VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 105229

Last change on this file since 105229 was 105229, checked in by vboxsync, 5 months ago

VMM/IEM: Implement vmax{ps,pd,ss,sd} instruction emulations, bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 328.3 KB
Line 
1/* $Id: IEMInternal.h 105229 2024-07-09 10:31:19Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def IEM_WITH_TLB_STATISTICS
116 * Enables all TLB statistics. */
117#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
118# define IEM_WITH_TLB_STATISTICS
119#endif
120
121/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
122 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
123 * executing native translation blocks.
124 *
125 * This exploits the fact that we save all non-volatile registers in the TB
126 * prologue and thus just need to do the same as the TB epilogue to get the
127 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
128 * non-volatile (and does something even more crazy for ARM), this probably
129 * won't work reliably on Windows. */
130#ifdef RT_ARCH_ARM64
131# ifndef RT_OS_WINDOWS
132# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
133# endif
134#endif
135/* ASM-NOINC-START */
136#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
137# if !defined(IN_RING3) \
138 || !defined(VBOX_WITH_IEM_RECOMPILER) \
139 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
140# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
141# elif defined(RT_OS_WINDOWS)
142# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
143# endif
144#endif
145
146
147/** @def IEM_DO_LONGJMP
148 *
149 * Wrapper around longjmp / throw.
150 *
151 * @param a_pVCpu The CPU handle.
152 * @param a_rc The status code jump back with / throw.
153 */
154#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
155# ifdef IEM_WITH_THROW_CATCH
156# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
157# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
158 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
159 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
160 throw int(a_rc); \
161 } while (0)
162# else
163# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
164# endif
165# else
166# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
167# endif
168#endif
169
170/** For use with IEM function that may do a longjmp (when enabled).
171 *
172 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
173 * attribute. So, we indicate that function that may be part of a longjmp may
174 * throw "exceptions" and that the compiler should definitely not generate and
175 * std::terminate calling unwind code.
176 *
177 * Here is one example of this ending in std::terminate:
178 * @code{.txt}
17900 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
18001 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
18102 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
18203 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
18304 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
18405 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
18506 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
18607 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
18708 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
18809 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1890a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1900b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1910c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1920d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1930e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1940f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
19510 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
196 @endcode
197 *
198 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
199 */
200#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
201# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
202#else
203# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
204#endif
205/* ASM-NOINC-END */
206
207#define IEM_IMPLEMENTS_TASKSWITCH
208
209/** @def IEM_WITH_3DNOW
210 * Includes the 3DNow decoding. */
211#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
212# ifndef IEM_WITHOUT_3DNOW
213# define IEM_WITH_3DNOW
214# endif
215#endif
216
217/** @def IEM_WITH_THREE_0F_38
218 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
219#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
220# ifndef IEM_WITHOUT_THREE_0F_38
221# define IEM_WITH_THREE_0F_38
222# endif
223#endif
224
225/** @def IEM_WITH_THREE_0F_3A
226 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
227#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
228# ifndef IEM_WITHOUT_THREE_0F_3A
229# define IEM_WITH_THREE_0F_3A
230# endif
231#endif
232
233/** @def IEM_WITH_VEX
234 * Includes the VEX decoding. */
235#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
236# ifndef IEM_WITHOUT_VEX
237# define IEM_WITH_VEX
238# endif
239#endif
240
241/** @def IEM_CFG_TARGET_CPU
242 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
243 *
244 * By default we allow this to be configured by the user via the
245 * CPUM/GuestCpuName config string, but this comes at a slight cost during
246 * decoding. So, for applications of this code where there is no need to
247 * be dynamic wrt target CPU, just modify this define.
248 */
249#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
250# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
251#endif
252
253//#define IEM_WITH_CODE_TLB // - work in progress
254//#define IEM_WITH_DATA_TLB // - work in progress
255
256
257/** @def IEM_USE_UNALIGNED_DATA_ACCESS
258 * Use unaligned accesses instead of elaborate byte assembly. */
259#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
260# define IEM_USE_UNALIGNED_DATA_ACCESS
261#endif /*ASM-NOINC*/
262
263//#define IEM_LOG_MEMORY_WRITES
264
265
266
267#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
268
269# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
270/** Instruction statistics. */
271typedef struct IEMINSTRSTATS
272{
273# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
274# include "IEMInstructionStatisticsTmpl.h"
275# undef IEM_DO_INSTR_STAT
276} IEMINSTRSTATS;
277#else
278struct IEMINSTRSTATS;
279typedef struct IEMINSTRSTATS IEMINSTRSTATS;
280#endif
281/** Pointer to IEM instruction statistics. */
282typedef IEMINSTRSTATS *PIEMINSTRSTATS;
283
284
285/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
286 * @{ */
287#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
288#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
289#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
290#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
291#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
292/** Selects the right variant from a_aArray.
293 * pVCpu is implicit in the caller context. */
294#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
295 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
296/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
297 * be used because the host CPU does not support the operation. */
298#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
299 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
300/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
301 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
302 * into the two.
303 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
304#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
305# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
306 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
307#else
308# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
309 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
310#endif
311/** @} */
312
313/**
314 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
315 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
316 *
317 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
318 * indicator.
319 *
320 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
321 */
322#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
323# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
324 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
325#else
326# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
327#endif
328
329
330/**
331 * Branch types.
332 */
333typedef enum IEMBRANCH
334{
335 IEMBRANCH_JUMP = 1,
336 IEMBRANCH_CALL,
337 IEMBRANCH_TRAP,
338 IEMBRANCH_SOFTWARE_INT,
339 IEMBRANCH_HARDWARE_INT
340} IEMBRANCH;
341AssertCompileSize(IEMBRANCH, 4);
342
343
344/**
345 * INT instruction types.
346 */
347typedef enum IEMINT
348{
349 /** INT n instruction (opcode 0xcd imm). */
350 IEMINT_INTN = 0,
351 /** Single byte INT3 instruction (opcode 0xcc). */
352 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
353 /** Single byte INTO instruction (opcode 0xce). */
354 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
355 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
356 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
357} IEMINT;
358AssertCompileSize(IEMINT, 4);
359
360
361/**
362 * A FPU result.
363 */
364typedef struct IEMFPURESULT
365{
366 /** The output value. */
367 RTFLOAT80U r80Result;
368 /** The output status. */
369 uint16_t FSW;
370} IEMFPURESULT;
371AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
372/** Pointer to a FPU result. */
373typedef IEMFPURESULT *PIEMFPURESULT;
374/** Pointer to a const FPU result. */
375typedef IEMFPURESULT const *PCIEMFPURESULT;
376
377
378/**
379 * A FPU result consisting of two output values and FSW.
380 */
381typedef struct IEMFPURESULTTWO
382{
383 /** The first output value. */
384 RTFLOAT80U r80Result1;
385 /** The output status. */
386 uint16_t FSW;
387 /** The second output value. */
388 RTFLOAT80U r80Result2;
389} IEMFPURESULTTWO;
390AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
391AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
392/** Pointer to a FPU result consisting of two output values and FSW. */
393typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
394/** Pointer to a const FPU result consisting of two output values and FSW. */
395typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
396
397
398/**
399 * IEM TLB entry.
400 *
401 * Lookup assembly:
402 * @code{.asm}
403 ; Calculate tag.
404 mov rax, [VA]
405 shl rax, 16
406 shr rax, 16 + X86_PAGE_SHIFT
407 or rax, [uTlbRevision]
408
409 ; Do indexing.
410 movzx ecx, al
411 lea rcx, [pTlbEntries + rcx]
412
413 ; Check tag.
414 cmp [rcx + IEMTLBENTRY.uTag], rax
415 jne .TlbMiss
416
417 ; Check access.
418 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
419 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
420 cmp rax, [uTlbPhysRev]
421 jne .TlbMiss
422
423 ; Calc address and we're done.
424 mov eax, X86_PAGE_OFFSET_MASK
425 and eax, [VA]
426 or rax, [rcx + IEMTLBENTRY.pMappingR3]
427 %ifdef VBOX_WITH_STATISTICS
428 inc qword [cTlbHits]
429 %endif
430 jmp .Done
431
432 .TlbMiss:
433 mov r8d, ACCESS_FLAGS
434 mov rdx, [VA]
435 mov rcx, [pVCpu]
436 call iemTlbTypeMiss
437 .Done:
438
439 @endcode
440 *
441 */
442typedef struct IEMTLBENTRY
443{
444 /** The TLB entry tag.
445 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
446 * is ASSUMING a virtual address width of 48 bits.
447 *
448 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
449 *
450 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
451 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
452 * revision wraps around though, the tags needs to be zeroed.
453 *
454 * @note Try use SHRD instruction? After seeing
455 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
456 *
457 * @todo This will need to be reorganized for 57-bit wide virtual address and
458 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
459 * have to move the TLB entry versioning entirely to the
460 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
461 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
462 * consumed by PCID and ASID (12 + 6 = 18).
463 */
464 uint64_t uTag;
465 /** Access flags and physical TLB revision.
466 *
467 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
468 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
469 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
470 * - Bit 3 - pgm phys/virt - not directly writable.
471 * - Bit 4 - pgm phys page - not directly readable.
472 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
473 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
474 * - Bit 7 - tlb entry - pMappingR3 member not valid.
475 * - Bits 63 thru 8 are used for the physical TLB revision number.
476 *
477 * We're using complemented bit meanings here because it makes it easy to check
478 * whether special action is required. For instance a user mode write access
479 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
480 * non-zero result would mean special handling needed because either it wasn't
481 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
482 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
483 * need to check any PTE flag.
484 */
485 uint64_t fFlagsAndPhysRev;
486 /** The guest physical page address. */
487 uint64_t GCPhys;
488 /** Pointer to the ring-3 mapping. */
489 R3PTRTYPE(uint8_t *) pbMappingR3;
490#if HC_ARCH_BITS == 32
491 uint32_t u32Padding1;
492#endif
493} IEMTLBENTRY;
494AssertCompileSize(IEMTLBENTRY, 32);
495/** Pointer to an IEM TLB entry. */
496typedef IEMTLBENTRY *PIEMTLBENTRY;
497/** Pointer to a const IEM TLB entry. */
498typedef IEMTLBENTRY const *PCIEMTLBENTRY;
499
500/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
501 * @{ */
502#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
503#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
504#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
505#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
506#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
507#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
508#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
509#define IEMTLBE_F_PT_LARGE_PAGE RT_BIT_64(7) /**< Page tables: Large 2 or 4 MiB page (for flushing). */
510#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(8) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
511#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(9) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
512#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(10) /**< Phys page: Code page. */
513#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffff800) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
514/** @} */
515AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
516AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
517AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
518AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
519AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
520AssertCompile(PGM_WALKINFO_BIG_PAGE == IEMTLBE_F_PT_LARGE_PAGE);
521/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
522#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
523 | PGMIEMGCPHYS2PTR_F_NO_READ \
524 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
525 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
526 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
527 | IEMTLBE_F_PHYS_REV )
528
529/** The TLB size (power of two).
530 * We initially chose 256 because that way we can obtain the result directly
531 * from a 8-bit register without an additional AND instruction.
532 * See also @bugref{10687}. */
533#if defined(RT_ARCH_AMD64)
534# define IEMTLB_ENTRY_COUNT 256
535# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
536#else
537# define IEMTLB_ENTRY_COUNT 8192
538# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 13
539#endif
540AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
541
542/**
543 * An IEM TLB.
544 *
545 * We've got two of these, one for data and one for instructions.
546 */
547typedef struct IEMTLB
548{
549 /** The non-global TLB revision.
550 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
551 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
552 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
553 * (The revision zero indicates an invalid TLB entry.)
554 *
555 * The initial value is choosen to cause an early wraparound. */
556 uint64_t uTlbRevision;
557 /** The TLB physical address revision - shadow of PGM variable.
558 *
559 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
560 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
561 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
562 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
563 *
564 * The initial value is choosen to cause an early wraparound.
565 *
566 * @note This is placed between the two TLB revisions because we
567 * load it in pair with one or the other on arm64. */
568 uint64_t volatile uTlbPhysRev;
569 /** The global TLB revision.
570 * Same as uTlbRevision, but only increased for global flushes. */
571 uint64_t uTlbRevisionGlobal;
572
573 /* Statistics: */
574
575 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
576 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
577 * not via safe read/write path) calls to iemMemMapJmp. */
578 uint64_t cTlbCoreHits;
579 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
580 * only; data tlb only). */
581 uint64_t cTlbSafeHits;
582 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
583 uint64_t cTlbInlineCodeHits;
584
585 /** TLB misses in IEMAll.cpp code (both).
586 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
587 * not via safe read/write path) calls to iemMemMapJmp. So,
588 * for the data TLB this more like 'other misses', while for the code
589 * TLB is all misses. */
590 uint64_t cTlbCoreMisses;
591 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
592 uint64_t cTlbCoreGlobalLoads;
593 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
594 uint64_t cTlbSafeMisses;
595 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
596 uint64_t cTlbSafeGlobalLoads;
597 /** Safe read path taken (data only). */
598 uint64_t cTlbSafeReadPath;
599 /** Safe write path taken (data only). */
600 uint64_t cTlbSafeWritePath;
601
602 /** @name Details for native code TLB misses.
603 * @note These counts are included in the above counters (cTlbSafeReadPath,
604 * cTlbSafeWritePath, cTlbInlineCodeHits).
605 * @{ */
606 /** TLB misses in native code due to tag mismatch. */
607 STAMCOUNTER cTlbNativeMissTag;
608 /** TLB misses in native code due to flags or physical revision mismatch. */
609 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
610 /** TLB misses in native code due to misaligned access. */
611 STAMCOUNTER cTlbNativeMissAlignment;
612 /** TLB misses in native code due to cross page access. */
613 uint32_t cTlbNativeMissCrossPage;
614 /** TLB misses in native code due to non-canonical address. */
615 uint32_t cTlbNativeMissNonCanonical;
616 /** @} */
617
618 /** Slow read path (code only). */
619 uint32_t cTlbSlowCodeReadPath;
620
621 /** Regular TLB flush count. */
622 uint32_t cTlsFlushes;
623 /** Global TLB flush count. */
624 uint32_t cTlsGlobalFlushes;
625 /** Revision rollovers. */
626 uint32_t cTlbRevisionRollovers;
627 /** Physical revision flushes. */
628 uint32_t cTlbPhysRevFlushes;
629 /** Physical revision rollovers. */
630 uint32_t cTlbPhysRevRollovers;
631
632 uint32_t au32Padding[10];
633
634 /** The TLB entries.
635 * Even entries are for PTE.G=0 and uses uTlbRevision.
636 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
637 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
638} IEMTLB;
639AssertCompileSizeAlignment(IEMTLB, 64);
640/** IEMTLB::uTlbRevision increment. */
641#define IEMTLB_REVISION_INCR RT_BIT_64(36)
642/** IEMTLB::uTlbRevision mask. */
643#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
644/** IEMTLB::uTlbPhysRev increment.
645 * @sa IEMTLBE_F_PHYS_REV */
646#define IEMTLB_PHYS_REV_INCR RT_BIT_64(11)
647AssertCompile(IEMTLBE_F_PHYS_REV == ~(IEMTLB_PHYS_REV_INCR - 1U));
648
649/**
650 * Calculates the TLB tag for a virtual address but without TLB revision.
651 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
652 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
653 * the clearing of the top 16 bits won't work (if 32-bit
654 * we'll end up with mostly zeros).
655 */
656#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
657/**
658 * Converts a TLB tag value into a even TLB index.
659 * @returns Index into IEMTLB::aEntries.
660 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
661 */
662#if IEMTLB_ENTRY_COUNT == 256
663# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
664#else
665# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
666AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
667#endif
668/**
669 * Converts a TLB tag value into an even TLB index.
670 * @returns Pointer into IEMTLB::aEntries corresponding to .
671 * @param a_pTlb The TLB.
672 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
673 * IEMTLB_CALC_TAG_NO_REV.
674 */
675#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
676
677
678/** @name IEM_MC_F_XXX - MC block flags/clues.
679 * @todo Merge with IEM_CIMPL_F_XXX
680 * @{ */
681#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
682#define IEM_MC_F_MIN_186 RT_BIT_32(1)
683#define IEM_MC_F_MIN_286 RT_BIT_32(2)
684#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
685#define IEM_MC_F_MIN_386 RT_BIT_32(3)
686#define IEM_MC_F_MIN_486 RT_BIT_32(4)
687#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
688#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
689#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
690#define IEM_MC_F_64BIT RT_BIT_32(6)
691#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
692/** This is set by IEMAllN8vePython.py to indicate a variation without the
693 * flags-clearing-and-checking, when there is also a variation with that.
694 * @note Do not use this manully, it's only for python and for testing in
695 * the native recompiler! */
696#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
697/** @} */
698
699/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
700 *
701 * These clues are mainly for the recompiler, so that it can emit correct code.
702 *
703 * They are processed by the python script and which also automatically
704 * calculates flags for MC blocks based on the statements, extending the use of
705 * these flags to describe MC block behavior to the recompiler core. The python
706 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
707 * error checking purposes. The script emits the necessary fEndTb = true and
708 * similar statements as this reduces compile time a tiny bit.
709 *
710 * @{ */
711/** Flag set if direct branch, clear if absolute or indirect. */
712#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
713/** Flag set if indirect branch, clear if direct or relative.
714 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
715 * as well as for return instructions (RET, IRET, RETF). */
716#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
717/** Flag set if relative branch, clear if absolute or indirect. */
718#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
719/** Flag set if conditional branch, clear if unconditional. */
720#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
721/** Flag set if it's a far branch (changes CS). */
722#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
723/** Convenience: Testing any kind of branch. */
724#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
725
726/** Execution flags may change (IEMCPU::fExec). */
727#define IEM_CIMPL_F_MODE RT_BIT_32(5)
728/** May change significant portions of RFLAGS. */
729#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
730/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
731#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
732/** May trigger interrupt shadowing. */
733#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
734/** May enable interrupts, so recheck IRQ immediately afterwards executing
735 * the instruction. */
736#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
737/** May disable interrupts, so recheck IRQ immediately before executing the
738 * instruction. */
739#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
740/** Convenience: Check for IRQ both before and after an instruction. */
741#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
742/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
743#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
744/** May modify FPU state.
745 * @todo Not sure if this is useful yet. */
746#define IEM_CIMPL_F_FPU RT_BIT_32(12)
747/** REP prefixed instruction which may yield before updating PC.
748 * @todo Not sure if this is useful, REP functions now return non-zero
749 * status if they don't update the PC. */
750#define IEM_CIMPL_F_REP RT_BIT_32(13)
751/** I/O instruction.
752 * @todo Not sure if this is useful yet. */
753#define IEM_CIMPL_F_IO RT_BIT_32(14)
754/** Force end of TB after the instruction. */
755#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
756/** Flag set if a branch may also modify the stack (push/pop return address). */
757#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
758/** Flag set if a branch may also modify the stack (push/pop return address)
759 * and switch it (load/restore SS:RSP). */
760#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
761/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
762#define IEM_CIMPL_F_XCPT \
763 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
764 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
765
766/** The block calls a C-implementation instruction function with two implicit arguments.
767 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
768 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
769 * @note The python scripts will add this if missing. */
770#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
771/** The block calls an ASM-implementation instruction function.
772 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
773 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
774 * @note The python scripts will add this if missing. */
775#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
776/** The block calls an ASM-implementation instruction function with an implicit
777 * X86FXSTATE pointer argument.
778 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
779 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
780 * @note The python scripts will add this if missing. */
781#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
782/** The block calls an ASM-implementation instruction function with an implicit
783 * X86XSAVEAREA pointer argument.
784 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
785 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
786 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
787 * @note The python scripts will add this if missing. */
788#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
789/** @} */
790
791
792/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
793 *
794 * These flags are set when entering IEM and adjusted as code is executed, such
795 * that they will always contain the current values as instructions are
796 * finished.
797 *
798 * In recompiled execution mode, (most of) these flags are included in the
799 * translation block selection key and stored in IEMTB::fFlags alongside the
800 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
801 * in IEMCPU::fExec.
802 *
803 * @{ */
804/** Mode: The block target mode mask. */
805#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
806/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
807#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
808/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
809 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
810 * 32-bit mode (for simplifying most memory accesses). */
811#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
812/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
813#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
814/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
815#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
816
817/** X86 Mode: 16-bit on 386 or later. */
818#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
819/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
820#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
821/** X86 Mode: 16-bit protected mode on 386 or later. */
822#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
823/** X86 Mode: 16-bit protected mode on 386 or later. */
824#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
825/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
826#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
827
828/** X86 Mode: 32-bit on 386 or later. */
829#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
830/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
831#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
832/** X86 Mode: 32-bit protected mode. */
833#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
834/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
835#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
836
837/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
838#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
839
840/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
841#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
842 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
843 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
844
845/** Bypass access handlers when set. */
846#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
847/** Have pending hardware instruction breakpoints. */
848#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
849/** Have pending hardware data breakpoints. */
850#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
851
852/** X86: Have pending hardware I/O breakpoints. */
853#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
854/** X86: Disregard the lock prefix (implied or not) when set. */
855#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
856
857/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
858#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
859
860/** Caller configurable options. */
861#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
862
863/** X86: The current protection level (CPL) shift factor. */
864#define IEM_F_X86_CPL_SHIFT 8
865/** X86: The current protection level (CPL) mask. */
866#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
867/** X86: The current protection level (CPL) shifted mask. */
868#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
869
870/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
871#define IEM_F_X86_AC UINT32_C(0x00080000)
872
873/** X86 execution context.
874 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
875 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
876 * mode. */
877#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
878/** X86 context: Plain regular execution context. */
879#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
880/** X86 context: VT-x enabled. */
881#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
882/** X86 context: AMD-V enabled. */
883#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
884/** X86 context: In AMD-V or VT-x guest mode. */
885#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
886/** X86 context: System management mode (SMM). */
887#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
888
889/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
890 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
891 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
892 * alread). */
893
894/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
895 * iemRegFinishClearingRF() most for most situations
896 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
897 * the IEM_F_PENDING_BRK_XXX bits alread). */
898
899/** @} */
900
901
902/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
903 *
904 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
905 * translation block flags. The combined flag mask (subject to
906 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
907 *
908 * @{ */
909/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
910#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
911
912/** Type: The block type mask. */
913#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
914/** Type: Purly threaded recompiler (via tables). */
915#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
916/** Type: Native recompilation. */
917#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
918
919/** Set when we're starting the block in an "interrupt shadow".
920 * We don't need to distingish between the two types of this mask, thus the one.
921 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
922#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
923/** Set when we're currently inhibiting NMIs
924 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
925#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
926
927/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
928 * we're close the limit before starting a TB, as determined by
929 * iemGetTbFlagsForCurrentPc(). */
930#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
931
932/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
933 *
934 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
935 * don't implement), because we don't currently generate any context
936 * specific code - that's all handled in CIMPL functions.
937 *
938 * For the threaded recompiler we don't generate any CPL specific code
939 * either, but the native recompiler does for memory access (saves getting
940 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
941 * Since most OSes will not share code between rings, this shouldn't
942 * have any real effect on TB/memory/recompiling load.
943 */
944#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
945/** @} */
946
947AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
948AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
949AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
950AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
951AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
952AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
953AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
954AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
955AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
956AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
957AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
958AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
959AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
960AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
961AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
962AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
963AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
964AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
965AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
966
967AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
968AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
969AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
970AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
971AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
972AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
973AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
974AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
975AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
976AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
977AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
978AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
979
980AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
981AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
982AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
983
984/** Native instruction type for use with the native code generator.
985 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
986#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
987typedef uint8_t IEMNATIVEINSTR;
988#else
989typedef uint32_t IEMNATIVEINSTR;
990#endif
991/** Pointer to a native instruction unit. */
992typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
993/** Pointer to a const native instruction unit. */
994typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
995
996/**
997 * A call for the threaded call table.
998 */
999typedef struct IEMTHRDEDCALLENTRY
1000{
1001 /** The function to call (IEMTHREADEDFUNCS). */
1002 uint16_t enmFunction;
1003
1004 /** Instruction number in the TB (for statistics). */
1005 uint8_t idxInstr;
1006 /** The opcode length. */
1007 uint8_t cbOpcode;
1008 /** Offset into IEMTB::pabOpcodes. */
1009 uint16_t offOpcode;
1010
1011 /** TB lookup table index (7 bits) and large size (1 bits).
1012 *
1013 * The default size is 1 entry, but for indirect calls and returns we set the
1014 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1015 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1016 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1017 *
1018 * By default lookup table entry 0 for a TB is reserved as a fallback for
1019 * calltable entries w/o explicit entreis, so this member will be non-zero if
1020 * there is a lookup entry associated with this call.
1021 *
1022 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1023 */
1024 uint8_t uTbLookup;
1025
1026 /** Unused atm. */
1027 uint8_t uUnused0;
1028
1029 /** Generic parameters. */
1030 uint64_t auParams[3];
1031} IEMTHRDEDCALLENTRY;
1032AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1033/** Pointer to a threaded call entry. */
1034typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1035/** Pointer to a const threaded call entry. */
1036typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1037
1038/** The number of TB lookup table entries for a large allocation
1039 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1040#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1041/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1042#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1043/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1044#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1045/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1046#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1047 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1048
1049/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1050#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1051
1052/**
1053 * Native IEM TB 'function' typedef.
1054 *
1055 * This will throw/longjmp on occation.
1056 *
1057 * @note AMD64 doesn't have that many non-volatile registers and does sport
1058 * 32-bit address displacments, so we don't need pCtx.
1059 *
1060 * On ARM64 pCtx allows us to directly address the whole register
1061 * context without requiring a separate indexing register holding the
1062 * offset. This saves an instruction loading the offset for each guest
1063 * CPU context access, at the cost of a non-volatile register.
1064 * Fortunately, ARM64 has quite a lot more registers.
1065 */
1066typedef
1067#ifdef RT_ARCH_AMD64
1068int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1069#else
1070int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1071#endif
1072#if RT_CPLUSPLUS_PREREQ(201700)
1073 IEM_NOEXCEPT_MAY_LONGJMP
1074#endif
1075 ;
1076/** Pointer to a native IEM TB entry point function.
1077 * This will throw/longjmp on occation. */
1078typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1079
1080
1081/**
1082 * Translation block debug info entry type.
1083 */
1084typedef enum IEMTBDBGENTRYTYPE
1085{
1086 kIemTbDbgEntryType_Invalid = 0,
1087 /** The entry is for marking a native code position.
1088 * Entries following this all apply to this position. */
1089 kIemTbDbgEntryType_NativeOffset,
1090 /** The entry is for a new guest instruction. */
1091 kIemTbDbgEntryType_GuestInstruction,
1092 /** Marks the start of a threaded call. */
1093 kIemTbDbgEntryType_ThreadedCall,
1094 /** Marks the location of a label. */
1095 kIemTbDbgEntryType_Label,
1096 /** Info about a host register shadowing a guest register. */
1097 kIemTbDbgEntryType_GuestRegShadowing,
1098#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1099 /** Info about a host SIMD register shadowing a guest SIMD register. */
1100 kIemTbDbgEntryType_GuestSimdRegShadowing,
1101#endif
1102#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1103 /** Info about a delayed RIP update. */
1104 kIemTbDbgEntryType_DelayedPcUpdate,
1105#endif
1106#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1107 /** Info about a shadowed guest register becoming dirty. */
1108 kIemTbDbgEntryType_GuestRegDirty,
1109 /** Info about register writeback/flush oepration. */
1110 kIemTbDbgEntryType_GuestRegWriteback,
1111#endif
1112 kIemTbDbgEntryType_End
1113} IEMTBDBGENTRYTYPE;
1114
1115/**
1116 * Translation block debug info entry.
1117 */
1118typedef union IEMTBDBGENTRY
1119{
1120 /** Plain 32-bit view. */
1121 uint32_t u;
1122
1123 /** Generic view for getting at the type field. */
1124 struct
1125 {
1126 /** IEMTBDBGENTRYTYPE */
1127 uint32_t uType : 4;
1128 uint32_t uTypeSpecific : 28;
1129 } Gen;
1130
1131 struct
1132 {
1133 /** kIemTbDbgEntryType_ThreadedCall1. */
1134 uint32_t uType : 4;
1135 /** Native code offset. */
1136 uint32_t offNative : 28;
1137 } NativeOffset;
1138
1139 struct
1140 {
1141 /** kIemTbDbgEntryType_GuestInstruction. */
1142 uint32_t uType : 4;
1143 uint32_t uUnused : 4;
1144 /** The IEM_F_XXX flags. */
1145 uint32_t fExec : 24;
1146 } GuestInstruction;
1147
1148 struct
1149 {
1150 /* kIemTbDbgEntryType_ThreadedCall. */
1151 uint32_t uType : 4;
1152 /** Set if the call was recompiled to native code, clear if just calling
1153 * threaded function. */
1154 uint32_t fRecompiled : 1;
1155 uint32_t uUnused : 11;
1156 /** The threaded call number (IEMTHREADEDFUNCS). */
1157 uint32_t enmCall : 16;
1158 } ThreadedCall;
1159
1160 struct
1161 {
1162 /* kIemTbDbgEntryType_Label. */
1163 uint32_t uType : 4;
1164 uint32_t uUnused : 4;
1165 /** The label type (IEMNATIVELABELTYPE). */
1166 uint32_t enmLabel : 8;
1167 /** The label data. */
1168 uint32_t uData : 16;
1169 } Label;
1170
1171 struct
1172 {
1173 /* kIemTbDbgEntryType_GuestRegShadowing. */
1174 uint32_t uType : 4;
1175 uint32_t uUnused : 4;
1176 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1177 uint32_t idxGstReg : 8;
1178 /** The host new register number, UINT8_MAX if dropped. */
1179 uint32_t idxHstReg : 8;
1180 /** The previous host register number, UINT8_MAX if new. */
1181 uint32_t idxHstRegPrev : 8;
1182 } GuestRegShadowing;
1183
1184#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1185 struct
1186 {
1187 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1188 uint32_t uType : 4;
1189 uint32_t uUnused : 4;
1190 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1191 uint32_t idxGstSimdReg : 8;
1192 /** The host new register number, UINT8_MAX if dropped. */
1193 uint32_t idxHstSimdReg : 8;
1194 /** The previous host register number, UINT8_MAX if new. */
1195 uint32_t idxHstSimdRegPrev : 8;
1196 } GuestSimdRegShadowing;
1197#endif
1198
1199#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1200 struct
1201 {
1202 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1203 uint32_t uType : 4;
1204 /* The instruction offset added to the program counter. */
1205 uint32_t offPc : 14;
1206 /** Number of instructions skipped. */
1207 uint32_t cInstrSkipped : 14;
1208 } DelayedPcUpdate;
1209#endif
1210
1211#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1212 struct
1213 {
1214 /* kIemTbDbgEntryType_GuestRegDirty. */
1215 uint32_t uType : 4;
1216 uint32_t uUnused : 11;
1217 /** Flag whether this is about a SIMD (true) or general (false) register. */
1218 uint32_t fSimdReg : 1;
1219 /** The guest register index being marked as dirty. */
1220 uint32_t idxGstReg : 8;
1221 /** The host register number this register is shadowed in .*/
1222 uint32_t idxHstReg : 8;
1223 } GuestRegDirty;
1224
1225 struct
1226 {
1227 /* kIemTbDbgEntryType_GuestRegWriteback. */
1228 uint32_t uType : 4;
1229 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1230 uint32_t fSimdReg : 1;
1231 /** The mask shift. */
1232 uint32_t cShift : 2;
1233 /** The guest register mask being written back. */
1234 uint32_t fGstReg : 25;
1235 } GuestRegWriteback;
1236#endif
1237
1238} IEMTBDBGENTRY;
1239AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1240/** Pointer to a debug info entry. */
1241typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1242/** Pointer to a const debug info entry. */
1243typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1244
1245/**
1246 * Translation block debug info.
1247 */
1248typedef struct IEMTBDBG
1249{
1250 /** Number of entries in aEntries. */
1251 uint32_t cEntries;
1252 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1253 uint32_t offNativeLast;
1254 /** Debug info entries. */
1255 RT_FLEXIBLE_ARRAY_EXTENSION
1256 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1257} IEMTBDBG;
1258/** Pointer to TB debug info. */
1259typedef IEMTBDBG *PIEMTBDBG;
1260/** Pointer to const TB debug info. */
1261typedef IEMTBDBG const *PCIEMTBDBG;
1262
1263
1264/**
1265 * Translation block.
1266 *
1267 * The current plan is to just keep TBs and associated lookup hash table private
1268 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1269 * avoids using expensive atomic primitives for updating lists and stuff.
1270 */
1271#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1272typedef struct IEMTB
1273{
1274 /** Next block with the same hash table entry. */
1275 struct IEMTB *pNext;
1276 /** Usage counter. */
1277 uint32_t cUsed;
1278 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1279 uint32_t msLastUsed;
1280
1281 /** @name What uniquely identifies the block.
1282 * @{ */
1283 RTGCPHYS GCPhysPc;
1284 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1285 uint32_t fFlags;
1286 union
1287 {
1288 struct
1289 {
1290 /**< Relevant CS X86DESCATTR_XXX bits. */
1291 uint16_t fAttr;
1292 } x86;
1293 };
1294 /** @} */
1295
1296 /** Number of opcode ranges. */
1297 uint8_t cRanges;
1298 /** Statistics: Number of instructions in the block. */
1299 uint8_t cInstructions;
1300
1301 /** Type specific info. */
1302 union
1303 {
1304 struct
1305 {
1306 /** The call sequence table. */
1307 PIEMTHRDEDCALLENTRY paCalls;
1308 /** Number of calls in paCalls. */
1309 uint16_t cCalls;
1310 /** Number of calls allocated. */
1311 uint16_t cAllocated;
1312 } Thrd;
1313 struct
1314 {
1315 /** The native instructions (PFNIEMTBNATIVE). */
1316 PIEMNATIVEINSTR paInstructions;
1317 /** Number of instructions pointed to by paInstructions. */
1318 uint32_t cInstructions;
1319 } Native;
1320 /** Generic view for zeroing when freeing. */
1321 struct
1322 {
1323 uintptr_t uPtr;
1324 uint32_t uData;
1325 } Gen;
1326 };
1327
1328 /** The allocation chunk this TB belongs to. */
1329 uint8_t idxAllocChunk;
1330 /** The number of entries in the lookup table.
1331 * Because we're out of space, the TB lookup table is located before the
1332 * opcodes pointed to by pabOpcodes. */
1333 uint8_t cTbLookupEntries;
1334
1335 /** Number of bytes of opcodes stored in pabOpcodes.
1336 * @todo this field isn't really needed, aRanges keeps the actual info. */
1337 uint16_t cbOpcodes;
1338 /** Pointer to the opcode bytes this block was recompiled from.
1339 * This also points to the TB lookup table, which starts cTbLookupEntries
1340 * entries before the opcodes (we don't have room atm for another point). */
1341 uint8_t *pabOpcodes;
1342
1343 /** Debug info if enabled.
1344 * This is only generated by the native recompiler. */
1345 PIEMTBDBG pDbgInfo;
1346
1347 /* --- 64 byte cache line end --- */
1348
1349 /** Opcode ranges.
1350 *
1351 * The opcode checkers and maybe TLB loading functions will use this to figure
1352 * out what to do. The parameter will specify an entry and the opcode offset to
1353 * start at and the minimum number of bytes to verify (instruction length).
1354 *
1355 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1356 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1357 * code TLB (must have a valid entry for that address) and scan the ranges to
1358 * locate the corresponding opcodes. Probably.
1359 */
1360 struct IEMTBOPCODERANGE
1361 {
1362 /** Offset within pabOpcodes. */
1363 uint16_t offOpcodes;
1364 /** Number of bytes. */
1365 uint16_t cbOpcodes;
1366 /** The page offset. */
1367 RT_GCC_EXTENSION
1368 uint16_t offPhysPage : 12;
1369 /** Unused bits. */
1370 RT_GCC_EXTENSION
1371 uint16_t u2Unused : 2;
1372 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1373 RT_GCC_EXTENSION
1374 uint16_t idxPhysPage : 2;
1375 } aRanges[8];
1376
1377 /** Physical pages that this TB covers.
1378 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1379 RTGCPHYS aGCPhysPages[2];
1380} IEMTB;
1381#pragma pack()
1382AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1383AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1384AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1385AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1386AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1387AssertCompileMemberOffset(IEMTB, aRanges, 64);
1388AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1389#if 1
1390AssertCompileSize(IEMTB, 128);
1391# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1392#else
1393AssertCompileSize(IEMTB, 168);
1394# undef IEMTB_SIZE_IS_POWER_OF_TWO
1395#endif
1396
1397/** Pointer to a translation block. */
1398typedef IEMTB *PIEMTB;
1399/** Pointer to a const translation block. */
1400typedef IEMTB const *PCIEMTB;
1401
1402/** Gets address of the given TB lookup table entry. */
1403#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1404 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1405
1406/**
1407 * Gets the physical address for a TB opcode range.
1408 */
1409DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1410{
1411 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1412 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1413 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1414 if (idxPage == 0)
1415 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1416 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1417 return pTb->aGCPhysPages[idxPage - 1];
1418}
1419
1420
1421/**
1422 * A chunk of memory in the TB allocator.
1423 */
1424typedef struct IEMTBCHUNK
1425{
1426 /** Pointer to the translation blocks in this chunk. */
1427 PIEMTB paTbs;
1428#ifdef IN_RING0
1429 /** Allocation handle. */
1430 RTR0MEMOBJ hMemObj;
1431#endif
1432} IEMTBCHUNK;
1433
1434/**
1435 * A per-CPU translation block allocator.
1436 *
1437 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1438 * the length of the collision list, and of course also for cache line alignment
1439 * reasons, the TBs must be allocated with at least 64-byte alignment.
1440 * Memory is there therefore allocated using one of the page aligned allocators.
1441 *
1442 *
1443 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1444 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1445 * that enables us to quickly calculate the allocation bitmap position when
1446 * freeing the translation block.
1447 */
1448typedef struct IEMTBALLOCATOR
1449{
1450 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1451 uint32_t uMagic;
1452
1453#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1454 /** Mask corresponding to cTbsPerChunk - 1. */
1455 uint32_t fChunkMask;
1456 /** Shift count corresponding to cTbsPerChunk. */
1457 uint8_t cChunkShift;
1458#else
1459 uint32_t uUnused;
1460 uint8_t bUnused;
1461#endif
1462 /** Number of chunks we're allowed to allocate. */
1463 uint8_t cMaxChunks;
1464 /** Number of chunks currently populated. */
1465 uint16_t cAllocatedChunks;
1466 /** Number of translation blocks per chunk. */
1467 uint32_t cTbsPerChunk;
1468 /** Chunk size. */
1469 uint32_t cbPerChunk;
1470
1471 /** The maximum number of TBs. */
1472 uint32_t cMaxTbs;
1473 /** Total number of TBs in the populated chunks.
1474 * (cAllocatedChunks * cTbsPerChunk) */
1475 uint32_t cTotalTbs;
1476 /** The current number of TBs in use.
1477 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1478 uint32_t cInUseTbs;
1479 /** Statistics: Number of the cInUseTbs that are native ones. */
1480 uint32_t cNativeTbs;
1481 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1482 uint32_t cThreadedTbs;
1483
1484 /** Where to start pruning TBs from when we're out.
1485 * See iemTbAllocatorAllocSlow for details. */
1486 uint32_t iPruneFrom;
1487 /** Where to start pruning native TBs from when we're out of executable memory.
1488 * See iemTbAllocatorFreeupNativeSpace for details. */
1489 uint32_t iPruneNativeFrom;
1490 uint64_t u64Padding;
1491
1492 /** Statistics: Number of TB allocation calls. */
1493 STAMCOUNTER StatAllocs;
1494 /** Statistics: Number of TB free calls. */
1495 STAMCOUNTER StatFrees;
1496 /** Statistics: Time spend pruning. */
1497 STAMPROFILE StatPrune;
1498 /** Statistics: Time spend pruning native TBs. */
1499 STAMPROFILE StatPruneNative;
1500
1501 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1502 PIEMTB pDelayedFreeHead;
1503 /* Head of the list of free TBs. */
1504 PIEMTB pTbsFreeHead;
1505
1506 /** Allocation chunks. */
1507 IEMTBCHUNK aChunks[256];
1508} IEMTBALLOCATOR;
1509/** Pointer to a TB allocator. */
1510typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1511
1512/** Magic value for the TB allocator (Emmet Harley Cohen). */
1513#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1514
1515
1516/**
1517 * A per-CPU translation block cache (hash table).
1518 *
1519 * The hash table is allocated once during IEM initialization and size double
1520 * the max TB count, rounded up to the nearest power of two (so we can use and
1521 * AND mask rather than a rest division when hashing).
1522 */
1523typedef struct IEMTBCACHE
1524{
1525 /** Magic value (IEMTBCACHE_MAGIC). */
1526 uint32_t uMagic;
1527 /** Size of the hash table. This is a power of two. */
1528 uint32_t cHash;
1529 /** The mask corresponding to cHash. */
1530 uint32_t uHashMask;
1531 uint32_t uPadding;
1532
1533 /** @name Statistics
1534 * @{ */
1535 /** Number of collisions ever. */
1536 STAMCOUNTER cCollisions;
1537
1538 /** Statistics: Number of TB lookup misses. */
1539 STAMCOUNTER cLookupMisses;
1540 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1541 STAMCOUNTER cLookupHits;
1542 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1543 STAMCOUNTER cLookupHitsViaTbLookupTable;
1544 STAMCOUNTER auPadding2[2];
1545 /** Statistics: Collision list length pruning. */
1546 STAMPROFILE StatPrune;
1547 /** @} */
1548
1549 /** The hash table itself.
1550 * @note The lower 6 bits of the pointer is used for keeping the collision
1551 * list length, so we can take action when it grows too long.
1552 * This works because TBs are allocated using a 64 byte (or
1553 * higher) alignment from page aligned chunks of memory, so the lower
1554 * 6 bits of the address will always be zero.
1555 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1556 */
1557 RT_FLEXIBLE_ARRAY_EXTENSION
1558 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1559} IEMTBCACHE;
1560/** Pointer to a per-CPU translation block cahce. */
1561typedef IEMTBCACHE *PIEMTBCACHE;
1562
1563/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1564#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1565
1566/** The collision count mask for IEMTBCACHE::apHash entries. */
1567#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1568/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1569#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1570/** Combine a TB pointer and a collision list length into a value for an
1571 * IEMTBCACHE::apHash entry. */
1572#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1573/** Combine a TB pointer and a collision list length into a value for an
1574 * IEMTBCACHE::apHash entry. */
1575#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1576/** Combine a TB pointer and a collision list length into a value for an
1577 * IEMTBCACHE::apHash entry. */
1578#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1579
1580/**
1581 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1582 */
1583#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1584 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1585
1586/**
1587 * Calculates the hash table slot for a TB from physical PC address and TB
1588 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1589 */
1590#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1591 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1592
1593
1594/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1595 *
1596 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1597 *
1598 * @{ */
1599/** Value if no branching happened recently. */
1600#define IEMBRANCHED_F_NO UINT8_C(0x00)
1601/** Flag set if direct branch, clear if absolute or indirect. */
1602#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1603/** Flag set if indirect branch, clear if direct or relative. */
1604#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1605/** Flag set if relative branch, clear if absolute or indirect. */
1606#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1607/** Flag set if conditional branch, clear if unconditional. */
1608#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1609/** Flag set if it's a far branch. */
1610#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1611/** Flag set if the stack pointer is modified. */
1612#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1613/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1614#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1615/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1616#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1617/** @} */
1618
1619
1620/**
1621 * The per-CPU IEM state.
1622 */
1623typedef struct IEMCPU
1624{
1625 /** Info status code that needs to be propagated to the IEM caller.
1626 * This cannot be passed internally, as it would complicate all success
1627 * checks within the interpreter making the code larger and almost impossible
1628 * to get right. Instead, we'll store status codes to pass on here. Each
1629 * source of these codes will perform appropriate sanity checks. */
1630 int32_t rcPassUp; /* 0x00 */
1631 /** Execution flag, IEM_F_XXX. */
1632 uint32_t fExec; /* 0x04 */
1633
1634 /** @name Decoder state.
1635 * @{ */
1636#ifdef IEM_WITH_CODE_TLB
1637 /** The offset of the next instruction byte. */
1638 uint32_t offInstrNextByte; /* 0x08 */
1639 /** The number of bytes available at pbInstrBuf for the current instruction.
1640 * This takes the max opcode length into account so that doesn't need to be
1641 * checked separately. */
1642 uint32_t cbInstrBuf; /* 0x0c */
1643 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1644 * This can be NULL if the page isn't mappable for some reason, in which
1645 * case we'll do fallback stuff.
1646 *
1647 * If we're executing an instruction from a user specified buffer,
1648 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1649 * aligned pointer but pointer to the user data.
1650 *
1651 * For instructions crossing pages, this will start on the first page and be
1652 * advanced to the next page by the time we've decoded the instruction. This
1653 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1654 */
1655 uint8_t const *pbInstrBuf; /* 0x10 */
1656# if ARCH_BITS == 32
1657 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1658# endif
1659 /** The program counter corresponding to pbInstrBuf.
1660 * This is set to a non-canonical address when we need to invalidate it. */
1661 uint64_t uInstrBufPc; /* 0x18 */
1662 /** The guest physical address corresponding to pbInstrBuf. */
1663 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1664 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1665 * This takes the CS segment limit into account.
1666 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1667 uint16_t cbInstrBufTotal; /* 0x28 */
1668 /** Offset into pbInstrBuf of the first byte of the current instruction.
1669 * Can be negative to efficiently handle cross page instructions. */
1670 int16_t offCurInstrStart; /* 0x2a */
1671
1672# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1673 /** The prefix mask (IEM_OP_PRF_XXX). */
1674 uint32_t fPrefixes; /* 0x2c */
1675 /** The extra REX ModR/M register field bit (REX.R << 3). */
1676 uint8_t uRexReg; /* 0x30 */
1677 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1678 * (REX.B << 3). */
1679 uint8_t uRexB; /* 0x31 */
1680 /** The extra REX SIB index field bit (REX.X << 3). */
1681 uint8_t uRexIndex; /* 0x32 */
1682
1683 /** The effective segment register (X86_SREG_XXX). */
1684 uint8_t iEffSeg; /* 0x33 */
1685
1686 /** The offset of the ModR/M byte relative to the start of the instruction. */
1687 uint8_t offModRm; /* 0x34 */
1688
1689# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1690 /** The current offset into abOpcode. */
1691 uint8_t offOpcode; /* 0x35 */
1692# else
1693 uint8_t bUnused; /* 0x35 */
1694# endif
1695# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1696 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1697# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1698
1699#else /* !IEM_WITH_CODE_TLB */
1700# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1701 /** The size of what has currently been fetched into abOpcode. */
1702 uint8_t cbOpcode; /* 0x08 */
1703 /** The current offset into abOpcode. */
1704 uint8_t offOpcode; /* 0x09 */
1705 /** The offset of the ModR/M byte relative to the start of the instruction. */
1706 uint8_t offModRm; /* 0x0a */
1707
1708 /** The effective segment register (X86_SREG_XXX). */
1709 uint8_t iEffSeg; /* 0x0b */
1710
1711 /** The prefix mask (IEM_OP_PRF_XXX). */
1712 uint32_t fPrefixes; /* 0x0c */
1713 /** The extra REX ModR/M register field bit (REX.R << 3). */
1714 uint8_t uRexReg; /* 0x10 */
1715 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1716 * (REX.B << 3). */
1717 uint8_t uRexB; /* 0x11 */
1718 /** The extra REX SIB index field bit (REX.X << 3). */
1719 uint8_t uRexIndex; /* 0x12 */
1720
1721# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1722 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1723# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1724#endif /* !IEM_WITH_CODE_TLB */
1725
1726#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1727 /** The effective operand mode. */
1728 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1729 /** The default addressing mode. */
1730 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1731 /** The effective addressing mode. */
1732 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1733 /** The default operand mode. */
1734 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1735
1736 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1737 uint8_t idxPrefix; /* 0x3a, 0x17 */
1738 /** 3rd VEX/EVEX/XOP register.
1739 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1740 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1741 /** The VEX/EVEX/XOP length field. */
1742 uint8_t uVexLength; /* 0x3c, 0x19 */
1743 /** Additional EVEX stuff. */
1744 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1745
1746# ifndef IEM_WITH_CODE_TLB
1747 /** Explicit alignment padding. */
1748 uint8_t abAlignment2a[1]; /* 0x1b */
1749# endif
1750 /** The FPU opcode (FOP). */
1751 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1752# ifndef IEM_WITH_CODE_TLB
1753 /** Explicit alignment padding. */
1754 uint8_t abAlignment2b[2]; /* 0x1e */
1755# endif
1756
1757 /** The opcode bytes. */
1758 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1759 /** Explicit alignment padding. */
1760# ifdef IEM_WITH_CODE_TLB
1761 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1762# else
1763 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1764# endif
1765
1766#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1767# ifdef IEM_WITH_CODE_TLB
1768 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1769# else
1770 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1771# endif
1772#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1773 /** @} */
1774
1775
1776 /** The number of active guest memory mappings. */
1777 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1778
1779 /** Records for tracking guest memory mappings. */
1780 struct
1781 {
1782 /** The address of the mapped bytes. */
1783 R3R0PTRTYPE(void *) pv;
1784 /** The access flags (IEM_ACCESS_XXX).
1785 * IEM_ACCESS_INVALID if the entry is unused. */
1786 uint32_t fAccess;
1787#if HC_ARCH_BITS == 64
1788 uint32_t u32Alignment4; /**< Alignment padding. */
1789#endif
1790 } aMemMappings[3]; /* 0x50 LB 0x30 */
1791
1792 /** Locking records for the mapped memory. */
1793 union
1794 {
1795 PGMPAGEMAPLOCK Lock;
1796 uint64_t au64Padding[2];
1797 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1798
1799 /** Bounce buffer info.
1800 * This runs in parallel to aMemMappings. */
1801 struct
1802 {
1803 /** The physical address of the first byte. */
1804 RTGCPHYS GCPhysFirst;
1805 /** The physical address of the second page. */
1806 RTGCPHYS GCPhysSecond;
1807 /** The number of bytes in the first page. */
1808 uint16_t cbFirst;
1809 /** The number of bytes in the second page. */
1810 uint16_t cbSecond;
1811 /** Whether it's unassigned memory. */
1812 bool fUnassigned;
1813 /** Explicit alignment padding. */
1814 bool afAlignment5[3];
1815 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1816
1817 /** The flags of the current exception / interrupt. */
1818 uint32_t fCurXcpt; /* 0xf8 */
1819 /** The current exception / interrupt. */
1820 uint8_t uCurXcpt; /* 0xfc */
1821 /** Exception / interrupt recursion depth. */
1822 int8_t cXcptRecursions; /* 0xfb */
1823
1824 /** The next unused mapping index.
1825 * @todo try find room for this up with cActiveMappings. */
1826 uint8_t iNextMapping; /* 0xfd */
1827 uint8_t abAlignment7[1];
1828
1829 /** Bounce buffer storage.
1830 * This runs in parallel to aMemMappings and aMemBbMappings. */
1831 struct
1832 {
1833 uint8_t ab[512];
1834 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1835
1836
1837 /** Pointer set jump buffer - ring-3 context. */
1838 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1839 /** Pointer set jump buffer - ring-0 context. */
1840 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1841
1842 /** @todo Should move this near @a fCurXcpt later. */
1843 /** The CR2 for the current exception / interrupt. */
1844 uint64_t uCurXcptCr2;
1845 /** The error code for the current exception / interrupt. */
1846 uint32_t uCurXcptErr;
1847
1848 /** @name Statistics
1849 * @{ */
1850 /** The number of instructions we've executed. */
1851 uint32_t cInstructions;
1852 /** The number of potential exits. */
1853 uint32_t cPotentialExits;
1854 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1855 * This may contain uncommitted writes. */
1856 uint32_t cbWritten;
1857 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1858 uint32_t cRetInstrNotImplemented;
1859 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1860 uint32_t cRetAspectNotImplemented;
1861 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1862 uint32_t cRetInfStatuses;
1863 /** Counts other error statuses returned. */
1864 uint32_t cRetErrStatuses;
1865 /** Number of times rcPassUp has been used. */
1866 uint32_t cRetPassUpStatus;
1867 /** Number of times RZ left with instruction commit pending for ring-3. */
1868 uint32_t cPendingCommit;
1869 /** Number of misaligned (host sense) atomic instruction accesses. */
1870 uint32_t cMisalignedAtomics;
1871 /** Number of long jumps. */
1872 uint32_t cLongJumps;
1873 /** @} */
1874
1875 /** @name Target CPU information.
1876 * @{ */
1877#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1878 /** The target CPU. */
1879 uint8_t uTargetCpu;
1880#else
1881 uint8_t bTargetCpuPadding;
1882#endif
1883 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1884 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1885 * native host support and the 2nd for when there is.
1886 *
1887 * The two values are typically indexed by a g_CpumHostFeatures bit.
1888 *
1889 * This is for instance used for the BSF & BSR instructions where AMD and
1890 * Intel CPUs produce different EFLAGS. */
1891 uint8_t aidxTargetCpuEflFlavour[2];
1892
1893 /** The CPU vendor. */
1894 CPUMCPUVENDOR enmCpuVendor;
1895 /** @} */
1896
1897 /** @name Host CPU information.
1898 * @{ */
1899 /** The CPU vendor. */
1900 CPUMCPUVENDOR enmHostCpuVendor;
1901 /** @} */
1902
1903 /** Counts RDMSR \#GP(0) LogRel(). */
1904 uint8_t cLogRelRdMsr;
1905 /** Counts WRMSR \#GP(0) LogRel(). */
1906 uint8_t cLogRelWrMsr;
1907 /** Alignment padding. */
1908 uint8_t abAlignment9[42];
1909
1910 /** @name Recompilation
1911 * @{ */
1912 /** Pointer to the current translation block.
1913 * This can either be one being executed or one being compiled. */
1914 R3PTRTYPE(PIEMTB) pCurTbR3;
1915#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1916 /** Frame pointer for the last native TB to execute. */
1917 R3PTRTYPE(void *) pvTbFramePointerR3;
1918#else
1919 R3PTRTYPE(void *) pvUnusedR3;
1920#endif
1921 /** Fixed TB used for threaded recompilation.
1922 * This is allocated once with maxed-out sizes and re-used afterwards. */
1923 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1924 /** Pointer to the ring-3 TB cache for this EMT. */
1925 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1926 /** Pointer to the ring-3 TB lookup entry.
1927 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
1928 * entry, thus it can always safely be used w/o NULL checking. */
1929 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
1930 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1931 * The TBs are based on physical addresses, so this is needed to correleated
1932 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1933 uint64_t uCurTbStartPc;
1934 /** Number of threaded TBs executed. */
1935 uint64_t cTbExecThreaded;
1936 /** Number of native TBs executed. */
1937 uint64_t cTbExecNative;
1938 /** Whether we need to check the opcode bytes for the current instruction.
1939 * This is set by a previous instruction if it modified memory or similar. */
1940 bool fTbCheckOpcodes;
1941 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1942 uint8_t fTbBranched;
1943 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1944 bool fTbCrossedPage;
1945 /** Whether to end the current TB. */
1946 bool fEndTb;
1947 /** Number of instructions before we need emit an IRQ check call again.
1948 * This helps making sure we don't execute too long w/o checking for
1949 * interrupts and immediately following instructions that may enable
1950 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1951 * required to make sure we check following the next instruction as well, see
1952 * fTbCurInstrIsSti. */
1953 uint8_t cInstrTillIrqCheck;
1954 /** Indicates that the current instruction is an STI. This is set by the
1955 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1956 bool fTbCurInstrIsSti;
1957 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1958 uint16_t cbOpcodesAllocated;
1959 /** The current instruction number in a native TB.
1960 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1961 * and will be picked up by the TB execution loop. Only used when
1962 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1963 uint8_t idxTbCurInstr;
1964 /** Spaced reserved for recompiler data / alignment. */
1965 bool afRecompilerStuff1[3];
1966 /** The virtual sync time at the last timer poll call. */
1967 uint32_t msRecompilerPollNow;
1968 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
1969 uint32_t uTbNativeRecompileAtUsedCount;
1970 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1971 uint32_t fTbCurInstr;
1972 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1973 uint32_t fTbPrevInstr;
1974 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1975 * currently not up to date in EFLAGS. */
1976 uint32_t fSkippingEFlags;
1977 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1978 RTGCPHYS GCPhysInstrBufPrev;
1979 /** Pointer to the ring-3 TB allocator for this EMT. */
1980 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1981 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1982 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1983 /** Pointer to the native recompiler state for ring-3. */
1984 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1985 /** Dummy entry for ppTbLookupEntryR3. */
1986 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
1987
1988 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
1989 IEMTLBENTRY DataBreakpointTlbe;
1990
1991 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
1992 STAMCOUNTER StatTbThreadedExecBreaks;
1993 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1994 STAMCOUNTER StatCheckIrqBreaks;
1995 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1996 STAMCOUNTER StatCheckModeBreaks;
1997 /** Threaded TB statistics: Times execution break on call with lookup entries. */
1998 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
1999 /** Threaded TB statistics: Times execution break on call without lookup entries. */
2000 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
2001 /** Statistics: Times a post jump target check missed and had to find new TB. */
2002 STAMCOUNTER StatCheckBranchMisses;
2003 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
2004 STAMCOUNTER StatCheckNeedCsLimChecking;
2005 /** Statistics: Times a loop was detected within a TB.. */
2006 STAMCOUNTER StatTbLoopInTbDetected;
2007 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2008 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2009 /** Native TB statistics: Number of fully recompiled TBs. */
2010 STAMCOUNTER StatNativeFullyRecompiledTbs;
2011 /** TB statistics: Number of instructions per TB. */
2012 STAMPROFILE StatTbInstr;
2013 /** TB statistics: Number of TB lookup table entries per TB. */
2014 STAMPROFILE StatTbLookupEntries;
2015 /** Threaded TB statistics: Number of calls per TB. */
2016 STAMPROFILE StatTbThreadedCalls;
2017 /** Native TB statistics: Native code size per TB. */
2018 STAMPROFILE StatTbNativeCode;
2019 /** Native TB statistics: Profiling native recompilation. */
2020 STAMPROFILE StatNativeRecompilation;
2021 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2022 STAMPROFILE StatNativeCallsRecompiled;
2023 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2024 STAMPROFILE StatNativeCallsThreaded;
2025 /** Native recompiled execution: TLB hits for data fetches. */
2026 STAMCOUNTER StatNativeTlbHitsForFetch;
2027 /** Native recompiled execution: TLB hits for data stores. */
2028 STAMCOUNTER StatNativeTlbHitsForStore;
2029 /** Native recompiled execution: TLB hits for stack accesses. */
2030 STAMCOUNTER StatNativeTlbHitsForStack;
2031 /** Native recompiled execution: TLB hits for mapped accesses. */
2032 STAMCOUNTER StatNativeTlbHitsForMapped;
2033 /** Native recompiled execution: Code TLB misses for new page. */
2034 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2035 /** Native recompiled execution: Code TLB hits for new page. */
2036 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2037 /** Native recompiled execution: Code TLB misses for new page with offset. */
2038 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2039 /** Native recompiled execution: Code TLB hits for new page with offset. */
2040 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2041
2042 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2043 STAMCOUNTER StatNativeRegFindFree;
2044 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2045 * to free a variable. */
2046 STAMCOUNTER StatNativeRegFindFreeVar;
2047 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2048 * not need to free any variables. */
2049 STAMCOUNTER StatNativeRegFindFreeNoVar;
2050 /** Native recompiler: Liveness info freed shadowed guest registers in
2051 * iemNativeRegAllocFindFree. */
2052 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2053 /** Native recompiler: Liveness info helped with the allocation in
2054 * iemNativeRegAllocFindFree. */
2055 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2056
2057 /** Native recompiler: Number of times status flags calc has been skipped. */
2058 STAMCOUNTER StatNativeEflSkippedArithmetic;
2059 /** Native recompiler: Number of times status flags calc has been skipped. */
2060 STAMCOUNTER StatNativeEflSkippedLogical;
2061
2062 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2063 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2064 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2065 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2066 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2067 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2068 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2069 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2070 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2071 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2072 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2073 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2074 /** Native recompiler: Number of required EFLAGS.CF updates. */
2075 STAMCOUNTER StatNativeLivenessEflCfRequired;
2076 /** Native recompiler: Number of required EFLAGS.PF updates. */
2077 STAMCOUNTER StatNativeLivenessEflPfRequired;
2078 /** Native recompiler: Number of required EFLAGS.AF updates. */
2079 STAMCOUNTER StatNativeLivenessEflAfRequired;
2080 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2081 STAMCOUNTER StatNativeLivenessEflZfRequired;
2082 /** Native recompiler: Number of required EFLAGS.SF updates. */
2083 STAMCOUNTER StatNativeLivenessEflSfRequired;
2084 /** Native recompiler: Number of required EFLAGS.OF updates. */
2085 STAMCOUNTER StatNativeLivenessEflOfRequired;
2086 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2087 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2088 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2089 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2090 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2091 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2092 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2093 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2094 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2095 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2096 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2097 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2098
2099 /** Native recompiler: Number of potential PC updates in total. */
2100 STAMCOUNTER StatNativePcUpdateTotal;
2101 /** Native recompiler: Number of PC updates which could be delayed. */
2102 STAMCOUNTER StatNativePcUpdateDelayed;
2103
2104//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2105 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2106 STAMCOUNTER StatNativeSimdRegFindFree;
2107 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2108 * to free a variable. */
2109 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2110 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2111 * not need to free any variables. */
2112 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2113 /** Native recompiler: Liveness info freed shadowed guest registers in
2114 * iemNativeSimdRegAllocFindFree. */
2115 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2116 /** Native recompiler: Liveness info helped with the allocation in
2117 * iemNativeSimdRegAllocFindFree. */
2118 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2119
2120 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2121 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2122 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2123 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2124 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2125 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2126 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2127 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2128
2129 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2130 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2131 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2132 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2133 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2134 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2135 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2136 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2137//#endif
2138
2139 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2140 * Not availabe in release builds. */
2141 STAMCOUNTER StatNativeTbFinished;
2142 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2143 STAMCOUNTER StatNativeTbExitReturnBreak;
2144 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2145 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2146 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2147 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2148 /** Native recompiler: The TB finished executing with other non-zero status. */
2149 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2150 /** Native recompiler: The TB finished executing via throw / long jump. */
2151 STAMCOUNTER StatNativeTbExitLongJump;
2152 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2153 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2154 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2155 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2156 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2157 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2158 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2159 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2160 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2161 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2162 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2163 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2164
2165 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2166 STAMCOUNTER StatNativeTbExitRaiseDe;
2167 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2168 STAMCOUNTER StatNativeTbExitRaiseUd;
2169 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2170 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2171 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2172 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2173 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2174 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2175 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2176 STAMCOUNTER StatNativeTbExitRaiseNm;
2177 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2178 STAMCOUNTER StatNativeTbExitRaiseGp0;
2179 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2180 STAMCOUNTER StatNativeTbExitRaiseMf;
2181 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2182 STAMCOUNTER StatNativeTbExitRaiseXf;
2183 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2184 STAMCOUNTER StatNativeTbExitObsoleteTb;
2185
2186 /** Native recompiler: Failure situations with direct linking scenario \#1.
2187 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2188 * @{ */
2189 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2190 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2191 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2192 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2193 /** @} */
2194
2195 /** Native recompiler: Failure situations with direct linking scenario \#2.
2196 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2197 * @{ */
2198 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2199 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2200 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2201 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2202 /** @} */
2203
2204 /** iemMemMap and iemMemMapJmp statistics.
2205 * @{ */
2206 STAMCOUNTER StatMemMapJmp;
2207 STAMCOUNTER StatMemMapNoJmp;
2208 STAMCOUNTER StatMemBounceBufferCrossPage;
2209 STAMCOUNTER StatMemBounceBufferMapPhys;
2210 /** @} */
2211
2212 uint64_t au64Padding[5];
2213 /** @} */
2214
2215 /** Data TLB.
2216 * @remarks Must be 64-byte aligned. */
2217 IEMTLB DataTlb;
2218 /** Instruction TLB.
2219 * @remarks Must be 64-byte aligned. */
2220 IEMTLB CodeTlb;
2221
2222 /** Exception statistics. */
2223 STAMCOUNTER aStatXcpts[32];
2224 /** Interrupt statistics. */
2225 uint32_t aStatInts[256];
2226
2227#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2228 /** Instruction statistics for ring-0/raw-mode. */
2229 IEMINSTRSTATS StatsRZ;
2230 /** Instruction statistics for ring-3. */
2231 IEMINSTRSTATS StatsR3;
2232# ifdef VBOX_WITH_IEM_RECOMPILER
2233 /** Statistics per threaded function call.
2234 * Updated by both the threaded and native recompilers. */
2235 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2236# endif
2237#endif
2238} IEMCPU;
2239AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2240AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2241AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2242AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2243AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2244AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2245
2246/** Pointer to the per-CPU IEM state. */
2247typedef IEMCPU *PIEMCPU;
2248/** Pointer to the const per-CPU IEM state. */
2249typedef IEMCPU const *PCIEMCPU;
2250
2251
2252/** @def IEM_GET_CTX
2253 * Gets the guest CPU context for the calling EMT.
2254 * @returns PCPUMCTX
2255 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2256 */
2257#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2258
2259/** @def IEM_CTX_ASSERT
2260 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2261 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2262 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2263 */
2264#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2265 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2266 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2267 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2268
2269/** @def IEM_CTX_IMPORT_RET
2270 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2271 *
2272 * Will call the keep to import the bits as needed.
2273 *
2274 * Returns on import failure.
2275 *
2276 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2277 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2278 */
2279#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2280 do { \
2281 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2282 { /* likely */ } \
2283 else \
2284 { \
2285 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2286 AssertRCReturn(rcCtxImport, rcCtxImport); \
2287 } \
2288 } while (0)
2289
2290/** @def IEM_CTX_IMPORT_NORET
2291 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2292 *
2293 * Will call the keep to import the bits as needed.
2294 *
2295 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2296 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2297 */
2298#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2299 do { \
2300 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2301 { /* likely */ } \
2302 else \
2303 { \
2304 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2305 AssertLogRelRC(rcCtxImport); \
2306 } \
2307 } while (0)
2308
2309/** @def IEM_CTX_IMPORT_JMP
2310 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2311 *
2312 * Will call the keep to import the bits as needed.
2313 *
2314 * Jumps on import failure.
2315 *
2316 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2317 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2318 */
2319#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2320 do { \
2321 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2322 { /* likely */ } \
2323 else \
2324 { \
2325 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2326 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2327 } \
2328 } while (0)
2329
2330
2331
2332/** @def IEM_GET_TARGET_CPU
2333 * Gets the current IEMTARGETCPU value.
2334 * @returns IEMTARGETCPU value.
2335 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2336 */
2337#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2338# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2339#else
2340# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2341#endif
2342
2343/** @def IEM_GET_INSTR_LEN
2344 * Gets the instruction length. */
2345#ifdef IEM_WITH_CODE_TLB
2346# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2347#else
2348# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2349#endif
2350
2351/** @def IEM_TRY_SETJMP
2352 * Wrapper around setjmp / try, hiding all the ugly differences.
2353 *
2354 * @note Use with extreme care as this is a fragile macro.
2355 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2356 * @param a_rcTarget The variable that should receive the status code in case
2357 * of a longjmp/throw.
2358 */
2359/** @def IEM_TRY_SETJMP_AGAIN
2360 * For when setjmp / try is used again in the same variable scope as a previous
2361 * IEM_TRY_SETJMP invocation.
2362 */
2363/** @def IEM_CATCH_LONGJMP_BEGIN
2364 * Start wrapper for catch / setjmp-else.
2365 *
2366 * This will set up a scope.
2367 *
2368 * @note Use with extreme care as this is a fragile macro.
2369 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2370 * @param a_rcTarget The variable that should receive the status code in case
2371 * of a longjmp/throw.
2372 */
2373/** @def IEM_CATCH_LONGJMP_END
2374 * End wrapper for catch / setjmp-else.
2375 *
2376 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2377 * state.
2378 *
2379 * @note Use with extreme care as this is a fragile macro.
2380 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2381 */
2382#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2383# ifdef IEM_WITH_THROW_CATCH
2384# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2385 a_rcTarget = VINF_SUCCESS; \
2386 try
2387# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2388 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2389# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2390 catch (int rcThrown) \
2391 { \
2392 a_rcTarget = rcThrown
2393# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2394 } \
2395 ((void)0)
2396# else /* !IEM_WITH_THROW_CATCH */
2397# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2398 jmp_buf JmpBuf; \
2399 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2400 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2401 if ((rcStrict = setjmp(JmpBuf)) == 0)
2402# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2403 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2404 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2405 if ((rcStrict = setjmp(JmpBuf)) == 0)
2406# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2407 else \
2408 { \
2409 ((void)0)
2410# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2411 } \
2412 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2413# endif /* !IEM_WITH_THROW_CATCH */
2414#endif /* IEM_WITH_SETJMP */
2415
2416
2417/**
2418 * Shared per-VM IEM data.
2419 */
2420typedef struct IEM
2421{
2422 /** The VMX APIC-access page handler type. */
2423 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2424#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2425 /** Set if the CPUID host call functionality is enabled. */
2426 bool fCpuIdHostCall;
2427#endif
2428} IEM;
2429
2430
2431
2432/** @name IEM_ACCESS_XXX - Access details.
2433 * @{ */
2434#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2435#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2436#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2437#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2438#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2439#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2440#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2441#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2442#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2443#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2444/** The writes are partial, so if initialize the bounce buffer with the
2445 * orignal RAM content. */
2446#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2447/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2448#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2449/** Bounce buffer with ring-3 write pending, first page. */
2450#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2451/** Bounce buffer with ring-3 write pending, second page. */
2452#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2453/** Not locked, accessed via the TLB. */
2454#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2455/** Atomic access.
2456 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2457 * fallback for misaligned stuff. See @bugref{10547}. */
2458#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2459/** Valid bit mask. */
2460#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2461/** Shift count for the TLB flags (upper word). */
2462#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2463
2464/** Atomic read+write data alias. */
2465#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2466/** Read+write data alias. */
2467#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2468/** Write data alias. */
2469#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2470/** Read data alias. */
2471#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2472/** Instruction fetch alias. */
2473#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2474/** Stack write alias. */
2475#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2476/** Stack read alias. */
2477#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2478/** Stack read+write alias. */
2479#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2480/** Read system table alias. */
2481#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2482/** Read+write system table alias. */
2483#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2484/** @} */
2485
2486/** @name Prefix constants (IEMCPU::fPrefixes)
2487 * @{ */
2488#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2489#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2490#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2491#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2492#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2493#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2494#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2495
2496#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2497#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2498#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2499
2500#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2501#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2502#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2503
2504#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2505#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2506#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2507#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2508/** Mask with all the REX prefix flags.
2509 * This is generally for use when needing to undo the REX prefixes when they
2510 * are followed legacy prefixes and therefore does not immediately preceed
2511 * the first opcode byte.
2512 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2513#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2514
2515#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2516#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2517#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2518/** @} */
2519
2520/** @name IEMOPFORM_XXX - Opcode forms
2521 * @note These are ORed together with IEMOPHINT_XXX.
2522 * @{ */
2523/** ModR/M: reg, r/m */
2524#define IEMOPFORM_RM 0
2525/** ModR/M: reg, r/m (register) */
2526#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2527/** ModR/M: reg, r/m (memory) */
2528#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2529/** ModR/M: reg, r/m, imm */
2530#define IEMOPFORM_RMI 1
2531/** ModR/M: reg, r/m (register), imm */
2532#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2533/** ModR/M: reg, r/m (memory), imm */
2534#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2535/** ModR/M: reg, r/m, xmm0 */
2536#define IEMOPFORM_RM0 2
2537/** ModR/M: reg, r/m (register), xmm0 */
2538#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2539/** ModR/M: reg, r/m (memory), xmm0 */
2540#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2541/** ModR/M: r/m, reg */
2542#define IEMOPFORM_MR 3
2543/** ModR/M: r/m (register), reg */
2544#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2545/** ModR/M: r/m (memory), reg */
2546#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2547/** ModR/M: r/m, reg, imm */
2548#define IEMOPFORM_MRI 4
2549/** ModR/M: r/m (register), reg, imm */
2550#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2551/** ModR/M: r/m (memory), reg, imm */
2552#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2553/** ModR/M: r/m only */
2554#define IEMOPFORM_M 5
2555/** ModR/M: r/m only (register). */
2556#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2557/** ModR/M: r/m only (memory). */
2558#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2559/** ModR/M: r/m, imm */
2560#define IEMOPFORM_MI 6
2561/** ModR/M: r/m (register), imm */
2562#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2563/** ModR/M: r/m (memory), imm */
2564#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2565/** ModR/M: r/m, 1 (shift and rotate instructions) */
2566#define IEMOPFORM_M1 7
2567/** ModR/M: r/m (register), 1. */
2568#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2569/** ModR/M: r/m (memory), 1. */
2570#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2571/** ModR/M: r/m, CL (shift and rotate instructions)
2572 * @todo This should just've been a generic fixed register. But the python
2573 * code doesn't needs more convincing. */
2574#define IEMOPFORM_M_CL 8
2575/** ModR/M: r/m (register), CL. */
2576#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2577/** ModR/M: r/m (memory), CL. */
2578#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2579/** ModR/M: reg only */
2580#define IEMOPFORM_R 9
2581
2582/** VEX+ModR/M: reg, r/m */
2583#define IEMOPFORM_VEX_RM 16
2584/** VEX+ModR/M: reg, r/m (register) */
2585#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2586/** VEX+ModR/M: reg, r/m (memory) */
2587#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2588/** VEX+ModR/M: r/m, reg */
2589#define IEMOPFORM_VEX_MR 17
2590/** VEX+ModR/M: r/m (register), reg */
2591#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2592/** VEX+ModR/M: r/m (memory), reg */
2593#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2594/** VEX+ModR/M: r/m, reg, imm8 */
2595#define IEMOPFORM_VEX_MRI 18
2596/** VEX+ModR/M: r/m (register), reg, imm8 */
2597#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2598/** VEX+ModR/M: r/m (memory), reg, imm8 */
2599#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2600/** VEX+ModR/M: r/m only */
2601#define IEMOPFORM_VEX_M 19
2602/** VEX+ModR/M: r/m only (register). */
2603#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2604/** VEX+ModR/M: r/m only (memory). */
2605#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2606/** VEX+ModR/M: reg only */
2607#define IEMOPFORM_VEX_R 20
2608/** VEX+ModR/M: reg, vvvv, r/m */
2609#define IEMOPFORM_VEX_RVM 21
2610/** VEX+ModR/M: reg, vvvv, r/m (register). */
2611#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2612/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2613#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2614/** VEX+ModR/M: reg, vvvv, r/m, imm */
2615#define IEMOPFORM_VEX_RVMI 22
2616/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2617#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2618/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2619#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2620/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2621#define IEMOPFORM_VEX_RVMR 23
2622/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2623#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2624/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2625#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2626/** VEX+ModR/M: reg, r/m, vvvv */
2627#define IEMOPFORM_VEX_RMV 24
2628/** VEX+ModR/M: reg, r/m, vvvv (register). */
2629#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2630/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2631#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2632/** VEX+ModR/M: reg, r/m, imm8 */
2633#define IEMOPFORM_VEX_RMI 25
2634/** VEX+ModR/M: reg, r/m, imm8 (register). */
2635#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2636/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2637#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2638/** VEX+ModR/M: r/m, vvvv, reg */
2639#define IEMOPFORM_VEX_MVR 26
2640/** VEX+ModR/M: r/m, vvvv, reg (register) */
2641#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2642/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2643#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2644/** VEX+ModR/M+/n: vvvv, r/m */
2645#define IEMOPFORM_VEX_VM 27
2646/** VEX+ModR/M+/n: vvvv, r/m (register) */
2647#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2648/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2649#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2650/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2651#define IEMOPFORM_VEX_VMI 28
2652/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2653#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2654/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2655#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2656
2657/** Fixed register instruction, no R/M. */
2658#define IEMOPFORM_FIXED 32
2659
2660/** The r/m is a register. */
2661#define IEMOPFORM_MOD3 RT_BIT_32(8)
2662/** The r/m is a memory access. */
2663#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2664/** @} */
2665
2666/** @name IEMOPHINT_XXX - Additional Opcode Hints
2667 * @note These are ORed together with IEMOPFORM_XXX.
2668 * @{ */
2669/** Ignores the operand size prefix (66h). */
2670#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2671/** Ignores REX.W (aka WIG). */
2672#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2673/** Both the operand size prefixes (66h + REX.W) are ignored. */
2674#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2675/** Allowed with the lock prefix. */
2676#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2677/** The VEX.L value is ignored (aka LIG). */
2678#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2679/** The VEX.L value must be zero (i.e. 128-bit width only). */
2680#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2681/** The VEX.L value must be one (i.e. 256-bit width only). */
2682#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2683/** The VEX.V value must be zero. */
2684#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2685/** The REX.W/VEX.V value must be zero. */
2686#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2687#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2688/** The REX.W/VEX.V value must be one. */
2689#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2690#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2691
2692/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2693#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2694/** @} */
2695
2696/**
2697 * Possible hardware task switch sources.
2698 */
2699typedef enum IEMTASKSWITCH
2700{
2701 /** Task switch caused by an interrupt/exception. */
2702 IEMTASKSWITCH_INT_XCPT = 1,
2703 /** Task switch caused by a far CALL. */
2704 IEMTASKSWITCH_CALL,
2705 /** Task switch caused by a far JMP. */
2706 IEMTASKSWITCH_JUMP,
2707 /** Task switch caused by an IRET. */
2708 IEMTASKSWITCH_IRET
2709} IEMTASKSWITCH;
2710AssertCompileSize(IEMTASKSWITCH, 4);
2711
2712/**
2713 * Possible CrX load (write) sources.
2714 */
2715typedef enum IEMACCESSCRX
2716{
2717 /** CrX access caused by 'mov crX' instruction. */
2718 IEMACCESSCRX_MOV_CRX,
2719 /** CrX (CR0) write caused by 'lmsw' instruction. */
2720 IEMACCESSCRX_LMSW,
2721 /** CrX (CR0) write caused by 'clts' instruction. */
2722 IEMACCESSCRX_CLTS,
2723 /** CrX (CR0) read caused by 'smsw' instruction. */
2724 IEMACCESSCRX_SMSW
2725} IEMACCESSCRX;
2726
2727#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2728/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2729 *
2730 * These flags provide further context to SLAT page-walk failures that could not be
2731 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2732 *
2733 * @{
2734 */
2735/** Translating a nested-guest linear address failed accessing a nested-guest
2736 * physical address. */
2737# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2738/** Translating a nested-guest linear address failed accessing a
2739 * paging-structure entry or updating accessed/dirty bits. */
2740# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2741/** @} */
2742
2743DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2744# ifndef IN_RING3
2745DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2746# endif
2747#endif
2748
2749/**
2750 * Indicates to the verifier that the given flag set is undefined.
2751 *
2752 * Can be invoked again to add more flags.
2753 *
2754 * This is a NOOP if the verifier isn't compiled in.
2755 *
2756 * @note We're temporarily keeping this until code is converted to new
2757 * disassembler style opcode handling.
2758 */
2759#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2760
2761
2762/** @def IEM_DECL_IMPL_TYPE
2763 * For typedef'ing an instruction implementation function.
2764 *
2765 * @param a_RetType The return type.
2766 * @param a_Name The name of the type.
2767 * @param a_ArgList The argument list enclosed in parentheses.
2768 */
2769
2770/** @def IEM_DECL_IMPL_DEF
2771 * For defining an instruction implementation function.
2772 *
2773 * @param a_RetType The return type.
2774 * @param a_Name The name of the type.
2775 * @param a_ArgList The argument list enclosed in parentheses.
2776 */
2777
2778#if defined(__GNUC__) && defined(RT_ARCH_X86)
2779# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2780 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2781# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2782 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2783# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2784 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2785
2786#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2787# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2788 a_RetType (__fastcall a_Name) a_ArgList
2789# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2790 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2791# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2792 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2793
2794#elif __cplusplus >= 201700 /* P0012R1 support */
2795# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2796 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2797# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2798 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2799# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2800 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2801
2802#else
2803# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2804 a_RetType (VBOXCALL a_Name) a_ArgList
2805# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2806 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2807# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2808 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2809
2810#endif
2811
2812/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2813RT_C_DECLS_BEGIN
2814extern uint8_t const g_afParity[256];
2815RT_C_DECLS_END
2816
2817
2818/** @name Arithmetic assignment operations on bytes (binary).
2819 * @{ */
2820typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
2821typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2822FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2823FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2824FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2825FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2826FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2827FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2828FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2829/** @} */
2830
2831/** @name Arithmetic assignment operations on words (binary).
2832 * @{ */
2833typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
2834typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2835FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2836FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2837FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2838FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2839FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2840FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2841FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2842/** @} */
2843
2844
2845/** @name Arithmetic assignment operations on double words (binary).
2846 * @{ */
2847typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
2848typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2849FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2850FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2851FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2852FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2853FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2854FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2855FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2856FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2857FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2858FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2859/** @} */
2860
2861/** @name Arithmetic assignment operations on quad words (binary).
2862 * @{ */
2863typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
2864typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2865FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2866FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2867FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2868FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2869FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2870FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2871FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2872FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2873FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2874FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2875/** @} */
2876
2877typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
2878typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2879typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
2880typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2881typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
2882typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2883typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
2884typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2885
2886/** @name Compare operations (thrown in with the binary ops).
2887 * @{ */
2888FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2889FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2890FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2891FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2892/** @} */
2893
2894/** @name Test operations (thrown in with the binary ops).
2895 * @{ */
2896FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2897FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2898FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2899FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2900/** @} */
2901
2902/** @name Bit operations operations (thrown in with the binary ops).
2903 * @{ */
2904FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2905FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2906FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2907FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2908FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2909FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2910FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2911FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2912FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2913FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2914FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2915FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2916/** @} */
2917
2918/** @name Arithmetic three operand operations on double words (binary).
2919 * @{ */
2920typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2921typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2922FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2923FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2924FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2925/** @} */
2926
2927/** @name Arithmetic three operand operations on quad words (binary).
2928 * @{ */
2929typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2930typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2931FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2932FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2933FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2934/** @} */
2935
2936/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2937 * @{ */
2938typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2939typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2940FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2941FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2942FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2943FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2944FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2945FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2946/** @} */
2947
2948/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2949 * @{ */
2950typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2951typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2952FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2953FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2954FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2955FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2956FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2957FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2958/** @} */
2959
2960/** @name MULX 32-bit and 64-bit.
2961 * @{ */
2962typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2963typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2964FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2965
2966typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2967typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2968FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2969/** @} */
2970
2971
2972/** @name Exchange memory with register operations.
2973 * @{ */
2974IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2975IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2976IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2977IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2978IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2979IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2980IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2981IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2982/** @} */
2983
2984/** @name Exchange and add operations.
2985 * @{ */
2986IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2987IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2988IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2989IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2990IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2991IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2992IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2993IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2994/** @} */
2995
2996/** @name Compare and exchange.
2997 * @{ */
2998IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2999IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3000IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3001IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3002IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3003IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3004#if ARCH_BITS == 32
3005IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3006IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3007#else
3008IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3009IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3010#endif
3011IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3012 uint32_t *pEFlags));
3013IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3014 uint32_t *pEFlags));
3015IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3016 uint32_t *pEFlags));
3017IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3018 uint32_t *pEFlags));
3019#ifndef RT_ARCH_ARM64
3020IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3021 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3022#endif
3023/** @} */
3024
3025/** @name Memory ordering
3026 * @{ */
3027typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3028typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3029IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3030IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3031IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3032#ifndef RT_ARCH_ARM64
3033IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3034#endif
3035/** @} */
3036
3037/** @name Double precision shifts
3038 * @{ */
3039typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3040typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3041typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3042typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3043typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3044typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3045FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3046FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3047FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3048FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3049FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3050FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3051/** @} */
3052
3053
3054/** @name Bit search operations (thrown in with the binary ops).
3055 * @{ */
3056FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3057FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3058FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3059FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3060FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3061FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3062FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3063FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3064FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3065FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3066FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3067FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3068FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3069FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3070FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3071/** @} */
3072
3073/** @name Signed multiplication operations (thrown in with the binary ops).
3074 * @{ */
3075FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3076FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3077FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3078/** @} */
3079
3080/** @name Arithmetic assignment operations on bytes (unary).
3081 * @{ */
3082typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3083typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3084FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3085FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3086FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3087FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3088/** @} */
3089
3090/** @name Arithmetic assignment operations on words (unary).
3091 * @{ */
3092typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3093typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3094FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3095FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3096FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3097FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3098/** @} */
3099
3100/** @name Arithmetic assignment operations on double words (unary).
3101 * @{ */
3102typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3103typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3104FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3105FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3106FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3107FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3108/** @} */
3109
3110/** @name Arithmetic assignment operations on quad words (unary).
3111 * @{ */
3112typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3113typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3114FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3115FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3116FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3117FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3118/** @} */
3119
3120
3121/** @name Shift operations on bytes (Group 2).
3122 * @{ */
3123typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3124typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3125FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3126FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3127FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3128FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3129FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3130FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3131FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3132/** @} */
3133
3134/** @name Shift operations on words (Group 2).
3135 * @{ */
3136typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3137typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3138FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3139FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3140FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3141FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3142FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3143FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3144FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3145/** @} */
3146
3147/** @name Shift operations on double words (Group 2).
3148 * @{ */
3149typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3150typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3151FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3152FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3153FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3154FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3155FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3156FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3157FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3158/** @} */
3159
3160/** @name Shift operations on words (Group 2).
3161 * @{ */
3162typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3163typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3164FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3165FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3166FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3167FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3168FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3169FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3170FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3171/** @} */
3172
3173/** @name Multiplication and division operations.
3174 * @{ */
3175typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3176typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3177FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3178FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3179FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3180FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3181
3182typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3183typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3184FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3185FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3186FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3187FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3188
3189typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3190typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3191FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3192FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3193FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3194FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3195
3196typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3197typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3198FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3199FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3200FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3201FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3202/** @} */
3203
3204/** @name Byte Swap.
3205 * @{ */
3206IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3207IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3208IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3209/** @} */
3210
3211/** @name Misc.
3212 * @{ */
3213FNIEMAIMPLBINU16 iemAImpl_arpl;
3214/** @} */
3215
3216/** @name RDRAND and RDSEED
3217 * @{ */
3218typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3219typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3220typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3221typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3222typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3223typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3224
3225FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3226FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3227FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3228FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3229FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3230FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3231/** @} */
3232
3233/** @name ADOX and ADCX
3234 * @{ */
3235FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3236FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3237FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3238FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3239/** @} */
3240
3241/** @name FPU operations taking a 32-bit float argument
3242 * @{ */
3243typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3244 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3245typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3246
3247typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3248 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3249typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3250
3251FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3252FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3253FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3254FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3255FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3256FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3257FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3258
3259IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3260IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3261 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3262/** @} */
3263
3264/** @name FPU operations taking a 64-bit float argument
3265 * @{ */
3266typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3267 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3268typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3269
3270typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3271 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3272typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3273
3274FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3275FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3276FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3277FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3278FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3279FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3280FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3281
3282IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3283IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3284 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3285/** @} */
3286
3287/** @name FPU operations taking a 80-bit float argument
3288 * @{ */
3289typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3290 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3291typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3292FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3293FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3294FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3295FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3296FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3297FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3298FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3299FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3300FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3301
3302FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3303FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3304FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3305
3306typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3307 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3308typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3309FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3310FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3311
3312typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3313 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3314typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3315FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3316FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3317
3318typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3319typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3320FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3321FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3322FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3323FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3324FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3325FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3326FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3327
3328typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3329typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3330FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3331FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3332
3333typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3334typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3335FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3336FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3337FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3338FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3339FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3340FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3341FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3342
3343typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3344 PCRTFLOAT80U pr80Val));
3345typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3346FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3347FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3348FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3349
3350IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3351IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3352 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3353
3354IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3355IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3356 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3357
3358/** @} */
3359
3360/** @name FPU operations taking a 16-bit signed integer argument
3361 * @{ */
3362typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3363 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3364typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3365typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3366 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3367typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3368
3369FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3370FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3371FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3372FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3373FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3374FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3375
3376typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3377 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3378typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3379FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3380
3381IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3382FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3383FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3384/** @} */
3385
3386/** @name FPU operations taking a 32-bit signed integer argument
3387 * @{ */
3388typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3389 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3390typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3391typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3392 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3393typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3394
3395FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3396FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3397FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3398FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3399FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3400FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3401
3402typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3403 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3404typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3405FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3406
3407IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3408FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3409FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3410/** @} */
3411
3412/** @name FPU operations taking a 64-bit signed integer argument
3413 * @{ */
3414typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3415 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3416typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3417
3418IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3419FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3420FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3421/** @} */
3422
3423
3424/** Temporary type representing a 256-bit vector register. */
3425typedef struct { uint64_t au64[4]; } IEMVMM256;
3426/** Temporary type pointing to a 256-bit vector register. */
3427typedef IEMVMM256 *PIEMVMM256;
3428/** Temporary type pointing to a const 256-bit vector register. */
3429typedef IEMVMM256 *PCIEMVMM256;
3430
3431
3432/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3433 * @{ */
3434typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3435typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3436typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3437typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3438typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3439typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3440typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3441typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3442typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3443typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3444typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3445typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3446typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3447typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3448typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3449typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3450typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3451typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3452FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3453FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3454FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3455FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3456FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3457FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3458FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3459FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3460FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3461FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3462FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3463FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3464FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3465FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3466FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3467FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3468FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3469FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3470FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3471FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3472FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3473FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3474FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3475FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3476FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3477FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3478FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3479FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3480FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3481FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3482FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3483FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3484FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3485FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3486FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3487FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3488FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3489FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3490FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3491
3492FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3493FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3494FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3495FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3496FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3497FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3498FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3499FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3500FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3501FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3502FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3503FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3504FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3505FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3506FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3507FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3508FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3509FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3510FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3511FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3512FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3513FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3514FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3515FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3516FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3517FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3518FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3519FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3520FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3521FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3522FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3523FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3524FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3525FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3526FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3527FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3528FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3529FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3530FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3531FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3532FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3533FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3534FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3535FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3536FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3537FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3538FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3539FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3540FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3541FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3542FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3543FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3544FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3545FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3546FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3547FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3548FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3549FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3550
3551FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3552FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3553FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3554FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3555FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3556FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3557FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3558FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3559FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3560FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3561FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3562FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3563FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3564FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3565FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3566FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3567FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3568FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3569FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3570FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3571FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3572FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3573FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3574FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3575FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3576FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3577FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3578FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3579FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3580FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3581FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3582FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3583FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3584FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3585FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3586FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3587FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3588FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3589FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3590FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3591FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3592FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3593FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3594FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3595FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3596FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3597FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3598FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3599FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3600FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3601FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3602FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3603FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3604FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3605FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3606FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3607FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3608FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3609FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3610FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3611FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3612FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3613FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3614FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3615FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3616FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3617FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3618FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3619FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3620FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3621FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3622FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3623FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3624FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3625
3626FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3627FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3628FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3629FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3630
3631FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3632FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3633FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3634FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3635FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3636FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3637FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3638FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3639FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3640FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3641FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3642FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3643FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3644FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3645FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3646FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3647FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3648FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3649FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3650FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3651FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3652FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3653FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3654FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3655FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3656FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3657FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3658FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3659FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3660FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3661FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3662FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3663FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3664FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3665FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3666FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3667FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3668FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3669FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3670FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3671FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3672FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3673FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3674FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3675FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3676FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3677FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3678FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3679FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3680FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3681FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3682FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3683FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3684FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3685FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3686FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3687FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3688FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3689FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3690FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3691FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3692FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3693FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3694FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3695FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3696FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3697FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3698FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3699FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3700FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3701FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3702FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3703FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3704FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3705
3706FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3707FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3708FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3709/** @} */
3710
3711/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3712 * @{ */
3713FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3714FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3715FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3716 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3717 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3718 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3719 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3720 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3721 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3722 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3723
3724FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3725 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3726 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3727 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3728 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3729 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3730 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3731 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3732/** @} */
3733
3734/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3735 * @{ */
3736FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3737FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3738FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3739 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3740 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3741 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3742FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3743 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3744 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3745 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3746/** @} */
3747
3748/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3749 * @{ */
3750typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3751typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3752typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3753typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3754IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3755FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3756#ifndef IEM_WITHOUT_ASSEMBLY
3757FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3758#endif
3759FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3760/** @} */
3761
3762/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3763 * @{ */
3764typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3765typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3766typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3767typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3768typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3769typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3770FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3771FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3772FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3773FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3774FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3775FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3776FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3777/** @} */
3778
3779/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3780 * @{ */
3781IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
3782IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
3783IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3784IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3785#ifndef IEM_WITHOUT_ASSEMBLY
3786IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3787#endif
3788IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3789/** @} */
3790
3791/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3792 * @{ */
3793typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3794typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3795typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3796typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3797typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3798typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3799
3800FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3801FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3802FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3803FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3804FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3805FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3806
3807FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3808FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3809FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3810FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3811FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3812FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3813
3814FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3815FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3816FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3817FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3818FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3819FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3820/** @} */
3821
3822
3823/** @name Media (SSE/MMX/AVX) operation: Sort this later
3824 * @{ */
3825IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3826IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3827IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3828IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3829IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3830
3831IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3832IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3833IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3834IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3835IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3836
3837IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3838IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3839IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3840IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3841IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3842
3843IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3844IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3845IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3846IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3847IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3848
3849IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3850IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3851IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3852IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3853IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3854
3855IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3856IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3857IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3858IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3859IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3860
3861IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3862IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3863IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3864IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3865IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3866
3867IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3868IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3869IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3870IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3871IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3872
3873IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3874IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3875IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3876IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3877IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3878
3879IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3880IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3881IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3882IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3883IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3884
3885IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3886IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3887IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3888IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3889IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3890
3891IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3892IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3893IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3894IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3895IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3896
3897IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3898IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3899IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3900IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3901IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3902
3903IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3904IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3905IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3906IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3907IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3908
3909IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3910IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3911
3912IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3913IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3914IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3915IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3916IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3917
3918IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3919IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3920IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3921IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3922IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3923
3924
3925typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3926typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3927typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3928typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3929typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3930typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3931typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3932typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3933
3934FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3935FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3936FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3937FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3938
3939FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3940FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3941FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3942FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3943FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3944
3945FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3946FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3947FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3948FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3949FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3950FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3951FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3952
3953FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3954FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3955FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3956FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3957FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3958
3959FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3960FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3961FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3962FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3963FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3964
3965FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3966
3967FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3968
3969FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3970FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3971FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3972FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3973FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3974FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3975IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3976IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3977
3978typedef struct IEMPCMPISTRXSRC
3979{
3980 RTUINT128U uSrc1;
3981 RTUINT128U uSrc2;
3982} IEMPCMPISTRXSRC;
3983typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3984typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3985
3986typedef struct IEMPCMPESTRXSRC
3987{
3988 RTUINT128U uSrc1;
3989 RTUINT128U uSrc2;
3990 uint64_t u64Rax;
3991 uint64_t u64Rdx;
3992} IEMPCMPESTRXSRC;
3993typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3994typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3995
3996typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
3997typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3998typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3999typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
4000
4001typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
4002typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
4003typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4004typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4005
4006FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4007FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4008FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4009FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4010
4011FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4012FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4013
4014FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4015FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4016FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4017
4018FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4019FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4020FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4021FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4022FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4023FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4024IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4025IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4026IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4027IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4028
4029FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4030FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4031FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4032FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4033
4034FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4035FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4036FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4037FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4038FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4039FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4040IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4041IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4042IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4043IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4044
4045FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4046FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4047FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4048FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4049
4050FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4051FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4052FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4053FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4054
4055FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4056FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4057FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4058FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4059FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4060FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4061FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4062FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4063FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4064FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4065/** @} */
4066
4067/** @name Media Odds and Ends
4068 * @{ */
4069typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4070typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4071typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4072typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4073FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4074FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4075FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4076FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4077
4078typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4079typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4080typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4081typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4082FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4083FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4084FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4085FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4086FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4087FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4088
4089typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4090typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4091typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4092typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4093typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4094typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4095typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4096typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4097
4098FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4099FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4100
4101FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4102FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4103
4104FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4105FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4106
4107FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4108FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4109
4110typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4111typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4112typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4113typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4114
4115FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4116FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4117
4118typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4119typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4120typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4121typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4122
4123FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4124FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4125
4126
4127typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4128typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4129
4130typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4131typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4132
4133FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4134FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4135
4136FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4137FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4138
4139FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4140FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4141
4142FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4143FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4144
4145
4146typedef struct IEMMEDIAF2XMMSRC
4147{
4148 X86XMMREG uSrc1;
4149 X86XMMREG uSrc2;
4150} IEMMEDIAF2XMMSRC;
4151typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4152typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4153
4154typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4155typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
4156
4157FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
4158FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
4159FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
4160FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
4161FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
4162FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
4163
4164FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4165FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4166
4167FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4168FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4169
4170typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4171typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4172
4173FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4174FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4175
4176typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4177typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4178
4179FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4180FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4181
4182typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4183typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4184
4185FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4186FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4187
4188/** @} */
4189
4190
4191/** @name Function tables.
4192 * @{
4193 */
4194
4195/**
4196 * Function table for a binary operator providing implementation based on
4197 * operand size.
4198 */
4199typedef struct IEMOPBINSIZES
4200{
4201 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4202 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4203 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4204 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4205} IEMOPBINSIZES;
4206/** Pointer to a binary operator function table. */
4207typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4208
4209
4210/**
4211 * Function table for a unary operator providing implementation based on
4212 * operand size.
4213 */
4214typedef struct IEMOPUNARYSIZES
4215{
4216 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4217 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4218 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4219 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4220} IEMOPUNARYSIZES;
4221/** Pointer to a unary operator function table. */
4222typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4223
4224
4225/**
4226 * Function table for a shift operator providing implementation based on
4227 * operand size.
4228 */
4229typedef struct IEMOPSHIFTSIZES
4230{
4231 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4232 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4233 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4234 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4235} IEMOPSHIFTSIZES;
4236/** Pointer to a shift operator function table. */
4237typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4238
4239
4240/**
4241 * Function table for a multiplication or division operation.
4242 */
4243typedef struct IEMOPMULDIVSIZES
4244{
4245 PFNIEMAIMPLMULDIVU8 pfnU8;
4246 PFNIEMAIMPLMULDIVU16 pfnU16;
4247 PFNIEMAIMPLMULDIVU32 pfnU32;
4248 PFNIEMAIMPLMULDIVU64 pfnU64;
4249} IEMOPMULDIVSIZES;
4250/** Pointer to a multiplication or division operation function table. */
4251typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4252
4253
4254/**
4255 * Function table for a double precision shift operator providing implementation
4256 * based on operand size.
4257 */
4258typedef struct IEMOPSHIFTDBLSIZES
4259{
4260 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4261 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4262 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4263} IEMOPSHIFTDBLSIZES;
4264/** Pointer to a double precision shift function table. */
4265typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4266
4267
4268/**
4269 * Function table for media instruction taking two full sized media source
4270 * registers and one full sized destination register (AVX).
4271 */
4272typedef struct IEMOPMEDIAF3
4273{
4274 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4275 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4276} IEMOPMEDIAF3;
4277/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4278typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4279
4280/** @def IEMOPMEDIAF3_INIT_VARS_EX
4281 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4282 * given functions as initializers. For use in AVX functions where a pair of
4283 * functions are only used once and the function table need not be public. */
4284#ifndef TST_IEM_CHECK_MC
4285# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4286# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4287 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4288 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4289# else
4290# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4291 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4292# endif
4293#else
4294# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4295#endif
4296/** @def IEMOPMEDIAF3_INIT_VARS
4297 * Generate AVX function tables for the @a a_InstrNm instruction.
4298 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4299#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4300 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4301 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4302
4303/**
4304 * Function table for media instruction taking two full sized media source
4305 * registers and one full sized destination register, but no additional state
4306 * (AVX).
4307 */
4308typedef struct IEMOPMEDIAOPTF3
4309{
4310 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4311 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4312} IEMOPMEDIAOPTF3;
4313/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4314typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4315
4316/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4317 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4318 * given functions as initializers. For use in AVX functions where a pair of
4319 * functions are only used once and the function table need not be public. */
4320#ifndef TST_IEM_CHECK_MC
4321# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4322# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4323 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4324 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4325# else
4326# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4327 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4328# endif
4329#else
4330# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4331#endif
4332/** @def IEMOPMEDIAOPTF3_INIT_VARS
4333 * Generate AVX function tables for the @a a_InstrNm instruction.
4334 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4335#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4336 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4337 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4338
4339/**
4340 * Function table for media instruction taking one full sized media source
4341 * registers and one full sized destination register, but no additional state
4342 * (AVX).
4343 */
4344typedef struct IEMOPMEDIAOPTF2
4345{
4346 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4347 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4348} IEMOPMEDIAOPTF2;
4349/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4350typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4351
4352/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4353 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4354 * given functions as initializers. For use in AVX functions where a pair of
4355 * functions are only used once and the function table need not be public. */
4356#ifndef TST_IEM_CHECK_MC
4357# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4358# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4359 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4360 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4361# else
4362# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4363 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4364# endif
4365#else
4366# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4367#endif
4368/** @def IEMOPMEDIAOPTF2_INIT_VARS
4369 * Generate AVX function tables for the @a a_InstrNm instruction.
4370 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4371#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4372 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4373 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4374
4375/**
4376 * Function table for media instruction taking one full sized media source
4377 * register and one full sized destination register and an 8-bit immediate, but no additional state
4378 * (AVX).
4379 */
4380typedef struct IEMOPMEDIAOPTF2IMM8
4381{
4382 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4383 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4384} IEMOPMEDIAOPTF2IMM8;
4385/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4386typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4387
4388/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4389 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4390 * given functions as initializers. For use in AVX functions where a pair of
4391 * functions are only used once and the function table need not be public. */
4392#ifndef TST_IEM_CHECK_MC
4393# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4394# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4395 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4396 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4397# else
4398# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4399 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4400# endif
4401#else
4402# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4403#endif
4404/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4405 * Generate AVX function tables for the @a a_InstrNm instruction.
4406 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4407#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4408 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4409 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4410
4411/**
4412 * Function table for media instruction taking two full sized media source
4413 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4414 * (AVX).
4415 */
4416typedef struct IEMOPMEDIAOPTF3IMM8
4417{
4418 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4419 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4420} IEMOPMEDIAOPTF3IMM8;
4421/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4422typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4423
4424/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4425 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4426 * given functions as initializers. For use in AVX functions where a pair of
4427 * functions are only used once and the function table need not be public. */
4428#ifndef TST_IEM_CHECK_MC
4429# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4430# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4431 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4432 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4433# else
4434# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4435 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4436# endif
4437#else
4438# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4439#endif
4440/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4441 * Generate AVX function tables for the @a a_InstrNm instruction.
4442 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4443#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4444 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4445 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4446/** @} */
4447
4448
4449/**
4450 * Function table for blend type instruction taking three full sized media source
4451 * registers and one full sized destination register, but no additional state
4452 * (AVX).
4453 */
4454typedef struct IEMOPBLENDOP
4455{
4456 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4457 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4458} IEMOPBLENDOP;
4459/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4460typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4461
4462/** @def IEMOPBLENDOP_INIT_VARS_EX
4463 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4464 * given functions as initializers. For use in AVX functions where a pair of
4465 * functions are only used once and the function table need not be public. */
4466#ifndef TST_IEM_CHECK_MC
4467# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4468# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4469 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4470 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4471# else
4472# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4473 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4474# endif
4475#else
4476# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4477#endif
4478/** @def IEMOPBLENDOP_INIT_VARS
4479 * Generate AVX function tables for the @a a_InstrNm instruction.
4480 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4481#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4482 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4483 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4484
4485
4486/** @name SSE/AVX single/double precision floating point operations.
4487 * @{ */
4488typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4489typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4490typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4491typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4492typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4493typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4494
4495typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4496typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4497typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4498typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4499typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4500typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4501
4502typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4503typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4504
4505FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4506FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4507FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4508FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4509FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4510FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4511FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4512FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4513FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4514FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4515FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4516FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4517FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4518FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4519FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4520FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4521FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4522FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4523FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4524FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4525FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4526FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4527
4528FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4529IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4530
4531FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4532FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4533FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4534FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4535FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4536FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4537
4538FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4539FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4540FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4541FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4542FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4543FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4544FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4545FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4546FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4547FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4548FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4549FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4550FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4551FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4552FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4553FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4554FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4555FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4556
4557FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4558FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4559FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4560FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4561FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4562FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4563FNIEMAIMPLMEDIAF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4564FNIEMAIMPLMEDIAF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4565FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4566FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4567FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4568FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4569FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4570FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4571FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4572FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4573FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4574FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4575FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4576FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4577FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4578FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4579
4580FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4581FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4582FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4583FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4584FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4585FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4586FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4587FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4588FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4589FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4590FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4591FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4592FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4593FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4594
4595FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4596FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4597FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4598FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4599FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4600FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4601FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4602FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4603FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4604FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4605FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4606FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4607FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4608FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4609FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4610FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4611FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4612FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4613FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4614FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4615/** @} */
4616
4617/** @name C instruction implementations for anything slightly complicated.
4618 * @{ */
4619
4620/**
4621 * For typedef'ing or declaring a C instruction implementation function taking
4622 * no extra arguments.
4623 *
4624 * @param a_Name The name of the type.
4625 */
4626# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4627 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4628/**
4629 * For defining a C instruction implementation function taking no extra
4630 * arguments.
4631 *
4632 * @param a_Name The name of the function
4633 */
4634# define IEM_CIMPL_DEF_0(a_Name) \
4635 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4636/**
4637 * Prototype version of IEM_CIMPL_DEF_0.
4638 */
4639# define IEM_CIMPL_PROTO_0(a_Name) \
4640 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4641/**
4642 * For calling a C instruction implementation function taking no extra
4643 * arguments.
4644 *
4645 * This special call macro adds default arguments to the call and allow us to
4646 * change these later.
4647 *
4648 * @param a_fn The name of the function.
4649 */
4650# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4651
4652/** Type for a C instruction implementation function taking no extra
4653 * arguments. */
4654typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4655/** Function pointer type for a C instruction implementation function taking
4656 * no extra arguments. */
4657typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4658
4659/**
4660 * For typedef'ing or declaring a C instruction implementation function taking
4661 * one extra argument.
4662 *
4663 * @param a_Name The name of the type.
4664 * @param a_Type0 The argument type.
4665 * @param a_Arg0 The argument name.
4666 */
4667# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4668 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4669/**
4670 * For defining a C instruction implementation function taking one extra
4671 * argument.
4672 *
4673 * @param a_Name The name of the function
4674 * @param a_Type0 The argument type.
4675 * @param a_Arg0 The argument name.
4676 */
4677# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4678 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4679/**
4680 * Prototype version of IEM_CIMPL_DEF_1.
4681 */
4682# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4683 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4684/**
4685 * For calling a C instruction implementation function taking one extra
4686 * argument.
4687 *
4688 * This special call macro adds default arguments to the call and allow us to
4689 * change these later.
4690 *
4691 * @param a_fn The name of the function.
4692 * @param a0 The name of the 1st argument.
4693 */
4694# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4695
4696/**
4697 * For typedef'ing or declaring a C instruction implementation function taking
4698 * two extra arguments.
4699 *
4700 * @param a_Name The name of the type.
4701 * @param a_Type0 The type of the 1st argument
4702 * @param a_Arg0 The name of the 1st argument.
4703 * @param a_Type1 The type of the 2nd argument.
4704 * @param a_Arg1 The name of the 2nd argument.
4705 */
4706# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4707 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4708/**
4709 * For defining a C instruction implementation function taking two extra
4710 * arguments.
4711 *
4712 * @param a_Name The name of the function.
4713 * @param a_Type0 The type of the 1st argument
4714 * @param a_Arg0 The name of the 1st argument.
4715 * @param a_Type1 The type of the 2nd argument.
4716 * @param a_Arg1 The name of the 2nd argument.
4717 */
4718# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4719 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4720/**
4721 * Prototype version of IEM_CIMPL_DEF_2.
4722 */
4723# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4724 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4725/**
4726 * For calling a C instruction implementation function taking two extra
4727 * arguments.
4728 *
4729 * This special call macro adds default arguments to the call and allow us to
4730 * change these later.
4731 *
4732 * @param a_fn The name of the function.
4733 * @param a0 The name of the 1st argument.
4734 * @param a1 The name of the 2nd argument.
4735 */
4736# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4737
4738/**
4739 * For typedef'ing or declaring a C instruction implementation function taking
4740 * three extra arguments.
4741 *
4742 * @param a_Name The name of the type.
4743 * @param a_Type0 The type of the 1st argument
4744 * @param a_Arg0 The name of the 1st argument.
4745 * @param a_Type1 The type of the 2nd argument.
4746 * @param a_Arg1 The name of the 2nd argument.
4747 * @param a_Type2 The type of the 3rd argument.
4748 * @param a_Arg2 The name of the 3rd argument.
4749 */
4750# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4751 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4752/**
4753 * For defining a C instruction implementation function taking three extra
4754 * arguments.
4755 *
4756 * @param a_Name The name of the function.
4757 * @param a_Type0 The type of the 1st argument
4758 * @param a_Arg0 The name of the 1st argument.
4759 * @param a_Type1 The type of the 2nd argument.
4760 * @param a_Arg1 The name of the 2nd argument.
4761 * @param a_Type2 The type of the 3rd argument.
4762 * @param a_Arg2 The name of the 3rd argument.
4763 */
4764# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4765 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4766/**
4767 * Prototype version of IEM_CIMPL_DEF_3.
4768 */
4769# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4770 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4771/**
4772 * For calling a C instruction implementation function taking three extra
4773 * arguments.
4774 *
4775 * This special call macro adds default arguments to the call and allow us to
4776 * change these later.
4777 *
4778 * @param a_fn The name of the function.
4779 * @param a0 The name of the 1st argument.
4780 * @param a1 The name of the 2nd argument.
4781 * @param a2 The name of the 3rd argument.
4782 */
4783# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4784
4785
4786/**
4787 * For typedef'ing or declaring a C instruction implementation function taking
4788 * four extra arguments.
4789 *
4790 * @param a_Name The name of the type.
4791 * @param a_Type0 The type of the 1st argument
4792 * @param a_Arg0 The name of the 1st argument.
4793 * @param a_Type1 The type of the 2nd argument.
4794 * @param a_Arg1 The name of the 2nd argument.
4795 * @param a_Type2 The type of the 3rd argument.
4796 * @param a_Arg2 The name of the 3rd argument.
4797 * @param a_Type3 The type of the 4th argument.
4798 * @param a_Arg3 The name of the 4th argument.
4799 */
4800# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4801 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4802/**
4803 * For defining a C instruction implementation function taking four extra
4804 * arguments.
4805 *
4806 * @param a_Name The name of the function.
4807 * @param a_Type0 The type of the 1st argument
4808 * @param a_Arg0 The name of the 1st argument.
4809 * @param a_Type1 The type of the 2nd argument.
4810 * @param a_Arg1 The name of the 2nd argument.
4811 * @param a_Type2 The type of the 3rd argument.
4812 * @param a_Arg2 The name of the 3rd argument.
4813 * @param a_Type3 The type of the 4th argument.
4814 * @param a_Arg3 The name of the 4th argument.
4815 */
4816# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4817 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4818 a_Type2 a_Arg2, a_Type3 a_Arg3))
4819/**
4820 * Prototype version of IEM_CIMPL_DEF_4.
4821 */
4822# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4823 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4824 a_Type2 a_Arg2, a_Type3 a_Arg3))
4825/**
4826 * For calling a C instruction implementation function taking four extra
4827 * arguments.
4828 *
4829 * This special call macro adds default arguments to the call and allow us to
4830 * change these later.
4831 *
4832 * @param a_fn The name of the function.
4833 * @param a0 The name of the 1st argument.
4834 * @param a1 The name of the 2nd argument.
4835 * @param a2 The name of the 3rd argument.
4836 * @param a3 The name of the 4th argument.
4837 */
4838# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4839
4840
4841/**
4842 * For typedef'ing or declaring a C instruction implementation function taking
4843 * five extra arguments.
4844 *
4845 * @param a_Name The name of the type.
4846 * @param a_Type0 The type of the 1st argument
4847 * @param a_Arg0 The name of the 1st argument.
4848 * @param a_Type1 The type of the 2nd argument.
4849 * @param a_Arg1 The name of the 2nd argument.
4850 * @param a_Type2 The type of the 3rd argument.
4851 * @param a_Arg2 The name of the 3rd argument.
4852 * @param a_Type3 The type of the 4th argument.
4853 * @param a_Arg3 The name of the 4th argument.
4854 * @param a_Type4 The type of the 5th argument.
4855 * @param a_Arg4 The name of the 5th argument.
4856 */
4857# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4858 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4859 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4860 a_Type3 a_Arg3, a_Type4 a_Arg4))
4861/**
4862 * For defining a C instruction implementation function taking five extra
4863 * arguments.
4864 *
4865 * @param a_Name The name of the function.
4866 * @param a_Type0 The type of the 1st argument
4867 * @param a_Arg0 The name of the 1st argument.
4868 * @param a_Type1 The type of the 2nd argument.
4869 * @param a_Arg1 The name of the 2nd argument.
4870 * @param a_Type2 The type of the 3rd argument.
4871 * @param a_Arg2 The name of the 3rd argument.
4872 * @param a_Type3 The type of the 4th argument.
4873 * @param a_Arg3 The name of the 4th argument.
4874 * @param a_Type4 The type of the 5th argument.
4875 * @param a_Arg4 The name of the 5th argument.
4876 */
4877# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4878 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4879 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4880/**
4881 * Prototype version of IEM_CIMPL_DEF_5.
4882 */
4883# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4884 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4885 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4886/**
4887 * For calling a C instruction implementation function taking five extra
4888 * arguments.
4889 *
4890 * This special call macro adds default arguments to the call and allow us to
4891 * change these later.
4892 *
4893 * @param a_fn The name of the function.
4894 * @param a0 The name of the 1st argument.
4895 * @param a1 The name of the 2nd argument.
4896 * @param a2 The name of the 3rd argument.
4897 * @param a3 The name of the 4th argument.
4898 * @param a4 The name of the 5th argument.
4899 */
4900# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4901
4902/** @} */
4903
4904
4905/** @name Opcode Decoder Function Types.
4906 * @{ */
4907
4908/** @typedef PFNIEMOP
4909 * Pointer to an opcode decoder function.
4910 */
4911
4912/** @def FNIEMOP_DEF
4913 * Define an opcode decoder function.
4914 *
4915 * We're using macors for this so that adding and removing parameters as well as
4916 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4917 *
4918 * @param a_Name The function name.
4919 */
4920
4921/** @typedef PFNIEMOPRM
4922 * Pointer to an opcode decoder function with RM byte.
4923 */
4924
4925/** @def FNIEMOPRM_DEF
4926 * Define an opcode decoder function with RM byte.
4927 *
4928 * We're using macors for this so that adding and removing parameters as well as
4929 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4930 *
4931 * @param a_Name The function name.
4932 */
4933
4934#if defined(__GNUC__) && defined(RT_ARCH_X86)
4935typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4936typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4937# define FNIEMOP_DEF(a_Name) \
4938 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4939# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4940 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4941# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4942 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4943
4944#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4945typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4946typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4947# define FNIEMOP_DEF(a_Name) \
4948 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4949# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4950 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4951# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4952 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4953
4954#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4955typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4956typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4957# define FNIEMOP_DEF(a_Name) \
4958 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4959# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4960 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4961# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4962 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4963
4964#else
4965typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4966typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4967# define FNIEMOP_DEF(a_Name) \
4968 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4969# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4970 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4971# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4972 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4973
4974#endif
4975#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4976
4977/**
4978 * Call an opcode decoder function.
4979 *
4980 * We're using macors for this so that adding and removing parameters can be
4981 * done as we please. See FNIEMOP_DEF.
4982 */
4983#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4984
4985/**
4986 * Call a common opcode decoder function taking one extra argument.
4987 *
4988 * We're using macors for this so that adding and removing parameters can be
4989 * done as we please. See FNIEMOP_DEF_1.
4990 */
4991#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4992
4993/**
4994 * Call a common opcode decoder function taking one extra argument.
4995 *
4996 * We're using macors for this so that adding and removing parameters can be
4997 * done as we please. See FNIEMOP_DEF_1.
4998 */
4999#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
5000/** @} */
5001
5002
5003/** @name Misc Helpers
5004 * @{ */
5005
5006/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5007 * due to GCC lacking knowledge about the value range of a switch. */
5008#if RT_CPLUSPLUS_PREREQ(202000)
5009# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5010#else
5011# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5012#endif
5013
5014/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5015#if RT_CPLUSPLUS_PREREQ(202000)
5016# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5017#else
5018# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5019#endif
5020
5021/**
5022 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5023 * occation.
5024 */
5025#ifdef LOG_ENABLED
5026# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5027 do { \
5028 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5029 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5030 } while (0)
5031#else
5032# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5033 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5034#endif
5035
5036/**
5037 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5038 * occation using the supplied logger statement.
5039 *
5040 * @param a_LoggerArgs What to log on failure.
5041 */
5042#ifdef LOG_ENABLED
5043# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5044 do { \
5045 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5046 /*LogFunc(a_LoggerArgs);*/ \
5047 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5048 } while (0)
5049#else
5050# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5051 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5052#endif
5053
5054/**
5055 * Gets the CPU mode (from fExec) as a IEMMODE value.
5056 *
5057 * @returns IEMMODE
5058 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5059 */
5060#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5061
5062/**
5063 * Check if we're currently executing in real or virtual 8086 mode.
5064 *
5065 * @returns @c true if it is, @c false if not.
5066 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5067 */
5068#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5069 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5070
5071/**
5072 * Check if we're currently executing in virtual 8086 mode.
5073 *
5074 * @returns @c true if it is, @c false if not.
5075 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5076 */
5077#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5078
5079/**
5080 * Check if we're currently executing in long mode.
5081 *
5082 * @returns @c true if it is, @c false if not.
5083 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5084 */
5085#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5086
5087/**
5088 * Check if we're currently executing in a 16-bit code segment.
5089 *
5090 * @returns @c true if it is, @c false if not.
5091 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5092 */
5093#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5094
5095/**
5096 * Check if we're currently executing in a 32-bit code segment.
5097 *
5098 * @returns @c true if it is, @c false if not.
5099 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5100 */
5101#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5102
5103/**
5104 * Check if we're currently executing in a 64-bit code segment.
5105 *
5106 * @returns @c true if it is, @c false if not.
5107 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5108 */
5109#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5110
5111/**
5112 * Check if we're currently executing in real mode.
5113 *
5114 * @returns @c true if it is, @c false if not.
5115 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5116 */
5117#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5118
5119/**
5120 * Gets the current protection level (CPL).
5121 *
5122 * @returns 0..3
5123 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5124 */
5125#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5126
5127/**
5128 * Sets the current protection level (CPL).
5129 *
5130 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5131 */
5132#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5133 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5134
5135/**
5136 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5137 * @returns PCCPUMFEATURES
5138 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5139 */
5140#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5141
5142/**
5143 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5144 * @returns PCCPUMFEATURES
5145 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5146 */
5147#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5148
5149/**
5150 * Evaluates to true if we're presenting an Intel CPU to the guest.
5151 */
5152#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5153
5154/**
5155 * Evaluates to true if we're presenting an AMD CPU to the guest.
5156 */
5157#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5158
5159/**
5160 * Check if the address is canonical.
5161 */
5162#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5163
5164/** Checks if the ModR/M byte is in register mode or not. */
5165#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5166/** Checks if the ModR/M byte is in memory mode or not. */
5167#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5168
5169/**
5170 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5171 *
5172 * For use during decoding.
5173 */
5174#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5175/**
5176 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5177 *
5178 * For use during decoding.
5179 */
5180#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5181
5182/**
5183 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5184 *
5185 * For use during decoding.
5186 */
5187#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5188/**
5189 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5190 *
5191 * For use during decoding.
5192 */
5193#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5194
5195/**
5196 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5197 * register index, with REX.R added in.
5198 *
5199 * For use during decoding.
5200 *
5201 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5202 */
5203#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5204 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5205 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5206 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5207/**
5208 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5209 * with REX.B added in.
5210 *
5211 * For use during decoding.
5212 *
5213 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5214 */
5215#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5216 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5217 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5218 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5219
5220/**
5221 * Combines the prefix REX and ModR/M byte for passing to
5222 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5223 *
5224 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5225 * The two bits are part of the REG sub-field, which isn't needed in
5226 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5227 *
5228 * For use during decoding/recompiling.
5229 */
5230#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5231 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5232 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5233AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5234AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5235
5236/**
5237 * Gets the effective VEX.VVVV value.
5238 *
5239 * The 4th bit is ignored if not 64-bit code.
5240 * @returns effective V-register value.
5241 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5242 */
5243#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5244 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5245
5246
5247/**
5248 * Gets the register (reg) part of a the special 4th register byte used by
5249 * vblendvps and vblendvpd.
5250 *
5251 * For use during decoding.
5252 */
5253#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5254 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5255
5256
5257/**
5258 * Checks if we're executing inside an AMD-V or VT-x guest.
5259 */
5260#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5261# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5262#else
5263# define IEM_IS_IN_GUEST(a_pVCpu) false
5264#endif
5265
5266
5267#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5268
5269/**
5270 * Check if the guest has entered VMX root operation.
5271 */
5272# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5273
5274/**
5275 * Check if the guest has entered VMX non-root operation.
5276 */
5277# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5278 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5279
5280/**
5281 * Check if the nested-guest has the given Pin-based VM-execution control set.
5282 */
5283# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5284
5285/**
5286 * Check if the nested-guest has the given Processor-based VM-execution control set.
5287 */
5288# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5289
5290/**
5291 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5292 * control set.
5293 */
5294# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5295
5296/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5297# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5298
5299/** Whether a shadow VMCS is present for the given VCPU. */
5300# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5301
5302/** Gets the VMXON region pointer. */
5303# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5304
5305/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5306# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5307
5308/** Whether a current VMCS is present for the given VCPU. */
5309# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5310
5311/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5312# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5313 do \
5314 { \
5315 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5316 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5317 } while (0)
5318
5319/** Clears any current VMCS for the given VCPU. */
5320# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5321 do \
5322 { \
5323 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5324 } while (0)
5325
5326/**
5327 * Invokes the VMX VM-exit handler for an instruction intercept.
5328 */
5329# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5330 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5331
5332/**
5333 * Invokes the VMX VM-exit handler for an instruction intercept where the
5334 * instruction provides additional VM-exit information.
5335 */
5336# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5337 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5338
5339/**
5340 * Invokes the VMX VM-exit handler for a task switch.
5341 */
5342# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5343 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5344
5345/**
5346 * Invokes the VMX VM-exit handler for MWAIT.
5347 */
5348# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5349 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5350
5351/**
5352 * Invokes the VMX VM-exit handler for EPT faults.
5353 */
5354# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5355 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5356
5357/**
5358 * Invokes the VMX VM-exit handler.
5359 */
5360# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5361 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5362
5363#else
5364# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5365# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5366# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5367# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5368# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5369# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5370# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5371# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5372# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5373# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5374# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5375
5376#endif
5377
5378#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5379/**
5380 * Checks if we're executing a guest using AMD-V.
5381 */
5382# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5383 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5384/**
5385 * Check if an SVM control/instruction intercept is set.
5386 */
5387# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5388 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5389
5390/**
5391 * Check if an SVM read CRx intercept is set.
5392 */
5393# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5394 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5395
5396/**
5397 * Check if an SVM write CRx intercept is set.
5398 */
5399# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5400 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5401
5402/**
5403 * Check if an SVM read DRx intercept is set.
5404 */
5405# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5406 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5407
5408/**
5409 * Check if an SVM write DRx intercept is set.
5410 */
5411# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5412 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5413
5414/**
5415 * Check if an SVM exception intercept is set.
5416 */
5417# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5418 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5419
5420/**
5421 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5422 */
5423# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5424 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5425
5426/**
5427 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5428 * corresponding decode assist information.
5429 */
5430# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5431 do \
5432 { \
5433 uint64_t uExitInfo1; \
5434 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5435 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5436 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5437 else \
5438 uExitInfo1 = 0; \
5439 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5440 } while (0)
5441
5442/** Check and handles SVM nested-guest instruction intercept and updates
5443 * NRIP if needed.
5444 */
5445# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5446 do \
5447 { \
5448 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5449 { \
5450 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5451 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5452 } \
5453 } while (0)
5454
5455/** Checks and handles SVM nested-guest CR0 read intercept. */
5456# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5457 do \
5458 { \
5459 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5460 { /* probably likely */ } \
5461 else \
5462 { \
5463 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5464 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5465 } \
5466 } while (0)
5467
5468/**
5469 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5470 */
5471# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5472 do { \
5473 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5474 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5475 } while (0)
5476
5477#else
5478# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5479# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5480# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5481# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5482# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5483# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5484# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5485# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5486# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5487 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5488# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5489# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5490
5491#endif
5492
5493/** @} */
5494
5495uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5496VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5497
5498
5499/**
5500 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5501 */
5502typedef union IEMSELDESC
5503{
5504 /** The legacy view. */
5505 X86DESC Legacy;
5506 /** The long mode view. */
5507 X86DESC64 Long;
5508} IEMSELDESC;
5509/** Pointer to a selector descriptor table entry. */
5510typedef IEMSELDESC *PIEMSELDESC;
5511
5512/** @name Raising Exceptions.
5513 * @{ */
5514VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5515 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5516
5517VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5518 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5519#ifdef IEM_WITH_SETJMP
5520DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5521 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5522#endif
5523VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5524#ifdef IEM_WITH_SETJMP
5525DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5526#endif
5527VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5528VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5529VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5530#ifdef IEM_WITH_SETJMP
5531DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5532#endif
5533VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5534#ifdef IEM_WITH_SETJMP
5535DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5536#endif
5537VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5538VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5539VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5540VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5541/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5542VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5543VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5544VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5545VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5546VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5547VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5548#ifdef IEM_WITH_SETJMP
5549DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5550#endif
5551VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5552VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5553VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5554#ifdef IEM_WITH_SETJMP
5555DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5556#endif
5557VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5558#ifdef IEM_WITH_SETJMP
5559DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5560#endif
5561VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5562#ifdef IEM_WITH_SETJMP
5563DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5564#endif
5565VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5566#ifdef IEM_WITH_SETJMP
5567DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5568#endif
5569VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5570#ifdef IEM_WITH_SETJMP
5571DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5572#endif
5573VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5574#ifdef IEM_WITH_SETJMP
5575DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5576#endif
5577VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5578#ifdef IEM_WITH_SETJMP
5579DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5580#endif
5581
5582void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5583void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5584
5585IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5586IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5587IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5588
5589/**
5590 * Macro for calling iemCImplRaiseDivideError().
5591 *
5592 * This is for things that will _always_ decode to an \#DE, taking the
5593 * recompiler into consideration and everything.
5594 *
5595 * @return Strict VBox status code.
5596 */
5597#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5598
5599/**
5600 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5601 *
5602 * This is for things that will _always_ decode to an \#UD, taking the
5603 * recompiler into consideration and everything.
5604 *
5605 * @return Strict VBox status code.
5606 */
5607#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5608
5609/**
5610 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5611 *
5612 * This is for things that will _always_ decode to an \#UD, taking the
5613 * recompiler into consideration and everything.
5614 *
5615 * @return Strict VBox status code.
5616 */
5617#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5618
5619/**
5620 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5621 *
5622 * Using this macro means you've got _buggy_ _code_ and are doing things that
5623 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5624 *
5625 * @return Strict VBox status code.
5626 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5627 */
5628#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5629
5630/** @} */
5631
5632/** @name Register Access.
5633 * @{ */
5634VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5635 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5636VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5637VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5638 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5639/** @} */
5640
5641/** @name FPU access and helpers.
5642 * @{ */
5643void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5644void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5645void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5646void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5647void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5648void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5649 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5650void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5651 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5652void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5653void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5654void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5655void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5656void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5657void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5658void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5659void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5660void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5661void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5662void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5663void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5664void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5665void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5666void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5667/** @} */
5668
5669/** @name SSE+AVX SIMD access and helpers.
5670 * @{ */
5671void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5672/** @} */
5673
5674/** @name Memory access.
5675 * @{ */
5676
5677/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5678#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5679/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5680 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5681#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5682/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5683 * Users include FXSAVE & FXRSTOR. */
5684#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5685
5686VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5687 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5688VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5689#ifndef IN_RING3
5690VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5691#endif
5692void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5693void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5694VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5695VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5696VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5697
5698void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5699void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5700#ifdef IEM_WITH_CODE_TLB
5701void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5702#else
5703VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5704#endif
5705#ifdef IEM_WITH_SETJMP
5706uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5707uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5708uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5709uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5710#else
5711VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5712VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5713VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5714VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5715VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5716VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5717VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5718VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5719VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5720VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5721VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5722#endif
5723
5724VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5725VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5726VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5727VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5728VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5729VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5730VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5731VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5732VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5733VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5734VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5735VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5736VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5737VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5738VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5739 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5740#ifdef IEM_WITH_SETJMP
5741uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5742uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5743uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5744uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5745uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5746uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5747void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5748void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5749void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5750void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5751void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5752void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5753void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5754void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5755# if 0 /* these are inlined now */
5756uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5757uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5758uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5759uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5760uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5761uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5762void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5763void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5764void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5765void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5766void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5767void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5768void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5769# endif
5770void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5771#endif
5772
5773VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5774VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5775VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5776VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5777VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5778
5779VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5780VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5781VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5782VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5783VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5784VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5785VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5786VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5787VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5788VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5789VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5790#ifdef IEM_WITH_SETJMP
5791void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5792void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5793void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5794void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5795void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5796void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5797void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5798void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5799void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5800void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5801void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5802void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5803#if 0
5804void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5805void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5806void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5807void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5808void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5809void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5810void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5811void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5812#endif
5813void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5814void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5815#endif
5816
5817#ifdef IEM_WITH_SETJMP
5818uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5819uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5820uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5821uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5822uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5823uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5824uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5825uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5826uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5827uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5828uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5829uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5830uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5831uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5832uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5833uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5834PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5835PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5836PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5837PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5838PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5839PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5840PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5841PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5842PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5843PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5844
5845void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5846void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5847void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5848void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5849void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5850void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5851#endif
5852
5853VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5854 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5855VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5856VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5857VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5858VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5859VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5860VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5861VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5862VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5863VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5864 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5865VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5866 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5867VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5868VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5869VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5870VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5871VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5872VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5873VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5874
5875#ifdef IEM_WITH_SETJMP
5876void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5877void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5878void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5879void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5880void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5881void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5882void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5883
5884void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5885void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5886void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5887void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5888void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5889
5890void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5891void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5892void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5893void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5894
5895void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5896void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5897void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5898void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5899
5900uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5901uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5902uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5903
5904#endif
5905
5906/** @} */
5907
5908/** @name IEMAllCImpl.cpp
5909 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5910 * @{ */
5911IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5912IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5913IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5914IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5915IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5916IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5917IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5918IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5919IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5920IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5921IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5922typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5923typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5924IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5925IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5926IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5927IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5928IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5929IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5930IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5931IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5932IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5933IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5934IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5935IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5936IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5937IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5938IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5939IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5940IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5941IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5942IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5943IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5944IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5945IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5946IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5947IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5948IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5949IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5950IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5951IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5952IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5953IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5954IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5955IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5956IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5957IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5958IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5959IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5960IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5961IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5962IEM_CIMPL_PROTO_0(iemCImpl_clts);
5963IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5964IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5965IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5966IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5967IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5968IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5969IEM_CIMPL_PROTO_0(iemCImpl_invd);
5970IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5971IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5972IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5973IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5974IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5975IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5976IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5977IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5978IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5979IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5980IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5981IEM_CIMPL_PROTO_0(iemCImpl_cli);
5982IEM_CIMPL_PROTO_0(iemCImpl_sti);
5983IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5984IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5985IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5986IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5987IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5988IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5989IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5990IEM_CIMPL_PROTO_0(iemCImpl_daa);
5991IEM_CIMPL_PROTO_0(iemCImpl_das);
5992IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5993IEM_CIMPL_PROTO_0(iemCImpl_aas);
5994IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5995IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5996IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5997IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5998IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5999 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
6000IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6001IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
6002IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6003IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6004IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6005IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6006IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6007IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6008IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6009IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6010IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6011IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6012IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6013IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6014IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6015IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6016IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6017IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6018IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6019IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6020IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6021IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6022IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6023IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6024IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6025IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6026IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6027IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6028IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6029IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6030IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6031IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6032IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6033IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6034
6035/** @} */
6036
6037/** @name IEMAllCImplStrInstr.cpp.h
6038 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6039 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6040 * @{ */
6041IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6042IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6043IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6044IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6045IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6046IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6047IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6048IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6049IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6050IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6051IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6052
6053IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6054IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6055IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6056IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6057IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6058IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6059IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6060IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6061IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6062IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6063IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6064
6065IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6066IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6067IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6068IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6069IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6070IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6071IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6072IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6073IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6074IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6075IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6076
6077
6078IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6079IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6080IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6081IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6082IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6083IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6084IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6085IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6086IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6087IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6088IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6089
6090IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6091IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6092IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6093IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6094IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6095IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6096IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6097IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6098IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6099IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6100IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6101
6102IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6103IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6104IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6105IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6106IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6107IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6108IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6109IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6110IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6111IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6112IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6113
6114IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6115IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6116IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6117IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6118IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6119IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6120IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6121IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6122IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6123IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6124IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6125
6126
6127IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6128IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6129IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6130IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6131IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6132IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6133IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6134IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6135IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6136IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6137IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6138
6139IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6140IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6141IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6142IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6143IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6144IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6145IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6146IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6147IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6148IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6149IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6150
6151IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6152IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6153IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6154IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6155IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6156IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6157IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6158IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6159IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6160IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6161IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6162
6163IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6164IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6165IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6166IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6167IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6168IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6169IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6170IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6171IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6172IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6173IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6174/** @} */
6175
6176#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6177VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6178VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6179VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6180VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6181VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6182VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6183VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6184VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6185VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6186VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6187 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6188VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6189 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6190VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6191VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6192VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6193VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6194VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6195VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6196VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6197VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6198 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6199VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6200VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6201VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6202uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6203void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6204VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6205 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6206bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6207IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6208IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6209IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6210IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6211IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6212IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6213IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6214IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6215IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6216IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6217IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6218IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6219IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6220IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6221IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6222IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6223#endif
6224
6225#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6226VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6227VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6228VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6229 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6230VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6231IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6232IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6233IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6234IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6235IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6236IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6237IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6238IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6239#endif
6240
6241IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6242IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6243IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6244
6245extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6246extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6247extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6248extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6249extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6250extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6251extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6252
6253/*
6254 * Recompiler related stuff.
6255 */
6256extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6257extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6258extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6259extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6260extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6261extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6262extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6263
6264DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6265 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6266void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6267DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6268void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6269void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6270DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6271DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6272
6273
6274/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6275#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6276typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6277typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6278# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6279 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6280# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6281 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6282
6283#else
6284typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6285typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6286# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6287 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6288# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6289 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6290#endif
6291
6292
6293IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6294IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6295
6296IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6297
6298IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6299IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6300IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6301IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6302
6303IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6304IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6305IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6306
6307/* Branching: */
6308IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6309IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6310IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6311
6312IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6313IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6314IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6315
6316/* Natural page crossing: */
6317IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6318IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6319IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6320
6321IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6322IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6323IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6324
6325IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6326IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6327IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6328
6329bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6330bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6331
6332/* Native recompiler public bits: */
6333DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6334DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6335int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6336DECLHIDDEN(void *) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, void **ppvExec) RT_NOEXCEPT;
6337DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6338void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6339DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6340
6341#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6342
6343
6344/** @} */
6345
6346RT_C_DECLS_END
6347
6348/* ASM-INC: %include "IEMInternalStruct.mac" */
6349
6350#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6351
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette