VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 95308

Last change on this file since 95308 was 95308, checked in by vboxsync, 3 years ago

VMM/IEM: Implemented ANDN, BEXTR, SHLX, SARX, SHRX, RORX, TZCNT, and LZCNT. Fixed long-mod bug in 32-bit version of BSR and BSF (would clear the upper 32 bits of the destination register when ZF=1). bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 152.7 KB
Line 
1/* $Id: IEMInternal.h 95308 2022-06-19 20:40:26Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
19#define VMM_INCLUDED_SRC_include_IEMInternal_h
20#ifndef RT_WITHOUT_PRAGMA_ONCE
21# pragma once
22#endif
23
24#include <VBox/vmm/cpum.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/stam.h>
28#include <VBox/param.h>
29
30#include <iprt/setjmp-without-sigmask.h>
31
32
33RT_C_DECLS_BEGIN
34
35
36/** @defgroup grp_iem_int Internals
37 * @ingroup grp_iem
38 * @internal
39 * @{
40 */
41
42/** For expanding symbol in slickedit and other products tagging and
43 * crossreferencing IEM symbols. */
44#ifndef IEM_STATIC
45# define IEM_STATIC static
46#endif
47
48/** @def IEM_WITH_SETJMP
49 * Enables alternative status code handling using setjmps.
50 *
51 * This adds a bit of expense via the setjmp() call since it saves all the
52 * non-volatile registers. However, it eliminates return code checks and allows
53 * for more optimal return value passing (return regs instead of stack buffer).
54 */
55#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
56# define IEM_WITH_SETJMP
57#endif
58
59#define IEM_IMPLEMENTS_TASKSWITCH
60
61/** @def IEM_WITH_3DNOW
62 * Includes the 3DNow decoding. */
63#define IEM_WITH_3DNOW
64
65/** @def IEM_WITH_THREE_0F_38
66 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
67#define IEM_WITH_THREE_0F_38
68
69/** @def IEM_WITH_THREE_0F_3A
70 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
71#define IEM_WITH_THREE_0F_3A
72
73/** @def IEM_WITH_VEX
74 * Includes the VEX decoding. */
75#define IEM_WITH_VEX
76
77/** @def IEM_CFG_TARGET_CPU
78 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
79 *
80 * By default we allow this to be configured by the user via the
81 * CPUM/GuestCpuName config string, but this comes at a slight cost during
82 * decoding. So, for applications of this code where there is no need to
83 * be dynamic wrt target CPU, just modify this define.
84 */
85#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
86# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
87#endif
88
89//#define IEM_WITH_CODE_TLB // - work in progress
90//#define IEM_WITH_DATA_TLB // - work in progress
91
92
93/** @def IEM_USE_UNALIGNED_DATA_ACCESS
94 * Use unaligned accesses instead of elaborate byte assembly. */
95#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
96# define IEM_USE_UNALIGNED_DATA_ACCESS
97#endif
98
99//#define IEM_LOG_MEMORY_WRITES
100
101#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
102/** Instruction statistics. */
103typedef struct IEMINSTRSTATS
104{
105# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
106# include "IEMInstructionStatisticsTmpl.h"
107# undef IEM_DO_INSTR_STAT
108} IEMINSTRSTATS;
109#else
110struct IEMINSTRSTATS;
111typedef struct IEMINSTRSTATS IEMINSTRSTATS;
112#endif
113/** Pointer to IEM instruction statistics. */
114typedef IEMINSTRSTATS *PIEMINSTRSTATS;
115
116
117/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
118 * @{ */
119#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
120#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
121#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
122#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
123#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
124/** Selects the right variant from a_aArray.
125 * pVCpu is implicit in the caller context. */
126#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
127 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
128/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
129 * be used because the host CPU does not support the operation. */
130#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
131 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
132/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
133 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
134 * into the two.
135 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
136#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
137# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
138 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
139#else
140# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
141 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
142#endif
143/** @} */
144
145/**
146 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
147 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
148 *
149 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
150 * indicator.
151 *
152 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
153 */
154#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
155# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
156 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
157#else
158# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
159#endif
160
161
162/**
163 * Extended operand mode that includes a representation of 8-bit.
164 *
165 * This is used for packing down modes when invoking some C instruction
166 * implementations.
167 */
168typedef enum IEMMODEX
169{
170 IEMMODEX_16BIT = IEMMODE_16BIT,
171 IEMMODEX_32BIT = IEMMODE_32BIT,
172 IEMMODEX_64BIT = IEMMODE_64BIT,
173 IEMMODEX_8BIT
174} IEMMODEX;
175AssertCompileSize(IEMMODEX, 4);
176
177
178/**
179 * Branch types.
180 */
181typedef enum IEMBRANCH
182{
183 IEMBRANCH_JUMP = 1,
184 IEMBRANCH_CALL,
185 IEMBRANCH_TRAP,
186 IEMBRANCH_SOFTWARE_INT,
187 IEMBRANCH_HARDWARE_INT
188} IEMBRANCH;
189AssertCompileSize(IEMBRANCH, 4);
190
191
192/**
193 * INT instruction types.
194 */
195typedef enum IEMINT
196{
197 /** INT n instruction (opcode 0xcd imm). */
198 IEMINT_INTN = 0,
199 /** Single byte INT3 instruction (opcode 0xcc). */
200 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
201 /** Single byte INTO instruction (opcode 0xce). */
202 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
203 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
204 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
205} IEMINT;
206AssertCompileSize(IEMINT, 4);
207
208
209/**
210 * A FPU result.
211 */
212typedef struct IEMFPURESULT
213{
214 /** The output value. */
215 RTFLOAT80U r80Result;
216 /** The output status. */
217 uint16_t FSW;
218} IEMFPURESULT;
219AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
220/** Pointer to a FPU result. */
221typedef IEMFPURESULT *PIEMFPURESULT;
222/** Pointer to a const FPU result. */
223typedef IEMFPURESULT const *PCIEMFPURESULT;
224
225
226/**
227 * A FPU result consisting of two output values and FSW.
228 */
229typedef struct IEMFPURESULTTWO
230{
231 /** The first output value. */
232 RTFLOAT80U r80Result1;
233 /** The output status. */
234 uint16_t FSW;
235 /** The second output value. */
236 RTFLOAT80U r80Result2;
237} IEMFPURESULTTWO;
238AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
239AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
240/** Pointer to a FPU result consisting of two output values and FSW. */
241typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
242/** Pointer to a const FPU result consisting of two output values and FSW. */
243typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
244
245
246/**
247 * IEM TLB entry.
248 *
249 * Lookup assembly:
250 * @code{.asm}
251 ; Calculate tag.
252 mov rax, [VA]
253 shl rax, 16
254 shr rax, 16 + X86_PAGE_SHIFT
255 or rax, [uTlbRevision]
256
257 ; Do indexing.
258 movzx ecx, al
259 lea rcx, [pTlbEntries + rcx]
260
261 ; Check tag.
262 cmp [rcx + IEMTLBENTRY.uTag], rax
263 jne .TlbMiss
264
265 ; Check access.
266 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
267 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
268 cmp rax, [uTlbPhysRev]
269 jne .TlbMiss
270
271 ; Calc address and we're done.
272 mov eax, X86_PAGE_OFFSET_MASK
273 and eax, [VA]
274 or rax, [rcx + IEMTLBENTRY.pMappingR3]
275 %ifdef VBOX_WITH_STATISTICS
276 inc qword [cTlbHits]
277 %endif
278 jmp .Done
279
280 .TlbMiss:
281 mov r8d, ACCESS_FLAGS
282 mov rdx, [VA]
283 mov rcx, [pVCpu]
284 call iemTlbTypeMiss
285 .Done:
286
287 @endcode
288 *
289 */
290typedef struct IEMTLBENTRY
291{
292 /** The TLB entry tag.
293 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
294 * is ASSUMING a virtual address width of 48 bits.
295 *
296 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
297 *
298 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
299 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
300 * revision wraps around though, the tags needs to be zeroed.
301 *
302 * @note Try use SHRD instruction? After seeing
303 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
304 *
305 * @todo This will need to be reorganized for 57-bit wide virtual address and
306 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
307 * have to move the TLB entry versioning entirely to the
308 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
309 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
310 * consumed by PCID and ASID (12 + 6 = 18).
311 */
312 uint64_t uTag;
313 /** Access flags and physical TLB revision.
314 *
315 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
316 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
317 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
318 * - Bit 3 - pgm phys/virt - not directly writable.
319 * - Bit 4 - pgm phys page - not directly readable.
320 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
321 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
322 * - Bit 7 - tlb entry - pMappingR3 member not valid.
323 * - Bits 63 thru 8 are used for the physical TLB revision number.
324 *
325 * We're using complemented bit meanings here because it makes it easy to check
326 * whether special action is required. For instance a user mode write access
327 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
328 * non-zero result would mean special handling needed because either it wasn't
329 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
330 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
331 * need to check any PTE flag.
332 */
333 uint64_t fFlagsAndPhysRev;
334 /** The guest physical page address. */
335 uint64_t GCPhys;
336 /** Pointer to the ring-3 mapping. */
337 R3PTRTYPE(uint8_t *) pbMappingR3;
338#if HC_ARCH_BITS == 32
339 uint32_t u32Padding1;
340#endif
341} IEMTLBENTRY;
342AssertCompileSize(IEMTLBENTRY, 32);
343/** Pointer to an IEM TLB entry. */
344typedef IEMTLBENTRY *PIEMTLBENTRY;
345
346/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
347 * @{ */
348#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
349#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
350#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
351#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
352#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
353#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
354#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
355#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
356#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
357#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffe00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
358/** @} */
359
360
361/**
362 * An IEM TLB.
363 *
364 * We've got two of these, one for data and one for instructions.
365 */
366typedef struct IEMTLB
367{
368 /** The TLB entries.
369 * We've choosen 256 because that way we can obtain the result directly from a
370 * 8-bit register without an additional AND instruction. */
371 IEMTLBENTRY aEntries[256];
372 /** The TLB revision.
373 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
374 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
375 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
376 * (The revision zero indicates an invalid TLB entry.)
377 *
378 * The initial value is choosen to cause an early wraparound. */
379 uint64_t uTlbRevision;
380 /** The TLB physical address revision - shadow of PGM variable.
381 *
382 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
383 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
384 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
385 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
386 *
387 * The initial value is choosen to cause an early wraparound. */
388 uint64_t volatile uTlbPhysRev;
389
390 /* Statistics: */
391
392 /** TLB hits (VBOX_WITH_STATISTICS only). */
393 uint64_t cTlbHits;
394 /** TLB misses. */
395 uint32_t cTlbMisses;
396 /** Slow read path. */
397 uint32_t cTlbSlowReadPath;
398#if 0
399 /** TLB misses because of tag mismatch. */
400 uint32_t cTlbMissesTag;
401 /** TLB misses because of virtual access violation. */
402 uint32_t cTlbMissesVirtAccess;
403 /** TLB misses because of dirty bit. */
404 uint32_t cTlbMissesDirty;
405 /** TLB misses because of MMIO */
406 uint32_t cTlbMissesMmio;
407 /** TLB misses because of write access handlers. */
408 uint32_t cTlbMissesWriteHandler;
409 /** TLB misses because no r3(/r0) mapping. */
410 uint32_t cTlbMissesMapping;
411#endif
412 /** Alignment padding. */
413 uint32_t au32Padding[3+5];
414} IEMTLB;
415AssertCompileSizeAlignment(IEMTLB, 64);
416/** IEMTLB::uTlbRevision increment. */
417#define IEMTLB_REVISION_INCR RT_BIT_64(36)
418/** IEMTLB::uTlbRevision mask. */
419#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
420/** IEMTLB::uTlbPhysRev increment.
421 * @sa IEMTLBE_F_PHYS_REV */
422#define IEMTLB_PHYS_REV_INCR RT_BIT_64(9)
423/**
424 * Calculates the TLB tag for a virtual address.
425 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
426 * @param a_pTlb The TLB.
427 * @param a_GCPtr The virtual address.
428 */
429#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
430/**
431 * Calculates the TLB tag for a virtual address but without TLB revision.
432 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
433 * @param a_GCPtr The virtual address.
434 */
435#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
436/**
437 * Converts a TLB tag value into a TLB index.
438 * @returns Index into IEMTLB::aEntries.
439 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
440 */
441#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
442/**
443 * Converts a TLB tag value into a TLB index.
444 * @returns Index into IEMTLB::aEntries.
445 * @param a_pTlb The TLB.
446 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
447 */
448#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
449
450
451/**
452 * The per-CPU IEM state.
453 */
454typedef struct IEMCPU
455{
456 /** Info status code that needs to be propagated to the IEM caller.
457 * This cannot be passed internally, as it would complicate all success
458 * checks within the interpreter making the code larger and almost impossible
459 * to get right. Instead, we'll store status codes to pass on here. Each
460 * source of these codes will perform appropriate sanity checks. */
461 int32_t rcPassUp; /* 0x00 */
462
463 /** The current CPU execution mode (CS). */
464 IEMMODE enmCpuMode; /* 0x04 */
465 /** The CPL. */
466 uint8_t uCpl; /* 0x05 */
467
468 /** Whether to bypass access handlers or not. */
469 bool fBypassHandlers; /* 0x06 */
470 /** Whether to disregard the lock prefix (implied or not). */
471 bool fDisregardLock; /* 0x07 */
472
473 /** @name Decoder state.
474 * @{ */
475#ifdef IEM_WITH_CODE_TLB
476 /** The offset of the next instruction byte. */
477 uint32_t offInstrNextByte; /* 0x08 */
478 /** The number of bytes available at pbInstrBuf for the current instruction.
479 * This takes the max opcode length into account so that doesn't need to be
480 * checked separately. */
481 uint32_t cbInstrBuf; /* 0x0c */
482 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
483 * This can be NULL if the page isn't mappable for some reason, in which
484 * case we'll do fallback stuff.
485 *
486 * If we're executing an instruction from a user specified buffer,
487 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
488 * aligned pointer but pointer to the user data.
489 *
490 * For instructions crossing pages, this will start on the first page and be
491 * advanced to the next page by the time we've decoded the instruction. This
492 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
493 */
494 uint8_t const *pbInstrBuf; /* 0x10 */
495# if ARCH_BITS == 32
496 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
497# endif
498 /** The program counter corresponding to pbInstrBuf.
499 * This is set to a non-canonical address when we need to invalidate it. */
500 uint64_t uInstrBufPc; /* 0x18 */
501 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
502 * This takes the CS segment limit into account. */
503 uint16_t cbInstrBufTotal; /* 0x20 */
504 /** Offset into pbInstrBuf of the first byte of the current instruction.
505 * Can be negative to efficiently handle cross page instructions. */
506 int16_t offCurInstrStart; /* 0x22 */
507
508 /** The prefix mask (IEM_OP_PRF_XXX). */
509 uint32_t fPrefixes; /* 0x24 */
510 /** The extra REX ModR/M register field bit (REX.R << 3). */
511 uint8_t uRexReg; /* 0x28 */
512 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
513 * (REX.B << 3). */
514 uint8_t uRexB; /* 0x29 */
515 /** The extra REX SIB index field bit (REX.X << 3). */
516 uint8_t uRexIndex; /* 0x2a */
517
518 /** The effective segment register (X86_SREG_XXX). */
519 uint8_t iEffSeg; /* 0x2b */
520
521 /** The offset of the ModR/M byte relative to the start of the instruction. */
522 uint8_t offModRm; /* 0x2c */
523#else
524 /** The size of what has currently been fetched into abOpcode. */
525 uint8_t cbOpcode; /* 0x08 */
526 /** The current offset into abOpcode. */
527 uint8_t offOpcode; /* 0x09 */
528 /** The offset of the ModR/M byte relative to the start of the instruction. */
529 uint8_t offModRm; /* 0x0a */
530
531 /** The effective segment register (X86_SREG_XXX). */
532 uint8_t iEffSeg; /* 0x0b */
533
534 /** The prefix mask (IEM_OP_PRF_XXX). */
535 uint32_t fPrefixes; /* 0x0c */
536 /** The extra REX ModR/M register field bit (REX.R << 3). */
537 uint8_t uRexReg; /* 0x10 */
538 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
539 * (REX.B << 3). */
540 uint8_t uRexB; /* 0x11 */
541 /** The extra REX SIB index field bit (REX.X << 3). */
542 uint8_t uRexIndex; /* 0x12 */
543
544#endif
545
546 /** The effective operand mode. */
547 IEMMODE enmEffOpSize; /* 0x2d, 0x13 */
548 /** The default addressing mode. */
549 IEMMODE enmDefAddrMode; /* 0x2e, 0x14 */
550 /** The effective addressing mode. */
551 IEMMODE enmEffAddrMode; /* 0x2f, 0x15 */
552 /** The default operand mode. */
553 IEMMODE enmDefOpSize; /* 0x30, 0x16 */
554
555 /** Prefix index (VEX.pp) for two byte and three byte tables. */
556 uint8_t idxPrefix; /* 0x31, 0x17 */
557 /** 3rd VEX/EVEX/XOP register.
558 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
559 uint8_t uVex3rdReg; /* 0x32, 0x18 */
560 /** The VEX/EVEX/XOP length field. */
561 uint8_t uVexLength; /* 0x33, 0x19 */
562 /** Additional EVEX stuff. */
563 uint8_t fEvexStuff; /* 0x34, 0x1a */
564
565 /** Explicit alignment padding. */
566 uint8_t abAlignment2a[1]; /* 0x35, 0x1b */
567 /** The FPU opcode (FOP). */
568 uint16_t uFpuOpcode; /* 0x36, 0x1c */
569#ifndef IEM_WITH_CODE_TLB
570 /** Explicit alignment padding. */
571 uint8_t abAlignment2b[2]; /* 0x1e */
572#endif
573
574 /** The opcode bytes. */
575 uint8_t abOpcode[15]; /* 0x48, 0x20 */
576 /** Explicit alignment padding. */
577#ifdef IEM_WITH_CODE_TLB
578 uint8_t abAlignment2c[0x48 - 0x47]; /* 0x37 */
579#else
580 uint8_t abAlignment2c[0x48 - 0x2f]; /* 0x2f */
581#endif
582 /** @} */
583
584
585 /** The flags of the current exception / interrupt. */
586 uint32_t fCurXcpt; /* 0x48, 0x48 */
587 /** The current exception / interrupt. */
588 uint8_t uCurXcpt;
589 /** Exception / interrupt recursion depth. */
590 int8_t cXcptRecursions;
591
592 /** The number of active guest memory mappings. */
593 uint8_t cActiveMappings;
594 /** The next unused mapping index. */
595 uint8_t iNextMapping;
596 /** Records for tracking guest memory mappings. */
597 struct
598 {
599 /** The address of the mapped bytes. */
600 void *pv;
601 /** The access flags (IEM_ACCESS_XXX).
602 * IEM_ACCESS_INVALID if the entry is unused. */
603 uint32_t fAccess;
604#if HC_ARCH_BITS == 64
605 uint32_t u32Alignment4; /**< Alignment padding. */
606#endif
607 } aMemMappings[3];
608
609 /** Locking records for the mapped memory. */
610 union
611 {
612 PGMPAGEMAPLOCK Lock;
613 uint64_t au64Padding[2];
614 } aMemMappingLocks[3];
615
616 /** Bounce buffer info.
617 * This runs in parallel to aMemMappings. */
618 struct
619 {
620 /** The physical address of the first byte. */
621 RTGCPHYS GCPhysFirst;
622 /** The physical address of the second page. */
623 RTGCPHYS GCPhysSecond;
624 /** The number of bytes in the first page. */
625 uint16_t cbFirst;
626 /** The number of bytes in the second page. */
627 uint16_t cbSecond;
628 /** Whether it's unassigned memory. */
629 bool fUnassigned;
630 /** Explicit alignment padding. */
631 bool afAlignment5[3];
632 } aMemBbMappings[3];
633
634 /** Bounce buffer storage.
635 * This runs in parallel to aMemMappings and aMemBbMappings. */
636 struct
637 {
638 uint8_t ab[512];
639 } aBounceBuffers[3];
640
641
642 /** Pointer set jump buffer - ring-3 context. */
643 R3PTRTYPE(jmp_buf *) pJmpBufR3;
644 /** Pointer set jump buffer - ring-0 context. */
645 R0PTRTYPE(jmp_buf *) pJmpBufR0;
646
647 /** @todo Should move this near @a fCurXcpt later. */
648 /** The CR2 for the current exception / interrupt. */
649 uint64_t uCurXcptCr2;
650 /** The error code for the current exception / interrupt. */
651 uint32_t uCurXcptErr;
652
653 /** @name Statistics
654 * @{ */
655 /** The number of instructions we've executed. */
656 uint32_t cInstructions;
657 /** The number of potential exits. */
658 uint32_t cPotentialExits;
659 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
660 * This may contain uncommitted writes. */
661 uint32_t cbWritten;
662 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
663 uint32_t cRetInstrNotImplemented;
664 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
665 uint32_t cRetAspectNotImplemented;
666 /** Counts informational statuses returned (other than VINF_SUCCESS). */
667 uint32_t cRetInfStatuses;
668 /** Counts other error statuses returned. */
669 uint32_t cRetErrStatuses;
670 /** Number of times rcPassUp has been used. */
671 uint32_t cRetPassUpStatus;
672 /** Number of times RZ left with instruction commit pending for ring-3. */
673 uint32_t cPendingCommit;
674 /** Number of long jumps. */
675 uint32_t cLongJumps;
676 /** @} */
677
678 /** @name Target CPU information.
679 * @{ */
680#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
681 /** The target CPU. */
682 uint8_t uTargetCpu;
683#else
684 uint8_t bTargetCpuPadding;
685#endif
686 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
687 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
688 * native host support and the 2nd for when there is.
689 *
690 * The two values are typically indexed by a g_CpumHostFeatures bit.
691 *
692 * This is for instance used for the BSF & BSR instructions where AMD and
693 * Intel CPUs produce different EFLAGS. */
694 uint8_t aidxTargetCpuEflFlavour[2];
695
696 /** The CPU vendor. */
697 CPUMCPUVENDOR enmCpuVendor;
698 /** @} */
699
700 /** @name Host CPU information.
701 * @{ */
702 /** The CPU vendor. */
703 CPUMCPUVENDOR enmHostCpuVendor;
704 /** @} */
705
706 /** Counts RDMSR \#GP(0) LogRel(). */
707 uint8_t cLogRelRdMsr;
708 /** Counts WRMSR \#GP(0) LogRel(). */
709 uint8_t cLogRelWrMsr;
710 /** Alignment padding. */
711 uint8_t abAlignment8[50];
712
713 /** Data TLB.
714 * @remarks Must be 64-byte aligned. */
715 IEMTLB DataTlb;
716 /** Instruction TLB.
717 * @remarks Must be 64-byte aligned. */
718 IEMTLB CodeTlb;
719
720#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
721 /** Instruction statistics for ring-0/raw-mode. */
722 IEMINSTRSTATS StatsRZ;
723 /** Instruction statistics for ring-3. */
724 IEMINSTRSTATS StatsR3;
725#endif
726} IEMCPU;
727AssertCompileMemberOffset(IEMCPU, fCurXcpt, 0x48);
728AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
729AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
730/** Pointer to the per-CPU IEM state. */
731typedef IEMCPU *PIEMCPU;
732/** Pointer to the const per-CPU IEM state. */
733typedef IEMCPU const *PCIEMCPU;
734
735
736/** @def IEM_GET_CTX
737 * Gets the guest CPU context for the calling EMT.
738 * @returns PCPUMCTX
739 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
740 */
741#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
742
743/** @def IEM_CTX_ASSERT
744 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
745 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
746 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
747 */
748#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
749 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", (a_pVCpu)->cpum.GstCtx.fExtrn, \
750 (a_fExtrnMbz)))
751
752/** @def IEM_CTX_IMPORT_RET
753 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
754 *
755 * Will call the keep to import the bits as needed.
756 *
757 * Returns on import failure.
758 *
759 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
760 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
761 */
762#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
763 do { \
764 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
765 { /* likely */ } \
766 else \
767 { \
768 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
769 AssertRCReturn(rcCtxImport, rcCtxImport); \
770 } \
771 } while (0)
772
773/** @def IEM_CTX_IMPORT_NORET
774 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
775 *
776 * Will call the keep to import the bits as needed.
777 *
778 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
779 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
780 */
781#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
782 do { \
783 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
784 { /* likely */ } \
785 else \
786 { \
787 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
788 AssertLogRelRC(rcCtxImport); \
789 } \
790 } while (0)
791
792/** @def IEM_CTX_IMPORT_JMP
793 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
794 *
795 * Will call the keep to import the bits as needed.
796 *
797 * Jumps on import failure.
798 *
799 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
800 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
801 */
802#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
803 do { \
804 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
805 { /* likely */ } \
806 else \
807 { \
808 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
809 AssertRCStmt(rcCtxImport, longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), rcCtxImport)); \
810 } \
811 } while (0)
812
813
814
815/** @def IEM_GET_TARGET_CPU
816 * Gets the current IEMTARGETCPU value.
817 * @returns IEMTARGETCPU value.
818 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
819 */
820#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
821# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
822#else
823# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
824#endif
825
826/** @def IEM_GET_INSTR_LEN
827 * Gets the instruction length. */
828#ifdef IEM_WITH_CODE_TLB
829# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
830#else
831# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
832#endif
833
834
835/**
836 * Shared per-VM IEM data.
837 */
838typedef struct IEM
839{
840 /** The VMX APIC-access page handler type. */
841 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
842} IEM;
843
844
845
846/** @name IEM_ACCESS_XXX - Access details.
847 * @{ */
848#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
849#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
850#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
851#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
852#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
853#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
854#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
855#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
856#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
857#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
858/** The writes are partial, so if initialize the bounce buffer with the
859 * orignal RAM content. */
860#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
861/** Used in aMemMappings to indicate that the entry is bounce buffered. */
862#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
863/** Bounce buffer with ring-3 write pending, first page. */
864#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
865/** Bounce buffer with ring-3 write pending, second page. */
866#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
867/** Not locked, accessed via the TLB. */
868#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
869/** Valid bit mask. */
870#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
871/** Shift count for the TLB flags (upper word). */
872#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
873
874/** Read+write data alias. */
875#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
876/** Write data alias. */
877#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
878/** Read data alias. */
879#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
880/** Instruction fetch alias. */
881#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
882/** Stack write alias. */
883#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
884/** Stack read alias. */
885#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
886/** Stack read+write alias. */
887#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
888/** Read system table alias. */
889#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
890/** Read+write system table alias. */
891#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
892/** @} */
893
894/** @name Prefix constants (IEMCPU::fPrefixes)
895 * @{ */
896#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
897#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
898#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
899#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
900#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
901#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
902#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
903
904#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
905#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
906#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
907
908#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
909#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
910#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
911
912#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
913#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
914#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
915#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
916/** Mask with all the REX prefix flags.
917 * This is generally for use when needing to undo the REX prefixes when they
918 * are followed legacy prefixes and therefore does not immediately preceed
919 * the first opcode byte.
920 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
921#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
922
923#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
924#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
925#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
926/** @} */
927
928/** @name IEMOPFORM_XXX - Opcode forms
929 * @note These are ORed together with IEMOPHINT_XXX.
930 * @{ */
931/** ModR/M: reg, r/m */
932#define IEMOPFORM_RM 0
933/** ModR/M: reg, r/m (register) */
934#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
935/** ModR/M: reg, r/m (memory) */
936#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
937/** ModR/M: r/m, reg */
938#define IEMOPFORM_MR 1
939/** ModR/M: r/m (register), reg */
940#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
941/** ModR/M: r/m (memory), reg */
942#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
943/** ModR/M: r/m only */
944#define IEMOPFORM_M 2
945/** ModR/M: r/m only (register). */
946#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
947/** ModR/M: r/m only (memory). */
948#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
949/** ModR/M: reg only */
950#define IEMOPFORM_R 3
951
952/** VEX+ModR/M: reg, r/m */
953#define IEMOPFORM_VEX_RM 4
954/** VEX+ModR/M: reg, r/m (register) */
955#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
956/** VEX+ModR/M: reg, r/m (memory) */
957#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
958/** VEX+ModR/M: r/m, reg */
959#define IEMOPFORM_VEX_MR 5
960/** VEX+ModR/M: r/m (register), reg */
961#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
962/** VEX+ModR/M: r/m (memory), reg */
963#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
964/** VEX+ModR/M: r/m only */
965#define IEMOPFORM_VEX_M 6
966/** VEX+ModR/M: r/m only (register). */
967#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
968/** VEX+ModR/M: r/m only (memory). */
969#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
970/** VEX+ModR/M: reg only */
971#define IEMOPFORM_VEX_R 7
972/** VEX+ModR/M: reg, vvvv, r/m */
973#define IEMOPFORM_VEX_RVM 8
974/** VEX+ModR/M: reg, vvvv, r/m (register). */
975#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
976/** VEX+ModR/M: reg, vvvv, r/m (memory). */
977#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
978/** VEX+ModR/M: reg, r/m, vvvv */
979#define IEMOPFORM_VEX_RMV 9
980/** VEX+ModR/M: reg, r/m, vvvv (register). */
981#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
982/** VEX+ModR/M: reg, r/m, vvvv (memory). */
983#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
984/** VEX+ModR/M: reg, r/m, imm8 */
985#define IEMOPFORM_VEX_RMI 10
986/** VEX+ModR/M: reg, r/m, imm8 (register). */
987#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
988/** VEX+ModR/M: reg, r/m, imm8 (memory). */
989#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
990/** VEX+ModR/M: r/m, vvvv, reg */
991#define IEMOPFORM_VEX_MVR 11
992/** VEX+ModR/M: r/m, vvvv, reg (register) */
993#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
994/** VEX+ModR/M: r/m, vvvv, reg (memory) */
995#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
996
997/** Fixed register instruction, no R/M. */
998#define IEMOPFORM_FIXED 16
999
1000/** The r/m is a register. */
1001#define IEMOPFORM_MOD3 RT_BIT_32(8)
1002/** The r/m is a memory access. */
1003#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
1004/** @} */
1005
1006/** @name IEMOPHINT_XXX - Additional Opcode Hints
1007 * @note These are ORed together with IEMOPFORM_XXX.
1008 * @{ */
1009/** Ignores the operand size prefix (66h). */
1010#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
1011/** Ignores REX.W (aka WIG). */
1012#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
1013/** Both the operand size prefixes (66h + REX.W) are ignored. */
1014#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
1015/** Allowed with the lock prefix. */
1016#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
1017/** The VEX.L value is ignored (aka LIG). */
1018#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
1019/** The VEX.L value must be zero (i.e. 128-bit width only). */
1020#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
1021/** The VEX.V value must be zero. */
1022#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
1023
1024/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
1025#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
1026/** @} */
1027
1028/**
1029 * Possible hardware task switch sources.
1030 */
1031typedef enum IEMTASKSWITCH
1032{
1033 /** Task switch caused by an interrupt/exception. */
1034 IEMTASKSWITCH_INT_XCPT = 1,
1035 /** Task switch caused by a far CALL. */
1036 IEMTASKSWITCH_CALL,
1037 /** Task switch caused by a far JMP. */
1038 IEMTASKSWITCH_JUMP,
1039 /** Task switch caused by an IRET. */
1040 IEMTASKSWITCH_IRET
1041} IEMTASKSWITCH;
1042AssertCompileSize(IEMTASKSWITCH, 4);
1043
1044/**
1045 * Possible CrX load (write) sources.
1046 */
1047typedef enum IEMACCESSCRX
1048{
1049 /** CrX access caused by 'mov crX' instruction. */
1050 IEMACCESSCRX_MOV_CRX,
1051 /** CrX (CR0) write caused by 'lmsw' instruction. */
1052 IEMACCESSCRX_LMSW,
1053 /** CrX (CR0) write caused by 'clts' instruction. */
1054 IEMACCESSCRX_CLTS,
1055 /** CrX (CR0) read caused by 'smsw' instruction. */
1056 IEMACCESSCRX_SMSW
1057} IEMACCESSCRX;
1058
1059#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1060/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
1061 *
1062 * These flags provide further context to SLAT page-walk failures that could not be
1063 * determined by PGM (e.g, PGM is not privy to memory access permissions).
1064 *
1065 * @{
1066 */
1067/** Translating a nested-guest linear address failed accessing a nested-guest
1068 * physical address. */
1069# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
1070/** Translating a nested-guest linear address failed accessing a
1071 * paging-structure entry or updating accessed/dirty bits. */
1072# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
1073/** @} */
1074
1075DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
1076# ifndef IN_RING3
1077DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
1078# endif
1079#endif
1080
1081/**
1082 * Indicates to the verifier that the given flag set is undefined.
1083 *
1084 * Can be invoked again to add more flags.
1085 *
1086 * This is a NOOP if the verifier isn't compiled in.
1087 *
1088 * @note We're temporarily keeping this until code is converted to new
1089 * disassembler style opcode handling.
1090 */
1091#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
1092
1093
1094/** @def IEM_DECL_IMPL_TYPE
1095 * For typedef'ing an instruction implementation function.
1096 *
1097 * @param a_RetType The return type.
1098 * @param a_Name The name of the type.
1099 * @param a_ArgList The argument list enclosed in parentheses.
1100 */
1101
1102/** @def IEM_DECL_IMPL_DEF
1103 * For defining an instruction implementation function.
1104 *
1105 * @param a_RetType The return type.
1106 * @param a_Name The name of the type.
1107 * @param a_ArgList The argument list enclosed in parentheses.
1108 */
1109
1110#if defined(__GNUC__) && defined(RT_ARCH_X86)
1111# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1112 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
1113# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1114 __attribute__((__fastcall__, __nothrow__)) a_RetType a_Name a_ArgList
1115# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1116 __attribute__((__fastcall__, __nothrow__)) a_RetType a_Name a_ArgList
1117
1118#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
1119# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1120 a_RetType (__fastcall a_Name) a_ArgList
1121# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1122 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1123# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1124 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1125
1126#elif __cplusplus >= 201700 /* P0012R1 support */
1127# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1128 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
1129# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1130 a_RetType VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1131# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1132 a_RetType VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1133
1134#else
1135# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1136 a_RetType (VBOXCALL a_Name) a_ArgList
1137# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1138 a_RetType VBOXCALL a_Name a_ArgList
1139# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1140 a_RetType VBOXCALL a_Name a_ArgList
1141
1142#endif
1143
1144/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
1145RT_C_DECLS_BEGIN
1146extern uint8_t const g_afParity[256];
1147RT_C_DECLS_END
1148
1149
1150/** @name Arithmetic assignment operations on bytes (binary).
1151 * @{ */
1152typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
1153typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
1154FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
1155FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
1156FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
1157FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
1158FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
1159FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
1160FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
1161/** @} */
1162
1163/** @name Arithmetic assignment operations on words (binary).
1164 * @{ */
1165typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
1166typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
1167FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
1168FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
1169FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
1170FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
1171FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
1172FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
1173FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
1174/** @} */
1175
1176/** @name Arithmetic assignment operations on double words (binary).
1177 * @{ */
1178typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
1179typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
1180FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
1181FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
1182FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
1183FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
1184FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
1185FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
1186FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
1187/** @} */
1188
1189/** @name Arithmetic assignment operations on quad words (binary).
1190 * @{ */
1191typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
1192typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
1193FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
1194FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
1195FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
1196FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
1197FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
1198FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
1199FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
1200/** @} */
1201
1202/** @name Compare operations (thrown in with the binary ops).
1203 * @{ */
1204FNIEMAIMPLBINU8 iemAImpl_cmp_u8;
1205FNIEMAIMPLBINU16 iemAImpl_cmp_u16;
1206FNIEMAIMPLBINU32 iemAImpl_cmp_u32;
1207FNIEMAIMPLBINU64 iemAImpl_cmp_u64;
1208/** @} */
1209
1210/** @name Test operations (thrown in with the binary ops).
1211 * @{ */
1212FNIEMAIMPLBINU8 iemAImpl_test_u8;
1213FNIEMAIMPLBINU16 iemAImpl_test_u16;
1214FNIEMAIMPLBINU32 iemAImpl_test_u32;
1215FNIEMAIMPLBINU64 iemAImpl_test_u64;
1216/** @} */
1217
1218/** @name Bit operations operations (thrown in with the binary ops).
1219 * @{ */
1220FNIEMAIMPLBINU16 iemAImpl_bt_u16;
1221FNIEMAIMPLBINU32 iemAImpl_bt_u32;
1222FNIEMAIMPLBINU64 iemAImpl_bt_u64;
1223FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
1224FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
1225FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
1226FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
1227FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
1228FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
1229FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
1230FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
1231FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
1232/** @} */
1233
1234/** @name Arithmetic three operand operations on double words (binary).
1235 * @{ */
1236typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
1237typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
1238FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
1239FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
1240/** @} */
1241
1242/** @name Arithmetic three operand operations on quad words (binary).
1243 * @{ */
1244typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
1245typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
1246FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
1247FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
1248/** @} */
1249
1250/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
1251 * @{ */
1252typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
1253typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
1254FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
1255FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
1256FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
1257FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
1258/** @} */
1259
1260/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
1261 * @{ */
1262typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
1263typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
1264FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
1265FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
1266FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
1267FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
1268/** @} */
1269
1270/** @name Exchange memory with register operations.
1271 * @{ */
1272IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
1273IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
1274IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
1275IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
1276IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
1277IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
1278IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
1279IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
1280/** @} */
1281
1282/** @name Exchange and add operations.
1283 * @{ */
1284IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
1285IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
1286IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
1287IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
1288IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
1289IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
1290IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
1291IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
1292/** @} */
1293
1294/** @name Compare and exchange.
1295 * @{ */
1296IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
1297IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
1298IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
1299IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
1300IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
1301IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
1302#if ARCH_BITS == 32
1303IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
1304IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
1305#else
1306IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
1307IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
1308#endif
1309IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
1310 uint32_t *pEFlags));
1311IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
1312 uint32_t *pEFlags));
1313IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
1314 uint32_t *pEFlags));
1315IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
1316 uint32_t *pEFlags));
1317#ifndef RT_ARCH_ARM64
1318IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
1319 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
1320#endif
1321/** @} */
1322
1323/** @name Memory ordering
1324 * @{ */
1325typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
1326typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
1327IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
1328IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
1329IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
1330#ifndef RT_ARCH_ARM64
1331IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
1332#endif
1333/** @} */
1334
1335/** @name Double precision shifts
1336 * @{ */
1337typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
1338typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
1339typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
1340typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
1341typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
1342typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
1343FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
1344FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
1345FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
1346FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
1347FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
1348FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
1349/** @} */
1350
1351
1352/** @name Bit search operations (thrown in with the binary ops).
1353 * @{ */
1354FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
1355FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
1356FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
1357FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
1358FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
1359FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
1360FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
1361FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
1362FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
1363FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
1364FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
1365FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
1366/** @} */
1367
1368/** @name Signed multiplication operations (thrown in with the binary ops).
1369 * @{ */
1370FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
1371FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
1372FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
1373/** @} */
1374
1375/** @name Arithmetic assignment operations on bytes (unary).
1376 * @{ */
1377typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
1378typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
1379FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
1380FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
1381FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
1382FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
1383/** @} */
1384
1385/** @name Arithmetic assignment operations on words (unary).
1386 * @{ */
1387typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
1388typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
1389FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
1390FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
1391FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
1392FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
1393/** @} */
1394
1395/** @name Arithmetic assignment operations on double words (unary).
1396 * @{ */
1397typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
1398typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
1399FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
1400FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
1401FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
1402FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
1403/** @} */
1404
1405/** @name Arithmetic assignment operations on quad words (unary).
1406 * @{ */
1407typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
1408typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
1409FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
1410FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
1411FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
1412FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
1413/** @} */
1414
1415
1416/** @name Shift operations on bytes (Group 2).
1417 * @{ */
1418typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
1419typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
1420FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
1421FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
1422FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
1423FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
1424FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
1425FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
1426FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
1427/** @} */
1428
1429/** @name Shift operations on words (Group 2).
1430 * @{ */
1431typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
1432typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
1433FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
1434FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
1435FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
1436FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
1437FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
1438FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
1439FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
1440/** @} */
1441
1442/** @name Shift operations on double words (Group 2).
1443 * @{ */
1444typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
1445typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
1446FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
1447FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
1448FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
1449FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
1450FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
1451FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
1452FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
1453/** @} */
1454
1455/** @name Shift operations on words (Group 2).
1456 * @{ */
1457typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
1458typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
1459FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
1460FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
1461FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
1462FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
1463FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
1464FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
1465FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
1466/** @} */
1467
1468/** @name Multiplication and division operations.
1469 * @{ */
1470typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
1471typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
1472FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
1473FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
1474FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
1475FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
1476
1477typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
1478typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
1479FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
1480FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
1481FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
1482FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
1483
1484typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
1485typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
1486FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
1487FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
1488FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
1489FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
1490
1491typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
1492typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
1493FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
1494FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
1495FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
1496FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
1497/** @} */
1498
1499/** @name Byte Swap.
1500 * @{ */
1501IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
1502IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
1503IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
1504/** @} */
1505
1506/** @name Misc.
1507 * @{ */
1508FNIEMAIMPLBINU16 iemAImpl_arpl;
1509/** @} */
1510
1511
1512/** @name FPU operations taking a 32-bit float argument
1513 * @{ */
1514typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1515 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
1516typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
1517
1518typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1519 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
1520typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
1521
1522FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
1523FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
1524FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
1525FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
1526FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
1527FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
1528FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
1529
1530IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
1531IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1532 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
1533/** @} */
1534
1535/** @name FPU operations taking a 64-bit float argument
1536 * @{ */
1537typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1538 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
1539typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
1540
1541typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1542 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
1543typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
1544
1545FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
1546FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
1547FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
1548FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
1549FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
1550FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
1551FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
1552
1553IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
1554IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1555 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
1556/** @} */
1557
1558/** @name FPU operations taking a 80-bit float argument
1559 * @{ */
1560typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1561 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
1562typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
1563FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
1564FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
1565FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
1566FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
1567FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
1568FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
1569FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
1570FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
1571FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
1572
1573FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
1574FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
1575FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
1576
1577typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1578 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
1579typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
1580FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
1581FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
1582
1583typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
1584 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
1585typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
1586FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
1587FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
1588
1589typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
1590typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
1591FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
1592FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
1593FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
1594FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
1595FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
1596FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
1597FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
1598
1599typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
1600typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
1601FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
1602FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
1603
1604typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
1605typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
1606FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
1607FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
1608FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
1609FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
1610FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
1611FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
1612FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
1613
1614typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
1615 PCRTFLOAT80U pr80Val));
1616typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
1617FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
1618FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
1619FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
1620
1621IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
1622IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1623 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
1624
1625IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
1626IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1627 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
1628
1629/** @} */
1630
1631/** @name FPU operations taking a 16-bit signed integer argument
1632 * @{ */
1633typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1634 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
1635typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
1636typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
1637 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
1638typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
1639
1640FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
1641FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
1642FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
1643FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
1644FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
1645FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
1646
1647typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1648 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
1649typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
1650FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
1651
1652IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
1653FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
1654FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
1655/** @} */
1656
1657/** @name FPU operations taking a 32-bit signed integer argument
1658 * @{ */
1659typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1660 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
1661typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
1662typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
1663 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
1664typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
1665
1666FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
1667FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
1668FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
1669FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
1670FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
1671FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
1672
1673typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1674 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
1675typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
1676FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
1677
1678IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
1679FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
1680FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
1681/** @} */
1682
1683/** @name FPU operations taking a 64-bit signed integer argument
1684 * @{ */
1685typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
1686 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
1687typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
1688
1689IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
1690FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
1691FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
1692/** @} */
1693
1694
1695/** Temporary type representing a 256-bit vector register. */
1696typedef struct { uint64_t au64[4]; } IEMVMM256;
1697/** Temporary type pointing to a 256-bit vector register. */
1698typedef IEMVMM256 *PIEMVMM256;
1699/** Temporary type pointing to a const 256-bit vector register. */
1700typedef IEMVMM256 *PCIEMVMM256;
1701
1702
1703/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
1704 * @{ */
1705typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src));
1706typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
1707typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src));
1708typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
1709FNIEMAIMPLMEDIAF2U64 iemAImpl_pxor_u64, iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
1710FNIEMAIMPLMEDIAF2U128 iemAImpl_pxor_u128, iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
1711/** @} */
1712
1713/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
1714 * @{ */
1715typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1L1U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint32_t const *pu32Src));
1716typedef FNIEMAIMPLMEDIAF1L1U64 *PFNIEMAIMPLMEDIAF1L1U64;
1717typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1L1U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src));
1718typedef FNIEMAIMPLMEDIAF1L1U128 *PFNIEMAIMPLMEDIAF1L1U128;
1719FNIEMAIMPLMEDIAF1L1U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
1720FNIEMAIMPLMEDIAF1L1U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
1721/** @} */
1722
1723/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
1724 * @{ */
1725typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1H1U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src));
1726typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF1H1U64;
1727typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1H1U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src));
1728typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF1H1U128;
1729FNIEMAIMPLMEDIAF1H1U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
1730FNIEMAIMPLMEDIAF1H1U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
1731/** @} */
1732
1733/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
1734 * @{ */
1735typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUF,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst,
1736 PCRTUINT128U pu128Src, uint8_t bEvil));
1737typedef FNIEMAIMPLMEDIAPSHUF *PFNIEMAIMPLMEDIAPSHUF;
1738FNIEMAIMPLMEDIAPSHUF iemAImpl_pshufhw, iemAImpl_pshuflw, iemAImpl_pshufd;
1739IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src, uint8_t bEvil));
1740/** @} */
1741
1742/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
1743 * @{ */
1744IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src));
1745IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, PCRTUINT128U pu128Src));
1746/** @} */
1747
1748/** @name Media (SSE/MMX/AVX) operation: Sort this later
1749 * @{ */
1750IEM_DECL_IMPL_DEF(void, iemAImpl_movsldup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
1751IEM_DECL_IMPL_DEF(void, iemAImpl_movshdup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
1752IEM_DECL_IMPL_DEF(void, iemAImpl_movddup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, uint64_t uSrc));
1753
1754IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
1755IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
1756IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
1757IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
1758
1759/** @} */
1760
1761
1762/** @name Function tables.
1763 * @{
1764 */
1765
1766/**
1767 * Function table for a binary operator providing implementation based on
1768 * operand size.
1769 */
1770typedef struct IEMOPBINSIZES
1771{
1772 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
1773 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
1774 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
1775 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
1776} IEMOPBINSIZES;
1777/** Pointer to a binary operator function table. */
1778typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
1779
1780
1781/**
1782 * Function table for a unary operator providing implementation based on
1783 * operand size.
1784 */
1785typedef struct IEMOPUNARYSIZES
1786{
1787 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
1788 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
1789 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
1790 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
1791} IEMOPUNARYSIZES;
1792/** Pointer to a unary operator function table. */
1793typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
1794
1795
1796/**
1797 * Function table for a shift operator providing implementation based on
1798 * operand size.
1799 */
1800typedef struct IEMOPSHIFTSIZES
1801{
1802 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
1803 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
1804 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
1805 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
1806} IEMOPSHIFTSIZES;
1807/** Pointer to a shift operator function table. */
1808typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
1809
1810
1811/**
1812 * Function table for a multiplication or division operation.
1813 */
1814typedef struct IEMOPMULDIVSIZES
1815{
1816 PFNIEMAIMPLMULDIVU8 pfnU8;
1817 PFNIEMAIMPLMULDIVU16 pfnU16;
1818 PFNIEMAIMPLMULDIVU32 pfnU32;
1819 PFNIEMAIMPLMULDIVU64 pfnU64;
1820} IEMOPMULDIVSIZES;
1821/** Pointer to a multiplication or division operation function table. */
1822typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
1823
1824
1825/**
1826 * Function table for a double precision shift operator providing implementation
1827 * based on operand size.
1828 */
1829typedef struct IEMOPSHIFTDBLSIZES
1830{
1831 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
1832 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
1833 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
1834} IEMOPSHIFTDBLSIZES;
1835/** Pointer to a double precision shift function table. */
1836typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
1837
1838
1839/**
1840 * Function table for media instruction taking two full sized media registers,
1841 * optionally the 2nd being a memory reference (only modifying the first op.)
1842 */
1843typedef struct IEMOPMEDIAF2
1844{
1845 PFNIEMAIMPLMEDIAF2U64 pfnU64;
1846 PFNIEMAIMPLMEDIAF2U128 pfnU128;
1847} IEMOPMEDIAF2;
1848/** Pointer to a media operation function table for full sized ops. */
1849typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
1850
1851/**
1852 * Function table for media instruction taking taking one full and one lower
1853 * half media register.
1854 */
1855typedef struct IEMOPMEDIAF1L1
1856{
1857 PFNIEMAIMPLMEDIAF1L1U64 pfnU64;
1858 PFNIEMAIMPLMEDIAF1L1U128 pfnU128;
1859} IEMOPMEDIAF1L1;
1860/** Pointer to a media operation function table for lowhalf+lowhalf -> full. */
1861typedef IEMOPMEDIAF1L1 const *PCIEMOPMEDIAF1L1;
1862
1863/**
1864 * Function table for media instruction taking taking one full and one high half
1865 * media register.
1866 */
1867typedef struct IEMOPMEDIAF1H1
1868{
1869 PFNIEMAIMPLMEDIAF1H1U64 pfnU64;
1870 PFNIEMAIMPLMEDIAF1H1U128 pfnU128;
1871} IEMOPMEDIAF1H1;
1872/** Pointer to a media operation function table for hihalf+hihalf -> full. */
1873typedef IEMOPMEDIAF1H1 const *PCIEMOPMEDIAF1H1;
1874
1875
1876/** @} */
1877
1878
1879/** @name C instruction implementations for anything slightly complicated.
1880 * @{ */
1881
1882/**
1883 * For typedef'ing or declaring a C instruction implementation function taking
1884 * no extra arguments.
1885 *
1886 * @param a_Name The name of the type.
1887 */
1888# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
1889 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
1890/**
1891 * For defining a C instruction implementation function taking no extra
1892 * arguments.
1893 *
1894 * @param a_Name The name of the function
1895 */
1896# define IEM_CIMPL_DEF_0(a_Name) \
1897 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
1898/**
1899 * Prototype version of IEM_CIMPL_DEF_0.
1900 */
1901# define IEM_CIMPL_PROTO_0(a_Name) \
1902 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
1903/**
1904 * For calling a C instruction implementation function taking no extra
1905 * arguments.
1906 *
1907 * This special call macro adds default arguments to the call and allow us to
1908 * change these later.
1909 *
1910 * @param a_fn The name of the function.
1911 */
1912# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
1913
1914/**
1915 * For typedef'ing or declaring a C instruction implementation function taking
1916 * one extra argument.
1917 *
1918 * @param a_Name The name of the type.
1919 * @param a_Type0 The argument type.
1920 * @param a_Arg0 The argument name.
1921 */
1922# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
1923 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
1924/**
1925 * For defining a C instruction implementation function taking one extra
1926 * argument.
1927 *
1928 * @param a_Name The name of the function
1929 * @param a_Type0 The argument type.
1930 * @param a_Arg0 The argument name.
1931 */
1932# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
1933 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
1934/**
1935 * Prototype version of IEM_CIMPL_DEF_1.
1936 */
1937# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
1938 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
1939/**
1940 * For calling a C instruction implementation function taking one extra
1941 * argument.
1942 *
1943 * This special call macro adds default arguments to the call and allow us to
1944 * change these later.
1945 *
1946 * @param a_fn The name of the function.
1947 * @param a0 The name of the 1st argument.
1948 */
1949# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
1950
1951/**
1952 * For typedef'ing or declaring a C instruction implementation function taking
1953 * two extra arguments.
1954 *
1955 * @param a_Name The name of the type.
1956 * @param a_Type0 The type of the 1st argument
1957 * @param a_Arg0 The name of the 1st argument.
1958 * @param a_Type1 The type of the 2nd argument.
1959 * @param a_Arg1 The name of the 2nd argument.
1960 */
1961# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
1962 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
1963/**
1964 * For defining a C instruction implementation function taking two extra
1965 * arguments.
1966 *
1967 * @param a_Name The name of the function.
1968 * @param a_Type0 The type of the 1st argument
1969 * @param a_Arg0 The name of the 1st argument.
1970 * @param a_Type1 The type of the 2nd argument.
1971 * @param a_Arg1 The name of the 2nd argument.
1972 */
1973# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
1974 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
1975/**
1976 * Prototype version of IEM_CIMPL_DEF_2.
1977 */
1978# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
1979 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
1980/**
1981 * For calling a C instruction implementation function taking two extra
1982 * arguments.
1983 *
1984 * This special call macro adds default arguments to the call and allow us to
1985 * change these later.
1986 *
1987 * @param a_fn The name of the function.
1988 * @param a0 The name of the 1st argument.
1989 * @param a1 The name of the 2nd argument.
1990 */
1991# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
1992
1993/**
1994 * For typedef'ing or declaring a C instruction implementation function taking
1995 * three extra arguments.
1996 *
1997 * @param a_Name The name of the type.
1998 * @param a_Type0 The type of the 1st argument
1999 * @param a_Arg0 The name of the 1st argument.
2000 * @param a_Type1 The type of the 2nd argument.
2001 * @param a_Arg1 The name of the 2nd argument.
2002 * @param a_Type2 The type of the 3rd argument.
2003 * @param a_Arg2 The name of the 3rd argument.
2004 */
2005# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
2006 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
2007/**
2008 * For defining a C instruction implementation function taking three extra
2009 * arguments.
2010 *
2011 * @param a_Name The name of the function.
2012 * @param a_Type0 The type of the 1st argument
2013 * @param a_Arg0 The name of the 1st argument.
2014 * @param a_Type1 The type of the 2nd argument.
2015 * @param a_Arg1 The name of the 2nd argument.
2016 * @param a_Type2 The type of the 3rd argument.
2017 * @param a_Arg2 The name of the 3rd argument.
2018 */
2019# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
2020 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
2021/**
2022 * Prototype version of IEM_CIMPL_DEF_3.
2023 */
2024# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
2025 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
2026/**
2027 * For calling a C instruction implementation function taking three extra
2028 * arguments.
2029 *
2030 * This special call macro adds default arguments to the call and allow us to
2031 * change these later.
2032 *
2033 * @param a_fn The name of the function.
2034 * @param a0 The name of the 1st argument.
2035 * @param a1 The name of the 2nd argument.
2036 * @param a2 The name of the 3rd argument.
2037 */
2038# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
2039
2040
2041/**
2042 * For typedef'ing or declaring a C instruction implementation function taking
2043 * four extra arguments.
2044 *
2045 * @param a_Name The name of the type.
2046 * @param a_Type0 The type of the 1st argument
2047 * @param a_Arg0 The name of the 1st argument.
2048 * @param a_Type1 The type of the 2nd argument.
2049 * @param a_Arg1 The name of the 2nd argument.
2050 * @param a_Type2 The type of the 3rd argument.
2051 * @param a_Arg2 The name of the 3rd argument.
2052 * @param a_Type3 The type of the 4th argument.
2053 * @param a_Arg3 The name of the 4th argument.
2054 */
2055# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
2056 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
2057/**
2058 * For defining a C instruction implementation function taking four extra
2059 * arguments.
2060 *
2061 * @param a_Name The name of the function.
2062 * @param a_Type0 The type of the 1st argument
2063 * @param a_Arg0 The name of the 1st argument.
2064 * @param a_Type1 The type of the 2nd argument.
2065 * @param a_Arg1 The name of the 2nd argument.
2066 * @param a_Type2 The type of the 3rd argument.
2067 * @param a_Arg2 The name of the 3rd argument.
2068 * @param a_Type3 The type of the 4th argument.
2069 * @param a_Arg3 The name of the 4th argument.
2070 */
2071# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
2072 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2073 a_Type2 a_Arg2, a_Type3 a_Arg3))
2074/**
2075 * Prototype version of IEM_CIMPL_DEF_4.
2076 */
2077# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
2078 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2079 a_Type2 a_Arg2, a_Type3 a_Arg3))
2080/**
2081 * For calling a C instruction implementation function taking four extra
2082 * arguments.
2083 *
2084 * This special call macro adds default arguments to the call and allow us to
2085 * change these later.
2086 *
2087 * @param a_fn The name of the function.
2088 * @param a0 The name of the 1st argument.
2089 * @param a1 The name of the 2nd argument.
2090 * @param a2 The name of the 3rd argument.
2091 * @param a3 The name of the 4th argument.
2092 */
2093# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
2094
2095
2096/**
2097 * For typedef'ing or declaring a C instruction implementation function taking
2098 * five extra arguments.
2099 *
2100 * @param a_Name The name of the type.
2101 * @param a_Type0 The type of the 1st argument
2102 * @param a_Arg0 The name of the 1st argument.
2103 * @param a_Type1 The type of the 2nd argument.
2104 * @param a_Arg1 The name of the 2nd argument.
2105 * @param a_Type2 The type of the 3rd argument.
2106 * @param a_Arg2 The name of the 3rd argument.
2107 * @param a_Type3 The type of the 4th argument.
2108 * @param a_Arg3 The name of the 4th argument.
2109 * @param a_Type4 The type of the 5th argument.
2110 * @param a_Arg4 The name of the 5th argument.
2111 */
2112# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
2113 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
2114 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
2115 a_Type3 a_Arg3, a_Type4 a_Arg4))
2116/**
2117 * For defining a C instruction implementation function taking five extra
2118 * arguments.
2119 *
2120 * @param a_Name The name of the function.
2121 * @param a_Type0 The type of the 1st argument
2122 * @param a_Arg0 The name of the 1st argument.
2123 * @param a_Type1 The type of the 2nd argument.
2124 * @param a_Arg1 The name of the 2nd argument.
2125 * @param a_Type2 The type of the 3rd argument.
2126 * @param a_Arg2 The name of the 3rd argument.
2127 * @param a_Type3 The type of the 4th argument.
2128 * @param a_Arg3 The name of the 4th argument.
2129 * @param a_Type4 The type of the 5th argument.
2130 * @param a_Arg4 The name of the 5th argument.
2131 */
2132# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
2133 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2134 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
2135/**
2136 * Prototype version of IEM_CIMPL_DEF_5.
2137 */
2138# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
2139 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2140 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
2141/**
2142 * For calling a C instruction implementation function taking five extra
2143 * arguments.
2144 *
2145 * This special call macro adds default arguments to the call and allow us to
2146 * change these later.
2147 *
2148 * @param a_fn The name of the function.
2149 * @param a0 The name of the 1st argument.
2150 * @param a1 The name of the 2nd argument.
2151 * @param a2 The name of the 3rd argument.
2152 * @param a3 The name of the 4th argument.
2153 * @param a4 The name of the 5th argument.
2154 */
2155# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
2156
2157/** @} */
2158
2159
2160/** @name Opcode Decoder Function Types.
2161 * @{ */
2162
2163/** @typedef PFNIEMOP
2164 * Pointer to an opcode decoder function.
2165 */
2166
2167/** @def FNIEMOP_DEF
2168 * Define an opcode decoder function.
2169 *
2170 * We're using macors for this so that adding and removing parameters as well as
2171 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
2172 *
2173 * @param a_Name The function name.
2174 */
2175
2176/** @typedef PFNIEMOPRM
2177 * Pointer to an opcode decoder function with RM byte.
2178 */
2179
2180/** @def FNIEMOPRM_DEF
2181 * Define an opcode decoder function with RM byte.
2182 *
2183 * We're using macors for this so that adding and removing parameters as well as
2184 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
2185 *
2186 * @param a_Name The function name.
2187 */
2188
2189#if defined(__GNUC__) && defined(RT_ARCH_X86)
2190typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
2191typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2192# define FNIEMOP_DEF(a_Name) \
2193 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
2194# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2195 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
2196# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2197 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
2198
2199#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2200typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
2201typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2202# define FNIEMOP_DEF(a_Name) \
2203 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) RT_NO_THROW_DEF
2204# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2205 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
2206# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2207 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
2208
2209#elif defined(__GNUC__)
2210typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
2211typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2212# define FNIEMOP_DEF(a_Name) \
2213 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
2214# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2215 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
2216# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2217 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
2218
2219#else
2220typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
2221typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2222# define FNIEMOP_DEF(a_Name) \
2223 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) RT_NO_THROW_DEF
2224# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2225 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
2226# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2227 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
2228
2229#endif
2230#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
2231
2232/**
2233 * Call an opcode decoder function.
2234 *
2235 * We're using macors for this so that adding and removing parameters can be
2236 * done as we please. See FNIEMOP_DEF.
2237 */
2238#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
2239
2240/**
2241 * Call a common opcode decoder function taking one extra argument.
2242 *
2243 * We're using macors for this so that adding and removing parameters can be
2244 * done as we please. See FNIEMOP_DEF_1.
2245 */
2246#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
2247
2248/**
2249 * Call a common opcode decoder function taking one extra argument.
2250 *
2251 * We're using macors for this so that adding and removing parameters can be
2252 * done as we please. See FNIEMOP_DEF_1.
2253 */
2254#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
2255/** @} */
2256
2257
2258/** @name Misc Helpers
2259 * @{ */
2260
2261/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
2262 * due to GCC lacking knowledge about the value range of a switch. */
2263#define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
2264
2265/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
2266#define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
2267
2268/**
2269 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
2270 * occation.
2271 */
2272#ifdef LOG_ENABLED
2273# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
2274 do { \
2275 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
2276 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
2277 } while (0)
2278#else
2279# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
2280 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
2281#endif
2282
2283/**
2284 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
2285 * occation using the supplied logger statement.
2286 *
2287 * @param a_LoggerArgs What to log on failure.
2288 */
2289#ifdef LOG_ENABLED
2290# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
2291 do { \
2292 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
2293 /*LogFunc(a_LoggerArgs);*/ \
2294 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
2295 } while (0)
2296#else
2297# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
2298 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
2299#endif
2300
2301/**
2302 * Check if we're currently executing in real or virtual 8086 mode.
2303 *
2304 * @returns @c true if it is, @c false if not.
2305 * @param a_pVCpu The IEM state of the current CPU.
2306 */
2307#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (CPUMIsGuestInRealOrV86ModeEx(IEM_GET_CTX(a_pVCpu)))
2308
2309/**
2310 * Check if we're currently executing in virtual 8086 mode.
2311 *
2312 * @returns @c true if it is, @c false if not.
2313 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2314 */
2315#define IEM_IS_V86_MODE(a_pVCpu) (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(a_pVCpu)))
2316
2317/**
2318 * Check if we're currently executing in long mode.
2319 *
2320 * @returns @c true if it is, @c false if not.
2321 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2322 */
2323#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
2324
2325/**
2326 * Check if we're currently executing in a 64-bit code segment.
2327 *
2328 * @returns @c true if it is, @c false if not.
2329 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2330 */
2331#define IEM_IS_64BIT_CODE(a_pVCpu) (CPUMIsGuestIn64BitCodeEx(IEM_GET_CTX(a_pVCpu)))
2332
2333/**
2334 * Check if we're currently executing in real mode.
2335 *
2336 * @returns @c true if it is, @c false if not.
2337 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2338 */
2339#define IEM_IS_REAL_MODE(a_pVCpu) (CPUMIsGuestInRealModeEx(IEM_GET_CTX(a_pVCpu)))
2340
2341/**
2342 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
2343 * @returns PCCPUMFEATURES
2344 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2345 */
2346#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
2347
2348/**
2349 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
2350 * @returns PCCPUMFEATURES
2351 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2352 */
2353#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
2354
2355/**
2356 * Evaluates to true if we're presenting an Intel CPU to the guest.
2357 */
2358#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
2359
2360/**
2361 * Evaluates to true if we're presenting an AMD CPU to the guest.
2362 */
2363#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
2364
2365/**
2366 * Check if the address is canonical.
2367 */
2368#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
2369
2370
2371/**
2372 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
2373 *
2374 * For use during decoding.
2375 */
2376#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
2377/**
2378 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
2379 *
2380 * For use during decoding.
2381 */
2382#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
2383
2384/**
2385 * Gets the effective VEX.VVVV value.
2386 *
2387 * The 4th bit is ignored if not 64-bit code.
2388 * @returns effective V-register value.
2389 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2390 */
2391#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
2392 ((a_pVCpu)->iem.s.enmCpuMode == IEMMODE_64BIT ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
2393
2394
2395#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2396
2397/**
2398 * Check if the guest has entered VMX root operation.
2399 */
2400# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
2401
2402/**
2403 * Check if the guest has entered VMX non-root operation.
2404 */
2405# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(a_pVCpu)))
2406
2407/**
2408 * Check if the nested-guest has the given Pin-based VM-execution control set.
2409 */
2410# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) \
2411 (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
2412
2413/**
2414 * Check if the nested-guest has the given Processor-based VM-execution control set.
2415 */
2416# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) \
2417 (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
2418
2419/**
2420 * Check if the nested-guest has the given Secondary Processor-based VM-execution
2421 * control set.
2422 */
2423# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) \
2424 (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
2425
2426/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
2427# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
2428
2429/** Whether a shadow VMCS is present for the given VCPU. */
2430# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
2431
2432/** Gets the VMXON region pointer. */
2433# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
2434
2435/** Gets the guest-physical address of the current VMCS for the given VCPU. */
2436# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
2437
2438/** Whether a current VMCS is present for the given VCPU. */
2439# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
2440
2441/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
2442# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
2443 do \
2444 { \
2445 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
2446 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
2447 } while (0)
2448
2449/** Clears any current VMCS for the given VCPU. */
2450# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
2451 do \
2452 { \
2453 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
2454 } while (0)
2455
2456/**
2457 * Invokes the VMX VM-exit handler for an instruction intercept.
2458 */
2459# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
2460 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
2461
2462/**
2463 * Invokes the VMX VM-exit handler for an instruction intercept where the
2464 * instruction provides additional VM-exit information.
2465 */
2466# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
2467 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
2468
2469/**
2470 * Invokes the VMX VM-exit handler for a task switch.
2471 */
2472# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
2473 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
2474
2475/**
2476 * Invokes the VMX VM-exit handler for MWAIT.
2477 */
2478# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
2479 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
2480
2481/**
2482 * Invokes the VMX VM-exit handler for EPT faults.
2483 */
2484# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
2485 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
2486
2487/**
2488 * Invokes the VMX VM-exit handler.
2489 */
2490# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
2491 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
2492
2493#else
2494# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
2495# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
2496# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
2497# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
2498# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
2499# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2500# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2501# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2502# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2503# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2504# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
2505
2506#endif
2507
2508#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2509/**
2510 * Check if an SVM control/instruction intercept is set.
2511 */
2512# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
2513 (CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
2514
2515/**
2516 * Check if an SVM read CRx intercept is set.
2517 */
2518# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
2519 (CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
2520
2521/**
2522 * Check if an SVM write CRx intercept is set.
2523 */
2524# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
2525 (CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
2526
2527/**
2528 * Check if an SVM read DRx intercept is set.
2529 */
2530# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
2531 (CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
2532
2533/**
2534 * Check if an SVM write DRx intercept is set.
2535 */
2536# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
2537 (CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
2538
2539/**
2540 * Check if an SVM exception intercept is set.
2541 */
2542# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
2543 (CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
2544
2545/**
2546 * Invokes the SVM \#VMEXIT handler for the nested-guest.
2547 */
2548# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
2549 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
2550
2551/**
2552 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
2553 * corresponding decode assist information.
2554 */
2555# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
2556 do \
2557 { \
2558 uint64_t uExitInfo1; \
2559 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
2560 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
2561 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
2562 else \
2563 uExitInfo1 = 0; \
2564 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
2565 } while (0)
2566
2567/** Check and handles SVM nested-guest instruction intercept and updates
2568 * NRIP if needed.
2569 */
2570# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
2571 do \
2572 { \
2573 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
2574 { \
2575 IEM_SVM_UPDATE_NRIP(a_pVCpu); \
2576 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
2577 } \
2578 } while (0)
2579
2580/** Checks and handles SVM nested-guest CR0 read intercept. */
2581# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2) \
2582 do \
2583 { \
2584 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
2585 { /* probably likely */ } \
2586 else \
2587 { \
2588 IEM_SVM_UPDATE_NRIP(a_pVCpu); \
2589 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
2590 } \
2591 } while (0)
2592
2593/**
2594 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
2595 */
2596# define IEM_SVM_UPDATE_NRIP(a_pVCpu) \
2597 do { \
2598 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
2599 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), IEM_GET_INSTR_LEN(a_pVCpu)); \
2600 } while (0)
2601
2602#else
2603# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
2604# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
2605# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
2606# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
2607# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
2608# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
2609# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
2610# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
2611# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { } while (0)
2612# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2) do { } while (0)
2613# define IEM_SVM_UPDATE_NRIP(a_pVCpu) do { } while (0)
2614
2615#endif
2616
2617/** @} */
2618
2619
2620
2621/**
2622 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
2623 */
2624typedef union IEMSELDESC
2625{
2626 /** The legacy view. */
2627 X86DESC Legacy;
2628 /** The long mode view. */
2629 X86DESC64 Long;
2630} IEMSELDESC;
2631/** Pointer to a selector descriptor table entry. */
2632typedef IEMSELDESC *PIEMSELDESC;
2633
2634/** @name Raising Exceptions.
2635 * @{ */
2636VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
2637 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
2638
2639VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
2640 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
2641#ifdef IEM_WITH_SETJMP
2642DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
2643 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
2644#endif
2645VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
2646VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
2647VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
2648VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
2649VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
2650VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2651VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
2652VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
2653VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2654/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
2655VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2656VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2657VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2658VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2659VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2660VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
2661#ifdef IEM_WITH_SETJMP
2662DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2663#endif
2664VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
2665VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
2666VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2667#ifdef IEM_WITH_SETJMP
2668DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2669#endif
2670VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
2671#ifdef IEM_WITH_SETJMP
2672DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
2673#endif
2674VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2675#ifdef IEM_WITH_SETJMP
2676DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2677#endif
2678VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc) RT_NOEXCEPT;
2679#ifdef IEM_WITH_SETJMP
2680DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc) RT_NOEXCEPT;
2681#endif
2682VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu);
2683VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu);
2684#ifdef IEM_WITH_SETJMP
2685DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2686#endif
2687
2688IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
2689IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
2690IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
2691
2692/**
2693 * Macro for calling iemCImplRaiseDivideError().
2694 *
2695 * This enables us to add/remove arguments and force different levels of
2696 * inlining as we wish.
2697 *
2698 * @return Strict VBox status code.
2699 */
2700#define IEMOP_RAISE_DIVIDE_ERROR() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseDivideError)
2701
2702/**
2703 * Macro for calling iemCImplRaiseInvalidLockPrefix().
2704 *
2705 * This enables us to add/remove arguments and force different levels of
2706 * inlining as we wish.
2707 *
2708 * @return Strict VBox status code.
2709 */
2710#define IEMOP_RAISE_INVALID_LOCK_PREFIX() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidLockPrefix)
2711
2712/**
2713 * Macro for calling iemCImplRaiseInvalidOpcode().
2714 *
2715 * This enables us to add/remove arguments and force different levels of
2716 * inlining as we wish.
2717 *
2718 * @return Strict VBox status code.
2719 */
2720#define IEMOP_RAISE_INVALID_OPCODE() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidOpcode)
2721/** @} */
2722
2723/** @name Register Access.
2724 * @{ */
2725VBOXSTRICTRC iemRegRipRelativeJumpS8(PVMCPUCC pVCpu, int8_t offNextInstr) RT_NOEXCEPT;
2726VBOXSTRICTRC iemRegRipRelativeJumpS16(PVMCPUCC pVCpu, int16_t offNextInstr) RT_NOEXCEPT;
2727VBOXSTRICTRC iemRegRipRelativeJumpS32(PVMCPUCC pVCpu, int32_t offNextInstr) RT_NOEXCEPT;
2728VBOXSTRICTRC iemRegRipJump(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
2729/** @} */
2730
2731/** @name FPU access and helpers.
2732 * @{ */
2733void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult) RT_NOEXCEPT;
2734void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2735void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult) RT_NOEXCEPT;
2736void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg) RT_NOEXCEPT;
2737void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg) RT_NOEXCEPT;
2738void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
2739 uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2740void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
2741 uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2742void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2743void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW) RT_NOEXCEPT;
2744void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW) RT_NOEXCEPT;
2745void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2746void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW) RT_NOEXCEPT;
2747void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2748void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT;
2749void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2750void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT;
2751void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2752void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu) RT_NOEXCEPT;
2753void iemFpuStackPushUnderflow(PVMCPUCC pVCpu) RT_NOEXCEPT;
2754void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu) RT_NOEXCEPT;
2755void iemFpuStackPushOverflow(PVMCPUCC pVCpu) RT_NOEXCEPT;
2756void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2757/** @} */
2758
2759/** @name Memory access.
2760 * @{ */
2761VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess) RT_NOEXCEPT;
2762VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
2763#ifndef IN_RING3
2764VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
2765#endif
2766void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
2767VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
2768VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2769VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
2770
2771#ifdef IEM_WITH_CODE_TLB
2772void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) RT_NOEXCEPT;
2773#else
2774VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
2775#endif
2776#ifdef IEM_WITH_SETJMP
2777uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2778uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2779uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2780uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2781#else
2782VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
2783VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
2784VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
2785VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2786VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
2787VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
2788VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2789VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
2790VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2791VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2792VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2793#endif
2794
2795VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2796VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2797VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2798VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2799VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2800VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2801VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2802VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2803VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2804VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2805VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2806VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2807VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
2808 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
2809#ifdef IEM_WITH_SETJMP
2810uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2811uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2812uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2813uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2814uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2815void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2816void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2817void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2818void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2819void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2820void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2821#endif
2822
2823VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2824VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2825VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2826VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2827VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
2828
2829VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
2830VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
2831VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
2832VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
2833VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2834VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2835VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2836VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2837VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2838#ifdef IEM_WITH_SETJMP
2839void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
2840void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
2841void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
2842void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
2843void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2844void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2845void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2846void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2847#endif
2848
2849VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
2850VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
2851VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
2852VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
2853VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
2854VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2855VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2856VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2857VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
2858VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
2859VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
2860VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
2861VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
2862VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
2863VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
2864VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2865VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2866VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2867/** @} */
2868
2869/** @name IEMAllCImpl.cpp
2870 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
2871 * @{ */
2872IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
2873IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
2874IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
2875IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
2876IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
2877IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
2878IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
2879IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
2880IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
2881IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
2882IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
2883IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
2884IEM_CIMPL_PROTO_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2885IEM_CIMPL_PROTO_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2886IEM_CIMPL_PROTO_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2887IEM_CIMPL_PROTO_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2888IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
2889IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
2890IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
2891IEM_CIMPL_PROTO_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop);
2892IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
2893IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
2894IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
2895IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
2896IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
2897IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
2898IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
2899IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
2900IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
2901IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
2902IEM_CIMPL_PROTO_0(iemCImpl_syscall);
2903IEM_CIMPL_PROTO_0(iemCImpl_sysret);
2904IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
2905IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
2906IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
2907IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
2908IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
2909IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
2910IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
2911IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
2912IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
2913IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
2914IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2915IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
2916IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2917IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
2918IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
2919IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2920IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
2921IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
2922IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2923IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
2924IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
2925IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2926IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
2927IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
2928IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
2929IEM_CIMPL_PROTO_0(iemCImpl_clts);
2930IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
2931IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
2932IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
2933IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
2934IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
2935IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
2936IEM_CIMPL_PROTO_0(iemCImpl_invd);
2937IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
2938IEM_CIMPL_PROTO_0(iemCImpl_rsm);
2939IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
2940IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
2941IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
2942IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
2943IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
2944IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg);
2945IEM_CIMPL_PROTO_1(iemCImpl_in_eAX_DX, uint8_t, cbReg);
2946IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg);
2947IEM_CIMPL_PROTO_1(iemCImpl_out_DX_eAX, uint8_t, cbReg);
2948IEM_CIMPL_PROTO_0(iemCImpl_cli);
2949IEM_CIMPL_PROTO_0(iemCImpl_sti);
2950IEM_CIMPL_PROTO_0(iemCImpl_hlt);
2951IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
2952IEM_CIMPL_PROTO_0(iemCImpl_mwait);
2953IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
2954IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
2955IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
2956IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
2957IEM_CIMPL_PROTO_0(iemCImpl_daa);
2958IEM_CIMPL_PROTO_0(iemCImpl_das);
2959IEM_CIMPL_PROTO_0(iemCImpl_aaa);
2960IEM_CIMPL_PROTO_0(iemCImpl_aas);
2961IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
2962IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
2963IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
2964IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
2965IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
2966 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
2967IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
2968IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
2969IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
2970IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
2971IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
2972IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
2973IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
2974IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
2975IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
2976IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2977IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2978IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
2979IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
2980IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
2981IEM_CIMPL_PROTO_1(iemCImpl_fxch_underflow, uint8_t, iStReg);
2982IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop);
2983/** @} */
2984
2985/** @name IEMAllCImplStrInstr.cpp.h
2986 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
2987 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
2988 * @{ */
2989IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
2990IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
2991IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
2992IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
2993IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
2994IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
2995IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
2996IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
2997IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
2998IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
2999IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3000
3001IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
3002IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
3003IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
3004IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
3005IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
3006IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
3007IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
3008IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
3009IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
3010IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3011IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3012
3013IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
3014IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
3015IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
3016IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
3017IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
3018IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
3019IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
3020IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
3021IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
3022IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3023IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3024
3025
3026IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
3027IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
3028IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
3029IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
3030IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
3031IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
3032IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
3033IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
3034IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
3035IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3036IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3037
3038IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
3039IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
3040IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
3041IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
3042IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
3043IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
3044IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
3045IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
3046IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
3047IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3048IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3049
3050IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
3051IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
3052IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
3053IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
3054IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
3055IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
3056IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
3057IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
3058IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
3059IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3060IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3061
3062IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
3063IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
3064IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
3065IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
3066IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
3067IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
3068IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
3069IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
3070IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
3071IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3072IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3073
3074
3075IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
3076IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
3077IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
3078IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
3079IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
3080IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
3081IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
3082IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
3083IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
3084IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3085IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3086
3087IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
3088IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
3089IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
3090IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
3091IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
3092IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
3093IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
3094IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
3095IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
3096IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3097IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3098
3099IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
3100IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
3101IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
3102IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
3103IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
3104IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
3105IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
3106IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
3107IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
3108IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3109IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3110
3111IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
3112IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
3113IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
3114IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
3115IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
3116IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
3117IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
3118IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
3119IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
3120IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3121IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3122/** @} */
3123
3124#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3125VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
3126VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
3127VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
3128VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
3129VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
3130VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
3131VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
3132VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
3133VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
3134VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
3135 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
3136VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
3137 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
3138VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3139VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3140VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3141VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3142VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3143VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3144VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
3145VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
3146 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
3147VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
3148VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
3149VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
3150uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
3151void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
3152VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
3153 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
3154bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
3155IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
3156IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
3157IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
3158IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
3159IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
3160IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
3161IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
3162IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
3163IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
3164IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
3165IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField);
3166IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
3167IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
3168IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
3169IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
3170IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
3171#endif
3172
3173#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3174VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
3175VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
3176VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
3177 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
3178VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite) RT_NOEXCEPT;
3179IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
3180IEM_CIMPL_PROTO_0(iemCImpl_vmload);
3181IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
3182IEM_CIMPL_PROTO_0(iemCImpl_clgi);
3183IEM_CIMPL_PROTO_0(iemCImpl_stgi);
3184IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
3185IEM_CIMPL_PROTO_0(iemCImpl_skinit);
3186IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
3187#endif
3188
3189IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
3190IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
3191IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
3192
3193
3194extern const PFNIEMOP g_apfnOneByteMap[256];
3195
3196/** @} */
3197
3198RT_C_DECLS_END
3199
3200#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
3201
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette