VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 105072

Last change on this file since 105072 was 105072, checked in by vboxsync, 5 months ago

VMM/IEM,DBGF,bs3-cpu-weird-1: Early data breakpoint support, mostly untested except for the ring transition tests in bs3-cpu-weird-1. bugref:10715

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 328.1 KB
Line 
1/* $Id: IEMInternal.h 105072 2024-06-28 12:03:20Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def IEM_WITH_TLB_STATISTICS
116 * Enables all TLB statistics. */
117#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
118# define IEM_WITH_TLB_STATISTICS
119#endif
120
121/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
122 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
123 * executing native translation blocks.
124 *
125 * This exploits the fact that we save all non-volatile registers in the TB
126 * prologue and thus just need to do the same as the TB epilogue to get the
127 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
128 * non-volatile (and does something even more crazy for ARM), this probably
129 * won't work reliably on Windows. */
130#ifdef RT_ARCH_ARM64
131# ifndef RT_OS_WINDOWS
132# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
133# endif
134#endif
135/* ASM-NOINC-START */
136#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
137# if !defined(IN_RING3) \
138 || !defined(VBOX_WITH_IEM_RECOMPILER) \
139 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
140# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
141# elif defined(RT_OS_WINDOWS)
142# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
143# endif
144#endif
145
146
147/** @def IEM_DO_LONGJMP
148 *
149 * Wrapper around longjmp / throw.
150 *
151 * @param a_pVCpu The CPU handle.
152 * @param a_rc The status code jump back with / throw.
153 */
154#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
155# ifdef IEM_WITH_THROW_CATCH
156# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
157# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
158 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
159 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
160 throw int(a_rc); \
161 } while (0)
162# else
163# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
164# endif
165# else
166# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
167# endif
168#endif
169
170/** For use with IEM function that may do a longjmp (when enabled).
171 *
172 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
173 * attribute. So, we indicate that function that may be part of a longjmp may
174 * throw "exceptions" and that the compiler should definitely not generate and
175 * std::terminate calling unwind code.
176 *
177 * Here is one example of this ending in std::terminate:
178 * @code{.txt}
17900 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
18001 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
18102 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
18203 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
18304 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
18405 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
18506 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
18607 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
18708 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
18809 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1890a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1900b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1910c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1920d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1930e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1940f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
19510 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
196 @endcode
197 *
198 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
199 */
200#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
201# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
202#else
203# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
204#endif
205/* ASM-NOINC-END */
206
207#define IEM_IMPLEMENTS_TASKSWITCH
208
209/** @def IEM_WITH_3DNOW
210 * Includes the 3DNow decoding. */
211#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
212# ifndef IEM_WITHOUT_3DNOW
213# define IEM_WITH_3DNOW
214# endif
215#endif
216
217/** @def IEM_WITH_THREE_0F_38
218 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
219#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
220# ifndef IEM_WITHOUT_THREE_0F_38
221# define IEM_WITH_THREE_0F_38
222# endif
223#endif
224
225/** @def IEM_WITH_THREE_0F_3A
226 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
227#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
228# ifndef IEM_WITHOUT_THREE_0F_3A
229# define IEM_WITH_THREE_0F_3A
230# endif
231#endif
232
233/** @def IEM_WITH_VEX
234 * Includes the VEX decoding. */
235#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
236# ifndef IEM_WITHOUT_VEX
237# define IEM_WITH_VEX
238# endif
239#endif
240
241/** @def IEM_CFG_TARGET_CPU
242 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
243 *
244 * By default we allow this to be configured by the user via the
245 * CPUM/GuestCpuName config string, but this comes at a slight cost during
246 * decoding. So, for applications of this code where there is no need to
247 * be dynamic wrt target CPU, just modify this define.
248 */
249#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
250# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
251#endif
252
253//#define IEM_WITH_CODE_TLB // - work in progress
254//#define IEM_WITH_DATA_TLB // - work in progress
255
256
257/** @def IEM_USE_UNALIGNED_DATA_ACCESS
258 * Use unaligned accesses instead of elaborate byte assembly. */
259#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
260# define IEM_USE_UNALIGNED_DATA_ACCESS
261#endif /*ASM-NOINC*/
262
263//#define IEM_LOG_MEMORY_WRITES
264
265
266
267#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
268
269# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
270/** Instruction statistics. */
271typedef struct IEMINSTRSTATS
272{
273# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
274# include "IEMInstructionStatisticsTmpl.h"
275# undef IEM_DO_INSTR_STAT
276} IEMINSTRSTATS;
277#else
278struct IEMINSTRSTATS;
279typedef struct IEMINSTRSTATS IEMINSTRSTATS;
280#endif
281/** Pointer to IEM instruction statistics. */
282typedef IEMINSTRSTATS *PIEMINSTRSTATS;
283
284
285/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
286 * @{ */
287#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
288#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
289#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
290#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
291#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
292/** Selects the right variant from a_aArray.
293 * pVCpu is implicit in the caller context. */
294#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
295 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
296/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
297 * be used because the host CPU does not support the operation. */
298#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
299 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
300/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
301 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
302 * into the two.
303 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
304#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
305# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
306 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
307#else
308# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
309 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
310#endif
311/** @} */
312
313/**
314 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
315 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
316 *
317 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
318 * indicator.
319 *
320 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
321 */
322#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
323# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
324 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
325#else
326# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
327#endif
328
329
330/**
331 * Branch types.
332 */
333typedef enum IEMBRANCH
334{
335 IEMBRANCH_JUMP = 1,
336 IEMBRANCH_CALL,
337 IEMBRANCH_TRAP,
338 IEMBRANCH_SOFTWARE_INT,
339 IEMBRANCH_HARDWARE_INT
340} IEMBRANCH;
341AssertCompileSize(IEMBRANCH, 4);
342
343
344/**
345 * INT instruction types.
346 */
347typedef enum IEMINT
348{
349 /** INT n instruction (opcode 0xcd imm). */
350 IEMINT_INTN = 0,
351 /** Single byte INT3 instruction (opcode 0xcc). */
352 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
353 /** Single byte INTO instruction (opcode 0xce). */
354 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
355 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
356 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
357} IEMINT;
358AssertCompileSize(IEMINT, 4);
359
360
361/**
362 * A FPU result.
363 */
364typedef struct IEMFPURESULT
365{
366 /** The output value. */
367 RTFLOAT80U r80Result;
368 /** The output status. */
369 uint16_t FSW;
370} IEMFPURESULT;
371AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
372/** Pointer to a FPU result. */
373typedef IEMFPURESULT *PIEMFPURESULT;
374/** Pointer to a const FPU result. */
375typedef IEMFPURESULT const *PCIEMFPURESULT;
376
377
378/**
379 * A FPU result consisting of two output values and FSW.
380 */
381typedef struct IEMFPURESULTTWO
382{
383 /** The first output value. */
384 RTFLOAT80U r80Result1;
385 /** The output status. */
386 uint16_t FSW;
387 /** The second output value. */
388 RTFLOAT80U r80Result2;
389} IEMFPURESULTTWO;
390AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
391AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
392/** Pointer to a FPU result consisting of two output values and FSW. */
393typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
394/** Pointer to a const FPU result consisting of two output values and FSW. */
395typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
396
397
398/**
399 * IEM TLB entry.
400 *
401 * Lookup assembly:
402 * @code{.asm}
403 ; Calculate tag.
404 mov rax, [VA]
405 shl rax, 16
406 shr rax, 16 + X86_PAGE_SHIFT
407 or rax, [uTlbRevision]
408
409 ; Do indexing.
410 movzx ecx, al
411 lea rcx, [pTlbEntries + rcx]
412
413 ; Check tag.
414 cmp [rcx + IEMTLBENTRY.uTag], rax
415 jne .TlbMiss
416
417 ; Check access.
418 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
419 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
420 cmp rax, [uTlbPhysRev]
421 jne .TlbMiss
422
423 ; Calc address and we're done.
424 mov eax, X86_PAGE_OFFSET_MASK
425 and eax, [VA]
426 or rax, [rcx + IEMTLBENTRY.pMappingR3]
427 %ifdef VBOX_WITH_STATISTICS
428 inc qword [cTlbHits]
429 %endif
430 jmp .Done
431
432 .TlbMiss:
433 mov r8d, ACCESS_FLAGS
434 mov rdx, [VA]
435 mov rcx, [pVCpu]
436 call iemTlbTypeMiss
437 .Done:
438
439 @endcode
440 *
441 */
442typedef struct IEMTLBENTRY
443{
444 /** The TLB entry tag.
445 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
446 * is ASSUMING a virtual address width of 48 bits.
447 *
448 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
449 *
450 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
451 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
452 * revision wraps around though, the tags needs to be zeroed.
453 *
454 * @note Try use SHRD instruction? After seeing
455 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
456 *
457 * @todo This will need to be reorganized for 57-bit wide virtual address and
458 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
459 * have to move the TLB entry versioning entirely to the
460 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
461 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
462 * consumed by PCID and ASID (12 + 6 = 18).
463 */
464 uint64_t uTag;
465 /** Access flags and physical TLB revision.
466 *
467 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
468 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
469 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
470 * - Bit 3 - pgm phys/virt - not directly writable.
471 * - Bit 4 - pgm phys page - not directly readable.
472 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
473 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
474 * - Bit 7 - tlb entry - pMappingR3 member not valid.
475 * - Bits 63 thru 8 are used for the physical TLB revision number.
476 *
477 * We're using complemented bit meanings here because it makes it easy to check
478 * whether special action is required. For instance a user mode write access
479 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
480 * non-zero result would mean special handling needed because either it wasn't
481 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
482 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
483 * need to check any PTE flag.
484 */
485 uint64_t fFlagsAndPhysRev;
486 /** The guest physical page address. */
487 uint64_t GCPhys;
488 /** Pointer to the ring-3 mapping. */
489 R3PTRTYPE(uint8_t *) pbMappingR3;
490#if HC_ARCH_BITS == 32
491 uint32_t u32Padding1;
492#endif
493} IEMTLBENTRY;
494AssertCompileSize(IEMTLBENTRY, 32);
495/** Pointer to an IEM TLB entry. */
496typedef IEMTLBENTRY *PIEMTLBENTRY;
497/** Pointer to a const IEM TLB entry. */
498typedef IEMTLBENTRY const *PCIEMTLBENTRY;
499
500/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
501 * @{ */
502#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
503#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
504#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
505#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
506#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
507#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
508#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
509#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
510#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
511#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
512#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
513/** @} */
514AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
515AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
516AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
517AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
518AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
519/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
520#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
521 | PGMIEMGCPHYS2PTR_F_NO_READ \
522 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
523 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
524 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
525 | IEMTLBE_F_PHYS_REV )
526
527/** The TLB size (power of two).
528 * We initially chose 256 because that way we can obtain the result directly
529 * from a 8-bit register without an additional AND instruction.
530 * See also @bugref{10687}. */
531#define IEMTLB_ENTRY_COUNT 256
532#define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
533AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
534
535/**
536 * An IEM TLB.
537 *
538 * We've got two of these, one for data and one for instructions.
539 */
540typedef struct IEMTLB
541{
542 /** The non-global TLB revision.
543 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
544 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
545 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
546 * (The revision zero indicates an invalid TLB entry.)
547 *
548 * The initial value is choosen to cause an early wraparound. */
549 uint64_t uTlbRevision;
550 /** The TLB physical address revision - shadow of PGM variable.
551 *
552 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
553 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
554 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
555 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
556 *
557 * The initial value is choosen to cause an early wraparound.
558 *
559 * @note This is placed between the two TLB revisions because we
560 * load it in pair with one or the other on arm64. */
561 uint64_t volatile uTlbPhysRev;
562 /** The global TLB revision.
563 * Same as uTlbRevision, but only increased for global flushes. */
564 uint64_t uTlbRevisionGlobal;
565
566 /* Statistics: */
567
568 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
569 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
570 * not via safe read/write path) calls to iemMemMapJmp. */
571 uint64_t cTlbCoreHits;
572 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
573 * only; data tlb only). */
574 uint64_t cTlbSafeHits;
575 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
576 uint64_t cTlbInlineCodeHits;
577
578 /** TLB misses in IEMAll.cpp code (both).
579 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
580 * not via safe read/write path) calls to iemMemMapJmp. So,
581 * for the data TLB this more like 'other misses', while for the code
582 * TLB is all misses. */
583 uint64_t cTlbCoreMisses;
584 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
585 uint64_t cTlbCoreGlobalLoads;
586 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
587 uint64_t cTlbSafeMisses;
588 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
589 uint64_t cTlbSafeGlobalLoads;
590 /** Safe read path taken (data only). */
591 uint64_t cTlbSafeReadPath;
592 /** Safe write path taken (data only). */
593 uint64_t cTlbSafeWritePath;
594
595 /** @name Details for native code TLB misses.
596 * @note These counts are included in the above counters (cTlbSafeReadPath,
597 * cTlbSafeWritePath, cTlbInlineCodeHits).
598 * @{ */
599 /** TLB misses in native code due to tag mismatch. */
600 STAMCOUNTER cTlbNativeMissTag;
601 /** TLB misses in native code due to flags or physical revision mismatch. */
602 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
603 /** TLB misses in native code due to misaligned access. */
604 STAMCOUNTER cTlbNativeMissAlignment;
605 /** TLB misses in native code due to cross page access. */
606 uint32_t cTlbNativeMissCrossPage;
607 /** TLB misses in native code due to non-canonical address. */
608 uint32_t cTlbNativeMissNonCanonical;
609 /** @} */
610
611 /** Slow read path (code only). */
612 uint32_t cTlbSlowCodeReadPath;
613
614 /** Regular TLB flush count. */
615 uint32_t cTlsFlushes;
616 /** Global TLB flush count. */
617 uint32_t cTlsGlobalFlushes;
618 /** Revision rollovers. */
619 uint32_t cTlbRevisionRollovers;
620 /** Physical revision flushes. */
621 uint32_t cTlbPhysRevFlushes;
622 /** Physical revision rollovers. */
623 uint32_t cTlbPhysRevRollovers;
624
625 uint32_t au32Padding[10];
626
627 /** The TLB entries.
628 * Even entries are for PTE.G=0 and uses uTlbRevision.
629 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
630 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
631} IEMTLB;
632AssertCompileSizeAlignment(IEMTLB, 64);
633/** IEMTLB::uTlbRevision increment. */
634#define IEMTLB_REVISION_INCR RT_BIT_64(36)
635/** IEMTLB::uTlbRevision mask. */
636#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
637/** IEMTLB::uTlbPhysRev increment.
638 * @sa IEMTLBE_F_PHYS_REV */
639#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
640/**
641 * Calculates the TLB tag for a virtual address but without TLB revision.
642 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
643 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
644 * the clearing of the top 16 bits won't work (if 32-bit
645 * we'll end up with mostly zeros).
646 */
647#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
648/**
649 * Converts a TLB tag value into a even TLB index.
650 * @returns Index into IEMTLB::aEntries.
651 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
652 */
653#if IEMTLB_ENTRY_COUNT == 256
654# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
655#else
656# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
657AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
658#endif
659/**
660 * Converts a TLB tag value into an even TLB index.
661 * @returns Pointer into IEMTLB::aEntries corresponding to .
662 * @param a_pTlb The TLB.
663 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
664 * IEMTLB_CALC_TAG_NO_REV.
665 */
666#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
667
668
669/** @name IEM_MC_F_XXX - MC block flags/clues.
670 * @todo Merge with IEM_CIMPL_F_XXX
671 * @{ */
672#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
673#define IEM_MC_F_MIN_186 RT_BIT_32(1)
674#define IEM_MC_F_MIN_286 RT_BIT_32(2)
675#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
676#define IEM_MC_F_MIN_386 RT_BIT_32(3)
677#define IEM_MC_F_MIN_486 RT_BIT_32(4)
678#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
679#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
680#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
681#define IEM_MC_F_64BIT RT_BIT_32(6)
682#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
683/** This is set by IEMAllN8vePython.py to indicate a variation without the
684 * flags-clearing-and-checking, when there is also a variation with that.
685 * @note Do not use this manully, it's only for python and for testing in
686 * the native recompiler! */
687#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
688/** @} */
689
690/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
691 *
692 * These clues are mainly for the recompiler, so that it can emit correct code.
693 *
694 * They are processed by the python script and which also automatically
695 * calculates flags for MC blocks based on the statements, extending the use of
696 * these flags to describe MC block behavior to the recompiler core. The python
697 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
698 * error checking purposes. The script emits the necessary fEndTb = true and
699 * similar statements as this reduces compile time a tiny bit.
700 *
701 * @{ */
702/** Flag set if direct branch, clear if absolute or indirect. */
703#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
704/** Flag set if indirect branch, clear if direct or relative.
705 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
706 * as well as for return instructions (RET, IRET, RETF). */
707#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
708/** Flag set if relative branch, clear if absolute or indirect. */
709#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
710/** Flag set if conditional branch, clear if unconditional. */
711#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
712/** Flag set if it's a far branch (changes CS). */
713#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
714/** Convenience: Testing any kind of branch. */
715#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
716
717/** Execution flags may change (IEMCPU::fExec). */
718#define IEM_CIMPL_F_MODE RT_BIT_32(5)
719/** May change significant portions of RFLAGS. */
720#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
721/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
722#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
723/** May trigger interrupt shadowing. */
724#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
725/** May enable interrupts, so recheck IRQ immediately afterwards executing
726 * the instruction. */
727#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
728/** May disable interrupts, so recheck IRQ immediately before executing the
729 * instruction. */
730#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
731/** Convenience: Check for IRQ both before and after an instruction. */
732#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
733/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
734#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
735/** May modify FPU state.
736 * @todo Not sure if this is useful yet. */
737#define IEM_CIMPL_F_FPU RT_BIT_32(12)
738/** REP prefixed instruction which may yield before updating PC.
739 * @todo Not sure if this is useful, REP functions now return non-zero
740 * status if they don't update the PC. */
741#define IEM_CIMPL_F_REP RT_BIT_32(13)
742/** I/O instruction.
743 * @todo Not sure if this is useful yet. */
744#define IEM_CIMPL_F_IO RT_BIT_32(14)
745/** Force end of TB after the instruction. */
746#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
747/** Flag set if a branch may also modify the stack (push/pop return address). */
748#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
749/** Flag set if a branch may also modify the stack (push/pop return address)
750 * and switch it (load/restore SS:RSP). */
751#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
752/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
753#define IEM_CIMPL_F_XCPT \
754 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
755 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
756
757/** The block calls a C-implementation instruction function with two implicit arguments.
758 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
759 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
760 * @note The python scripts will add this if missing. */
761#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
762/** The block calls an ASM-implementation instruction function.
763 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
764 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
765 * @note The python scripts will add this if missing. */
766#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
767/** The block calls an ASM-implementation instruction function with an implicit
768 * X86FXSTATE pointer argument.
769 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
770 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
771 * @note The python scripts will add this if missing. */
772#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
773/** The block calls an ASM-implementation instruction function with an implicit
774 * X86XSAVEAREA pointer argument.
775 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
776 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
777 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
778 * @note The python scripts will add this if missing. */
779#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
780/** @} */
781
782
783/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
784 *
785 * These flags are set when entering IEM and adjusted as code is executed, such
786 * that they will always contain the current values as instructions are
787 * finished.
788 *
789 * In recompiled execution mode, (most of) these flags are included in the
790 * translation block selection key and stored in IEMTB::fFlags alongside the
791 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
792 * in IEMCPU::fExec.
793 *
794 * @{ */
795/** Mode: The block target mode mask. */
796#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
797/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
798#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
799/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
800 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
801 * 32-bit mode (for simplifying most memory accesses). */
802#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
803/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
804#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
805/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
806#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
807
808/** X86 Mode: 16-bit on 386 or later. */
809#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
810/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
811#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
812/** X86 Mode: 16-bit protected mode on 386 or later. */
813#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
814/** X86 Mode: 16-bit protected mode on 386 or later. */
815#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
816/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
817#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
818
819/** X86 Mode: 32-bit on 386 or later. */
820#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
821/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
822#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
823/** X86 Mode: 32-bit protected mode. */
824#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
825/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
826#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
827
828/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
829#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
830
831/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
832#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
833 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
834 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
835
836/** Bypass access handlers when set. */
837#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
838/** Have pending hardware instruction breakpoints. */
839#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
840/** Have pending hardware data breakpoints. */
841#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
842
843/** X86: Have pending hardware I/O breakpoints. */
844#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
845/** X86: Disregard the lock prefix (implied or not) when set. */
846#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
847
848/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
849#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
850
851/** Caller configurable options. */
852#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
853
854/** X86: The current protection level (CPL) shift factor. */
855#define IEM_F_X86_CPL_SHIFT 8
856/** X86: The current protection level (CPL) mask. */
857#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
858/** X86: The current protection level (CPL) shifted mask. */
859#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
860
861/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
862#define IEM_F_X86_AC UINT32_C(0x00080000)
863
864/** X86 execution context.
865 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
866 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
867 * mode. */
868#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
869/** X86 context: Plain regular execution context. */
870#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
871/** X86 context: VT-x enabled. */
872#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
873/** X86 context: AMD-V enabled. */
874#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
875/** X86 context: In AMD-V or VT-x guest mode. */
876#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
877/** X86 context: System management mode (SMM). */
878#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
879
880/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
881 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
882 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
883 * alread). */
884
885/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
886 * iemRegFinishClearingRF() most for most situations
887 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
888 * the IEM_F_PENDING_BRK_XXX bits alread). */
889
890/** @} */
891
892
893/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
894 *
895 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
896 * translation block flags. The combined flag mask (subject to
897 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
898 *
899 * @{ */
900/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
901#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
902
903/** Type: The block type mask. */
904#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
905/** Type: Purly threaded recompiler (via tables). */
906#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
907/** Type: Native recompilation. */
908#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
909
910/** Set when we're starting the block in an "interrupt shadow".
911 * We don't need to distingish between the two types of this mask, thus the one.
912 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
913#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
914/** Set when we're currently inhibiting NMIs
915 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
916#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
917
918/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
919 * we're close the limit before starting a TB, as determined by
920 * iemGetTbFlagsForCurrentPc(). */
921#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
922
923/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
924 *
925 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
926 * don't implement), because we don't currently generate any context
927 * specific code - that's all handled in CIMPL functions.
928 *
929 * For the threaded recompiler we don't generate any CPL specific code
930 * either, but the native recompiler does for memory access (saves getting
931 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
932 * Since most OSes will not share code between rings, this shouldn't
933 * have any real effect on TB/memory/recompiling load.
934 */
935#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
936/** @} */
937
938AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
939AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
940AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
941AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
942AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
943AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
944AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
945AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
946AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
947AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
948AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
949AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
950AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
951AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
952AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
953AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
954AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
955AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
956AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
957
958AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
959AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
960AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
961AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
962AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
963AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
964AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
965AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
966AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
967AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
968AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
969AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
970
971AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
972AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
973AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
974
975/** Native instruction type for use with the native code generator.
976 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
977#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
978typedef uint8_t IEMNATIVEINSTR;
979#else
980typedef uint32_t IEMNATIVEINSTR;
981#endif
982/** Pointer to a native instruction unit. */
983typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
984/** Pointer to a const native instruction unit. */
985typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
986
987/**
988 * A call for the threaded call table.
989 */
990typedef struct IEMTHRDEDCALLENTRY
991{
992 /** The function to call (IEMTHREADEDFUNCS). */
993 uint16_t enmFunction;
994
995 /** Instruction number in the TB (for statistics). */
996 uint8_t idxInstr;
997 /** The opcode length. */
998 uint8_t cbOpcode;
999 /** Offset into IEMTB::pabOpcodes. */
1000 uint16_t offOpcode;
1001
1002 /** TB lookup table index (7 bits) and large size (1 bits).
1003 *
1004 * The default size is 1 entry, but for indirect calls and returns we set the
1005 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1006 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1007 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1008 *
1009 * By default lookup table entry 0 for a TB is reserved as a fallback for
1010 * calltable entries w/o explicit entreis, so this member will be non-zero if
1011 * there is a lookup entry associated with this call.
1012 *
1013 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1014 */
1015 uint8_t uTbLookup;
1016
1017 /** Unused atm. */
1018 uint8_t uUnused0;
1019
1020 /** Generic parameters. */
1021 uint64_t auParams[3];
1022} IEMTHRDEDCALLENTRY;
1023AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1024/** Pointer to a threaded call entry. */
1025typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1026/** Pointer to a const threaded call entry. */
1027typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1028
1029/** The number of TB lookup table entries for a large allocation
1030 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1031#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1032/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1033#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1034/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1035#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1036/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1037#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1038 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1039
1040/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1041#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1042
1043/**
1044 * Native IEM TB 'function' typedef.
1045 *
1046 * This will throw/longjmp on occation.
1047 *
1048 * @note AMD64 doesn't have that many non-volatile registers and does sport
1049 * 32-bit address displacments, so we don't need pCtx.
1050 *
1051 * On ARM64 pCtx allows us to directly address the whole register
1052 * context without requiring a separate indexing register holding the
1053 * offset. This saves an instruction loading the offset for each guest
1054 * CPU context access, at the cost of a non-volatile register.
1055 * Fortunately, ARM64 has quite a lot more registers.
1056 */
1057typedef
1058#ifdef RT_ARCH_AMD64
1059int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1060#else
1061int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1062#endif
1063#if RT_CPLUSPLUS_PREREQ(201700)
1064 IEM_NOEXCEPT_MAY_LONGJMP
1065#endif
1066 ;
1067/** Pointer to a native IEM TB entry point function.
1068 * This will throw/longjmp on occation. */
1069typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1070
1071
1072/**
1073 * Translation block debug info entry type.
1074 */
1075typedef enum IEMTBDBGENTRYTYPE
1076{
1077 kIemTbDbgEntryType_Invalid = 0,
1078 /** The entry is for marking a native code position.
1079 * Entries following this all apply to this position. */
1080 kIemTbDbgEntryType_NativeOffset,
1081 /** The entry is for a new guest instruction. */
1082 kIemTbDbgEntryType_GuestInstruction,
1083 /** Marks the start of a threaded call. */
1084 kIemTbDbgEntryType_ThreadedCall,
1085 /** Marks the location of a label. */
1086 kIemTbDbgEntryType_Label,
1087 /** Info about a host register shadowing a guest register. */
1088 kIemTbDbgEntryType_GuestRegShadowing,
1089#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1090 /** Info about a host SIMD register shadowing a guest SIMD register. */
1091 kIemTbDbgEntryType_GuestSimdRegShadowing,
1092#endif
1093#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1094 /** Info about a delayed RIP update. */
1095 kIemTbDbgEntryType_DelayedPcUpdate,
1096#endif
1097#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1098 /** Info about a shadowed guest register becoming dirty. */
1099 kIemTbDbgEntryType_GuestRegDirty,
1100 /** Info about register writeback/flush oepration. */
1101 kIemTbDbgEntryType_GuestRegWriteback,
1102#endif
1103 kIemTbDbgEntryType_End
1104} IEMTBDBGENTRYTYPE;
1105
1106/**
1107 * Translation block debug info entry.
1108 */
1109typedef union IEMTBDBGENTRY
1110{
1111 /** Plain 32-bit view. */
1112 uint32_t u;
1113
1114 /** Generic view for getting at the type field. */
1115 struct
1116 {
1117 /** IEMTBDBGENTRYTYPE */
1118 uint32_t uType : 4;
1119 uint32_t uTypeSpecific : 28;
1120 } Gen;
1121
1122 struct
1123 {
1124 /** kIemTbDbgEntryType_ThreadedCall1. */
1125 uint32_t uType : 4;
1126 /** Native code offset. */
1127 uint32_t offNative : 28;
1128 } NativeOffset;
1129
1130 struct
1131 {
1132 /** kIemTbDbgEntryType_GuestInstruction. */
1133 uint32_t uType : 4;
1134 uint32_t uUnused : 4;
1135 /** The IEM_F_XXX flags. */
1136 uint32_t fExec : 24;
1137 } GuestInstruction;
1138
1139 struct
1140 {
1141 /* kIemTbDbgEntryType_ThreadedCall. */
1142 uint32_t uType : 4;
1143 /** Set if the call was recompiled to native code, clear if just calling
1144 * threaded function. */
1145 uint32_t fRecompiled : 1;
1146 uint32_t uUnused : 11;
1147 /** The threaded call number (IEMTHREADEDFUNCS). */
1148 uint32_t enmCall : 16;
1149 } ThreadedCall;
1150
1151 struct
1152 {
1153 /* kIemTbDbgEntryType_Label. */
1154 uint32_t uType : 4;
1155 uint32_t uUnused : 4;
1156 /** The label type (IEMNATIVELABELTYPE). */
1157 uint32_t enmLabel : 8;
1158 /** The label data. */
1159 uint32_t uData : 16;
1160 } Label;
1161
1162 struct
1163 {
1164 /* kIemTbDbgEntryType_GuestRegShadowing. */
1165 uint32_t uType : 4;
1166 uint32_t uUnused : 4;
1167 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1168 uint32_t idxGstReg : 8;
1169 /** The host new register number, UINT8_MAX if dropped. */
1170 uint32_t idxHstReg : 8;
1171 /** The previous host register number, UINT8_MAX if new. */
1172 uint32_t idxHstRegPrev : 8;
1173 } GuestRegShadowing;
1174
1175#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1176 struct
1177 {
1178 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1179 uint32_t uType : 4;
1180 uint32_t uUnused : 4;
1181 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1182 uint32_t idxGstSimdReg : 8;
1183 /** The host new register number, UINT8_MAX if dropped. */
1184 uint32_t idxHstSimdReg : 8;
1185 /** The previous host register number, UINT8_MAX if new. */
1186 uint32_t idxHstSimdRegPrev : 8;
1187 } GuestSimdRegShadowing;
1188#endif
1189
1190#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1191 struct
1192 {
1193 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1194 uint32_t uType : 4;
1195 /* The instruction offset added to the program counter. */
1196 uint32_t offPc : 14;
1197 /** Number of instructions skipped. */
1198 uint32_t cInstrSkipped : 14;
1199 } DelayedPcUpdate;
1200#endif
1201
1202#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1203 struct
1204 {
1205 /* kIemTbDbgEntryType_GuestRegDirty. */
1206 uint32_t uType : 4;
1207 uint32_t uUnused : 11;
1208 /** Flag whether this is about a SIMD (true) or general (false) register. */
1209 uint32_t fSimdReg : 1;
1210 /** The guest register index being marked as dirty. */
1211 uint32_t idxGstReg : 8;
1212 /** The host register number this register is shadowed in .*/
1213 uint32_t idxHstReg : 8;
1214 } GuestRegDirty;
1215
1216 struct
1217 {
1218 /* kIemTbDbgEntryType_GuestRegWriteback. */
1219 uint32_t uType : 4;
1220 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1221 uint32_t fSimdReg : 1;
1222 /** The mask shift. */
1223 uint32_t cShift : 2;
1224 /** The guest register mask being written back. */
1225 uint32_t fGstReg : 25;
1226 } GuestRegWriteback;
1227#endif
1228
1229} IEMTBDBGENTRY;
1230AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1231/** Pointer to a debug info entry. */
1232typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1233/** Pointer to a const debug info entry. */
1234typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1235
1236/**
1237 * Translation block debug info.
1238 */
1239typedef struct IEMTBDBG
1240{
1241 /** Number of entries in aEntries. */
1242 uint32_t cEntries;
1243 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1244 uint32_t offNativeLast;
1245 /** Debug info entries. */
1246 RT_FLEXIBLE_ARRAY_EXTENSION
1247 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1248} IEMTBDBG;
1249/** Pointer to TB debug info. */
1250typedef IEMTBDBG *PIEMTBDBG;
1251/** Pointer to const TB debug info. */
1252typedef IEMTBDBG const *PCIEMTBDBG;
1253
1254
1255/**
1256 * Translation block.
1257 *
1258 * The current plan is to just keep TBs and associated lookup hash table private
1259 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1260 * avoids using expensive atomic primitives for updating lists and stuff.
1261 */
1262#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1263typedef struct IEMTB
1264{
1265 /** Next block with the same hash table entry. */
1266 struct IEMTB *pNext;
1267 /** Usage counter. */
1268 uint32_t cUsed;
1269 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1270 uint32_t msLastUsed;
1271
1272 /** @name What uniquely identifies the block.
1273 * @{ */
1274 RTGCPHYS GCPhysPc;
1275 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1276 uint32_t fFlags;
1277 union
1278 {
1279 struct
1280 {
1281 /**< Relevant CS X86DESCATTR_XXX bits. */
1282 uint16_t fAttr;
1283 } x86;
1284 };
1285 /** @} */
1286
1287 /** Number of opcode ranges. */
1288 uint8_t cRanges;
1289 /** Statistics: Number of instructions in the block. */
1290 uint8_t cInstructions;
1291
1292 /** Type specific info. */
1293 union
1294 {
1295 struct
1296 {
1297 /** The call sequence table. */
1298 PIEMTHRDEDCALLENTRY paCalls;
1299 /** Number of calls in paCalls. */
1300 uint16_t cCalls;
1301 /** Number of calls allocated. */
1302 uint16_t cAllocated;
1303 } Thrd;
1304 struct
1305 {
1306 /** The native instructions (PFNIEMTBNATIVE). */
1307 PIEMNATIVEINSTR paInstructions;
1308 /** Number of instructions pointed to by paInstructions. */
1309 uint32_t cInstructions;
1310 } Native;
1311 /** Generic view for zeroing when freeing. */
1312 struct
1313 {
1314 uintptr_t uPtr;
1315 uint32_t uData;
1316 } Gen;
1317 };
1318
1319 /** The allocation chunk this TB belongs to. */
1320 uint8_t idxAllocChunk;
1321 /** The number of entries in the lookup table.
1322 * Because we're out of space, the TB lookup table is located before the
1323 * opcodes pointed to by pabOpcodes. */
1324 uint8_t cTbLookupEntries;
1325
1326 /** Number of bytes of opcodes stored in pabOpcodes.
1327 * @todo this field isn't really needed, aRanges keeps the actual info. */
1328 uint16_t cbOpcodes;
1329 /** Pointer to the opcode bytes this block was recompiled from.
1330 * This also points to the TB lookup table, which starts cTbLookupEntries
1331 * entries before the opcodes (we don't have room atm for another point). */
1332 uint8_t *pabOpcodes;
1333
1334 /** Debug info if enabled.
1335 * This is only generated by the native recompiler. */
1336 PIEMTBDBG pDbgInfo;
1337
1338 /* --- 64 byte cache line end --- */
1339
1340 /** Opcode ranges.
1341 *
1342 * The opcode checkers and maybe TLB loading functions will use this to figure
1343 * out what to do. The parameter will specify an entry and the opcode offset to
1344 * start at and the minimum number of bytes to verify (instruction length).
1345 *
1346 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1347 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1348 * code TLB (must have a valid entry for that address) and scan the ranges to
1349 * locate the corresponding opcodes. Probably.
1350 */
1351 struct IEMTBOPCODERANGE
1352 {
1353 /** Offset within pabOpcodes. */
1354 uint16_t offOpcodes;
1355 /** Number of bytes. */
1356 uint16_t cbOpcodes;
1357 /** The page offset. */
1358 RT_GCC_EXTENSION
1359 uint16_t offPhysPage : 12;
1360 /** Unused bits. */
1361 RT_GCC_EXTENSION
1362 uint16_t u2Unused : 2;
1363 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1364 RT_GCC_EXTENSION
1365 uint16_t idxPhysPage : 2;
1366 } aRanges[8];
1367
1368 /** Physical pages that this TB covers.
1369 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1370 RTGCPHYS aGCPhysPages[2];
1371} IEMTB;
1372#pragma pack()
1373AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1374AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1375AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1376AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1377AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1378AssertCompileMemberOffset(IEMTB, aRanges, 64);
1379AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1380#if 1
1381AssertCompileSize(IEMTB, 128);
1382# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1383#else
1384AssertCompileSize(IEMTB, 168);
1385# undef IEMTB_SIZE_IS_POWER_OF_TWO
1386#endif
1387
1388/** Pointer to a translation block. */
1389typedef IEMTB *PIEMTB;
1390/** Pointer to a const translation block. */
1391typedef IEMTB const *PCIEMTB;
1392
1393/** Gets address of the given TB lookup table entry. */
1394#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1395 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1396
1397/**
1398 * Gets the physical address for a TB opcode range.
1399 */
1400DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1401{
1402 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1403 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1404 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1405 if (idxPage == 0)
1406 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1407 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1408 return pTb->aGCPhysPages[idxPage - 1];
1409}
1410
1411
1412/**
1413 * A chunk of memory in the TB allocator.
1414 */
1415typedef struct IEMTBCHUNK
1416{
1417 /** Pointer to the translation blocks in this chunk. */
1418 PIEMTB paTbs;
1419#ifdef IN_RING0
1420 /** Allocation handle. */
1421 RTR0MEMOBJ hMemObj;
1422#endif
1423} IEMTBCHUNK;
1424
1425/**
1426 * A per-CPU translation block allocator.
1427 *
1428 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1429 * the length of the collision list, and of course also for cache line alignment
1430 * reasons, the TBs must be allocated with at least 64-byte alignment.
1431 * Memory is there therefore allocated using one of the page aligned allocators.
1432 *
1433 *
1434 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1435 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1436 * that enables us to quickly calculate the allocation bitmap position when
1437 * freeing the translation block.
1438 */
1439typedef struct IEMTBALLOCATOR
1440{
1441 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1442 uint32_t uMagic;
1443
1444#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1445 /** Mask corresponding to cTbsPerChunk - 1. */
1446 uint32_t fChunkMask;
1447 /** Shift count corresponding to cTbsPerChunk. */
1448 uint8_t cChunkShift;
1449#else
1450 uint32_t uUnused;
1451 uint8_t bUnused;
1452#endif
1453 /** Number of chunks we're allowed to allocate. */
1454 uint8_t cMaxChunks;
1455 /** Number of chunks currently populated. */
1456 uint16_t cAllocatedChunks;
1457 /** Number of translation blocks per chunk. */
1458 uint32_t cTbsPerChunk;
1459 /** Chunk size. */
1460 uint32_t cbPerChunk;
1461
1462 /** The maximum number of TBs. */
1463 uint32_t cMaxTbs;
1464 /** Total number of TBs in the populated chunks.
1465 * (cAllocatedChunks * cTbsPerChunk) */
1466 uint32_t cTotalTbs;
1467 /** The current number of TBs in use.
1468 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1469 uint32_t cInUseTbs;
1470 /** Statistics: Number of the cInUseTbs that are native ones. */
1471 uint32_t cNativeTbs;
1472 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1473 uint32_t cThreadedTbs;
1474
1475 /** Where to start pruning TBs from when we're out.
1476 * See iemTbAllocatorAllocSlow for details. */
1477 uint32_t iPruneFrom;
1478 /** Hint about which bit to start scanning the bitmap from. */
1479 uint32_t iStartHint;
1480 /** Where to start pruning native TBs from when we're out of executable memory.
1481 * See iemTbAllocatorFreeupNativeSpace for details. */
1482 uint32_t iPruneNativeFrom;
1483 uint32_t uPadding;
1484
1485 /** Statistics: Number of TB allocation calls. */
1486 STAMCOUNTER StatAllocs;
1487 /** Statistics: Number of TB free calls. */
1488 STAMCOUNTER StatFrees;
1489 /** Statistics: Time spend pruning. */
1490 STAMPROFILE StatPrune;
1491 /** Statistics: Time spend pruning native TBs. */
1492 STAMPROFILE StatPruneNative;
1493
1494 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1495 PIEMTB pDelayedFreeHead;
1496
1497 /** Allocation chunks. */
1498 IEMTBCHUNK aChunks[256];
1499
1500 /** Allocation bitmap for all possible chunk chunks. */
1501 RT_FLEXIBLE_ARRAY_EXTENSION
1502 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1503} IEMTBALLOCATOR;
1504/** Pointer to a TB allocator. */
1505typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1506
1507/** Magic value for the TB allocator (Emmet Harley Cohen). */
1508#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1509
1510
1511/**
1512 * A per-CPU translation block cache (hash table).
1513 *
1514 * The hash table is allocated once during IEM initialization and size double
1515 * the max TB count, rounded up to the nearest power of two (so we can use and
1516 * AND mask rather than a rest division when hashing).
1517 */
1518typedef struct IEMTBCACHE
1519{
1520 /** Magic value (IEMTBCACHE_MAGIC). */
1521 uint32_t uMagic;
1522 /** Size of the hash table. This is a power of two. */
1523 uint32_t cHash;
1524 /** The mask corresponding to cHash. */
1525 uint32_t uHashMask;
1526 uint32_t uPadding;
1527
1528 /** @name Statistics
1529 * @{ */
1530 /** Number of collisions ever. */
1531 STAMCOUNTER cCollisions;
1532
1533 /** Statistics: Number of TB lookup misses. */
1534 STAMCOUNTER cLookupMisses;
1535 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1536 STAMCOUNTER cLookupHits;
1537 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1538 STAMCOUNTER cLookupHitsViaTbLookupTable;
1539 STAMCOUNTER auPadding2[2];
1540 /** Statistics: Collision list length pruning. */
1541 STAMPROFILE StatPrune;
1542 /** @} */
1543
1544 /** The hash table itself.
1545 * @note The lower 6 bits of the pointer is used for keeping the collision
1546 * list length, so we can take action when it grows too long.
1547 * This works because TBs are allocated using a 64 byte (or
1548 * higher) alignment from page aligned chunks of memory, so the lower
1549 * 6 bits of the address will always be zero.
1550 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1551 */
1552 RT_FLEXIBLE_ARRAY_EXTENSION
1553 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1554} IEMTBCACHE;
1555/** Pointer to a per-CPU translation block cahce. */
1556typedef IEMTBCACHE *PIEMTBCACHE;
1557
1558/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1559#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1560
1561/** The collision count mask for IEMTBCACHE::apHash entries. */
1562#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1563/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1564#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1565/** Combine a TB pointer and a collision list length into a value for an
1566 * IEMTBCACHE::apHash entry. */
1567#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1568/** Combine a TB pointer and a collision list length into a value for an
1569 * IEMTBCACHE::apHash entry. */
1570#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1571/** Combine a TB pointer and a collision list length into a value for an
1572 * IEMTBCACHE::apHash entry. */
1573#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1574
1575/**
1576 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1577 */
1578#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1579 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1580
1581/**
1582 * Calculates the hash table slot for a TB from physical PC address and TB
1583 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1584 */
1585#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1586 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1587
1588
1589/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1590 *
1591 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1592 *
1593 * @{ */
1594/** Value if no branching happened recently. */
1595#define IEMBRANCHED_F_NO UINT8_C(0x00)
1596/** Flag set if direct branch, clear if absolute or indirect. */
1597#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1598/** Flag set if indirect branch, clear if direct or relative. */
1599#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1600/** Flag set if relative branch, clear if absolute or indirect. */
1601#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1602/** Flag set if conditional branch, clear if unconditional. */
1603#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1604/** Flag set if it's a far branch. */
1605#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1606/** Flag set if the stack pointer is modified. */
1607#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1608/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1609#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1610/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1611#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1612/** @} */
1613
1614
1615/**
1616 * The per-CPU IEM state.
1617 */
1618typedef struct IEMCPU
1619{
1620 /** Info status code that needs to be propagated to the IEM caller.
1621 * This cannot be passed internally, as it would complicate all success
1622 * checks within the interpreter making the code larger and almost impossible
1623 * to get right. Instead, we'll store status codes to pass on here. Each
1624 * source of these codes will perform appropriate sanity checks. */
1625 int32_t rcPassUp; /* 0x00 */
1626 /** Execution flag, IEM_F_XXX. */
1627 uint32_t fExec; /* 0x04 */
1628
1629 /** @name Decoder state.
1630 * @{ */
1631#ifdef IEM_WITH_CODE_TLB
1632 /** The offset of the next instruction byte. */
1633 uint32_t offInstrNextByte; /* 0x08 */
1634 /** The number of bytes available at pbInstrBuf for the current instruction.
1635 * This takes the max opcode length into account so that doesn't need to be
1636 * checked separately. */
1637 uint32_t cbInstrBuf; /* 0x0c */
1638 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1639 * This can be NULL if the page isn't mappable for some reason, in which
1640 * case we'll do fallback stuff.
1641 *
1642 * If we're executing an instruction from a user specified buffer,
1643 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1644 * aligned pointer but pointer to the user data.
1645 *
1646 * For instructions crossing pages, this will start on the first page and be
1647 * advanced to the next page by the time we've decoded the instruction. This
1648 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1649 */
1650 uint8_t const *pbInstrBuf; /* 0x10 */
1651# if ARCH_BITS == 32
1652 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1653# endif
1654 /** The program counter corresponding to pbInstrBuf.
1655 * This is set to a non-canonical address when we need to invalidate it. */
1656 uint64_t uInstrBufPc; /* 0x18 */
1657 /** The guest physical address corresponding to pbInstrBuf. */
1658 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1659 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1660 * This takes the CS segment limit into account.
1661 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1662 uint16_t cbInstrBufTotal; /* 0x28 */
1663 /** Offset into pbInstrBuf of the first byte of the current instruction.
1664 * Can be negative to efficiently handle cross page instructions. */
1665 int16_t offCurInstrStart; /* 0x2a */
1666
1667# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1668 /** The prefix mask (IEM_OP_PRF_XXX). */
1669 uint32_t fPrefixes; /* 0x2c */
1670 /** The extra REX ModR/M register field bit (REX.R << 3). */
1671 uint8_t uRexReg; /* 0x30 */
1672 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1673 * (REX.B << 3). */
1674 uint8_t uRexB; /* 0x31 */
1675 /** The extra REX SIB index field bit (REX.X << 3). */
1676 uint8_t uRexIndex; /* 0x32 */
1677
1678 /** The effective segment register (X86_SREG_XXX). */
1679 uint8_t iEffSeg; /* 0x33 */
1680
1681 /** The offset of the ModR/M byte relative to the start of the instruction. */
1682 uint8_t offModRm; /* 0x34 */
1683
1684# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1685 /** The current offset into abOpcode. */
1686 uint8_t offOpcode; /* 0x35 */
1687# else
1688 uint8_t bUnused; /* 0x35 */
1689# endif
1690# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1691 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1692# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1693
1694#else /* !IEM_WITH_CODE_TLB */
1695# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1696 /** The size of what has currently been fetched into abOpcode. */
1697 uint8_t cbOpcode; /* 0x08 */
1698 /** The current offset into abOpcode. */
1699 uint8_t offOpcode; /* 0x09 */
1700 /** The offset of the ModR/M byte relative to the start of the instruction. */
1701 uint8_t offModRm; /* 0x0a */
1702
1703 /** The effective segment register (X86_SREG_XXX). */
1704 uint8_t iEffSeg; /* 0x0b */
1705
1706 /** The prefix mask (IEM_OP_PRF_XXX). */
1707 uint32_t fPrefixes; /* 0x0c */
1708 /** The extra REX ModR/M register field bit (REX.R << 3). */
1709 uint8_t uRexReg; /* 0x10 */
1710 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1711 * (REX.B << 3). */
1712 uint8_t uRexB; /* 0x11 */
1713 /** The extra REX SIB index field bit (REX.X << 3). */
1714 uint8_t uRexIndex; /* 0x12 */
1715
1716# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1717 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1718# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1719#endif /* !IEM_WITH_CODE_TLB */
1720
1721#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1722 /** The effective operand mode. */
1723 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1724 /** The default addressing mode. */
1725 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1726 /** The effective addressing mode. */
1727 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1728 /** The default operand mode. */
1729 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1730
1731 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1732 uint8_t idxPrefix; /* 0x3a, 0x17 */
1733 /** 3rd VEX/EVEX/XOP register.
1734 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1735 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1736 /** The VEX/EVEX/XOP length field. */
1737 uint8_t uVexLength; /* 0x3c, 0x19 */
1738 /** Additional EVEX stuff. */
1739 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1740
1741# ifndef IEM_WITH_CODE_TLB
1742 /** Explicit alignment padding. */
1743 uint8_t abAlignment2a[1]; /* 0x1b */
1744# endif
1745 /** The FPU opcode (FOP). */
1746 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1747# ifndef IEM_WITH_CODE_TLB
1748 /** Explicit alignment padding. */
1749 uint8_t abAlignment2b[2]; /* 0x1e */
1750# endif
1751
1752 /** The opcode bytes. */
1753 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1754 /** Explicit alignment padding. */
1755# ifdef IEM_WITH_CODE_TLB
1756 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1757# else
1758 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1759# endif
1760
1761#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1762# ifdef IEM_WITH_CODE_TLB
1763 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1764# else
1765 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1766# endif
1767#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1768 /** @} */
1769
1770
1771 /** The number of active guest memory mappings. */
1772 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1773
1774 /** Records for tracking guest memory mappings. */
1775 struct
1776 {
1777 /** The address of the mapped bytes. */
1778 R3R0PTRTYPE(void *) pv;
1779 /** The access flags (IEM_ACCESS_XXX).
1780 * IEM_ACCESS_INVALID if the entry is unused. */
1781 uint32_t fAccess;
1782#if HC_ARCH_BITS == 64
1783 uint32_t u32Alignment4; /**< Alignment padding. */
1784#endif
1785 } aMemMappings[3]; /* 0x50 LB 0x30 */
1786
1787 /** Locking records for the mapped memory. */
1788 union
1789 {
1790 PGMPAGEMAPLOCK Lock;
1791 uint64_t au64Padding[2];
1792 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1793
1794 /** Bounce buffer info.
1795 * This runs in parallel to aMemMappings. */
1796 struct
1797 {
1798 /** The physical address of the first byte. */
1799 RTGCPHYS GCPhysFirst;
1800 /** The physical address of the second page. */
1801 RTGCPHYS GCPhysSecond;
1802 /** The number of bytes in the first page. */
1803 uint16_t cbFirst;
1804 /** The number of bytes in the second page. */
1805 uint16_t cbSecond;
1806 /** Whether it's unassigned memory. */
1807 bool fUnassigned;
1808 /** Explicit alignment padding. */
1809 bool afAlignment5[3];
1810 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1811
1812 /** The flags of the current exception / interrupt. */
1813 uint32_t fCurXcpt; /* 0xf8 */
1814 /** The current exception / interrupt. */
1815 uint8_t uCurXcpt; /* 0xfc */
1816 /** Exception / interrupt recursion depth. */
1817 int8_t cXcptRecursions; /* 0xfb */
1818
1819 /** The next unused mapping index.
1820 * @todo try find room for this up with cActiveMappings. */
1821 uint8_t iNextMapping; /* 0xfd */
1822 uint8_t abAlignment7[1];
1823
1824 /** Bounce buffer storage.
1825 * This runs in parallel to aMemMappings and aMemBbMappings. */
1826 struct
1827 {
1828 uint8_t ab[512];
1829 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1830
1831
1832 /** Pointer set jump buffer - ring-3 context. */
1833 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1834 /** Pointer set jump buffer - ring-0 context. */
1835 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1836
1837 /** @todo Should move this near @a fCurXcpt later. */
1838 /** The CR2 for the current exception / interrupt. */
1839 uint64_t uCurXcptCr2;
1840 /** The error code for the current exception / interrupt. */
1841 uint32_t uCurXcptErr;
1842
1843 /** @name Statistics
1844 * @{ */
1845 /** The number of instructions we've executed. */
1846 uint32_t cInstructions;
1847 /** The number of potential exits. */
1848 uint32_t cPotentialExits;
1849 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1850 * This may contain uncommitted writes. */
1851 uint32_t cbWritten;
1852 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1853 uint32_t cRetInstrNotImplemented;
1854 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1855 uint32_t cRetAspectNotImplemented;
1856 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1857 uint32_t cRetInfStatuses;
1858 /** Counts other error statuses returned. */
1859 uint32_t cRetErrStatuses;
1860 /** Number of times rcPassUp has been used. */
1861 uint32_t cRetPassUpStatus;
1862 /** Number of times RZ left with instruction commit pending for ring-3. */
1863 uint32_t cPendingCommit;
1864 /** Number of misaligned (host sense) atomic instruction accesses. */
1865 uint32_t cMisalignedAtomics;
1866 /** Number of long jumps. */
1867 uint32_t cLongJumps;
1868 /** @} */
1869
1870 /** @name Target CPU information.
1871 * @{ */
1872#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1873 /** The target CPU. */
1874 uint8_t uTargetCpu;
1875#else
1876 uint8_t bTargetCpuPadding;
1877#endif
1878 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1879 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1880 * native host support and the 2nd for when there is.
1881 *
1882 * The two values are typically indexed by a g_CpumHostFeatures bit.
1883 *
1884 * This is for instance used for the BSF & BSR instructions where AMD and
1885 * Intel CPUs produce different EFLAGS. */
1886 uint8_t aidxTargetCpuEflFlavour[2];
1887
1888 /** The CPU vendor. */
1889 CPUMCPUVENDOR enmCpuVendor;
1890 /** @} */
1891
1892 /** @name Host CPU information.
1893 * @{ */
1894 /** The CPU vendor. */
1895 CPUMCPUVENDOR enmHostCpuVendor;
1896 /** @} */
1897
1898 /** Counts RDMSR \#GP(0) LogRel(). */
1899 uint8_t cLogRelRdMsr;
1900 /** Counts WRMSR \#GP(0) LogRel(). */
1901 uint8_t cLogRelWrMsr;
1902 /** Alignment padding. */
1903 uint8_t abAlignment9[42];
1904
1905 /** @name Recompilation
1906 * @{ */
1907 /** Pointer to the current translation block.
1908 * This can either be one being executed or one being compiled. */
1909 R3PTRTYPE(PIEMTB) pCurTbR3;
1910#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1911 /** Frame pointer for the last native TB to execute. */
1912 R3PTRTYPE(void *) pvTbFramePointerR3;
1913#else
1914 R3PTRTYPE(void *) pvUnusedR3;
1915#endif
1916 /** Fixed TB used for threaded recompilation.
1917 * This is allocated once with maxed-out sizes and re-used afterwards. */
1918 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1919 /** Pointer to the ring-3 TB cache for this EMT. */
1920 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1921 /** Pointer to the ring-3 TB lookup entry.
1922 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
1923 * entry, thus it can always safely be used w/o NULL checking. */
1924 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
1925 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1926 * The TBs are based on physical addresses, so this is needed to correleated
1927 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1928 uint64_t uCurTbStartPc;
1929 /** Number of threaded TBs executed. */
1930 uint64_t cTbExecThreaded;
1931 /** Number of native TBs executed. */
1932 uint64_t cTbExecNative;
1933 /** Whether we need to check the opcode bytes for the current instruction.
1934 * This is set by a previous instruction if it modified memory or similar. */
1935 bool fTbCheckOpcodes;
1936 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1937 uint8_t fTbBranched;
1938 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1939 bool fTbCrossedPage;
1940 /** Whether to end the current TB. */
1941 bool fEndTb;
1942 /** Number of instructions before we need emit an IRQ check call again.
1943 * This helps making sure we don't execute too long w/o checking for
1944 * interrupts and immediately following instructions that may enable
1945 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1946 * required to make sure we check following the next instruction as well, see
1947 * fTbCurInstrIsSti. */
1948 uint8_t cInstrTillIrqCheck;
1949 /** Indicates that the current instruction is an STI. This is set by the
1950 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1951 bool fTbCurInstrIsSti;
1952 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1953 uint16_t cbOpcodesAllocated;
1954 /** The current instruction number in a native TB.
1955 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1956 * and will be picked up by the TB execution loop. Only used when
1957 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1958 uint8_t idxTbCurInstr;
1959 /** Spaced reserved for recompiler data / alignment. */
1960 bool afRecompilerStuff1[3];
1961 /** The virtual sync time at the last timer poll call. */
1962 uint32_t msRecompilerPollNow;
1963 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
1964 uint32_t uTbNativeRecompileAtUsedCount;
1965 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1966 uint32_t fTbCurInstr;
1967 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1968 uint32_t fTbPrevInstr;
1969 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1970 * currently not up to date in EFLAGS. */
1971 uint32_t fSkippingEFlags;
1972 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1973 RTGCPHYS GCPhysInstrBufPrev;
1974 /** Pointer to the ring-3 TB allocator for this EMT. */
1975 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1976 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1977 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1978 /** Pointer to the native recompiler state for ring-3. */
1979 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1980 /** Dummy entry for ppTbLookupEntryR3. */
1981 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
1982
1983 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
1984 IEMTLBENTRY DataBreakpointTlbe;
1985
1986 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
1987 STAMCOUNTER StatTbThreadedExecBreaks;
1988 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1989 STAMCOUNTER StatCheckIrqBreaks;
1990 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1991 STAMCOUNTER StatCheckModeBreaks;
1992 /** Threaded TB statistics: Times execution break on call with lookup entries. */
1993 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
1994 /** Threaded TB statistics: Times execution break on call without lookup entries. */
1995 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
1996 /** Statistics: Times a post jump target check missed and had to find new TB. */
1997 STAMCOUNTER StatCheckBranchMisses;
1998 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1999 STAMCOUNTER StatCheckNeedCsLimChecking;
2000 /** Statistics: Times a loop was detected within a TB.. */
2001 STAMCOUNTER StatTbLoopInTbDetected;
2002 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2003 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2004 /** Native TB statistics: Number of fully recompiled TBs. */
2005 STAMCOUNTER StatNativeFullyRecompiledTbs;
2006 /** TB statistics: Number of instructions per TB. */
2007 STAMPROFILE StatTbInstr;
2008 /** TB statistics: Number of TB lookup table entries per TB. */
2009 STAMPROFILE StatTbLookupEntries;
2010 /** Threaded TB statistics: Number of calls per TB. */
2011 STAMPROFILE StatTbThreadedCalls;
2012 /** Native TB statistics: Native code size per TB. */
2013 STAMPROFILE StatTbNativeCode;
2014 /** Native TB statistics: Profiling native recompilation. */
2015 STAMPROFILE StatNativeRecompilation;
2016 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2017 STAMPROFILE StatNativeCallsRecompiled;
2018 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2019 STAMPROFILE StatNativeCallsThreaded;
2020 /** Native recompiled execution: TLB hits for data fetches. */
2021 STAMCOUNTER StatNativeTlbHitsForFetch;
2022 /** Native recompiled execution: TLB hits for data stores. */
2023 STAMCOUNTER StatNativeTlbHitsForStore;
2024 /** Native recompiled execution: TLB hits for stack accesses. */
2025 STAMCOUNTER StatNativeTlbHitsForStack;
2026 /** Native recompiled execution: TLB hits for mapped accesses. */
2027 STAMCOUNTER StatNativeTlbHitsForMapped;
2028 /** Native recompiled execution: Code TLB misses for new page. */
2029 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2030 /** Native recompiled execution: Code TLB hits for new page. */
2031 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2032 /** Native recompiled execution: Code TLB misses for new page with offset. */
2033 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2034 /** Native recompiled execution: Code TLB hits for new page with offset. */
2035 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2036
2037 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2038 STAMCOUNTER StatNativeRegFindFree;
2039 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2040 * to free a variable. */
2041 STAMCOUNTER StatNativeRegFindFreeVar;
2042 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2043 * not need to free any variables. */
2044 STAMCOUNTER StatNativeRegFindFreeNoVar;
2045 /** Native recompiler: Liveness info freed shadowed guest registers in
2046 * iemNativeRegAllocFindFree. */
2047 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2048 /** Native recompiler: Liveness info helped with the allocation in
2049 * iemNativeRegAllocFindFree. */
2050 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2051
2052 /** Native recompiler: Number of times status flags calc has been skipped. */
2053 STAMCOUNTER StatNativeEflSkippedArithmetic;
2054 /** Native recompiler: Number of times status flags calc has been skipped. */
2055 STAMCOUNTER StatNativeEflSkippedLogical;
2056
2057 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2058 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2059 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2060 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2061 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2062 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2063 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2064 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2065 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2066 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2067 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2068 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2069 /** Native recompiler: Number of required EFLAGS.CF updates. */
2070 STAMCOUNTER StatNativeLivenessEflCfRequired;
2071 /** Native recompiler: Number of required EFLAGS.PF updates. */
2072 STAMCOUNTER StatNativeLivenessEflPfRequired;
2073 /** Native recompiler: Number of required EFLAGS.AF updates. */
2074 STAMCOUNTER StatNativeLivenessEflAfRequired;
2075 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2076 STAMCOUNTER StatNativeLivenessEflZfRequired;
2077 /** Native recompiler: Number of required EFLAGS.SF updates. */
2078 STAMCOUNTER StatNativeLivenessEflSfRequired;
2079 /** Native recompiler: Number of required EFLAGS.OF updates. */
2080 STAMCOUNTER StatNativeLivenessEflOfRequired;
2081 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2082 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2083 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2084 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2085 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2086 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2087 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2088 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2089 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2090 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2091 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2092 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2093
2094 /** Native recompiler: Number of potential PC updates in total. */
2095 STAMCOUNTER StatNativePcUpdateTotal;
2096 /** Native recompiler: Number of PC updates which could be delayed. */
2097 STAMCOUNTER StatNativePcUpdateDelayed;
2098
2099//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2100 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2101 STAMCOUNTER StatNativeSimdRegFindFree;
2102 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2103 * to free a variable. */
2104 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2105 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2106 * not need to free any variables. */
2107 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2108 /** Native recompiler: Liveness info freed shadowed guest registers in
2109 * iemNativeSimdRegAllocFindFree. */
2110 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2111 /** Native recompiler: Liveness info helped with the allocation in
2112 * iemNativeSimdRegAllocFindFree. */
2113 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2114
2115 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2116 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2117 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2118 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2119 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2120 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2121 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2122 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2123
2124 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2125 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2126 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2127 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2128 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2129 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2130 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2131 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2132//#endif
2133
2134 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2135 * Not availabe in release builds. */
2136 STAMCOUNTER StatNativeTbFinished;
2137 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2138 STAMCOUNTER StatNativeTbExitReturnBreak;
2139 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2140 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2141 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2142 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2143 /** Native recompiler: The TB finished executing with other non-zero status. */
2144 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2145 /** Native recompiler: The TB finished executing via throw / long jump. */
2146 STAMCOUNTER StatNativeTbExitLongJump;
2147 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2148 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2149 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2150 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2151 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2152 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2153 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2154 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2155 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2156 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2157 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2158 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2159
2160 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2161 STAMCOUNTER StatNativeTbExitRaiseDe;
2162 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2163 STAMCOUNTER StatNativeTbExitRaiseUd;
2164 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2165 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2166 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2167 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2168 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2169 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2170 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2171 STAMCOUNTER StatNativeTbExitRaiseNm;
2172 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2173 STAMCOUNTER StatNativeTbExitRaiseGp0;
2174 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2175 STAMCOUNTER StatNativeTbExitRaiseMf;
2176 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2177 STAMCOUNTER StatNativeTbExitRaiseXf;
2178 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2179 STAMCOUNTER StatNativeTbExitObsoleteTb;
2180
2181 /** Native recompiler: Failure situations with direct linking scenario \#1.
2182 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2183 * @{ */
2184 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2185 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2186 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2187 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2188 /** @} */
2189
2190 /** Native recompiler: Failure situations with direct linking scenario \#2.
2191 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2192 * @{ */
2193 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2194 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2195 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2196 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2197 /** @} */
2198
2199 /** iemMemMap and iemMemMapJmp statistics.
2200 * @{ */
2201 STAMCOUNTER StatMemMapJmp;
2202 STAMCOUNTER StatMemMapNoJmp;
2203 STAMCOUNTER StatMemBounceBufferCrossPage;
2204 STAMCOUNTER StatMemBounceBufferMapPhys;
2205 /** @} */
2206
2207 uint64_t au64Padding[5];
2208 /** @} */
2209
2210 /** Data TLB.
2211 * @remarks Must be 64-byte aligned. */
2212 IEMTLB DataTlb;
2213 /** Instruction TLB.
2214 * @remarks Must be 64-byte aligned. */
2215 IEMTLB CodeTlb;
2216
2217 /** Exception statistics. */
2218 STAMCOUNTER aStatXcpts[32];
2219 /** Interrupt statistics. */
2220 uint32_t aStatInts[256];
2221
2222#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2223 /** Instruction statistics for ring-0/raw-mode. */
2224 IEMINSTRSTATS StatsRZ;
2225 /** Instruction statistics for ring-3. */
2226 IEMINSTRSTATS StatsR3;
2227# ifdef VBOX_WITH_IEM_RECOMPILER
2228 /** Statistics per threaded function call.
2229 * Updated by both the threaded and native recompilers. */
2230 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2231# endif
2232#endif
2233} IEMCPU;
2234AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2235AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2236AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2237AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2238AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2239AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2240
2241/** Pointer to the per-CPU IEM state. */
2242typedef IEMCPU *PIEMCPU;
2243/** Pointer to the const per-CPU IEM state. */
2244typedef IEMCPU const *PCIEMCPU;
2245
2246
2247/** @def IEM_GET_CTX
2248 * Gets the guest CPU context for the calling EMT.
2249 * @returns PCPUMCTX
2250 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2251 */
2252#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2253
2254/** @def IEM_CTX_ASSERT
2255 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2256 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2257 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2258 */
2259#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2260 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2261 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2262 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2263
2264/** @def IEM_CTX_IMPORT_RET
2265 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2266 *
2267 * Will call the keep to import the bits as needed.
2268 *
2269 * Returns on import failure.
2270 *
2271 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2272 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2273 */
2274#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2275 do { \
2276 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2277 { /* likely */ } \
2278 else \
2279 { \
2280 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2281 AssertRCReturn(rcCtxImport, rcCtxImport); \
2282 } \
2283 } while (0)
2284
2285/** @def IEM_CTX_IMPORT_NORET
2286 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2287 *
2288 * Will call the keep to import the bits as needed.
2289 *
2290 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2291 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2292 */
2293#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2294 do { \
2295 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2296 { /* likely */ } \
2297 else \
2298 { \
2299 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2300 AssertLogRelRC(rcCtxImport); \
2301 } \
2302 } while (0)
2303
2304/** @def IEM_CTX_IMPORT_JMP
2305 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2306 *
2307 * Will call the keep to import the bits as needed.
2308 *
2309 * Jumps on import failure.
2310 *
2311 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2312 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2313 */
2314#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2315 do { \
2316 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2317 { /* likely */ } \
2318 else \
2319 { \
2320 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2321 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2322 } \
2323 } while (0)
2324
2325
2326
2327/** @def IEM_GET_TARGET_CPU
2328 * Gets the current IEMTARGETCPU value.
2329 * @returns IEMTARGETCPU value.
2330 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2331 */
2332#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2333# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2334#else
2335# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2336#endif
2337
2338/** @def IEM_GET_INSTR_LEN
2339 * Gets the instruction length. */
2340#ifdef IEM_WITH_CODE_TLB
2341# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2342#else
2343# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2344#endif
2345
2346/** @def IEM_TRY_SETJMP
2347 * Wrapper around setjmp / try, hiding all the ugly differences.
2348 *
2349 * @note Use with extreme care as this is a fragile macro.
2350 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2351 * @param a_rcTarget The variable that should receive the status code in case
2352 * of a longjmp/throw.
2353 */
2354/** @def IEM_TRY_SETJMP_AGAIN
2355 * For when setjmp / try is used again in the same variable scope as a previous
2356 * IEM_TRY_SETJMP invocation.
2357 */
2358/** @def IEM_CATCH_LONGJMP_BEGIN
2359 * Start wrapper for catch / setjmp-else.
2360 *
2361 * This will set up a scope.
2362 *
2363 * @note Use with extreme care as this is a fragile macro.
2364 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2365 * @param a_rcTarget The variable that should receive the status code in case
2366 * of a longjmp/throw.
2367 */
2368/** @def IEM_CATCH_LONGJMP_END
2369 * End wrapper for catch / setjmp-else.
2370 *
2371 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2372 * state.
2373 *
2374 * @note Use with extreme care as this is a fragile macro.
2375 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2376 */
2377#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2378# ifdef IEM_WITH_THROW_CATCH
2379# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2380 a_rcTarget = VINF_SUCCESS; \
2381 try
2382# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2383 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2384# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2385 catch (int rcThrown) \
2386 { \
2387 a_rcTarget = rcThrown
2388# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2389 } \
2390 ((void)0)
2391# else /* !IEM_WITH_THROW_CATCH */
2392# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2393 jmp_buf JmpBuf; \
2394 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2395 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2396 if ((rcStrict = setjmp(JmpBuf)) == 0)
2397# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2398 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2399 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2400 if ((rcStrict = setjmp(JmpBuf)) == 0)
2401# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2402 else \
2403 { \
2404 ((void)0)
2405# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2406 } \
2407 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2408# endif /* !IEM_WITH_THROW_CATCH */
2409#endif /* IEM_WITH_SETJMP */
2410
2411
2412/**
2413 * Shared per-VM IEM data.
2414 */
2415typedef struct IEM
2416{
2417 /** The VMX APIC-access page handler type. */
2418 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2419#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2420 /** Set if the CPUID host call functionality is enabled. */
2421 bool fCpuIdHostCall;
2422#endif
2423} IEM;
2424
2425
2426
2427/** @name IEM_ACCESS_XXX - Access details.
2428 * @{ */
2429#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2430#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2431#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2432#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2433#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2434#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2435#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2436#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2437#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2438#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2439/** The writes are partial, so if initialize the bounce buffer with the
2440 * orignal RAM content. */
2441#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2442/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2443#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2444/** Bounce buffer with ring-3 write pending, first page. */
2445#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2446/** Bounce buffer with ring-3 write pending, second page. */
2447#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2448/** Not locked, accessed via the TLB. */
2449#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2450/** Atomic access.
2451 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2452 * fallback for misaligned stuff. See @bugref{10547}. */
2453#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2454/** Valid bit mask. */
2455#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2456/** Shift count for the TLB flags (upper word). */
2457#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2458
2459/** Atomic read+write data alias. */
2460#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2461/** Read+write data alias. */
2462#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2463/** Write data alias. */
2464#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2465/** Read data alias. */
2466#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2467/** Instruction fetch alias. */
2468#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2469/** Stack write alias. */
2470#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2471/** Stack read alias. */
2472#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2473/** Stack read+write alias. */
2474#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2475/** Read system table alias. */
2476#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2477/** Read+write system table alias. */
2478#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2479/** @} */
2480
2481/** @name Prefix constants (IEMCPU::fPrefixes)
2482 * @{ */
2483#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2484#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2485#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2486#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2487#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2488#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2489#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2490
2491#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2492#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2493#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2494
2495#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2496#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2497#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2498
2499#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2500#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2501#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2502#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2503/** Mask with all the REX prefix flags.
2504 * This is generally for use when needing to undo the REX prefixes when they
2505 * are followed legacy prefixes and therefore does not immediately preceed
2506 * the first opcode byte.
2507 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2508#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2509
2510#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2511#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2512#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2513/** @} */
2514
2515/** @name IEMOPFORM_XXX - Opcode forms
2516 * @note These are ORed together with IEMOPHINT_XXX.
2517 * @{ */
2518/** ModR/M: reg, r/m */
2519#define IEMOPFORM_RM 0
2520/** ModR/M: reg, r/m (register) */
2521#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2522/** ModR/M: reg, r/m (memory) */
2523#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2524/** ModR/M: reg, r/m, imm */
2525#define IEMOPFORM_RMI 1
2526/** ModR/M: reg, r/m (register), imm */
2527#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2528/** ModR/M: reg, r/m (memory), imm */
2529#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2530/** ModR/M: reg, r/m, xmm0 */
2531#define IEMOPFORM_RM0 2
2532/** ModR/M: reg, r/m (register), xmm0 */
2533#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2534/** ModR/M: reg, r/m (memory), xmm0 */
2535#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2536/** ModR/M: r/m, reg */
2537#define IEMOPFORM_MR 3
2538/** ModR/M: r/m (register), reg */
2539#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2540/** ModR/M: r/m (memory), reg */
2541#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2542/** ModR/M: r/m, reg, imm */
2543#define IEMOPFORM_MRI 4
2544/** ModR/M: r/m (register), reg, imm */
2545#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2546/** ModR/M: r/m (memory), reg, imm */
2547#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2548/** ModR/M: r/m only */
2549#define IEMOPFORM_M 5
2550/** ModR/M: r/m only (register). */
2551#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2552/** ModR/M: r/m only (memory). */
2553#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2554/** ModR/M: r/m, imm */
2555#define IEMOPFORM_MI 6
2556/** ModR/M: r/m (register), imm */
2557#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2558/** ModR/M: r/m (memory), imm */
2559#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2560/** ModR/M: r/m, 1 (shift and rotate instructions) */
2561#define IEMOPFORM_M1 7
2562/** ModR/M: r/m (register), 1. */
2563#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2564/** ModR/M: r/m (memory), 1. */
2565#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2566/** ModR/M: r/m, CL (shift and rotate instructions)
2567 * @todo This should just've been a generic fixed register. But the python
2568 * code doesn't needs more convincing. */
2569#define IEMOPFORM_M_CL 8
2570/** ModR/M: r/m (register), CL. */
2571#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2572/** ModR/M: r/m (memory), CL. */
2573#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2574/** ModR/M: reg only */
2575#define IEMOPFORM_R 9
2576
2577/** VEX+ModR/M: reg, r/m */
2578#define IEMOPFORM_VEX_RM 16
2579/** VEX+ModR/M: reg, r/m (register) */
2580#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2581/** VEX+ModR/M: reg, r/m (memory) */
2582#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2583/** VEX+ModR/M: r/m, reg */
2584#define IEMOPFORM_VEX_MR 17
2585/** VEX+ModR/M: r/m (register), reg */
2586#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2587/** VEX+ModR/M: r/m (memory), reg */
2588#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2589/** VEX+ModR/M: r/m, reg, imm8 */
2590#define IEMOPFORM_VEX_MRI 18
2591/** VEX+ModR/M: r/m (register), reg, imm8 */
2592#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2593/** VEX+ModR/M: r/m (memory), reg, imm8 */
2594#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2595/** VEX+ModR/M: r/m only */
2596#define IEMOPFORM_VEX_M 19
2597/** VEX+ModR/M: r/m only (register). */
2598#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2599/** VEX+ModR/M: r/m only (memory). */
2600#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2601/** VEX+ModR/M: reg only */
2602#define IEMOPFORM_VEX_R 20
2603/** VEX+ModR/M: reg, vvvv, r/m */
2604#define IEMOPFORM_VEX_RVM 21
2605/** VEX+ModR/M: reg, vvvv, r/m (register). */
2606#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2607/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2608#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2609/** VEX+ModR/M: reg, vvvv, r/m, imm */
2610#define IEMOPFORM_VEX_RVMI 22
2611/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2612#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2613/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2614#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2615/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2616#define IEMOPFORM_VEX_RVMR 23
2617/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2618#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2619/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2620#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2621/** VEX+ModR/M: reg, r/m, vvvv */
2622#define IEMOPFORM_VEX_RMV 24
2623/** VEX+ModR/M: reg, r/m, vvvv (register). */
2624#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2625/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2626#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2627/** VEX+ModR/M: reg, r/m, imm8 */
2628#define IEMOPFORM_VEX_RMI 25
2629/** VEX+ModR/M: reg, r/m, imm8 (register). */
2630#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2631/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2632#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2633/** VEX+ModR/M: r/m, vvvv, reg */
2634#define IEMOPFORM_VEX_MVR 26
2635/** VEX+ModR/M: r/m, vvvv, reg (register) */
2636#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2637/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2638#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2639/** VEX+ModR/M+/n: vvvv, r/m */
2640#define IEMOPFORM_VEX_VM 27
2641/** VEX+ModR/M+/n: vvvv, r/m (register) */
2642#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2643/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2644#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2645/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2646#define IEMOPFORM_VEX_VMI 28
2647/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2648#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2649/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2650#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2651
2652/** Fixed register instruction, no R/M. */
2653#define IEMOPFORM_FIXED 32
2654
2655/** The r/m is a register. */
2656#define IEMOPFORM_MOD3 RT_BIT_32(8)
2657/** The r/m is a memory access. */
2658#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2659/** @} */
2660
2661/** @name IEMOPHINT_XXX - Additional Opcode Hints
2662 * @note These are ORed together with IEMOPFORM_XXX.
2663 * @{ */
2664/** Ignores the operand size prefix (66h). */
2665#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2666/** Ignores REX.W (aka WIG). */
2667#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2668/** Both the operand size prefixes (66h + REX.W) are ignored. */
2669#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2670/** Allowed with the lock prefix. */
2671#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2672/** The VEX.L value is ignored (aka LIG). */
2673#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2674/** The VEX.L value must be zero (i.e. 128-bit width only). */
2675#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2676/** The VEX.L value must be one (i.e. 256-bit width only). */
2677#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2678/** The VEX.V value must be zero. */
2679#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2680/** The REX.W/VEX.V value must be zero. */
2681#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2682#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2683/** The REX.W/VEX.V value must be one. */
2684#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2685#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2686
2687/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2688#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2689/** @} */
2690
2691/**
2692 * Possible hardware task switch sources.
2693 */
2694typedef enum IEMTASKSWITCH
2695{
2696 /** Task switch caused by an interrupt/exception. */
2697 IEMTASKSWITCH_INT_XCPT = 1,
2698 /** Task switch caused by a far CALL. */
2699 IEMTASKSWITCH_CALL,
2700 /** Task switch caused by a far JMP. */
2701 IEMTASKSWITCH_JUMP,
2702 /** Task switch caused by an IRET. */
2703 IEMTASKSWITCH_IRET
2704} IEMTASKSWITCH;
2705AssertCompileSize(IEMTASKSWITCH, 4);
2706
2707/**
2708 * Possible CrX load (write) sources.
2709 */
2710typedef enum IEMACCESSCRX
2711{
2712 /** CrX access caused by 'mov crX' instruction. */
2713 IEMACCESSCRX_MOV_CRX,
2714 /** CrX (CR0) write caused by 'lmsw' instruction. */
2715 IEMACCESSCRX_LMSW,
2716 /** CrX (CR0) write caused by 'clts' instruction. */
2717 IEMACCESSCRX_CLTS,
2718 /** CrX (CR0) read caused by 'smsw' instruction. */
2719 IEMACCESSCRX_SMSW
2720} IEMACCESSCRX;
2721
2722#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2723/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2724 *
2725 * These flags provide further context to SLAT page-walk failures that could not be
2726 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2727 *
2728 * @{
2729 */
2730/** Translating a nested-guest linear address failed accessing a nested-guest
2731 * physical address. */
2732# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2733/** Translating a nested-guest linear address failed accessing a
2734 * paging-structure entry or updating accessed/dirty bits. */
2735# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2736/** @} */
2737
2738DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2739# ifndef IN_RING3
2740DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2741# endif
2742#endif
2743
2744/**
2745 * Indicates to the verifier that the given flag set is undefined.
2746 *
2747 * Can be invoked again to add more flags.
2748 *
2749 * This is a NOOP if the verifier isn't compiled in.
2750 *
2751 * @note We're temporarily keeping this until code is converted to new
2752 * disassembler style opcode handling.
2753 */
2754#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2755
2756
2757/** @def IEM_DECL_IMPL_TYPE
2758 * For typedef'ing an instruction implementation function.
2759 *
2760 * @param a_RetType The return type.
2761 * @param a_Name The name of the type.
2762 * @param a_ArgList The argument list enclosed in parentheses.
2763 */
2764
2765/** @def IEM_DECL_IMPL_DEF
2766 * For defining an instruction implementation function.
2767 *
2768 * @param a_RetType The return type.
2769 * @param a_Name The name of the type.
2770 * @param a_ArgList The argument list enclosed in parentheses.
2771 */
2772
2773#if defined(__GNUC__) && defined(RT_ARCH_X86)
2774# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2775 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2776# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2777 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2778# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2779 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2780
2781#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2782# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2783 a_RetType (__fastcall a_Name) a_ArgList
2784# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2785 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2786# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2787 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2788
2789#elif __cplusplus >= 201700 /* P0012R1 support */
2790# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2791 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2792# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2793 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2794# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2795 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2796
2797#else
2798# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2799 a_RetType (VBOXCALL a_Name) a_ArgList
2800# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2801 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2802# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2803 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2804
2805#endif
2806
2807/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2808RT_C_DECLS_BEGIN
2809extern uint8_t const g_afParity[256];
2810RT_C_DECLS_END
2811
2812
2813/** @name Arithmetic assignment operations on bytes (binary).
2814 * @{ */
2815typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
2816typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2817FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2818FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2819FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2820FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2821FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2822FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2823FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2824/** @} */
2825
2826/** @name Arithmetic assignment operations on words (binary).
2827 * @{ */
2828typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
2829typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2830FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2831FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2832FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2833FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2834FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2835FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2836FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2837/** @} */
2838
2839
2840/** @name Arithmetic assignment operations on double words (binary).
2841 * @{ */
2842typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
2843typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2844FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2845FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2846FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2847FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2848FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2849FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2850FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2851FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2852FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2853FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2854/** @} */
2855
2856/** @name Arithmetic assignment operations on quad words (binary).
2857 * @{ */
2858typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
2859typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2860FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2861FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2862FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2863FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2864FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2865FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2866FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2867FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2868FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2869FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2870/** @} */
2871
2872typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
2873typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2874typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
2875typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2876typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
2877typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2878typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
2879typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2880
2881/** @name Compare operations (thrown in with the binary ops).
2882 * @{ */
2883FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2884FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2885FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2886FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2887/** @} */
2888
2889/** @name Test operations (thrown in with the binary ops).
2890 * @{ */
2891FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2892FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2893FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2894FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2895/** @} */
2896
2897/** @name Bit operations operations (thrown in with the binary ops).
2898 * @{ */
2899FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2900FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2901FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2902FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2903FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2904FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2905FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2906FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2907FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2908FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2909FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2910FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2911/** @} */
2912
2913/** @name Arithmetic three operand operations on double words (binary).
2914 * @{ */
2915typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2916typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2917FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2918FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2919FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2920/** @} */
2921
2922/** @name Arithmetic three operand operations on quad words (binary).
2923 * @{ */
2924typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2925typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2926FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2927FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2928FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2929/** @} */
2930
2931/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2932 * @{ */
2933typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2934typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2935FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2936FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2937FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2938FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2939FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2940FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2941/** @} */
2942
2943/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2944 * @{ */
2945typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2946typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2947FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2948FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2949FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2950FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2951FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2952FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2953/** @} */
2954
2955/** @name MULX 32-bit and 64-bit.
2956 * @{ */
2957typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2958typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2959FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2960
2961typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2962typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2963FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2964/** @} */
2965
2966
2967/** @name Exchange memory with register operations.
2968 * @{ */
2969IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2970IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2971IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2972IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2973IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2974IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2975IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2976IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2977/** @} */
2978
2979/** @name Exchange and add operations.
2980 * @{ */
2981IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2982IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2983IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2984IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2985IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2986IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2987IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2988IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2989/** @} */
2990
2991/** @name Compare and exchange.
2992 * @{ */
2993IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2994IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2995IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2996IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2997IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2998IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2999#if ARCH_BITS == 32
3000IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3001IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3002#else
3003IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3004IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3005#endif
3006IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3007 uint32_t *pEFlags));
3008IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3009 uint32_t *pEFlags));
3010IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3011 uint32_t *pEFlags));
3012IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3013 uint32_t *pEFlags));
3014#ifndef RT_ARCH_ARM64
3015IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3016 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3017#endif
3018/** @} */
3019
3020/** @name Memory ordering
3021 * @{ */
3022typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3023typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3024IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3025IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3026IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3027#ifndef RT_ARCH_ARM64
3028IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3029#endif
3030/** @} */
3031
3032/** @name Double precision shifts
3033 * @{ */
3034typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3035typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3036typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3037typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3038typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3039typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3040FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3041FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3042FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3043FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3044FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3045FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3046/** @} */
3047
3048
3049/** @name Bit search operations (thrown in with the binary ops).
3050 * @{ */
3051FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3052FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3053FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3054FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3055FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3056FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3057FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3058FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3059FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3060FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3061FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3062FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3063FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3064FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3065FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3066/** @} */
3067
3068/** @name Signed multiplication operations (thrown in with the binary ops).
3069 * @{ */
3070FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3071FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3072FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3073/** @} */
3074
3075/** @name Arithmetic assignment operations on bytes (unary).
3076 * @{ */
3077typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3078typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3079FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3080FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3081FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3082FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3083/** @} */
3084
3085/** @name Arithmetic assignment operations on words (unary).
3086 * @{ */
3087typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3088typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3089FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3090FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3091FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3092FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3093/** @} */
3094
3095/** @name Arithmetic assignment operations on double words (unary).
3096 * @{ */
3097typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3098typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3099FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3100FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3101FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3102FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3103/** @} */
3104
3105/** @name Arithmetic assignment operations on quad words (unary).
3106 * @{ */
3107typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3108typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3109FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3110FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3111FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3112FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3113/** @} */
3114
3115
3116/** @name Shift operations on bytes (Group 2).
3117 * @{ */
3118typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3119typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3120FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3121FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3122FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3123FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3124FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3125FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3126FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3127/** @} */
3128
3129/** @name Shift operations on words (Group 2).
3130 * @{ */
3131typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3132typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3133FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3134FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3135FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3136FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3137FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3138FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3139FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3140/** @} */
3141
3142/** @name Shift operations on double words (Group 2).
3143 * @{ */
3144typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3145typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3146FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3147FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3148FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3149FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3150FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3151FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3152FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3153/** @} */
3154
3155/** @name Shift operations on words (Group 2).
3156 * @{ */
3157typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3158typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3159FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3160FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3161FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3162FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3163FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3164FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3165FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3166/** @} */
3167
3168/** @name Multiplication and division operations.
3169 * @{ */
3170typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3171typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3172FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3173FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3174FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3175FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3176
3177typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3178typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3179FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3180FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3181FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3182FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3183
3184typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3185typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3186FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3187FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3188FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3189FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3190
3191typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3192typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3193FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3194FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3195FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3196FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3197/** @} */
3198
3199/** @name Byte Swap.
3200 * @{ */
3201IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3202IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3203IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3204/** @} */
3205
3206/** @name Misc.
3207 * @{ */
3208FNIEMAIMPLBINU16 iemAImpl_arpl;
3209/** @} */
3210
3211/** @name RDRAND and RDSEED
3212 * @{ */
3213typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3214typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3215typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3216typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3217typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3218typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3219
3220FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3221FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3222FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3223FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3224FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3225FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3226/** @} */
3227
3228/** @name ADOX and ADCX
3229 * @{ */
3230FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3231FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3232FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3233FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3234/** @} */
3235
3236/** @name FPU operations taking a 32-bit float argument
3237 * @{ */
3238typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3239 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3240typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3241
3242typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3243 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3244typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3245
3246FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3247FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3248FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3249FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3250FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3251FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3252FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3253
3254IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3255IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3256 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3257/** @} */
3258
3259/** @name FPU operations taking a 64-bit float argument
3260 * @{ */
3261typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3262 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3263typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3264
3265typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3266 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3267typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3268
3269FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3270FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3271FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3272FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3273FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3274FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3275FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3276
3277IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3278IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3279 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3280/** @} */
3281
3282/** @name FPU operations taking a 80-bit float argument
3283 * @{ */
3284typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3285 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3286typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3287FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3288FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3289FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3290FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3291FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3292FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3293FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3294FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3295FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3296
3297FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3298FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3299FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3300
3301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3302 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3303typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3304FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3305FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3306
3307typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3308 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3309typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3310FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3311FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3312
3313typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3314typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3315FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3316FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3317FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3318FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3319FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3320FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3321FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3322
3323typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3324typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3325FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3326FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3327
3328typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3329typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3330FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3331FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3332FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3333FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3334FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3335FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3336FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3337
3338typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3339 PCRTFLOAT80U pr80Val));
3340typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3341FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3342FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3343FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3344
3345IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3346IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3347 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3348
3349IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3350IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3351 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3352
3353/** @} */
3354
3355/** @name FPU operations taking a 16-bit signed integer argument
3356 * @{ */
3357typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3358 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3359typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3360typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3361 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3362typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3363
3364FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3365FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3366FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3367FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3368FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3369FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3370
3371typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3372 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3373typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3374FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3375
3376IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3377FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3378FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3379/** @} */
3380
3381/** @name FPU operations taking a 32-bit signed integer argument
3382 * @{ */
3383typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3384 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3385typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3386typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3387 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3388typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3389
3390FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3391FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3392FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3393FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3394FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3395FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3396
3397typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3398 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3399typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3400FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3401
3402IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3403FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3404FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3405/** @} */
3406
3407/** @name FPU operations taking a 64-bit signed integer argument
3408 * @{ */
3409typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3410 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3411typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3412
3413IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3414FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3415FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3416/** @} */
3417
3418
3419/** Temporary type representing a 256-bit vector register. */
3420typedef struct { uint64_t au64[4]; } IEMVMM256;
3421/** Temporary type pointing to a 256-bit vector register. */
3422typedef IEMVMM256 *PIEMVMM256;
3423/** Temporary type pointing to a const 256-bit vector register. */
3424typedef IEMVMM256 *PCIEMVMM256;
3425
3426
3427/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3428 * @{ */
3429typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3430typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3431typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3432typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3433typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3434typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3435typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3436typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3437typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3438typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3439typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3440typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3441typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3442typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3443typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3444typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3445typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3446typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3447FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3448FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3449FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3450FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3451FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3452FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3453FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3454FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3455FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3456FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3457FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3458FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3459FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3460FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3461FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3462FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3463FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3464FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3465FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3466FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3467FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3468FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3469FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3470FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3471FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3472FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3473FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3474FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3475FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3476FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3477FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3478FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3479FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3480FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3481FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3482FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3483FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3484FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3485FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3486
3487FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3488FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3489FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3490FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3491FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3492FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3493FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3494FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3495FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3496FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3497FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3498FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3499FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3500FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3501FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3502FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3503FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3504FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3505FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3506FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3507FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3508FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3509FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3510FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3511FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3512FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3513FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3514FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3515FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3516FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3517FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3518FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3519FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3520FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3521FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3522FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3523FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3524FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3525FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3526FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3527FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3528FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3529FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3530FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3531FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3532FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3533FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3534FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3535FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3536FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3537FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3538FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3539FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3540FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3541FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3542FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3543FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3544FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3545
3546FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3547FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3548FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3549FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3550FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3551FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3552FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3553FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3554FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3555FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3556FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3557FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3558FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3559FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3560FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3561FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3562FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3563FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3564FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3565FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3566FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3567FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3568FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3569FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3570FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3571FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3572FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3573FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3574FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3575FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3576FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3577FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3578FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3579FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3580FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3581FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3582FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3583FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3584FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3585FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3586FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3587FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3588FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3589FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3590FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3591FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3592FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3593FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3594FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3595FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3596FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3597FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3598FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3599FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3600FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3601FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3602FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3603FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3604FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3605FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3606FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3607FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3608FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3609FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3610FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3611FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3612FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3613FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3614FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3615FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3616FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3617FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3618FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3619FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3620
3621FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3622FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3623FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3624FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3625
3626FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3627FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3628FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3629FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3630FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3631FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3632FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3633FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3634FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3635FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3636FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3637FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3638FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3639FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3640FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3641FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3642FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3643FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3644FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3645FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3646FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3647FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3648FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3649FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3650FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3651FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3652FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3653FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3654FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3655FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3656FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3657FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3658FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3659FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3660FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3661FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3662FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3663FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3664FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3665FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3666FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3667FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3668FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3669FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3670FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3671FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3672FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3673FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3674FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3675FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3676FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3677FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3678FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3679FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3680FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3681FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3682FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3683FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3684FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3685FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3686FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3687FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3688FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3689FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3690FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3691FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3692FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3693FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3694FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3695FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3696FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3697FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3698FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3699FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3700
3701FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3702FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3703FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3704/** @} */
3705
3706/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3707 * @{ */
3708FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3709FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3710FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3711 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3712 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3713 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3714 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3715 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3716 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3717 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3718
3719FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3720 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3721 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3722 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3723 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3724 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3725 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3726 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3727/** @} */
3728
3729/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3730 * @{ */
3731FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3733FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3734 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3735 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3736 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3737FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3738 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3739 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3740 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3741/** @} */
3742
3743/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3744 * @{ */
3745typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3746typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3747typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3748typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3749IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3750FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3751#ifndef IEM_WITHOUT_ASSEMBLY
3752FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3753#endif
3754FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3755/** @} */
3756
3757/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3758 * @{ */
3759typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3760typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3761typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3762typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3763typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3764typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3765FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3766FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3767FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3768FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3769FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3770FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3771FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3772/** @} */
3773
3774/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3775 * @{ */
3776IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
3777IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
3778IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3779IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3780#ifndef IEM_WITHOUT_ASSEMBLY
3781IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3782#endif
3783IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3784/** @} */
3785
3786/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3787 * @{ */
3788typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3789typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3790typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3791typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3792typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3793typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3794
3795FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3796FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3797FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3798FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3799FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3800FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3801
3802FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3803FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3804FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3805FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3806FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3807FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3808
3809FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3810FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3811FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3812FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3813FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3814FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3815/** @} */
3816
3817
3818/** @name Media (SSE/MMX/AVX) operation: Sort this later
3819 * @{ */
3820IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3821IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3822IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3823IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3824IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3825
3826IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3827IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3828IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3829IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3830IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3831
3832IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3833IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3834IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3835IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3836IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3837
3838IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3839IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3840IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3841IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3842IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3843
3844IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3845IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3846IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3847IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3848IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3849
3850IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3851IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3852IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3853IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3854IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3855
3856IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3857IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3858IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3859IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3860IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3861
3862IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3863IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3864IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3865IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3866IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3867
3868IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3869IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3870IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3871IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3872IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3873
3874IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3875IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3876IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3877IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3878IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3879
3880IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3881IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3882IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3883IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3884IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3885
3886IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3887IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3888IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3889IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3890IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3891
3892IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3893IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3894IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3895IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3896IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3897
3898IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3899IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3900IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3901IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3902IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3903
3904IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3905IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3906
3907IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3908IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3909IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3910IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3911IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3912
3913IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3914IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3915IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3916IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3917IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3918
3919
3920typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3921typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3922typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3923typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3924typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3925typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3926typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3927typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3928
3929FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3930FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3931FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3932FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3933
3934FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3935FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3936FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3937FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3938FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3939
3940FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3941FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3942FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3943FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3944FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3945FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3946FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3947
3948FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3949FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3950FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3951FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3952FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3953
3954FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3955FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3956FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3957FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3958FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3959
3960FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3961
3962FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3963
3964FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3965FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3966FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3967FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3968FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3969FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3970IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3971IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3972
3973typedef struct IEMPCMPISTRXSRC
3974{
3975 RTUINT128U uSrc1;
3976 RTUINT128U uSrc2;
3977} IEMPCMPISTRXSRC;
3978typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3979typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3980
3981typedef struct IEMPCMPESTRXSRC
3982{
3983 RTUINT128U uSrc1;
3984 RTUINT128U uSrc2;
3985 uint64_t u64Rax;
3986 uint64_t u64Rdx;
3987} IEMPCMPESTRXSRC;
3988typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3989typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3990
3991typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
3992typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3993typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3994typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3995
3996typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3997typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3998typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3999typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4000
4001FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4002FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4003FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4004FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4005
4006FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4007FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4008
4009FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4010FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4011FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4012
4013FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4014FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4015FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4016FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4017FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4018FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4019IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4020IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4021IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4022IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4023
4024FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4025FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4026FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4027FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4028
4029FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4030FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4031FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4032FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4033FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4034FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4035IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4036IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4037IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4038IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4039
4040FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4041FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4042FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4043FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4044
4045FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4046FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4047FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4048FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4049
4050FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4051FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4052FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4053FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4054FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4055FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4056FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4057FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4058FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4059FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4060/** @} */
4061
4062/** @name Media Odds and Ends
4063 * @{ */
4064typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4065typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4066typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4067typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4068FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4069FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4070FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4071FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4072
4073typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4074typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4075typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4076typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4077FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4078FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4079FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4080FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4081FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4082FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4083
4084typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4085typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4086typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4087typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4088typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4089typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4090typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4091typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4092
4093FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4094FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4095
4096FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4097FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4098
4099FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4100FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4101
4102FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4103FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4104
4105typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4106typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4107typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4108typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4109
4110FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4111FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4112
4113typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4114typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4115typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4116typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4117
4118FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4119FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4120
4121
4122typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4123typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4124
4125typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4126typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4127
4128FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4129FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4130
4131FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4132FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4133
4134FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4135FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4136
4137FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4138FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4139
4140
4141typedef struct IEMMEDIAF2XMMSRC
4142{
4143 X86XMMREG uSrc1;
4144 X86XMMREG uSrc2;
4145} IEMMEDIAF2XMMSRC;
4146typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4147typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4148
4149typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4150typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
4151
4152FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
4153FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
4154FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
4155FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
4156FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
4157FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
4158
4159FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4160FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4161
4162FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4163FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4164
4165typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4166typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4167
4168FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4169FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4170
4171typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4172typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4173
4174FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4175FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4176
4177typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4178typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4179
4180FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4181FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4182
4183/** @} */
4184
4185
4186/** @name Function tables.
4187 * @{
4188 */
4189
4190/**
4191 * Function table for a binary operator providing implementation based on
4192 * operand size.
4193 */
4194typedef struct IEMOPBINSIZES
4195{
4196 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4197 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4198 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4199 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4200} IEMOPBINSIZES;
4201/** Pointer to a binary operator function table. */
4202typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4203
4204
4205/**
4206 * Function table for a unary operator providing implementation based on
4207 * operand size.
4208 */
4209typedef struct IEMOPUNARYSIZES
4210{
4211 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4212 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4213 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4214 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4215} IEMOPUNARYSIZES;
4216/** Pointer to a unary operator function table. */
4217typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4218
4219
4220/**
4221 * Function table for a shift operator providing implementation based on
4222 * operand size.
4223 */
4224typedef struct IEMOPSHIFTSIZES
4225{
4226 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4227 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4228 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4229 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4230} IEMOPSHIFTSIZES;
4231/** Pointer to a shift operator function table. */
4232typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4233
4234
4235/**
4236 * Function table for a multiplication or division operation.
4237 */
4238typedef struct IEMOPMULDIVSIZES
4239{
4240 PFNIEMAIMPLMULDIVU8 pfnU8;
4241 PFNIEMAIMPLMULDIVU16 pfnU16;
4242 PFNIEMAIMPLMULDIVU32 pfnU32;
4243 PFNIEMAIMPLMULDIVU64 pfnU64;
4244} IEMOPMULDIVSIZES;
4245/** Pointer to a multiplication or division operation function table. */
4246typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4247
4248
4249/**
4250 * Function table for a double precision shift operator providing implementation
4251 * based on operand size.
4252 */
4253typedef struct IEMOPSHIFTDBLSIZES
4254{
4255 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4256 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4257 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4258} IEMOPSHIFTDBLSIZES;
4259/** Pointer to a double precision shift function table. */
4260typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4261
4262
4263/**
4264 * Function table for media instruction taking two full sized media source
4265 * registers and one full sized destination register (AVX).
4266 */
4267typedef struct IEMOPMEDIAF3
4268{
4269 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4270 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4271} IEMOPMEDIAF3;
4272/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4273typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4274
4275/** @def IEMOPMEDIAF3_INIT_VARS_EX
4276 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4277 * given functions as initializers. For use in AVX functions where a pair of
4278 * functions are only used once and the function table need not be public. */
4279#ifndef TST_IEM_CHECK_MC
4280# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4281# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4282 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4283 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4284# else
4285# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4286 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4287# endif
4288#else
4289# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4290#endif
4291/** @def IEMOPMEDIAF3_INIT_VARS
4292 * Generate AVX function tables for the @a a_InstrNm instruction.
4293 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4294#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4295 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4296 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4297
4298/**
4299 * Function table for media instruction taking two full sized media source
4300 * registers and one full sized destination register, but no additional state
4301 * (AVX).
4302 */
4303typedef struct IEMOPMEDIAOPTF3
4304{
4305 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4306 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4307} IEMOPMEDIAOPTF3;
4308/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4309typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4310
4311/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4312 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4313 * given functions as initializers. For use in AVX functions where a pair of
4314 * functions are only used once and the function table need not be public. */
4315#ifndef TST_IEM_CHECK_MC
4316# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4317# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4318 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4319 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4320# else
4321# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4322 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4323# endif
4324#else
4325# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4326#endif
4327/** @def IEMOPMEDIAOPTF3_INIT_VARS
4328 * Generate AVX function tables for the @a a_InstrNm instruction.
4329 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4330#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4331 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4332 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4333
4334/**
4335 * Function table for media instruction taking one full sized media source
4336 * registers and one full sized destination register, but no additional state
4337 * (AVX).
4338 */
4339typedef struct IEMOPMEDIAOPTF2
4340{
4341 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4342 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4343} IEMOPMEDIAOPTF2;
4344/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4345typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4346
4347/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4348 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4349 * given functions as initializers. For use in AVX functions where a pair of
4350 * functions are only used once and the function table need not be public. */
4351#ifndef TST_IEM_CHECK_MC
4352# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4353# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4354 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4355 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4356# else
4357# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4358 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4359# endif
4360#else
4361# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4362#endif
4363/** @def IEMOPMEDIAOPTF2_INIT_VARS
4364 * Generate AVX function tables for the @a a_InstrNm instruction.
4365 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4366#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4367 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4368 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4369
4370/**
4371 * Function table for media instruction taking one full sized media source
4372 * register and one full sized destination register and an 8-bit immediate, but no additional state
4373 * (AVX).
4374 */
4375typedef struct IEMOPMEDIAOPTF2IMM8
4376{
4377 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4378 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4379} IEMOPMEDIAOPTF2IMM8;
4380/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4381typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4382
4383/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4384 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4385 * given functions as initializers. For use in AVX functions where a pair of
4386 * functions are only used once and the function table need not be public. */
4387#ifndef TST_IEM_CHECK_MC
4388# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4389# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4390 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4391 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4392# else
4393# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4394 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4395# endif
4396#else
4397# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4398#endif
4399/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4400 * Generate AVX function tables for the @a a_InstrNm instruction.
4401 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4402#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4403 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4404 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4405
4406/**
4407 * Function table for media instruction taking two full sized media source
4408 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4409 * (AVX).
4410 */
4411typedef struct IEMOPMEDIAOPTF3IMM8
4412{
4413 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4414 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4415} IEMOPMEDIAOPTF3IMM8;
4416/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4417typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4418
4419/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4420 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4421 * given functions as initializers. For use in AVX functions where a pair of
4422 * functions are only used once and the function table need not be public. */
4423#ifndef TST_IEM_CHECK_MC
4424# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4425# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4426 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4427 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4428# else
4429# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4430 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4431# endif
4432#else
4433# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4434#endif
4435/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4436 * Generate AVX function tables for the @a a_InstrNm instruction.
4437 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4438#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4439 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4440 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4441/** @} */
4442
4443
4444/**
4445 * Function table for blend type instruction taking three full sized media source
4446 * registers and one full sized destination register, but no additional state
4447 * (AVX).
4448 */
4449typedef struct IEMOPBLENDOP
4450{
4451 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4452 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4453} IEMOPBLENDOP;
4454/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4455typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4456
4457/** @def IEMOPBLENDOP_INIT_VARS_EX
4458 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4459 * given functions as initializers. For use in AVX functions where a pair of
4460 * functions are only used once and the function table need not be public. */
4461#ifndef TST_IEM_CHECK_MC
4462# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4463# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4464 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4465 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4466# else
4467# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4468 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4469# endif
4470#else
4471# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4472#endif
4473/** @def IEMOPBLENDOP_INIT_VARS
4474 * Generate AVX function tables for the @a a_InstrNm instruction.
4475 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4476#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4477 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4478 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4479
4480
4481/** @name SSE/AVX single/double precision floating point operations.
4482 * @{ */
4483typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4484typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4485typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4486typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4487typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4488typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4489
4490typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4491typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4492typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4493typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4494typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4495typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4496
4497typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4498typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4499
4500FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4501FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4502FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4503FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4504FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4505FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4506FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4507FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4508FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4509FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4510FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4511FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4512FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4513FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4514FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4515FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4516FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4517FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4518FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4519FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4520FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4521FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4522
4523FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4524IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4525
4526FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4527FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4528FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4529FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4530FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4531FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4532
4533FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4534FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4535FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4536FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4537FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4538FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4539FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4540FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4541FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4542FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4543FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4544FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4545FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4546FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4547FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4548FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4549FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4550FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4551
4552FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4553FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4554FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4555FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4556FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4557FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4558FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4559FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4560FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4561FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4562FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4563FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4564FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4565FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4566FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4567FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4568FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4569FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4570FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4571FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4572FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4573FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4574
4575FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4576FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4577FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4578FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4579FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4580FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4581FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4582FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4583FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4584FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4585FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4586FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4587FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4588FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4589
4590FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4591FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4592FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4593FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4594FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4595FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4596FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4597FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4598FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4599FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4600FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4601FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4602FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4603FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4604FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4605FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4606FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4607FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4608FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4609FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4610/** @} */
4611
4612/** @name C instruction implementations for anything slightly complicated.
4613 * @{ */
4614
4615/**
4616 * For typedef'ing or declaring a C instruction implementation function taking
4617 * no extra arguments.
4618 *
4619 * @param a_Name The name of the type.
4620 */
4621# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4622 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4623/**
4624 * For defining a C instruction implementation function taking no extra
4625 * arguments.
4626 *
4627 * @param a_Name The name of the function
4628 */
4629# define IEM_CIMPL_DEF_0(a_Name) \
4630 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4631/**
4632 * Prototype version of IEM_CIMPL_DEF_0.
4633 */
4634# define IEM_CIMPL_PROTO_0(a_Name) \
4635 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4636/**
4637 * For calling a C instruction implementation function taking no extra
4638 * arguments.
4639 *
4640 * This special call macro adds default arguments to the call and allow us to
4641 * change these later.
4642 *
4643 * @param a_fn The name of the function.
4644 */
4645# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4646
4647/** Type for a C instruction implementation function taking no extra
4648 * arguments. */
4649typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4650/** Function pointer type for a C instruction implementation function taking
4651 * no extra arguments. */
4652typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4653
4654/**
4655 * For typedef'ing or declaring a C instruction implementation function taking
4656 * one extra argument.
4657 *
4658 * @param a_Name The name of the type.
4659 * @param a_Type0 The argument type.
4660 * @param a_Arg0 The argument name.
4661 */
4662# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4663 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4664/**
4665 * For defining a C instruction implementation function taking one extra
4666 * argument.
4667 *
4668 * @param a_Name The name of the function
4669 * @param a_Type0 The argument type.
4670 * @param a_Arg0 The argument name.
4671 */
4672# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4673 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4674/**
4675 * Prototype version of IEM_CIMPL_DEF_1.
4676 */
4677# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4678 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4679/**
4680 * For calling a C instruction implementation function taking one extra
4681 * argument.
4682 *
4683 * This special call macro adds default arguments to the call and allow us to
4684 * change these later.
4685 *
4686 * @param a_fn The name of the function.
4687 * @param a0 The name of the 1st argument.
4688 */
4689# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4690
4691/**
4692 * For typedef'ing or declaring a C instruction implementation function taking
4693 * two extra arguments.
4694 *
4695 * @param a_Name The name of the type.
4696 * @param a_Type0 The type of the 1st argument
4697 * @param a_Arg0 The name of the 1st argument.
4698 * @param a_Type1 The type of the 2nd argument.
4699 * @param a_Arg1 The name of the 2nd argument.
4700 */
4701# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4702 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4703/**
4704 * For defining a C instruction implementation function taking two extra
4705 * arguments.
4706 *
4707 * @param a_Name The name of the function.
4708 * @param a_Type0 The type of the 1st argument
4709 * @param a_Arg0 The name of the 1st argument.
4710 * @param a_Type1 The type of the 2nd argument.
4711 * @param a_Arg1 The name of the 2nd argument.
4712 */
4713# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4714 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4715/**
4716 * Prototype version of IEM_CIMPL_DEF_2.
4717 */
4718# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4719 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4720/**
4721 * For calling a C instruction implementation function taking two extra
4722 * arguments.
4723 *
4724 * This special call macro adds default arguments to the call and allow us to
4725 * change these later.
4726 *
4727 * @param a_fn The name of the function.
4728 * @param a0 The name of the 1st argument.
4729 * @param a1 The name of the 2nd argument.
4730 */
4731# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4732
4733/**
4734 * For typedef'ing or declaring a C instruction implementation function taking
4735 * three extra arguments.
4736 *
4737 * @param a_Name The name of the type.
4738 * @param a_Type0 The type of the 1st argument
4739 * @param a_Arg0 The name of the 1st argument.
4740 * @param a_Type1 The type of the 2nd argument.
4741 * @param a_Arg1 The name of the 2nd argument.
4742 * @param a_Type2 The type of the 3rd argument.
4743 * @param a_Arg2 The name of the 3rd argument.
4744 */
4745# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4746 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4747/**
4748 * For defining a C instruction implementation function taking three extra
4749 * arguments.
4750 *
4751 * @param a_Name The name of the function.
4752 * @param a_Type0 The type of the 1st argument
4753 * @param a_Arg0 The name of the 1st argument.
4754 * @param a_Type1 The type of the 2nd argument.
4755 * @param a_Arg1 The name of the 2nd argument.
4756 * @param a_Type2 The type of the 3rd argument.
4757 * @param a_Arg2 The name of the 3rd argument.
4758 */
4759# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4760 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4761/**
4762 * Prototype version of IEM_CIMPL_DEF_3.
4763 */
4764# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4765 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4766/**
4767 * For calling a C instruction implementation function taking three extra
4768 * arguments.
4769 *
4770 * This special call macro adds default arguments to the call and allow us to
4771 * change these later.
4772 *
4773 * @param a_fn The name of the function.
4774 * @param a0 The name of the 1st argument.
4775 * @param a1 The name of the 2nd argument.
4776 * @param a2 The name of the 3rd argument.
4777 */
4778# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4779
4780
4781/**
4782 * For typedef'ing or declaring a C instruction implementation function taking
4783 * four extra arguments.
4784 *
4785 * @param a_Name The name of the type.
4786 * @param a_Type0 The type of the 1st argument
4787 * @param a_Arg0 The name of the 1st argument.
4788 * @param a_Type1 The type of the 2nd argument.
4789 * @param a_Arg1 The name of the 2nd argument.
4790 * @param a_Type2 The type of the 3rd argument.
4791 * @param a_Arg2 The name of the 3rd argument.
4792 * @param a_Type3 The type of the 4th argument.
4793 * @param a_Arg3 The name of the 4th argument.
4794 */
4795# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4796 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4797/**
4798 * For defining a C instruction implementation function taking four extra
4799 * arguments.
4800 *
4801 * @param a_Name The name of the function.
4802 * @param a_Type0 The type of the 1st argument
4803 * @param a_Arg0 The name of the 1st argument.
4804 * @param a_Type1 The type of the 2nd argument.
4805 * @param a_Arg1 The name of the 2nd argument.
4806 * @param a_Type2 The type of the 3rd argument.
4807 * @param a_Arg2 The name of the 3rd argument.
4808 * @param a_Type3 The type of the 4th argument.
4809 * @param a_Arg3 The name of the 4th argument.
4810 */
4811# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4812 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4813 a_Type2 a_Arg2, a_Type3 a_Arg3))
4814/**
4815 * Prototype version of IEM_CIMPL_DEF_4.
4816 */
4817# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4818 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4819 a_Type2 a_Arg2, a_Type3 a_Arg3))
4820/**
4821 * For calling a C instruction implementation function taking four extra
4822 * arguments.
4823 *
4824 * This special call macro adds default arguments to the call and allow us to
4825 * change these later.
4826 *
4827 * @param a_fn The name of the function.
4828 * @param a0 The name of the 1st argument.
4829 * @param a1 The name of the 2nd argument.
4830 * @param a2 The name of the 3rd argument.
4831 * @param a3 The name of the 4th argument.
4832 */
4833# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4834
4835
4836/**
4837 * For typedef'ing or declaring a C instruction implementation function taking
4838 * five extra arguments.
4839 *
4840 * @param a_Name The name of the type.
4841 * @param a_Type0 The type of the 1st argument
4842 * @param a_Arg0 The name of the 1st argument.
4843 * @param a_Type1 The type of the 2nd argument.
4844 * @param a_Arg1 The name of the 2nd argument.
4845 * @param a_Type2 The type of the 3rd argument.
4846 * @param a_Arg2 The name of the 3rd argument.
4847 * @param a_Type3 The type of the 4th argument.
4848 * @param a_Arg3 The name of the 4th argument.
4849 * @param a_Type4 The type of the 5th argument.
4850 * @param a_Arg4 The name of the 5th argument.
4851 */
4852# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4853 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4854 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4855 a_Type3 a_Arg3, a_Type4 a_Arg4))
4856/**
4857 * For defining a C instruction implementation function taking five extra
4858 * arguments.
4859 *
4860 * @param a_Name The name of the function.
4861 * @param a_Type0 The type of the 1st argument
4862 * @param a_Arg0 The name of the 1st argument.
4863 * @param a_Type1 The type of the 2nd argument.
4864 * @param a_Arg1 The name of the 2nd argument.
4865 * @param a_Type2 The type of the 3rd argument.
4866 * @param a_Arg2 The name of the 3rd argument.
4867 * @param a_Type3 The type of the 4th argument.
4868 * @param a_Arg3 The name of the 4th argument.
4869 * @param a_Type4 The type of the 5th argument.
4870 * @param a_Arg4 The name of the 5th argument.
4871 */
4872# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4873 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4874 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4875/**
4876 * Prototype version of IEM_CIMPL_DEF_5.
4877 */
4878# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4879 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4880 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4881/**
4882 * For calling a C instruction implementation function taking five extra
4883 * arguments.
4884 *
4885 * This special call macro adds default arguments to the call and allow us to
4886 * change these later.
4887 *
4888 * @param a_fn The name of the function.
4889 * @param a0 The name of the 1st argument.
4890 * @param a1 The name of the 2nd argument.
4891 * @param a2 The name of the 3rd argument.
4892 * @param a3 The name of the 4th argument.
4893 * @param a4 The name of the 5th argument.
4894 */
4895# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4896
4897/** @} */
4898
4899
4900/** @name Opcode Decoder Function Types.
4901 * @{ */
4902
4903/** @typedef PFNIEMOP
4904 * Pointer to an opcode decoder function.
4905 */
4906
4907/** @def FNIEMOP_DEF
4908 * Define an opcode decoder function.
4909 *
4910 * We're using macors for this so that adding and removing parameters as well as
4911 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4912 *
4913 * @param a_Name The function name.
4914 */
4915
4916/** @typedef PFNIEMOPRM
4917 * Pointer to an opcode decoder function with RM byte.
4918 */
4919
4920/** @def FNIEMOPRM_DEF
4921 * Define an opcode decoder function with RM byte.
4922 *
4923 * We're using macors for this so that adding and removing parameters as well as
4924 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4925 *
4926 * @param a_Name The function name.
4927 */
4928
4929#if defined(__GNUC__) && defined(RT_ARCH_X86)
4930typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4931typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4932# define FNIEMOP_DEF(a_Name) \
4933 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4934# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4935 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4936# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4937 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4938
4939#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4940typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4941typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4942# define FNIEMOP_DEF(a_Name) \
4943 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4944# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4945 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4946# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4947 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4948
4949#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4950typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4951typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4952# define FNIEMOP_DEF(a_Name) \
4953 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4954# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4955 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4956# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4957 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4958
4959#else
4960typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4961typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4962# define FNIEMOP_DEF(a_Name) \
4963 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4964# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4965 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4966# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4967 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4968
4969#endif
4970#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4971
4972/**
4973 * Call an opcode decoder function.
4974 *
4975 * We're using macors for this so that adding and removing parameters can be
4976 * done as we please. See FNIEMOP_DEF.
4977 */
4978#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4979
4980/**
4981 * Call a common opcode decoder function taking one extra argument.
4982 *
4983 * We're using macors for this so that adding and removing parameters can be
4984 * done as we please. See FNIEMOP_DEF_1.
4985 */
4986#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4987
4988/**
4989 * Call a common opcode decoder function taking one extra argument.
4990 *
4991 * We're using macors for this so that adding and removing parameters can be
4992 * done as we please. See FNIEMOP_DEF_1.
4993 */
4994#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4995/** @} */
4996
4997
4998/** @name Misc Helpers
4999 * @{ */
5000
5001/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5002 * due to GCC lacking knowledge about the value range of a switch. */
5003#if RT_CPLUSPLUS_PREREQ(202000)
5004# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5005#else
5006# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5007#endif
5008
5009/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5010#if RT_CPLUSPLUS_PREREQ(202000)
5011# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5012#else
5013# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5014#endif
5015
5016/**
5017 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5018 * occation.
5019 */
5020#ifdef LOG_ENABLED
5021# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5022 do { \
5023 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5024 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5025 } while (0)
5026#else
5027# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5028 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5029#endif
5030
5031/**
5032 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5033 * occation using the supplied logger statement.
5034 *
5035 * @param a_LoggerArgs What to log on failure.
5036 */
5037#ifdef LOG_ENABLED
5038# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5039 do { \
5040 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5041 /*LogFunc(a_LoggerArgs);*/ \
5042 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5043 } while (0)
5044#else
5045# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5046 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5047#endif
5048
5049/**
5050 * Gets the CPU mode (from fExec) as a IEMMODE value.
5051 *
5052 * @returns IEMMODE
5053 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5054 */
5055#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5056
5057/**
5058 * Check if we're currently executing in real or virtual 8086 mode.
5059 *
5060 * @returns @c true if it is, @c false if not.
5061 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5062 */
5063#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5064 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5065
5066/**
5067 * Check if we're currently executing in virtual 8086 mode.
5068 *
5069 * @returns @c true if it is, @c false if not.
5070 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5071 */
5072#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5073
5074/**
5075 * Check if we're currently executing in long mode.
5076 *
5077 * @returns @c true if it is, @c false if not.
5078 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5079 */
5080#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5081
5082/**
5083 * Check if we're currently executing in a 16-bit code segment.
5084 *
5085 * @returns @c true if it is, @c false if not.
5086 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5087 */
5088#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5089
5090/**
5091 * Check if we're currently executing in a 32-bit code segment.
5092 *
5093 * @returns @c true if it is, @c false if not.
5094 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5095 */
5096#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5097
5098/**
5099 * Check if we're currently executing in a 64-bit code segment.
5100 *
5101 * @returns @c true if it is, @c false if not.
5102 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5103 */
5104#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5105
5106/**
5107 * Check if we're currently executing in real mode.
5108 *
5109 * @returns @c true if it is, @c false if not.
5110 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5111 */
5112#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5113
5114/**
5115 * Gets the current protection level (CPL).
5116 *
5117 * @returns 0..3
5118 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5119 */
5120#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5121
5122/**
5123 * Sets the current protection level (CPL).
5124 *
5125 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5126 */
5127#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5128 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5129
5130/**
5131 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5132 * @returns PCCPUMFEATURES
5133 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5134 */
5135#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5136
5137/**
5138 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5139 * @returns PCCPUMFEATURES
5140 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5141 */
5142#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5143
5144/**
5145 * Evaluates to true if we're presenting an Intel CPU to the guest.
5146 */
5147#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5148
5149/**
5150 * Evaluates to true if we're presenting an AMD CPU to the guest.
5151 */
5152#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5153
5154/**
5155 * Check if the address is canonical.
5156 */
5157#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5158
5159/** Checks if the ModR/M byte is in register mode or not. */
5160#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5161/** Checks if the ModR/M byte is in memory mode or not. */
5162#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5163
5164/**
5165 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5166 *
5167 * For use during decoding.
5168 */
5169#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5170/**
5171 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5172 *
5173 * For use during decoding.
5174 */
5175#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5176
5177/**
5178 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5179 *
5180 * For use during decoding.
5181 */
5182#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5183/**
5184 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5185 *
5186 * For use during decoding.
5187 */
5188#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5189
5190/**
5191 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5192 * register index, with REX.R added in.
5193 *
5194 * For use during decoding.
5195 *
5196 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5197 */
5198#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5199 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5200 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5201 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5202/**
5203 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5204 * with REX.B added in.
5205 *
5206 * For use during decoding.
5207 *
5208 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5209 */
5210#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5211 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5212 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5213 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5214
5215/**
5216 * Combines the prefix REX and ModR/M byte for passing to
5217 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5218 *
5219 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5220 * The two bits are part of the REG sub-field, which isn't needed in
5221 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5222 *
5223 * For use during decoding/recompiling.
5224 */
5225#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5226 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5227 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5228AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5229AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5230
5231/**
5232 * Gets the effective VEX.VVVV value.
5233 *
5234 * The 4th bit is ignored if not 64-bit code.
5235 * @returns effective V-register value.
5236 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5237 */
5238#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5239 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5240
5241
5242/**
5243 * Gets the register (reg) part of a the special 4th register byte used by
5244 * vblendvps and vblendvpd.
5245 *
5246 * For use during decoding.
5247 */
5248#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5249 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5250
5251
5252/**
5253 * Checks if we're executing inside an AMD-V or VT-x guest.
5254 */
5255#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5256# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5257#else
5258# define IEM_IS_IN_GUEST(a_pVCpu) false
5259#endif
5260
5261
5262#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5263
5264/**
5265 * Check if the guest has entered VMX root operation.
5266 */
5267# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5268
5269/**
5270 * Check if the guest has entered VMX non-root operation.
5271 */
5272# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5273 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5274
5275/**
5276 * Check if the nested-guest has the given Pin-based VM-execution control set.
5277 */
5278# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5279
5280/**
5281 * Check if the nested-guest has the given Processor-based VM-execution control set.
5282 */
5283# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5284
5285/**
5286 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5287 * control set.
5288 */
5289# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5290
5291/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5292# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5293
5294/** Whether a shadow VMCS is present for the given VCPU. */
5295# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5296
5297/** Gets the VMXON region pointer. */
5298# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5299
5300/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5301# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5302
5303/** Whether a current VMCS is present for the given VCPU. */
5304# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5305
5306/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5307# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5308 do \
5309 { \
5310 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5311 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5312 } while (0)
5313
5314/** Clears any current VMCS for the given VCPU. */
5315# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5316 do \
5317 { \
5318 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5319 } while (0)
5320
5321/**
5322 * Invokes the VMX VM-exit handler for an instruction intercept.
5323 */
5324# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5325 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5326
5327/**
5328 * Invokes the VMX VM-exit handler for an instruction intercept where the
5329 * instruction provides additional VM-exit information.
5330 */
5331# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5332 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5333
5334/**
5335 * Invokes the VMX VM-exit handler for a task switch.
5336 */
5337# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5338 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5339
5340/**
5341 * Invokes the VMX VM-exit handler for MWAIT.
5342 */
5343# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5344 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5345
5346/**
5347 * Invokes the VMX VM-exit handler for EPT faults.
5348 */
5349# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5350 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5351
5352/**
5353 * Invokes the VMX VM-exit handler.
5354 */
5355# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5356 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5357
5358#else
5359# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5360# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5361# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5362# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5363# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5364# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5365# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5366# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5367# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5368# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5369# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5370
5371#endif
5372
5373#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5374/**
5375 * Checks if we're executing a guest using AMD-V.
5376 */
5377# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5378 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5379/**
5380 * Check if an SVM control/instruction intercept is set.
5381 */
5382# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5383 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5384
5385/**
5386 * Check if an SVM read CRx intercept is set.
5387 */
5388# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5389 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5390
5391/**
5392 * Check if an SVM write CRx intercept is set.
5393 */
5394# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5395 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5396
5397/**
5398 * Check if an SVM read DRx intercept is set.
5399 */
5400# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5401 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5402
5403/**
5404 * Check if an SVM write DRx intercept is set.
5405 */
5406# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5407 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5408
5409/**
5410 * Check if an SVM exception intercept is set.
5411 */
5412# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5413 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5414
5415/**
5416 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5417 */
5418# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5419 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5420
5421/**
5422 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5423 * corresponding decode assist information.
5424 */
5425# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5426 do \
5427 { \
5428 uint64_t uExitInfo1; \
5429 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5430 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5431 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5432 else \
5433 uExitInfo1 = 0; \
5434 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5435 } while (0)
5436
5437/** Check and handles SVM nested-guest instruction intercept and updates
5438 * NRIP if needed.
5439 */
5440# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5441 do \
5442 { \
5443 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5444 { \
5445 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5446 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5447 } \
5448 } while (0)
5449
5450/** Checks and handles SVM nested-guest CR0 read intercept. */
5451# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5452 do \
5453 { \
5454 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5455 { /* probably likely */ } \
5456 else \
5457 { \
5458 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5459 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5460 } \
5461 } while (0)
5462
5463/**
5464 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5465 */
5466# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5467 do { \
5468 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5469 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5470 } while (0)
5471
5472#else
5473# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5474# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5475# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5476# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5477# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5478# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5479# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5480# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5481# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5482 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5483# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5484# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5485
5486#endif
5487
5488/** @} */
5489
5490uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5491VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5492
5493
5494/**
5495 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5496 */
5497typedef union IEMSELDESC
5498{
5499 /** The legacy view. */
5500 X86DESC Legacy;
5501 /** The long mode view. */
5502 X86DESC64 Long;
5503} IEMSELDESC;
5504/** Pointer to a selector descriptor table entry. */
5505typedef IEMSELDESC *PIEMSELDESC;
5506
5507/** @name Raising Exceptions.
5508 * @{ */
5509VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5510 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5511
5512VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5513 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5514#ifdef IEM_WITH_SETJMP
5515DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5516 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5517#endif
5518VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5519#ifdef IEM_WITH_SETJMP
5520DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5521#endif
5522VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5523VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5524VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5525#ifdef IEM_WITH_SETJMP
5526DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5527#endif
5528VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5529#ifdef IEM_WITH_SETJMP
5530DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5531#endif
5532VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5533VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5534VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5535VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5536/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5537VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5538VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5539VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5540VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5541VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5542VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5543#ifdef IEM_WITH_SETJMP
5544DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5545#endif
5546VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5547VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5548VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5549#ifdef IEM_WITH_SETJMP
5550DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5551#endif
5552VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5553#ifdef IEM_WITH_SETJMP
5554DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5555#endif
5556VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5557#ifdef IEM_WITH_SETJMP
5558DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5559#endif
5560VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5561#ifdef IEM_WITH_SETJMP
5562DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5563#endif
5564VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5565#ifdef IEM_WITH_SETJMP
5566DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5567#endif
5568VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5569#ifdef IEM_WITH_SETJMP
5570DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5571#endif
5572VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5573#ifdef IEM_WITH_SETJMP
5574DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5575#endif
5576
5577void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5578void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5579
5580IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5581IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5582IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5583
5584/**
5585 * Macro for calling iemCImplRaiseDivideError().
5586 *
5587 * This is for things that will _always_ decode to an \#DE, taking the
5588 * recompiler into consideration and everything.
5589 *
5590 * @return Strict VBox status code.
5591 */
5592#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5593
5594/**
5595 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5596 *
5597 * This is for things that will _always_ decode to an \#UD, taking the
5598 * recompiler into consideration and everything.
5599 *
5600 * @return Strict VBox status code.
5601 */
5602#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5603
5604/**
5605 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5606 *
5607 * This is for things that will _always_ decode to an \#UD, taking the
5608 * recompiler into consideration and everything.
5609 *
5610 * @return Strict VBox status code.
5611 */
5612#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5613
5614/**
5615 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5616 *
5617 * Using this macro means you've got _buggy_ _code_ and are doing things that
5618 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5619 *
5620 * @return Strict VBox status code.
5621 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5622 */
5623#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5624
5625/** @} */
5626
5627/** @name Register Access.
5628 * @{ */
5629VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5630 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5631VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5632VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5633 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5634/** @} */
5635
5636/** @name FPU access and helpers.
5637 * @{ */
5638void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5639void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5640void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5641void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5642void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5643void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5644 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5645void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5646 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5647void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5648void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5649void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5650void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5651void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5652void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5653void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5654void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5655void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5656void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5657void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5658void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5659void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5660void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5661void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5662/** @} */
5663
5664/** @name SSE+AVX SIMD access and helpers.
5665 * @{ */
5666void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5667/** @} */
5668
5669/** @name Memory access.
5670 * @{ */
5671
5672/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5673#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5674/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5675 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5676#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5677/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5678 * Users include FXSAVE & FXRSTOR. */
5679#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5680
5681VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5682 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5683VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5684#ifndef IN_RING3
5685VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5686#endif
5687void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5688void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5689VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5690VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5691VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5692
5693void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5694void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5695#ifdef IEM_WITH_CODE_TLB
5696void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5697#else
5698VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5699#endif
5700#ifdef IEM_WITH_SETJMP
5701uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5702uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5703uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5704uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5705#else
5706VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5707VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5708VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5709VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5710VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5711VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5712VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5713VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5714VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5715VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5716VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5717#endif
5718
5719VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5720VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5721VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5722VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5723VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5724VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5725VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5726VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5727VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5728VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5729VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5730VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5731VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5732VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5733VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5734 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5735#ifdef IEM_WITH_SETJMP
5736uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5737uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5738uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5739uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5740uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5741uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5742void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5743void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5744void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5745void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5746void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5747void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5748void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5749void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5750# if 0 /* these are inlined now */
5751uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5752uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5753uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5754uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5755uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5756uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5757void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5758void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5759void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5760void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5761void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5762void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5763void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5764# endif
5765void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5766#endif
5767
5768VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5769VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5770VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5771VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5772VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5773
5774VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5775VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5776VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5777VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5778VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5779VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5780VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5781VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5782VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5783VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5784VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5785#ifdef IEM_WITH_SETJMP
5786void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5787void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5788void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5789void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5790void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5791void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5792void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5793void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5794void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5795void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5796void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5797void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5798#if 0
5799void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5800void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5801void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5802void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5803void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5804void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5805void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5806void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5807#endif
5808void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5809void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5810#endif
5811
5812#ifdef IEM_WITH_SETJMP
5813uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5814uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5815uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5816uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5817uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5818uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5819uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5820uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5821uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5822uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5823uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5824uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5825uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5826uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5827uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5828uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5829PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5830PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5831PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5832PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5833PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5834PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5835PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5836PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5837PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5838PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5839
5840void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5841void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5842void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5843void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5844void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5845void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5846#endif
5847
5848VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5849 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5850VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5851VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5852VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5853VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5854VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5855VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5856VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5857VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5858VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5859 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5860VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5861 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5862VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5863VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5864VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5865VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5866VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5867VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5868VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5869
5870#ifdef IEM_WITH_SETJMP
5871void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5872void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5873void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5874void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5875void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5876void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5877void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5878
5879void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5880void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5881void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5882void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5883void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5884
5885void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5886void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5887void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5888void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5889
5890void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5891void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5892void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5893void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5894
5895uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5896uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5897uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5898
5899#endif
5900
5901/** @} */
5902
5903/** @name IEMAllCImpl.cpp
5904 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5905 * @{ */
5906IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5907IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5908IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5909IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5910IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5911IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5912IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5913IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5914IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5915IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5916IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5917typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5918typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5919IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5920IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5921IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5922IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5923IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5924IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5925IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5926IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5927IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5928IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5929IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5930IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5931IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5932IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5933IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5934IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5935IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5936IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5937IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5938IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5939IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5940IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5941IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5942IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5943IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5944IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5945IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5946IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5947IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5948IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5949IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5950IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5951IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5952IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5953IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5954IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5955IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5956IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5957IEM_CIMPL_PROTO_0(iemCImpl_clts);
5958IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5959IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5960IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5961IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5962IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5963IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5964IEM_CIMPL_PROTO_0(iemCImpl_invd);
5965IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5966IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5967IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5968IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5969IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5970IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5971IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5972IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5973IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5974IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5975IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5976IEM_CIMPL_PROTO_0(iemCImpl_cli);
5977IEM_CIMPL_PROTO_0(iemCImpl_sti);
5978IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5979IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5980IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5981IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5982IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5983IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5984IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5985IEM_CIMPL_PROTO_0(iemCImpl_daa);
5986IEM_CIMPL_PROTO_0(iemCImpl_das);
5987IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5988IEM_CIMPL_PROTO_0(iemCImpl_aas);
5989IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5990IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5991IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5992IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5993IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5994 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5995IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5996IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5997IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5998IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5999IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6000IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6001IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6002IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6003IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6004IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6005IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6006IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6007IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6008IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6009IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6010IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6011IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6012IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6013IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6014IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6015IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6016IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6017IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6018IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6019IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6020IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6021IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6022IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6023IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6024IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6025IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6026IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6027IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6028IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6029
6030/** @} */
6031
6032/** @name IEMAllCImplStrInstr.cpp.h
6033 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6034 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6035 * @{ */
6036IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6037IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6038IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6039IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6040IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6041IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6042IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6043IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6044IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6045IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6046IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6047
6048IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6049IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6050IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6051IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6052IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6053IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6054IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6055IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6056IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6057IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6058IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6059
6060IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6061IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6062IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6063IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6064IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6065IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6066IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6067IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6068IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6069IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6070IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6071
6072
6073IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6074IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6075IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6076IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6077IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6078IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6079IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6080IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6081IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6082IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6083IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6084
6085IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6086IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6087IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6088IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6089IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6090IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6091IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6092IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6093IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6094IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6095IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6096
6097IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6098IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6099IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6100IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6101IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6102IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6103IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6104IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6105IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6106IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6107IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6108
6109IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6110IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6111IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6112IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6113IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6114IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6115IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6116IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6117IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6118IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6119IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6120
6121
6122IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6123IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6124IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6125IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6126IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6127IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6128IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6129IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6130IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6131IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6132IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6133
6134IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6135IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6136IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6137IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6138IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6139IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6140IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6141IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6142IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6143IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6144IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6145
6146IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6147IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6148IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6149IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6150IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6151IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6152IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6153IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6154IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6155IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6156IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6157
6158IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6159IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6160IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6161IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6162IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6163IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6164IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6165IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6166IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6167IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6168IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6169/** @} */
6170
6171#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6172VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6173VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6174VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6175VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6176VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6177VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6178VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6179VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6180VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6181VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6182 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6183VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6184 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6185VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6186VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6187VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6188VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6189VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6190VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6191VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6192VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6193 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6194VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6195VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6196VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6197uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6198void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6199VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6200 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6201bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6202IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6203IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6204IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6205IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6206IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6207IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6208IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6209IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6210IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6211IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6212IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6213IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6214IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6215IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6216IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6217IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6218#endif
6219
6220#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6221VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6222VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6223VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6224 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6225VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6226IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6227IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6228IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6229IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6230IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6231IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6232IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6233IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6234#endif
6235
6236IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6237IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6238IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6239
6240extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6241extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6242extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6243extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6244extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6245extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6246extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6247
6248/*
6249 * Recompiler related stuff.
6250 */
6251extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6252extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6253extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6254extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6255extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6256extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6257extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6258
6259DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6260 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6261void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6262DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6263void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6264void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6265DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6266DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6267
6268
6269/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6270#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6271typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6272typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6273# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6274 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6275# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6276 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6277
6278#else
6279typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6280typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6281# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6282 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6283# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6284 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6285#endif
6286
6287
6288IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6289IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6290
6291IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6292
6293IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6294IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6295IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6296IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6297
6298IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6299IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6300IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6301
6302/* Branching: */
6303IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6304IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6305IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6306
6307IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6308IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6309IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6310
6311/* Natural page crossing: */
6312IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6313IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6314IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6315
6316IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6317IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6318IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6319
6320IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6321IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6322IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6323
6324bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6325bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6326
6327/* Native recompiler public bits: */
6328DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6329DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6330int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6331DECLHIDDEN(void *) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, void **ppvExec) RT_NOEXCEPT;
6332DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6333void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6334DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6335
6336#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6337
6338
6339/** @} */
6340
6341RT_C_DECLS_END
6342
6343/* ASM-INC: %include "IEMInternalStruct.mac" */
6344
6345#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6346
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette