VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 95403

Last change on this file since 95403 was 95403, checked in by vboxsync, 2 years ago

VMM/IEM: vxorps, vxorpd, vpxor, xorps, xorpd and various related fixes. bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.4 KB
Line 
1/* $Id: IEMInternal.h 95403 2022-06-27 23:38:38Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
19#define VMM_INCLUDED_SRC_include_IEMInternal_h
20#ifndef RT_WITHOUT_PRAGMA_ONCE
21# pragma once
22#endif
23
24#include <VBox/vmm/cpum.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/stam.h>
28#include <VBox/param.h>
29
30#include <iprt/setjmp-without-sigmask.h>
31
32
33RT_C_DECLS_BEGIN
34
35
36/** @defgroup grp_iem_int Internals
37 * @ingroup grp_iem
38 * @internal
39 * @{
40 */
41
42/** For expanding symbol in slickedit and other products tagging and
43 * crossreferencing IEM symbols. */
44#ifndef IEM_STATIC
45# define IEM_STATIC static
46#endif
47
48/** @def IEM_WITH_SETJMP
49 * Enables alternative status code handling using setjmps.
50 *
51 * This adds a bit of expense via the setjmp() call since it saves all the
52 * non-volatile registers. However, it eliminates return code checks and allows
53 * for more optimal return value passing (return regs instead of stack buffer).
54 */
55#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
56# define IEM_WITH_SETJMP
57#endif
58
59#define IEM_IMPLEMENTS_TASKSWITCH
60
61/** @def IEM_WITH_3DNOW
62 * Includes the 3DNow decoding. */
63#define IEM_WITH_3DNOW
64
65/** @def IEM_WITH_THREE_0F_38
66 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
67#define IEM_WITH_THREE_0F_38
68
69/** @def IEM_WITH_THREE_0F_3A
70 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
71#define IEM_WITH_THREE_0F_3A
72
73/** @def IEM_WITH_VEX
74 * Includes the VEX decoding. */
75#define IEM_WITH_VEX
76
77/** @def IEM_CFG_TARGET_CPU
78 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
79 *
80 * By default we allow this to be configured by the user via the
81 * CPUM/GuestCpuName config string, but this comes at a slight cost during
82 * decoding. So, for applications of this code where there is no need to
83 * be dynamic wrt target CPU, just modify this define.
84 */
85#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
86# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
87#endif
88
89//#define IEM_WITH_CODE_TLB // - work in progress
90//#define IEM_WITH_DATA_TLB // - work in progress
91
92
93/** @def IEM_USE_UNALIGNED_DATA_ACCESS
94 * Use unaligned accesses instead of elaborate byte assembly. */
95#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
96# define IEM_USE_UNALIGNED_DATA_ACCESS
97#endif
98
99//#define IEM_LOG_MEMORY_WRITES
100
101#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
102/** Instruction statistics. */
103typedef struct IEMINSTRSTATS
104{
105# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
106# include "IEMInstructionStatisticsTmpl.h"
107# undef IEM_DO_INSTR_STAT
108} IEMINSTRSTATS;
109#else
110struct IEMINSTRSTATS;
111typedef struct IEMINSTRSTATS IEMINSTRSTATS;
112#endif
113/** Pointer to IEM instruction statistics. */
114typedef IEMINSTRSTATS *PIEMINSTRSTATS;
115
116
117/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
118 * @{ */
119#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
120#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
121#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
122#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
123#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
124/** Selects the right variant from a_aArray.
125 * pVCpu is implicit in the caller context. */
126#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
127 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
128/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
129 * be used because the host CPU does not support the operation. */
130#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
131 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
132/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
133 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
134 * into the two.
135 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
136#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
137# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
138 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
139#else
140# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
141 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
142#endif
143/** @} */
144
145/**
146 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
147 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
148 *
149 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
150 * indicator.
151 *
152 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
153 */
154#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
155# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
156 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
157#else
158# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
159#endif
160
161
162/**
163 * Extended operand mode that includes a representation of 8-bit.
164 *
165 * This is used for packing down modes when invoking some C instruction
166 * implementations.
167 */
168typedef enum IEMMODEX
169{
170 IEMMODEX_16BIT = IEMMODE_16BIT,
171 IEMMODEX_32BIT = IEMMODE_32BIT,
172 IEMMODEX_64BIT = IEMMODE_64BIT,
173 IEMMODEX_8BIT
174} IEMMODEX;
175AssertCompileSize(IEMMODEX, 4);
176
177
178/**
179 * Branch types.
180 */
181typedef enum IEMBRANCH
182{
183 IEMBRANCH_JUMP = 1,
184 IEMBRANCH_CALL,
185 IEMBRANCH_TRAP,
186 IEMBRANCH_SOFTWARE_INT,
187 IEMBRANCH_HARDWARE_INT
188} IEMBRANCH;
189AssertCompileSize(IEMBRANCH, 4);
190
191
192/**
193 * INT instruction types.
194 */
195typedef enum IEMINT
196{
197 /** INT n instruction (opcode 0xcd imm). */
198 IEMINT_INTN = 0,
199 /** Single byte INT3 instruction (opcode 0xcc). */
200 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
201 /** Single byte INTO instruction (opcode 0xce). */
202 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
203 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
204 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
205} IEMINT;
206AssertCompileSize(IEMINT, 4);
207
208
209/**
210 * A FPU result.
211 */
212typedef struct IEMFPURESULT
213{
214 /** The output value. */
215 RTFLOAT80U r80Result;
216 /** The output status. */
217 uint16_t FSW;
218} IEMFPURESULT;
219AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
220/** Pointer to a FPU result. */
221typedef IEMFPURESULT *PIEMFPURESULT;
222/** Pointer to a const FPU result. */
223typedef IEMFPURESULT const *PCIEMFPURESULT;
224
225
226/**
227 * A FPU result consisting of two output values and FSW.
228 */
229typedef struct IEMFPURESULTTWO
230{
231 /** The first output value. */
232 RTFLOAT80U r80Result1;
233 /** The output status. */
234 uint16_t FSW;
235 /** The second output value. */
236 RTFLOAT80U r80Result2;
237} IEMFPURESULTTWO;
238AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
239AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
240/** Pointer to a FPU result consisting of two output values and FSW. */
241typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
242/** Pointer to a const FPU result consisting of two output values and FSW. */
243typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
244
245
246/**
247 * IEM TLB entry.
248 *
249 * Lookup assembly:
250 * @code{.asm}
251 ; Calculate tag.
252 mov rax, [VA]
253 shl rax, 16
254 shr rax, 16 + X86_PAGE_SHIFT
255 or rax, [uTlbRevision]
256
257 ; Do indexing.
258 movzx ecx, al
259 lea rcx, [pTlbEntries + rcx]
260
261 ; Check tag.
262 cmp [rcx + IEMTLBENTRY.uTag], rax
263 jne .TlbMiss
264
265 ; Check access.
266 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
267 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
268 cmp rax, [uTlbPhysRev]
269 jne .TlbMiss
270
271 ; Calc address and we're done.
272 mov eax, X86_PAGE_OFFSET_MASK
273 and eax, [VA]
274 or rax, [rcx + IEMTLBENTRY.pMappingR3]
275 %ifdef VBOX_WITH_STATISTICS
276 inc qword [cTlbHits]
277 %endif
278 jmp .Done
279
280 .TlbMiss:
281 mov r8d, ACCESS_FLAGS
282 mov rdx, [VA]
283 mov rcx, [pVCpu]
284 call iemTlbTypeMiss
285 .Done:
286
287 @endcode
288 *
289 */
290typedef struct IEMTLBENTRY
291{
292 /** The TLB entry tag.
293 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
294 * is ASSUMING a virtual address width of 48 bits.
295 *
296 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
297 *
298 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
299 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
300 * revision wraps around though, the tags needs to be zeroed.
301 *
302 * @note Try use SHRD instruction? After seeing
303 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
304 *
305 * @todo This will need to be reorganized for 57-bit wide virtual address and
306 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
307 * have to move the TLB entry versioning entirely to the
308 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
309 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
310 * consumed by PCID and ASID (12 + 6 = 18).
311 */
312 uint64_t uTag;
313 /** Access flags and physical TLB revision.
314 *
315 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
316 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
317 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
318 * - Bit 3 - pgm phys/virt - not directly writable.
319 * - Bit 4 - pgm phys page - not directly readable.
320 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
321 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
322 * - Bit 7 - tlb entry - pMappingR3 member not valid.
323 * - Bits 63 thru 8 are used for the physical TLB revision number.
324 *
325 * We're using complemented bit meanings here because it makes it easy to check
326 * whether special action is required. For instance a user mode write access
327 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
328 * non-zero result would mean special handling needed because either it wasn't
329 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
330 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
331 * need to check any PTE flag.
332 */
333 uint64_t fFlagsAndPhysRev;
334 /** The guest physical page address. */
335 uint64_t GCPhys;
336 /** Pointer to the ring-3 mapping. */
337 R3PTRTYPE(uint8_t *) pbMappingR3;
338#if HC_ARCH_BITS == 32
339 uint32_t u32Padding1;
340#endif
341} IEMTLBENTRY;
342AssertCompileSize(IEMTLBENTRY, 32);
343/** Pointer to an IEM TLB entry. */
344typedef IEMTLBENTRY *PIEMTLBENTRY;
345
346/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
347 * @{ */
348#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
349#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
350#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
351#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
352#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
353#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
354#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
355#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
356#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
357#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffe00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
358/** @} */
359
360
361/**
362 * An IEM TLB.
363 *
364 * We've got two of these, one for data and one for instructions.
365 */
366typedef struct IEMTLB
367{
368 /** The TLB entries.
369 * We've choosen 256 because that way we can obtain the result directly from a
370 * 8-bit register without an additional AND instruction. */
371 IEMTLBENTRY aEntries[256];
372 /** The TLB revision.
373 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
374 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
375 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
376 * (The revision zero indicates an invalid TLB entry.)
377 *
378 * The initial value is choosen to cause an early wraparound. */
379 uint64_t uTlbRevision;
380 /** The TLB physical address revision - shadow of PGM variable.
381 *
382 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
383 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
384 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
385 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
386 *
387 * The initial value is choosen to cause an early wraparound. */
388 uint64_t volatile uTlbPhysRev;
389
390 /* Statistics: */
391
392 /** TLB hits (VBOX_WITH_STATISTICS only). */
393 uint64_t cTlbHits;
394 /** TLB misses. */
395 uint32_t cTlbMisses;
396 /** Slow read path. */
397 uint32_t cTlbSlowReadPath;
398#if 0
399 /** TLB misses because of tag mismatch. */
400 uint32_t cTlbMissesTag;
401 /** TLB misses because of virtual access violation. */
402 uint32_t cTlbMissesVirtAccess;
403 /** TLB misses because of dirty bit. */
404 uint32_t cTlbMissesDirty;
405 /** TLB misses because of MMIO */
406 uint32_t cTlbMissesMmio;
407 /** TLB misses because of write access handlers. */
408 uint32_t cTlbMissesWriteHandler;
409 /** TLB misses because no r3(/r0) mapping. */
410 uint32_t cTlbMissesMapping;
411#endif
412 /** Alignment padding. */
413 uint32_t au32Padding[3+5];
414} IEMTLB;
415AssertCompileSizeAlignment(IEMTLB, 64);
416/** IEMTLB::uTlbRevision increment. */
417#define IEMTLB_REVISION_INCR RT_BIT_64(36)
418/** IEMTLB::uTlbRevision mask. */
419#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
420/** IEMTLB::uTlbPhysRev increment.
421 * @sa IEMTLBE_F_PHYS_REV */
422#define IEMTLB_PHYS_REV_INCR RT_BIT_64(9)
423/**
424 * Calculates the TLB tag for a virtual address.
425 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
426 * @param a_pTlb The TLB.
427 * @param a_GCPtr The virtual address.
428 */
429#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
430/**
431 * Calculates the TLB tag for a virtual address but without TLB revision.
432 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
433 * @param a_GCPtr The virtual address.
434 */
435#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
436/**
437 * Converts a TLB tag value into a TLB index.
438 * @returns Index into IEMTLB::aEntries.
439 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
440 */
441#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
442/**
443 * Converts a TLB tag value into a TLB index.
444 * @returns Index into IEMTLB::aEntries.
445 * @param a_pTlb The TLB.
446 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
447 */
448#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
449
450
451/**
452 * The per-CPU IEM state.
453 */
454typedef struct IEMCPU
455{
456 /** Info status code that needs to be propagated to the IEM caller.
457 * This cannot be passed internally, as it would complicate all success
458 * checks within the interpreter making the code larger and almost impossible
459 * to get right. Instead, we'll store status codes to pass on here. Each
460 * source of these codes will perform appropriate sanity checks. */
461 int32_t rcPassUp; /* 0x00 */
462
463 /** The current CPU execution mode (CS). */
464 IEMMODE enmCpuMode; /* 0x04 */
465 /** The CPL. */
466 uint8_t uCpl; /* 0x05 */
467
468 /** Whether to bypass access handlers or not. */
469 bool fBypassHandlers; /* 0x06 */
470 /** Whether to disregard the lock prefix (implied or not). */
471 bool fDisregardLock; /* 0x07 */
472
473 /** @name Decoder state.
474 * @{ */
475#ifdef IEM_WITH_CODE_TLB
476 /** The offset of the next instruction byte. */
477 uint32_t offInstrNextByte; /* 0x08 */
478 /** The number of bytes available at pbInstrBuf for the current instruction.
479 * This takes the max opcode length into account so that doesn't need to be
480 * checked separately. */
481 uint32_t cbInstrBuf; /* 0x0c */
482 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
483 * This can be NULL if the page isn't mappable for some reason, in which
484 * case we'll do fallback stuff.
485 *
486 * If we're executing an instruction from a user specified buffer,
487 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
488 * aligned pointer but pointer to the user data.
489 *
490 * For instructions crossing pages, this will start on the first page and be
491 * advanced to the next page by the time we've decoded the instruction. This
492 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
493 */
494 uint8_t const *pbInstrBuf; /* 0x10 */
495# if ARCH_BITS == 32
496 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
497# endif
498 /** The program counter corresponding to pbInstrBuf.
499 * This is set to a non-canonical address when we need to invalidate it. */
500 uint64_t uInstrBufPc; /* 0x18 */
501 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
502 * This takes the CS segment limit into account. */
503 uint16_t cbInstrBufTotal; /* 0x20 */
504 /** Offset into pbInstrBuf of the first byte of the current instruction.
505 * Can be negative to efficiently handle cross page instructions. */
506 int16_t offCurInstrStart; /* 0x22 */
507
508 /** The prefix mask (IEM_OP_PRF_XXX). */
509 uint32_t fPrefixes; /* 0x24 */
510 /** The extra REX ModR/M register field bit (REX.R << 3). */
511 uint8_t uRexReg; /* 0x28 */
512 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
513 * (REX.B << 3). */
514 uint8_t uRexB; /* 0x29 */
515 /** The extra REX SIB index field bit (REX.X << 3). */
516 uint8_t uRexIndex; /* 0x2a */
517
518 /** The effective segment register (X86_SREG_XXX). */
519 uint8_t iEffSeg; /* 0x2b */
520
521 /** The offset of the ModR/M byte relative to the start of the instruction. */
522 uint8_t offModRm; /* 0x2c */
523#else
524 /** The size of what has currently been fetched into abOpcode. */
525 uint8_t cbOpcode; /* 0x08 */
526 /** The current offset into abOpcode. */
527 uint8_t offOpcode; /* 0x09 */
528 /** The offset of the ModR/M byte relative to the start of the instruction. */
529 uint8_t offModRm; /* 0x0a */
530
531 /** The effective segment register (X86_SREG_XXX). */
532 uint8_t iEffSeg; /* 0x0b */
533
534 /** The prefix mask (IEM_OP_PRF_XXX). */
535 uint32_t fPrefixes; /* 0x0c */
536 /** The extra REX ModR/M register field bit (REX.R << 3). */
537 uint8_t uRexReg; /* 0x10 */
538 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
539 * (REX.B << 3). */
540 uint8_t uRexB; /* 0x11 */
541 /** The extra REX SIB index field bit (REX.X << 3). */
542 uint8_t uRexIndex; /* 0x12 */
543
544#endif
545
546 /** The effective operand mode. */
547 IEMMODE enmEffOpSize; /* 0x2d, 0x13 */
548 /** The default addressing mode. */
549 IEMMODE enmDefAddrMode; /* 0x2e, 0x14 */
550 /** The effective addressing mode. */
551 IEMMODE enmEffAddrMode; /* 0x2f, 0x15 */
552 /** The default operand mode. */
553 IEMMODE enmDefOpSize; /* 0x30, 0x16 */
554
555 /** Prefix index (VEX.pp) for two byte and three byte tables. */
556 uint8_t idxPrefix; /* 0x31, 0x17 */
557 /** 3rd VEX/EVEX/XOP register.
558 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
559 uint8_t uVex3rdReg; /* 0x32, 0x18 */
560 /** The VEX/EVEX/XOP length field. */
561 uint8_t uVexLength; /* 0x33, 0x19 */
562 /** Additional EVEX stuff. */
563 uint8_t fEvexStuff; /* 0x34, 0x1a */
564
565 /** Explicit alignment padding. */
566 uint8_t abAlignment2a[1]; /* 0x35, 0x1b */
567 /** The FPU opcode (FOP). */
568 uint16_t uFpuOpcode; /* 0x36, 0x1c */
569#ifndef IEM_WITH_CODE_TLB
570 /** Explicit alignment padding. */
571 uint8_t abAlignment2b[2]; /* 0x1e */
572#endif
573
574 /** The opcode bytes. */
575 uint8_t abOpcode[15]; /* 0x48, 0x20 */
576 /** Explicit alignment padding. */
577#ifdef IEM_WITH_CODE_TLB
578 uint8_t abAlignment2c[0x48 - 0x47]; /* 0x37 */
579#else
580 uint8_t abAlignment2c[0x48 - 0x2f]; /* 0x2f */
581#endif
582 /** @} */
583
584
585 /** The flags of the current exception / interrupt. */
586 uint32_t fCurXcpt; /* 0x48, 0x48 */
587 /** The current exception / interrupt. */
588 uint8_t uCurXcpt;
589 /** Exception / interrupt recursion depth. */
590 int8_t cXcptRecursions;
591
592 /** The number of active guest memory mappings. */
593 uint8_t cActiveMappings;
594 /** The next unused mapping index. */
595 uint8_t iNextMapping;
596 /** Records for tracking guest memory mappings. */
597 struct
598 {
599 /** The address of the mapped bytes. */
600 void *pv;
601 /** The access flags (IEM_ACCESS_XXX).
602 * IEM_ACCESS_INVALID if the entry is unused. */
603 uint32_t fAccess;
604#if HC_ARCH_BITS == 64
605 uint32_t u32Alignment4; /**< Alignment padding. */
606#endif
607 } aMemMappings[3];
608
609 /** Locking records for the mapped memory. */
610 union
611 {
612 PGMPAGEMAPLOCK Lock;
613 uint64_t au64Padding[2];
614 } aMemMappingLocks[3];
615
616 /** Bounce buffer info.
617 * This runs in parallel to aMemMappings. */
618 struct
619 {
620 /** The physical address of the first byte. */
621 RTGCPHYS GCPhysFirst;
622 /** The physical address of the second page. */
623 RTGCPHYS GCPhysSecond;
624 /** The number of bytes in the first page. */
625 uint16_t cbFirst;
626 /** The number of bytes in the second page. */
627 uint16_t cbSecond;
628 /** Whether it's unassigned memory. */
629 bool fUnassigned;
630 /** Explicit alignment padding. */
631 bool afAlignment5[3];
632 } aMemBbMappings[3];
633
634 /** Bounce buffer storage.
635 * This runs in parallel to aMemMappings and aMemBbMappings. */
636 struct
637 {
638 uint8_t ab[512];
639 } aBounceBuffers[3];
640
641
642 /** Pointer set jump buffer - ring-3 context. */
643 R3PTRTYPE(jmp_buf *) pJmpBufR3;
644 /** Pointer set jump buffer - ring-0 context. */
645 R0PTRTYPE(jmp_buf *) pJmpBufR0;
646
647 /** @todo Should move this near @a fCurXcpt later. */
648 /** The CR2 for the current exception / interrupt. */
649 uint64_t uCurXcptCr2;
650 /** The error code for the current exception / interrupt. */
651 uint32_t uCurXcptErr;
652
653 /** @name Statistics
654 * @{ */
655 /** The number of instructions we've executed. */
656 uint32_t cInstructions;
657 /** The number of potential exits. */
658 uint32_t cPotentialExits;
659 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
660 * This may contain uncommitted writes. */
661 uint32_t cbWritten;
662 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
663 uint32_t cRetInstrNotImplemented;
664 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
665 uint32_t cRetAspectNotImplemented;
666 /** Counts informational statuses returned (other than VINF_SUCCESS). */
667 uint32_t cRetInfStatuses;
668 /** Counts other error statuses returned. */
669 uint32_t cRetErrStatuses;
670 /** Number of times rcPassUp has been used. */
671 uint32_t cRetPassUpStatus;
672 /** Number of times RZ left with instruction commit pending for ring-3. */
673 uint32_t cPendingCommit;
674 /** Number of long jumps. */
675 uint32_t cLongJumps;
676 /** @} */
677
678 /** @name Target CPU information.
679 * @{ */
680#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
681 /** The target CPU. */
682 uint8_t uTargetCpu;
683#else
684 uint8_t bTargetCpuPadding;
685#endif
686 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
687 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
688 * native host support and the 2nd for when there is.
689 *
690 * The two values are typically indexed by a g_CpumHostFeatures bit.
691 *
692 * This is for instance used for the BSF & BSR instructions where AMD and
693 * Intel CPUs produce different EFLAGS. */
694 uint8_t aidxTargetCpuEflFlavour[2];
695
696 /** The CPU vendor. */
697 CPUMCPUVENDOR enmCpuVendor;
698 /** @} */
699
700 /** @name Host CPU information.
701 * @{ */
702 /** The CPU vendor. */
703 CPUMCPUVENDOR enmHostCpuVendor;
704 /** @} */
705
706 /** Counts RDMSR \#GP(0) LogRel(). */
707 uint8_t cLogRelRdMsr;
708 /** Counts WRMSR \#GP(0) LogRel(). */
709 uint8_t cLogRelWrMsr;
710 /** Alignment padding. */
711 uint8_t abAlignment8[50];
712
713 /** Data TLB.
714 * @remarks Must be 64-byte aligned. */
715 IEMTLB DataTlb;
716 /** Instruction TLB.
717 * @remarks Must be 64-byte aligned. */
718 IEMTLB CodeTlb;
719
720#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
721 /** Instruction statistics for ring-0/raw-mode. */
722 IEMINSTRSTATS StatsRZ;
723 /** Instruction statistics for ring-3. */
724 IEMINSTRSTATS StatsR3;
725#endif
726} IEMCPU;
727AssertCompileMemberOffset(IEMCPU, fCurXcpt, 0x48);
728AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
729AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
730/** Pointer to the per-CPU IEM state. */
731typedef IEMCPU *PIEMCPU;
732/** Pointer to the const per-CPU IEM state. */
733typedef IEMCPU const *PCIEMCPU;
734
735
736/** @def IEM_GET_CTX
737 * Gets the guest CPU context for the calling EMT.
738 * @returns PCPUMCTX
739 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
740 */
741#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
742
743/** @def IEM_CTX_ASSERT
744 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
745 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
746 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
747 */
748#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
749 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", (a_pVCpu)->cpum.GstCtx.fExtrn, \
750 (a_fExtrnMbz)))
751
752/** @def IEM_CTX_IMPORT_RET
753 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
754 *
755 * Will call the keep to import the bits as needed.
756 *
757 * Returns on import failure.
758 *
759 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
760 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
761 */
762#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
763 do { \
764 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
765 { /* likely */ } \
766 else \
767 { \
768 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
769 AssertRCReturn(rcCtxImport, rcCtxImport); \
770 } \
771 } while (0)
772
773/** @def IEM_CTX_IMPORT_NORET
774 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
775 *
776 * Will call the keep to import the bits as needed.
777 *
778 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
779 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
780 */
781#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
782 do { \
783 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
784 { /* likely */ } \
785 else \
786 { \
787 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
788 AssertLogRelRC(rcCtxImport); \
789 } \
790 } while (0)
791
792/** @def IEM_CTX_IMPORT_JMP
793 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
794 *
795 * Will call the keep to import the bits as needed.
796 *
797 * Jumps on import failure.
798 *
799 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
800 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
801 */
802#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
803 do { \
804 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
805 { /* likely */ } \
806 else \
807 { \
808 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
809 AssertRCStmt(rcCtxImport, longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), rcCtxImport)); \
810 } \
811 } while (0)
812
813
814
815/** @def IEM_GET_TARGET_CPU
816 * Gets the current IEMTARGETCPU value.
817 * @returns IEMTARGETCPU value.
818 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
819 */
820#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
821# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
822#else
823# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
824#endif
825
826/** @def IEM_GET_INSTR_LEN
827 * Gets the instruction length. */
828#ifdef IEM_WITH_CODE_TLB
829# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
830#else
831# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
832#endif
833
834
835/**
836 * Shared per-VM IEM data.
837 */
838typedef struct IEM
839{
840 /** The VMX APIC-access page handler type. */
841 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
842} IEM;
843
844
845
846/** @name IEM_ACCESS_XXX - Access details.
847 * @{ */
848#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
849#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
850#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
851#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
852#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
853#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
854#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
855#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
856#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
857#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
858/** The writes are partial, so if initialize the bounce buffer with the
859 * orignal RAM content. */
860#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
861/** Used in aMemMappings to indicate that the entry is bounce buffered. */
862#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
863/** Bounce buffer with ring-3 write pending, first page. */
864#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
865/** Bounce buffer with ring-3 write pending, second page. */
866#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
867/** Not locked, accessed via the TLB. */
868#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
869/** Valid bit mask. */
870#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
871/** Shift count for the TLB flags (upper word). */
872#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
873
874/** Read+write data alias. */
875#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
876/** Write data alias. */
877#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
878/** Read data alias. */
879#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
880/** Instruction fetch alias. */
881#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
882/** Stack write alias. */
883#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
884/** Stack read alias. */
885#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
886/** Stack read+write alias. */
887#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
888/** Read system table alias. */
889#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
890/** Read+write system table alias. */
891#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
892/** @} */
893
894/** @name Prefix constants (IEMCPU::fPrefixes)
895 * @{ */
896#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
897#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
898#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
899#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
900#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
901#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
902#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
903
904#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
905#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
906#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
907
908#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
909#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
910#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
911
912#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
913#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
914#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
915#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
916/** Mask with all the REX prefix flags.
917 * This is generally for use when needing to undo the REX prefixes when they
918 * are followed legacy prefixes and therefore does not immediately preceed
919 * the first opcode byte.
920 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
921#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
922
923#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
924#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
925#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
926/** @} */
927
928/** @name IEMOPFORM_XXX - Opcode forms
929 * @note These are ORed together with IEMOPHINT_XXX.
930 * @{ */
931/** ModR/M: reg, r/m */
932#define IEMOPFORM_RM 0
933/** ModR/M: reg, r/m (register) */
934#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
935/** ModR/M: reg, r/m (memory) */
936#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
937/** ModR/M: r/m, reg */
938#define IEMOPFORM_MR 1
939/** ModR/M: r/m (register), reg */
940#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
941/** ModR/M: r/m (memory), reg */
942#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
943/** ModR/M: r/m only */
944#define IEMOPFORM_M 2
945/** ModR/M: r/m only (register). */
946#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
947/** ModR/M: r/m only (memory). */
948#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
949/** ModR/M: reg only */
950#define IEMOPFORM_R 3
951
952/** VEX+ModR/M: reg, r/m */
953#define IEMOPFORM_VEX_RM 4
954/** VEX+ModR/M: reg, r/m (register) */
955#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
956/** VEX+ModR/M: reg, r/m (memory) */
957#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
958/** VEX+ModR/M: r/m, reg */
959#define IEMOPFORM_VEX_MR 5
960/** VEX+ModR/M: r/m (register), reg */
961#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
962/** VEX+ModR/M: r/m (memory), reg */
963#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
964/** VEX+ModR/M: r/m only */
965#define IEMOPFORM_VEX_M 6
966/** VEX+ModR/M: r/m only (register). */
967#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
968/** VEX+ModR/M: r/m only (memory). */
969#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
970/** VEX+ModR/M: reg only */
971#define IEMOPFORM_VEX_R 7
972/** VEX+ModR/M: reg, vvvv, r/m */
973#define IEMOPFORM_VEX_RVM 8
974/** VEX+ModR/M: reg, vvvv, r/m (register). */
975#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
976/** VEX+ModR/M: reg, vvvv, r/m (memory). */
977#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
978/** VEX+ModR/M: reg, r/m, vvvv */
979#define IEMOPFORM_VEX_RMV 9
980/** VEX+ModR/M: reg, r/m, vvvv (register). */
981#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
982/** VEX+ModR/M: reg, r/m, vvvv (memory). */
983#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
984/** VEX+ModR/M: reg, r/m, imm8 */
985#define IEMOPFORM_VEX_RMI 10
986/** VEX+ModR/M: reg, r/m, imm8 (register). */
987#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
988/** VEX+ModR/M: reg, r/m, imm8 (memory). */
989#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
990/** VEX+ModR/M: r/m, vvvv, reg */
991#define IEMOPFORM_VEX_MVR 11
992/** VEX+ModR/M: r/m, vvvv, reg (register) */
993#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
994/** VEX+ModR/M: r/m, vvvv, reg (memory) */
995#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
996/** VEX+ModR/M+/n: vvvv, r/m */
997#define IEMOPFORM_VEX_VM 12
998/** VEX+ModR/M+/n: vvvv, r/m (register) */
999#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
1000/** VEX+ModR/M+/n: vvvv, r/m (memory) */
1001#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
1002
1003/** Fixed register instruction, no R/M. */
1004#define IEMOPFORM_FIXED 16
1005
1006/** The r/m is a register. */
1007#define IEMOPFORM_MOD3 RT_BIT_32(8)
1008/** The r/m is a memory access. */
1009#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
1010/** @} */
1011
1012/** @name IEMOPHINT_XXX - Additional Opcode Hints
1013 * @note These are ORed together with IEMOPFORM_XXX.
1014 * @{ */
1015/** Ignores the operand size prefix (66h). */
1016#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
1017/** Ignores REX.W (aka WIG). */
1018#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
1019/** Both the operand size prefixes (66h + REX.W) are ignored. */
1020#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
1021/** Allowed with the lock prefix. */
1022#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
1023/** The VEX.L value is ignored (aka LIG). */
1024#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
1025/** The VEX.L value must be zero (i.e. 128-bit width only). */
1026#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
1027/** The VEX.V value must be zero. */
1028#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
1029
1030/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
1031#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
1032/** @} */
1033
1034/**
1035 * Possible hardware task switch sources.
1036 */
1037typedef enum IEMTASKSWITCH
1038{
1039 /** Task switch caused by an interrupt/exception. */
1040 IEMTASKSWITCH_INT_XCPT = 1,
1041 /** Task switch caused by a far CALL. */
1042 IEMTASKSWITCH_CALL,
1043 /** Task switch caused by a far JMP. */
1044 IEMTASKSWITCH_JUMP,
1045 /** Task switch caused by an IRET. */
1046 IEMTASKSWITCH_IRET
1047} IEMTASKSWITCH;
1048AssertCompileSize(IEMTASKSWITCH, 4);
1049
1050/**
1051 * Possible CrX load (write) sources.
1052 */
1053typedef enum IEMACCESSCRX
1054{
1055 /** CrX access caused by 'mov crX' instruction. */
1056 IEMACCESSCRX_MOV_CRX,
1057 /** CrX (CR0) write caused by 'lmsw' instruction. */
1058 IEMACCESSCRX_LMSW,
1059 /** CrX (CR0) write caused by 'clts' instruction. */
1060 IEMACCESSCRX_CLTS,
1061 /** CrX (CR0) read caused by 'smsw' instruction. */
1062 IEMACCESSCRX_SMSW
1063} IEMACCESSCRX;
1064
1065#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1066/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
1067 *
1068 * These flags provide further context to SLAT page-walk failures that could not be
1069 * determined by PGM (e.g, PGM is not privy to memory access permissions).
1070 *
1071 * @{
1072 */
1073/** Translating a nested-guest linear address failed accessing a nested-guest
1074 * physical address. */
1075# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
1076/** Translating a nested-guest linear address failed accessing a
1077 * paging-structure entry or updating accessed/dirty bits. */
1078# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
1079/** @} */
1080
1081DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
1082# ifndef IN_RING3
1083DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
1084# endif
1085#endif
1086
1087/**
1088 * Indicates to the verifier that the given flag set is undefined.
1089 *
1090 * Can be invoked again to add more flags.
1091 *
1092 * This is a NOOP if the verifier isn't compiled in.
1093 *
1094 * @note We're temporarily keeping this until code is converted to new
1095 * disassembler style opcode handling.
1096 */
1097#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
1098
1099
1100/** @def IEM_DECL_IMPL_TYPE
1101 * For typedef'ing an instruction implementation function.
1102 *
1103 * @param a_RetType The return type.
1104 * @param a_Name The name of the type.
1105 * @param a_ArgList The argument list enclosed in parentheses.
1106 */
1107
1108/** @def IEM_DECL_IMPL_DEF
1109 * For defining an instruction implementation function.
1110 *
1111 * @param a_RetType The return type.
1112 * @param a_Name The name of the type.
1113 * @param a_ArgList The argument list enclosed in parentheses.
1114 */
1115
1116#if defined(__GNUC__) && defined(RT_ARCH_X86)
1117# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1118 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
1119# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1120 __attribute__((__fastcall__, __nothrow__)) a_RetType a_Name a_ArgList
1121# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1122 __attribute__((__fastcall__, __nothrow__)) a_RetType a_Name a_ArgList
1123
1124#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
1125# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1126 a_RetType (__fastcall a_Name) a_ArgList
1127# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1128 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1129# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1130 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
1131
1132#elif __cplusplus >= 201700 /* P0012R1 support */
1133# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1134 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
1135# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1136 a_RetType VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1137# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1138 a_RetType VBOXCALL a_Name a_ArgList RT_NOEXCEPT
1139
1140#else
1141# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
1142 a_RetType (VBOXCALL a_Name) a_ArgList
1143# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
1144 a_RetType VBOXCALL a_Name a_ArgList
1145# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
1146 a_RetType VBOXCALL a_Name a_ArgList
1147
1148#endif
1149
1150/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
1151RT_C_DECLS_BEGIN
1152extern uint8_t const g_afParity[256];
1153RT_C_DECLS_END
1154
1155
1156/** @name Arithmetic assignment operations on bytes (binary).
1157 * @{ */
1158typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
1159typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
1160FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
1161FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
1162FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
1163FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
1164FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
1165FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
1166FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
1167/** @} */
1168
1169/** @name Arithmetic assignment operations on words (binary).
1170 * @{ */
1171typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
1172typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
1173FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
1174FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
1175FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
1176FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
1177FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
1178FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
1179FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
1180/** @} */
1181
1182/** @name Arithmetic assignment operations on double words (binary).
1183 * @{ */
1184typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
1185typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
1186FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
1187FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
1188FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
1189FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
1190FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
1191FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
1192FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
1193FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
1194FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
1195FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
1196/** @} */
1197
1198/** @name Arithmetic assignment operations on quad words (binary).
1199 * @{ */
1200typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
1201typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
1202FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
1203FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
1204FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
1205FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
1206FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
1207FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
1208FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
1209FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
1210FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
1211FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
1212/** @} */
1213
1214/** @name Compare operations (thrown in with the binary ops).
1215 * @{ */
1216FNIEMAIMPLBINU8 iemAImpl_cmp_u8;
1217FNIEMAIMPLBINU16 iemAImpl_cmp_u16;
1218FNIEMAIMPLBINU32 iemAImpl_cmp_u32;
1219FNIEMAIMPLBINU64 iemAImpl_cmp_u64;
1220/** @} */
1221
1222/** @name Test operations (thrown in with the binary ops).
1223 * @{ */
1224FNIEMAIMPLBINU8 iemAImpl_test_u8;
1225FNIEMAIMPLBINU16 iemAImpl_test_u16;
1226FNIEMAIMPLBINU32 iemAImpl_test_u32;
1227FNIEMAIMPLBINU64 iemAImpl_test_u64;
1228/** @} */
1229
1230/** @name Bit operations operations (thrown in with the binary ops).
1231 * @{ */
1232FNIEMAIMPLBINU16 iemAImpl_bt_u16;
1233FNIEMAIMPLBINU32 iemAImpl_bt_u32;
1234FNIEMAIMPLBINU64 iemAImpl_bt_u64;
1235FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
1236FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
1237FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
1238FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
1239FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
1240FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
1241FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
1242FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
1243FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
1244/** @} */
1245
1246/** @name Arithmetic three operand operations on double words (binary).
1247 * @{ */
1248typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
1249typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
1250FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
1251FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
1252FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
1253/** @} */
1254
1255/** @name Arithmetic three operand operations on quad words (binary).
1256 * @{ */
1257typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
1258typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
1259FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
1260FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
1261FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
1262/** @} */
1263
1264/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
1265 * @{ */
1266typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
1267typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
1268FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
1269FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
1270FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
1271FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
1272FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
1273FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
1274/** @} */
1275
1276/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
1277 * @{ */
1278typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
1279typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
1280FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
1281FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
1282FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
1283FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
1284FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
1285FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
1286/** @} */
1287
1288/** @name MULX 32-bit and 64-bit.
1289 * @{ */
1290typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
1291typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
1292FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
1293
1294typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
1295typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
1296FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
1297/** @} */
1298
1299
1300/** @name Exchange memory with register operations.
1301 * @{ */
1302IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
1303IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
1304IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
1305IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
1306IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
1307IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
1308IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
1309IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
1310/** @} */
1311
1312/** @name Exchange and add operations.
1313 * @{ */
1314IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
1315IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
1316IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
1317IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
1318IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
1319IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
1320IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
1321IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
1322/** @} */
1323
1324/** @name Compare and exchange.
1325 * @{ */
1326IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
1327IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
1328IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
1329IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
1330IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
1331IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
1332#if ARCH_BITS == 32
1333IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
1334IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
1335#else
1336IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
1337IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
1338#endif
1339IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
1340 uint32_t *pEFlags));
1341IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
1342 uint32_t *pEFlags));
1343IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
1344 uint32_t *pEFlags));
1345IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
1346 uint32_t *pEFlags));
1347#ifndef RT_ARCH_ARM64
1348IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
1349 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
1350#endif
1351/** @} */
1352
1353/** @name Memory ordering
1354 * @{ */
1355typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
1356typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
1357IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
1358IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
1359IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
1360#ifndef RT_ARCH_ARM64
1361IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
1362#endif
1363/** @} */
1364
1365/** @name Double precision shifts
1366 * @{ */
1367typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
1368typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
1369typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
1370typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
1371typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
1372typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
1373FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
1374FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
1375FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
1376FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
1377FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
1378FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
1379/** @} */
1380
1381
1382/** @name Bit search operations (thrown in with the binary ops).
1383 * @{ */
1384FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
1385FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
1386FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
1387FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
1388FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
1389FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
1390FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
1391FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
1392FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
1393FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
1394FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
1395FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
1396FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
1397FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
1398FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
1399/** @} */
1400
1401/** @name Signed multiplication operations (thrown in with the binary ops).
1402 * @{ */
1403FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
1404FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
1405FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
1406/** @} */
1407
1408/** @name Arithmetic assignment operations on bytes (unary).
1409 * @{ */
1410typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
1411typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
1412FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
1413FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
1414FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
1415FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
1416/** @} */
1417
1418/** @name Arithmetic assignment operations on words (unary).
1419 * @{ */
1420typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
1421typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
1422FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
1423FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
1424FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
1425FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
1426/** @} */
1427
1428/** @name Arithmetic assignment operations on double words (unary).
1429 * @{ */
1430typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
1431typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
1432FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
1433FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
1434FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
1435FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
1436/** @} */
1437
1438/** @name Arithmetic assignment operations on quad words (unary).
1439 * @{ */
1440typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
1441typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
1442FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
1443FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
1444FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
1445FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
1446/** @} */
1447
1448
1449/** @name Shift operations on bytes (Group 2).
1450 * @{ */
1451typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
1452typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
1453FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
1454FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
1455FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
1456FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
1457FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
1458FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
1459FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
1460/** @} */
1461
1462/** @name Shift operations on words (Group 2).
1463 * @{ */
1464typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
1465typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
1466FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
1467FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
1468FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
1469FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
1470FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
1471FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
1472FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
1473/** @} */
1474
1475/** @name Shift operations on double words (Group 2).
1476 * @{ */
1477typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
1478typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
1479FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
1480FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
1481FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
1482FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
1483FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
1484FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
1485FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
1486/** @} */
1487
1488/** @name Shift operations on words (Group 2).
1489 * @{ */
1490typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
1491typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
1492FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
1493FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
1494FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
1495FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
1496FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
1497FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
1498FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
1499/** @} */
1500
1501/** @name Multiplication and division operations.
1502 * @{ */
1503typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
1504typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
1505FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
1506FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
1507FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
1508FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
1509
1510typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
1511typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
1512FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
1513FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
1514FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
1515FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
1516
1517typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
1518typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
1519FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
1520FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
1521FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
1522FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
1523
1524typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
1525typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
1526FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
1527FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
1528FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
1529FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
1530/** @} */
1531
1532/** @name Byte Swap.
1533 * @{ */
1534IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
1535IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
1536IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
1537/** @} */
1538
1539/** @name Misc.
1540 * @{ */
1541FNIEMAIMPLBINU16 iemAImpl_arpl;
1542/** @} */
1543
1544
1545/** @name FPU operations taking a 32-bit float argument
1546 * @{ */
1547typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1548 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
1549typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
1550
1551typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1552 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
1553typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
1554
1555FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
1556FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
1557FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
1558FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
1559FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
1560FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
1561FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
1562
1563IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
1564IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1565 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
1566/** @} */
1567
1568/** @name FPU operations taking a 64-bit float argument
1569 * @{ */
1570typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1571 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
1572typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
1573
1574typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1575 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
1576typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
1577
1578FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
1579FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
1580FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
1581FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
1582FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
1583FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
1584FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
1585
1586IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
1587IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1588 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
1589/** @} */
1590
1591/** @name FPU operations taking a 80-bit float argument
1592 * @{ */
1593typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1594 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
1595typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
1596FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
1597FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
1598FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
1599FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
1600FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
1601FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
1602FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
1603FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
1604FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
1605
1606FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
1607FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
1608FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
1609
1610typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1611 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
1612typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
1613FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
1614FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
1615
1616typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
1617 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
1618typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
1619FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
1620FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
1621
1622typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
1623typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
1624FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
1625FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
1626FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
1627FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
1628FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
1629FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
1630FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
1631
1632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
1633typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
1634FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
1635FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
1636
1637typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
1638typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
1639FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
1640FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
1641FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
1642FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
1643FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
1644FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
1645FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
1646
1647typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
1648 PCRTFLOAT80U pr80Val));
1649typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
1650FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
1651FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
1652FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
1653
1654IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
1655IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1656 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
1657
1658IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
1659IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
1660 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
1661
1662/** @} */
1663
1664/** @name FPU operations taking a 16-bit signed integer argument
1665 * @{ */
1666typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1667 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
1668typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
1669typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
1670 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
1671typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
1672
1673FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
1674FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
1675FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
1676FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
1677FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
1678FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
1679
1680typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1681 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
1682typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
1683FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
1684
1685IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
1686FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
1687FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
1688/** @} */
1689
1690/** @name FPU operations taking a 32-bit signed integer argument
1691 * @{ */
1692typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
1693 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
1694typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
1695typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
1696 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
1697typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
1698
1699FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
1700FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
1701FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
1702FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
1703FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
1704FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
1705
1706typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
1707 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
1708typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
1709FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
1710
1711IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
1712FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
1713FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
1714/** @} */
1715
1716/** @name FPU operations taking a 64-bit signed integer argument
1717 * @{ */
1718typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
1719 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
1720typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
1721
1722IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
1723FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
1724FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
1725/** @} */
1726
1727
1728/** Temporary type representing a 256-bit vector register. */
1729typedef struct { uint64_t au64[4]; } IEMVMM256;
1730/** Temporary type pointing to a 256-bit vector register. */
1731typedef IEMVMM256 *PIEMVMM256;
1732/** Temporary type pointing to a const 256-bit vector register. */
1733typedef IEMVMM256 *PCIEMVMM256;
1734
1735
1736/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
1737 * @{ */
1738typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
1739typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
1740typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
1741typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
1742typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
1743typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
1744typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
1745typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
1746FNIEMAIMPLMEDIAF2U64 iemAImpl_pxor_u64, iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
1747FNIEMAIMPLMEDIAF2U128 iemAImpl_pxor_u128, iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
1748FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
1749FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
1750/** @} */
1751
1752/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
1753 * @{ */
1754typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1L1U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint32_t const *pu32Src));
1755typedef FNIEMAIMPLMEDIAF1L1U64 *PFNIEMAIMPLMEDIAF1L1U64;
1756typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1L1U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src));
1757typedef FNIEMAIMPLMEDIAF1L1U128 *PFNIEMAIMPLMEDIAF1L1U128;
1758FNIEMAIMPLMEDIAF1L1U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
1759FNIEMAIMPLMEDIAF1L1U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
1760/** @} */
1761
1762/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
1763 * @{ */
1764typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1H1U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src));
1765typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF1H1U64;
1766typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1H1U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src));
1767typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF1H1U128;
1768FNIEMAIMPLMEDIAF1H1U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
1769FNIEMAIMPLMEDIAF1H1U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
1770/** @} */
1771
1772/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
1773 * @{ */
1774typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUF,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst,
1775 PCRTUINT128U pu128Src, uint8_t bEvil));
1776typedef FNIEMAIMPLMEDIAPSHUF *PFNIEMAIMPLMEDIAPSHUF;
1777FNIEMAIMPLMEDIAPSHUF iemAImpl_pshufhw, iemAImpl_pshuflw, iemAImpl_pshufd;
1778IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src, uint8_t bEvil));
1779/** @} */
1780
1781/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
1782 * @{ */
1783IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src));
1784IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, PCRTUINT128U pu128Src));
1785/** @} */
1786
1787/** @name Media (SSE/MMX/AVX) operation: Sort this later
1788 * @{ */
1789IEM_DECL_IMPL_DEF(void, iemAImpl_movsldup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
1790IEM_DECL_IMPL_DEF(void, iemAImpl_movshdup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
1791IEM_DECL_IMPL_DEF(void, iemAImpl_movddup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, uint64_t uSrc));
1792
1793IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
1794IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
1795IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
1796IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
1797
1798/** @} */
1799
1800
1801/** @name Function tables.
1802 * @{
1803 */
1804
1805/**
1806 * Function table for a binary operator providing implementation based on
1807 * operand size.
1808 */
1809typedef struct IEMOPBINSIZES
1810{
1811 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
1812 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
1813 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
1814 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
1815} IEMOPBINSIZES;
1816/** Pointer to a binary operator function table. */
1817typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
1818
1819
1820/**
1821 * Function table for a unary operator providing implementation based on
1822 * operand size.
1823 */
1824typedef struct IEMOPUNARYSIZES
1825{
1826 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
1827 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
1828 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
1829 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
1830} IEMOPUNARYSIZES;
1831/** Pointer to a unary operator function table. */
1832typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
1833
1834
1835/**
1836 * Function table for a shift operator providing implementation based on
1837 * operand size.
1838 */
1839typedef struct IEMOPSHIFTSIZES
1840{
1841 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
1842 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
1843 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
1844 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
1845} IEMOPSHIFTSIZES;
1846/** Pointer to a shift operator function table. */
1847typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
1848
1849
1850/**
1851 * Function table for a multiplication or division operation.
1852 */
1853typedef struct IEMOPMULDIVSIZES
1854{
1855 PFNIEMAIMPLMULDIVU8 pfnU8;
1856 PFNIEMAIMPLMULDIVU16 pfnU16;
1857 PFNIEMAIMPLMULDIVU32 pfnU32;
1858 PFNIEMAIMPLMULDIVU64 pfnU64;
1859} IEMOPMULDIVSIZES;
1860/** Pointer to a multiplication or division operation function table. */
1861typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
1862
1863
1864/**
1865 * Function table for a double precision shift operator providing implementation
1866 * based on operand size.
1867 */
1868typedef struct IEMOPSHIFTDBLSIZES
1869{
1870 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
1871 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
1872 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
1873} IEMOPSHIFTDBLSIZES;
1874/** Pointer to a double precision shift function table. */
1875typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
1876
1877
1878/**
1879 * Function table for media instruction taking two full sized media registers,
1880 * optionally the 2nd being a memory reference (only modifying the first op.)
1881 */
1882typedef struct IEMOPMEDIAF2
1883{
1884 PFNIEMAIMPLMEDIAF2U64 pfnU64;
1885 PFNIEMAIMPLMEDIAF2U128 pfnU128;
1886} IEMOPMEDIAF2;
1887/** Pointer to a media operation function table for full sized ops. */
1888typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
1889
1890/**
1891 * Function table for media instruction taking taking one full and one lower
1892 * half media register.
1893 */
1894typedef struct IEMOPMEDIAF1L1
1895{
1896 PFNIEMAIMPLMEDIAF1L1U64 pfnU64;
1897 PFNIEMAIMPLMEDIAF1L1U128 pfnU128;
1898} IEMOPMEDIAF1L1;
1899/** Pointer to a media operation function table for lowhalf+lowhalf -> full. */
1900typedef IEMOPMEDIAF1L1 const *PCIEMOPMEDIAF1L1;
1901
1902/**
1903 * Function table for media instruction taking taking one full and one high half
1904 * media register.
1905 */
1906typedef struct IEMOPMEDIAF1H1
1907{
1908 PFNIEMAIMPLMEDIAF1H1U64 pfnU64;
1909 PFNIEMAIMPLMEDIAF1H1U128 pfnU128;
1910} IEMOPMEDIAF1H1;
1911/** Pointer to a media operation function table for hihalf+hihalf -> full. */
1912typedef IEMOPMEDIAF1H1 const *PCIEMOPMEDIAF1H1;
1913
1914
1915/**
1916 * Function table for media instruction taking two full sized media source
1917 * registers and one full sized destination register (AVX).
1918 */
1919typedef struct IEMOPMEDIAF3
1920{
1921 PFNIEMAIMPLMEDIAF3U128 pfnU128;
1922 PFNIEMAIMPLMEDIAF3U256 pfnU256;
1923} IEMOPMEDIAF3;
1924/** Pointer to a media operation function table for 3 full sized ops (AVX). */
1925typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
1926
1927
1928/** @} */
1929
1930
1931/** @name C instruction implementations for anything slightly complicated.
1932 * @{ */
1933
1934/**
1935 * For typedef'ing or declaring a C instruction implementation function taking
1936 * no extra arguments.
1937 *
1938 * @param a_Name The name of the type.
1939 */
1940# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
1941 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
1942/**
1943 * For defining a C instruction implementation function taking no extra
1944 * arguments.
1945 *
1946 * @param a_Name The name of the function
1947 */
1948# define IEM_CIMPL_DEF_0(a_Name) \
1949 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
1950/**
1951 * Prototype version of IEM_CIMPL_DEF_0.
1952 */
1953# define IEM_CIMPL_PROTO_0(a_Name) \
1954 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
1955/**
1956 * For calling a C instruction implementation function taking no extra
1957 * arguments.
1958 *
1959 * This special call macro adds default arguments to the call and allow us to
1960 * change these later.
1961 *
1962 * @param a_fn The name of the function.
1963 */
1964# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
1965
1966/**
1967 * For typedef'ing or declaring a C instruction implementation function taking
1968 * one extra argument.
1969 *
1970 * @param a_Name The name of the type.
1971 * @param a_Type0 The argument type.
1972 * @param a_Arg0 The argument name.
1973 */
1974# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
1975 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
1976/**
1977 * For defining a C instruction implementation function taking one extra
1978 * argument.
1979 *
1980 * @param a_Name The name of the function
1981 * @param a_Type0 The argument type.
1982 * @param a_Arg0 The argument name.
1983 */
1984# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
1985 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
1986/**
1987 * Prototype version of IEM_CIMPL_DEF_1.
1988 */
1989# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
1990 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
1991/**
1992 * For calling a C instruction implementation function taking one extra
1993 * argument.
1994 *
1995 * This special call macro adds default arguments to the call and allow us to
1996 * change these later.
1997 *
1998 * @param a_fn The name of the function.
1999 * @param a0 The name of the 1st argument.
2000 */
2001# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
2002
2003/**
2004 * For typedef'ing or declaring a C instruction implementation function taking
2005 * two extra arguments.
2006 *
2007 * @param a_Name The name of the type.
2008 * @param a_Type0 The type of the 1st argument
2009 * @param a_Arg0 The name of the 1st argument.
2010 * @param a_Type1 The type of the 2nd argument.
2011 * @param a_Arg1 The name of the 2nd argument.
2012 */
2013# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
2014 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
2015/**
2016 * For defining a C instruction implementation function taking two extra
2017 * arguments.
2018 *
2019 * @param a_Name The name of the function.
2020 * @param a_Type0 The type of the 1st argument
2021 * @param a_Arg0 The name of the 1st argument.
2022 * @param a_Type1 The type of the 2nd argument.
2023 * @param a_Arg1 The name of the 2nd argument.
2024 */
2025# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
2026 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
2027/**
2028 * Prototype version of IEM_CIMPL_DEF_2.
2029 */
2030# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
2031 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
2032/**
2033 * For calling a C instruction implementation function taking two extra
2034 * arguments.
2035 *
2036 * This special call macro adds default arguments to the call and allow us to
2037 * change these later.
2038 *
2039 * @param a_fn The name of the function.
2040 * @param a0 The name of the 1st argument.
2041 * @param a1 The name of the 2nd argument.
2042 */
2043# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
2044
2045/**
2046 * For typedef'ing or declaring a C instruction implementation function taking
2047 * three extra arguments.
2048 *
2049 * @param a_Name The name of the type.
2050 * @param a_Type0 The type of the 1st argument
2051 * @param a_Arg0 The name of the 1st argument.
2052 * @param a_Type1 The type of the 2nd argument.
2053 * @param a_Arg1 The name of the 2nd argument.
2054 * @param a_Type2 The type of the 3rd argument.
2055 * @param a_Arg2 The name of the 3rd argument.
2056 */
2057# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
2058 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
2059/**
2060 * For defining a C instruction implementation function taking three extra
2061 * arguments.
2062 *
2063 * @param a_Name The name of the function.
2064 * @param a_Type0 The type of the 1st argument
2065 * @param a_Arg0 The name of the 1st argument.
2066 * @param a_Type1 The type of the 2nd argument.
2067 * @param a_Arg1 The name of the 2nd argument.
2068 * @param a_Type2 The type of the 3rd argument.
2069 * @param a_Arg2 The name of the 3rd argument.
2070 */
2071# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
2072 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
2073/**
2074 * Prototype version of IEM_CIMPL_DEF_3.
2075 */
2076# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
2077 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
2078/**
2079 * For calling a C instruction implementation function taking three extra
2080 * arguments.
2081 *
2082 * This special call macro adds default arguments to the call and allow us to
2083 * change these later.
2084 *
2085 * @param a_fn The name of the function.
2086 * @param a0 The name of the 1st argument.
2087 * @param a1 The name of the 2nd argument.
2088 * @param a2 The name of the 3rd argument.
2089 */
2090# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
2091
2092
2093/**
2094 * For typedef'ing or declaring a C instruction implementation function taking
2095 * four extra arguments.
2096 *
2097 * @param a_Name The name of the type.
2098 * @param a_Type0 The type of the 1st argument
2099 * @param a_Arg0 The name of the 1st argument.
2100 * @param a_Type1 The type of the 2nd argument.
2101 * @param a_Arg1 The name of the 2nd argument.
2102 * @param a_Type2 The type of the 3rd argument.
2103 * @param a_Arg2 The name of the 3rd argument.
2104 * @param a_Type3 The type of the 4th argument.
2105 * @param a_Arg3 The name of the 4th argument.
2106 */
2107# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
2108 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
2109/**
2110 * For defining a C instruction implementation function taking four extra
2111 * arguments.
2112 *
2113 * @param a_Name The name of the function.
2114 * @param a_Type0 The type of the 1st argument
2115 * @param a_Arg0 The name of the 1st argument.
2116 * @param a_Type1 The type of the 2nd argument.
2117 * @param a_Arg1 The name of the 2nd argument.
2118 * @param a_Type2 The type of the 3rd argument.
2119 * @param a_Arg2 The name of the 3rd argument.
2120 * @param a_Type3 The type of the 4th argument.
2121 * @param a_Arg3 The name of the 4th argument.
2122 */
2123# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
2124 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2125 a_Type2 a_Arg2, a_Type3 a_Arg3))
2126/**
2127 * Prototype version of IEM_CIMPL_DEF_4.
2128 */
2129# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
2130 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2131 a_Type2 a_Arg2, a_Type3 a_Arg3))
2132/**
2133 * For calling a C instruction implementation function taking four extra
2134 * arguments.
2135 *
2136 * This special call macro adds default arguments to the call and allow us to
2137 * change these later.
2138 *
2139 * @param a_fn The name of the function.
2140 * @param a0 The name of the 1st argument.
2141 * @param a1 The name of the 2nd argument.
2142 * @param a2 The name of the 3rd argument.
2143 * @param a3 The name of the 4th argument.
2144 */
2145# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
2146
2147
2148/**
2149 * For typedef'ing or declaring a C instruction implementation function taking
2150 * five extra arguments.
2151 *
2152 * @param a_Name The name of the type.
2153 * @param a_Type0 The type of the 1st argument
2154 * @param a_Arg0 The name of the 1st argument.
2155 * @param a_Type1 The type of the 2nd argument.
2156 * @param a_Arg1 The name of the 2nd argument.
2157 * @param a_Type2 The type of the 3rd argument.
2158 * @param a_Arg2 The name of the 3rd argument.
2159 * @param a_Type3 The type of the 4th argument.
2160 * @param a_Arg3 The name of the 4th argument.
2161 * @param a_Type4 The type of the 5th argument.
2162 * @param a_Arg4 The name of the 5th argument.
2163 */
2164# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
2165 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
2166 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
2167 a_Type3 a_Arg3, a_Type4 a_Arg4))
2168/**
2169 * For defining a C instruction implementation function taking five extra
2170 * arguments.
2171 *
2172 * @param a_Name The name of the function.
2173 * @param a_Type0 The type of the 1st argument
2174 * @param a_Arg0 The name of the 1st argument.
2175 * @param a_Type1 The type of the 2nd argument.
2176 * @param a_Arg1 The name of the 2nd argument.
2177 * @param a_Type2 The type of the 3rd argument.
2178 * @param a_Arg2 The name of the 3rd argument.
2179 * @param a_Type3 The type of the 4th argument.
2180 * @param a_Arg3 The name of the 4th argument.
2181 * @param a_Type4 The type of the 5th argument.
2182 * @param a_Arg4 The name of the 5th argument.
2183 */
2184# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
2185 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2186 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
2187/**
2188 * Prototype version of IEM_CIMPL_DEF_5.
2189 */
2190# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
2191 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
2192 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
2193/**
2194 * For calling a C instruction implementation function taking five extra
2195 * arguments.
2196 *
2197 * This special call macro adds default arguments to the call and allow us to
2198 * change these later.
2199 *
2200 * @param a_fn The name of the function.
2201 * @param a0 The name of the 1st argument.
2202 * @param a1 The name of the 2nd argument.
2203 * @param a2 The name of the 3rd argument.
2204 * @param a3 The name of the 4th argument.
2205 * @param a4 The name of the 5th argument.
2206 */
2207# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
2208
2209/** @} */
2210
2211
2212/** @name Opcode Decoder Function Types.
2213 * @{ */
2214
2215/** @typedef PFNIEMOP
2216 * Pointer to an opcode decoder function.
2217 */
2218
2219/** @def FNIEMOP_DEF
2220 * Define an opcode decoder function.
2221 *
2222 * We're using macors for this so that adding and removing parameters as well as
2223 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
2224 *
2225 * @param a_Name The function name.
2226 */
2227
2228/** @typedef PFNIEMOPRM
2229 * Pointer to an opcode decoder function with RM byte.
2230 */
2231
2232/** @def FNIEMOPRM_DEF
2233 * Define an opcode decoder function with RM byte.
2234 *
2235 * We're using macors for this so that adding and removing parameters as well as
2236 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
2237 *
2238 * @param a_Name The function name.
2239 */
2240
2241#if defined(__GNUC__) && defined(RT_ARCH_X86)
2242typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
2243typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2244# define FNIEMOP_DEF(a_Name) \
2245 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
2246# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2247 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
2248# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2249 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
2250
2251#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2252typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
2253typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2254# define FNIEMOP_DEF(a_Name) \
2255 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) RT_NO_THROW_DEF
2256# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2257 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
2258# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2259 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
2260
2261#elif defined(__GNUC__)
2262typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
2263typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2264# define FNIEMOP_DEF(a_Name) \
2265 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
2266# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2267 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
2268# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2269 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
2270
2271#else
2272typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
2273typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
2274# define FNIEMOP_DEF(a_Name) \
2275 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) RT_NO_THROW_DEF
2276# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
2277 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
2278# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
2279 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
2280
2281#endif
2282#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
2283
2284/**
2285 * Call an opcode decoder function.
2286 *
2287 * We're using macors for this so that adding and removing parameters can be
2288 * done as we please. See FNIEMOP_DEF.
2289 */
2290#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
2291
2292/**
2293 * Call a common opcode decoder function taking one extra argument.
2294 *
2295 * We're using macors for this so that adding and removing parameters can be
2296 * done as we please. See FNIEMOP_DEF_1.
2297 */
2298#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
2299
2300/**
2301 * Call a common opcode decoder function taking one extra argument.
2302 *
2303 * We're using macors for this so that adding and removing parameters can be
2304 * done as we please. See FNIEMOP_DEF_1.
2305 */
2306#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
2307/** @} */
2308
2309
2310/** @name Misc Helpers
2311 * @{ */
2312
2313/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
2314 * due to GCC lacking knowledge about the value range of a switch. */
2315#define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
2316
2317/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
2318#define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
2319
2320/**
2321 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
2322 * occation.
2323 */
2324#ifdef LOG_ENABLED
2325# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
2326 do { \
2327 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
2328 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
2329 } while (0)
2330#else
2331# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
2332 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
2333#endif
2334
2335/**
2336 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
2337 * occation using the supplied logger statement.
2338 *
2339 * @param a_LoggerArgs What to log on failure.
2340 */
2341#ifdef LOG_ENABLED
2342# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
2343 do { \
2344 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
2345 /*LogFunc(a_LoggerArgs);*/ \
2346 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
2347 } while (0)
2348#else
2349# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
2350 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
2351#endif
2352
2353/**
2354 * Check if we're currently executing in real or virtual 8086 mode.
2355 *
2356 * @returns @c true if it is, @c false if not.
2357 * @param a_pVCpu The IEM state of the current CPU.
2358 */
2359#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (CPUMIsGuestInRealOrV86ModeEx(IEM_GET_CTX(a_pVCpu)))
2360
2361/**
2362 * Check if we're currently executing in virtual 8086 mode.
2363 *
2364 * @returns @c true if it is, @c false if not.
2365 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2366 */
2367#define IEM_IS_V86_MODE(a_pVCpu) (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(a_pVCpu)))
2368
2369/**
2370 * Check if we're currently executing in long mode.
2371 *
2372 * @returns @c true if it is, @c false if not.
2373 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2374 */
2375#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
2376
2377/**
2378 * Check if we're currently executing in a 64-bit code segment.
2379 *
2380 * @returns @c true if it is, @c false if not.
2381 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2382 */
2383#define IEM_IS_64BIT_CODE(a_pVCpu) (CPUMIsGuestIn64BitCodeEx(IEM_GET_CTX(a_pVCpu)))
2384
2385/**
2386 * Check if we're currently executing in real mode.
2387 *
2388 * @returns @c true if it is, @c false if not.
2389 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2390 */
2391#define IEM_IS_REAL_MODE(a_pVCpu) (CPUMIsGuestInRealModeEx(IEM_GET_CTX(a_pVCpu)))
2392
2393/**
2394 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
2395 * @returns PCCPUMFEATURES
2396 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2397 */
2398#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
2399
2400/**
2401 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
2402 * @returns PCCPUMFEATURES
2403 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2404 */
2405#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
2406
2407/**
2408 * Evaluates to true if we're presenting an Intel CPU to the guest.
2409 */
2410#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
2411
2412/**
2413 * Evaluates to true if we're presenting an AMD CPU to the guest.
2414 */
2415#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
2416
2417/**
2418 * Check if the address is canonical.
2419 */
2420#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
2421
2422
2423/**
2424 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
2425 *
2426 * For use during decoding.
2427 */
2428#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
2429/**
2430 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
2431 *
2432 * For use during decoding.
2433 */
2434#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
2435
2436/**
2437 * Gets the effective VEX.VVVV value.
2438 *
2439 * The 4th bit is ignored if not 64-bit code.
2440 * @returns effective V-register value.
2441 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2442 */
2443#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
2444 ((a_pVCpu)->iem.s.enmCpuMode == IEMMODE_64BIT ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
2445
2446
2447#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2448
2449/**
2450 * Check if the guest has entered VMX root operation.
2451 */
2452# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
2453
2454/**
2455 * Check if the guest has entered VMX non-root operation.
2456 */
2457# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(a_pVCpu)))
2458
2459/**
2460 * Check if the nested-guest has the given Pin-based VM-execution control set.
2461 */
2462# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) \
2463 (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
2464
2465/**
2466 * Check if the nested-guest has the given Processor-based VM-execution control set.
2467 */
2468# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) \
2469 (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
2470
2471/**
2472 * Check if the nested-guest has the given Secondary Processor-based VM-execution
2473 * control set.
2474 */
2475# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) \
2476 (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
2477
2478/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
2479# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
2480
2481/** Whether a shadow VMCS is present for the given VCPU. */
2482# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
2483
2484/** Gets the VMXON region pointer. */
2485# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
2486
2487/** Gets the guest-physical address of the current VMCS for the given VCPU. */
2488# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
2489
2490/** Whether a current VMCS is present for the given VCPU. */
2491# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
2492
2493/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
2494# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
2495 do \
2496 { \
2497 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
2498 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
2499 } while (0)
2500
2501/** Clears any current VMCS for the given VCPU. */
2502# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
2503 do \
2504 { \
2505 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
2506 } while (0)
2507
2508/**
2509 * Invokes the VMX VM-exit handler for an instruction intercept.
2510 */
2511# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
2512 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
2513
2514/**
2515 * Invokes the VMX VM-exit handler for an instruction intercept where the
2516 * instruction provides additional VM-exit information.
2517 */
2518# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
2519 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
2520
2521/**
2522 * Invokes the VMX VM-exit handler for a task switch.
2523 */
2524# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
2525 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
2526
2527/**
2528 * Invokes the VMX VM-exit handler for MWAIT.
2529 */
2530# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
2531 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
2532
2533/**
2534 * Invokes the VMX VM-exit handler for EPT faults.
2535 */
2536# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
2537 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
2538
2539/**
2540 * Invokes the VMX VM-exit handler.
2541 */
2542# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
2543 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
2544
2545#else
2546# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
2547# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
2548# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
2549# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
2550# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
2551# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2552# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2553# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2554# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2555# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
2556# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
2557
2558#endif
2559
2560#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2561/**
2562 * Check if an SVM control/instruction intercept is set.
2563 */
2564# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
2565 (CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
2566
2567/**
2568 * Check if an SVM read CRx intercept is set.
2569 */
2570# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
2571 (CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
2572
2573/**
2574 * Check if an SVM write CRx intercept is set.
2575 */
2576# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
2577 (CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
2578
2579/**
2580 * Check if an SVM read DRx intercept is set.
2581 */
2582# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
2583 (CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
2584
2585/**
2586 * Check if an SVM write DRx intercept is set.
2587 */
2588# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
2589 (CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
2590
2591/**
2592 * Check if an SVM exception intercept is set.
2593 */
2594# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
2595 (CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
2596
2597/**
2598 * Invokes the SVM \#VMEXIT handler for the nested-guest.
2599 */
2600# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
2601 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
2602
2603/**
2604 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
2605 * corresponding decode assist information.
2606 */
2607# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
2608 do \
2609 { \
2610 uint64_t uExitInfo1; \
2611 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
2612 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
2613 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
2614 else \
2615 uExitInfo1 = 0; \
2616 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
2617 } while (0)
2618
2619/** Check and handles SVM nested-guest instruction intercept and updates
2620 * NRIP if needed.
2621 */
2622# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
2623 do \
2624 { \
2625 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
2626 { \
2627 IEM_SVM_UPDATE_NRIP(a_pVCpu); \
2628 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
2629 } \
2630 } while (0)
2631
2632/** Checks and handles SVM nested-guest CR0 read intercept. */
2633# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2) \
2634 do \
2635 { \
2636 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
2637 { /* probably likely */ } \
2638 else \
2639 { \
2640 IEM_SVM_UPDATE_NRIP(a_pVCpu); \
2641 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
2642 } \
2643 } while (0)
2644
2645/**
2646 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
2647 */
2648# define IEM_SVM_UPDATE_NRIP(a_pVCpu) \
2649 do { \
2650 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
2651 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), IEM_GET_INSTR_LEN(a_pVCpu)); \
2652 } while (0)
2653
2654#else
2655# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
2656# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
2657# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
2658# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
2659# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
2660# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
2661# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
2662# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
2663# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { } while (0)
2664# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2) do { } while (0)
2665# define IEM_SVM_UPDATE_NRIP(a_pVCpu) do { } while (0)
2666
2667#endif
2668
2669/** @} */
2670
2671
2672
2673/**
2674 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
2675 */
2676typedef union IEMSELDESC
2677{
2678 /** The legacy view. */
2679 X86DESC Legacy;
2680 /** The long mode view. */
2681 X86DESC64 Long;
2682} IEMSELDESC;
2683/** Pointer to a selector descriptor table entry. */
2684typedef IEMSELDESC *PIEMSELDESC;
2685
2686/** @name Raising Exceptions.
2687 * @{ */
2688VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
2689 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
2690
2691VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
2692 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
2693#ifdef IEM_WITH_SETJMP
2694DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
2695 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
2696#endif
2697VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
2698VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
2699VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
2700VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
2701VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
2702VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2703VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
2704VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
2705VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2706/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
2707VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2708VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2709VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2710VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2711VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
2712VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
2713#ifdef IEM_WITH_SETJMP
2714DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2715#endif
2716VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
2717VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
2718VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2719#ifdef IEM_WITH_SETJMP
2720DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2721#endif
2722VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
2723#ifdef IEM_WITH_SETJMP
2724DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
2725#endif
2726VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2727#ifdef IEM_WITH_SETJMP
2728DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
2729#endif
2730VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc) RT_NOEXCEPT;
2731#ifdef IEM_WITH_SETJMP
2732DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc) RT_NOEXCEPT;
2733#endif
2734VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu);
2735VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu);
2736#ifdef IEM_WITH_SETJMP
2737DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2738#endif
2739
2740IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
2741IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
2742IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
2743
2744/**
2745 * Macro for calling iemCImplRaiseDivideError().
2746 *
2747 * This enables us to add/remove arguments and force different levels of
2748 * inlining as we wish.
2749 *
2750 * @return Strict VBox status code.
2751 */
2752#define IEMOP_RAISE_DIVIDE_ERROR() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseDivideError)
2753
2754/**
2755 * Macro for calling iemCImplRaiseInvalidLockPrefix().
2756 *
2757 * This enables us to add/remove arguments and force different levels of
2758 * inlining as we wish.
2759 *
2760 * @return Strict VBox status code.
2761 */
2762#define IEMOP_RAISE_INVALID_LOCK_PREFIX() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidLockPrefix)
2763
2764/**
2765 * Macro for calling iemCImplRaiseInvalidOpcode().
2766 *
2767 * This enables us to add/remove arguments and force different levels of
2768 * inlining as we wish.
2769 *
2770 * @return Strict VBox status code.
2771 */
2772#define IEMOP_RAISE_INVALID_OPCODE() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidOpcode)
2773/** @} */
2774
2775/** @name Register Access.
2776 * @{ */
2777VBOXSTRICTRC iemRegRipRelativeJumpS8(PVMCPUCC pVCpu, int8_t offNextInstr) RT_NOEXCEPT;
2778VBOXSTRICTRC iemRegRipRelativeJumpS16(PVMCPUCC pVCpu, int16_t offNextInstr) RT_NOEXCEPT;
2779VBOXSTRICTRC iemRegRipRelativeJumpS32(PVMCPUCC pVCpu, int32_t offNextInstr) RT_NOEXCEPT;
2780VBOXSTRICTRC iemRegRipJump(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
2781/** @} */
2782
2783/** @name FPU access and helpers.
2784 * @{ */
2785void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult) RT_NOEXCEPT;
2786void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2787void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult) RT_NOEXCEPT;
2788void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg) RT_NOEXCEPT;
2789void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg) RT_NOEXCEPT;
2790void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
2791 uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2792void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
2793 uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2794void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2795void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW) RT_NOEXCEPT;
2796void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW) RT_NOEXCEPT;
2797void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2798void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW) RT_NOEXCEPT;
2799void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2800void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT;
2801void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2802void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT;
2803void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2804void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu) RT_NOEXCEPT;
2805void iemFpuStackPushUnderflow(PVMCPUCC pVCpu) RT_NOEXCEPT;
2806void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu) RT_NOEXCEPT;
2807void iemFpuStackPushOverflow(PVMCPUCC pVCpu) RT_NOEXCEPT;
2808void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff) RT_NOEXCEPT;
2809/** @} */
2810
2811/** @name Memory access.
2812 * @{ */
2813VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess) RT_NOEXCEPT;
2814VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
2815#ifndef IN_RING3
2816VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
2817#endif
2818void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
2819VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
2820VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
2821VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
2822
2823#ifdef IEM_WITH_CODE_TLB
2824void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) RT_NOEXCEPT;
2825#else
2826VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
2827#endif
2828#ifdef IEM_WITH_SETJMP
2829uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2830uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2831uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2832uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) RT_NOEXCEPT;
2833#else
2834VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
2835VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
2836VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
2837VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2838VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
2839VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
2840VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2841VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
2842VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2843VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2844VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
2845#endif
2846
2847VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2848VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2849VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2850VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2851VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2852VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2853VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2854VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2855VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2856VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2857VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2858VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2859VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
2860 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
2861#ifdef IEM_WITH_SETJMP
2862uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2863uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2864uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2865uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2866uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2867void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2868void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2869void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2870void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2871void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2872void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2873#endif
2874
2875VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2876VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2877VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2878VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2879VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
2880
2881VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
2882VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
2883VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
2884VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
2885VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2886VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2887VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2888VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2889VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
2890#ifdef IEM_WITH_SETJMP
2891void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
2892void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
2893void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
2894void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
2895void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2896void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
2897void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2898void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
2899#endif
2900
2901VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
2902VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
2903VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
2904VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
2905VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
2906VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2907VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2908VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2909VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
2910VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
2911VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
2912VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
2913VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
2914VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
2915VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
2916VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2917VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2918VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
2919/** @} */
2920
2921/** @name IEMAllCImpl.cpp
2922 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
2923 * @{ */
2924IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
2925IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
2926IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
2927IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
2928IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
2929IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
2930IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
2931IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
2932IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
2933IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
2934IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
2935IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
2936IEM_CIMPL_PROTO_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2937IEM_CIMPL_PROTO_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2938IEM_CIMPL_PROTO_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2939IEM_CIMPL_PROTO_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc);
2940IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
2941IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
2942IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
2943IEM_CIMPL_PROTO_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop);
2944IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
2945IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
2946IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
2947IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
2948IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
2949IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
2950IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
2951IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
2952IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
2953IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
2954IEM_CIMPL_PROTO_0(iemCImpl_syscall);
2955IEM_CIMPL_PROTO_0(iemCImpl_sysret);
2956IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
2957IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
2958IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
2959IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
2960IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
2961IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
2962IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
2963IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
2964IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
2965IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
2966IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2967IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
2968IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2969IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
2970IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
2971IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2972IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
2973IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
2974IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2975IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
2976IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
2977IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
2978IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
2979IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
2980IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
2981IEM_CIMPL_PROTO_0(iemCImpl_clts);
2982IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
2983IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
2984IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
2985IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
2986IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
2987IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
2988IEM_CIMPL_PROTO_0(iemCImpl_invd);
2989IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
2990IEM_CIMPL_PROTO_0(iemCImpl_rsm);
2991IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
2992IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
2993IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
2994IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
2995IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
2996IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg);
2997IEM_CIMPL_PROTO_1(iemCImpl_in_eAX_DX, uint8_t, cbReg);
2998IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg);
2999IEM_CIMPL_PROTO_1(iemCImpl_out_DX_eAX, uint8_t, cbReg);
3000IEM_CIMPL_PROTO_0(iemCImpl_cli);
3001IEM_CIMPL_PROTO_0(iemCImpl_sti);
3002IEM_CIMPL_PROTO_0(iemCImpl_hlt);
3003IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
3004IEM_CIMPL_PROTO_0(iemCImpl_mwait);
3005IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
3006IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
3007IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
3008IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
3009IEM_CIMPL_PROTO_0(iemCImpl_daa);
3010IEM_CIMPL_PROTO_0(iemCImpl_das);
3011IEM_CIMPL_PROTO_0(iemCImpl_aaa);
3012IEM_CIMPL_PROTO_0(iemCImpl_aas);
3013IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
3014IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
3015IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
3016IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
3017IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
3018 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
3019IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
3020IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
3021IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
3022IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
3023IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
3024IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
3025IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
3026IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
3027IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
3028IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
3029IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
3030IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
3031IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
3032IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
3033IEM_CIMPL_PROTO_1(iemCImpl_fxch_underflow, uint8_t, iStReg);
3034IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop);
3035/** @} */
3036
3037/** @name IEMAllCImplStrInstr.cpp.h
3038 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
3039 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
3040 * @{ */
3041IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
3042IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
3043IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
3044IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
3045IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
3046IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
3047IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
3048IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
3049IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
3050IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3051IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3052
3053IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
3054IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
3055IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
3056IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
3057IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
3058IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
3059IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
3060IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
3061IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
3062IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3063IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3064
3065IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
3066IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
3067IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
3068IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
3069IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
3070IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
3071IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
3072IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
3073IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
3074IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3075IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
3076
3077
3078IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
3079IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
3080IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
3081IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
3082IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
3083IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
3084IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
3085IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
3086IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
3087IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3088IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3089
3090IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
3091IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
3092IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
3093IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
3094IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
3095IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
3096IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
3097IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
3098IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
3099IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3100IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3101
3102IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
3103IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
3104IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
3105IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
3106IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
3107IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
3108IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
3109IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
3110IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
3111IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3112IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3113
3114IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
3115IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
3116IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
3117IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
3118IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
3119IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
3120IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
3121IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
3122IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
3123IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3124IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
3125
3126
3127IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
3128IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
3129IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
3130IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
3131IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
3132IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
3133IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
3134IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
3135IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
3136IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3137IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3138
3139IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
3140IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
3141IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
3142IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
3143IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
3144IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
3145IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
3146IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
3147IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
3148IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3149IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3150
3151IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
3152IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
3153IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
3154IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
3155IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
3156IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
3157IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
3158IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
3159IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
3160IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3161IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3162
3163IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
3164IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
3165IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
3166IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
3167IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
3168IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
3169IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
3170IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
3171IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
3172IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3173IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
3174/** @} */
3175
3176#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3177VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
3178VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
3179VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
3180VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
3181VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
3182VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
3183VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
3184VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
3185VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
3186VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
3187 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
3188VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
3189 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
3190VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3191VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3192VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3193VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3194VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3195VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
3196VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
3197VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
3198 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
3199VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
3200VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
3201VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
3202uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
3203void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
3204VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
3205 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
3206bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
3207IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
3208IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
3209IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
3210IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
3211IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
3212IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
3213IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
3214IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
3215IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
3216IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
3217IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField);
3218IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
3219IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
3220IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
3221IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
3222IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
3223#endif
3224
3225#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3226VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
3227VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
3228VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
3229 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
3230VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite) RT_NOEXCEPT;
3231IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
3232IEM_CIMPL_PROTO_0(iemCImpl_vmload);
3233IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
3234IEM_CIMPL_PROTO_0(iemCImpl_clgi);
3235IEM_CIMPL_PROTO_0(iemCImpl_stgi);
3236IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
3237IEM_CIMPL_PROTO_0(iemCImpl_skinit);
3238IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
3239#endif
3240
3241IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
3242IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
3243IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
3244
3245
3246extern const PFNIEMOP g_apfnOneByteMap[256];
3247
3248/** @} */
3249
3250RT_C_DECLS_END
3251
3252#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
3253
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette