VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 104956

Last change on this file since 104956 was 104956, checked in by vboxsync, 6 months ago

VMM/IEM: TLB statistics reorg. bugref:10687

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 327.1 KB
Line 
1/* $Id: IEMInternal.h 104956 2024-06-18 11:44:59Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def IEM_WITH_TLB_STATISTICS
116 * Enables all TLB statistics. */
117#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
118# define IEM_WITH_TLB_STATISTICS
119#endif
120
121/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
122 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
123 * executing native translation blocks.
124 *
125 * This exploits the fact that we save all non-volatile registers in the TB
126 * prologue and thus just need to do the same as the TB epilogue to get the
127 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
128 * non-volatile (and does something even more crazy for ARM), this probably
129 * won't work reliably on Windows. */
130#ifdef RT_ARCH_ARM64
131# ifndef RT_OS_WINDOWS
132# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
133# endif
134#endif
135/* ASM-NOINC-START */
136#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
137# if !defined(IN_RING3) \
138 || !defined(VBOX_WITH_IEM_RECOMPILER) \
139 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
140# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
141# elif defined(RT_OS_WINDOWS)
142# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
143# endif
144#endif
145
146
147/** @def IEM_DO_LONGJMP
148 *
149 * Wrapper around longjmp / throw.
150 *
151 * @param a_pVCpu The CPU handle.
152 * @param a_rc The status code jump back with / throw.
153 */
154#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
155# ifdef IEM_WITH_THROW_CATCH
156# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
157# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
158 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
159 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
160 throw int(a_rc); \
161 } while (0)
162# else
163# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
164# endif
165# else
166# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
167# endif
168#endif
169
170/** For use with IEM function that may do a longjmp (when enabled).
171 *
172 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
173 * attribute. So, we indicate that function that may be part of a longjmp may
174 * throw "exceptions" and that the compiler should definitely not generate and
175 * std::terminate calling unwind code.
176 *
177 * Here is one example of this ending in std::terminate:
178 * @code{.txt}
17900 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
18001 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
18102 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
18203 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
18304 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
18405 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
18506 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
18607 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
18708 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
18809 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1890a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1900b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1910c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1920d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1930e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1940f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
19510 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
196 @endcode
197 *
198 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
199 */
200#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
201# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
202#else
203# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
204#endif
205/* ASM-NOINC-END */
206
207#define IEM_IMPLEMENTS_TASKSWITCH
208
209/** @def IEM_WITH_3DNOW
210 * Includes the 3DNow decoding. */
211#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
212# ifndef IEM_WITHOUT_3DNOW
213# define IEM_WITH_3DNOW
214# endif
215#endif
216
217/** @def IEM_WITH_THREE_0F_38
218 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
219#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
220# ifndef IEM_WITHOUT_THREE_0F_38
221# define IEM_WITH_THREE_0F_38
222# endif
223#endif
224
225/** @def IEM_WITH_THREE_0F_3A
226 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
227#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
228# ifndef IEM_WITHOUT_THREE_0F_3A
229# define IEM_WITH_THREE_0F_3A
230# endif
231#endif
232
233/** @def IEM_WITH_VEX
234 * Includes the VEX decoding. */
235#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
236# ifndef IEM_WITHOUT_VEX
237# define IEM_WITH_VEX
238# endif
239#endif
240
241/** @def IEM_CFG_TARGET_CPU
242 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
243 *
244 * By default we allow this to be configured by the user via the
245 * CPUM/GuestCpuName config string, but this comes at a slight cost during
246 * decoding. So, for applications of this code where there is no need to
247 * be dynamic wrt target CPU, just modify this define.
248 */
249#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
250# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
251#endif
252
253//#define IEM_WITH_CODE_TLB // - work in progress
254//#define IEM_WITH_DATA_TLB // - work in progress
255
256
257/** @def IEM_USE_UNALIGNED_DATA_ACCESS
258 * Use unaligned accesses instead of elaborate byte assembly. */
259#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
260# define IEM_USE_UNALIGNED_DATA_ACCESS
261#endif /*ASM-NOINC*/
262
263//#define IEM_LOG_MEMORY_WRITES
264
265
266
267#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
268
269# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
270/** Instruction statistics. */
271typedef struct IEMINSTRSTATS
272{
273# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
274# include "IEMInstructionStatisticsTmpl.h"
275# undef IEM_DO_INSTR_STAT
276} IEMINSTRSTATS;
277#else
278struct IEMINSTRSTATS;
279typedef struct IEMINSTRSTATS IEMINSTRSTATS;
280#endif
281/** Pointer to IEM instruction statistics. */
282typedef IEMINSTRSTATS *PIEMINSTRSTATS;
283
284
285/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
286 * @{ */
287#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
288#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
289#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
290#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
291#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
292/** Selects the right variant from a_aArray.
293 * pVCpu is implicit in the caller context. */
294#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
295 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
296/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
297 * be used because the host CPU does not support the operation. */
298#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
299 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
300/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
301 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
302 * into the two.
303 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
304#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
305# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
306 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
307#else
308# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
309 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
310#endif
311/** @} */
312
313/**
314 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
315 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
316 *
317 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
318 * indicator.
319 *
320 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
321 */
322#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
323# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
324 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
325#else
326# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
327#endif
328
329
330/**
331 * Branch types.
332 */
333typedef enum IEMBRANCH
334{
335 IEMBRANCH_JUMP = 1,
336 IEMBRANCH_CALL,
337 IEMBRANCH_TRAP,
338 IEMBRANCH_SOFTWARE_INT,
339 IEMBRANCH_HARDWARE_INT
340} IEMBRANCH;
341AssertCompileSize(IEMBRANCH, 4);
342
343
344/**
345 * INT instruction types.
346 */
347typedef enum IEMINT
348{
349 /** INT n instruction (opcode 0xcd imm). */
350 IEMINT_INTN = 0,
351 /** Single byte INT3 instruction (opcode 0xcc). */
352 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
353 /** Single byte INTO instruction (opcode 0xce). */
354 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
355 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
356 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
357} IEMINT;
358AssertCompileSize(IEMINT, 4);
359
360
361/**
362 * A FPU result.
363 */
364typedef struct IEMFPURESULT
365{
366 /** The output value. */
367 RTFLOAT80U r80Result;
368 /** The output status. */
369 uint16_t FSW;
370} IEMFPURESULT;
371AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
372/** Pointer to a FPU result. */
373typedef IEMFPURESULT *PIEMFPURESULT;
374/** Pointer to a const FPU result. */
375typedef IEMFPURESULT const *PCIEMFPURESULT;
376
377
378/**
379 * A FPU result consisting of two output values and FSW.
380 */
381typedef struct IEMFPURESULTTWO
382{
383 /** The first output value. */
384 RTFLOAT80U r80Result1;
385 /** The output status. */
386 uint16_t FSW;
387 /** The second output value. */
388 RTFLOAT80U r80Result2;
389} IEMFPURESULTTWO;
390AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
391AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
392/** Pointer to a FPU result consisting of two output values and FSW. */
393typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
394/** Pointer to a const FPU result consisting of two output values and FSW. */
395typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
396
397
398/**
399 * IEM TLB entry.
400 *
401 * Lookup assembly:
402 * @code{.asm}
403 ; Calculate tag.
404 mov rax, [VA]
405 shl rax, 16
406 shr rax, 16 + X86_PAGE_SHIFT
407 or rax, [uTlbRevision]
408
409 ; Do indexing.
410 movzx ecx, al
411 lea rcx, [pTlbEntries + rcx]
412
413 ; Check tag.
414 cmp [rcx + IEMTLBENTRY.uTag], rax
415 jne .TlbMiss
416
417 ; Check access.
418 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
419 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
420 cmp rax, [uTlbPhysRev]
421 jne .TlbMiss
422
423 ; Calc address and we're done.
424 mov eax, X86_PAGE_OFFSET_MASK
425 and eax, [VA]
426 or rax, [rcx + IEMTLBENTRY.pMappingR3]
427 %ifdef VBOX_WITH_STATISTICS
428 inc qword [cTlbHits]
429 %endif
430 jmp .Done
431
432 .TlbMiss:
433 mov r8d, ACCESS_FLAGS
434 mov rdx, [VA]
435 mov rcx, [pVCpu]
436 call iemTlbTypeMiss
437 .Done:
438
439 @endcode
440 *
441 */
442typedef struct IEMTLBENTRY
443{
444 /** The TLB entry tag.
445 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
446 * is ASSUMING a virtual address width of 48 bits.
447 *
448 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
449 *
450 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
451 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
452 * revision wraps around though, the tags needs to be zeroed.
453 *
454 * @note Try use SHRD instruction? After seeing
455 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
456 *
457 * @todo This will need to be reorganized for 57-bit wide virtual address and
458 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
459 * have to move the TLB entry versioning entirely to the
460 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
461 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
462 * consumed by PCID and ASID (12 + 6 = 18).
463 */
464 uint64_t uTag;
465 /** Access flags and physical TLB revision.
466 *
467 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
468 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
469 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
470 * - Bit 3 - pgm phys/virt - not directly writable.
471 * - Bit 4 - pgm phys page - not directly readable.
472 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
473 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
474 * - Bit 7 - tlb entry - pMappingR3 member not valid.
475 * - Bits 63 thru 8 are used for the physical TLB revision number.
476 *
477 * We're using complemented bit meanings here because it makes it easy to check
478 * whether special action is required. For instance a user mode write access
479 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
480 * non-zero result would mean special handling needed because either it wasn't
481 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
482 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
483 * need to check any PTE flag.
484 */
485 uint64_t fFlagsAndPhysRev;
486 /** The guest physical page address. */
487 uint64_t GCPhys;
488 /** Pointer to the ring-3 mapping. */
489 R3PTRTYPE(uint8_t *) pbMappingR3;
490#if HC_ARCH_BITS == 32
491 uint32_t u32Padding1;
492#endif
493} IEMTLBENTRY;
494AssertCompileSize(IEMTLBENTRY, 32);
495/** Pointer to an IEM TLB entry. */
496typedef IEMTLBENTRY *PIEMTLBENTRY;
497
498/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
499 * @{ */
500#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
501#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
502#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
503#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
504#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
505#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
506#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
507#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
508#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
509#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
510#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
511/** @} */
512AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
513AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
514AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
515AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
516AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
517/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
518#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
519 | PGMIEMGCPHYS2PTR_F_NO_READ \
520 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
521 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
522 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
523 | IEMTLBE_F_PHYS_REV )
524
525/** The TLB size (power of two).
526 * We initially chose 256 because that way we can obtain the result directly
527 * from a 8-bit register without an additional AND instruction.
528 * See also @bugref{10687}. */
529#define IEMTLB_ENTRY_COUNT 256
530#define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
531AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
532
533/**
534 * An IEM TLB.
535 *
536 * We've got two of these, one for data and one for instructions.
537 */
538typedef struct IEMTLB
539{
540 /** The TLB revision.
541 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
542 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
543 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
544 * (The revision zero indicates an invalid TLB entry.)
545 *
546 * The initial value is choosen to cause an early wraparound. */
547 uint64_t uTlbRevision;
548 /** The TLB physical address revision - shadow of PGM variable.
549 *
550 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
551 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
552 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
553 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
554 *
555 * The initial value is choosen to cause an early wraparound. */
556 uint64_t volatile uTlbPhysRev;
557
558 /* Statistics: */
559
560 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
561 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
562 * not via safe read/write path) calls to iemMemMapJmp. */
563 uint64_t cTlbCoreHits;
564 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
565 * only; data tlb only). */
566 uint64_t cTlbSafeHits;
567 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
568 uint64_t cTlbInlineCodeHits;
569
570 /** TLB misses in IEMAll.cpp code (both).
571 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
572 * not via safe read/write path) calls to iemMemMapJmp. So,
573 * for the data TLB this more like 'other misses', while for the code
574 * TLB is all misses. */
575 uint64_t cTlbCoreMisses;
576 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
577 uint64_t cTlbSafeMisses;
578 /** Safe read path taken (data only). */
579 uint64_t cTlbSafeReadPath;
580 /** Safe write path taken (data only). */
581 uint64_t cTlbSafeWritePath;
582
583 /** @name Details for native code TLB misses.
584 * @note These counts are included in the above counters (cTlbSafeReadPath,
585 * cTlbSafeWritePath, cTlbInlineCodeHits).
586 * @{ */
587 /** TLB misses in native code due to tag mismatch. */
588 STAMCOUNTER cTlbNativeMissTag;
589 /** TLB misses in native code due to flags or physical revision mismatch. */
590 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
591 /** TLB misses in native code due to misaligned access. */
592 STAMCOUNTER cTlbNativeMissAlignment;
593 /** TLB misses in native code due to cross page access. */
594 uint32_t cTlbNativeMissCrossPage;
595 /** TLB misses in native code due to non-canonical address. */
596 uint32_t cTlbNativeMissNonCanonical;
597 /** @} */
598
599 /** Slow read path (code only). */
600 uint32_t cTlbSlowCodeReadPath;
601
602 /** Alignment padding. */
603 uint32_t au32Padding[5];
604
605 /** The TLB entries. */
606 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT];
607} IEMTLB;
608AssertCompileSizeAlignment(IEMTLB, 64);
609/** IEMTLB::uTlbRevision increment. */
610#define IEMTLB_REVISION_INCR RT_BIT_64(36)
611/** IEMTLB::uTlbRevision mask. */
612#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
613/** IEMTLB::uTlbPhysRev increment.
614 * @sa IEMTLBE_F_PHYS_REV */
615#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
616/**
617 * Calculates the TLB tag for a virtual address.
618 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
619 * @param a_pTlb The TLB.
620 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
621 * the clearing of the top 16 bits won't work (if 32-bit
622 * we'll end up with mostly zeros).
623 */
624#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
625/**
626 * Calculates the TLB tag for a virtual address but without TLB revision.
627 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
628 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
629 * the clearing of the top 16 bits won't work (if 32-bit
630 * we'll end up with mostly zeros).
631 */
632#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
633/**
634 * Converts a TLB tag value into a TLB index.
635 * @returns Index into IEMTLB::aEntries.
636 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
637 */
638#if IEMTLB_ENTRY_COUNT == 256
639# define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
640#else
641# define IEMTLB_TAG_TO_INDEX(a_uTag) ( (a_uTag) & (IEMTLB_ENTRY_COUNT - 1U) )
642AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
643#endif
644/**
645 * Converts a TLB tag value into a TLB index.
646 * @returns Index into IEMTLB::aEntries.
647 * @param a_pTlb The TLB.
648 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
649 */
650#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
651
652
653/** @name IEM_MC_F_XXX - MC block flags/clues.
654 * @todo Merge with IEM_CIMPL_F_XXX
655 * @{ */
656#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
657#define IEM_MC_F_MIN_186 RT_BIT_32(1)
658#define IEM_MC_F_MIN_286 RT_BIT_32(2)
659#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
660#define IEM_MC_F_MIN_386 RT_BIT_32(3)
661#define IEM_MC_F_MIN_486 RT_BIT_32(4)
662#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
663#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
664#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
665#define IEM_MC_F_64BIT RT_BIT_32(6)
666#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
667/** This is set by IEMAllN8vePython.py to indicate a variation without the
668 * flags-clearing-and-checking, when there is also a variation with that.
669 * @note Do not use this manully, it's only for python and for testing in
670 * the native recompiler! */
671#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
672/** @} */
673
674/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
675 *
676 * These clues are mainly for the recompiler, so that it can emit correct code.
677 *
678 * They are processed by the python script and which also automatically
679 * calculates flags for MC blocks based on the statements, extending the use of
680 * these flags to describe MC block behavior to the recompiler core. The python
681 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
682 * error checking purposes. The script emits the necessary fEndTb = true and
683 * similar statements as this reduces compile time a tiny bit.
684 *
685 * @{ */
686/** Flag set if direct branch, clear if absolute or indirect. */
687#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
688/** Flag set if indirect branch, clear if direct or relative.
689 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
690 * as well as for return instructions (RET, IRET, RETF). */
691#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
692/** Flag set if relative branch, clear if absolute or indirect. */
693#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
694/** Flag set if conditional branch, clear if unconditional. */
695#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
696/** Flag set if it's a far branch (changes CS). */
697#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
698/** Convenience: Testing any kind of branch. */
699#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
700
701/** Execution flags may change (IEMCPU::fExec). */
702#define IEM_CIMPL_F_MODE RT_BIT_32(5)
703/** May change significant portions of RFLAGS. */
704#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
705/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
706#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
707/** May trigger interrupt shadowing. */
708#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
709/** May enable interrupts, so recheck IRQ immediately afterwards executing
710 * the instruction. */
711#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
712/** May disable interrupts, so recheck IRQ immediately before executing the
713 * instruction. */
714#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
715/** Convenience: Check for IRQ both before and after an instruction. */
716#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
717/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
718#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
719/** May modify FPU state.
720 * @todo Not sure if this is useful yet. */
721#define IEM_CIMPL_F_FPU RT_BIT_32(12)
722/** REP prefixed instruction which may yield before updating PC.
723 * @todo Not sure if this is useful, REP functions now return non-zero
724 * status if they don't update the PC. */
725#define IEM_CIMPL_F_REP RT_BIT_32(13)
726/** I/O instruction.
727 * @todo Not sure if this is useful yet. */
728#define IEM_CIMPL_F_IO RT_BIT_32(14)
729/** Force end of TB after the instruction. */
730#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
731/** Flag set if a branch may also modify the stack (push/pop return address). */
732#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
733/** Flag set if a branch may also modify the stack (push/pop return address)
734 * and switch it (load/restore SS:RSP). */
735#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
736/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
737#define IEM_CIMPL_F_XCPT \
738 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
739 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
740
741/** The block calls a C-implementation instruction function with two implicit arguments.
742 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
743 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
744 * @note The python scripts will add this if missing. */
745#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
746/** The block calls an ASM-implementation instruction function.
747 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
748 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
749 * @note The python scripts will add this if missing. */
750#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
751/** The block calls an ASM-implementation instruction function with an implicit
752 * X86FXSTATE pointer argument.
753 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
754 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
755 * @note The python scripts will add this if missing. */
756#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
757/** The block calls an ASM-implementation instruction function with an implicit
758 * X86XSAVEAREA pointer argument.
759 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
760 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
761 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
762 * @note The python scripts will add this if missing. */
763#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
764/** @} */
765
766
767/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
768 *
769 * These flags are set when entering IEM and adjusted as code is executed, such
770 * that they will always contain the current values as instructions are
771 * finished.
772 *
773 * In recompiled execution mode, (most of) these flags are included in the
774 * translation block selection key and stored in IEMTB::fFlags alongside the
775 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
776 * in IEMCPU::fExec.
777 *
778 * @{ */
779/** Mode: The block target mode mask. */
780#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
781/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
782#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
783/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
784 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
785 * 32-bit mode (for simplifying most memory accesses). */
786#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
787/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
788#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
789/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
790#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
791
792/** X86 Mode: 16-bit on 386 or later. */
793#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
794/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
795#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
796/** X86 Mode: 16-bit protected mode on 386 or later. */
797#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
798/** X86 Mode: 16-bit protected mode on 386 or later. */
799#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
800/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
801#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
802
803/** X86 Mode: 32-bit on 386 or later. */
804#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
805/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
806#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
807/** X86 Mode: 32-bit protected mode. */
808#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
809/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
810#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
811
812/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
813#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
814
815/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
816#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
817 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
818 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
819
820/** Bypass access handlers when set. */
821#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
822/** Have pending hardware instruction breakpoints. */
823#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
824/** Have pending hardware data breakpoints. */
825#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
826
827/** X86: Have pending hardware I/O breakpoints. */
828#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
829/** X86: Disregard the lock prefix (implied or not) when set. */
830#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
831
832/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
833#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
834
835/** Caller configurable options. */
836#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
837
838/** X86: The current protection level (CPL) shift factor. */
839#define IEM_F_X86_CPL_SHIFT 8
840/** X86: The current protection level (CPL) mask. */
841#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
842/** X86: The current protection level (CPL) shifted mask. */
843#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
844
845/** X86 execution context.
846 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
847 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
848 * mode. */
849#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
850/** X86 context: Plain regular execution context. */
851#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
852/** X86 context: VT-x enabled. */
853#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
854/** X86 context: AMD-V enabled. */
855#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
856/** X86 context: In AMD-V or VT-x guest mode. */
857#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
858/** X86 context: System management mode (SMM). */
859#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
860
861/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
862 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
863 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
864 * alread). */
865
866/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
867 * iemRegFinishClearingRF() most for most situations
868 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
869 * the IEM_F_PENDING_BRK_XXX bits alread). */
870
871/** @} */
872
873
874/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
875 *
876 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
877 * translation block flags. The combined flag mask (subject to
878 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
879 *
880 * @{ */
881/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
882#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
883
884/** Type: The block type mask. */
885#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
886/** Type: Purly threaded recompiler (via tables). */
887#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
888/** Type: Native recompilation. */
889#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
890
891/** Set when we're starting the block in an "interrupt shadow".
892 * We don't need to distingish between the two types of this mask, thus the one.
893 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
894#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
895/** Set when we're currently inhibiting NMIs
896 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
897#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
898
899/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
900 * we're close the limit before starting a TB, as determined by
901 * iemGetTbFlagsForCurrentPc(). */
902#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
903
904/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
905 *
906 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
907 * don't implement), because we don't currently generate any context
908 * specific code - that's all handled in CIMPL functions.
909 *
910 * For the threaded recompiler we don't generate any CPL specific code
911 * either, but the native recompiler does for memory access (saves getting
912 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
913 * Since most OSes will not share code between rings, this shouldn't
914 * have any real effect on TB/memory/recompiling load.
915 */
916#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
917/** @} */
918
919AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
920AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
921AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
922AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
923AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
924AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
925AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
926AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
927AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
928AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
929AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
930AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
931AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
932AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
933AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
934AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
935AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
936AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
937AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
938
939AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
940AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
941AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
942AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
943AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
944AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
945AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
946AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
947AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
948AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
949AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
950AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
951
952AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
953AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
954AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
955
956/** Native instruction type for use with the native code generator.
957 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
958#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
959typedef uint8_t IEMNATIVEINSTR;
960#else
961typedef uint32_t IEMNATIVEINSTR;
962#endif
963/** Pointer to a native instruction unit. */
964typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
965/** Pointer to a const native instruction unit. */
966typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
967
968/**
969 * A call for the threaded call table.
970 */
971typedef struct IEMTHRDEDCALLENTRY
972{
973 /** The function to call (IEMTHREADEDFUNCS). */
974 uint16_t enmFunction;
975
976 /** Instruction number in the TB (for statistics). */
977 uint8_t idxInstr;
978 /** The opcode length. */
979 uint8_t cbOpcode;
980 /** Offset into IEMTB::pabOpcodes. */
981 uint16_t offOpcode;
982
983 /** TB lookup table index (7 bits) and large size (1 bits).
984 *
985 * The default size is 1 entry, but for indirect calls and returns we set the
986 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
987 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
988 * lookup isn't that slow compared to sequentially trying out 4 TBs.
989 *
990 * By default lookup table entry 0 for a TB is reserved as a fallback for
991 * calltable entries w/o explicit entreis, so this member will be non-zero if
992 * there is a lookup entry associated with this call.
993 *
994 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
995 */
996 uint8_t uTbLookup;
997
998 /** Unused atm. */
999 uint8_t uUnused0;
1000
1001 /** Generic parameters. */
1002 uint64_t auParams[3];
1003} IEMTHRDEDCALLENTRY;
1004AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1005/** Pointer to a threaded call entry. */
1006typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1007/** Pointer to a const threaded call entry. */
1008typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1009
1010/** The number of TB lookup table entries for a large allocation
1011 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1012#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1013/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1014#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1015/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1016#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1017/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1018#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1019 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1020
1021/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1022#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1023
1024/**
1025 * Native IEM TB 'function' typedef.
1026 *
1027 * This will throw/longjmp on occation.
1028 *
1029 * @note AMD64 doesn't have that many non-volatile registers and does sport
1030 * 32-bit address displacments, so we don't need pCtx.
1031 *
1032 * On ARM64 pCtx allows us to directly address the whole register
1033 * context without requiring a separate indexing register holding the
1034 * offset. This saves an instruction loading the offset for each guest
1035 * CPU context access, at the cost of a non-volatile register.
1036 * Fortunately, ARM64 has quite a lot more registers.
1037 */
1038typedef
1039#ifdef RT_ARCH_AMD64
1040int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1041#else
1042int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1043#endif
1044#if RT_CPLUSPLUS_PREREQ(201700)
1045 IEM_NOEXCEPT_MAY_LONGJMP
1046#endif
1047 ;
1048/** Pointer to a native IEM TB entry point function.
1049 * This will throw/longjmp on occation. */
1050typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1051
1052
1053/**
1054 * Translation block debug info entry type.
1055 */
1056typedef enum IEMTBDBGENTRYTYPE
1057{
1058 kIemTbDbgEntryType_Invalid = 0,
1059 /** The entry is for marking a native code position.
1060 * Entries following this all apply to this position. */
1061 kIemTbDbgEntryType_NativeOffset,
1062 /** The entry is for a new guest instruction. */
1063 kIemTbDbgEntryType_GuestInstruction,
1064 /** Marks the start of a threaded call. */
1065 kIemTbDbgEntryType_ThreadedCall,
1066 /** Marks the location of a label. */
1067 kIemTbDbgEntryType_Label,
1068 /** Info about a host register shadowing a guest register. */
1069 kIemTbDbgEntryType_GuestRegShadowing,
1070#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1071 /** Info about a host SIMD register shadowing a guest SIMD register. */
1072 kIemTbDbgEntryType_GuestSimdRegShadowing,
1073#endif
1074#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1075 /** Info about a delayed RIP update. */
1076 kIemTbDbgEntryType_DelayedPcUpdate,
1077#endif
1078#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1079 /** Info about a shadowed guest register becoming dirty. */
1080 kIemTbDbgEntryType_GuestRegDirty,
1081 /** Info about register writeback/flush oepration. */
1082 kIemTbDbgEntryType_GuestRegWriteback,
1083#endif
1084 kIemTbDbgEntryType_End
1085} IEMTBDBGENTRYTYPE;
1086
1087/**
1088 * Translation block debug info entry.
1089 */
1090typedef union IEMTBDBGENTRY
1091{
1092 /** Plain 32-bit view. */
1093 uint32_t u;
1094
1095 /** Generic view for getting at the type field. */
1096 struct
1097 {
1098 /** IEMTBDBGENTRYTYPE */
1099 uint32_t uType : 4;
1100 uint32_t uTypeSpecific : 28;
1101 } Gen;
1102
1103 struct
1104 {
1105 /** kIemTbDbgEntryType_ThreadedCall1. */
1106 uint32_t uType : 4;
1107 /** Native code offset. */
1108 uint32_t offNative : 28;
1109 } NativeOffset;
1110
1111 struct
1112 {
1113 /** kIemTbDbgEntryType_GuestInstruction. */
1114 uint32_t uType : 4;
1115 uint32_t uUnused : 4;
1116 /** The IEM_F_XXX flags. */
1117 uint32_t fExec : 24;
1118 } GuestInstruction;
1119
1120 struct
1121 {
1122 /* kIemTbDbgEntryType_ThreadedCall. */
1123 uint32_t uType : 4;
1124 /** Set if the call was recompiled to native code, clear if just calling
1125 * threaded function. */
1126 uint32_t fRecompiled : 1;
1127 uint32_t uUnused : 11;
1128 /** The threaded call number (IEMTHREADEDFUNCS). */
1129 uint32_t enmCall : 16;
1130 } ThreadedCall;
1131
1132 struct
1133 {
1134 /* kIemTbDbgEntryType_Label. */
1135 uint32_t uType : 4;
1136 uint32_t uUnused : 4;
1137 /** The label type (IEMNATIVELABELTYPE). */
1138 uint32_t enmLabel : 8;
1139 /** The label data. */
1140 uint32_t uData : 16;
1141 } Label;
1142
1143 struct
1144 {
1145 /* kIemTbDbgEntryType_GuestRegShadowing. */
1146 uint32_t uType : 4;
1147 uint32_t uUnused : 4;
1148 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1149 uint32_t idxGstReg : 8;
1150 /** The host new register number, UINT8_MAX if dropped. */
1151 uint32_t idxHstReg : 8;
1152 /** The previous host register number, UINT8_MAX if new. */
1153 uint32_t idxHstRegPrev : 8;
1154 } GuestRegShadowing;
1155
1156#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1157 struct
1158 {
1159 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1160 uint32_t uType : 4;
1161 uint32_t uUnused : 4;
1162 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1163 uint32_t idxGstSimdReg : 8;
1164 /** The host new register number, UINT8_MAX if dropped. */
1165 uint32_t idxHstSimdReg : 8;
1166 /** The previous host register number, UINT8_MAX if new. */
1167 uint32_t idxHstSimdRegPrev : 8;
1168 } GuestSimdRegShadowing;
1169#endif
1170
1171#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1172 struct
1173 {
1174 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1175 uint32_t uType : 4;
1176 /* The instruction offset added to the program counter. */
1177 uint32_t offPc : 14;
1178 /** Number of instructions skipped. */
1179 uint32_t cInstrSkipped : 14;
1180 } DelayedPcUpdate;
1181#endif
1182
1183#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1184 struct
1185 {
1186 /* kIemTbDbgEntryType_GuestRegDirty. */
1187 uint32_t uType : 4;
1188 uint32_t uUnused : 11;
1189 /** Flag whether this is about a SIMD (true) or general (false) register. */
1190 uint32_t fSimdReg : 1;
1191 /** The guest register index being marked as dirty. */
1192 uint32_t idxGstReg : 8;
1193 /** The host register number this register is shadowed in .*/
1194 uint32_t idxHstReg : 8;
1195 } GuestRegDirty;
1196
1197 struct
1198 {
1199 /* kIemTbDbgEntryType_GuestRegWriteback. */
1200 uint32_t uType : 4;
1201 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1202 uint32_t fSimdReg : 1;
1203 /** The mask shift. */
1204 uint32_t cShift : 2;
1205 /** The guest register mask being written back. */
1206 uint32_t fGstReg : 25;
1207 } GuestRegWriteback;
1208#endif
1209
1210} IEMTBDBGENTRY;
1211AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1212/** Pointer to a debug info entry. */
1213typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1214/** Pointer to a const debug info entry. */
1215typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1216
1217/**
1218 * Translation block debug info.
1219 */
1220typedef struct IEMTBDBG
1221{
1222 /** Number of entries in aEntries. */
1223 uint32_t cEntries;
1224 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1225 uint32_t offNativeLast;
1226 /** Debug info entries. */
1227 RT_FLEXIBLE_ARRAY_EXTENSION
1228 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1229} IEMTBDBG;
1230/** Pointer to TB debug info. */
1231typedef IEMTBDBG *PIEMTBDBG;
1232/** Pointer to const TB debug info. */
1233typedef IEMTBDBG const *PCIEMTBDBG;
1234
1235
1236/**
1237 * Translation block.
1238 *
1239 * The current plan is to just keep TBs and associated lookup hash table private
1240 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1241 * avoids using expensive atomic primitives for updating lists and stuff.
1242 */
1243#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1244typedef struct IEMTB
1245{
1246 /** Next block with the same hash table entry. */
1247 struct IEMTB *pNext;
1248 /** Usage counter. */
1249 uint32_t cUsed;
1250 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1251 uint32_t msLastUsed;
1252
1253 /** @name What uniquely identifies the block.
1254 * @{ */
1255 RTGCPHYS GCPhysPc;
1256 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1257 uint32_t fFlags;
1258 union
1259 {
1260 struct
1261 {
1262 /**< Relevant CS X86DESCATTR_XXX bits. */
1263 uint16_t fAttr;
1264 } x86;
1265 };
1266 /** @} */
1267
1268 /** Number of opcode ranges. */
1269 uint8_t cRanges;
1270 /** Statistics: Number of instructions in the block. */
1271 uint8_t cInstructions;
1272
1273 /** Type specific info. */
1274 union
1275 {
1276 struct
1277 {
1278 /** The call sequence table. */
1279 PIEMTHRDEDCALLENTRY paCalls;
1280 /** Number of calls in paCalls. */
1281 uint16_t cCalls;
1282 /** Number of calls allocated. */
1283 uint16_t cAllocated;
1284 } Thrd;
1285 struct
1286 {
1287 /** The native instructions (PFNIEMTBNATIVE). */
1288 PIEMNATIVEINSTR paInstructions;
1289 /** Number of instructions pointed to by paInstructions. */
1290 uint32_t cInstructions;
1291 } Native;
1292 /** Generic view for zeroing when freeing. */
1293 struct
1294 {
1295 uintptr_t uPtr;
1296 uint32_t uData;
1297 } Gen;
1298 };
1299
1300 /** The allocation chunk this TB belongs to. */
1301 uint8_t idxAllocChunk;
1302 /** The number of entries in the lookup table.
1303 * Because we're out of space, the TB lookup table is located before the
1304 * opcodes pointed to by pabOpcodes. */
1305 uint8_t cTbLookupEntries;
1306
1307 /** Number of bytes of opcodes stored in pabOpcodes.
1308 * @todo this field isn't really needed, aRanges keeps the actual info. */
1309 uint16_t cbOpcodes;
1310 /** Pointer to the opcode bytes this block was recompiled from.
1311 * This also points to the TB lookup table, which starts cTbLookupEntries
1312 * entries before the opcodes (we don't have room atm for another point). */
1313 uint8_t *pabOpcodes;
1314
1315 /** Debug info if enabled.
1316 * This is only generated by the native recompiler. */
1317 PIEMTBDBG pDbgInfo;
1318
1319 /* --- 64 byte cache line end --- */
1320
1321 /** Opcode ranges.
1322 *
1323 * The opcode checkers and maybe TLB loading functions will use this to figure
1324 * out what to do. The parameter will specify an entry and the opcode offset to
1325 * start at and the minimum number of bytes to verify (instruction length).
1326 *
1327 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1328 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1329 * code TLB (must have a valid entry for that address) and scan the ranges to
1330 * locate the corresponding opcodes. Probably.
1331 */
1332 struct IEMTBOPCODERANGE
1333 {
1334 /** Offset within pabOpcodes. */
1335 uint16_t offOpcodes;
1336 /** Number of bytes. */
1337 uint16_t cbOpcodes;
1338 /** The page offset. */
1339 RT_GCC_EXTENSION
1340 uint16_t offPhysPage : 12;
1341 /** Unused bits. */
1342 RT_GCC_EXTENSION
1343 uint16_t u2Unused : 2;
1344 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1345 RT_GCC_EXTENSION
1346 uint16_t idxPhysPage : 2;
1347 } aRanges[8];
1348
1349 /** Physical pages that this TB covers.
1350 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1351 RTGCPHYS aGCPhysPages[2];
1352} IEMTB;
1353#pragma pack()
1354AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1355AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1356AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1357AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1358AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1359AssertCompileMemberOffset(IEMTB, aRanges, 64);
1360AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1361#if 1
1362AssertCompileSize(IEMTB, 128);
1363# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1364#else
1365AssertCompileSize(IEMTB, 168);
1366# undef IEMTB_SIZE_IS_POWER_OF_TWO
1367#endif
1368
1369/** Pointer to a translation block. */
1370typedef IEMTB *PIEMTB;
1371/** Pointer to a const translation block. */
1372typedef IEMTB const *PCIEMTB;
1373
1374/** Gets address of the given TB lookup table entry. */
1375#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1376 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1377
1378/**
1379 * Gets the physical address for a TB opcode range.
1380 */
1381DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1382{
1383 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1384 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1385 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1386 if (idxPage == 0)
1387 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1388 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1389 return pTb->aGCPhysPages[idxPage - 1];
1390}
1391
1392
1393/**
1394 * A chunk of memory in the TB allocator.
1395 */
1396typedef struct IEMTBCHUNK
1397{
1398 /** Pointer to the translation blocks in this chunk. */
1399 PIEMTB paTbs;
1400#ifdef IN_RING0
1401 /** Allocation handle. */
1402 RTR0MEMOBJ hMemObj;
1403#endif
1404} IEMTBCHUNK;
1405
1406/**
1407 * A per-CPU translation block allocator.
1408 *
1409 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1410 * the length of the collision list, and of course also for cache line alignment
1411 * reasons, the TBs must be allocated with at least 64-byte alignment.
1412 * Memory is there therefore allocated using one of the page aligned allocators.
1413 *
1414 *
1415 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1416 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1417 * that enables us to quickly calculate the allocation bitmap position when
1418 * freeing the translation block.
1419 */
1420typedef struct IEMTBALLOCATOR
1421{
1422 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1423 uint32_t uMagic;
1424
1425#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1426 /** Mask corresponding to cTbsPerChunk - 1. */
1427 uint32_t fChunkMask;
1428 /** Shift count corresponding to cTbsPerChunk. */
1429 uint8_t cChunkShift;
1430#else
1431 uint32_t uUnused;
1432 uint8_t bUnused;
1433#endif
1434 /** Number of chunks we're allowed to allocate. */
1435 uint8_t cMaxChunks;
1436 /** Number of chunks currently populated. */
1437 uint16_t cAllocatedChunks;
1438 /** Number of translation blocks per chunk. */
1439 uint32_t cTbsPerChunk;
1440 /** Chunk size. */
1441 uint32_t cbPerChunk;
1442
1443 /** The maximum number of TBs. */
1444 uint32_t cMaxTbs;
1445 /** Total number of TBs in the populated chunks.
1446 * (cAllocatedChunks * cTbsPerChunk) */
1447 uint32_t cTotalTbs;
1448 /** The current number of TBs in use.
1449 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1450 uint32_t cInUseTbs;
1451 /** Statistics: Number of the cInUseTbs that are native ones. */
1452 uint32_t cNativeTbs;
1453 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1454 uint32_t cThreadedTbs;
1455
1456 /** Where to start pruning TBs from when we're out.
1457 * See iemTbAllocatorAllocSlow for details. */
1458 uint32_t iPruneFrom;
1459 /** Hint about which bit to start scanning the bitmap from. */
1460 uint32_t iStartHint;
1461 /** Where to start pruning native TBs from when we're out of executable memory.
1462 * See iemTbAllocatorFreeupNativeSpace for details. */
1463 uint32_t iPruneNativeFrom;
1464 uint32_t uPadding;
1465
1466 /** Statistics: Number of TB allocation calls. */
1467 STAMCOUNTER StatAllocs;
1468 /** Statistics: Number of TB free calls. */
1469 STAMCOUNTER StatFrees;
1470 /** Statistics: Time spend pruning. */
1471 STAMPROFILE StatPrune;
1472 /** Statistics: Time spend pruning native TBs. */
1473 STAMPROFILE StatPruneNative;
1474
1475 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1476 PIEMTB pDelayedFreeHead;
1477
1478 /** Allocation chunks. */
1479 IEMTBCHUNK aChunks[256];
1480
1481 /** Allocation bitmap for all possible chunk chunks. */
1482 RT_FLEXIBLE_ARRAY_EXTENSION
1483 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1484} IEMTBALLOCATOR;
1485/** Pointer to a TB allocator. */
1486typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1487
1488/** Magic value for the TB allocator (Emmet Harley Cohen). */
1489#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1490
1491
1492/**
1493 * A per-CPU translation block cache (hash table).
1494 *
1495 * The hash table is allocated once during IEM initialization and size double
1496 * the max TB count, rounded up to the nearest power of two (so we can use and
1497 * AND mask rather than a rest division when hashing).
1498 */
1499typedef struct IEMTBCACHE
1500{
1501 /** Magic value (IEMTBCACHE_MAGIC). */
1502 uint32_t uMagic;
1503 /** Size of the hash table. This is a power of two. */
1504 uint32_t cHash;
1505 /** The mask corresponding to cHash. */
1506 uint32_t uHashMask;
1507 uint32_t uPadding;
1508
1509 /** @name Statistics
1510 * @{ */
1511 /** Number of collisions ever. */
1512 STAMCOUNTER cCollisions;
1513
1514 /** Statistics: Number of TB lookup misses. */
1515 STAMCOUNTER cLookupMisses;
1516 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1517 STAMCOUNTER cLookupHits;
1518 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1519 STAMCOUNTER cLookupHitsViaTbLookupTable;
1520 STAMCOUNTER auPadding2[2];
1521 /** Statistics: Collision list length pruning. */
1522 STAMPROFILE StatPrune;
1523 /** @} */
1524
1525 /** The hash table itself.
1526 * @note The lower 6 bits of the pointer is used for keeping the collision
1527 * list length, so we can take action when it grows too long.
1528 * This works because TBs are allocated using a 64 byte (or
1529 * higher) alignment from page aligned chunks of memory, so the lower
1530 * 6 bits of the address will always be zero.
1531 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1532 */
1533 RT_FLEXIBLE_ARRAY_EXTENSION
1534 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1535} IEMTBCACHE;
1536/** Pointer to a per-CPU translation block cahce. */
1537typedef IEMTBCACHE *PIEMTBCACHE;
1538
1539/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1540#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1541
1542/** The collision count mask for IEMTBCACHE::apHash entries. */
1543#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1544/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1545#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1546/** Combine a TB pointer and a collision list length into a value for an
1547 * IEMTBCACHE::apHash entry. */
1548#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1549/** Combine a TB pointer and a collision list length into a value for an
1550 * IEMTBCACHE::apHash entry. */
1551#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1552/** Combine a TB pointer and a collision list length into a value for an
1553 * IEMTBCACHE::apHash entry. */
1554#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1555
1556/**
1557 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1558 */
1559#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1560 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1561
1562/**
1563 * Calculates the hash table slot for a TB from physical PC address and TB
1564 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1565 */
1566#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1567 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1568
1569
1570/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1571 *
1572 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1573 *
1574 * @{ */
1575/** Value if no branching happened recently. */
1576#define IEMBRANCHED_F_NO UINT8_C(0x00)
1577/** Flag set if direct branch, clear if absolute or indirect. */
1578#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1579/** Flag set if indirect branch, clear if direct or relative. */
1580#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1581/** Flag set if relative branch, clear if absolute or indirect. */
1582#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1583/** Flag set if conditional branch, clear if unconditional. */
1584#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1585/** Flag set if it's a far branch. */
1586#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1587/** Flag set if the stack pointer is modified. */
1588#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1589/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1590#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1591/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1592#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1593/** @} */
1594
1595
1596/**
1597 * The per-CPU IEM state.
1598 */
1599typedef struct IEMCPU
1600{
1601 /** Info status code that needs to be propagated to the IEM caller.
1602 * This cannot be passed internally, as it would complicate all success
1603 * checks within the interpreter making the code larger and almost impossible
1604 * to get right. Instead, we'll store status codes to pass on here. Each
1605 * source of these codes will perform appropriate sanity checks. */
1606 int32_t rcPassUp; /* 0x00 */
1607 /** Execution flag, IEM_F_XXX. */
1608 uint32_t fExec; /* 0x04 */
1609
1610 /** @name Decoder state.
1611 * @{ */
1612#ifdef IEM_WITH_CODE_TLB
1613 /** The offset of the next instruction byte. */
1614 uint32_t offInstrNextByte; /* 0x08 */
1615 /** The number of bytes available at pbInstrBuf for the current instruction.
1616 * This takes the max opcode length into account so that doesn't need to be
1617 * checked separately. */
1618 uint32_t cbInstrBuf; /* 0x0c */
1619 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1620 * This can be NULL if the page isn't mappable for some reason, in which
1621 * case we'll do fallback stuff.
1622 *
1623 * If we're executing an instruction from a user specified buffer,
1624 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1625 * aligned pointer but pointer to the user data.
1626 *
1627 * For instructions crossing pages, this will start on the first page and be
1628 * advanced to the next page by the time we've decoded the instruction. This
1629 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1630 */
1631 uint8_t const *pbInstrBuf; /* 0x10 */
1632# if ARCH_BITS == 32
1633 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1634# endif
1635 /** The program counter corresponding to pbInstrBuf.
1636 * This is set to a non-canonical address when we need to invalidate it. */
1637 uint64_t uInstrBufPc; /* 0x18 */
1638 /** The guest physical address corresponding to pbInstrBuf. */
1639 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1640 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1641 * This takes the CS segment limit into account.
1642 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1643 uint16_t cbInstrBufTotal; /* 0x28 */
1644 /** Offset into pbInstrBuf of the first byte of the current instruction.
1645 * Can be negative to efficiently handle cross page instructions. */
1646 int16_t offCurInstrStart; /* 0x2a */
1647
1648# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1649 /** The prefix mask (IEM_OP_PRF_XXX). */
1650 uint32_t fPrefixes; /* 0x2c */
1651 /** The extra REX ModR/M register field bit (REX.R << 3). */
1652 uint8_t uRexReg; /* 0x30 */
1653 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1654 * (REX.B << 3). */
1655 uint8_t uRexB; /* 0x31 */
1656 /** The extra REX SIB index field bit (REX.X << 3). */
1657 uint8_t uRexIndex; /* 0x32 */
1658
1659 /** The effective segment register (X86_SREG_XXX). */
1660 uint8_t iEffSeg; /* 0x33 */
1661
1662 /** The offset of the ModR/M byte relative to the start of the instruction. */
1663 uint8_t offModRm; /* 0x34 */
1664
1665# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1666 /** The current offset into abOpcode. */
1667 uint8_t offOpcode; /* 0x35 */
1668# else
1669 uint8_t bUnused; /* 0x35 */
1670# endif
1671# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1672 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1673# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1674
1675#else /* !IEM_WITH_CODE_TLB */
1676# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1677 /** The size of what has currently been fetched into abOpcode. */
1678 uint8_t cbOpcode; /* 0x08 */
1679 /** The current offset into abOpcode. */
1680 uint8_t offOpcode; /* 0x09 */
1681 /** The offset of the ModR/M byte relative to the start of the instruction. */
1682 uint8_t offModRm; /* 0x0a */
1683
1684 /** The effective segment register (X86_SREG_XXX). */
1685 uint8_t iEffSeg; /* 0x0b */
1686
1687 /** The prefix mask (IEM_OP_PRF_XXX). */
1688 uint32_t fPrefixes; /* 0x0c */
1689 /** The extra REX ModR/M register field bit (REX.R << 3). */
1690 uint8_t uRexReg; /* 0x10 */
1691 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1692 * (REX.B << 3). */
1693 uint8_t uRexB; /* 0x11 */
1694 /** The extra REX SIB index field bit (REX.X << 3). */
1695 uint8_t uRexIndex; /* 0x12 */
1696
1697# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1698 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1699# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1700#endif /* !IEM_WITH_CODE_TLB */
1701
1702#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1703 /** The effective operand mode. */
1704 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1705 /** The default addressing mode. */
1706 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1707 /** The effective addressing mode. */
1708 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1709 /** The default operand mode. */
1710 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1711
1712 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1713 uint8_t idxPrefix; /* 0x3a, 0x17 */
1714 /** 3rd VEX/EVEX/XOP register.
1715 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1716 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1717 /** The VEX/EVEX/XOP length field. */
1718 uint8_t uVexLength; /* 0x3c, 0x19 */
1719 /** Additional EVEX stuff. */
1720 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1721
1722# ifndef IEM_WITH_CODE_TLB
1723 /** Explicit alignment padding. */
1724 uint8_t abAlignment2a[1]; /* 0x1b */
1725# endif
1726 /** The FPU opcode (FOP). */
1727 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1728# ifndef IEM_WITH_CODE_TLB
1729 /** Explicit alignment padding. */
1730 uint8_t abAlignment2b[2]; /* 0x1e */
1731# endif
1732
1733 /** The opcode bytes. */
1734 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1735 /** Explicit alignment padding. */
1736# ifdef IEM_WITH_CODE_TLB
1737 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1738# else
1739 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1740# endif
1741
1742#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1743# ifdef IEM_WITH_CODE_TLB
1744 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1745# else
1746 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1747# endif
1748#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1749 /** @} */
1750
1751
1752 /** The number of active guest memory mappings. */
1753 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1754
1755 /** Records for tracking guest memory mappings. */
1756 struct
1757 {
1758 /** The address of the mapped bytes. */
1759 R3R0PTRTYPE(void *) pv;
1760 /** The access flags (IEM_ACCESS_XXX).
1761 * IEM_ACCESS_INVALID if the entry is unused. */
1762 uint32_t fAccess;
1763#if HC_ARCH_BITS == 64
1764 uint32_t u32Alignment4; /**< Alignment padding. */
1765#endif
1766 } aMemMappings[3]; /* 0x50 LB 0x30 */
1767
1768 /** Locking records for the mapped memory. */
1769 union
1770 {
1771 PGMPAGEMAPLOCK Lock;
1772 uint64_t au64Padding[2];
1773 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1774
1775 /** Bounce buffer info.
1776 * This runs in parallel to aMemMappings. */
1777 struct
1778 {
1779 /** The physical address of the first byte. */
1780 RTGCPHYS GCPhysFirst;
1781 /** The physical address of the second page. */
1782 RTGCPHYS GCPhysSecond;
1783 /** The number of bytes in the first page. */
1784 uint16_t cbFirst;
1785 /** The number of bytes in the second page. */
1786 uint16_t cbSecond;
1787 /** Whether it's unassigned memory. */
1788 bool fUnassigned;
1789 /** Explicit alignment padding. */
1790 bool afAlignment5[3];
1791 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1792
1793 /** The flags of the current exception / interrupt. */
1794 uint32_t fCurXcpt; /* 0xf8 */
1795 /** The current exception / interrupt. */
1796 uint8_t uCurXcpt; /* 0xfc */
1797 /** Exception / interrupt recursion depth. */
1798 int8_t cXcptRecursions; /* 0xfb */
1799
1800 /** The next unused mapping index.
1801 * @todo try find room for this up with cActiveMappings. */
1802 uint8_t iNextMapping; /* 0xfd */
1803 uint8_t abAlignment7[1];
1804
1805 /** Bounce buffer storage.
1806 * This runs in parallel to aMemMappings and aMemBbMappings. */
1807 struct
1808 {
1809 uint8_t ab[512];
1810 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1811
1812
1813 /** Pointer set jump buffer - ring-3 context. */
1814 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1815 /** Pointer set jump buffer - ring-0 context. */
1816 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1817
1818 /** @todo Should move this near @a fCurXcpt later. */
1819 /** The CR2 for the current exception / interrupt. */
1820 uint64_t uCurXcptCr2;
1821 /** The error code for the current exception / interrupt. */
1822 uint32_t uCurXcptErr;
1823
1824 /** @name Statistics
1825 * @{ */
1826 /** The number of instructions we've executed. */
1827 uint32_t cInstructions;
1828 /** The number of potential exits. */
1829 uint32_t cPotentialExits;
1830 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1831 * This may contain uncommitted writes. */
1832 uint32_t cbWritten;
1833 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1834 uint32_t cRetInstrNotImplemented;
1835 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1836 uint32_t cRetAspectNotImplemented;
1837 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1838 uint32_t cRetInfStatuses;
1839 /** Counts other error statuses returned. */
1840 uint32_t cRetErrStatuses;
1841 /** Number of times rcPassUp has been used. */
1842 uint32_t cRetPassUpStatus;
1843 /** Number of times RZ left with instruction commit pending for ring-3. */
1844 uint32_t cPendingCommit;
1845 /** Number of misaligned (host sense) atomic instruction accesses. */
1846 uint32_t cMisalignedAtomics;
1847 /** Number of long jumps. */
1848 uint32_t cLongJumps;
1849 /** @} */
1850
1851 /** @name Target CPU information.
1852 * @{ */
1853#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1854 /** The target CPU. */
1855 uint8_t uTargetCpu;
1856#else
1857 uint8_t bTargetCpuPadding;
1858#endif
1859 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1860 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1861 * native host support and the 2nd for when there is.
1862 *
1863 * The two values are typically indexed by a g_CpumHostFeatures bit.
1864 *
1865 * This is for instance used for the BSF & BSR instructions where AMD and
1866 * Intel CPUs produce different EFLAGS. */
1867 uint8_t aidxTargetCpuEflFlavour[2];
1868
1869 /** The CPU vendor. */
1870 CPUMCPUVENDOR enmCpuVendor;
1871 /** @} */
1872
1873 /** @name Host CPU information.
1874 * @{ */
1875 /** The CPU vendor. */
1876 CPUMCPUVENDOR enmHostCpuVendor;
1877 /** @} */
1878
1879 /** Counts RDMSR \#GP(0) LogRel(). */
1880 uint8_t cLogRelRdMsr;
1881 /** Counts WRMSR \#GP(0) LogRel(). */
1882 uint8_t cLogRelWrMsr;
1883 /** Alignment padding. */
1884 uint8_t abAlignment9[42];
1885
1886 /** @name Recompilation
1887 * @{ */
1888 /** Pointer to the current translation block.
1889 * This can either be one being executed or one being compiled. */
1890 R3PTRTYPE(PIEMTB) pCurTbR3;
1891#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1892 /** Frame pointer for the last native TB to execute. */
1893 R3PTRTYPE(void *) pvTbFramePointerR3;
1894#else
1895 R3PTRTYPE(void *) pvUnusedR3;
1896#endif
1897 /** Fixed TB used for threaded recompilation.
1898 * This is allocated once with maxed-out sizes and re-used afterwards. */
1899 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1900 /** Pointer to the ring-3 TB cache for this EMT. */
1901 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1902 /** Pointer to the ring-3 TB lookup entry.
1903 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
1904 * entry, thus it can always safely be used w/o NULL checking. */
1905 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
1906 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1907 * The TBs are based on physical addresses, so this is needed to correleated
1908 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1909 uint64_t uCurTbStartPc;
1910 /** Number of threaded TBs executed. */
1911 uint64_t cTbExecThreaded;
1912 /** Number of native TBs executed. */
1913 uint64_t cTbExecNative;
1914 /** Whether we need to check the opcode bytes for the current instruction.
1915 * This is set by a previous instruction if it modified memory or similar. */
1916 bool fTbCheckOpcodes;
1917 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1918 uint8_t fTbBranched;
1919 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1920 bool fTbCrossedPage;
1921 /** Whether to end the current TB. */
1922 bool fEndTb;
1923 /** Number of instructions before we need emit an IRQ check call again.
1924 * This helps making sure we don't execute too long w/o checking for
1925 * interrupts and immediately following instructions that may enable
1926 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1927 * required to make sure we check following the next instruction as well, see
1928 * fTbCurInstrIsSti. */
1929 uint8_t cInstrTillIrqCheck;
1930 /** Indicates that the current instruction is an STI. This is set by the
1931 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1932 bool fTbCurInstrIsSti;
1933 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1934 uint16_t cbOpcodesAllocated;
1935 /** The current instruction number in a native TB.
1936 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1937 * and will be picked up by the TB execution loop. Only used when
1938 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1939 uint8_t idxTbCurInstr;
1940 /** Spaced reserved for recompiler data / alignment. */
1941 bool afRecompilerStuff1[3];
1942 /** The virtual sync time at the last timer poll call. */
1943 uint32_t msRecompilerPollNow;
1944 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
1945 uint32_t uTbNativeRecompileAtUsedCount;
1946 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1947 uint32_t fTbCurInstr;
1948 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1949 uint32_t fTbPrevInstr;
1950 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1951 * currently not up to date in EFLAGS. */
1952 uint32_t fSkippingEFlags;
1953 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1954 RTGCPHYS GCPhysInstrBufPrev;
1955 /** Pointer to the ring-3 TB allocator for this EMT. */
1956 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1957 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1958 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1959 /** Pointer to the native recompiler state for ring-3. */
1960 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1961 /** Dummy entry for ppTbLookupEntryR3. */
1962 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
1963
1964 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
1965 STAMCOUNTER StatTbThreadedExecBreaks;
1966 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1967 STAMCOUNTER StatCheckIrqBreaks;
1968 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1969 STAMCOUNTER StatCheckModeBreaks;
1970 /** Threaded TB statistics: Times execution break on call with lookup entries. */
1971 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
1972 /** Threaded TB statistics: Times execution break on call without lookup entries. */
1973 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
1974 /** Statistics: Times a post jump target check missed and had to find new TB. */
1975 STAMCOUNTER StatCheckBranchMisses;
1976 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1977 STAMCOUNTER StatCheckNeedCsLimChecking;
1978 /** Statistics: Times a loop was detected within a TB.. */
1979 STAMCOUNTER StatTbLoopInTbDetected;
1980 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
1981 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
1982 /** Native TB statistics: Number of fully recompiled TBs. */
1983 STAMCOUNTER StatNativeFullyRecompiledTbs;
1984 /** TB statistics: Number of instructions per TB. */
1985 STAMPROFILE StatTbInstr;
1986 /** TB statistics: Number of TB lookup table entries per TB. */
1987 STAMPROFILE StatTbLookupEntries;
1988 /** Threaded TB statistics: Number of calls per TB. */
1989 STAMPROFILE StatTbThreadedCalls;
1990 /** Native TB statistics: Native code size per TB. */
1991 STAMPROFILE StatTbNativeCode;
1992 /** Native TB statistics: Profiling native recompilation. */
1993 STAMPROFILE StatNativeRecompilation;
1994 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1995 STAMPROFILE StatNativeCallsRecompiled;
1996 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1997 STAMPROFILE StatNativeCallsThreaded;
1998 /** Native recompiled execution: TLB hits for data fetches. */
1999 STAMCOUNTER StatNativeTlbHitsForFetch;
2000 /** Native recompiled execution: TLB hits for data stores. */
2001 STAMCOUNTER StatNativeTlbHitsForStore;
2002 /** Native recompiled execution: TLB hits for stack accesses. */
2003 STAMCOUNTER StatNativeTlbHitsForStack;
2004 /** Native recompiled execution: TLB hits for mapped accesses. */
2005 STAMCOUNTER StatNativeTlbHitsForMapped;
2006 /** Native recompiled execution: Code TLB misses for new page. */
2007 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2008 /** Native recompiled execution: Code TLB hits for new page. */
2009 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2010 /** Native recompiled execution: Code TLB misses for new page with offset. */
2011 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2012 /** Native recompiled execution: Code TLB hits for new page with offset. */
2013 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2014
2015 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2016 STAMCOUNTER StatNativeRegFindFree;
2017 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2018 * to free a variable. */
2019 STAMCOUNTER StatNativeRegFindFreeVar;
2020 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2021 * not need to free any variables. */
2022 STAMCOUNTER StatNativeRegFindFreeNoVar;
2023 /** Native recompiler: Liveness info freed shadowed guest registers in
2024 * iemNativeRegAllocFindFree. */
2025 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2026 /** Native recompiler: Liveness info helped with the allocation in
2027 * iemNativeRegAllocFindFree. */
2028 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2029
2030 /** Native recompiler: Number of times status flags calc has been skipped. */
2031 STAMCOUNTER StatNativeEflSkippedArithmetic;
2032 /** Native recompiler: Number of times status flags calc has been skipped. */
2033 STAMCOUNTER StatNativeEflSkippedLogical;
2034
2035 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2036 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2037 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2038 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2039 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2040 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2041 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2042 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2043 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2044 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2045 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2046 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2047 /** Native recompiler: Number of required EFLAGS.CF updates. */
2048 STAMCOUNTER StatNativeLivenessEflCfRequired;
2049 /** Native recompiler: Number of required EFLAGS.PF updates. */
2050 STAMCOUNTER StatNativeLivenessEflPfRequired;
2051 /** Native recompiler: Number of required EFLAGS.AF updates. */
2052 STAMCOUNTER StatNativeLivenessEflAfRequired;
2053 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2054 STAMCOUNTER StatNativeLivenessEflZfRequired;
2055 /** Native recompiler: Number of required EFLAGS.SF updates. */
2056 STAMCOUNTER StatNativeLivenessEflSfRequired;
2057 /** Native recompiler: Number of required EFLAGS.OF updates. */
2058 STAMCOUNTER StatNativeLivenessEflOfRequired;
2059 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2060 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2061 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2062 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2063 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2064 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2065 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2066 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2067 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2068 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2069 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2070 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2071
2072 /** Native recompiler: Number of potential PC updates in total. */
2073 STAMCOUNTER StatNativePcUpdateTotal;
2074 /** Native recompiler: Number of PC updates which could be delayed. */
2075 STAMCOUNTER StatNativePcUpdateDelayed;
2076
2077//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2078 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2079 STAMCOUNTER StatNativeSimdRegFindFree;
2080 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2081 * to free a variable. */
2082 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2083 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2084 * not need to free any variables. */
2085 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2086 /** Native recompiler: Liveness info freed shadowed guest registers in
2087 * iemNativeSimdRegAllocFindFree. */
2088 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2089 /** Native recompiler: Liveness info helped with the allocation in
2090 * iemNativeSimdRegAllocFindFree. */
2091 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2092
2093 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2094 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2095 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2096 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2097 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2098 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2099 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2100 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2101
2102 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2103 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2104 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2105 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2106 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2107 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2108 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2109 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2110//#endif
2111
2112 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2113 * Not availabe in release builds. */
2114 STAMCOUNTER StatNativeTbFinished;
2115 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2116 STAMCOUNTER StatNativeTbExitReturnBreak;
2117 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2118 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2119 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2120 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2121 /** Native recompiler: The TB finished executing with other non-zero status. */
2122 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2123 /** Native recompiler: The TB finished executing via throw / long jump. */
2124 STAMCOUNTER StatNativeTbExitLongJump;
2125 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2126 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2127 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2128 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2129 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2130 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2131 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2132 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2133 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2134 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2135 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2136 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2137
2138 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2139 STAMCOUNTER StatNativeTbExitRaiseDe;
2140 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2141 STAMCOUNTER StatNativeTbExitRaiseUd;
2142 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2143 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2144 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2145 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2146 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2147 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2148 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2149 STAMCOUNTER StatNativeTbExitRaiseNm;
2150 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2151 STAMCOUNTER StatNativeTbExitRaiseGp0;
2152 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2153 STAMCOUNTER StatNativeTbExitRaiseMf;
2154 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2155 STAMCOUNTER StatNativeTbExitRaiseXf;
2156 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2157 STAMCOUNTER StatNativeTbExitObsoleteTb;
2158
2159 /** Native recompiler: Failure situations with direct linking scenario \#1.
2160 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2161 * @{ */
2162 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2163 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2164 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2165 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2166 /** @} */
2167
2168 /** Native recompiler: Failure situations with direct linking scenario \#2.
2169 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2170 * @{ */
2171 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2172 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2173 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2174 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2175 /** @} */
2176
2177 /** iemMemMap and iemMemMapJmp statistics.
2178 * @{ */
2179 STAMCOUNTER StatMemMapJmp;
2180 STAMCOUNTER StatMemMapNoJmp;
2181 STAMCOUNTER StatMemBounceBufferCrossPage;
2182 STAMCOUNTER StatMemBounceBufferMapPhys;
2183 /** @} */
2184
2185 uint64_t au64Padding[1];
2186 /** @} */
2187
2188 /** Data TLB.
2189 * @remarks Must be 64-byte aligned. */
2190 IEMTLB DataTlb;
2191 /** Instruction TLB.
2192 * @remarks Must be 64-byte aligned. */
2193 IEMTLB CodeTlb;
2194
2195 /** Exception statistics. */
2196 STAMCOUNTER aStatXcpts[32];
2197 /** Interrupt statistics. */
2198 uint32_t aStatInts[256];
2199
2200#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2201 /** Instruction statistics for ring-0/raw-mode. */
2202 IEMINSTRSTATS StatsRZ;
2203 /** Instruction statistics for ring-3. */
2204 IEMINSTRSTATS StatsR3;
2205# ifdef VBOX_WITH_IEM_RECOMPILER
2206 /** Statistics per threaded function call.
2207 * Updated by both the threaded and native recompilers. */
2208 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2209# endif
2210#endif
2211} IEMCPU;
2212AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2213AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2214AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2215AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2216AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2217AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2218
2219/** Pointer to the per-CPU IEM state. */
2220typedef IEMCPU *PIEMCPU;
2221/** Pointer to the const per-CPU IEM state. */
2222typedef IEMCPU const *PCIEMCPU;
2223
2224
2225/** @def IEM_GET_CTX
2226 * Gets the guest CPU context for the calling EMT.
2227 * @returns PCPUMCTX
2228 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2229 */
2230#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2231
2232/** @def IEM_CTX_ASSERT
2233 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2234 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2235 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2236 */
2237#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2238 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2239 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2240 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2241
2242/** @def IEM_CTX_IMPORT_RET
2243 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2244 *
2245 * Will call the keep to import the bits as needed.
2246 *
2247 * Returns on import failure.
2248 *
2249 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2250 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2251 */
2252#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2253 do { \
2254 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2255 { /* likely */ } \
2256 else \
2257 { \
2258 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2259 AssertRCReturn(rcCtxImport, rcCtxImport); \
2260 } \
2261 } while (0)
2262
2263/** @def IEM_CTX_IMPORT_NORET
2264 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2265 *
2266 * Will call the keep to import the bits as needed.
2267 *
2268 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2269 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2270 */
2271#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2272 do { \
2273 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2274 { /* likely */ } \
2275 else \
2276 { \
2277 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2278 AssertLogRelRC(rcCtxImport); \
2279 } \
2280 } while (0)
2281
2282/** @def IEM_CTX_IMPORT_JMP
2283 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2284 *
2285 * Will call the keep to import the bits as needed.
2286 *
2287 * Jumps on import failure.
2288 *
2289 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2290 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2291 */
2292#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2293 do { \
2294 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2295 { /* likely */ } \
2296 else \
2297 { \
2298 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2299 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2300 } \
2301 } while (0)
2302
2303
2304
2305/** @def IEM_GET_TARGET_CPU
2306 * Gets the current IEMTARGETCPU value.
2307 * @returns IEMTARGETCPU value.
2308 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2309 */
2310#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2311# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2312#else
2313# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2314#endif
2315
2316/** @def IEM_GET_INSTR_LEN
2317 * Gets the instruction length. */
2318#ifdef IEM_WITH_CODE_TLB
2319# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2320#else
2321# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2322#endif
2323
2324/** @def IEM_TRY_SETJMP
2325 * Wrapper around setjmp / try, hiding all the ugly differences.
2326 *
2327 * @note Use with extreme care as this is a fragile macro.
2328 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2329 * @param a_rcTarget The variable that should receive the status code in case
2330 * of a longjmp/throw.
2331 */
2332/** @def IEM_TRY_SETJMP_AGAIN
2333 * For when setjmp / try is used again in the same variable scope as a previous
2334 * IEM_TRY_SETJMP invocation.
2335 */
2336/** @def IEM_CATCH_LONGJMP_BEGIN
2337 * Start wrapper for catch / setjmp-else.
2338 *
2339 * This will set up a scope.
2340 *
2341 * @note Use with extreme care as this is a fragile macro.
2342 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2343 * @param a_rcTarget The variable that should receive the status code in case
2344 * of a longjmp/throw.
2345 */
2346/** @def IEM_CATCH_LONGJMP_END
2347 * End wrapper for catch / setjmp-else.
2348 *
2349 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2350 * state.
2351 *
2352 * @note Use with extreme care as this is a fragile macro.
2353 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2354 */
2355#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2356# ifdef IEM_WITH_THROW_CATCH
2357# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2358 a_rcTarget = VINF_SUCCESS; \
2359 try
2360# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2361 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2362# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2363 catch (int rcThrown) \
2364 { \
2365 a_rcTarget = rcThrown
2366# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2367 } \
2368 ((void)0)
2369# else /* !IEM_WITH_THROW_CATCH */
2370# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2371 jmp_buf JmpBuf; \
2372 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2373 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2374 if ((rcStrict = setjmp(JmpBuf)) == 0)
2375# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2376 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2377 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2378 if ((rcStrict = setjmp(JmpBuf)) == 0)
2379# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2380 else \
2381 { \
2382 ((void)0)
2383# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2384 } \
2385 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2386# endif /* !IEM_WITH_THROW_CATCH */
2387#endif /* IEM_WITH_SETJMP */
2388
2389
2390/**
2391 * Shared per-VM IEM data.
2392 */
2393typedef struct IEM
2394{
2395 /** The VMX APIC-access page handler type. */
2396 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2397#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2398 /** Set if the CPUID host call functionality is enabled. */
2399 bool fCpuIdHostCall;
2400#endif
2401} IEM;
2402
2403
2404
2405/** @name IEM_ACCESS_XXX - Access details.
2406 * @{ */
2407#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2408#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2409#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2410#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2411#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2412#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2413#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2414#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2415#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2416#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2417/** The writes are partial, so if initialize the bounce buffer with the
2418 * orignal RAM content. */
2419#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2420/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2421#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2422/** Bounce buffer with ring-3 write pending, first page. */
2423#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2424/** Bounce buffer with ring-3 write pending, second page. */
2425#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2426/** Not locked, accessed via the TLB. */
2427#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2428/** Atomic access.
2429 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2430 * fallback for misaligned stuff. See @bugref{10547}. */
2431#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2432/** Valid bit mask. */
2433#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2434/** Shift count for the TLB flags (upper word). */
2435#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2436
2437/** Atomic read+write data alias. */
2438#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2439/** Read+write data alias. */
2440#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2441/** Write data alias. */
2442#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2443/** Read data alias. */
2444#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2445/** Instruction fetch alias. */
2446#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2447/** Stack write alias. */
2448#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2449/** Stack read alias. */
2450#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2451/** Stack read+write alias. */
2452#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2453/** Read system table alias. */
2454#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2455/** Read+write system table alias. */
2456#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2457/** @} */
2458
2459/** @name Prefix constants (IEMCPU::fPrefixes)
2460 * @{ */
2461#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2462#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2463#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2464#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2465#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2466#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2467#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2468
2469#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2470#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2471#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2472
2473#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2474#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2475#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2476
2477#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2478#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2479#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2480#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2481/** Mask with all the REX prefix flags.
2482 * This is generally for use when needing to undo the REX prefixes when they
2483 * are followed legacy prefixes and therefore does not immediately preceed
2484 * the first opcode byte.
2485 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2486#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2487
2488#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2489#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2490#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2491/** @} */
2492
2493/** @name IEMOPFORM_XXX - Opcode forms
2494 * @note These are ORed together with IEMOPHINT_XXX.
2495 * @{ */
2496/** ModR/M: reg, r/m */
2497#define IEMOPFORM_RM 0
2498/** ModR/M: reg, r/m (register) */
2499#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2500/** ModR/M: reg, r/m (memory) */
2501#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2502/** ModR/M: reg, r/m, imm */
2503#define IEMOPFORM_RMI 1
2504/** ModR/M: reg, r/m (register), imm */
2505#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2506/** ModR/M: reg, r/m (memory), imm */
2507#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2508/** ModR/M: reg, r/m, xmm0 */
2509#define IEMOPFORM_RM0 2
2510/** ModR/M: reg, r/m (register), xmm0 */
2511#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2512/** ModR/M: reg, r/m (memory), xmm0 */
2513#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2514/** ModR/M: r/m, reg */
2515#define IEMOPFORM_MR 3
2516/** ModR/M: r/m (register), reg */
2517#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2518/** ModR/M: r/m (memory), reg */
2519#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2520/** ModR/M: r/m, reg, imm */
2521#define IEMOPFORM_MRI 4
2522/** ModR/M: r/m (register), reg, imm */
2523#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2524/** ModR/M: r/m (memory), reg, imm */
2525#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2526/** ModR/M: r/m only */
2527#define IEMOPFORM_M 5
2528/** ModR/M: r/m only (register). */
2529#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2530/** ModR/M: r/m only (memory). */
2531#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2532/** ModR/M: r/m, imm */
2533#define IEMOPFORM_MI 6
2534/** ModR/M: r/m (register), imm */
2535#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2536/** ModR/M: r/m (memory), imm */
2537#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2538/** ModR/M: r/m, 1 (shift and rotate instructions) */
2539#define IEMOPFORM_M1 7
2540/** ModR/M: r/m (register), 1. */
2541#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2542/** ModR/M: r/m (memory), 1. */
2543#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2544/** ModR/M: r/m, CL (shift and rotate instructions)
2545 * @todo This should just've been a generic fixed register. But the python
2546 * code doesn't needs more convincing. */
2547#define IEMOPFORM_M_CL 8
2548/** ModR/M: r/m (register), CL. */
2549#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2550/** ModR/M: r/m (memory), CL. */
2551#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2552/** ModR/M: reg only */
2553#define IEMOPFORM_R 9
2554
2555/** VEX+ModR/M: reg, r/m */
2556#define IEMOPFORM_VEX_RM 16
2557/** VEX+ModR/M: reg, r/m (register) */
2558#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2559/** VEX+ModR/M: reg, r/m (memory) */
2560#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2561/** VEX+ModR/M: r/m, reg */
2562#define IEMOPFORM_VEX_MR 17
2563/** VEX+ModR/M: r/m (register), reg */
2564#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2565/** VEX+ModR/M: r/m (memory), reg */
2566#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2567/** VEX+ModR/M: r/m, reg, imm8 */
2568#define IEMOPFORM_VEX_MRI 18
2569/** VEX+ModR/M: r/m (register), reg, imm8 */
2570#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2571/** VEX+ModR/M: r/m (memory), reg, imm8 */
2572#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2573/** VEX+ModR/M: r/m only */
2574#define IEMOPFORM_VEX_M 19
2575/** VEX+ModR/M: r/m only (register). */
2576#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2577/** VEX+ModR/M: r/m only (memory). */
2578#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2579/** VEX+ModR/M: reg only */
2580#define IEMOPFORM_VEX_R 20
2581/** VEX+ModR/M: reg, vvvv, r/m */
2582#define IEMOPFORM_VEX_RVM 21
2583/** VEX+ModR/M: reg, vvvv, r/m (register). */
2584#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2585/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2586#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2587/** VEX+ModR/M: reg, vvvv, r/m, imm */
2588#define IEMOPFORM_VEX_RVMI 22
2589/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2590#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2591/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2592#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2593/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2594#define IEMOPFORM_VEX_RVMR 23
2595/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2596#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2597/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2598#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2599/** VEX+ModR/M: reg, r/m, vvvv */
2600#define IEMOPFORM_VEX_RMV 24
2601/** VEX+ModR/M: reg, r/m, vvvv (register). */
2602#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2603/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2604#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2605/** VEX+ModR/M: reg, r/m, imm8 */
2606#define IEMOPFORM_VEX_RMI 25
2607/** VEX+ModR/M: reg, r/m, imm8 (register). */
2608#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2609/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2610#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2611/** VEX+ModR/M: r/m, vvvv, reg */
2612#define IEMOPFORM_VEX_MVR 26
2613/** VEX+ModR/M: r/m, vvvv, reg (register) */
2614#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2615/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2616#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2617/** VEX+ModR/M+/n: vvvv, r/m */
2618#define IEMOPFORM_VEX_VM 27
2619/** VEX+ModR/M+/n: vvvv, r/m (register) */
2620#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2621/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2622#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2623/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2624#define IEMOPFORM_VEX_VMI 28
2625/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2626#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2627/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2628#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2629
2630/** Fixed register instruction, no R/M. */
2631#define IEMOPFORM_FIXED 32
2632
2633/** The r/m is a register. */
2634#define IEMOPFORM_MOD3 RT_BIT_32(8)
2635/** The r/m is a memory access. */
2636#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2637/** @} */
2638
2639/** @name IEMOPHINT_XXX - Additional Opcode Hints
2640 * @note These are ORed together with IEMOPFORM_XXX.
2641 * @{ */
2642/** Ignores the operand size prefix (66h). */
2643#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2644/** Ignores REX.W (aka WIG). */
2645#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2646/** Both the operand size prefixes (66h + REX.W) are ignored. */
2647#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2648/** Allowed with the lock prefix. */
2649#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2650/** The VEX.L value is ignored (aka LIG). */
2651#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2652/** The VEX.L value must be zero (i.e. 128-bit width only). */
2653#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2654/** The VEX.L value must be one (i.e. 256-bit width only). */
2655#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2656/** The VEX.V value must be zero. */
2657#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2658/** The REX.W/VEX.V value must be zero. */
2659#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2660#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2661/** The REX.W/VEX.V value must be one. */
2662#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2663#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2664
2665/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2666#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2667/** @} */
2668
2669/**
2670 * Possible hardware task switch sources.
2671 */
2672typedef enum IEMTASKSWITCH
2673{
2674 /** Task switch caused by an interrupt/exception. */
2675 IEMTASKSWITCH_INT_XCPT = 1,
2676 /** Task switch caused by a far CALL. */
2677 IEMTASKSWITCH_CALL,
2678 /** Task switch caused by a far JMP. */
2679 IEMTASKSWITCH_JUMP,
2680 /** Task switch caused by an IRET. */
2681 IEMTASKSWITCH_IRET
2682} IEMTASKSWITCH;
2683AssertCompileSize(IEMTASKSWITCH, 4);
2684
2685/**
2686 * Possible CrX load (write) sources.
2687 */
2688typedef enum IEMACCESSCRX
2689{
2690 /** CrX access caused by 'mov crX' instruction. */
2691 IEMACCESSCRX_MOV_CRX,
2692 /** CrX (CR0) write caused by 'lmsw' instruction. */
2693 IEMACCESSCRX_LMSW,
2694 /** CrX (CR0) write caused by 'clts' instruction. */
2695 IEMACCESSCRX_CLTS,
2696 /** CrX (CR0) read caused by 'smsw' instruction. */
2697 IEMACCESSCRX_SMSW
2698} IEMACCESSCRX;
2699
2700#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2701/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2702 *
2703 * These flags provide further context to SLAT page-walk failures that could not be
2704 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2705 *
2706 * @{
2707 */
2708/** Translating a nested-guest linear address failed accessing a nested-guest
2709 * physical address. */
2710# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2711/** Translating a nested-guest linear address failed accessing a
2712 * paging-structure entry or updating accessed/dirty bits. */
2713# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2714/** @} */
2715
2716DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2717# ifndef IN_RING3
2718DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2719# endif
2720#endif
2721
2722/**
2723 * Indicates to the verifier that the given flag set is undefined.
2724 *
2725 * Can be invoked again to add more flags.
2726 *
2727 * This is a NOOP if the verifier isn't compiled in.
2728 *
2729 * @note We're temporarily keeping this until code is converted to new
2730 * disassembler style opcode handling.
2731 */
2732#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2733
2734
2735/** @def IEM_DECL_IMPL_TYPE
2736 * For typedef'ing an instruction implementation function.
2737 *
2738 * @param a_RetType The return type.
2739 * @param a_Name The name of the type.
2740 * @param a_ArgList The argument list enclosed in parentheses.
2741 */
2742
2743/** @def IEM_DECL_IMPL_DEF
2744 * For defining an instruction implementation function.
2745 *
2746 * @param a_RetType The return type.
2747 * @param a_Name The name of the type.
2748 * @param a_ArgList The argument list enclosed in parentheses.
2749 */
2750
2751#if defined(__GNUC__) && defined(RT_ARCH_X86)
2752# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2753 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2754# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2755 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2756# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2757 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2758
2759#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2760# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2761 a_RetType (__fastcall a_Name) a_ArgList
2762# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2763 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2764# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2765 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2766
2767#elif __cplusplus >= 201700 /* P0012R1 support */
2768# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2769 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2770# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2771 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2772# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2773 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2774
2775#else
2776# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2777 a_RetType (VBOXCALL a_Name) a_ArgList
2778# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2779 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2780# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2781 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2782
2783#endif
2784
2785/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2786RT_C_DECLS_BEGIN
2787extern uint8_t const g_afParity[256];
2788RT_C_DECLS_END
2789
2790
2791/** @name Arithmetic assignment operations on bytes (binary).
2792 * @{ */
2793typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
2794typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2795FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2796FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2797FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2798FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2799FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2800FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2801FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2802/** @} */
2803
2804/** @name Arithmetic assignment operations on words (binary).
2805 * @{ */
2806typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
2807typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2808FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2809FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2810FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2811FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2812FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2813FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2814FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2815/** @} */
2816
2817
2818/** @name Arithmetic assignment operations on double words (binary).
2819 * @{ */
2820typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
2821typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2822FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2823FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2824FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2825FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2826FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2827FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2828FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2829FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2830FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2831FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2832/** @} */
2833
2834/** @name Arithmetic assignment operations on quad words (binary).
2835 * @{ */
2836typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
2837typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2838FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2839FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2840FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2841FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2842FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2843FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2844FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2845FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2846FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2847FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2848/** @} */
2849
2850typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
2851typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2852typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
2853typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2854typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
2855typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2856typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
2857typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2858
2859/** @name Compare operations (thrown in with the binary ops).
2860 * @{ */
2861FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2862FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2863FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2864FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2865/** @} */
2866
2867/** @name Test operations (thrown in with the binary ops).
2868 * @{ */
2869FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2870FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2871FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2872FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2873/** @} */
2874
2875/** @name Bit operations operations (thrown in with the binary ops).
2876 * @{ */
2877FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2878FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2879FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2880FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2881FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2882FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2883FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2884FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2885FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2886FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2887FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2888FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2889/** @} */
2890
2891/** @name Arithmetic three operand operations on double words (binary).
2892 * @{ */
2893typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2894typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2895FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2896FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2897FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2898/** @} */
2899
2900/** @name Arithmetic three operand operations on quad words (binary).
2901 * @{ */
2902typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2903typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2904FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2905FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2906FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2907/** @} */
2908
2909/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2910 * @{ */
2911typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2912typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2913FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2914FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2915FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2916FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2917FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2918FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2919/** @} */
2920
2921/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2922 * @{ */
2923typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2924typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2925FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2926FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2927FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2928FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2929FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2930FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2931/** @} */
2932
2933/** @name MULX 32-bit and 64-bit.
2934 * @{ */
2935typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2936typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2937FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2938
2939typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2940typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2941FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2942/** @} */
2943
2944
2945/** @name Exchange memory with register operations.
2946 * @{ */
2947IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2948IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2949IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2950IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2951IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2952IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2953IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2954IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2955/** @} */
2956
2957/** @name Exchange and add operations.
2958 * @{ */
2959IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2960IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2961IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2962IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2963IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2964IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2965IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2966IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2967/** @} */
2968
2969/** @name Compare and exchange.
2970 * @{ */
2971IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2972IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2973IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2974IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2975IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2976IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2977#if ARCH_BITS == 32
2978IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2979IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2980#else
2981IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2982IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2983#endif
2984IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2985 uint32_t *pEFlags));
2986IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2987 uint32_t *pEFlags));
2988IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2989 uint32_t *pEFlags));
2990IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2991 uint32_t *pEFlags));
2992#ifndef RT_ARCH_ARM64
2993IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2994 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2995#endif
2996/** @} */
2997
2998/** @name Memory ordering
2999 * @{ */
3000typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3001typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3002IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3003IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3004IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3005#ifndef RT_ARCH_ARM64
3006IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3007#endif
3008/** @} */
3009
3010/** @name Double precision shifts
3011 * @{ */
3012typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3013typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3014typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3015typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3016typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3017typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3018FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3019FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3020FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3021FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3022FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3023FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3024/** @} */
3025
3026
3027/** @name Bit search operations (thrown in with the binary ops).
3028 * @{ */
3029FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3030FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3031FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3032FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3033FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3034FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3035FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3036FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3037FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3038FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3039FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3040FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3041FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3042FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3043FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3044/** @} */
3045
3046/** @name Signed multiplication operations (thrown in with the binary ops).
3047 * @{ */
3048FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3049FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3050FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3051/** @} */
3052
3053/** @name Arithmetic assignment operations on bytes (unary).
3054 * @{ */
3055typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3056typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3057FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3058FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3059FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3060FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3061/** @} */
3062
3063/** @name Arithmetic assignment operations on words (unary).
3064 * @{ */
3065typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3066typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3067FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3068FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3069FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3070FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3071/** @} */
3072
3073/** @name Arithmetic assignment operations on double words (unary).
3074 * @{ */
3075typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3076typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3077FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3078FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3079FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3080FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3081/** @} */
3082
3083/** @name Arithmetic assignment operations on quad words (unary).
3084 * @{ */
3085typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3086typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3087FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3088FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3089FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3090FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3091/** @} */
3092
3093
3094/** @name Shift operations on bytes (Group 2).
3095 * @{ */
3096typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3097typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3098FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3099FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3100FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3101FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3102FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3103FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3104FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3105/** @} */
3106
3107/** @name Shift operations on words (Group 2).
3108 * @{ */
3109typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3110typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3111FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3112FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3113FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3114FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3115FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3116FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3117FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3118/** @} */
3119
3120/** @name Shift operations on double words (Group 2).
3121 * @{ */
3122typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3123typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3124FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3125FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3126FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3127FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3128FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3129FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3130FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3131/** @} */
3132
3133/** @name Shift operations on words (Group 2).
3134 * @{ */
3135typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3136typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3137FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3138FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3139FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3140FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3141FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3142FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3143FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3144/** @} */
3145
3146/** @name Multiplication and division operations.
3147 * @{ */
3148typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3149typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3150FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3151FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3152FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3153FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3154
3155typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3156typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3157FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3158FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3159FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3160FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3161
3162typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3163typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3164FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3165FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3166FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3167FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3168
3169typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3170typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3171FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3172FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3173FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3174FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3175/** @} */
3176
3177/** @name Byte Swap.
3178 * @{ */
3179IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3180IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3181IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3182/** @} */
3183
3184/** @name Misc.
3185 * @{ */
3186FNIEMAIMPLBINU16 iemAImpl_arpl;
3187/** @} */
3188
3189/** @name RDRAND and RDSEED
3190 * @{ */
3191typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3192typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3193typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3194typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3195typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3196typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3197
3198FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3199FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3200FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3201FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3202FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3203FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3204/** @} */
3205
3206/** @name ADOX and ADCX
3207 * @{ */
3208FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3209FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3210FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3211FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3212/** @} */
3213
3214/** @name FPU operations taking a 32-bit float argument
3215 * @{ */
3216typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3217 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3218typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3219
3220typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3221 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3222typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3223
3224FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3225FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3226FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3227FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3228FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3229FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3230FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3231
3232IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3233IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3234 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3235/** @} */
3236
3237/** @name FPU operations taking a 64-bit float argument
3238 * @{ */
3239typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3240 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3241typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3242
3243typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3244 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3245typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3246
3247FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3248FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3249FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3250FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3251FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3252FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3253FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3254
3255IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3256IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3257 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3258/** @} */
3259
3260/** @name FPU operations taking a 80-bit float argument
3261 * @{ */
3262typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3263 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3264typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3265FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3266FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3267FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3268FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3269FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3270FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3271FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3272FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3273FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3274
3275FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3276FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3277FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3278
3279typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3280 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3281typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3282FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3283FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3284
3285typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3286 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3287typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3288FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3289FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3290
3291typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3292typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3293FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3294FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3295FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3296FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3297FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3298FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3299FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3300
3301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3302typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3303FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3304FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3305
3306typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3307typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3308FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3309FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3310FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3311FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3312FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3313FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3314FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3315
3316typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3317 PCRTFLOAT80U pr80Val));
3318typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3319FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3320FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3321FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3322
3323IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3324IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3325 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3326
3327IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3328IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3329 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3330
3331/** @} */
3332
3333/** @name FPU operations taking a 16-bit signed integer argument
3334 * @{ */
3335typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3336 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3337typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3338typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3339 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3340typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3341
3342FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3343FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3344FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3345FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3346FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3347FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3348
3349typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3350 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3351typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3352FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3353
3354IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3355FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3356FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3357/** @} */
3358
3359/** @name FPU operations taking a 32-bit signed integer argument
3360 * @{ */
3361typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3362 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3363typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3364typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3365 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3366typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3367
3368FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3369FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3370FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3371FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3372FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3373FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3374
3375typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3376 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3377typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3378FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3379
3380IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3381FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3382FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3383/** @} */
3384
3385/** @name FPU operations taking a 64-bit signed integer argument
3386 * @{ */
3387typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3388 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3389typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3390
3391IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3392FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3393FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3394/** @} */
3395
3396
3397/** Temporary type representing a 256-bit vector register. */
3398typedef struct { uint64_t au64[4]; } IEMVMM256;
3399/** Temporary type pointing to a 256-bit vector register. */
3400typedef IEMVMM256 *PIEMVMM256;
3401/** Temporary type pointing to a const 256-bit vector register. */
3402typedef IEMVMM256 *PCIEMVMM256;
3403
3404
3405/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3406 * @{ */
3407typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3408typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3409typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3410typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3411typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3412typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3413typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3414typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3415typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3416typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3417typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3418typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3419typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3420typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3421typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3422typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3423typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3424typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3425FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3426FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3427FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3428FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3429FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3430FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3431FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3432FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3433FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3434FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3435FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3436FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3437FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3438FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3439FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3440FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3441FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3442FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3443FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3444FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3445FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3446FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3447FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3448FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3449FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3450FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3451FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3452FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3453FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3454FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3455FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3456FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3457FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3458FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3459FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3460FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3461FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3462FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3463FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3464
3465FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3466FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3467FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3468FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3469FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3470FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3471FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3472FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3473FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3474FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3475FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3476FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3477FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3478FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3479FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3480FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3481FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3482FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3483FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3484FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3485FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3486FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3487FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3488FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3489FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3490FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3491FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3492FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3493FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3494FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3495FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3496FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3497FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3498FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3499FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3500FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3501FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3502FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3503FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3504FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3505FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3506FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3507FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3508FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3509FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3510FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3511FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3512FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3513FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3514FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3515FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3516FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3517FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3518FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3519FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3520FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3521FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3522FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3523
3524FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3525FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3526FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3527FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3528FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3529FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3530FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3531FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3532FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3533FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3534FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3535FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3536FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3537FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3538FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3539FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3540FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3541FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3542FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3543FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3544FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3545FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3546FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3547FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3548FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3549FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3550FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3551FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3552FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3553FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3554FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3555FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3556FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3557FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3558FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3559FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3560FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3561FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3562FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3563FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3564FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3565FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3566FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3567FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3568FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3569FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3570FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3571FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3572FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3573FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3574FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3575FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3576FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3577FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3578FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3579FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3580FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3581FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3582FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3583FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3584FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3585FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3586FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3587FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3588FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3589FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3590FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3591FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3592FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3593FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3594FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3595FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3596FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3597FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3598
3599FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3600FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3601FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3602FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3603
3604FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3605FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3606FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3607FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3608FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3609FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3610FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3611FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3612FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3613FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3614FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3615FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3616FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3617FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3618FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3619FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3620FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3621FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3622FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3623FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3624FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3625FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3626FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3627FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3628FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3629FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3630FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3631FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3632FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3633FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3634FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3635FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3636FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3637FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3638FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3639FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3640FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3641FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3642FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3643FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3644FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3645FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3646FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3647FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3648FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3649FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3650FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3651FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3652FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3653FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3654FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3655FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3656FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3657FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3658FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3659FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3660FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3661FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3662FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3663FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3664FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3665FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3666FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3667FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3668FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3669FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3670FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3671FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3672FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3673FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3674FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3675FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3676FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3677FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3678
3679FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3680FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3681FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3682/** @} */
3683
3684/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3685 * @{ */
3686FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3687FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3688FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3689 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3690 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3691 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3692 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3693 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3694 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3695 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3696
3697FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3698 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3699 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3700 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3701 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3702 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3703 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3704 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3705/** @} */
3706
3707/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3708 * @{ */
3709FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3710FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3711FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3712 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3713 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3714 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3715FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3716 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3717 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3718 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3719/** @} */
3720
3721/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3722 * @{ */
3723typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3724typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3725typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3726typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3727IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3728FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3729#ifndef IEM_WITHOUT_ASSEMBLY
3730FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3731#endif
3732FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3733/** @} */
3734
3735/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3736 * @{ */
3737typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3738typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3739typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3740typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3741typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3742typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3743FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3744FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3745FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3746FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3747FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3748FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3749FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3750/** @} */
3751
3752/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3753 * @{ */
3754IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
3755IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
3756IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3757IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3758#ifndef IEM_WITHOUT_ASSEMBLY
3759IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3760#endif
3761IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3762/** @} */
3763
3764/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3765 * @{ */
3766typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3767typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3768typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3769typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3770typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3771typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3772
3773FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3774FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3775FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3776FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3777FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3778FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3779
3780FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3781FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3782FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3783FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3784FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3785FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3786
3787FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3788FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3789FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3790FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3791FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3792FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3793/** @} */
3794
3795
3796/** @name Media (SSE/MMX/AVX) operation: Sort this later
3797 * @{ */
3798IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3799IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3800IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3801IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3802IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3803
3804IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3805IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3806IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3807IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3808IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3809
3810IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3811IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3812IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3813IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3814IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3815
3816IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3817IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3818IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3819IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3820IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3821
3822IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3823IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3824IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3825IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3826IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3827
3828IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3829IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3830IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3831IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3832IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3833
3834IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3835IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3836IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3837IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3838IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3839
3840IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3841IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3842IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3843IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3844IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3845
3846IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3847IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3848IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3849IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3850IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3851
3852IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3853IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3854IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3855IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3856IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3857
3858IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3859IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3860IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3861IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3862IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3863
3864IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3865IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3866IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3867IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3868IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3869
3870IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3871IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3872IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3873IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3874IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3875
3876IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3877IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3878IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3879IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3880IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3881
3882IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3883IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3884
3885IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3886IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3887IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3888IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3889IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3890
3891IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3892IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3893IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3894IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3895IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3896
3897
3898typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3899typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3900typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3901typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3902typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3903typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3904typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3905typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3906
3907FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3908FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3909FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3910FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3911
3912FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3913FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3914FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3915FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3916FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3917
3918FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3919FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3920FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3921FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3922FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3923FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3924FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3925
3926FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3927FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3928FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3929FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3930FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3931
3932FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3933FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3934FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3935FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3936FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3937
3938FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3939
3940FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3941
3942FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3943FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3944FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3945FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3946FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3947FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3948IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3949IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3950
3951typedef struct IEMPCMPISTRXSRC
3952{
3953 RTUINT128U uSrc1;
3954 RTUINT128U uSrc2;
3955} IEMPCMPISTRXSRC;
3956typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3957typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3958
3959typedef struct IEMPCMPESTRXSRC
3960{
3961 RTUINT128U uSrc1;
3962 RTUINT128U uSrc2;
3963 uint64_t u64Rax;
3964 uint64_t u64Rdx;
3965} IEMPCMPESTRXSRC;
3966typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3967typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3968
3969typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
3970typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3971typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3972typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3973
3974typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3975typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3976typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3977typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3978
3979FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3980FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3981FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3982FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3983
3984FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3985FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3986
3987FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3988FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3989FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3990
3991FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3992FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3993FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3994FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3995FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3996FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3997IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3998IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3999IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4000IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4001
4002FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4003FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4004FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4005FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4006
4007FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4008FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4009FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4010FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4011FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4012FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4013IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4014IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4015IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4016IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4017
4018FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4019FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4020FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4021FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4022
4023FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4024FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4025FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4026FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4027
4028FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4029FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4030FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4031FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4032FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4033FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4034FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4035FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4036FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4037FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4038/** @} */
4039
4040/** @name Media Odds and Ends
4041 * @{ */
4042typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4043typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4044typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4045typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4046FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4047FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4048FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4049FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4050
4051typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4052typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4053typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4054typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4055FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4056FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4057FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4058FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4059FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4060FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4061
4062typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4063typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4064typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4065typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4066typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4067typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4068typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4069typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4070
4071FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4072FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4073
4074FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4075FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4076
4077FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4078FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4079
4080FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4081FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4082
4083typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4084typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4085typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4086typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4087
4088FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4089FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4090
4091typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4092typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4093typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4094typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4095
4096FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4097FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4098
4099
4100typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4101typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4102
4103typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4104typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4105
4106FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4107FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4108
4109FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4110FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4111
4112FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4113FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4114
4115FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4116FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4117
4118
4119typedef struct IEMMEDIAF2XMMSRC
4120{
4121 X86XMMREG uSrc1;
4122 X86XMMREG uSrc2;
4123} IEMMEDIAF2XMMSRC;
4124typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4125typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4126
4127typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4128typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
4129
4130FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
4131FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
4132FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
4133FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
4134FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
4135FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
4136
4137FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4138FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4139
4140FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4141FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4142
4143typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4144typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4145
4146FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4147FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4148
4149typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4150typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4151
4152FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4153FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4154
4155typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4156typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4157
4158FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4159FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4160
4161/** @} */
4162
4163
4164/** @name Function tables.
4165 * @{
4166 */
4167
4168/**
4169 * Function table for a binary operator providing implementation based on
4170 * operand size.
4171 */
4172typedef struct IEMOPBINSIZES
4173{
4174 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4175 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4176 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4177 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4178} IEMOPBINSIZES;
4179/** Pointer to a binary operator function table. */
4180typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4181
4182
4183/**
4184 * Function table for a unary operator providing implementation based on
4185 * operand size.
4186 */
4187typedef struct IEMOPUNARYSIZES
4188{
4189 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4190 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4191 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4192 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4193} IEMOPUNARYSIZES;
4194/** Pointer to a unary operator function table. */
4195typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4196
4197
4198/**
4199 * Function table for a shift operator providing implementation based on
4200 * operand size.
4201 */
4202typedef struct IEMOPSHIFTSIZES
4203{
4204 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4205 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4206 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4207 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4208} IEMOPSHIFTSIZES;
4209/** Pointer to a shift operator function table. */
4210typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4211
4212
4213/**
4214 * Function table for a multiplication or division operation.
4215 */
4216typedef struct IEMOPMULDIVSIZES
4217{
4218 PFNIEMAIMPLMULDIVU8 pfnU8;
4219 PFNIEMAIMPLMULDIVU16 pfnU16;
4220 PFNIEMAIMPLMULDIVU32 pfnU32;
4221 PFNIEMAIMPLMULDIVU64 pfnU64;
4222} IEMOPMULDIVSIZES;
4223/** Pointer to a multiplication or division operation function table. */
4224typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4225
4226
4227/**
4228 * Function table for a double precision shift operator providing implementation
4229 * based on operand size.
4230 */
4231typedef struct IEMOPSHIFTDBLSIZES
4232{
4233 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4234 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4235 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4236} IEMOPSHIFTDBLSIZES;
4237/** Pointer to a double precision shift function table. */
4238typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4239
4240
4241/**
4242 * Function table for media instruction taking two full sized media source
4243 * registers and one full sized destination register (AVX).
4244 */
4245typedef struct IEMOPMEDIAF3
4246{
4247 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4248 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4249} IEMOPMEDIAF3;
4250/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4251typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4252
4253/** @def IEMOPMEDIAF3_INIT_VARS_EX
4254 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4255 * given functions as initializers. For use in AVX functions where a pair of
4256 * functions are only used once and the function table need not be public. */
4257#ifndef TST_IEM_CHECK_MC
4258# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4259# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4260 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4261 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4262# else
4263# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4264 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4265# endif
4266#else
4267# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4268#endif
4269/** @def IEMOPMEDIAF3_INIT_VARS
4270 * Generate AVX function tables for the @a a_InstrNm instruction.
4271 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4272#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4273 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4274 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4275
4276/**
4277 * Function table for media instruction taking two full sized media source
4278 * registers and one full sized destination register, but no additional state
4279 * (AVX).
4280 */
4281typedef struct IEMOPMEDIAOPTF3
4282{
4283 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4284 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4285} IEMOPMEDIAOPTF3;
4286/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4287typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4288
4289/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4290 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4291 * given functions as initializers. For use in AVX functions where a pair of
4292 * functions are only used once and the function table need not be public. */
4293#ifndef TST_IEM_CHECK_MC
4294# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4295# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4296 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4297 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4298# else
4299# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4300 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4301# endif
4302#else
4303# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4304#endif
4305/** @def IEMOPMEDIAOPTF3_INIT_VARS
4306 * Generate AVX function tables for the @a a_InstrNm instruction.
4307 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4308#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4309 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4310 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4311
4312/**
4313 * Function table for media instruction taking one full sized media source
4314 * registers and one full sized destination register, but no additional state
4315 * (AVX).
4316 */
4317typedef struct IEMOPMEDIAOPTF2
4318{
4319 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4320 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4321} IEMOPMEDIAOPTF2;
4322/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4323typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4324
4325/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4326 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4327 * given functions as initializers. For use in AVX functions where a pair of
4328 * functions are only used once and the function table need not be public. */
4329#ifndef TST_IEM_CHECK_MC
4330# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4331# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4332 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4333 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4334# else
4335# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4336 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4337# endif
4338#else
4339# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4340#endif
4341/** @def IEMOPMEDIAOPTF2_INIT_VARS
4342 * Generate AVX function tables for the @a a_InstrNm instruction.
4343 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4344#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4345 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4346 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4347
4348/**
4349 * Function table for media instruction taking one full sized media source
4350 * register and one full sized destination register and an 8-bit immediate, but no additional state
4351 * (AVX).
4352 */
4353typedef struct IEMOPMEDIAOPTF2IMM8
4354{
4355 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4356 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4357} IEMOPMEDIAOPTF2IMM8;
4358/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4359typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4360
4361/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4362 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4363 * given functions as initializers. For use in AVX functions where a pair of
4364 * functions are only used once and the function table need not be public. */
4365#ifndef TST_IEM_CHECK_MC
4366# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4367# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4368 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4369 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4370# else
4371# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4372 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4373# endif
4374#else
4375# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4376#endif
4377/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4378 * Generate AVX function tables for the @a a_InstrNm instruction.
4379 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4380#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4381 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4382 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4383
4384/**
4385 * Function table for media instruction taking two full sized media source
4386 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4387 * (AVX).
4388 */
4389typedef struct IEMOPMEDIAOPTF3IMM8
4390{
4391 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4392 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4393} IEMOPMEDIAOPTF3IMM8;
4394/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4395typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4396
4397/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4398 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4399 * given functions as initializers. For use in AVX functions where a pair of
4400 * functions are only used once and the function table need not be public. */
4401#ifndef TST_IEM_CHECK_MC
4402# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4403# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4404 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4405 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4406# else
4407# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4408 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4409# endif
4410#else
4411# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4412#endif
4413/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4414 * Generate AVX function tables for the @a a_InstrNm instruction.
4415 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4416#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4417 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4418 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4419/** @} */
4420
4421
4422/**
4423 * Function table for blend type instruction taking three full sized media source
4424 * registers and one full sized destination register, but no additional state
4425 * (AVX).
4426 */
4427typedef struct IEMOPBLENDOP
4428{
4429 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4430 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4431} IEMOPBLENDOP;
4432/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4433typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4434
4435/** @def IEMOPBLENDOP_INIT_VARS_EX
4436 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4437 * given functions as initializers. For use in AVX functions where a pair of
4438 * functions are only used once and the function table need not be public. */
4439#ifndef TST_IEM_CHECK_MC
4440# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4441# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4442 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4443 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4444# else
4445# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4446 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4447# endif
4448#else
4449# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4450#endif
4451/** @def IEMOPBLENDOP_INIT_VARS
4452 * Generate AVX function tables for the @a a_InstrNm instruction.
4453 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4454#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4455 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4456 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4457
4458
4459/** @name SSE/AVX single/double precision floating point operations.
4460 * @{ */
4461typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4462typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4463typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4464typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4465typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4466typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4467
4468typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4469typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4470typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4471typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4472typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4473typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4474
4475typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4476typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4477
4478FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4479FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4480FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4481FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4482FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4483FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4484FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4485FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4486FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4487FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4488FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4489FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4490FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4491FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4492FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4493FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4494FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4495FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4496FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4497FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4498FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4499FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4500
4501FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4502IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4503
4504FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4505FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4506FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4507FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4508FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4509FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4510
4511FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4512FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4513FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4514FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4515FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4516FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4517FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4518FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4519FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4520FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4521FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4522FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4523FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4524FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4525FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4526FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4527FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4528FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4529
4530FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4531FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4532FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4533FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4534FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4535FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4536FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4537FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4538FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4539FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4540FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4541FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4542FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4543FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4544FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4545FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4546FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4547FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4548FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4549FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4550FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4551FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4552
4553FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4554FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4555FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4556FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4557FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4558FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4559FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4560FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4561FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4562FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4563FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4564FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4565FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4566FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4567
4568FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4569FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4570FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4571FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4572FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4573FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4574FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4575FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4576FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4577FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4578FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4579FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4580FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4581FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4582FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4583FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4584FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4585FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4586FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4587FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4588/** @} */
4589
4590/** @name C instruction implementations for anything slightly complicated.
4591 * @{ */
4592
4593/**
4594 * For typedef'ing or declaring a C instruction implementation function taking
4595 * no extra arguments.
4596 *
4597 * @param a_Name The name of the type.
4598 */
4599# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4600 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4601/**
4602 * For defining a C instruction implementation function taking no extra
4603 * arguments.
4604 *
4605 * @param a_Name The name of the function
4606 */
4607# define IEM_CIMPL_DEF_0(a_Name) \
4608 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4609/**
4610 * Prototype version of IEM_CIMPL_DEF_0.
4611 */
4612# define IEM_CIMPL_PROTO_0(a_Name) \
4613 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4614/**
4615 * For calling a C instruction implementation function taking no extra
4616 * arguments.
4617 *
4618 * This special call macro adds default arguments to the call and allow us to
4619 * change these later.
4620 *
4621 * @param a_fn The name of the function.
4622 */
4623# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4624
4625/** Type for a C instruction implementation function taking no extra
4626 * arguments. */
4627typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4628/** Function pointer type for a C instruction implementation function taking
4629 * no extra arguments. */
4630typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4631
4632/**
4633 * For typedef'ing or declaring a C instruction implementation function taking
4634 * one extra argument.
4635 *
4636 * @param a_Name The name of the type.
4637 * @param a_Type0 The argument type.
4638 * @param a_Arg0 The argument name.
4639 */
4640# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4641 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4642/**
4643 * For defining a C instruction implementation function taking one extra
4644 * argument.
4645 *
4646 * @param a_Name The name of the function
4647 * @param a_Type0 The argument type.
4648 * @param a_Arg0 The argument name.
4649 */
4650# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4651 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4652/**
4653 * Prototype version of IEM_CIMPL_DEF_1.
4654 */
4655# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4656 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4657/**
4658 * For calling a C instruction implementation function taking one extra
4659 * argument.
4660 *
4661 * This special call macro adds default arguments to the call and allow us to
4662 * change these later.
4663 *
4664 * @param a_fn The name of the function.
4665 * @param a0 The name of the 1st argument.
4666 */
4667# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4668
4669/**
4670 * For typedef'ing or declaring a C instruction implementation function taking
4671 * two extra arguments.
4672 *
4673 * @param a_Name The name of the type.
4674 * @param a_Type0 The type of the 1st argument
4675 * @param a_Arg0 The name of the 1st argument.
4676 * @param a_Type1 The type of the 2nd argument.
4677 * @param a_Arg1 The name of the 2nd argument.
4678 */
4679# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4680 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4681/**
4682 * For defining a C instruction implementation function taking two extra
4683 * arguments.
4684 *
4685 * @param a_Name The name of the function.
4686 * @param a_Type0 The type of the 1st argument
4687 * @param a_Arg0 The name of the 1st argument.
4688 * @param a_Type1 The type of the 2nd argument.
4689 * @param a_Arg1 The name of the 2nd argument.
4690 */
4691# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4692 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4693/**
4694 * Prototype version of IEM_CIMPL_DEF_2.
4695 */
4696# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4697 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4698/**
4699 * For calling a C instruction implementation function taking two extra
4700 * arguments.
4701 *
4702 * This special call macro adds default arguments to the call and allow us to
4703 * change these later.
4704 *
4705 * @param a_fn The name of the function.
4706 * @param a0 The name of the 1st argument.
4707 * @param a1 The name of the 2nd argument.
4708 */
4709# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4710
4711/**
4712 * For typedef'ing or declaring a C instruction implementation function taking
4713 * three extra arguments.
4714 *
4715 * @param a_Name The name of the type.
4716 * @param a_Type0 The type of the 1st argument
4717 * @param a_Arg0 The name of the 1st argument.
4718 * @param a_Type1 The type of the 2nd argument.
4719 * @param a_Arg1 The name of the 2nd argument.
4720 * @param a_Type2 The type of the 3rd argument.
4721 * @param a_Arg2 The name of the 3rd argument.
4722 */
4723# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4724 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4725/**
4726 * For defining a C instruction implementation function taking three extra
4727 * arguments.
4728 *
4729 * @param a_Name The name of the function.
4730 * @param a_Type0 The type of the 1st argument
4731 * @param a_Arg0 The name of the 1st argument.
4732 * @param a_Type1 The type of the 2nd argument.
4733 * @param a_Arg1 The name of the 2nd argument.
4734 * @param a_Type2 The type of the 3rd argument.
4735 * @param a_Arg2 The name of the 3rd argument.
4736 */
4737# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4738 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4739/**
4740 * Prototype version of IEM_CIMPL_DEF_3.
4741 */
4742# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4743 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4744/**
4745 * For calling a C instruction implementation function taking three extra
4746 * arguments.
4747 *
4748 * This special call macro adds default arguments to the call and allow us to
4749 * change these later.
4750 *
4751 * @param a_fn The name of the function.
4752 * @param a0 The name of the 1st argument.
4753 * @param a1 The name of the 2nd argument.
4754 * @param a2 The name of the 3rd argument.
4755 */
4756# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4757
4758
4759/**
4760 * For typedef'ing or declaring a C instruction implementation function taking
4761 * four extra arguments.
4762 *
4763 * @param a_Name The name of the type.
4764 * @param a_Type0 The type of the 1st argument
4765 * @param a_Arg0 The name of the 1st argument.
4766 * @param a_Type1 The type of the 2nd argument.
4767 * @param a_Arg1 The name of the 2nd argument.
4768 * @param a_Type2 The type of the 3rd argument.
4769 * @param a_Arg2 The name of the 3rd argument.
4770 * @param a_Type3 The type of the 4th argument.
4771 * @param a_Arg3 The name of the 4th argument.
4772 */
4773# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4774 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4775/**
4776 * For defining a C instruction implementation function taking four extra
4777 * arguments.
4778 *
4779 * @param a_Name The name of the function.
4780 * @param a_Type0 The type of the 1st argument
4781 * @param a_Arg0 The name of the 1st argument.
4782 * @param a_Type1 The type of the 2nd argument.
4783 * @param a_Arg1 The name of the 2nd argument.
4784 * @param a_Type2 The type of the 3rd argument.
4785 * @param a_Arg2 The name of the 3rd argument.
4786 * @param a_Type3 The type of the 4th argument.
4787 * @param a_Arg3 The name of the 4th argument.
4788 */
4789# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4790 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4791 a_Type2 a_Arg2, a_Type3 a_Arg3))
4792/**
4793 * Prototype version of IEM_CIMPL_DEF_4.
4794 */
4795# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4796 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4797 a_Type2 a_Arg2, a_Type3 a_Arg3))
4798/**
4799 * For calling a C instruction implementation function taking four extra
4800 * arguments.
4801 *
4802 * This special call macro adds default arguments to the call and allow us to
4803 * change these later.
4804 *
4805 * @param a_fn The name of the function.
4806 * @param a0 The name of the 1st argument.
4807 * @param a1 The name of the 2nd argument.
4808 * @param a2 The name of the 3rd argument.
4809 * @param a3 The name of the 4th argument.
4810 */
4811# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4812
4813
4814/**
4815 * For typedef'ing or declaring a C instruction implementation function taking
4816 * five extra arguments.
4817 *
4818 * @param a_Name The name of the type.
4819 * @param a_Type0 The type of the 1st argument
4820 * @param a_Arg0 The name of the 1st argument.
4821 * @param a_Type1 The type of the 2nd argument.
4822 * @param a_Arg1 The name of the 2nd argument.
4823 * @param a_Type2 The type of the 3rd argument.
4824 * @param a_Arg2 The name of the 3rd argument.
4825 * @param a_Type3 The type of the 4th argument.
4826 * @param a_Arg3 The name of the 4th argument.
4827 * @param a_Type4 The type of the 5th argument.
4828 * @param a_Arg4 The name of the 5th argument.
4829 */
4830# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4831 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4832 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4833 a_Type3 a_Arg3, a_Type4 a_Arg4))
4834/**
4835 * For defining a C instruction implementation function taking five extra
4836 * arguments.
4837 *
4838 * @param a_Name The name of the function.
4839 * @param a_Type0 The type of the 1st argument
4840 * @param a_Arg0 The name of the 1st argument.
4841 * @param a_Type1 The type of the 2nd argument.
4842 * @param a_Arg1 The name of the 2nd argument.
4843 * @param a_Type2 The type of the 3rd argument.
4844 * @param a_Arg2 The name of the 3rd argument.
4845 * @param a_Type3 The type of the 4th argument.
4846 * @param a_Arg3 The name of the 4th argument.
4847 * @param a_Type4 The type of the 5th argument.
4848 * @param a_Arg4 The name of the 5th argument.
4849 */
4850# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4851 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4852 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4853/**
4854 * Prototype version of IEM_CIMPL_DEF_5.
4855 */
4856# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4857 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4858 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4859/**
4860 * For calling a C instruction implementation function taking five extra
4861 * arguments.
4862 *
4863 * This special call macro adds default arguments to the call and allow us to
4864 * change these later.
4865 *
4866 * @param a_fn The name of the function.
4867 * @param a0 The name of the 1st argument.
4868 * @param a1 The name of the 2nd argument.
4869 * @param a2 The name of the 3rd argument.
4870 * @param a3 The name of the 4th argument.
4871 * @param a4 The name of the 5th argument.
4872 */
4873# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4874
4875/** @} */
4876
4877
4878/** @name Opcode Decoder Function Types.
4879 * @{ */
4880
4881/** @typedef PFNIEMOP
4882 * Pointer to an opcode decoder function.
4883 */
4884
4885/** @def FNIEMOP_DEF
4886 * Define an opcode decoder function.
4887 *
4888 * We're using macors for this so that adding and removing parameters as well as
4889 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4890 *
4891 * @param a_Name The function name.
4892 */
4893
4894/** @typedef PFNIEMOPRM
4895 * Pointer to an opcode decoder function with RM byte.
4896 */
4897
4898/** @def FNIEMOPRM_DEF
4899 * Define an opcode decoder function with RM byte.
4900 *
4901 * We're using macors for this so that adding and removing parameters as well as
4902 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4903 *
4904 * @param a_Name The function name.
4905 */
4906
4907#if defined(__GNUC__) && defined(RT_ARCH_X86)
4908typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4909typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4910# define FNIEMOP_DEF(a_Name) \
4911 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4912# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4913 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4914# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4915 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4916
4917#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4918typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4919typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4920# define FNIEMOP_DEF(a_Name) \
4921 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4922# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4923 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4924# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4925 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4926
4927#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4928typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4929typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4930# define FNIEMOP_DEF(a_Name) \
4931 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4932# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4933 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4934# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4935 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4936
4937#else
4938typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4939typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4940# define FNIEMOP_DEF(a_Name) \
4941 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4942# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4943 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4944# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4945 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4946
4947#endif
4948#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4949
4950/**
4951 * Call an opcode decoder function.
4952 *
4953 * We're using macors for this so that adding and removing parameters can be
4954 * done as we please. See FNIEMOP_DEF.
4955 */
4956#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4957
4958/**
4959 * Call a common opcode decoder function taking one extra argument.
4960 *
4961 * We're using macors for this so that adding and removing parameters can be
4962 * done as we please. See FNIEMOP_DEF_1.
4963 */
4964#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4965
4966/**
4967 * Call a common opcode decoder function taking one extra argument.
4968 *
4969 * We're using macors for this so that adding and removing parameters can be
4970 * done as we please. See FNIEMOP_DEF_1.
4971 */
4972#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4973/** @} */
4974
4975
4976/** @name Misc Helpers
4977 * @{ */
4978
4979/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4980 * due to GCC lacking knowledge about the value range of a switch. */
4981#if RT_CPLUSPLUS_PREREQ(202000)
4982# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4983#else
4984# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4985#endif
4986
4987/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4988#if RT_CPLUSPLUS_PREREQ(202000)
4989# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4990#else
4991# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4992#endif
4993
4994/**
4995 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4996 * occation.
4997 */
4998#ifdef LOG_ENABLED
4999# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5000 do { \
5001 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5002 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5003 } while (0)
5004#else
5005# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5006 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5007#endif
5008
5009/**
5010 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5011 * occation using the supplied logger statement.
5012 *
5013 * @param a_LoggerArgs What to log on failure.
5014 */
5015#ifdef LOG_ENABLED
5016# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5017 do { \
5018 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5019 /*LogFunc(a_LoggerArgs);*/ \
5020 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5021 } while (0)
5022#else
5023# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5024 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5025#endif
5026
5027/**
5028 * Gets the CPU mode (from fExec) as a IEMMODE value.
5029 *
5030 * @returns IEMMODE
5031 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5032 */
5033#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5034
5035/**
5036 * Check if we're currently executing in real or virtual 8086 mode.
5037 *
5038 * @returns @c true if it is, @c false if not.
5039 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5040 */
5041#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5042 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5043
5044/**
5045 * Check if we're currently executing in virtual 8086 mode.
5046 *
5047 * @returns @c true if it is, @c false if not.
5048 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5049 */
5050#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5051
5052/**
5053 * Check if we're currently executing in long mode.
5054 *
5055 * @returns @c true if it is, @c false if not.
5056 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5057 */
5058#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5059
5060/**
5061 * Check if we're currently executing in a 16-bit code segment.
5062 *
5063 * @returns @c true if it is, @c false if not.
5064 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5065 */
5066#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5067
5068/**
5069 * Check if we're currently executing in a 32-bit code segment.
5070 *
5071 * @returns @c true if it is, @c false if not.
5072 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5073 */
5074#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5075
5076/**
5077 * Check if we're currently executing in a 64-bit code segment.
5078 *
5079 * @returns @c true if it is, @c false if not.
5080 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5081 */
5082#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5083
5084/**
5085 * Check if we're currently executing in real mode.
5086 *
5087 * @returns @c true if it is, @c false if not.
5088 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5089 */
5090#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5091
5092/**
5093 * Gets the current protection level (CPL).
5094 *
5095 * @returns 0..3
5096 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5097 */
5098#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5099
5100/**
5101 * Sets the current protection level (CPL).
5102 *
5103 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5104 */
5105#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5106 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5107
5108/**
5109 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5110 * @returns PCCPUMFEATURES
5111 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5112 */
5113#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5114
5115/**
5116 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5117 * @returns PCCPUMFEATURES
5118 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5119 */
5120#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5121
5122/**
5123 * Evaluates to true if we're presenting an Intel CPU to the guest.
5124 */
5125#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5126
5127/**
5128 * Evaluates to true if we're presenting an AMD CPU to the guest.
5129 */
5130#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5131
5132/**
5133 * Check if the address is canonical.
5134 */
5135#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5136
5137/** Checks if the ModR/M byte is in register mode or not. */
5138#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5139/** Checks if the ModR/M byte is in memory mode or not. */
5140#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5141
5142/**
5143 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5144 *
5145 * For use during decoding.
5146 */
5147#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5148/**
5149 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5150 *
5151 * For use during decoding.
5152 */
5153#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5154
5155/**
5156 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5157 *
5158 * For use during decoding.
5159 */
5160#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5161/**
5162 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5163 *
5164 * For use during decoding.
5165 */
5166#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5167
5168/**
5169 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5170 * register index, with REX.R added in.
5171 *
5172 * For use during decoding.
5173 *
5174 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5175 */
5176#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5177 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5178 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5179 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5180/**
5181 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5182 * with REX.B added in.
5183 *
5184 * For use during decoding.
5185 *
5186 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5187 */
5188#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5189 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5190 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5191 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5192
5193/**
5194 * Combines the prefix REX and ModR/M byte for passing to
5195 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5196 *
5197 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5198 * The two bits are part of the REG sub-field, which isn't needed in
5199 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5200 *
5201 * For use during decoding/recompiling.
5202 */
5203#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5204 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5205 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5206AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5207AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5208
5209/**
5210 * Gets the effective VEX.VVVV value.
5211 *
5212 * The 4th bit is ignored if not 64-bit code.
5213 * @returns effective V-register value.
5214 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5215 */
5216#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5217 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5218
5219
5220/**
5221 * Gets the register (reg) part of a the special 4th register byte used by
5222 * vblendvps and vblendvpd.
5223 *
5224 * For use during decoding.
5225 */
5226#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5227 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5228
5229
5230/**
5231 * Checks if we're executing inside an AMD-V or VT-x guest.
5232 */
5233#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5234# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5235#else
5236# define IEM_IS_IN_GUEST(a_pVCpu) false
5237#endif
5238
5239
5240#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5241
5242/**
5243 * Check if the guest has entered VMX root operation.
5244 */
5245# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5246
5247/**
5248 * Check if the guest has entered VMX non-root operation.
5249 */
5250# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5251 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5252
5253/**
5254 * Check if the nested-guest has the given Pin-based VM-execution control set.
5255 */
5256# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5257
5258/**
5259 * Check if the nested-guest has the given Processor-based VM-execution control set.
5260 */
5261# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5262
5263/**
5264 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5265 * control set.
5266 */
5267# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5268
5269/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5270# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5271
5272/** Whether a shadow VMCS is present for the given VCPU. */
5273# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5274
5275/** Gets the VMXON region pointer. */
5276# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5277
5278/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5279# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5280
5281/** Whether a current VMCS is present for the given VCPU. */
5282# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5283
5284/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5285# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5286 do \
5287 { \
5288 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5289 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5290 } while (0)
5291
5292/** Clears any current VMCS for the given VCPU. */
5293# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5294 do \
5295 { \
5296 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5297 } while (0)
5298
5299/**
5300 * Invokes the VMX VM-exit handler for an instruction intercept.
5301 */
5302# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5303 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5304
5305/**
5306 * Invokes the VMX VM-exit handler for an instruction intercept where the
5307 * instruction provides additional VM-exit information.
5308 */
5309# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5310 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5311
5312/**
5313 * Invokes the VMX VM-exit handler for a task switch.
5314 */
5315# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5316 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5317
5318/**
5319 * Invokes the VMX VM-exit handler for MWAIT.
5320 */
5321# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5322 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5323
5324/**
5325 * Invokes the VMX VM-exit handler for EPT faults.
5326 */
5327# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5328 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5329
5330/**
5331 * Invokes the VMX VM-exit handler.
5332 */
5333# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5334 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5335
5336#else
5337# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5338# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5339# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5340# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5341# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5342# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5343# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5344# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5345# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5346# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5347# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5348
5349#endif
5350
5351#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5352/**
5353 * Checks if we're executing a guest using AMD-V.
5354 */
5355# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5356 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5357/**
5358 * Check if an SVM control/instruction intercept is set.
5359 */
5360# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5361 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5362
5363/**
5364 * Check if an SVM read CRx intercept is set.
5365 */
5366# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5367 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5368
5369/**
5370 * Check if an SVM write CRx intercept is set.
5371 */
5372# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5373 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5374
5375/**
5376 * Check if an SVM read DRx intercept is set.
5377 */
5378# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5379 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5380
5381/**
5382 * Check if an SVM write DRx intercept is set.
5383 */
5384# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5385 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5386
5387/**
5388 * Check if an SVM exception intercept is set.
5389 */
5390# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5391 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5392
5393/**
5394 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5395 */
5396# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5397 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5398
5399/**
5400 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5401 * corresponding decode assist information.
5402 */
5403# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5404 do \
5405 { \
5406 uint64_t uExitInfo1; \
5407 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5408 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5409 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5410 else \
5411 uExitInfo1 = 0; \
5412 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5413 } while (0)
5414
5415/** Check and handles SVM nested-guest instruction intercept and updates
5416 * NRIP if needed.
5417 */
5418# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5419 do \
5420 { \
5421 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5422 { \
5423 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5424 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5425 } \
5426 } while (0)
5427
5428/** Checks and handles SVM nested-guest CR0 read intercept. */
5429# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5430 do \
5431 { \
5432 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5433 { /* probably likely */ } \
5434 else \
5435 { \
5436 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5437 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5438 } \
5439 } while (0)
5440
5441/**
5442 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5443 */
5444# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5445 do { \
5446 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5447 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5448 } while (0)
5449
5450#else
5451# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5452# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5453# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5454# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5455# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5456# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5457# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5458# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5459# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5460 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5461# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5462# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5463
5464#endif
5465
5466/** @} */
5467
5468uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5469VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5470
5471
5472/**
5473 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5474 */
5475typedef union IEMSELDESC
5476{
5477 /** The legacy view. */
5478 X86DESC Legacy;
5479 /** The long mode view. */
5480 X86DESC64 Long;
5481} IEMSELDESC;
5482/** Pointer to a selector descriptor table entry. */
5483typedef IEMSELDESC *PIEMSELDESC;
5484
5485/** @name Raising Exceptions.
5486 * @{ */
5487VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5488 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5489
5490VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5491 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5492#ifdef IEM_WITH_SETJMP
5493DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5494 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5495#endif
5496VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5497#ifdef IEM_WITH_SETJMP
5498DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5499#endif
5500VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5501VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5502VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5503#ifdef IEM_WITH_SETJMP
5504DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5505#endif
5506VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5507#ifdef IEM_WITH_SETJMP
5508DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5509#endif
5510VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5511VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5512VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5513VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5514/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5515VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5516VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5517VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5518VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5519VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5520VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5521#ifdef IEM_WITH_SETJMP
5522DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5523#endif
5524VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5525VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5526VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5527#ifdef IEM_WITH_SETJMP
5528DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5529#endif
5530VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5531#ifdef IEM_WITH_SETJMP
5532DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5533#endif
5534VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5535#ifdef IEM_WITH_SETJMP
5536DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5537#endif
5538VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5539#ifdef IEM_WITH_SETJMP
5540DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5541#endif
5542VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5543#ifdef IEM_WITH_SETJMP
5544DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5545#endif
5546VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5547#ifdef IEM_WITH_SETJMP
5548DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5549#endif
5550VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5551#ifdef IEM_WITH_SETJMP
5552DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5553#endif
5554
5555void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5556void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5557
5558IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5559IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5560IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5561
5562/**
5563 * Macro for calling iemCImplRaiseDivideError().
5564 *
5565 * This is for things that will _always_ decode to an \#DE, taking the
5566 * recompiler into consideration and everything.
5567 *
5568 * @return Strict VBox status code.
5569 */
5570#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5571
5572/**
5573 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5574 *
5575 * This is for things that will _always_ decode to an \#UD, taking the
5576 * recompiler into consideration and everything.
5577 *
5578 * @return Strict VBox status code.
5579 */
5580#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5581
5582/**
5583 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5584 *
5585 * This is for things that will _always_ decode to an \#UD, taking the
5586 * recompiler into consideration and everything.
5587 *
5588 * @return Strict VBox status code.
5589 */
5590#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5591
5592/**
5593 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5594 *
5595 * Using this macro means you've got _buggy_ _code_ and are doing things that
5596 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5597 *
5598 * @return Strict VBox status code.
5599 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5600 */
5601#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5602
5603/** @} */
5604
5605/** @name Register Access.
5606 * @{ */
5607VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5608 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5609VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5610VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5611 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5612/** @} */
5613
5614/** @name FPU access and helpers.
5615 * @{ */
5616void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5617void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5618void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5619void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5620void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5621void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5622 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5623void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5624 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5625void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5626void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5627void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5628void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5629void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5630void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5631void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5632void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5633void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5634void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5635void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5636void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5637void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5638void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5639void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5640/** @} */
5641
5642/** @name SSE+AVX SIMD access and helpers.
5643 * @{ */
5644void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5645/** @} */
5646
5647/** @name Memory access.
5648 * @{ */
5649
5650/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5651#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5652/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5653 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5654#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5655/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5656 * Users include FXSAVE & FXRSTOR. */
5657#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5658
5659VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5660 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5661VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5662#ifndef IN_RING3
5663VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5664#endif
5665void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5666void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5667VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5668VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5669VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5670
5671void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5672void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5673#ifdef IEM_WITH_CODE_TLB
5674void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5675#else
5676VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5677#endif
5678#ifdef IEM_WITH_SETJMP
5679uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5680uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5681uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5682uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5683#else
5684VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5685VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5686VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5687VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5688VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5689VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5690VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5691VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5692VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5693VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5694VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5695#endif
5696
5697VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5698VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5699VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5700VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5701VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5702VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5703VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5704VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5705VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5706VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5707VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5708VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5709VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5710VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5711VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5712 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5713#ifdef IEM_WITH_SETJMP
5714uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5715uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5716uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5717uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5718uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5719uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5720void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5721void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5722void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5723void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5724void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5725void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5726void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5727void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5728# if 0 /* these are inlined now */
5729uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5730uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5731uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5732uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5733uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5734uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5735void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5736void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5737void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5738void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5739void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5740void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5741void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5742# endif
5743void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5744#endif
5745
5746VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5747VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5748VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5749VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5750VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5751
5752VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5753VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5754VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5755VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5756VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5757VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5758VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5759VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5760VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5761VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5762VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5763#ifdef IEM_WITH_SETJMP
5764void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5765void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5766void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5767void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5768void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5769void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5770void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5771void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5772void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5773void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5774void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5775void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5776#if 0
5777void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5778void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5779void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5780void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5781void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5782void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5783void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5784void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5785#endif
5786void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5787void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5788#endif
5789
5790#ifdef IEM_WITH_SETJMP
5791uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5792uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5793uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5794uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5795uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5796uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5797uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5798uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5799uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5800uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5801uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5802uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5803uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5804uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5805uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5806uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5807PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5808PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5809PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5810PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5811PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5812PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5813PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5814PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5815PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5816PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5817
5818void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5819void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5820void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5821void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5822void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5823void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5824#endif
5825
5826VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5827 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5828VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5829VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5830VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5831VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5832VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5833VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5834VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5835VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5836VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5837 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5838VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5839 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5840VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5841VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5842VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5843VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5844VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5845VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5846VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5847
5848#ifdef IEM_WITH_SETJMP
5849void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5850void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5851void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5852void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5853void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5854void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5855void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5856
5857void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5858void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5859void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5860void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5861void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5862
5863void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5864void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5865void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5866void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5867
5868void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5869void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5870void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5871void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5872
5873uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5874uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5875uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5876
5877#endif
5878
5879/** @} */
5880
5881/** @name IEMAllCImpl.cpp
5882 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5883 * @{ */
5884IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5885IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5886IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5887IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5888IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5889IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5890IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5891IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5892IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5893IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5894IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5895typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5896typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5897IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5898IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5899IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5900IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5901IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5902IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5903IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5904IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5905IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5906IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5907IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5908IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5909IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5910IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5911IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5912IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5913IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5914IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5915IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5916IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5917IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5918IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5919IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5920IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5921IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5922IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5923IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5924IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5925IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5926IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5927IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5928IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5929IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5930IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5931IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5932IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5933IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5934IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5935IEM_CIMPL_PROTO_0(iemCImpl_clts);
5936IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5937IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5938IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5939IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5940IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5941IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5942IEM_CIMPL_PROTO_0(iemCImpl_invd);
5943IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5944IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5945IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5946IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5947IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5948IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5949IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5950IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5951IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5952IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5953IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5954IEM_CIMPL_PROTO_0(iemCImpl_cli);
5955IEM_CIMPL_PROTO_0(iemCImpl_sti);
5956IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5957IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5958IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5959IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5960IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5961IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5962IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5963IEM_CIMPL_PROTO_0(iemCImpl_daa);
5964IEM_CIMPL_PROTO_0(iemCImpl_das);
5965IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5966IEM_CIMPL_PROTO_0(iemCImpl_aas);
5967IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5968IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5969IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5970IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5971IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5972 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5973IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5974IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5975IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5976IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5977IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5978IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5979IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5980IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5981IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5982IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5983IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5984IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5985IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5986IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5987IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5988IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5989IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5990IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5991IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5992IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5993IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
5994IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
5995IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5996IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5997IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
5998IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
5999IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6000IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6001IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6002IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6003IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6004IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6005IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6006IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6007
6008/** @} */
6009
6010/** @name IEMAllCImplStrInstr.cpp.h
6011 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6012 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6013 * @{ */
6014IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6015IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6016IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6017IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6018IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6019IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6020IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6021IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6022IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6023IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6024IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6025
6026IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6027IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6028IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6029IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6030IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6031IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6032IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6033IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6034IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6035IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6036IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6037
6038IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6039IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6040IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6041IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6042IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6043IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6044IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6045IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6046IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6047IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6048IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6049
6050
6051IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6052IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6053IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6054IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6055IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6056IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6057IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6058IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6059IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6060IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6061IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6062
6063IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6064IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6065IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6066IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6067IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6068IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6069IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6070IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6071IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6072IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6073IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6074
6075IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6076IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6077IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6078IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6079IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6080IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6081IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6082IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6083IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6084IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6085IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6086
6087IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6088IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6089IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6090IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6091IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6092IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6093IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6094IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6095IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6096IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6097IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6098
6099
6100IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6101IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6102IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6103IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6104IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6105IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6106IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6107IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6108IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6109IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6110IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6111
6112IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6113IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6114IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6115IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6116IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6117IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6118IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6119IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6120IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6121IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6122IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6123
6124IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6125IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6126IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6127IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6128IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6129IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6130IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6131IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6132IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6133IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6134IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6135
6136IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6137IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6138IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6139IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6140IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6141IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6142IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6143IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6144IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6145IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6146IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6147/** @} */
6148
6149#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6150VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6151VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6152VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6153VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6154VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6155VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6156VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6157VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6158VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6159VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6160 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6161VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6162 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6163VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6164VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6165VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6166VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6167VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6168VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6169VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6170VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6171 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6172VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6173VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6174VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6175uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6176void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6177VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6178 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6179bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6180IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6181IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6182IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6183IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6184IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6185IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6186IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6187IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6188IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6189IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6190IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6191IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6192IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6193IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6194IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6195IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6196#endif
6197
6198#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6199VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6200VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6201VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6202 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6203VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6204IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6205IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6206IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6207IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6208IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6209IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6210IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6211IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6212#endif
6213
6214IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6215IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6216IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6217
6218extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6219extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6220extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6221extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6222extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6223extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6224extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6225
6226/*
6227 * Recompiler related stuff.
6228 */
6229extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6230extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6231extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6232extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6233extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6234extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6235extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6236
6237DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6238 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6239void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6240DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6241void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6242void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6243DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6244DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6245
6246
6247/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6248#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6249typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6250typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6251# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6252 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6253# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6254 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6255
6256#else
6257typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6258typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6259# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6260 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6261# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6262 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6263#endif
6264
6265
6266IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6267IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6268
6269IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6270
6271IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6272IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6273IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6274IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6275
6276IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6277IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6278IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6279
6280/* Branching: */
6281IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6282IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6283IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6284
6285IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6286IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6287IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6288
6289/* Natural page crossing: */
6290IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6291IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6292IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6293
6294IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6295IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6296IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6297
6298IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6299IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6300IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6301
6302bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6303bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6304
6305/* Native recompiler public bits: */
6306DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6307DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6308int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6309DECLHIDDEN(void *) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, void **ppvExec) RT_NOEXCEPT;
6310DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6311void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6312DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6313
6314#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6315
6316
6317/** @} */
6318
6319RT_C_DECLS_END
6320
6321/* ASM-INC: %include "IEMInternalStruct.mac" */
6322
6323#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6324
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette