCC_EXTENSION
1297 uint16_t u2Unused : 2;
1298 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1299 RT_GCC_EXTENSION
1300 uint16_t idxPhysPage : 2;
1301 } aRanges[8];
1302
1303 /** Physical pages that this TB covers.
1304 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1305 RTGCPHYS aGCPhysPages[2];
1306} IEMTB;
1307#pragma pack()
1308AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1309AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1310AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1311AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1312AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1313AssertCompileMemberOffset(IEMTB, aRanges, 64);
1314AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1315#if 1
1316AssertCompileSize(IEMTB, 128);
1317# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1318#else
1319AssertCompileSize(IEMTB, 168);
1320# undef IEMTB_SIZE_IS_POWER_OF_TWO
1321#endif
1322
1323/** Pointer to a translation block. */
1324typedef IEMTB *PIEMTB;
1325/** Pointer to a const translation block. */
1326typedef IEMTB const *PCIEMTB;
1327
1328/** Gets address of the given TB lookup table entry. */
1329#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1330 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1331
1332
1333/**
1334 * A chunk of memory in the TB allocator.
1335 */
1336typedef struct IEMTBCHUNK
1337{
1338 /** Pointer to the translation blocks in this chunk. */
1339 PIEMTB paTbs;
1340#ifdef IN_RING0
1341 /** Allocation handle. */
1342 RTR0MEMOBJ hMemObj;
1343#endif
1344} IEMTBCHUNK;
1345
1346/**
1347 * A per-CPU translation block allocator.
1348 *
1349 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1350 * the length of the collision list, and of course also for cache line alignment
1351 * reasons, the TBs must be allocated with at least 64-byte alignment.
1352 * Memory is there therefore allocated using one of the page aligned allocators.
1353 *
1354 *
1355 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1356 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1357 * that enables us to quickly calculate the allocation bitmap position when
1358 * freeing the translation block.
1359 */
1360typedef struct IEMTBALLOCATOR
1361{
1362 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1363 uint32_t uMagic;
1364
1365#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1366 /** Mask corresponding to cTbsPerChunk - 1. */
1367 uint32_t fChunkMask;
1368 /** Shift count corresponding to cTbsPerChunk. */
1369 uint8_t cChunkShift;
1370#else
1371 uint32_t uUnused;
1372 uint8_t bUnused;
1373#endif
1374 /** Number of chunks we're allowed to allocate. */
1375 uint8_t cMaxChunks;
1376 /** Number of chunks currently populated. */
1377 uint16_t cAllocatedChunks;
1378 /** Number of translation blocks per chunk. */
1379 uint32_t cTbsPerChunk;
1380 /** Chunk size. */
1381 uint32_t cbPerChunk;
1382
1383 /** The maximum number of TBs. */
1384 uint32_t cMaxTbs;
1385 /** Total number of TBs in the populated chunks.
1386 * (cAllocatedChunks * cTbsPerChunk) */
1387 uint32_t cTotalTbs;
1388 /** The current number of TBs in use.
1389 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1390 uint32_t cInUseTbs;
1391 /** Statistics: Number of the cInUseTbs that are native ones. */
1392 uint32_t cNativeTbs;
1393 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1394 uint32_t cThreadedTbs;
1395
1396 /** Where to start pruning TBs from when we're out.
1397 * See iemTbAllocatorAllocSlow for details. */
1398 uint32_t iPruneFrom;
1399 /** Hint about which bit to start scanning the bitmap from. */
1400 uint32_t iStartHint;
1401 /** Where to start pruning native TBs from when we're out of executable memory.
1402 * See iemTbAllocatorFreeupNativeSpace for details. */
1403 uint32_t iPruneNativeFrom;
1404 uint32_t uPadding;
1405
1406 /** Statistics: Number of TB allocation calls. */
1407 STAMCOUNTER StatAllocs;
1408 /** Statistics: Number of TB free calls. */
1409 STAMCOUNTER StatFrees;
1410 /** Statistics: Time spend pruning. */
1411 STAMPROFILE StatPrune;
1412 /** Statistics: Time spend pruning native TBs. */
1413 STAMPROFILE StatPruneNative;
1414
1415 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1416 PIEMTB pDelayedFreeHead;
1417
1418 /** Allocation chunks. */
1419 IEMTBCHUNK aChunks[256];
1420
1421 /** Allocation bitmap for all possible chunk chunks. */
1422 RT_FLEXIBLE_ARRAY_EXTENSION
1423 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1424} IEMTBALLOCATOR;
1425/** Pointer to a TB allocator. */
1426typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1427
1428/** Magic value for the TB allocator (Emmet Harley Cohen). */
1429#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1430
1431
1432/**
1433 * A per-CPU translation block cache (hash table).
1434 *
1435 * The hash table is allocated once during IEM initialization and size double
1436 * the max TB count, rounded up to the nearest power of two (so we can use and
1437 * AND mask rather than a rest division when hashing).
1438 */
1439typedef struct IEMTBCACHE
1440{
1441 /** Magic value (IEMTBCACHE_MAGIC). */
1442 uint32_t uMagic;
1443 /** Size of the hash table. This is a power of two. */
1444 uint32_t cHash;
1445 /** The mask corresponding to cHash. */
1446 uint32_t uHashMask;
1447 uint32_t uPadding;
1448
1449 /** @name Statistics
1450 * @{ */
1451 /** Number of collisions ever. */
1452 STAMCOUNTER cCollisions;
1453
1454 /** Statistics: Number of TB lookup misses. */
1455 STAMCOUNTER cLookupMisses;
1456 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1457 STAMCOUNTER cLookupHits;
1458 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1459 STAMCOUNTER cLookupHitsViaTbLookupTable;
1460 STAMCOUNTER auPadding2[2];
1461 /** Statistics: Collision list length pruning. */
1462 STAMPROFILE StatPrune;
1463 /** @} */
1464
1465 /** The hash table itself.
1466 * @note The lower 6 bits of the pointer is used for keeping the collision
1467 * list length, so we can take action when it grows too long.
1468 * This works because TBs are allocated using a 64 byte (or
1469 * higher) alignment from page aligned chunks of memory, so the lower
1470 * 6 bits of the address will always be zero.
1471 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1472 */
1473 RT_FLEXIBLE_ARRAY_EXTENSION
1474 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1475} IEMTBCACHE;
1476/** Pointer to a per-CPU translation block cahce. */
1477typedef IEMTBCACHE *PIEMTBCACHE;
1478
1479/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1480#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1481
1482/** The collision count mask for IEMTBCACHE::apHash entries. */
1483#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1484/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1485#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1486/** Combine a TB pointer and a collision list length into a value for an
1487 * IEMTBCACHE::apHash entry. */
1488#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1489/** Combine a TB pointer and a collision list length into a value for an
1490 * IEMTBCACHE::apHash entry. */
1491#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1492/** Combine a TB pointer and a collision list length into a value for an
1493 * IEMTBCACHE::apHash entry. */
1494#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1495
1496/**
1497 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1498 */
1499#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1500 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1501
1502/**
1503 * Calculates the hash table slot for a TB from physical PC address and TB
1504 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1505 */
1506#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1507 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1508
1509
1510/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1511 *
1512 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1513 *
1514 * @{ */
1515/** Value if no branching happened recently. */
1516#define IEMBRANCHED_F_NO UINT8_C(0x00)
1517/** Flag set if direct branch, clear if absolute or indirect. */
1518#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1519/** Flag set if indirect branch, clear if direct or relative. */
1520#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1521/** Flag set if relative branch, clear if absolute or indirect. */
1522#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1523/** Flag set if conditional branch, clear if unconditional. */
1524#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1525/** Flag set if it's a far branch. */
1526#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1527/** Flag set if the stack pointer is modified. */
1528#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1529/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1530#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1531/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1532#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1533/** @} */
1534
1535
1536/**
1537 * The per-CPU IEM state.
1538 */
1539typedef struct IEMCPU
1540{
1541 /** Info status code that needs to be propagated to the IEM caller.
1542 * This cannot be passed internally, as it would complicate all success
1543 * checks within the interpreter making the code larger and almost impossible
1544 * to get right. Instead, we'll store status codes to pass on here. Each
1545 * source of these codes will perform appropriate sanity checks. */
1546 int32_t rcPassUp; /* 0x00 */
1547 /** Execution flag, IEM_F_XXX. */
1548 uint32_t fExec; /* 0x04 */
1549
1550 /** @name Decoder state.
1551 * @{ */
1552#ifdef IEM_WITH_CODE_TLB
1553 /** The offset of the next instruction byte. */
1554 uint32_t offInstrNextByte; /* 0x08 */
1555 /** The number of bytes available at pbInstrBuf for the current instruction.
1556 * This takes the max opcode length into account so that doesn't need to be
1557 * checked separately. */
1558 uint32_t cbInstrBuf; /* 0x0c */
1559 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1560 * This can be NULL if the page isn't mappable for some reason, in which
1561 * case we'll do fallback stuff.
1562 *
1563 * If we're executing an instruction from a user specified buffer,
1564 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1565 * aligned pointer but pointer to the user data.
1566 *
1567 * For instructions crossing pages, this will start on the first page and be
1568 * advanced to the next page by the time we've decoded the instruction. This
1569 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1570 */
1571 uint8_t const *pbInstrBuf; /* 0x10 */
1572# if ARCH_BITS == 32
1573 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1574# endif
1575 /** The program counter corresponding to pbInstrBuf.
1576 * This is set to a non-canonical address when we need to invalidate it. */
1577 uint64_t uInstrBufPc; /* 0x18 */
1578 /** The guest physical address corresponding to pbInstrBuf. */
1579 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1580 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1581 * This takes the CS segment limit into account.
1582 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1583 uint16_t cbInstrBufTotal; /* 0x28 */
1584# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1585 /** Offset into pbInstrBuf of the first byte of the current instruction.
1586 * Can be negative to efficiently handle cross page instructions. */
1587 int16_t offCurInstrStart; /* 0x2a */
1588
1589 /** The prefix mask (IEM_OP_PRF_XXX). */
1590 uint32_t fPrefixes; /* 0x2c */
1591 /** The extra REX ModR/M register field bit (REX.R << 3). */
1592 uint8_t uRexReg; /* 0x30 */
1593 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1594 * (REX.B << 3). */
1595 uint8_t uRexB; /* 0x31 */
1596 /** The extra REX SIB index field bit (REX.X << 3). */
1597 uint8_t uRexIndex; /* 0x32 */
1598
1599 /** The effective segment register (X86_SREG_XXX). */
1600 uint8_t iEffSeg; /* 0x33 */
1601
1602 /** The offset of the ModR/M byte relative to the start of the instruction. */
1603 uint8_t offModRm; /* 0x34 */
1604
1605# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1606 /** The current offset into abOpcode. */
1607 uint8_t offOpcode; /* 0x35 */
1608# else
1609 uint8_t bUnused; /* 0x35 */
1610# endif
1611# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1612 uint8_t abOpaqueDecoderPart1[0x36 - 0x2a];
1613# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1614
1615#else /* !IEM_WITH_CODE_TLB */
1616# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1617 /** The size of what has currently been fetched into abOpcode. */
1618 uint8_t cbOpcode; /* 0x08 */
1619 /** The current offset into abOpcode. */
1620 uint8_t offOpcode; /* 0x09 */
1621 /** The offset of the ModR/M byte relative to the start of the instruction. */
1622 uint8_t offModRm; /* 0x0a */
1623
1624 /** The effective segment register (X86_SREG_XXX). */
1625 uint8_t iEffSeg; /* 0x0b */
1626
1627 /** The prefix mask (IEM_OP_PRF_XXX). */
1628 uint32_t fPrefixes; /* 0x0c */
1629 /** The extra REX ModR/M register field bit (REX.R << 3). */
1630 uint8_t uRexReg; /* 0x10 */
1631 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1632 * (REX.B << 3). */
1633 uint8_t uRexB; /* 0x11 */
1634 /** The extra REX SIB index field bit (REX.X << 3). */
1635 uint8_t uRexIndex; /* 0x12 */
1636
1637# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1638 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1639# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1640#endif /* !IEM_WITH_CODE_TLB */
1641
1642#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1643 /** The effective operand mode. */
1644 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1645 /** The default addressing mode. */
1646 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1647 /** The effective addressing mode. */
1648 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1649 /** The default operand mode. */
1650 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1651
1652 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1653 uint8_t idxPrefix; /* 0x3a, 0x17 */
1654 /** 3rd VEX/EVEX/XOP register.
1655 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1656 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1657 /** The VEX/EVEX/XOP length field. */
1658 uint8_t uVexLength; /* 0x3c, 0x19 */
1659 /** Additional EVEX stuff. */
1660 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1661
1662# ifndef IEM_WITH_CODE_TLB
1663 /** Explicit alignment padding. */
1664 uint8_t abAlignment2a[1]; /* 0x1b */
1665# endif
1666 /** The FPU opcode (FOP). */
1667 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1668# ifndef IEM_WITH_CODE_TLB
1669 /** Explicit alignment padding. */
1670 uint8_t abAlignment2b[2]; /* 0x1e */
1671# endif
1672
1673 /** The opcode bytes. */
1674 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1675 /** Explicit alignment padding. */
1676# ifdef IEM_WITH_CODE_TLB
1677 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1678# else
1679 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1680# endif
1681
1682#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1683# ifdef IEM_WITH_CODE_TLB
1684 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1685# else
1686 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1687# endif
1688#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1689 /** @} */
1690
1691
1692 /** The number of active guest memory mappings. */
1693 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1694
1695 /** Records for tracking guest memory mappings. */
1696 struct
1697 {
1698 /** The address of the mapped bytes. */
1699 R3R0PTRTYPE(void *) pv;
1700 /** The access flags (IEM_ACCESS_XXX).
1701 * IEM_ACCESS_INVALID if the entry is unused. */
1702 uint32_t fAccess;
1703#if HC_ARCH_BITS == 64
1704 uint32_t u32Alignment4; /**< Alignment padding. */
1705#endif
1706 } aMemMappings[3]; /* 0x50 LB 0x30 */
1707
1708 /** Locking records for the mapped memory. */
1709 union
1710 {
1711 PGMPAGEMAPLOCK Lock;
1712 uint64_t au64Padding[2];
1713 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1714
1715 /** Bounce buffer info.
1716 * This runs in parallel to aMemMappings. */
1717 struct
1718 {
1719 /** The physical address of the first byte. */
1720 RTGCPHYS GCPhysFirst;
1721 /** The physical address of the second page. */
1722 RTGCPHYS GCPhysSecond;
1723 /** The number of bytes in the first page. */
1724 uint16_t cbFirst;
1725 /** The number of bytes in the second page. */
1726 uint16_t cbSecond;
1727 /** Whether it's unassigned memory. */
1728 bool fUnassigned;
1729 /** Explicit alignment padding. */
1730 bool afAlignment5[3];
1731 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1732
1733 /** The flags of the current exception / interrupt. */
1734 uint32_t fCurXcpt; /* 0xf8 */
1735 /** The current exception / interrupt. */
1736 uint8_t uCurXcpt; /* 0xfc */
1737 /** Exception / interrupt recursion depth. */
1738 int8_t cXcptRecursions; /* 0xfb */
1739
1740 /** The next unused mapping index.
1741 * @todo try find room for this up with cActiveMappings. */
1742 uint8_t iNextMapping; /* 0xfd */
1743 uint8_t abAlignment7[1];
1744
1745 /** Bounce buffer storage.
1746 * This runs in parallel to aMemMappings and aMemBbMappings. */
1747 struct
1748 {
1749 uint8_t ab[512];
1750 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1751
1752
1753 /** Pointer set jump buffer - ring-3 context. */
1754 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1755 /** Pointer set jump buffer - ring-0 context. */
1756 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1757
1758 /** @todo Should move this near @a fCurXcpt later. */
1759 /** The CR2 for the current exception / interrupt. */
1760 uint64_t uCurXcptCr2;
1761 /** The error code for the current exception / interrupt. */
1762 uint32_t uCurXcptErr;
1763
1764 /** @name Statistics
1765 * @{ */
1766 /** The number of instructions we've executed. */
1767 uint32_t cInstructions;
1768 /** The number of potential exits. */
1769 uint32_t cPotentialExits;
1770 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1771 * This may contain uncommitted writes. */
1772 uint32_t cbWritten;
1773 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1774 uint32_t cRetInstrNotImplemented;
1775 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1776 uint32_t cRetAspectNotImplemented;
1777 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1778 uint32_t cRetInfStatuses;
1779 /** Counts other error statuses returned. */
1780 uint32_t cRetErrStatuses;
1781 /** Number of times rcPassUp has been used. */
1782 uint32_t cRetPassUpStatus;
1783 /** Number of times RZ left with instruction commit pending for ring-3. */
1784 uint32_t cPendingCommit;
1785 /** Number of misaligned (host sense) atomic instruction accesses. */
1786 uint32_t cMisalignedAtomics;
1787 /** Number of long jumps. */
1788 uint32_t cLongJumps;
1789 /** @} */
1790
1791 /** @name Target CPU information.
1792 * @{ */
1793#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1794 /** The target CPU. */
1795 uint8_t uTargetCpu;
1796#else
1797 uint8_t bTargetCpuPadding;
1798#endif
1799 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1800 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1801 * native host support and the 2nd for when there is.
1802 *
1803 * The two values are typically indexed by a g_CpumHostFeatures bit.
1804 *
1805 * This is for instance used for the BSF & BSR instructions where AMD and
1806 * Intel CPUs produce different EFLAGS. */
1807 uint8_t aidxTargetCpuEflFlavour[2];
1808
1809 /** The CPU vendor. */
1810 CPUMCPUVENDOR enmCpuVendor;
1811 /** @} */
1812
1813 /** @name Host CPU information.
1814 * @{ */
1815 /** The CPU vendor. */
1816 CPUMCPUVENDOR enmHostCpuVendor;
1817 /** @} */
1818
1819 /** Counts RDMSR \#GP(0) LogRel(). */
1820 uint8_t cLogRelRdMsr;
1821 /** Counts WRMSR \#GP(0) LogRel(). */
1822 uint8_t cLogRelWrMsr;
1823 /** Alignment padding. */
1824 uint8_t abAlignment9[42];
1825
1826 /** @name Recompilation
1827 * @{ */
1828 /** Pointer to the current translation block.
1829 * This can either be one being executed or one being compiled. */
1830 R3PTRTYPE(PIEMTB) pCurTbR3;
1831#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1832 /** Frame pointer for the last native TB to execute. */
1833 R3PTRTYPE(void *) pvTbFramePointerR3;
1834#else
1835 R3PTRTYPE(void *) pvUnusedR3;
1836#endif
1837 /** Fixed TB used for threaded recompilation.
1838 * This is allocated once with maxed-out sizes and re-used afterwards. */
1839 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1840 /** Pointer to the ring-3 TB cache for this EMT. */
1841 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1842 /** Pointer to the ring-3 TB lookup entry.
1843 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
1844 * entry, thus it can always safely be used w/o NULL checking. */
1845 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
1846 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1847 * The TBs are based on physical addresses, so this is needed to correleated
1848 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1849 uint64_t uCurTbStartPc;
1850 /** Number of threaded TBs executed. */
1851 uint64_t cTbExecThreaded;
1852 /** Number of native TBs executed. */
1853 uint64_t cTbExecNative;
1854 /** Whether we need to check the opcode bytes for the current instruction.
1855 * This is set by a previous instruction if it modified memory or similar. */
1856 bool fTbCheckOpcodes;
1857 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1858 uint8_t fTbBranched;
1859 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1860 bool fTbCrossedPage;
1861 /** Whether to end the current TB. */
1862 bool fEndTb;
1863 /** Number of instructions before we need emit an IRQ check call again.
1864 * This helps making sure we don't execute too long w/o checking for
1865 * interrupts and immediately following instructions that may enable
1866 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1867 * required to make sure we check following the next instruction as well, see
1868 * fTbCurInstrIsSti. */
1869 uint8_t cInstrTillIrqCheck;
1870 /** Indicates that the current instruction is an STI. This is set by the
1871 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1872 bool fTbCurInstrIsSti;
1873 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1874 uint16_t cbOpcodesAllocated;
1875 /** The current instruction number in a native TB.
1876 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1877 * and will be picked up by the TB execution loop. Only used when
1878 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1879 uint8_t idxTbCurInstr;
1880 /** Spaced reserved for recompiler data / alignment. */
1881 bool afRecompilerStuff1[3];
1882 /** The virtual sync time at the last timer poll call. */
1883 uint32_t msRecompilerPollNow;
1884 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
1885 uint32_t uTbNativeRecompileAtUsedCount;
1886 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1887 uint32_t fTbCurInstr;
1888 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1889 uint32_t fTbPrevInstr;
1890 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1891 * currently not up to date in EFLAGS. */
1892 uint32_t fSkippingEFlags;
1893 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1894 RTGCPHYS GCPhysInstrBufPrev;
1895 /** Pointer to the ring-3 TB allocator for this EMT. */
1896 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1897 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1898 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1899 /** Pointer to the native recompiler state for ring-3. */
1900 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1901 /** Dummy entry for ppTbLookupEntryR3. */
1902 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
1903
1904 /** Statistics: Times TB execution was broken off before reaching the end. */
1905 STAMCOUNTER StatTbExecBreaks;
1906 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1907 STAMCOUNTER StatCheckIrqBreaks;
1908 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1909 STAMCOUNTER StatCheckModeBreaks;
1910 /** Threaded TB statistics: Times execution break on call with lookup entries. */
1911 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
1912 /** Threaded TB statistics: Times execution break on call without lookup entries. */
1913 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
1914 /** Statistics: Times a post jump target check missed and had to find new TB. */
1915 STAMCOUNTER StatCheckBranchMisses;
1916 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1917 STAMCOUNTER StatCheckNeedCsLimChecking;
1918 /** Statistics: Times a loop was detected within a TB.. */
1919 STAMCOUNTER StatTbLoopInTbDetected;
1920 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
1921 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
1922 /** Native TB statistics: Number of fully recompiled TBs. */
1923 STAMCOUNTER StatNativeFullyRecompiledTbs;
1924 /** TB statistics: Number of instructions per TB. */
1925 STAMPROFILE StatTbInstr;
1926 /** TB statistics: Number of TB lookup table entries per TB. */
1927 STAMPROFILE StatTbLookupEntries;
1928 /** Threaded TB statistics: Number of calls per TB. */
1929 STAMPROFILE StatTbThreadedCalls;
1930 /** Native TB statistics: Native code size per TB. */
1931 STAMPROFILE StatTbNativeCode;
1932 /** Native TB statistics: Profiling native recompilation. */
1933 STAMPROFILE StatNativeRecompilation;
1934 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1935 STAMPROFILE StatNativeCallsRecompiled;
1936 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1937 STAMPROFILE StatNativeCallsThreaded;
1938 /** Native recompiled execution: TLB hits for data fetches. */
1939 STAMCOUNTER StatNativeTlbHitsForFetch;
1940 /** Native recompiled execution: TLB hits for data stores. */
1941 STAMCOUNTER StatNativeTlbHitsForStore;
1942 /** Native recompiled execution: TLB hits for stack accesses. */
1943 STAMCOUNTER StatNativeTlbHitsForStack;
1944 /** Native recompiled execution: TLB hits for mapped accesses. */
1945 STAMCOUNTER StatNativeTlbHitsForMapped;
1946 /** Native recompiled execution: Code TLB misses for new page. */
1947 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
1948 /** Native recompiled execution: Code TLB hits for new page. */
1949 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
1950 /** Native recompiled execution: Code TLB misses for new page with offset. */
1951 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
1952 /** Native recompiled execution: Code TLB hits for new page with offset. */
1953 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
1954
1955 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
1956 STAMCOUNTER StatNativeRegFindFree;
1957 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
1958 * to free a variable. */
1959 STAMCOUNTER StatNativeRegFindFreeVar;
1960 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
1961 * not need to free any variables. */
1962 STAMCOUNTER StatNativeRegFindFreeNoVar;
1963 /** Native recompiler: Liveness info freed shadowed guest registers in
1964 * iemNativeRegAllocFindFree. */
1965 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
1966 /** Native recompiler: Liveness info helped with the allocation in
1967 * iemNativeRegAllocFindFree. */
1968 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
1969
1970 /** Native recompiler: Number of times status flags calc has been skipped. */
1971 STAMCOUNTER StatNativeEflSkippedArithmetic;
1972 /** Native recompiler: Number of times status flags calc has been skipped. */
1973 STAMCOUNTER StatNativeEflSkippedLogical;
1974
1975 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
1976 STAMCOUNTER StatNativeLivenessEflCfSkippable;
1977 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
1978 STAMCOUNTER StatNativeLivenessEflPfSkippable;
1979 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
1980 STAMCOUNTER StatNativeLivenessEflAfSkippable;
1981 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
1982 STAMCOUNTER StatNativeLivenessEflZfSkippable;
1983 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
1984 STAMCOUNTER StatNativeLivenessEflSfSkippable;
1985 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
1986 STAMCOUNTER StatNativeLivenessEflOfSkippable;
1987 /** Native recompiler: Number of required EFLAGS.CF updates. */
1988 STAMCOUNTER StatNativeLivenessEflCfRequired;
1989 /** Native recompiler: Number of required EFLAGS.PF updates. */
1990 STAMCOUNTER StatNativeLivenessEflPfRequired;
1991 /** Native recompiler: Number of required EFLAGS.AF updates. */
1992 STAMCOUNTER StatNativeLivenessEflAfRequired;
1993 /** Native recompiler: Number of required EFLAGS.ZF updates. */
1994 STAMCOUNTER StatNativeLivenessEflZfRequired;
1995 /** Native recompiler: Number of required EFLAGS.SF updates. */
1996 STAMCOUNTER StatNativeLivenessEflSfRequired;
1997 /** Native recompiler: Number of required EFLAGS.OF updates. */
1998 STAMCOUNTER StatNativeLivenessEflOfRequired;
1999 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2000 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2001 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2002 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2003 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2004 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2005 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2006 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2007 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2008 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2009 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2010 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2011
2012 /** Native recompiler: Number of potential PC updates in total. */
2013 STAMCOUNTER StatNativePcUpdateTotal;
2014 /** Native recompiler: Number of PC updates which could be delayed. */
2015 STAMCOUNTER StatNativePcUpdateDelayed;
2016
2017//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2018 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2019 STAMCOUNTER StatNativeSimdRegFindFree;
2020 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2021 * to free a variable. */
2022 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2023 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2024 * not need to free any variables. */
2025 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2026 /** Native recompiler: Liveness info freed shadowed guest registers in
2027 * iemNativeSimdRegAllocFindFree. */
2028 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2029 /** Native recompiler: Liveness info helped with the allocation in
2030 * iemNativeSimdRegAllocFindFree. */
2031 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2032
2033 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2034 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2035 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2036 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2037 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2038 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2039 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2040 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2041
2042 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2043 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2044 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2045 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2046 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2047 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2048 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2049 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2050//#endif
2051
2052 /** Native recompiler: The TB finished executing completely without jumping to a an exit label. */
2053 STAMCOUNTER StatNativeTbFinished;
2054 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2055 STAMCOUNTER StatNativeTbExitReturnBreak;
2056 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2057 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2058
2059 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2060 STAMCOUNTER StatNativeTbExitRaiseDe;
2061 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2062 STAMCOUNTER StatNativeTbExitRaiseUd;
2063 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2064 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2065 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2066 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2067 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2068 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2069 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2070 STAMCOUNTER StatNativeTbExitRaiseNm;
2071 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2072 STAMCOUNTER StatNativeTbExitRaiseGp0;
2073 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2074 STAMCOUNTER StatNativeTbExitRaiseMf;
2075 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2076 STAMCOUNTER StatNativeTbExitRaiseXf;
2077 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2078 STAMCOUNTER StatNativeTbExitObsoleteTb;
2079
2080 uint64_t au64Padding[4];
2081 /** @} */
2082
2083 /** Data TLB.
2084 * @remarks Must be 64-byte aligned. */
2085 IEMTLB DataTlb;
2086 /** Instruction TLB.
2087 * @remarks Must be 64-byte aligned. */
2088 IEMTLB CodeTlb;
2089
2090 /** Exception statistics. */
2091 STAMCOUNTER aStatXcpts[32];
2092 /** Interrupt statistics. */
2093 uint32_t aStatInts[256];
2094
2095#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
2096 /** Instruction statistics for ring-0/raw-mode. */
2097 IEMINSTRSTATS StatsRZ;
2098 /** Instruction statistics for ring-3. */
2099 IEMINSTRSTATS StatsR3;
2100# ifdef VBOX_WITH_IEM_RECOMPILER
2101 /** Statistics per threaded function call.
2102 * Updated by both the threaded and native recompilers. */
2103 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2104# endif
2105#endif
2106} IEMCPU;
2107AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2108AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2109AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2110AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2111AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2112AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2113
2114/** Pointer to the per-CPU IEM state. */
2115typedef IEMCPU *PIEMCPU;
2116/** Pointer to the const per-CPU IEM state. */
2117typedef IEMCPU const *PCIEMCPU;
2118
2119
2120/** @def IEM_GET_CTX
2121 * Gets the guest CPU context for the calling EMT.
2122 * @returns PCPUMCTX
2123 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2124 */
2125#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2126
2127/** @def IEM_CTX_ASSERT
2128 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2129 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2130 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2131 */
2132#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2133 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2134 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2135 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2136
2137/** @def IEM_CTX_IMPORT_RET
2138 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2139 *
2140 * Will call the keep to import the bits as needed.
2141 *
2142 * Returns on import failure.
2143 *
2144 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2145 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2146 */
2147#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2148 do { \
2149 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2150 { /* likely */ } \
2151 else \
2152 { \
2153 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2154 AssertRCReturn(rcCtxImport, rcCtxImport); \
2155 } \
2156 } while (0)
2157
2158/** @def IEM_CTX_IMPORT_NORET
2159 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2160 *
2161 * Will call the keep to import the bits as needed.
2162 *
2163 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2164 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2165 */
2166#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2167 do { \
2168 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2169 { /* likely */ } \
2170 else \
2171 { \
2172 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2173 AssertLogRelRC(rcCtxImport); \
2174 } \
2175 } while (0)
2176
2177/** @def IEM_CTX_IMPORT_JMP
2178 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2179 *
2180 * Will call the keep to import the bits as needed.
2181 *
2182 * Jumps on import failure.
2183 *
2184 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2185 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2186 */
2187#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2188 do { \
2189 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2190 { /* likely */ } \
2191 else \
2192 { \
2193 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2194 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2195 } \
2196 } while (0)
2197
2198
2199
2200/** @def IEM_GET_TARGET_CPU
2201 * Gets the current IEMTARGETCPU value.
2202 * @returns IEMTARGETCPU value.
2203 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2204 */
2205#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2206# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2207#else
2208# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2209#endif
2210
2211/** @def IEM_GET_INSTR_LEN
2212 * Gets the instruction length. */
2213#ifdef IEM_WITH_CODE_TLB
2214# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2215#else
2216# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2217#endif
2218
2219/** @def IEM_TRY_SETJMP
2220 * Wrapper around setjmp / try, hiding all the ugly differences.
2221 *
2222 * @note Use with extreme care as this is a fragile macro.
2223 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2224 * @param a_rcTarget The variable that should receive the status code in case
2225 * of a longjmp/throw.
2226 */
2227/** @def IEM_TRY_SETJMP_AGAIN
2228 * For when setjmp / try is used again in the same variable scope as a previous
2229 * IEM_TRY_SETJMP invocation.
2230 */
2231/** @def IEM_CATCH_LONGJMP_BEGIN
2232 * Start wrapper for catch / setjmp-else.
2233 *
2234 * This will set up a scope.
2235 *
2236 * @note Use with extreme care as this is a fragile macro.
2237 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2238 * @param a_rcTarget The variable that should receive the status code in case
2239 * of a longjmp/throw.
2240 */
2241/** @def IEM_CATCH_LONGJMP_END
2242 * End wrapper for catch / setjmp-else.
2243 *
2244 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2245 * state.
2246 *
2247 * @note Use with extreme care as this is a fragile macro.
2248 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2249 */
2250#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2251# ifdef IEM_WITH_THROW_CATCH
2252# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2253 a_rcTarget = VINF_SUCCESS; \
2254 try
2255# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2256 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2257# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2258 catch (int rcThrown) \
2259 { \
2260 a_rcTarget = rcThrown
2261# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2262 } \
2263 ((void)0)
2264# else /* !IEM_WITH_THROW_CATCH */
2265# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2266 jmp_buf JmpBuf; \
2267 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2268 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2269 if ((rcStrict = setjmp(JmpBuf)) == 0)
2270# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2271 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2272 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2273 if ((rcStrict = setjmp(JmpBuf)) == 0)
2274# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2275 else \
2276 { \
2277 ((void)0)
2278# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2279 } \
2280 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2281# endif /* !IEM_WITH_THROW_CATCH */
2282#endif /* IEM_WITH_SETJMP */
2283
2284
2285/**
2286 * Shared per-VM IEM data.
2287 */
2288typedef struct IEM
2289{
2290 /** The VMX APIC-access page handler type. */
2291 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2292#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2293 /** Set if the CPUID host call functionality is enabled. */
2294 bool fCpuIdHostCall;
2295#endif
2296} IEM;
2297
2298
2299
2300/** @name IEM_ACCESS_XXX - Access details.
2301 * @{ */
2302#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2303#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2304#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2305#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2306#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2307#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2308#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2309#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2310#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2311#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2312/** The writes are partial, so if initialize the bounce buffer with the
2313 * orignal RAM content. */
2314#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2315/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2316#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2317/** Bounce buffer with ring-3 write pending, first page. */
2318#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2319/** Bounce buffer with ring-3 write pending, second page. */
2320#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2321/** Not locked, accessed via the TLB. */
2322#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2323/** Atomic access.
2324 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2325 * fallback for misaligned stuff. See @bugref{10547}. */
2326#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2327/** Valid bit mask. */
2328#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2329/** Shift count for the TLB flags (upper word). */
2330#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2331
2332/** Atomic read+write data alias. */
2333#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2334/** Read+write data alias. */
2335#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2336/** Write data alias. */
2337#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2338/** Read data alias. */
2339#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2340/** Instruction fetch alias. */
2341#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2342/** Stack write alias. */
2343#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2344/** Stack read alias. */
2345#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2346/** Stack read+write alias. */
2347#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2348/** Read system table alias. */
2349#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2350/** Read+write system table alias. */
2351#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2352/** @} */
2353
2354/** @name Prefix constants (IEMCPU::fPrefixes)
2355 * @{ */
2356#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2357#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2358#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2359#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2360#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2361#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2362#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2363
2364#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2365#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2366#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2367
2368#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2369#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2370#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2371
2372#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2373#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2374#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2375#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2376/** Mask with all the REX prefix flags.
2377 * This is generally for use when needing to undo the REX prefixes when they
2378 * are followed legacy prefixes and therefore does not immediately preceed
2379 * the first opcode byte.
2380 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2381#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2382
2383#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2384#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2385#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2386/** @} */
2387
2388/** @name IEMOPFORM_XXX - Opcode forms
2389 * @note These are ORed together with IEMOPHINT_XXX.
2390 * @{ */
2391/** ModR/M: reg, r/m */
2392#define IEMOPFORM_RM 0
2393/** ModR/M: reg, r/m (register) */
2394#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2395/** ModR/M: reg, r/m (memory) */
2396#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2397/** ModR/M: reg, r/m, imm */
2398#define IEMOPFORM_RMI 1
2399/** ModR/M: reg, r/m (register), imm */
2400#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2401/** ModR/M: reg, r/m (memory), imm */
2402#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2403/** ModR/M: reg, r/m, xmm0 */
2404#define IEMOPFORM_RM0 2
2405/** ModR/M: reg, r/m (register), xmm0 */
2406#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2407/** ModR/M: reg, r/m (memory), xmm0 */
2408#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2409/** ModR/M: r/m, reg */
2410#define IEMOPFORM_MR 3
2411/** ModR/M: r/m (register), reg */
2412#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2413/** ModR/M: r/m (memory), reg */
2414#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2415/** ModR/M: r/m, reg, imm */
2416#define IEMOPFORM_MRI 4
2417/** ModR/M: r/m (register), reg, imm */
2418#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2419/** ModR/M: r/m (memory), reg, imm */
2420#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2421/** ModR/M: r/m only */
2422#define IEMOPFORM_M 5
2423/** ModR/M: r/m only (register). */
2424#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2425/** ModR/M: r/m only (memory). */
2426#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2427/** ModR/M: r/m, imm */
2428#define IEMOPFORM_MI 6
2429/** ModR/M: r/m (register), imm */
2430#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2431/** ModR/M: r/m (memory), imm */
2432#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2433/** ModR/M: r/m, 1 (shift and rotate instructions) */
2434#define IEMOPFORM_M1 7
2435/** ModR/M: r/m (register), 1. */
2436#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2437/** ModR/M: r/m (memory), 1. */
2438#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2439/** ModR/M: r/m, CL (shift and rotate instructions)
2440 * @todo This should just've been a generic fixed register. But the python
2441 * code doesn't needs more convincing. */
2442#define IEMOPFORM_M_CL 8
2443/** ModR/M: r/m (register), CL. */
2444#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2445/** ModR/M: r/m (memory), CL. */
2446#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2447/** ModR/M: reg only */
2448#define IEMOPFORM_R 9
2449
2450/** VEX+ModR/M: reg, r/m */
2451#define IEMOPFORM_VEX_RM 16
2452/** VEX+ModR/M: reg, r/m (register) */
2453#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2454/** VEX+ModR/M: reg, r/m (memory) */
2455#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2456/** VEX+ModR/M: r/m, reg */
2457#define IEMOPFORM_VEX_MR 17
2458/** VEX+ModR/M: r/m (register), reg */
2459#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2460/** VEX+ModR/M: r/m (memory), reg */
2461#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2462/** VEX+ModR/M: r/m, reg, imm8 */
2463#define IEMOPFORM_VEX_MRI 18
2464/** VEX+ModR/M: r/m (register), reg, imm8 */
2465#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2466/** VEX+ModR/M: r/m (memory), reg, imm8 */
2467#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2468/** VEX+ModR/M: r/m only */
2469#define IEMOPFORM_VEX_M 19
2470/** VEX+ModR/M: r/m only (register). */
2471#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2472/** VEX+ModR/M: r/m only (memory). */
2473#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2474/** VEX+ModR/M: reg only */
2475#define IEMOPFORM_VEX_R 20
2476/** VEX+ModR/M: reg, vvvv, r/m */
2477#define IEMOPFORM_VEX_RVM 21
2478/** VEX+ModR/M: reg, vvvv, r/m (register). */
2479#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2480/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2481#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2482/** VEX+ModR/M: reg, vvvv, r/m, imm */
2483#define IEMOPFORM_VEX_RVMI 22
2484/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2485#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2486/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2487#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2488/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2489#define IEMOPFORM_VEX_RVMR 23
2490/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2491#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2492/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2493#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2494/** VEX+ModR/M: reg, r/m, vvvv */
2495#define IEMOPFORM_VEX_RMV 24
2496/** VEX+ModR/M: reg, r/m, vvvv (register). */
2497#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2498/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2499#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2500/** VEX+ModR/M: reg, r/m, imm8 */
2501#define IEMOPFORM_VEX_RMI 25
2502/** VEX+ModR/M: reg, r/m, imm8 (register). */
2503#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2504/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2505#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2506/** VEX+ModR/M: r/m, vvvv, reg */
2507#define IEMOPFORM_VEX_MVR 26
2508/** VEX+ModR/M: r/m, vvvv, reg (register) */
2509#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2510/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2511#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2512/** VEX+ModR/M+/n: vvvv, r/m */
2513#define IEMOPFORM_VEX_VM 27
2514/** VEX+ModR/M+/n: vvvv, r/m (register) */
2515#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2516/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2517#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2518/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2519#define IEMOPFORM_VEX_VMI 28
2520/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2521#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2522/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2523#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2524
2525/** Fixed register instruction, no R/M. */
2526#define IEMOPFORM_FIXED 32
2527
2528/** The r/m is a register. */
2529#define IEMOPFORM_MOD3 RT_BIT_32(8)
2530/** The r/m is a memory access. */
2531#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2532/** @} */
2533
2534/** @name IEMOPHINT_XXX - Additional Opcode Hints
2535 * @note These are ORed together with IEMOPFORM_XXX.
2536 * @{ */
2537/** Ignores the operand size prefix (66h). */
2538#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2539/** Ignores REX.W (aka WIG). */
2540#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2541/** Both the operand size prefixes (66h + REX.W) are ignored. */
2542#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2543/** Allowed with the lock prefix. */
2544#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2545/** The VEX.L value is ignored (aka LIG). */
2546#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2547/** The VEX.L value must be zero (i.e. 128-bit width only). */
2548#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2549/** The VEX.L value must be one (i.e. 256-bit width only). */
2550#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2551/** The VEX.V value must be zero. */
2552#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2553/** The REX.W/VEX.V value must be zero. */
2554#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2555#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2556/** The REX.W/VEX.V value must be one. */
2557#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2558#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2559
2560/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2561#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2562/** @} */
2563
2564/**
2565 * Possible hardware task switch sources.
2566 */
2567typedef enum IEMTASKSWITCH
2568{
2569 /** Task switch caused by an interrupt/exception. */
2570 IEMTASKSWITCH_INT_XCPT = 1,
2571 /** Task switch caused by a far CALL. */
2572 IEMTASKSWITCH_CALL,
2573 /** Task switch caused by a far JMP. */
2574 IEMTASKSWITCH_JUMP,
2575 /** Task switch caused by an IRET. */
2576 IEMTASKSWITCH_IRET
2577} IEMTASKSWITCH;
2578AssertCompileSize(IEMTASKSWITCH, 4);
2579
2580/**
2581 * Possible CrX load (write) sources.
2582 */
2583typedef enum IEMACCESSCRX
2584{
2585 /** CrX access caused by 'mov crX' instruction. */
2586 IEMACCESSCRX_MOV_CRX,
2587 /** CrX (CR0) write caused by 'lmsw' instruction. */
2588 IEMACCESSCRX_LMSW,
2589 /** CrX (CR0) write caused by 'clts' instruction. */
2590 IEMACCESSCRX_CLTS,
2591 /** CrX (CR0) read caused by 'smsw' instruction. */
2592 IEMACCESSCRX_SMSW
2593} IEMACCESSCRX;
2594
2595#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2596/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2597 *
2598 * These flags provide further context to SLAT page-walk failures that could not be
2599 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2600 *
2601 * @{
2602 */
2603/** Translating a nested-guest linear address failed accessing a nested-guest
2604 * physical address. */
2605# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2606/** Translating a nested-guest linear address failed accessing a
2607 * paging-structure entry or updating accessed/dirty bits. */
2608# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2609/** @} */
2610
2611DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2612# ifndef IN_RING3
2613DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2614# endif
2615#endif
2616
2617/**
2618 * Indicates to the verifier that the given flag set is undefined.
2619 *
2620 * Can be invoked again to add more flags.
2621 *
2622 * This is a NOOP if the verifier isn't compiled in.
2623 *
2624 * @note We're temporarily keeping this until code is converted to new
2625 * disassembler style opcode handling.
2626 */
2627#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2628
2629
2630/** @def IEM_DECL_IMPL_TYPE
2631 * For typedef'ing an instruction implementation function.
2632 *
2633 * @param a_RetType The return type.
2634 * @param a_Name The name of the type.
2635 * @param a_ArgList The argument list enclosed in parentheses.
2636 */
2637
2638/** @def IEM_DECL_IMPL_DEF
2639 * For defining an instruction implementation function.
2640 *
2641 * @param a_RetType The return type.
2642 * @param a_Name The name of the type.
2643 * @param a_ArgList The argument list enclosed in parentheses.
2644 */
2645
2646#if defined(__GNUC__) && defined(RT_ARCH_X86)
2647# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2648 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2649# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2650 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2651# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2652 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2653
2654#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2655# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2656 a_RetType (__fastcall a_Name) a_ArgList
2657# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2658 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2659# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2660 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2661
2662#elif __cplusplus >= 201700 /* P0012R1 support */
2663# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2664 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2665# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2666 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2667# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2668 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2669
2670#else
2671# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2672 a_RetType (VBOXCALL a_Name) a_ArgList
2673# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2674 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2675# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2676 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2677
2678#endif
2679
2680/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2681RT_C_DECLS_BEGIN
2682extern uint8_t const g_afParity[256];
2683RT_C_DECLS_END
2684
2685
2686/** @name Arithmetic assignment operations on bytes (binary).
2687 * @{ */
2688typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
2689typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2690FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2691FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2692FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2693FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2694FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2695FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2696FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2697/** @} */
2698
2699/** @name Arithmetic assignment operations on words (binary).
2700 * @{ */
2701typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
2702typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2703FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2704FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2705FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2706FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2707FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2708FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2709FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2710/** @} */
2711
2712
2713/** @name Arithmetic assignment operations on double words (binary).
2714 * @{ */
2715typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
2716typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2717FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2718FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2719FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2720FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2721FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2722FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2723FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2724FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2725FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2726FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2727/** @} */
2728
2729/** @name Arithmetic assignment operations on quad words (binary).
2730 * @{ */
2731typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
2732typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2733FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2734FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2735FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2736FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2737FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2738FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2739FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2740FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2741FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2742FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2743/** @} */
2744
2745typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
2746typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2747typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
2748typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2749typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
2750typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2751typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
2752typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2753
2754/** @name Compare operations (thrown in with the binary ops).
2755 * @{ */
2756FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2757FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2758FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2759FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2760/** @} */
2761
2762/** @name Test operations (thrown in with the binary ops).
2763 * @{ */
2764FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2765FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2766FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2767FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2768/** @} */
2769
2770/** @name Bit operations operations (thrown in with the binary ops).
2771 * @{ */
2772FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2773FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2774FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2775FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2776FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2777FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2778FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2779FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2780FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2781FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2782FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2783FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2784/** @} */
2785
2786/** @name Arithmetic three operand operations on double words (binary).
2787 * @{ */
2788typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2789typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2790FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2791FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2792FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2793/** @} */
2794
2795/** @name Arithmetic three operand operations on quad words (binary).
2796 * @{ */
2797typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2798typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2799FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2800FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2801FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2802/** @} */
2803
2804/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2805 * @{ */
2806typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2807typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2808FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2809FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2810FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2811FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2812FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2813FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2814/** @} */
2815
2816/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2817 * @{ */
2818typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2819typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2820FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2821FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2822FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2823FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2824FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2825FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2826/** @} */
2827
2828/** @name MULX 32-bit and 64-bit.
2829 * @{ */
2830typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2831typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2832FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2833
2834typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2835typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2836FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2837/** @} */
2838
2839
2840/** @name Exchange memory with register operations.
2841 * @{ */
2842IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2843IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2844IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2845IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2846IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2847IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2848IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2849IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2850/** @} */
2851
2852/** @name Exchange and add operations.
2853 * @{ */
2854IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2855IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2856IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2857IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2858IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2859IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2860IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2861IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2862/** @} */
2863
2864/** @name Compare and exchange.
2865 * @{ */
2866IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2867IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2868IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2869IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2870IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2871IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2872#if ARCH_BITS == 32
2873IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2874IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2875#else
2876IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2877IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2878#endif
2879IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2880 uint32_t *pEFlags));
2881IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2882 uint32_t *pEFlags));
2883IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2884 uint32_t *pEFlags));
2885IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2886 uint32_t *pEFlags));
2887#ifndef RT_ARCH_ARM64
2888IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2889 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2890#endif
2891/** @} */
2892
2893/** @name Memory ordering
2894 * @{ */
2895typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2896typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2897IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2898IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2899IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2900#ifndef RT_ARCH_ARM64
2901IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2902#endif
2903/** @} */
2904
2905/** @name Double precision shifts
2906 * @{ */
2907typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2908typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2909typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2910typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2911typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2912typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2913FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2914FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2915FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2916FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2917FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2918FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2919/** @} */
2920
2921
2922/** @name Bit search operations (thrown in with the binary ops).
2923 * @{ */
2924FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2925FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2926FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2927FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2928FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2929FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2930FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2931FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2932FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2933FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2934FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2935FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2936FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2937FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2938FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2939/** @} */
2940
2941/** @name Signed multiplication operations (thrown in with the binary ops).
2942 * @{ */
2943FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2944FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2945FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2946/** @} */
2947
2948/** @name Arithmetic assignment operations on bytes (unary).
2949 * @{ */
2950typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2951typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2952FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2953FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2954FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2955FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2956/** @} */
2957
2958/** @name Arithmetic assignment operations on words (unary).
2959 * @{ */
2960typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2961typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2962FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2963FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2964FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2965FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2966/** @} */
2967
2968/** @name Arithmetic assignment operations on double words (unary).
2969 * @{ */
2970typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2971typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2972FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2973FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2974FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2975FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2976/** @} */
2977
2978/** @name Arithmetic assignment operations on quad words (unary).
2979 * @{ */
2980typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2981typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2982FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2983FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2984FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2985FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2986/** @} */
2987
2988
2989/** @name Shift operations on bytes (Group 2).
2990 * @{ */
2991typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
2992typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2993FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2994FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2995FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2996FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2997FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2998FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2999FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3000/** @} */
3001
3002/** @name Shift operations on words (Group 2).
3003 * @{ */
3004typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3005typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3006FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3007FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3008FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3009FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3010FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3011FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3012FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3013/** @} */
3014
3015/** @name Shift operations on double words (Group 2).
3016 * @{ */
3017typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3018typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3019FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3020FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3021FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3022FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3023FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3024FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3025FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3026/** @} */
3027
3028/** @name Shift operations on words (Group 2).
3029 * @{ */
3030typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3031typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3032FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3033FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3034FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3035FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3036FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3037FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3038FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3039/** @} */
3040
3041/** @name Multiplication and division operations.
3042 * @{ */
3043typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3044typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3045FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3046FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3047FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3048FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3049
3050typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3051typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3052FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3053FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3054FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3055FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3056
3057typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3058typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3059FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3060FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3061FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3062FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3063
3064typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3065typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3066FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3067FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3068FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3069FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3070/** @} */
3071
3072/** @name Byte Swap.
3073 * @{ */
3074IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3075IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3076IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3077/** @} */
3078
3079/** @name Misc.
3080 * @{ */
3081FNIEMAIMPLBINU16 iemAImpl_arpl;
3082/** @} */
3083
3084/** @name RDRAND and RDSEED
3085 * @{ */
3086typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3087typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3088typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3089typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3090typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3091typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3092
3093FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3094FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3095FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3096FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3097FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3098FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3099/** @} */
3100
3101/** @name ADOX and ADCX
3102 * @{ */
3103FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3104FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3105FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3106FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3107/** @} */
3108
3109/** @name FPU operations taking a 32-bit float argument
3110 * @{ */
3111typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3112 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3113typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3114
3115typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3116 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3117typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3118
3119FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3120FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3121FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3122FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3123FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3124FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3125FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3126
3127IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3128IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3129 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3130/** @} */
3131
3132/** @name FPU operations taking a 64-bit float argument
3133 * @{ */
3134typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3135 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3136typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3137
3138typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3139 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3140typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3141
3142FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3143FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3144FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3145FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3146FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3147FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3148FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3149
3150IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3151IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3152 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3153/** @} */
3154
3155/** @name FPU operations taking a 80-bit float argument
3156 * @{ */
3157typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3158 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3159typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3160FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3161FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3162FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3163FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3164FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3165FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3166FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3167FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3168FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3169
3170FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3171FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3172FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3173
3174typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3175 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3176typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3177FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3178FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3179
3180typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3181 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3182typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3183FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3184FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3185
3186typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3187typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3188FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3189FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3190FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3191FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3192FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3193FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3194FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3195
3196typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3197typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3198FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3199FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3200
3201typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3202typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3203FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3204FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3205FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3206FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3207FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3208FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3209FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3210
3211typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3212 PCRTFLOAT80U pr80Val));
3213typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3214FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3215FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3216FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3217
3218IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3219IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3220 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3221
3222IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3223IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3224 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3225
3226/** @} */
3227
3228/** @name FPU operations taking a 16-bit signed integer argument
3229 * @{ */
3230typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3231 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3232typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3233typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3234 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3235typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3236
3237FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3238FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3239FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3240FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3241FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3242FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3243
3244typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3245 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3246typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3247FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3248
3249IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3250FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3251FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3252/** @} */
3253
3254/** @name FPU operations taking a 32-bit signed integer argument
3255 * @{ */
3256typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3257 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3258typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3259typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3260 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3261typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3262
3263FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3264FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3265FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3266FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3267FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3268FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3269
3270typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3271 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3272typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3273FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3274
3275IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3276FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3277FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3278/** @} */
3279
3280/** @name FPU operations taking a 64-bit signed integer argument
3281 * @{ */
3282typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3283 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3284typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3285
3286IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3287FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3288FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3289/** @} */
3290
3291
3292/** Temporary type representing a 256-bit vector register. */
3293typedef struct { uint64_t au64[4]; } IEMVMM256;
3294/** Temporary type pointing to a 256-bit vector register. */
3295typedef IEMVMM256 *PIEMVMM256;
3296/** Temporary type pointing to a const 256-bit vector register. */
3297typedef IEMVMM256 *PCIEMVMM256;
3298
3299
3300/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3301 * @{ */
3302typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3303typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3304typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3305typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3306typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3307typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3308typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3309typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3310typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3311typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3312typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3313typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3314typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3315typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3316typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3317typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3318typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3319typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3320FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3321FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3322FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3323FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3324FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3325FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3326FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3327FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3328FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3329FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3330FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3331FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3332FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3333FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3334FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3335FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3336FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3337FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3338FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3339FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3340FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3341FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3342FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3343FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3344FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3345FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3346FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3347FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3348FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3349FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3350FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3351FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3352FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3353FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3354FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3355FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3356FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3357FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3358FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3359
3360FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3361FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3362FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3363FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3364FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3365FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3366FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3367FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3368FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3369FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3370FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3371FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3372FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3373FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3374FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3375FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3376FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3377FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3378FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3379FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3380FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3381FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3382FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3383FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3384FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3385FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3386FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3387FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3388FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3389FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3390FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3391FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3392FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3393FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3394FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3395FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3396FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3397FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3398FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3399FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3400FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3401FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3402FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3403FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3404FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3405FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3406FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3407FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3408FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3409FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3410FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3411FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3412FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3413FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3414FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3415FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3416FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3417FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3418
3419FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3420FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3421FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3422FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3423FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3424FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3425FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3426FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3427FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3428FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3429FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3430FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3431FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3432FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3433FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3434FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3435FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3436FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3437FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3438FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3439FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3440FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3441FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3442FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3443FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3444FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3445FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3446FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3447FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3448FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3449FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3450FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3451FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3452FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3453FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3454FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3455FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3456FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3457FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3458FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3459FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3460FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3461FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3462FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3463FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3464FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3465FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3466FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3467FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3468FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3469FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3470FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3471FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3472FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3473FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3474FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3475FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3476FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3477FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3478FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3479FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3480FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3481FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3482FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3483FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3484FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3485FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3486FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3487FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3488FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3489FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3490FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3491FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3492FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3493
3494FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3495FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3496FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3497FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3498
3499FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3500FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3501FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3502FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3503FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3504FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3505FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3506FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3507FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3508FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3509FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3510FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3511FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3512FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3513FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3514FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3515FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3516FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3517FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3518FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3519FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3520FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3521FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3522FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3523FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3524FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3525FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3526FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3527FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3528FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3529FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3530FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3531FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3532FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3533FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3534FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3535FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3536FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3537FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3538FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3539FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3540FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3541FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3542FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3543FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3544FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3545FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3546FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3547FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3548FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3549FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3550FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3551FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3552FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3553FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3554FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3555FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3556FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3557FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3558FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3559FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3560FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3561FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3562FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3563FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3564FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3565FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3566FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3567FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3568FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3569FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3570FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3571FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3572FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3573
3574FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3575FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3576FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3577/** @} */
3578
3579/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3580 * @{ */
3581FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3582FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3583FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3584 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3585 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3586 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3587 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3588 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3589 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3590 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3591
3592FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3593 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3594 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3595 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3596 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3597 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3598 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3599 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3600/** @} */
3601
3602/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3603 * @{ */
3604FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3605FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3606FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3607 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3608 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3609 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3610FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3611 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3612 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3613 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3614/** @} */
3615
3616/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3617 * @{ */
3618typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3619typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3620typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3621typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3622IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3623FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3624#ifndef IEM_WITHOUT_ASSEMBLY
3625FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3626#endif
3627FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3628/** @} */
3629
3630/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3631 * @{ */
3632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3633typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3634typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3635typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3636typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3637typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3638FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3639FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3640FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3641FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3642FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3643FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3644FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3645/** @} */
3646
3647/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3648 * @{ */
3649IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3650IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3651#ifndef IEM_WITHOUT_ASSEMBLY
3652IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3653#endif
3654IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3655/** @} */
3656
3657/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3658 * @{ */
3659typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3660typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3661typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3662typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3663typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3664typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3665
3666FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3667FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3668FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3669FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3670FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3671FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3672
3673FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3674FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3675FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3676FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3677FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3678FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3679
3680FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3681FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3682FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3683FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3684FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3685FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3686/** @} */
3687
3688
3689/** @name Media (SSE/MMX/AVX) operation: Sort this later
3690 * @{ */
3691IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3692IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3693IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3694IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3695IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3696
3697IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3698IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3699IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3700IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3701IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3702
3703IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3704IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3705IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3706IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3707IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3708
3709IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3710IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3711IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3712IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3713IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3714
3715IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3716IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3717IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3718IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3719IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3720
3721IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3722IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3723IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3724IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3725IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3726
3727IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3728IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3729IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3730IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3731IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3732
3733IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3734IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3735IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3736IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3737IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3738
3739IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3740IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3741IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3742IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3743IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3744
3745IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3746IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3747IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3748IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3749IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3750
3751IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3752IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3753IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3754IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3755IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3756
3757IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3758IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3759IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3760IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3761IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3762
3763IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3764IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3765IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3766IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3767IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3768
3769IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3770IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3771IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3772IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3773IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3774
3775IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3776IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3777
3778IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3779IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3780IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3781IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3782IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3783
3784IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3785IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3786IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3787IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3788IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3789
3790
3791typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3792typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3793typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3794typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3795typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3796typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3797typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3798typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3799
3800FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3801FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3802FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3803FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3804
3805FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3806FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3807FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3808FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3809FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3810
3811FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3812FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3813FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3814FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3815FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3816FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3817FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3818
3819FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3820FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3821FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3822FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3823FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3824
3825FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3826FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3827FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3828FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3829FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3830
3831FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3832
3833FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3834
3835FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3836FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3837FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3838FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3839FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3840FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3841IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3842IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3843
3844typedef struct IEMPCMPISTRXSRC
3845{
3846 RTUINT128U uSrc1;
3847 RTUINT128U uSrc2;
3848} IEMPCMPISTRXSRC;
3849typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3850typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3851
3852typedef struct IEMPCMPESTRXSRC
3853{
3854 RTUINT128U uSrc1;
3855 RTUINT128U uSrc2;
3856 uint64_t u64Rax;
3857 uint64_t u64Rdx;
3858} IEMPCMPESTRXSRC;
3859typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3860typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3861
3862typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
3863typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3864typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3865typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3866
3867typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3868typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3869typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3870typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3871
3872FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3873FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3874FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3875FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3876
3877FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3878FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3879
3880FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3881FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3882FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3883
3884FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3885FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3886FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3887FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3888FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3889FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3890IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3891IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3892IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3893IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3894
3895FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
3896FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
3897FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
3898FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
3899
3900FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
3901FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
3902FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
3903FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
3904FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
3905FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
3906IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3907IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3908IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3909IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3910
3911FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
3912FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
3913FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
3914FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
3915
3916FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
3917FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
3918FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
3919FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
3920
3921FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
3922FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
3923FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
3924FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
3925FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
3926FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
3927FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
3928FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
3929FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
3930FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
3931/** @} */
3932
3933/** @name Media Odds and Ends
3934 * @{ */
3935typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3936typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3937typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3938typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3939FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3940FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3941FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3942FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3943
3944typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3945typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
3946typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3947typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
3948FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3949FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3950FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
3951FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
3952FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
3953FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
3954
3955typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3956typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3957typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3958typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3959typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3960typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3961typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3962typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3963
3964FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3965FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3966
3967FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3968FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3969
3970FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3971FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3972
3973FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3974FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3975
3976typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3977typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3978typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3979typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3980
3981FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3982FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3983
3984typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3985typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3986typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3987typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3988
3989FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3990FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3991
3992
3993typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
3994typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
3995
3996typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
3997typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
3998
3999FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4000FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4001
4002FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4003FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4004
4005FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4006FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4007
4008FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4009FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4010
4011
4012typedef struct IEMMEDIAF2XMMSRC
4013{
4014 X86XMMREG uSrc1;
4015 X86XMMREG uSrc2;
4016} IEMMEDIAF2XMMSRC;
4017typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4018typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4019
4020typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4021typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
4022
4023FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
4024FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
4025FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
4026FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
4027FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
4028FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
4029
4030FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4031FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4032
4033FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4034FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4035
4036typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4037typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4038
4039FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4040FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4041
4042typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4043typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4044
4045FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4046FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4047
4048typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4049typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4050
4051FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4052FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4053
4054/** @} */
4055
4056
4057/** @name Function tables.
4058 * @{
4059 */
4060
4061/**
4062 * Function table for a binary operator providing implementation based on
4063 * operand size.
4064 */
4065typedef struct IEMOPBINSIZES
4066{
4067 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4068 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4069 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4070 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4071} IEMOPBINSIZES;
4072/** Pointer to a binary operator function table. */
4073typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4074
4075
4076/**
4077 * Function table for a unary operator providing implementation based on
4078 * operand size.
4079 */
4080typedef struct IEMOPUNARYSIZES
4081{
4082 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4083 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4084 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4085 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4086} IEMOPUNARYSIZES;
4087/** Pointer to a unary operator function table. */
4088typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4089
4090
4091/**
4092 * Function table for a shift operator providing implementation based on
4093 * operand size.
4094 */
4095typedef struct IEMOPSHIFTSIZES
4096{
4097 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4098 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4099 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4100 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4101} IEMOPSHIFTSIZES;
4102/** Pointer to a shift operator function table. */
4103typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4104
4105
4106/**
4107 * Function table for a multiplication or division operation.
4108 */
4109typedef struct IEMOPMULDIVSIZES
4110{
4111 PFNIEMAIMPLMULDIVU8 pfnU8;
4112 PFNIEMAIMPLMULDIVU16 pfnU16;
4113 PFNIEMAIMPLMULDIVU32 pfnU32;
4114 PFNIEMAIMPLMULDIVU64 pfnU64;
4115} IEMOPMULDIVSIZES;
4116/** Pointer to a multiplication or division operation function table. */
4117typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4118
4119
4120/**
4121 * Function table for a double precision shift operator providing implementation
4122 * based on operand size.
4123 */
4124typedef struct IEMOPSHIFTDBLSIZES
4125{
4126 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4127 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4128 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4129} IEMOPSHIFTDBLSIZES;
4130/** Pointer to a double precision shift function table. */
4131typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4132
4133
4134/**
4135 * Function table for media instruction taking two full sized media source
4136 * registers and one full sized destination register (AVX).
4137 */
4138typedef struct IEMOPMEDIAF3
4139{
4140 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4141 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4142} IEMOPMEDIAF3;
4143/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4144typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4145
4146/** @def IEMOPMEDIAF3_INIT_VARS_EX
4147 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4148 * given functions as initializers. For use in AVX functions where a pair of
4149 * functions are only used once and the function table need not be public. */
4150#ifndef TST_IEM_CHECK_MC
4151# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4152# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4153 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4154 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4155# else
4156# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4157 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4158# endif
4159#else
4160# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4161#endif
4162/** @def IEMOPMEDIAF3_INIT_VARS
4163 * Generate AVX function tables for the @a a_InstrNm instruction.
4164 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4165#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4166 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4167 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4168
4169/**
4170 * Function table for media instruction taking two full sized media source
4171 * registers and one full sized destination register, but no additional state
4172 * (AVX).
4173 */
4174typedef struct IEMOPMEDIAOPTF3
4175{
4176 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4177 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4178} IEMOPMEDIAOPTF3;
4179/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4180typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4181
4182/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4183 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4184 * given functions as initializers. For use in AVX functions where a pair of
4185 * functions are only used once and the function table need not be public. */
4186#ifndef TST_IEM_CHECK_MC
4187# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4188# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4189 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4190 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4191# else
4192# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4193 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4194# endif
4195#else
4196# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4197#endif
4198/** @def IEMOPMEDIAOPTF3_INIT_VARS
4199 * Generate AVX function tables for the @a a_InstrNm instruction.
4200 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4201#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4202 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4203 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4204
4205/**
4206 * Function table for media instruction taking one full sized media source
4207 * registers and one full sized destination register, but no additional state
4208 * (AVX).
4209 */
4210typedef struct IEMOPMEDIAOPTF2
4211{
4212 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4213 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4214} IEMOPMEDIAOPTF2;
4215/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4216typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4217
4218/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4219 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4220 * given functions as initializers. For use in AVX functions where a pair of
4221 * functions are only used once and the function table need not be public. */
4222#ifndef TST_IEM_CHECK_MC
4223# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4224# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4225 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4226 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4227# else
4228# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4229 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4230# endif
4231#else
4232# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4233#endif
4234/** @def IEMOPMEDIAOPTF2_INIT_VARS
4235 * Generate AVX function tables for the @a a_InstrNm instruction.
4236 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4237#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4238 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4239 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4240
4241/**
4242 * Function table for media instruction taking one full sized media source
4243 * register and one full sized destination register and an 8-bit immediate, but no additional state
4244 * (AVX).
4245 */
4246typedef struct IEMOPMEDIAOPTF2IMM8
4247{
4248 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4249 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4250} IEMOPMEDIAOPTF2IMM8;
4251/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4252typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4253
4254/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4255 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4256 * given functions as initializers. For use in AVX functions where a pair of
4257 * functions are only used once and the function table need not be public. */
4258#ifndef TST_IEM_CHECK_MC
4259# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4260# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4261 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4262 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4263# else
4264# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4265 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4266# endif
4267#else
4268# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4269#endif
4270/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4271 * Generate AVX function tables for the @a a_InstrNm instruction.
4272 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4273#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4274 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4275 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4276
4277/**
4278 * Function table for media instruction taking two full sized media source
4279 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4280 * (AVX).
4281 */
4282typedef struct IEMOPMEDIAOPTF3IMM8
4283{
4284 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4285 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4286} IEMOPMEDIAOPTF3IMM8;
4287/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4288typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4289
4290/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4291 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4292 * given functions as initializers. For use in AVX functions where a pair of
4293 * functions are only used once and the function table need not be public. */
4294#ifndef TST_IEM_CHECK_MC
4295# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4296# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4297 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4298 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4299# else
4300# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4301 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4302# endif
4303#else
4304# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4305#endif
4306/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4307 * Generate AVX function tables for the @a a_InstrNm instruction.
4308 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4309#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4310 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4311 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4312/** @} */
4313
4314
4315/**
4316 * Function table for blend type instruction taking three full sized media source
4317 * registers and one full sized destination register, but no additional state
4318 * (AVX).
4319 */
4320typedef struct IEMOPBLENDOP
4321{
4322 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4323 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4324} IEMOPBLENDOP;
4325/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4326typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4327
4328/** @def IEMOPBLENDOP_INIT_VARS_EX
4329 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4330 * given functions as initializers. For use in AVX functions where a pair of
4331 * functions are only used once and the function table need not be public. */
4332#ifndef TST_IEM_CHECK_MC
4333# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4334# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4335 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4336 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4337# else
4338# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4339 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4340# endif
4341#else
4342# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4343#endif
4344/** @def IEMOPBLENDOP_INIT_VARS
4345 * Generate AVX function tables for the @a a_InstrNm instruction.
4346 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4347#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4348 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4349 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4350
4351
4352/** @name SSE/AVX single/double precision floating point operations.
4353 * @{ */
4354typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4355typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4356typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4357typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4358typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4359typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4360
4361typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4362typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4363typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4364typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4365typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4366typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4367
4368typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4369typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4370
4371FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4372FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4373FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4374FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4375FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4376FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4377FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4378FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4379FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4380FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4381FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4382FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4383FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4384FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4385FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4386FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4387FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4388FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4389FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4390FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4391FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4392FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4393FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4394FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
4395
4396FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4397FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4398FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4399FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4400FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4401FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4402
4403FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4404FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4405FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4406FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4407FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4408FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4409FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4410FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4411FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4412FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4413FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4414FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4415FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4416FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4417FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4418FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4419FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4420FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4421
4422FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4423FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4424FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4425FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4426FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4427FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4428FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4429FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4430FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4431FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4432FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4433FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4434FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4435FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4436FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4437FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4438FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4439FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4440FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4441FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4442FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4443FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4444
4445FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4446FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4447FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4448FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4449FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4450FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4451FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4452FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4453FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4454FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4455FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4456FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4457FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4458FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4459
4460FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4461FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4462FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4463FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4464FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4465FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4466FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4467FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4468FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4469FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4470FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4471FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4472FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4473FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4474FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4475FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4476FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4477FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4478FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4479FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4480/** @} */
4481
4482/** @name C instruction implementations for anything slightly complicated.
4483 * @{ */
4484
4485/**
4486 * For typedef'ing or declaring a C instruction implementation function taking
4487 * no extra arguments.
4488 *
4489 * @param a_Name The name of the type.
4490 */
4491# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4492 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4493/**
4494 * For defining a C instruction implementation function taking no extra
4495 * arguments.
4496 *
4497 * @param a_Name The name of the function
4498 */
4499# define IEM_CIMPL_DEF_0(a_Name) \
4500 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4501/**
4502 * Prototype version of IEM_CIMPL_DEF_0.
4503 */
4504# define IEM_CIMPL_PROTO_0(a_Name) \
4505 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4506/**
4507 * For calling a C instruction implementation function taking no extra
4508 * arguments.
4509 *
4510 * This special call macro adds default arguments to the call and allow us to
4511 * change these later.
4512 *
4513 * @param a_fn The name of the function.
4514 */
4515# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4516
4517/** Type for a C instruction implementation function taking no extra
4518 * arguments. */
4519typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4520/** Function pointer type for a C instruction implementation function taking
4521 * no extra arguments. */
4522typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4523
4524/**
4525 * For typedef'ing or declaring a C instruction implementation function taking
4526 * one extra argument.
4527 *
4528 * @param a_Name The name of the type.
4529 * @param a_Type0 The argument type.
4530 * @param a_Arg0 The argument name.
4531 */
4532# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4533 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4534/**
4535 * For defining a C instruction implementation function taking one extra
4536 * argument.
4537 *
4538 * @param a_Name The name of the function
4539 * @param a_Type0 The argument type.
4540 * @param a_Arg0 The argument name.
4541 */
4542# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4543 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4544/**
4545 * Prototype version of IEM_CIMPL_DEF_1.
4546 */
4547# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4548 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4549/**
4550 * For calling a C instruction implementation function taking one extra
4551 * argument.
4552 *
4553 * This special call macro adds default arguments to the call and allow us to
4554 * change these later.
4555 *
4556 * @param a_fn The name of the function.
4557 * @param a0 The name of the 1st argument.
4558 */
4559# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4560
4561/**
4562 * For typedef'ing or declaring a C instruction implementation function taking
4563 * two extra arguments.
4564 *
4565 * @param a_Name The name of the type.
4566 * @param a_Type0 The type of the 1st argument
4567 * @param a_Arg0 The name of the 1st argument.
4568 * @param a_Type1 The type of the 2nd argument.
4569 * @param a_Arg1 The name of the 2nd argument.
4570 */
4571# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4572 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4573/**
4574 * For defining a C instruction implementation function taking two extra
4575 * arguments.
4576 *
4577 * @param a_Name The name of the function.
4578 * @param a_Type0 The type of the 1st argument
4579 * @param a_Arg0 The name of the 1st argument.
4580 * @param a_Type1 The type of the 2nd argument.
4581 * @param a_Arg1 The name of the 2nd argument.
4582 */
4583# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4584 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4585/**
4586 * Prototype version of IEM_CIMPL_DEF_2.
4587 */
4588# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4589 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4590/**
4591 * For calling a C instruction implementation function taking two extra
4592 * arguments.
4593 *
4594 * This special call macro adds default arguments to the call and allow us to
4595 * change these later.
4596 *
4597 * @param a_fn The name of the function.
4598 * @param a0 The name of the 1st argument.
4599 * @param a1 The name of the 2nd argument.
4600 */
4601# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4602
4603/**
4604 * For typedef'ing or declaring a C instruction implementation function taking
4605 * three extra arguments.
4606 *
4607 * @param a_Name The name of the type.
4608 * @param a_Type0 The type of the 1st argument
4609 * @param a_Arg0 The name of the 1st argument.
4610 * @param a_Type1 The type of the 2nd argument.
4611 * @param a_Arg1 The name of the 2nd argument.
4612 * @param a_Type2 The type of the 3rd argument.
4613 * @param a_Arg2 The name of the 3rd argument.
4614 */
4615# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4616 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4617/**
4618 * For defining a C instruction implementation function taking three extra
4619 * arguments.
4620 *
4621 * @param a_Name The name of the function.
4622 * @param a_Type0 The type of the 1st argument
4623 * @param a_Arg0 The name of the 1st argument.
4624 * @param a_Type1 The type of the 2nd argument.
4625 * @param a_Arg1 The name of the 2nd argument.
4626 * @param a_Type2 The type of the 3rd argument.
4627 * @param a_Arg2 The name of the 3rd argument.
4628 */
4629# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4630 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4631/**
4632 * Prototype version of IEM_CIMPL_DEF_3.
4633 */
4634# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4635 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4636/**
4637 * For calling a C instruction implementation function taking three extra
4638 * arguments.
4639 *
4640 * This special call macro adds default arguments to the call and allow us to
4641 * change these later.
4642 *
4643 * @param a_fn The name of the function.
4644 * @param a0 The name of the 1st argument.
4645 * @param a1 The name of the 2nd argument.
4646 * @param a2 The name of the 3rd argument.
4647 */
4648# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4649
4650
4651/**
4652 * For typedef'ing or declaring a C instruction implementation function taking
4653 * four extra arguments.
4654 *
4655 * @param a_Name The name of the type.
4656 * @param a_Type0 The type of the 1st argument
4657 * @param a_Arg0 The name of the 1st argument.
4658 * @param a_Type1 The type of the 2nd argument.
4659 * @param a_Arg1 The name of the 2nd argument.
4660 * @param a_Type2 The type of the 3rd argument.
4661 * @param a_Arg2 The name of the 3rd argument.
4662 * @param a_Type3 The type of the 4th argument.
4663 * @param a_Arg3 The name of the 4th argument.
4664 */
4665# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4666 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4667/**
4668 * For defining a C instruction implementation function taking four extra
4669 * arguments.
4670 *
4671 * @param a_Name The name of the function.
4672 * @param a_Type0 The type of the 1st argument
4673 * @param a_Arg0 The name of the 1st argument.
4674 * @param a_Type1 The type of the 2nd argument.
4675 * @param a_Arg1 The name of the 2nd argument.
4676 * @param a_Type2 The type of the 3rd argument.
4677 * @param a_Arg2 The name of the 3rd argument.
4678 * @param a_Type3 The type of the 4th argument.
4679 * @param a_Arg3 The name of the 4th argument.
4680 */
4681# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4682 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4683 a_Type2 a_Arg2, a_Type3 a_Arg3))
4684/**
4685 * Prototype version of IEM_CIMPL_DEF_4.
4686 */
4687# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4688 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4689 a_Type2 a_Arg2, a_Type3 a_Arg3))
4690/**
4691 * For calling a C instruction implementation function taking four extra
4692 * arguments.
4693 *
4694 * This special call macro adds default arguments to the call and allow us to
4695 * change these later.
4696 *
4697 * @param a_fn The name of the function.
4698 * @param a0 The name of the 1st argument.
4699 * @param a1 The name of the 2nd argument.
4700 * @param a2 The name of the 3rd argument.
4701 * @param a3 The name of the 4th argument.
4702 */
4703# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4704
4705
4706/**
4707 * For typedef'ing or declaring a C instruction implementation function taking
4708 * five extra arguments.
4709 *
4710 * @param a_Name The name of the type.
4711 * @param a_Type0 The type of the 1st argument
4712 * @param a_Arg0 The name of the 1st argument.
4713 * @param a_Type1 The type of the 2nd argument.
4714 * @param a_Arg1 The name of the 2nd argument.
4715 * @param a_Type2 The type of the 3rd argument.
4716 * @param a_Arg2 The name of the 3rd argument.
4717 * @param a_Type3 The type of the 4th argument.
4718 * @param a_Arg3 The name of the 4th argument.
4719 * @param a_Type4 The type of the 5th argument.
4720 * @param a_Arg4 The name of the 5th argument.
4721 */
4722# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4723 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4724 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4725 a_Type3 a_Arg3, a_Type4 a_Arg4))
4726/**
4727 * For defining a C instruction implementation function taking five extra
4728 * arguments.
4729 *
4730 * @param a_Name The name of the function.
4731 * @param a_Type0 The type of the 1st argument
4732 * @param a_Arg0 The name of the 1st argument.
4733 * @param a_Type1 The type of the 2nd argument.
4734 * @param a_Arg1 The name of the 2nd argument.
4735 * @param a_Type2 The type of the 3rd argument.
4736 * @param a_Arg2 The name of the 3rd argument.
4737 * @param a_Type3 The type of the 4th argument.
4738 * @param a_Arg3 The name of the 4th argument.
4739 * @param a_Type4 The type of the 5th argument.
4740 * @param a_Arg4 The name of the 5th argument.
4741 */
4742# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4743 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4744 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4745/**
4746 * Prototype version of IEM_CIMPL_DEF_5.
4747 */
4748# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4749 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4750 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4751/**
4752 * For calling a C instruction implementation function taking five extra
4753 * arguments.
4754 *
4755 * This special call macro adds default arguments to the call and allow us to
4756 * change these later.
4757 *
4758 * @param a_fn The name of the function.
4759 * @param a0 The name of the 1st argument.
4760 * @param a1 The name of the 2nd argument.
4761 * @param a2 The name of the 3rd argument.
4762 * @param a3 The name of the 4th argument.
4763 * @param a4 The name of the 5th argument.
4764 */
4765# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4766
4767/** @} */
4768
4769
4770/** @name Opcode Decoder Function Types.
4771 * @{ */
4772
4773/** @typedef PFNIEMOP
4774 * Pointer to an opcode decoder function.
4775 */
4776
4777/** @def FNIEMOP_DEF
4778 * Define an opcode decoder function.
4779 *
4780 * We're using macors for this so that adding and removing parameters as well as
4781 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4782 *
4783 * @param a_Name The function name.
4784 */
4785
4786/** @typedef PFNIEMOPRM
4787 * Pointer to an opcode decoder function with RM byte.
4788 */
4789
4790/** @def FNIEMOPRM_DEF
4791 * Define an opcode decoder function with RM byte.
4792 *
4793 * We're using macors for this so that adding and removing parameters as well as
4794 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4795 *
4796 * @param a_Name The function name.
4797 */
4798
4799#if defined(__GNUC__) && defined(RT_ARCH_X86)
4800typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4801typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4802# define FNIEMOP_DEF(a_Name) \
4803 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4804# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4805 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4806# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4807 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4808
4809#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4810typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4811typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4812# define FNIEMOP_DEF(a_Name) \
4813 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4814# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4815 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4816# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4817 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4818
4819#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4820typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4821typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4822# define FNIEMOP_DEF(a_Name) \
4823 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4824# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4825 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4826# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4827 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4828
4829#else
4830typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4831typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4832# define FNIEMOP_DEF(a_Name) \
4833 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4834# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4835 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4836# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4837 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4838
4839#endif
4840#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4841
4842/**
4843 * Call an opcode decoder function.
4844 *
4845 * We're using macors for this so that adding and removing parameters can be
4846 * done as we please. See FNIEMOP_DEF.
4847 */
4848#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4849
4850/**
4851 * Call a common opcode decoder function taking one extra argument.
4852 *
4853 * We're using macors for this so that adding and removing parameters can be
4854 * done as we please. See FNIEMOP_DEF_1.
4855 */
4856#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4857
4858/**
4859 * Call a common opcode decoder function taking one extra argument.
4860 *
4861 * We're using macors for this so that adding and removing parameters can be
4862 * done as we please. See FNIEMOP_DEF_1.
4863 */
4864#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4865/** @} */
4866
4867
4868/** @name Misc Helpers
4869 * @{ */
4870
4871/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4872 * due to GCC lacking knowledge about the value range of a switch. */
4873#if RT_CPLUSPLUS_PREREQ(202000)
4874# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4875#else
4876# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4877#endif
4878
4879/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4880#if RT_CPLUSPLUS_PREREQ(202000)
4881# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4882#else
4883# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4884#endif
4885
4886/**
4887 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4888 * occation.
4889 */
4890#ifdef LOG_ENABLED
4891# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4892 do { \
4893 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4894 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4895 } while (0)
4896#else
4897# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4898 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4899#endif
4900
4901/**
4902 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4903 * occation using the supplied logger statement.
4904 *
4905 * @param a_LoggerArgs What to log on failure.
4906 */
4907#ifdef LOG_ENABLED
4908# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4909 do { \
4910 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4911 /*LogFunc(a_LoggerArgs);*/ \
4912 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4913 } while (0)
4914#else
4915# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4916 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4917#endif
4918
4919/**
4920 * Gets the CPU mode (from fExec) as a IEMMODE value.
4921 *
4922 * @returns IEMMODE
4923 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4924 */
4925#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4926
4927/**
4928 * Check if we're currently executing in real or virtual 8086 mode.
4929 *
4930 * @returns @c true if it is, @c false if not.
4931 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4932 */
4933#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4934 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4935
4936/**
4937 * Check if we're currently executing in virtual 8086 mode.
4938 *
4939 * @returns @c true if it is, @c false if not.
4940 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4941 */
4942#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4943
4944/**
4945 * Check if we're currently executing in long mode.
4946 *
4947 * @returns @c true if it is, @c false if not.
4948 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4949 */
4950#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4951
4952/**
4953 * Check if we're currently executing in a 16-bit code segment.
4954 *
4955 * @returns @c true if it is, @c false if not.
4956 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4957 */
4958#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4959
4960/**
4961 * Check if we're currently executing in a 32-bit code segment.
4962 *
4963 * @returns @c true if it is, @c false if not.
4964 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4965 */
4966#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4967
4968/**
4969 * Check if we're currently executing in a 64-bit code segment.
4970 *
4971 * @returns @c true if it is, @c false if not.
4972 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4973 */
4974#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4975
4976/**
4977 * Check if we're currently executing in real mode.
4978 *
4979 * @returns @c true if it is, @c false if not.
4980 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4981 */
4982#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4983
4984/**
4985 * Gets the current protection level (CPL).
4986 *
4987 * @returns 0..3
4988 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4989 */
4990#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4991
4992/**
4993 * Sets the current protection level (CPL).
4994 *
4995 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4996 */
4997#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4998 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4999
5000/**
5001 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5002 * @returns PCCPUMFEATURES
5003 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5004 */
5005#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5006
5007/**
5008 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5009 * @returns PCCPUMFEATURES
5010 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5011 */
5012#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5013
5014/**
5015 * Evaluates to true if we're presenting an Intel CPU to the guest.
5016 */
5017#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5018
5019/**
5020 * Evaluates to true if we're presenting an AMD CPU to the guest.
5021 */
5022#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5023
5024/**
5025 * Check if the address is canonical.
5026 */
5027#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5028
5029/** Checks if the ModR/M byte is in register mode or not. */
5030#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5031/** Checks if the ModR/M byte is in memory mode or not. */
5032#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5033
5034/**
5035 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5036 *
5037 * For use during decoding.
5038 */
5039#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5040/**
5041 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5042 *
5043 * For use during decoding.
5044 */
5045#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5046
5047/**
5048 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5049 *
5050 * For use during decoding.
5051 */
5052#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5053/**
5054 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5055 *
5056 * For use during decoding.
5057 */
5058#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5059
5060/**
5061 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5062 * register index, with REX.R added in.
5063 *
5064 * For use during decoding.
5065 *
5066 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5067 */
5068#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5069 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5070 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5071 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5072/**
5073 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5074 * with REX.B added in.
5075 *
5076 * For use during decoding.
5077 *
5078 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5079 */
5080#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5081 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5082 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5083 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5084
5085/**
5086 * Combines the prefix REX and ModR/M byte for passing to
5087 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5088 *
5089 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5090 * The two bits are part of the REG sub-field, which isn't needed in
5091 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5092 *
5093 * For use during decoding/recompiling.
5094 */
5095#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5096 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5097 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5098AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5099AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5100
5101/**
5102 * Gets the effective VEX.VVVV value.
5103 *
5104 * The 4th bit is ignored if not 64-bit code.
5105 * @returns effective V-register value.
5106 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5107 */
5108#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5109 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5110
5111
5112/**
5113 * Gets the register (reg) part of a the special 4th register byte used by
5114 * vblendvps and vblendvpd.
5115 *
5116 * For use during decoding.
5117 */
5118#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5119 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5120
5121
5122/**
5123 * Checks if we're executing inside an AMD-V or VT-x guest.
5124 */
5125#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5126# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5127#else
5128# define IEM_IS_IN_GUEST(a_pVCpu) false
5129#endif
5130
5131
5132#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5133
5134/**
5135 * Check if the guest has entered VMX root operation.
5136 */
5137# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5138
5139/**
5140 * Check if the guest has entered VMX non-root operation.
5141 */
5142# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5143 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5144
5145/**
5146 * Check if the nested-guest has the given Pin-based VM-execution control set.
5147 */
5148# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5149
5150/**
5151 * Check if the nested-guest has the given Processor-based VM-execution control set.
5152 */
5153# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5154
5155/**
5156 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5157 * control set.
5158 */
5159# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5160
5161/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5162# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5163
5164/** Whether a shadow VMCS is present for the given VCPU. */
5165# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5166
5167/** Gets the VMXON region pointer. */
5168# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5169
5170/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5171# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5172
5173/** Whether a current VMCS is present for the given VCPU. */
5174# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5175
5176/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5177# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5178 do \
5179 { \
5180 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5181 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5182 } while (0)
5183
5184/** Clears any current VMCS for the given VCPU. */
5185# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5186 do \
5187 { \
5188 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5189 } while (0)
5190
5191/**
5192 * Invokes the VMX VM-exit handler for an instruction intercept.
5193 */
5194# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5195 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5196
5197/**
5198 * Invokes the VMX VM-exit handler for an instruction intercept where the
5199 * instruction provides additional VM-exit information.
5200 */
5201# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5202 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5203
5204/**
5205 * Invokes the VMX VM-exit handler for a task switch.
5206 */
5207# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5208 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5209
5210/**
5211 * Invokes the VMX VM-exit handler for MWAIT.
5212 */
5213# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5214 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5215
5216/**
5217 * Invokes the VMX VM-exit handler for EPT faults.
5218 */
5219# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5220 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5221
5222/**
5223 * Invokes the VMX VM-exit handler.
5224 */
5225# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5226 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5227
5228#else
5229# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5230# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5231# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5232# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5233# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5234# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5235# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5236# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5237# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5238# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5239# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5240
5241#endif
5242
5243#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5244/**
5245 * Checks if we're executing a guest using AMD-V.
5246 */
5247# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5248 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5249/**
5250 * Check if an SVM control/instruction intercept is set.
5251 */
5252# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5253 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5254
5255/**
5256 * Check if an SVM read CRx intercept is set.
5257 */
5258# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5259 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5260
5261/**
5262 * Check if an SVM write CRx intercept is set.
5263 */
5264# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5265 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5266
5267/**
5268 * Check if an SVM read DRx intercept is set.
5269 */
5270# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5271 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5272
5273/**
5274 * Check if an SVM write DRx intercept is set.
5275 */
5276# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5277 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5278
5279/**
5280 * Check if an SVM exception intercept is set.
5281 */
5282# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5283 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5284
5285/**
5286 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5287 */
5288# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5289 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5290
5291/**
5292 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5293 * corresponding decode assist information.
5294 */
5295# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5296 do \
5297 { \
5298 uint64_t uExitInfo1; \
5299 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5300 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5301 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5302 else \
5303 uExitInfo1 = 0; \
5304 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5305 } while (0)
5306
5307/** Check and handles SVM nested-guest instruction intercept and updates
5308 * NRIP if needed.
5309 */
5310# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5311 do \
5312 { \
5313 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5314 { \
5315 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5316 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5317 } \
5318 } while (0)
5319
5320/** Checks and handles SVM nested-guest CR0 read intercept. */
5321# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5322 do \
5323 { \
5324 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5325 { /* probably likely */ } \
5326 else \
5327 { \
5328 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5329 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5330 } \
5331 } while (0)
5332
5333/**
5334 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5335 */
5336# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5337 do { \
5338 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5339 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5340 } while (0)
5341
5342#else
5343# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5344# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5345# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5346# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5347# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5348# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5349# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5350# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5351# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5352 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5353# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5354# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5355
5356#endif
5357
5358/** @} */
5359
5360uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5361VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5362
5363
5364/**
5365 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5366 */
5367typedef union IEMSELDESC
5368{
5369 /** The legacy view. */
5370 X86DESC Legacy;
5371 /** The long mode view. */
5372 X86DESC64 Long;
5373} IEMSELDESC;
5374/** Pointer to a selector descriptor table entry. */
5375typedef IEMSELDESC *PIEMSELDESC;
5376
5377/** @name Raising Exceptions.
5378 * @{ */
5379VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5380 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5381
5382VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5383 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5384#ifdef IEM_WITH_SETJMP
5385DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5386 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5387#endif
5388VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5389#ifdef IEM_WITH_SETJMP
5390DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5391#endif
5392VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5393VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5394VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5395#ifdef IEM_WITH_SETJMP
5396DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5397#endif
5398VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5399#ifdef IEM_WITH_SETJMP
5400DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5401#endif
5402VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5403VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5404VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5405VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5406/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5407VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5408VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5409VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5410VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5411VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5412VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5413#ifdef IEM_WITH_SETJMP
5414DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5415#endif
5416VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5417VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5418VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5419#ifdef IEM_WITH_SETJMP
5420DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5421#endif
5422VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5423#ifdef IEM_WITH_SETJMP
5424DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5425#endif
5426VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5427#ifdef IEM_WITH_SETJMP
5428DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5429#endif
5430VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5431#ifdef IEM_WITH_SETJMP
5432DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5433#endif
5434VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5435#ifdef IEM_WITH_SETJMP
5436DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5437#endif
5438VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5439#ifdef IEM_WITH_SETJMP
5440DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5441#endif
5442VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5443#ifdef IEM_WITH_SETJMP
5444DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5445#endif
5446
5447void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5448void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5449
5450IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5451IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5452IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5453
5454/**
5455 * Macro for calling iemCImplRaiseDivideError().
5456 *
5457 * This is for things that will _always_ decode to an \#DE, taking the
5458 * recompiler into consideration and everything.
5459 *
5460 * @return Strict VBox status code.
5461 */
5462#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5463
5464/**
5465 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5466 *
5467 * This is for things that will _always_ decode to an \#UD, taking the
5468 * recompiler into consideration and everything.
5469 *
5470 * @return Strict VBox status code.
5471 */
5472#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5473
5474/**
5475 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5476 *
5477 * This is for things that will _always_ decode to an \#UD, taking the
5478 * recompiler into consideration and everything.
5479 *
5480 * @return Strict VBox status code.
5481 */
5482#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5483
5484/**
5485 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5486 *
5487 * Using this macro means you've got _buggy_ _code_ and are doing things that
5488 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5489 *
5490 * @return Strict VBox status code.
5491 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5492 */
5493#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5494
5495/** @} */
5496
5497/** @name Register Access.
5498 * @{ */
5499VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5500 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5501VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5502VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5503 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5504/** @} */
5505
5506/** @name FPU access and helpers.
5507 * @{ */
5508void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5509void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5510void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5511void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5512void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5513void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5514 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5515void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5516 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5517void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5518void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5519void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5520void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5521void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5522void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5523void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5524void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5525void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5526void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5527void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5528void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5529void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5530void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5531void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5532/** @} */
5533
5534/** @name SSE+AVX SIMD access and helpers.
5535 * @{ */
5536void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5537/** @} */
5538
5539/** @name Memory access.
5540 * @{ */
5541
5542/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5543#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5544/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5545 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5546#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5547/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5548 * Users include FXSAVE & FXRSTOR. */
5549#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5550
5551VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5552 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5553VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5554#ifndef IN_RING3
5555VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5556#endif
5557void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5558void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5559VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5560VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5561VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5562
5563void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5564void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5565#ifdef IEM_WITH_CODE_TLB
5566void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5567#else
5568VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5569#endif
5570#ifdef IEM_WITH_SETJMP
5571uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5572uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5573uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5574uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5575#else
5576VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5577VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5578VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5579VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5580VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5581VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5582VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5583VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5584VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5585VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5586VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5587#endif
5588
5589VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5590VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5591VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5592VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5593VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5594VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5595VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5596VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5597VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5598VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5599VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5600VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5601VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5602VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5603VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5604 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5605#ifdef IEM_WITH_SETJMP
5606uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5607uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5608uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5609uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5610uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5611uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5612void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5613void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5614void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5615void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5616void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5617void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5618void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5619void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5620# if 0 /* these are inlined now */
5621uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5622uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5623uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5624uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5625uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5626uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5627void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5628void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5629void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5630void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5631void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5632void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5633void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5634# endif
5635void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5636#endif
5637
5638VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5639VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5640VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5641VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5642VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5643
5644VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5645VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5646VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5647VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5648VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5649VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5650VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5651VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5652VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5653VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5654VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5655#ifdef IEM_WITH_SETJMP
5656void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5657void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5658void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5659void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5660void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5661void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5662void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5663void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5664void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5665void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5666void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5667void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5668#if 0
5669void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5670void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5671void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5672void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5673void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5674void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5675void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5676void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5677#endif
5678void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5679void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5680#endif
5681
5682#ifdef IEM_WITH_SETJMP
5683uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5684uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5685uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5686uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5687uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5688uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5689uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5690uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5691uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5692uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5693uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5694uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5695uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5696uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5697uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5698uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5699PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5700PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5701PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5702PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5703PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5704PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5705PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5706PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5707PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5708PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5709
5710void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5711void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5712void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5713void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5714void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5715void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5716#endif
5717
5718VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5719 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5720VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5721VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5722VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5723VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5724VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5725VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5726VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5727VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5728VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5729 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5730VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5731 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5732VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5733VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5734VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5735VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5736VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5737VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5738VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5739
5740#ifdef IEM_WITH_SETJMP
5741void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5742void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5743void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5744void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5745void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5746void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5747void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5748
5749void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5750void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5751void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5752void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5753void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5754
5755void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5756void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5757void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5758void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5759
5760void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5761void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5762void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5763void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5764
5765uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5766uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5767uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5768
5769#endif
5770
5771/** @} */
5772
5773/** @name IEMAllCImpl.cpp
5774 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5775 * @{ */
5776IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5777IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5778IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5779IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5780IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5781IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5782IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5783IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5784IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5785IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5786IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5787IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5788IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5789IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5790IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5791IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5792IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5793typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5794typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5795IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5796IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5797IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5798IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5799IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5800IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5801IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5802IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5803IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5804IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5805IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5806IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5807IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5808IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5809IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5810IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5811IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5812IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5813IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5814IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5815IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5816IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5817IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5818IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5819IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5820IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5821IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5822IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5823IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5824IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5825IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5826IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5827IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5828IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5829IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5830IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5831IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5832IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5833IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5834IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5835IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5836IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5837IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5838IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5839IEM_CIMPL_PROTO_0(iemCImpl_clts);
5840IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5841IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5842IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5843IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5844IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5845IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5846IEM_CIMPL_PROTO_0(iemCImpl_invd);
5847IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5848IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5849IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5850IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5851IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5852IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5853IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5854IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5855IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5856IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5857IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5858IEM_CIMPL_PROTO_0(iemCImpl_cli);
5859IEM_CIMPL_PROTO_0(iemCImpl_sti);
5860IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5861IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5862IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5863IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5864IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5865IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5866IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5867IEM_CIMPL_PROTO_0(iemCImpl_daa);
5868IEM_CIMPL_PROTO_0(iemCImpl_das);
5869IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5870IEM_CIMPL_PROTO_0(iemCImpl_aas);
5871IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5872IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5873IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5874IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5875IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5876 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5877IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5878IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5879IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5880IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5881IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5882IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5883IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5884IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5885IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5886IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5887IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5888IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5889IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5890IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5891IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5892IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5893IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5894IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5895/** @} */
5896
5897/** @name IEMAllCImplStrInstr.cpp.h
5898 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5899 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5900 * @{ */
5901IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5902IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5903IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5904IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5905IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5906IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5907IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5908IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5909IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5910IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5911IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5912
5913IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5914IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5915IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5916IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5917IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5918IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5919IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5920IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5921IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5922IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5923IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5924
5925IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5926IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5927IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5928IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5929IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5930IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5931IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5932IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5933IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5934IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5935IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5936
5937
5938IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5939IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5940IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5941IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5942IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5943IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5944IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5945IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5946IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5947IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5948IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5949
5950IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5951IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5952IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5953IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5954IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5955IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5956IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5957IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5958IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5959IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5960IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5961
5962IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5963IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5964IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5965IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5966IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5967IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5968IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5969IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5970IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5971IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5972IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5973
5974IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5975IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5976IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5977IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5978IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5979IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5980IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5981IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5982IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5983IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5984IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5985
5986
5987IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5988IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5989IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5990IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5991IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5992IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5993IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5994IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5995IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5996IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5997IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5998
5999IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6000IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6001IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6002IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6003IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6004IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6005IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6006IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6007IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6008IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6009IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6010
6011IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6012IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6013IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6014IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6015IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6016IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6017IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6018IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6019IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6020IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6021IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6022
6023IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6024IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6025IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6026IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6027IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6028IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6029IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6030IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6031IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6032IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6033IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6034/** @} */
6035
6036#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6037VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6038VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6039VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6040VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6041VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6042VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6043VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6044VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6045VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6046VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6047 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6048VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6049 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6050VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6051VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6052VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6053VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6054VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6055VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6056VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6057VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6058 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6059VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6060VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6061VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6062uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6063void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6064VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6065 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6066bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6067IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6068IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6069IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6070IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6071IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6072IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6073IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6074IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6075IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6076IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6077IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6078IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6079IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6080IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6081IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6082IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6083#endif
6084
6085#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6086VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6087VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6088VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6089 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6090VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6091IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6092IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6093IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6094IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6095IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6096IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6097IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6098IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6099#endif
6100
6101IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6102IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6103IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6104
6105extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6106extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6107extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6108extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6109extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6110extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6111extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6112
6113/*
6114 * Recompiler related stuff.
6115 */
6116extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6117extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6118extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6119extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6120extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6121extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6122extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6123
6124DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6125 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6126void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6127DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6128void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6129void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6130DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6131DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6132
6133
6134/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6135#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6136typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6137typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6138# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6139 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6140# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6141 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6142
6143#else
6144typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6145typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6146# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6147 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6148# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6149 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6150#endif
6151
6152
6153IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6154IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6155
6156IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6157
6158IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6159IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6160IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6161IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6162
6163IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6164IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6165IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6166
6167/* Branching: */
6168IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6169IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6170IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6171
6172IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6173IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6174IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6175
6176/* Natural page crossing: */
6177IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6178IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6179IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6180
6181IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6182IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6183IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6184
6185IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6186IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6187IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6188
6189bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6190bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6191
6192/* Native recompiler public bits: */
6193DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6194DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6195int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6196DECLHIDDEN(void *) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb) RT_NOEXCEPT;
6197DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6198void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6199DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6200
6201#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6202
6203
6204/** @} */
6205
6206RT_C_DECLS_END
6207
6208/* ASM-INC: %include "IEMInternalStruct.mac" */
6209
6210#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6211
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette